
FACULTY OF SCIENCE AND TECHNOLOGY

MASTER’S THESIS
Study programme/specialization: Spring semester, 2023

MSc. Petroleum Engineering Open
Author:

Gideon Ofosu-Budu ..
Gideon Ofosu-Budu

Programme coordinator:
Øystein Arild

Supervisors:
UiS - Prof. Dan Sui
Carnain AS - Abdul-Razzaq Aqrawi

Title of master’s thesis:

Automated Drill Plan Using Reinforcement Machine Learning

Credits: 30

Keywords: Number of pages: 53
Wellbore Design, Well Planning, Drilling,
Machine Learning, Q-learning.

+ supplemental material/other: 10

Stavanger, 30th August 2023

Automated Drill Plan Using
Reinforcement Machine Learning

Master Thesis Project for the degree of
MSc in Petroleum Engineering

Stavanger, August 2023

University of Stavanger
Faculty of Science and Technology
Department of Energy and Petroleum Engineering

Abstract

Well planning is considered to be one of the most demanding aspect of drilling. Well planning
is carried out to formulate a program for drilling a well in the safest and most cost effective
way possible. Designing the trajectory of a well, which is part of the well planning process, has
always been a mathematical-based approach that requires a lot of experience from the well plan-
ner. Geology of different regions usually differ from each other, and the experience gained from
one region might not be applicable in the other. This makes the design process quite difficult
and time consuming. Therefore, due to time constraints, there are always a lot of uncertainties
in the well design.

In this thesis we purpose a novel use of reinforcement machine learning to automatically
design the well trajectory given any type of geological constraints. The use of machine learning
has surged in recent times and it has been applied to other well planning modules like bit selec-
tion and optimization. A successful implementation of a machine learning model to design a
well trajectory could cut down on many uncertainties and reduce the time needed in the design
process.

The results of the work demonstrate that reinforcement learning is a viable and very capa-
ble approach to automating the design of a well path without having to do complex calcula-
tions, such as in traditional design methods. Further experimentation and implementation of
reinforced-based learning using 3D and 4D environments, as well introducing further realistic
drilling constraints, could potentially lead to a more accurate and desirable design of well path.

ii

Acknowledgments

First and foremost, I express my profound gratitude to God for providing me with the strength

and guidance to complete this thesis.

I would also like to thank my supervisors, Professor Dan Sui and Abdul-Razzaq Aqrawi for

their advice and support throughout the entire time I was writing the thesis. I am very grateful.

Special thanks to Maalidefaa Moses Tantuoyir and Jarle Haukås for offering their time and

advice anytime I needed them. This project would not have been possible without you, and I

appreciate everything.

And, to my family back home, thank you for all your prayers, morale support and motivation

through the ups and downs. I want to say that I highly appreciate you and love you.

iii

List of Abbreviations

2D 2 Dimensional
3D 3 Dimensional
ACO Ant Colony
AHC Agglomerative Hierarchical Clustering
AI Artificial Intelligence
ANN Artificial Neural Network
AutoML Automated Machine Learning
DBACAN Density-Based Spatial Clustering of Applications with Noise
E&P Exploration and Production
EM Expectation-Maximization algorithm
GA Genetic Algorithm
KNN K Nearest Neighbors
KOP Kick-Off Point
MD Measured Depth
MDP Markov Decision Process
ML Machine Learning
MOGA Multi-Objective Genetic Algorithm
MRST MATLAB Reservoir Simulation Toolbox
NCS Norwegian Continental Shelf
NN Neural Network
PSO Particle Swarm Optimization
Q-learning Quality-learning
SDK Software Development Kit
SVM Support Vector Machine
TVD True Vertical Depth
UTM Universal Transverse of Mercator

iv

Table of Contents

Abstract ii

Acknowledgments iii

List of Abbreviations iv

List of Figures ix

List of Tables x

1 Introduction 1

1.1 Motivation . 2

1.2 Problem Definition . 2

1.3 Outline . 3

2 Literature Review 4

2.1 Well Trajectory Design Background . 4

2.1.1 Basic Parameters of Well Path . 6

2.1.2 Types of Well Profiles . 7

2.1.3 Survey Calculation Techniques . 8

2.1.4 Traditional Methods of Designing Well Trajectory 9

2.1.5 Computer Applications . 10

2.1.6 Well Trajectory Design using Search Methods 12

2.2 Machine learning Background . 13

2.2.1 Supervised Learning . 15

2.2.2 Unsupervised Learning . 16

v

vi TABLE OF CONTENTS

2.2.3 Semi-supervised Learning . 16

2.2.4 Reinforcement Learning . 17

2.2.5 Automated Machine Learning (AutoML) 19

2.3 Related Work . 20

2.3.1 Proposed Solution in 2D environment 20

2.3.2 Proposed Solutions in 3D environment 21

3 Platforms, Dataset & Model 23

3.1 Platforms Used . 23

3.1.1 OSDU Data Platform . 23

3.1.2 DELFI Digital Platform . 24

3.1.3 Dataiku Data Science Studio (Dataiku DSS) 24

3.1.4 OpenZGY . 24

3.2 Dataset . 24

3.2.1 Overview of the Volve field dataset 25

3.3 Model . 27

3.3.1 Technicalities to be Considered . 27

3.3.2 Reward Function . 29

4 Implementation 31

4.1 Introduction . 31

4.1.1 Start and Target Points . 31

4.1.2 Obstacles . 32

4.2 2D Approach Using Q-Learning . 33

4.2.1 Initial Proposed Model . 33

4.2.2 Flow of Implemented Model . 34

5 Results and Discussion 39

5.1 2D representation of VOLVE field . 39

5.2 RL 2D Grid Environment . 40

5.3 Sensitivity Analysis . 42

TABLE OF CONTENTS vii

5.3.1 Effect of grid size location, start and end points in finding the

shortest path . 42

5.3.2 The effect of reward or cost factor in finding the shortest path . . 44

5.3.3 Effect of hyper-parameters in finding the shortest path 45

6 Conclusions and Future Work 46

6.1 Conclusions . 46

6.2 Future Work . 47

6.2.1 Training data . 47

6.2.2 Adding more granularity to the obstacles 47

6.2.3 Considering the technicalities of drilling 48

6.2.4 Using 4D seismic . 48

References 53

Appendices 54

Appendix A GitHub Link to Python Code 56

A.1 Adding Configuration . 56

A.2 Initializing Environment and Training . 56

A.3 Terminal state . 56

A.4 Search for endLoc . 56

A.5 Shortest path to endLoc . 56

A.6 Training of the reinforcement algorithm 57

Appendix B Plots 58

B.1 Shortest path training failures . 58

List of Figures

1.1 An illustration of the concept of this research 1

2.1 Well Trajectories designed to avoid constraints [6] 5

2.2 Figure showing multiple well trajectories designed to enter a single reservoir . 8

2.3 Type 1 (Build and Hold or J-type) Well Profile designed in Petrel 11

2.4 Type 2 (Build, Hold and Drop or S-type) Well Profile designed in Petrel 12

2.5 Relationship between Artificial Intelligence and Machine Learning 14

2.6 An overview of the Supervised Learning process 15

2.7 Block diagram of Semi-supervised Learning 16

2.8 The flow to update Q-tables in Q-Learning . 19

3.1 Location of Volve field in the North Sea . 25

4.1 Illustration of the effects of drilling through risky zone [68] 32

4.2 Flow of the main 2D program . 35

4.3 Flowchart of a single training episode of the 2D model 36

5.1 Display of a Section of Seismic cube from Volve Field 39

5.2 2D grid representation of a RL environment with start and end location 40

5.3 Shortest well path in a 2D grid environment 41

5.4 Upscaling well path . 42

5.5 Short location distance. End location is in-front of an obstacle 43

5.6 Short location distance between start and need location. End location is not

behind an obstacle . 43

5.7 Increased location distance in 2D grid . 44

5.8 Failed training episode . 45

viii

LIST OF FIGURES ix

B.1 Plot 1 . 58

B.2 Plot 2 . 59

B.3 Plot 3 . 59

B.4 Plot 4 . 60

B.5 Plot 4 . 60

B.6 Plot 5 . 61

B.7 Plot 6 . 61

B.8 Plot 7 . 62

B.9 Plot 8 . 62

B.10 Plot 9 . 63

B.11 Plot 10 . 63

List of Tables

3.1 Volve Dataset files . 26

3.2 Sample of a Well Trajectory Spreadsheet for F-1 A well from Volve dataset

taken from Petrel . 30

x

Chapter 1

Introduction

Artificial Intelligence(AI), and its application in the energy industry, has seen a drastic increase

and a great deal of success in the past decade. For example, operations within oil and gas

recovery, such as from drilling to production to transportation, have been automated these days

and employ AI in one form or the other [1][2]. Well trajectory design during well planning is a

potential area to optimize by applying machine learning techniques, but is yet to be explored in

much detail. This thesis investigates the feasibility and applicability of reinforcement learning

(RL) as a potential use case in reducing well planning time and effort in the energy industry.

Figure 1.1: An illustration of the concept of this research

As shown in figure 1.1 above, the concept of this thesis is to combine machine learning,

specifically reinforcement learning, with already existing ideas and techniques in well planning

to create a machine learning model. The resulting ML model is expected to save time in well

1

2 CHAPTER 1. INTRODUCTION

planning by operating automatically and finding the shortest drill path, while maintaining a high

level of quality.

1.1 Motivation

Drilling operations are performed to create a channel to connect a point on the earth’s surface

to a target depth of the geological formation containing "sweet spots" of hydrocarbons [3]. The

objective is to create a path that allows fluid transfer, that is, either reservoir fluids to the surface

or fluids from the surface into the well. Having the best possible well path for drilling, is very

vital to the overall future integrity of the well and great effort must be put into this stage of well

planning.

Accidents during drilling do happen, ranging from minor to catastrophic ones. Designing

the trajectory through a shallow gas pocket in the formation and drilling through it, for instance,

can lead to a kick or blowout in extreme cases. Also, designing very tight angles of deviation

can lead to casings or tubing getting stuck and buckled in the drilled hole. This can result in a lot

of extra costs and requires a lot of time to be remedied, which is highly undesired. Essentially,

theses accidents are to be avoided and proper care needs to be taken in the path planning phase;

the genesis of everything.

1.2 Problem Definition

A review of well design literature published over the past few decades reveals that the design

of well trajectories heavily relies on the designer’s expertise and judgment. And, the outcomes

are not always the best due to the absence of very strict mathematical models and pertinent

optimization theories. The mathematical models that exist often ignore the geological features

of the formation and other key variables of drilling. This issue is also the same with computer

programs made for trajectory design. Possible questions that arise include;

• Can the drill plan be designed to consider all the constraints in each formation?

• Can the design include drilling technicalities such dogleg severity, inclination, azimuth?

1.3. OUTLINE 3

• Is it possible for the resulting method to be automated, such that engineers can spend

more time focusing on other critical tasks?

• Will the resulting method be more efficient and more cost effective compared to existing

solutions?

The aim of this study is to find a solution that is not only equally or more accurate than

traditional methods, but also requires less time, which can free up an engineer to concentrate on

other important tasks. To achieve this, a 2D reinforcement learning model is attempted in this

work to study its applicability and viability in the automation of the well path process in drill

planning.

1.3 Outline

This section gives a general overview of the thesis structure. A short description of what is to

be expected in the subsequent chapters is presented.

Chapter 1 introduces the problem that this thesis looks to solve and the main motivation for

doing this project.

Chapter 2 gives a review of the literature. Some traditional approaches as well as computer-

based solutions are discussed. A general overview of machine learning is also examined.

Chapter 3 has three sections. The first section describes the various software platforms used

in this thesis. The second section discusses the dataset used. The last section go into detail about

how the different components of the model compare to real-world scenarios.

Chapter 4 discusses the methodology in detail. It describes step-by-step all the processes

involved in implementing the model. Both the failures and the successes will be reviewed in

this chapter. Finally the main 2D model implementation is described.

Chapter 5 presents the results and analysis from the experiments presented in chapter 4.

Chapter 6 concludes the thesis, examines the lessons learned, and makes suggestions for

future work.

Chapter 2

Literature Review

Development of subsurface drilling processes and programs is critical and cost intensive in

upstream operations [4]. A poorly designed well trajectory could result in major accidents

such as stuck pipes and wellbore collapse, so the optimization of the well path is essential in

reducing drilling risk. Proper well spacing in a multi-well region also adds to finding the ideal

development strategy for the field [5]. Well planning consists of many modules which include,

well path design, mud design, casing/tubing design, bit selection etc.

Well path design is very crucial, and it involves designing the best possible trajectory that

connects the surface to a predefined target in the reservoir. The trajectory must be designed

such that it avoids all constraints that will make the drilling operation a challenge. Having

constraints such as hard formations, salt formations, faults, shallow gas pockets etc. in the well

path introduces drilling risk and ultimately, the drilling operation turns costly and an increase

in non-productive days. As a result, any opportunity to maintain a reasonable length of the

wellbore, whiles staying in the allowable curvatures and avoiding constraints, usually speeds up

the drilling process and lowers overall drilling costs [6]. Examples of trajectories designed to

avoid some constraints are shown in figure 2.1.

2.1 Well Trajectory Design Background

Up until the late 1920s, only vertical wells were primarily planned by drillers [7]. Since then,

directional wells have been successfully designed and drilled in various oilfields. A vertical

4

2.1. WELL TRAJECTORY DESIGN BACKGROUND 5

(a) (b)

Figure 2.1: Well Trajectories designed to avoid constraints [6]

wellbore is a “straight” hole or a well with only a small angle of deviation. Drilling high-

angle-deviation wells has been made possible because of advances in technology. Notably, the

Rotary Steerable System (RSS) [8], offered by several companies. The application of direc-

tional drilling is expanded into three major domains as follows:

• Environmental constraints: These include natural land obstructions such as mountains,

lakes swamps, rivers, farmlands, or critical buildings.

• Underground geological constraints: Directional drilling can be a means to access oil

deposits for formations with geological obstructions such as faults, unconsolidated for-

mations that could collapse easily, salt domes etc by avoiding these obstructions. Di-

rectional wells like sidetracking wells, multilateral wells, extended-reached wells have

considerably widened the potential of accessing hydrocarbons from previously inaccessi-

ble depths.

• Treatment for downhole drilling accidents: Directional wells can also be drilled when

there is an accident downhole. For example, if there is a stuck pipe or a “fish”, a direc-

tional well can be drilled from a section above.

To design the trajectory the surface co-ordinate, target co-ordinate, TVD, KOP and build-up

rate are required. For designing good trajectories, these properties and their correlations are

crucial.

6 CHAPTER 2. LITERATURE REVIEW

2.1.1 Basic Parameters of Well Path

Well path refers to the actual shape of the borehole axis when the drilling process is finished.

There are some significant parameters of the well path that determine its resulting shape after

drilling. Basic concept of well path parameters and the relationship between each parameter is

very essential for the trajectory design, path measurements and calculations as well as well path

control. Some of these basic parameters are discussed below.

✦ Azimuth: The azimuth of a wellbore at any point is defined as the projection of the

borehole direction onto a horizontal plane. It is measured clockwise from the true north.

The unit for azimuth is degrees (°).

✦ Dip: Dip is the magnitude of the inclination of a plane from horizontal.

✦ Dogleg severity: A measure of thr curvature of a borehole. It is usually measured in

degrees per 30m or 100ft.

✦ Dogleg: A dogleg is a particularly bent place in a wellbore where the trajectory changes

rapidly.

✦ Displacement: The horizontal distance between the starting point at the surface and the

target co-ordinate in the subsurface.

✦ Build-up rate: Defined as the rate at which angle is built up from the kick-off point. Unit

of measurement is (°/m). High change of angle per length results in severe doglegs in the

trajectory. This creates sharp bends and makes drilling difficult.

✦ Displacement: The horizontal distance between the starting point at the surface and the

target co-ordinate in the subsurface.

✦ Inclination: Angle formed between the tangent of borehole axis and the gravity line. The

inclination shows the severity of the wellbore deflection. The inclination has the unit of

degree (°).

✦ Kick-off point (KOP): The point at which the well starts deviating from the vertical. It

is always vital to kick-off in a soft formation.

2.1. WELL TRAJECTORY DESIGN BACKGROUND 7

✦ Measured depth (MD): Distance from top of well to the target along the well path.

✦ True-vertical depth (TVD): Vertical distance between the start point at the surface and

the target point.

2.1.2 Types of Well Profiles

The well path may follow a few different routes. For a vertical well, the profile is just a straight

line with little to no deviation from the original starting point. For directional wells, there are

three possible types of well profile. They are:

Type 1: Build and Hold or J-type

This is the most common and simplest design for a directional well. The well is vertical until

the KOP, where the well deviates at a predetermined angle. When the desired inclination is

reached, it is maintained over the tangential section to intersect the target. This type of profile

is often applied when a large horizontal displacement is required at relatively shallow target

depths.

Type 2: Build, Hold and Drop or S-type

This profile type has a similar shape to Type 1 down to the lower part of the build-up. Here

the inclination is reduced, and the tangent section is dropped-off. In some cases, the drop-off

section becomes vertical as it reaches the target. This type of profile is used for deep targets

with small horizontal displacement.

Type 3: Deep Kick-off and Build

The profile has a long vertical with a deep KOP and then inclination built quickly to the target.

They are similar to Type 1 above except the KOP is at a deeper depth. Well under this category

are mostly used as appraisal wells to assess newly discovered reservoirs. The profile is used

when there are obstructions such as salt dome or in sidetracking.

8 CHAPTER 2. LITERATURE REVIEW

Horizontal Wells

Wells with long horizontal endings in the reservoir have been designed and drilled in the in-

dustry today. Horizontal wells are high-angle wells in which the inclination is generally greater

than 85°. A long section of the wellbore is placed within the reservoir. This allows for improved

production from certain reservoirs that would otherwise be uneconomic. It requires more than

one build-up section to achieve the inclination. Drilling horizontal wells has lots of challenges

and so drilling costs are extremely high.

Figure 2.2: Figure showing multiple well trajectories designed to enter a single reservoir

2.1.3 Survey Calculation Techniques

At every point in time during drilling of a wellbore, engineers always want to have an idea

of how accurate the wellbore being drilled is, as compared to the trajectory designed prior to

drilling. Several calculation methods have been developed to estimate the wellbore path as the

wellbore is being drilled [7] [9]. Some of the widely used methods are discussed below.

2.1. WELL TRAJECTORY DESIGN BACKGROUND 9

The radius-of-curvature method has the shape of a spherical arc and uses sets of angles

measured at each end of the course length to generate a space curve representing the wellbore

path. This approach is perhaps the most accurate of them all but is difficult to do manually.

The angle-averaging method calculates the wellbore tangentially using the simple aver-

ages of the angles at the top and bottom over the course length. This method is simple and

accurate.

The tangential method uses the inclination and direction angles measured at the lower end

of the course length and the path is assumed to be tangent to these angles throughout the section

length.

2.1.4 Traditional Methods of Designing Well Trajectory

Designing the well path, as mentioned earlier, has always been a vital part of the drilling process.

Before the introduction of technology into the industry, most designs were done mathematically

by hand calculations. These methods give satisfactory results that are still used in the oil and

gas industry today. For instance, Sampaio [10] discusses using Bezier curves in producing well

trajectories with continuous and smooth change of curvature. The technique can be used to find

the trajectories for any of the four common end conditions in terms of azimuth and inclination,

namely: free-end, set-end, set-inclination/free azimuth, and free-inclination/set-azimuth. Eren

and Suicmez [11] also proposed a novel method of calculation, "Improved Tangential Method.”

Findings of the proposed method are compared with other existing methods using two different

actual trajectories of an oilfield in addition to the three well geometries (J-type, S-type, and Hor-

izontal well profile). Results show that it calculates directional trajectories to produce correct

results regardless of the type of well trajectory.

In another study by Sampaio [12], a mathematical method using the cubic function to design

complex trajectories for 3D wells is presented. There is a degree of freedom in this design which

allows parameters to be adjusted to fit the design requirements and to perfect the trajectory.

The resulting trajectories are smooth continuous functions according to the study, and several

numerical examples in the paper illustrate the various end conditions.

According to Liu et al. [13], adopting the 3D Dubin’s curve, which has been widely used

10 CHAPTER 2. LITERATURE REVIEW

in autopilot for path planning but yet to be employed in drilling industry, has the potential to

effectively optimize the path design. The 3D trajectory design is based on the 3D Dubin’s curve

and is particularly useful in subsea wells where multiple wells are drilled from one drilling site.

Some of these traditional well path design methods strongly depend on the designer’s expe-

rience and judgment and results are not necessarily the best. Traditional methods used in well

planning have been in existence for decades though, and have been extremely useful in that

time. In recent times, they are found to be very time consuming and lacking in some respects

considering the advancement and use of technology in the oil and gas industry.

2.1.5 Computer Applications

In most cases, several different trajectories may have to be investigated to find the best trajectory

among them that avoids all constraints that can cause drilling problems. Each choice of kick-off

points or build up rate means a different trajectory to be calculated. Such repetitive calculations

are best done by computers. The use of computer software, makes planning easier, especially

when dealing with substantial amounts of data. Several operating companies have their own

computer programs used for well planning and trajectory design. Example of such computer

programs include SLB’s Petrel™ E&P Software, Oliasoft WellDesign, WellAssist by OIiasoft

AS and FutureOn, WellArchitect and Integrated Well Designer by Dynamic Graphics, Inc.,

COMPASS by Halliburton etc.

• Oliasoft WellDesign: It has a trajectory design feature that allows planning of different

versions of a trajectory, with full revision tracking and bulk management of wells [14].

• WellAssist: A software as a service (SaaS) tool which is an integration of Oliasoft’s Well

Design with FutureOn’s FieldTwin. This tool helps in conceptualizing well placement

and field layouts before well development [15].

• WellArchitect and Integrated Well Designer: Both allow visualization of geologic and

reservoir models, as well as 2D surfaces into the display while planning, including eval-

uating hazard-potential such as intersection with already planned paths and faults [16].

2.1. WELL TRAJECTORY DESIGN BACKGROUND 11

• COMPASS: Designed for both oil companies and directional contractors, COMPASS is

a directional path planning software for well planning, survey data management, as well

as anti-collision analysis [17].

Petrel™ E&P Software Platform

Petrel E&P Software Platform by SLB is a well-known oil and gas industry platform made to

bring the different disciplines of an oil and gas industry together with best-in-class science in an

unparalleled productivity environment. This makes it possible for experts from different fields

to work together and share ideas from exploration to production [18]. The Petrel platform can

be used both on-premises and in the Delfi cognitive E&P environment.

Petrel platform has a trajectory planning module that efficiently delivers a drillable trajectory

with constraints and sensitivity analysis. It allows effective design of the best trajectory, run of

anti-collision analysis, analysis of drilling targets, and leverages 3D visualization tools. Teams

may work more productively together to plan wells, evaluate and build assets because of the

unified visualization, interpretation, and modeling workspace provided by this. In figures 2.3

and 2.4 are samples of well trajectories designed with Petrel software.

Figure 2.3: Type 1 (Build and Hold or J-type) Well Profile designed in Petrel

12 CHAPTER 2. LITERATURE REVIEW

Figure 2.4: Type 2 (Build, Hold and Drop or S-type) Well Profile designed in Petrel

2.1.6 Well Trajectory Design using Search Methods

Several search methods or algorithms have also been applied in the attempt to optimize the

designing process of well paths. Search methods help in solving various problems in AI [19].

Examples of application of search methods in algorithms include the different variations of the

genetic algorithm, models based on fuzzy sets, swarm intelligence, etc. Using search algorithms

proves to be an improvement and a better option.

In this study for example, PSO, which is a metaheuristic optimization method that makes

few assumptions about a problem being optimized, is proposed by Atashnezhad et al. [6] to

solve the trajectory design problem. Particles in swarms move around in n-dimensional space

of the workable solutions until finding the best global position in every iteration. When an

improved position is discovered, it replaces the earlier one until the best position is found.

The result of the study proved that a tuned PSO algorithm proved to be a powerful and rapid

optimization method for solving the non-linear deviated wellbore trajectory problem.

Genetic algorithm is researched as a possible optimization method for a 3D design [20].

The paper introduces a software package that uses a genetic algorithm to find the optimum

drilling depth of directional and horizontal wells in 3D. A special penalty function, mutation,

crossover probabilities, and stopping criterion were used to obtain the global minimum drilling

depth. This minimum was achieved at the minimum values for kickoff point, inclination an-

gle, build-up and drop-off rates, which were set as constraints. The minimum values of these

2.2. MACHINE LEARNING BACKGROUND 13

parameters reduce the dogleg severity, which in turn reduces the drilling operation problems.

The GA’s performance was superior compared to conventional well design methods and a com-

puter program called WELLDES in the same case study, and the overall length of the output

trajectory designed was much reduced.

Mansouri et al. [21] also developed a multi-objective genetic algorithm (MOGA) to design

a 3D well path in an attempt to solve the well trajectory design optimization problem. The

radius-of-curvature survey method discussed in section 2.1.3 is employed in this design. The

idea of the multi-objective genetic algorithm methodology, in this case, is to develop and apply

it to two objective functions, namely wellbore length and torque, subject to multiple constraints.

By minimizing both wellbore length and torque it is likely that a wellbore designed to reach a

specific target can be drilled more quickly and cheaply than other potential trajectories. Upon

the findings of this research, it was concluded that although the two (2) objective functions have

no explicit relationship, the MOGA has rapid convergence and is high performing compared to

previously discussed single objective function studies.

In another comparative research [22], the performances of different algorithms are evalu-

ated. Genetic, ant colony, artificial bee colony and harmony search algorithms are evaluated

to seek the best performance among them, and the primary aim of the study is to derive less

time-consuming algorithms that can be deployed to solve a range of complex well-path design

challenges. Each of the metaheuristic algorithms applied is tuned for the wellbore path opti-

mization. It was observed that all the algorithms evaluated except ACO are very fast solving

these complex cases. The minimum total measured depth located by all studied algorithms is

similar (except for ACO), but the computation times and number of iterations taken by each one

is different.

2.2 Machine learning Background

In the past few decades, the concept of using ML models to develop AI to solve challenging

issues in the various industrial sectors and in academia has skyrocketed, and for a good reason

as well. As time has gone, it has become clear that the "fourth industrial revolution" is the

digital transformation, which is characterized by the convergence of technologies like robotics,

14 CHAPTER 2. LITERATURE REVIEW

artificial intelligence, and autonomous vehicles that blur the lines between the physical, digital,

and biological realms [23].

Figure 2.5: Relationship between Artificial Intelligence and Machine Learning

Machine learning, which is a subset of AI, is defined as a computing paradigm in which

the ability to solve the presented problem is developed by referring to similar prior cases called

training examples. It reasons the problem by “learning” from the training examples. There are

several tasks to which we can apply ML methods to. These include:

• Classification; a process of defining items into one or more among the predefined cate-

gories.

• Regression: a process of estimating a continuous value or values based on the current

input factors.

• Clustering: a process of segmenting an entire group into subgroups based on similarities

among items.

• The hybrid task: a mixture of any two of the above-mentioned tasks.

Jo [24] explores the four types of ML methods listed as the supervised learning, the unsu-

pervised learning, the semi-supervised learning, and the reinforcement learning.

2.2. MACHINE LEARNING BACKGROUND 15

2.2.1 Supervised Learning

Supervised learning is the type of learning where all the training examples are labelled. The pri-

mary aim is to create an estimator that can predict an object’s label using a set of features [25].

In this learning paradigm, the parameters undergo iteration and are perfected for minimizing

the error difference between the target output and the computed output. Supervised learning is

usually applied to the data classifications and the regressions tasks.

Examples of supervised learning algorithms include the different variants of the KNN al-

gorithm, Bayesian Learning, SVM, Decision Tree algorithms like Simple Linear Regression

and Random Forest, etc. A number of these algorithms have been applied in solving world

issues. For example, in population genetics [26], and in the health sector for research in autism

spectrum disorder [27].

Figure 2.6: An overview of the Supervised Learning process

There are pros and cons of supervised learning algorithms. Supervised learning algorithms

are helpful in making predictions based on prior experience. On the other hand, they struggle

to perform complex tasks and they require a huge amount of datasets to train,validate and make

predictions and classifications.

16 CHAPTER 2. LITERATURE REVIEW

2.2.2 Unsupervised Learning

Unsupervised learning is assumed to have training examples that are unlabeled. Unlabeled

training examples are “learned” depending on their similarities and therefore it is important

to define the similarity metric among them. A typical task to which unsupervised learning

algorithms are applied is clustering. K-Means Clustering, Mean-shift, AHC, DBSCAN and EM

algorithm, and The Kohonen Networks, etc., are all unsupervised machine learning algorithms.

Some of these unsupervised learning algorithms have been applied in the field of medicine [28],

in the research area for text mining [29], in solar panel deployment optimization [30].

Unsupervised learning algorithms have some advantages which include the use for more

complex tasks compared to supervised machine learning and data can be smaller in size as

compared to the supervised learning. On the other hand,due to the lack of a corresponding

output, unsupervised learning is generally more challenging to implement and explain than as

compared to supervised learning.

2.2.3 Semi-supervised Learning

The concept in semi-supervised learning is to use both labeled and unlabeled training examples

for the training of the algorithm. Numerous studies have shown how the amount of labeled

data necessary to obtain adequate supervised learning performances can be greatly reduced by

the information learned from unlabeled data [31] [32]. Semi-supervised learning is described

using a block diagram in figure 2.7 below.

Figure 2.7: Block diagram of Semi-supervised Learning

2.2. MACHINE LEARNING BACKGROUND 17

Research works like Aissaoui et al. [33] proposes a combination of supervised algorithms

and unsupervised methods in predicting learners’ learning styles. Semi-supervised learning

methods are also applied by Wu et al. [34] to develop a model that finds a specified vehicle

from many vehicles.

An advantage of this type of Machine Learning is that it helps solve the drawbacks of Super-

vised and unsupervised Learning algorithms. A possible disadvantage is that iterations results

may not be stable and less accurate.

2.2.4 Reinforcement Learning

Reinforcement learning works on feedback-based process, in which an agent automatically

explores its surroundings by acting, learning from experiences, and improving its performance.

It is based on the reward and penalty system where parameters are updated for getting and

maximizing the reward whiles avoiding and minimizing the penalty. In this learning type, the

input is from the external environment and the output is generated as the action. Q-learning is

the most popular algorithm under this category of machine learning. Recently, reinforcement

learning has received considerable attention, with many successful applications in various fields

such as game theory, operations research, information theory, simulation-based optimization,

control theory, and statistics. Applied in health care research [35] [36] [37], in robotics [38]

[39] [40], as well as in autonomous vehicles [41].

Using reinforcement learning has an edge over other forms of machine learning because it

can be used to solve very complex real-world problems. The downside of it though, is that it

usually requires long computational times for successful training. Also, reinforcement is very

powerful such that too much training can make the algorithms over militarized with input data,

which affects prediction.

Q-learning

Q-learning is a reinforcement learning technique used for learning the optimal policy in a

Markov Decision Process. Q-learning is probably the most applied representative reinforce-

ment learning and is an off-policy algorithm that looks for the optimal action to take in a given

18 CHAPTER 2. LITERATURE REVIEW

state. It is deemed off-policy because a policy is not necessary. Q-learning function learns from

actions outside the given policy by making actions random.

First, reinforcement learning uses the Markov Decision Process and the value function to

construct the Bellman equation, then Q-learning is applied to solve the Bellman equation prob-

lem [42]. The Q-value is also called action value, which is defined as the expected long-term

return with a discount when taking a given action.

• State: The state is a set, S of agent observable states.

• Action: An action is a set of possible actions, A in a state, S. Usually, the actions that an

agent can do are the same in all states.

• Reward: The reward is the information given to the agent in the environment so that the

agent can learn.

• Policy: When an agent arrives at a certain state, it determines the action using policy.

Reinforcement learning approach learns better policies than the current one to obtain an

optimal policy.

• Value function: For the agent to calculate the reward that he will receive in the future it

has to consider which action he will perform. The criterion that determines which policy

is a better policy is the value function.

Q-learning algorithms can be classified into single-agent and multi-agent algorithms. Single-

agent algorithms include basic q-learning, deep q-learning, Hierarchical q-learning. Examples

of multi-agent algorithms are modular q-learning, and q-learning, swarm-based q-learning, etc.

The Q-learning algorithm has been used in a variety of fields due to its success, including

industrial processes, network processes, game theory, robotics, operation research, control the-

ory, and image recognition [42]. Variants of Q-learning have been applied to games in helping

find optimal moves for the games themselves thereby outperforming humans [43]. In robotics,

q-learning is introduced together with other theories in generating continuous actions for robots

[44].

2.2. MACHINE LEARNING BACKGROUND 19

Figure 2.8: The flow to update Q-tables in Q-Learning

2.2.5 Automated Machine Learning (AutoML)

As pointed out earlier, ML continues to grow at an astonishing rate and recent advancement has

made it possible to integrate ML in different sectors. One key challenge in fully embracing ML

in the various sectors though is the need for coding (or programming) experience. This barrier

can be overcomed through the availability of platforms that provide automated and coding-free

ML services [45] [46] [47].

The development of automated ML (autoML) platforms has shown benefits to the users

who have little to no knowledge of manual ML approach. Such platforms include Dataiku

DSS, Google Vertex AI, BigML, DataRobot, Exploratory, RapidMinier etc. Some advantages

of using autoML include:

1. Compared to manual ML, which involves lots of codes, execution time is drastically

reduced and still maintains high performance.

2. The option of tunning hyperparameters makes it possible to achieve even higher perfor-

mance.

20 CHAPTER 2. LITERATURE REVIEW

3. Since there is little to no programming experience required to use, people from diverse

backgrounds can still use ML and achieve reliable results.

2.3 Related Work

Numerous ML research has been conducted in various fields in the past two decades, because

of the increased availability of data and the quick development of AI technology. The Oil and

Gas industry is no different, and in recent times, automation of the various processes in the

industry has been the number one goal of most companies [23]. Using advanced technology in

the design process would not only reduce the time spent and cost involved in the well planning

process, it would also produce highly articulated well trajectories adapted to reservoir properties

compared to the traditional methods [48].

Research on developing ML models, specifically RL models, to help design the well path is

very few and little success has been achieved so far. Works using search methods discussed ear-

lier in section 2.1.6 differs from RL, in the sense that search algorithms explore search spaces,

while RL models learn a policy that maximizes the expected reward by interacting with an

environment. RL algorithms can be used to solve more difficult problems compared to using

traditional search algorithms.

In this section, works that are similar to what is done in this thesis are discussed. Previously

proposed solutions by other researchers are either in 2D or 3D environments.

2.3.1 Proposed Solution in 2D environment

Ehsan Chowdhury [49], in their thesis and a later published article [50], investigated the pos-

sibility of optimizing the well path using RL. A 2D program in Python using deep Q-learning

algorithm trained, where the agent takes series of actions based on Q-tables until the set goal

is reached. To imitate a real-world scenario, other well paths representing obstacles are intro-

duced into the environment. Obstacles are categorized into hard obstacles and soft obstacles.

Hard obstacles are no-go zones in the environment whiles soft obstacles are defined as avoid,

if possible, but if not, the algorithm can go through. The goal was to avoid collision with any

2.3. RELATED WORK 21

of the nearby wells. The shortest path is found from the Q-Table. The program ends if any of

the defined terminal states in the study is reached. The results in the study are visualized in a

grid-based window.

Although the algorithm can efficiently find the trajectory with the least length and avoid col-

lision, it still does not solve the issue in question. The path created in the 2D grid environment

is not smooth and realistic enough as the algorithm does not consider the various technicalities

in well path design like dogleg and dogleg severity.

2.3.2 Proposed Solutions in 3D environment

A more realistic environment, in the form of 3D environment, has also been used in the search

for an optimal way of designing the trajectory of the well with reinforcement learning. Ehsan Chowd-

hury [49] explored this option as well. The implementation is built in Unity, a game engine. ML

scripts were used to set up the environment that allows building objects, determine the functions

of the objects, and give an output. The agent gets information about the various objects from

the scripts, runs training episodes and finds the optimal path to the specified point. Obstacles

used are vertical and horizontal cylindrical obstacles. The limitation with this work is that it

lacks in performance and and also does not consider curvature limits.

A different 3D attempt has previously been made by a different author, Haque [51]. They

suggested using the MRST Matlab program to plot a 3D grid, which then served as an envi-

ronment for the algorithm to learn. The goal of the work was to create a path that connects the

surface and the target by avoiding other nearby wells. The 3D environment contains 3D cubes

generated using the north, east and TVD values. Each cube has six different directions, and

the agent can decide on the best option. The optimal path is found by the agent based on the

total cost/reward. The result from the research proved to have some interesting and valuable

qualities. However, the computation time of the MATLAB program is too long and the whole

goal of this study was to reduce the time needed to design a well trajectory.

In a research work reported by Yu et al. [52], deep reinforcement learning was employed to

train the agent in a simulated environment to develop an automated drilling agent. Although not

necessarily related to the work done in this thesis, the approach has some possibilities that could

22 CHAPTER 2. LITERATURE REVIEW

be explored for research in trajectory design. They designed a motor-based drilling system

that interacts with the environment (i.e., formations, wellbore geometry, equipment) given a

predefined well trajectory to drill an actual well.

The agent perceives the various states such as inclination, measured depth, true vertical

depth, and the planned trajectory to decide how best to move. The reward for the agent in this

RL training is based on how well the agent can follow the planned trajectory. With a series

of training, the agent gained the ability to steer through random exploration in the simulation

environment.

Chapter 3

Platforms, Dataset & Model

To aid in the implementation of the proposed work in this thesis, some software platforms such

as DELFI by SLB, Dataiku DSS and OpenZgy were used. This section gives a general overview

of the of these platforms and explains why they were chosen for this work. Sections 2 and 3 of

this chapter introduces the dataset used and the model, respectively. This is an essential part of

the thesis, and it would further help understand all the elements involved in implementing the

resulting model.

3.1 Platforms Used

3.1.1 OSDU Data Platform

The Open Subsurface Data Universe (OSDU) is a data platform that was developed to help solve

the data challenge in exploration and production in the migration to the cloud. This platform

is a cross-industry collaboration that addresses the problem of storing, organizing, migrating,

and accessing subsurface data on the cloud [53]. OSDU platform is at the heart of the DELFI

digital cloud platform, which means that platforms that exist on DELFI such as Dataiku DSS

communicate directly with OSDU and fetch their required engines to perform their tasks from

there.

23

24 CHAPTER 3. PLATFORMS, DATASET & MODEL

3.1.2 DELFI Digital Platform

The DELFI digital platform is a secure, cloud-based space built on key premises that make it

unique. The platform makes applications and workflows accessible to all users and enables team

members to build common workspaces for data, models, and interpretations. The DELFI Data

Science section is a package of AI and analytics solutions for energy workflows that enables

geoscientists and engineers to build, manage, and deploy AI solutions to challenges. SLB

partners with Dataiku to provide a cloud-based environment to make AI and analytics work.

3.1.3 Dataiku Data Science Studio (Dataiku DSS)

Dataiku DSS is a software platform that systemizes the use of data and AI, bringing people

together to deliver desired results. It allows for easy collaboration, where programmers and

non-programmers can simultaneously work on the same data projects in a shared space. Some

of the key capabilities of Dataiku platform is that it allows Data preparation, Visualization,

AutoML, Dataops, MLOps, Security, Collaboration, Architecture, etc. [54]. For this thesis,

much more focus is placed on AutoML ability of Dataiku, as an approach with less coding is

preferred. In comparison with other AutoML platforms and manual ML approach, Dataiku has

produced equal if not better performance [55] [56].

3.1.4 OpenZGY

Seismic data is usually stored in a ZGY or SEG-Y format, especially if it is created in Petrel™

E&P Software Platform. OpenZGY is an open-source solution for how to ingest, store, com-

press, read and write ZGY seismic data [57]. It has a dedicated repository in Gitlab [58] and

with it, interested people are able to read and write ZGY files. The objective of using OpenZGY

in this thesis is to read from actual seismic with actual faulting and converting into csv format.

3.2 Dataset

Data is essential in research work as it provides means to assess findings on real information and

not synthetic ones. Data availability has long been an issue in the Oil and Gas industry and has

3.2. DATASET 25

been fully dependent on laboratory scale work and commercial partners [59] [60]. Equinor has

taken steps to remedy this since 2018 by making available to the public the Volve field dataset.

3.2.1 Overview of the Volve field dataset

Figure 3.1: Location of Volve field in the North Sea

Volve Field

Volve is a field in the central part of the North Sea in the Norwegian Continental Shelf (NCS),

which was produced from 2008 to 2016 and shutdown in 2018. Volve produced mainly oil from

sandstone of Middle Jurassic age in the Hugin Formation at a reservoir depth of 2700-3100m. A

total of twenty-five (25) wellbores were drilled: five (5) exploration, nine (9) production, eight

(8) observation and three (3) injection wells.

26 CHAPTER 3. PLATFORMS, DATASET & MODEL

Volve Dataset

In 2018, Equinor decided to disclose a comprehensive and complete dataset, totaling approxi-

mately 40,000 files of various kinds, of all the subsurface and production data on the Volve field

after it was shutdown. The idea behind the release was to provide data to the general public that

is highly useful, contributing to further learning and experience transfer in the industry and in

academia [61].

There are a total of fourteen (14) compressed archives available for download, and their size

references are provided in table 3.1 below. Information stored in these files include geological

and geophysical interpretations, static and dynamic reservoir models, production data, well

logs, well technical data, and real-time drilling data. Several research works have analyzed the

distinct aspects of the dataset [62] [59]. Viggen et al. [60] for instance, investigates the well

log data from the Volve Data Village dataset and explains how it could be processed and used

for maximum result.

Description Compressed size

Geophysical Interpretations 99 MB

GeoScience OW Archive 54.6 GB

Production Data 2 MB

Reports 162 MB

Reservoir Model (Eclipse) 390 MB

Reservoir Model (RMS) 2.1 GB

Seismic ST0202 1.2 TB

Seismic ST0202 vs ST10010 4D 330.4 GB

Seismic ST10010 2.6 TB

Seismic VSP 95 MB

Well Logs 6.9 GB

Well Logs (Per Well) 7 GB

Well Technical Data 212 MB

WITSML Real-Time Drilling Data 5 GB

Table 3.1: Volve Dataset files

3.3. MODEL 27

Ever since it was made available, the dataset has been used by various researchers including

students in their research works. Research involving Machine Learning methods have benefited

the most from the dataset unveiling. Tunkiel et al. [63] used the dataset in researching into

improving rate of penetration by applying Machine Learning methods. It has been used in other

studies such as improving the quality of oil production estimation and estimating reservoir char-

acteristics for appropriate wells placement [64], in production prediction and ultimate recovery

[65].

3.3 Model

This section discusses some technicalities that are to be considered in the implementation pro-

cess. It defines the most basic components of a well path that would have great influence in the

success of the model.

3.3.1 Technicalities to be Considered

Many factors influence the trajectory of the borehole and some of such factors can be very

difficult to estimate. The experience gained from drilling previous wells in the same area is

therefore very useful and should be incorporated at the planning stage of a new well.

In planning a well, it is more convenient if the curved surface of the Earth is projected onto a

flat surface in a system such as the Universal Transverse of Mercator (UTM) [66]. Coordinates

of various points such as the target must be converted and referenced back to a defined reference

point/origin after they are taken from the UTM. All calculations made are then simplified by

adopting the Northing and Easting coordinates relative to the reference point.

When planning the geometry of a well, some technicalities must be considered. For in-

stance, the coordinates of desired start position (where the wellhead will be positioned) and the

target point should be known relative to a reference point. The displacement of the target point

from the start point can be calculated using the coordinates by:

Ht =
[
(Nt −Na)

2 + (Et − Ea)
2] 1

2 (3.1)

28 CHAPTER 3. PLATFORMS, DATASET & MODEL

Where:

Ht = Horizontal Displacement

Nt = Northing of target

Et = Easting of target.

Na = Northing of start point

Ea = Easting of start point

Proposed direction or target bearing β can be found by calculating the angle formed between

the well trajectory and the horizontal plan:

β = tan−1

(
Et − Ea

Nt −Na

)
(3.2)

Vertical sections are a vital part of the well path. As part of the drilling technicalities, a well

should have a vertical section from the start point to a distance (typically ranges from 100m to

1000m). At this point, if a directional well is desired to be drilled, kick-off begins.

In theory, an average borehole curvature can be calculated. The borehole curvature repre-

sents the curvature of the borehole axis. This borehole curvature has to be within reasonable

drillable limits to avoid complications. Both inclination and azimuth vary as the drilling pro-

gresses, and the overall angle change of the borehole per interval length indicates the average

borehole curvature, which can be expressed as follow:

γ =
√

δα2 + δϕ2sin2αc (3.3)

αc =
α1 + α2

2
(3.4)

Where:

γ = Overall angle change within a certain survey interval, (◦)

αc = Average inclination in a certain survey interval, (◦)

α1, α2 = Inclination of the upper and lower survey points, respectively, (◦)

ϕ = Azimuth, (◦)

It is also important to note that although the target is defined as a point with north and east

3.3. MODEL 29

coordinates, it is very difficult to drill to a defined point in real drilling scenarios. Therefore,

acceptable boundary limits are set, and a zone is rather targeted. Entering the reservoir through

anywhere within the set zone is determined to be a success [67].

3.3.2 Reward Function

In a real-world scenario during drilling, hitting a constraint is a bad thing and very much un-

desired. Drilling through different types of constraints lead to different levels of consequences.

For example, the cost of drilling through an already existing well causing collision between the

wells can have potentially catastrophic consequences, particularly if the offset well impacted is

a producing well. Such type of constraint should be avoided at all costs.

The model intended to be implemented follows similar ideology. There are rewards (or

costs) for every action the algorithm takes. The size of the reward depends on the possible

consequence. In the example stated above, the reward for hitting that type of constraint would

be the least possible reward. Assigning a small reward is considered as a punishment to the

algorithm for making the decision to go through such a risky zone. Other less risky zones are

also assigned low value rewards but not as low as the rewards for hitting a hard constraint. For

example, if the reward for a hard constraint is set as y, a soft constraint could be set two times

bigger, that is 2y. A reward ten (10) times bigger than that for hard constraints could be set for

an ultra-soft obstacle since this type of constraint is not as risky and the path can go through it if

there are no other options. The algorithm learns with every training episode to stay away from

the obstacles.

The ultimate goal in drilling is to drill successfully into the targeted zone with as little

problems as possible. In order to motivate the algorithm to reach the algorithm to reach that

goal, the reward is set as high as possible. Every individual point should also carry some reward

so as to different them from the cells with obstacles.

30 CHAPTER 3. PLATFORMS, DATASET & MODEL

x/
m

y/
m

z/
m

M
D

/m
in

cl
/d

eg
A

zi
G

N
/d

eg
A

zi
T

N
/d

eg
D

X
D

Y
D

X
T

N
D

Y
T

N
z

tv
d

T
W

T
D

L
S

43
52

47
.3

1
64

79
16

4.
65

1
-2

51
2.

36
14

5.
9

0
0

35
9

0
0.

00
0

0
0

0

43
52

46
.8

01
64

79
18

3.
15

-2
54

9.
04

15
0.

15
0

0.
94

0
0

0.
00

0
0

0
0

43
52

45
.0

78
64

79
14

6.
92

2
-2

47
7.

25
16

0.
45

0
0.

94
0

0
0.

00
0

0
0

0

43
52

43
.1

44
64

79
20

1.
41

3
-2

58
4.

99
17

0.
04

0
0.

94
0

0
0.

00
0

0
0

0

43
52

40
.1

37
64

79
12

8.
57

8
-2

44
1.

27
17

9.
79

0
0.

94
0

0
0.

00
0

0
0

0

43
52

35
.9

76
64

79
21

9.
61

9
-2

62
0.

2
18

9.
74

0
0.

94
0

0
0.

00
0

0
0

0

43
52

35
.2

93
64

79
11

6.
68

8
-2

41
8.

33
19

8.
5

0
0.

94
0

0
0.

00
0

0
0

0

43
52

26
.9

78
64

79
10

1.
81

2
-2

38
8.

8
21

0.
7

0.
28

30
2.

21
30

1.
26

0
0.

00
0

0
0.

70
5

0.
70

5

43
52

24
.8

57
64

79
23

7.
11

1
-2

65
4.

62
23

7.
60

1.
55

30
3.

2
30

2
-0

.3
6

0.
23

-0
.3

6
0.

22
1.

41
1.

41
5

43
52

18
.8

23
64

79
08

9.
66

9
-2

36
3.

65
25

1.
1

2.
03

30
4.

4
30

3.
52

-0
.7

3
0.

47
-0

.7
4

0.
46

1.
06

1.
06

43
52

10
.0

88
64

79
25

4.
02

4
-2

68
8.

67
26

4.
9

2.
22

30
5.

77
30

4
-1

.1
6

0.
77

-1
.1

0.
75

0.
4

0.
43

0

43
52

06
.8

88
64

79
07

3.
03

1
-2

32
8.

48
27

9.
2

2.
08

30
5.

8
30

4.
9

-1
.6

1
1.

1
-1

.6
1.

08
0.

29
0.

29

43
51

92
.9

25
64

79
05

4.
30

8
-2

28
8.

39
29

2.
6

1.
63

30
9.

81
30

8.
8

-1
.9

8
1.

37
-2

.0
1

1.
34

1.
04

3
1.

04
3

43
51

92
.6

21
64

79
27

0.
46

7
-2

72
1.

03
30

2.
8

1.
34

32
1.

6
32

0.
6

-2
.1

6
1.

5
-2

.1
9

1.
5

1.
25

1.
25

Ta
bl

e
3.

2:
Sa

m
pl

e
of

a
W

el
lT

ra
je

ct
or

y
Sp

re
ad

sh
ee

tf
or

F-
1

A
w

el
lf

ro
m

Vo
lv

e
da

ta
se

tt
ak

en
fr

om
Pe

tr
el

Chapter 4

Implementation

This chapter explains in depth the proposed solution for using reinforcement learning to design

a well trajectory. It explains all the experimental procedures that led to the final system imple-

mented. The idea implemented in this thesis follows a similar approach to the ones previously

discussed in section 2.3. It employs basic q-learning as the reinforcement learning algorithm as

it is more effective than other reinforcement algorithms like SARSA.

Obstacle avoidance is very key in this work since it is modelled to be as realistic as possible.

Heavily faulted zones, especially, are to be avoided since the risk of drilling complications is

extremely high. In this study, the focus is more on designing a well path that avoids obstacles

like heavy faults in formations and avoid clashing with other well paths in the same formation.

4.1 Introduction

This section explains in detail how the basic aspects of the model are set up. Basic aspects of

developing the model such as the start and end points of the search process and obstacles are

paramount in the trajectory design task.

4.1.1 Start and Target Points

The implemented model has two (2) points, just like in a real drilling scenario: a start and a

target point. The start points stand for a point on the surface where drilling starts(for example

wellhead on land and subsea wells), and the target is the point in the reservoir where the well

31

32 CHAPTER 4. IMPLEMENTATION

path ends. In a fully automated well plan development, a probabilistic approach could be used

to determine the wellhead location. A semi-automated approach, whereby the input of a drilling

engineer to determine the ideal start and end location of the well, could also used.

4.1.2 Obstacles

(a) Collapse of uncon-
solidated zones

(b) Heavily fractured/-
faulted zones

(c) Reactive formation
swelling

(d) Mobile formation
creating imbalance

Figure 4.1: Illustration of the effects of drilling through risky zone [68]

Obstacles are drilling risks/hazards which the well path should avoid. The impact of each

drilling hazard is ranged according to the resultant costs involved in drilling through these ob-

stacles. Therefore, in this 2D grid case, the drilling risks or obstacles are defined into 4. They

are ultra-soft, semi-soft, soft, and hard obstacles.

Very high risky zones are defined as hard obstacles and the well trajectory should not go

through them. Such zones include well paths of nearby wells and heavily fractured/faulted

zones. Soft obstacles are much less risky zones compared to hard obstacles. In a drilling case,

soft obstacles include unconsolidated sand formations and highly mobile zones (salt forma-

tions). These zones can be drilled through if proper caution, such as slowing down tripping

speed, is taken by the drillers. Semi-soft obstacles include reactive shale formations. Reactive

shale absorbs water and swells leaving the borehole with smaller diameter. A way of prevent-

ing such zones from causing drilling problems is to use an inhibited mud system like potassi-

um/polymer fluids. Ideally such a zone should be avoided but if the trajectory must go through it

4.2. 2D APPROACH USING Q-LEARNING 33

to avoid going through a hard or semi-soft obstacle then it is preferred. The last obstacle which

is the ultra-soft obstacle has the least restriction. In an area with multiple wells, anti-collision

of the well paths is a priority and they must be kept apart as much as possible. In some cases,

new wells can be drilled just a little closer to others within a set limit. Ultra-soft obstacles fall

under this limit.

This 2D RL model is designed to avoid the high risks zones completely while searching

for the shortest well path. The ultra-soft and semi-soft zones can be drilled through but at a

cost (negative reward value). Examples of such high-risk zones causing drilling problems are

illustrated above in figure 4.1.

4.2 2D Approach Using Q-Learning

The initial approach is designed in a 2D environment. The environment is designed to be as

realistic as possible, although with some differences compared to an actual well design. For

example, the position where drilling of the conductor begins (position of wellhead) is predeter-

mined and fed to the model. The target in the reservoir is also specified and fed to the model.

4.2.1 Initial Proposed Model

Different approaches are assessed to find the best system. The Initial approach in this work

is similar to what Ehsan Chowdhury did in their 2D program discussed in section 2.3.1. The

objective was to expand on the previous work done by introducing more obstacles to increase

the complexity and make training results more accurate. The 2D program is written in a grid-

world environment and at first try a 30x30 window size by height and width respectively is

used. Only two obstacles are added because of the small size of the window. A feasible way

to improve on this result and make the model more robust is to increase the size of the working

environment, which makes room for more obstacles to be added.

To emulate an actual formation, the environment created is populated with lots of obstacles.

Seismic data in the ZGY format is first exported from the open source Volve field dataset. Open-

ZGY library is then used to read the zgy file to extract the different faults in the seismic data.

34 CHAPTER 4. IMPLEMENTATION

The faults are represented as spikes in the amplitude values and the coordinates of these faults

are imported into the training environment. This results in a substantial number of obstacles

positioned randomly in the training environment and gives it a more realistic feel. All this was

done on Dataiku DSS because the jupyter notebook feature on Dataiku has all the necessary

libraries built into the kernel.

The grid size is then increased to a 300x300 as the next approach, thereby allowing to popu-

late the environment with the fault coordinates imported from the Volve seismic data discussed

in section 3.2.1. This would create a more practical environment for training and improving the

model. This approach is computationally expensive and time consuming, since the grid space

for model training is larger.

4.2.2 Flow of Implemented Model

This section presents the details of the model. It follows the flowcharts diagrams in figure 4.2

and figure 4.3. The main 2D program flowchart summarizes the steps involved; from creating

the environment and populating it, running training, and getting the shortest path. The other

flowchart zooms in to the various steps a single training episode goes through. It starts from

finding a random start position, then it takes several actions while receiving rewards to update

the q-table. The random start position is only applicable during the training phase.

Adding configuration

The configuration of the 2D program begins with setting some initial conditions. The environ-

ment window is made to a scale of one (1) with both height and weight set to 32x32. The start

and end points are defined as positions in the 2D grid using the grid cell indexes and are rep-

resented as startLoc and endLoc, respectively. Just like in a real-world scenario, obstacles are

added to the configuration and their positions are specified in the grid. There are four (4) dis-

tinct types of obstacles in this design: ultrasoftObstacles, semisoftObstacles, softObstacles and

hardObstacles as explained in section 4.1.2. Each obstacle carries its own weight which helps in

the model training. Also, a reward of -1 is set for every cell in the grid. Adding configuration.py

in appendix A has the details.

4.2. 2D APPROACH USING Q-LEARNING 35

Figure 4.2: Flow of the main 2D program

Ideally the resulting path should avoid all the four types of obstacles, but just like in an

actual formation, some obstacles can be ignored since the risk of going through them is not

much. Hard obstacles are to be avoided at all costs, but the path can go through soft obstacles

if the cost of avoiding the obstacle is higher than the cost of passing through it. Rewards are set

for the individual obstacles as well as the the find the endLoc successfully.

A class is created and named “PathFinder”. The class is responsible for finding the op-

timal path in the given environment. The PathFinder has under it some functions that define

environment initialization, terminal states, the next action, the next location etc.

36 CHAPTER 4. IMPLEMENTATION

Figure 4.3: Flowchart of a single training episode of the 2D model

Initializing Environment

After adding the initial configuration, the next step is to initialize the environment using the

configuration. This involves setting up the possible actions to be made at every instance (that

is, whether to move up, down, right, or left in the grid), creating a table of q-values, which

determines the best possible action for every movement. Since the startLoc can never be in a

hard obstacle, a line of code is added to check that, and it raises an “AssertionError”.

4.2. 2D APPROACH USING Q-LEARNING 37

Terminal State

There are some conditions set in the algorithm that terminates/ends the path search whenever

those conditions are met. These conditions include running into a hard obstacle and reaching

the target point (endLoc).

Search for endLoc

The algorithm is tasked with moving from the startLoc to the endLoc by making a series of

decisions on the direction to move. It chooses the next actions based on the get_next_action

function listed in the appendix A. The next action is taken into a cell to the right, left, up or down

of its current position based on the one with the highest reward. An element of randomness is

added by introducing an epsilon. Epsilon has a value between 0 and 1 and it determines how

random an the actions taken must be and it helps the algorithm to explore more.

Once the best possible action is taken, the new location is retrieved. The new location is

represented as a position in the 2D grid with the cell indexes as an array of [rows, column].

Training of the algorithm

In the training of the algorithm, the start location is not defined. The algorithm is made to choose

a start location at random in every training episode. In this case, the algorithm learns more

about the environment as it is able to explore more space due to the different start locations.

Search for endLoc.py defined in the appendix A, a function called get_start_location shows

how the algorithm is made to get a random start location every time. The resulting cell with row

and column indexes selected should be valid and not a terminal state to be accepted as a start

location.

During the training episodes, some hyperparameters are required to help fine-tune the al-

gorithm and make it more accurate. These hyperparameters include the epsilon, discussed in

section 4.2.2, learning rate and discount factor. Learning rate determines to what extent new

information overrides the old information. The value is between 0 and 1, where 0 means the

algorithm does not override old information and learns nothing. 1 on the other hand means

new information replaces the old information. Discount factor determines if future reward is

38 CHAPTER 4. IMPLEMENTATION

to be considered or not. A discount factor of 1 means the algorithm strives for the best overall

future result instead of the short-term reward after an action is taken. The hyperparameters are

implemented as shown in Training the algorithm.py in appendix A.

An extra code is added to the training to plot out some of the training episodes that got that

failed as a result of the algorithm getting "stuck", causing termination of the episode.

Shortest path to endLoc

After several training episodes (10000 episodes in this model), the algorithm is made to get the

shortest path from the start point to the end point among all the successful training episodes.

Shortest path to endLoc.py code in the appendix A gives the detailed code.

The workflow of the implementation could be summarized as following. First, the algorithm

chooses a random point in the environment filled with obstacles as start point for training. It

then takes a series of best possible actions at every point while considering the overall reward

while exploring the environment. Each new location is made known until the algorithm reaches

the defined target point. A shortest path connecting the startLoc and endLoc is plotted out The

cycle is repeated for 10000 episodes, in all episodes considering epsilon, the learning rate and

discount factors. After training, the shortest path connecting the start point to the target point is

plotted and visualized using the OpenCV library in Python and the q-table is updated according

to the Bellman equation.

Chapter 5

Results and Discussion

This chapter presents the results achieved from 2D reinforcement learning described and imple-

mented in the previous chapters.

5.1 2D representation of VOLVE field

To create a 2D environment for our RL algorithm, analysis of a real reservoir and well was done

to show a visual representation of the aim of this study. In this work, a 2D representation of a

section of Volve field was used. Seismic inline X and Y values, inline amplitude and faults are

visualized in a 640 x 1125 diagram, to represent a close to ideal case for the study. The figure

below shows a section of the Volve field plotted using openzgy.api, numpy and SLB’s Python

Software Development Kit (SDK) for Dataiku DSS.

Figure 5.1: Display of a Section of Seismic cube from Volve Field

39

40 CHAPTER 5. RESULTS AND DISCUSSION

The black color shows the faults that are projected on the inline, while the multi colored

areas shows the different seismic amplitudes, the peaks and the troughs of the seismic/sound

signals, in this section of the reservoir.

5.2 RL 2D Grid Environment

Initial attempts to use the data and section of the Volve field to create a 2D environment for

training our RL algorithm proved to be computationally intensive due to the wide range of points

in the datasets and the computational intensity of the resources and applications available.

To mitigate this, a 2D grid was created as a simplified recreation of the Volve dataset for this

case study and RL environment. A 300x300 grid required days of training with grid obstacles.

This led to a further down-scaling of the grid to a 32x32 grid to achieve faster results and

visualisation. Figure 5.2 shows the visual representation of the training environment.

Figure 5.2: 2D grid representation of a RL environment with start and end location

In the diagram above, the a color code of -1000 (dark purple) represents a hard obstacle as

well as a no-gone zone during drilling or training of the algorithm. The lighter greens, or less

negative colour coded areas, represent soft, semi-soft and ultra soft areas in which the a well

5.2. RL 2D GRID ENVIRONMENT 41

path can pass through at a cost. The blue dot is the start point (well head) while the orange dot

is the end point (reservoir target area).

Figure 5.3 shows a diagram of an ideal shortest path in the chosen RL 2D training envi-

ronment. In this example, this is trained for 10000 episodes. The randomness effect in this

algorithm tends to bend the well path as much as possible to represent an ideal well path. Since

this is a 2D grid environment and drilling parameters such as 3D coordinates, azimuth and an-

gle of inclination are not considered, the path tends to be straight lines in both horizontal and

vertical directions.

Figure 5.3: Shortest well path in a 2D grid environment

Although this can be considered to be too rough of an estimate, by upscaling using a post-

processing spline interpolation method, this issue can be mitigated as shown in figure 5.4.

42 CHAPTER 5. RESULTS AND DISCUSSION

Figure 5.4: Upscaling well path

5.3 Sensitivity Analysis

This section addresses various effects that affect the algorithm in determining the shortest path

in our 2D training environment. These effects include: grid size and location of start and end

points, reward or cost factor and hyper-parameters.

5.3.1 Effect of grid size location, start and end points in finding the

shortest path

To analyze how the grid size, and start and end location influence the algorithm in finding

the shortest path, a constant values for hyper-parameters such as reward, number of obstacles,

training episodes,epsilon, discount factor and learning rate are maintained. The average number

of steps and time in finding a shortest path while changing the start and end location is measured.

It was observed that, the closer the points are to each other, the smaller the number and steps

and amount of time in finding the shortest path.

In figure 5.5, the average training steps was 47 while the training time in finding the shortest

path is 0.0005 seconds.

In figure 5.6, the average training steps was 55 while the training time in finding the shortest

5.3. SENSITIVITY ANALYSIS 43

Figure 5.5: Short location distance. End location is in-front of an obstacle

Figure 5.6: Short location distance between start and need location. End location is not behind an obstacle

path is 0.00035 seconds.

The further the start and end locations are way from each other, the larger the number of

steps and search time. In figure 5.7, the number of steps increased to an average of 76 steps

while the average training time is 0.0045. The start and end locations are row 2, column 30 and

row 30 column 1 respectively.

44 CHAPTER 5. RESULTS AND DISCUSSION

Figure 5.7: Increased location distance in 2D grid

A large grid size demands more computational power and more obstacles for training. One

300x300 2D grid environment took 384 hours to train for just 100 episodes and a limit of 100

steps. This and other grid sizes do not lead to significant results and the cost of training only

increases. So the grid size was reduced for further experimentation and analysis.

5.3.2 The effect of reward or cost factor in finding the shortest path

The RL algorithm rewards each move during search for the shortest path. A higher cost is

assigned to hard obstacles as they are seen as no-gone zones or areas for drilling. A cost of

-100000 is used. Also, if a training episode locates a hard obstacle, it is configured to stop

immediate training and search and the process is repeated again. The shortest path can pass

through all kinds of soft areas but a cost that range from -550 to -50.

This set up has resulted in multiple failed training and the need for higher episodes/epochs

for training each environment. The bigger the grid, the higher the number of training episodes

needed. Larger grids also demand 100s of obstacles to help in training and finding the shortest

path. The results is an increase in computation power and time per training. An example of a

failed training episode out of the 10000 episodes, whiles training for the successful shortest path

shown in figure 5.3 is displayed in figure 5.8. It can be noted that the start position (represented

5.3. SENSITIVITY ANALYSIS 45

by a black dot in training episodes) is at a random position. The training fails after hitting a

terminal state, a hard obstacle in this case.

Figure 5.8: Failed training episode

Appendix B shows more examples of training paths per epoch in finding the shortest path.

5.3.3 Effect of hyper-parameters in finding the shortest path

Hyper parameters discussed in chapter 4 has an effect in training and achieving a smooth well

path. The lower the learning rate with constant values of discount factor and epsilon, the less

smooth the shortest drilling path. The best learning rate that was used was 0.85.

The lower the discount factor and epsilon values, the more random the self learning process

and the height the number of training episodes it takes for the model to achieve a smooth well

path. In this work, the optimal discount factor is 0.99 while that of epsilon is 0.01.

All these values are obtained while training for 10000 epochs and a maximum steps to stop

training at 100. It is expected that increasing the number of episodes would increase accuracy

and make the model robust as the algorithm would explore more.

Chapter 6

Conclusions and Future Work

In this chapter, the work is summarized and a conclusion is drawn from everything that was

done. A suggestion for potential future works is also presented.

6.1 Conclusions

The main goal of this thesis is to explore designing a well trajectory using reinforcement learn-

ing. In this work, it can be established that reinforcement learning is a good approach and is

more than capable in helping in well trajectory design. This is due to it’s self-learning nature,

making it possible to find multiple creative solutions that might otherwise be missed when using

traditional methods. However, this requires a lot of computational power and further optimiza-

tion, such as more realistic and varied constraints. 3D or 4D models should also be considered,

but will need to evaluate well inclination, azimuth, coordinates and location of realistic drilling

obstacles in more detail, to name a few.

The results mentioned and discussed in the previous chapter 5 have been submitted and

approved as a conference paper [69]. The conference is the AAPG ICE 2023 Madrid [70] under

the "Digitalization in Geosciences" theme in the "Machine Learning and G&G Workflows" sub-

theme. An oral presentation will be given surrounding the work done in this study. The review

process showed a lot of interest in this topic, with multiple senior advisors applauding the results

achieved.

The 2D model discussed in this thesis, although proved to be successful, has a few limita-

46

6.2. FUTURE WORK 47

tions enforced on it. This was due to the time constraints implicit. There are a few improvements

that are worth investigating moving forward. One such improvement is the use of a dataset in

a more direct manner. Using such a dataset for training should give a closer and more realistic

well path. This will, however, require much more training time and processing power.

6.2 Future Work

The question can be asked whether an appropriate result was reached for this project according

to goals and expectations that were set. Since the thesis work had a limited time to be turned

in, there was not enough time to explore all the ideas to improve on the work. In this section

more suggestions are made on what could be implemented for this project to further develop

and make it a finished product.

6.2.1 Training data

In the attempt to introduce faults from the seismic data during the 2D model implementation

for an expanded grid (3000 x 3000), the algorithm ran for weeks and never gave a result. This

is believed to be due to the size of the training dataset used in that instance. Finding a way to

optimize for this size of datasets, without losing critical information, could be extremely useful

for future work.

6.2.2 Adding more granularity to the obstacles

In actual formations, there is much more granularity in the obstacles. One such example are

the salt domes. Not only should one consider the body of the salt dome, but also the flanks and

the deformed stratigraphic layers due to the salt body protrusion. All these factors would have

differing levels of constraints, which will effect the overall cost effectiveness of the purposed

solution by the algorithm. This should be considered and factored into future models.

48 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

6.2.3 Considering the technicalities of drilling

There are some very well-known drilling technicalities that are not really considered in the

thesis due to time limitation. For instance, it is well known that any deviated or horizontal well

must start as with a vertical path for some distance before deviation kicks in at the KOP. Also,

having multiple dogleg angles that are 90° would be difficult to drill and is unacceptable [71].

Introducing these technicalities would result in a more robust model that would give a more

realistic representation of the desired well path.

6.2.4 Using 4D seismic

4D seismic refers to a technique used in the field of geophysics and petroleum exploration to

monitor and visualize changes in subsurface over time instead of as a static snapshot like in a

2D or 3D seismic. Incorporating this into the future model would make well planning better as

future subsurface changes could be predicted based on the 4D seismic. A well could be planned

over a period to avoid future subsurface changes affecting the planned well.

References

[1] Ahsan Waqar, Idris Othman, Nasir Shafiq, and Muhammad Shoaib Mansoor. Applications of ai in oil and
gas projects towards sustainable development: a systematic literature review. Artificial Intelligence Review,
pages 1–28, 2023.

[2] Parth Solanki, Dhruv Baldaniya, Dhruvikkumar Jogani, Bhavesh Chaudhary, Manan Shah, and Ameya Kshir-
sagar. Artificial intelligence: New age of transformation in petroleum upstream. Petroleum Research, 7(1):
106–114, 2022.

[3] Saurabh Tewari, Umakant Dhar Dwivedi, and Susham Biswas. Intelligent drilling of oil and gas wells using
response surface methodology and artificial bee colony. Sustainability, 13(4):1664, 2021.

[4] Maciej Z. Lukawski, Brian J. Anderson, Chad Augustine, Louis E. Capuano, Koenraad F. Beckers, Bill
Livesay, and Jefferson W. Tester. Cost analysis of oil, gas, and geothermal well drilling. Journal of Petroleum
Science and Engineering, 118:1–14, 2014.

[5] Trent Jacobs. “Simple” Well Spacing Calculations are Inaccurate and Costly. Journal of Petroleum Technol-
ogy, 71(11):33–35, 11 2019.

[6] Amin Atashnezhad, David A Wood, Ali Fereidounpour, and Rasoul Khosravanian. Designing and optimizing
deviated wellbore trajectories using novel particle swarm algorithms. Journal of Natural Gas Science and
Engineering, 21:1184–1204, 2014.

[7] Zhichuan Guan, Tinggen Chen, and Hualin Liao. Theory and technology of drilling engineering. Springer,
2021.

[8] Anton Epikhin, Vitaly Zhironkin, and Michal Cehlar. Prospects for the use of technology of rotary steerable
systems for the directional drilling. In E3S Web of Conferences, volume 174, page 01022. EDP Sciences,
2020.

[9] Adams Neals J. and Charrier Tommie. Drilling Engineering: A complete well planning approach. Tulsa,
Okla: PennWell Pub. Co, 1985.

[10] Jr. Sampaio, Jorge H. B. Designing Three-Dimensional Directional Well Trajectories Using Bézier Curves.
Journal of Energy Resources Technology, 139(3), 10 2016.

[11] Tuna Eren and Vural Sander Suicmez. Directional drilling positioning calculations. Journal of Natural Gas
Science and Engineering, 73:103081, 2020.

[12] Jr. Sampaio, Jorge H. B. Planning 3D Well Trajectories Using Cubic Functions. Journal of Energy Resources
Technology, 128(4):257–267, 04 2006.

[13] Haoge Liu, Tor Berge Gjersvik, and Audun Faanes. Subsea field layout optimization (part i)–directional well
trajectory planning based on 3d dubins curve. Journal of Petroleum Science and Engineering, 208:109450,
2022.

[14] OLIASOFT. Well trajectory feature of oliasoft welldesign. Oneline; accessed 24-Aug-2023. URL https:

//www.oliasoft.com/oliasoft-welldesign/trajectory-design/.

[15] FutureOn. Wellassist powered by oliasoft. Oneline; accessed 24-Aug-2023. URL https://www.futureon.

com/integrations/wellassist/.

49

https://www.oliasoft.com/oliasoft-welldesign/trajectory-design/
https://www.oliasoft.com/oliasoft-welldesign/trajectory-design/
https://www.futureon.com/integrations/wellassist/
https://www.futureon.com/integrations/wellassist/

50 REFERENCES

[16] INC Dynamic Graphics. Advanced directional well planning/survey management. Oneline; accessed 24-
Aug-2023. URL https://www.dgi.com/well-planning-and-survey-management/.

[17] Halliburton. Compass software. Oneline; accessed 24-Aug-2023. URL https://www.halliburton.

com/en/software/decisionspace-365-enterprise/decisionspace-365-well-construction/

well-construction-suite/compass-software.

[18] Petrel exploration & production software platform. Online: accessed 27-June-2023. URL https://www.

software.slb.com/products/petrel.

[19] Richard E Korf. Artificial intelligence search algorithms, 1999.

[20] EM El-M Shokir, MK Emera, SM Eid, and AW Wally. A new optimization model for 3d well design. Oil &
gas science and technology, 59(3):255–266, 2004.

[21] Vahid Mansouri, Rassoul Khosravanian, David A Wood, and Bernt S Aadnoy. 3-d well path design using a
multi objective genetic algorithm. Journal of natural gas science and engineering, 27:219–235, 2015.

[22] Rassoul Khosravanian, Vahid Mansouri, David A Wood, and Masood Reza Alipour. A comparative study
of several metaheuristic algorithms for optimizing complex 3-d well-path designs. Journal of Petroleum
Exploration and Production Technology, 8:1487–1503, 2018.

[23] Anirbid Sircar, Kriti Yadav, Kamakshi Rayavarapu, Namrata Bist, and Hemangi Oza. Application of machine
learning and artificial intelligence in oil and gas industry. Petroleum Research, 6(4):379–391, 2021.

[24] Taeho Jo. Machine learning foundations. Supervised, Unsupervised, and Advanced Learning. Cham:
Springer International Publishing, 2021.

[25] Vladimir Nasteski. An overview of the supervised machine learning methods. Horizons. b, 4:51–62, 2017.

[26] Daniel R Schrider and Andrew D Kern. Supervised machine learning for population genetics: A new
paradigm. Trends in Genetics, 34(4):301–312, 2018.

[27] Kayleigh K Hyde, Marlena N Novack, Nicholas LaHaye, Chelsea Parlett-Pelleriti, Raymond Anden, Den-
nis R Dixon, and Erik Linstead. Applications of supervised machine learning in autism spectrum disorder
research: a review. Review Journal of Autism and Developmental Disorders, 6:128–146, 2019.

[28] Gabriel Mauricio Martínez Toro, Dewar Willmer Rico Bautista, Efrén Romero Riaño, and Paola An-
drea Romero Riaño. Unsupervised learning: application to epilepsy. Revista Colombiana de Computación,
20(2):20–27, 2019.

[29] Nina Janasik, Timo Honkela, and Henrik Bruun. Text mining in qualitative research: Application of an
unsupervised learning method. Organizational Research Methods, 12(3):436–460, 2009.

[30] Shoaib Kamal, PS Ramapraba, Avinash Kumar, Bikash Chandra Saha, M Lakshminarayana, S Sanal Ku-
mar, Anitha Gopalan, and Kuma Gowwomsa Erko. Optimization of solar panel deployment using machine
learning. International Journal of Photoenergy, 2022, 2022.

[31] Kamal Nigam, Andrew Kachites McCallum, Sebastian Thrun, and Tom Mitchell. Text classification from
labeled and unlabeled documents using em. Machine learning, 39:103–134, 2000.

[32] Yan Leng, Chengli Sun, Xinyan Xu, Qi Yuan, Shuning Xing, Honglin Wan, Jingjing Wang, and Dengwang
Li. Employing unlabeled data to improve the classification performance of svm, and its application in audio
event classification. Knowledge-based systems, 98:117–129, 2016.

[33] Ouafae El Aissaoui, Yasser El Alami El Madani, Lahcen OUGHDIR, and Youssouf EL ALLIOUI. Com-
bining supervised and unsupervised machine learning algorithms to predict the learners’ learning styles.
Procedia Computer Science, 148:87–96, 2019. THE SECOND INTERNATIONAL CONFERENCE ON
INTELLIGENT COMPUTING IN DATA SCIENCES, ICDS2018.

https://www.dgi.com/well-planning-and-survey-management/
https://www.halliburton.com/en/software/decisionspace-365-enterprise/decisionspace-365-well-construction/well-construction-suite/compass-software
https://www.halliburton.com/en/software/decisionspace-365-enterprise/decisionspace-365-well-construction/well-construction-suite/compass-software
https://www.halliburton.com/en/software/decisionspace-365-enterprise/decisionspace-365-well-construction/well-construction-suite/compass-software
https://www.software.slb.com/products/petrel
https://www.software.slb.com/products/petrel

REFERENCES 51

[34] Fangyu Wu, Shiyang Yan, Jeremy S. Smith, and Bailing Zhang. Vehicle re-identification in still images:
Application of semi-supervised learning and re-ranking. Signal Processing: Image Communication, 76:
261–271, 2019.

[35] Justin Weltz, Alex Volfovsky, and Eric B Laber. Reinforcement learning methods in public health. Clinical
therapeutics, 44(1):139–154, 2022.

[36] Chan-Yun Yang, Chamani Shiranthika, Chung-Yih Wang, Kuo-Wei Chen, and Sagara Sumathipala. Rein-
forcement learning strategies in cancer chemotherapy treatment: A review. Computer Methods and Programs
in Biomedicine, page 107280, 2022.

[37] Siddharth Nath, Edward Korot, Dun Jack Fu, Gongyu Zhang, Kapil Mishra, Aaron Y Lee, and Pearse A
Keane. Reinforcement learning in ophthalmology: potential applications and challenges to implementation.
The Lancet Digital Health, 2022.

[38] Xudong Zhu, Fan Zhang, and Hui Li. Swarm deep reinforcement learning for robotic manipulation. Procedia
Computer Science, 198:472–479, 2022.

[39] Chengxi Li, Pai Zheng, Yue Yin, Yat Ming Pang, and Shengzeng Huo. An ar-assisted deep reinforcement
learning-based approach towards mutual-cognitive safe human-robot interaction. Robotics and Computer-
Integrated Manufacturing, 80:102471, 2023.

[40] Íñigo Elguea-Aguinaco, Antonio Serrano-Muñoz, Dimitrios Chrysostomou, Ibai Inziarte-Hidalgo, Simon
Bøgh, and Nestor Arana-Arexolaleiba. A review on reinforcement learning for contact-rich robotic manipu-
lation tasks. Robotics and Computer-Integrated Manufacturing, 81:102517, 2023.

[41] S Alagumuthukrishnan, S Deepajothi, Rajasekar Vani, and S Velliangiri. Reliable and efficient lane chang-
ing behaviour for connected autonomous vehicle through deep reinforcement learning. Procedia Computer
Science, 218:1112–1121, 2023.

[42] Beakcheol Jang, Myeonghwi Kim, Gaspard Harerimana, and Jong Wook Kim. Q-learning algorithms: A
comprehensive classification and applications. IEEE access, 7:133653–133667, 2019.

[43] Kaveh Madani and Milad Hooshyar. A game theory–reinforcement learning (gt–rl) method to develop opti-
mal operation policies for multi-operator reservoir systems. Journal of Hydrology, 519:732–742, 2014.

[44] José Del R Millán, Daniele Posenato, and Eric Dedieu. Continuous-action q-learning. Machine Learning,
49:247–265, 2002.

[45] Esteban Real, Chen Liang, David So, and Quoc Le. Automl-zero: Evolving machine learning algorithms
from scratch. In International Conference on Machine Learning, pages 8007–8019. PMLR, 2020.

[46] Yuval Heffetz, Roman Vainshtein, Gilad Katz, and Lior Rokach. Deepline: Automl tool for pipelines gener-
ation using deep reinforcement learning and hierarchical actions filtering. In Proceedings of the 26th ACM
SIGKDD international conference on knowledge discovery & data mining, pages 2103–2113, 2020.

[47] Zhihe Zhao, Kai Wang, Neiwen Ling, and Guoliang Xing. Edgeml: An automl framework for real-time
deep learning on the edge. In Proceedings of the International Conference on Internet-of-Things Design
and Implementation, IoTDI ’21, page 133–144, New York, NY, USA, 2021. Association for Computing
Machinery. ISBN 9781450383547.

[48] Brage S Kristoffersen, Mathias C Bellout, Thiago L Silva, and Carl F Berg. An automatic well planner for
complex well trajectories. Mathematical Geosciences, 53(8):1881–1905, 2021.

[49] Samiul Ehsan Chowdhury. Investigation and study on reinforcement learning for optimizing well path, 2021.
URL https://hdl.handle.net/11250/2788790.

[50] Samiul Ehsan Chowdhury, Jie Cao, Tomasz Wiktorski, and Dan Sui. Well path design using q-learning
algorithms and bezier curves with obstacles avoidance. In International Conference on Offshore Mechanics
and Arctic Engineering, volume 85956, page V010T11A007. American Society of Mechanical Engineers,
2022.

https://hdl.handle.net/11250/2788790

52 REFERENCES

[51] Md Fazlul Haque. Path design and optimization with obstacle avoidance via reinforcement learning, 2022.
URL https://hdl.handle.net/11250/3024569.

[52] Yingwei Yu, Wei Chen, Qiuhua Liu, Minh Chau, Velizar Vesselinov, and Richard Meehan. Training an auto-
mated directional drilling agent with deep reinforcement learning in a simulated environment. In SPE/IADC
International Drilling Conference and Exhibition. OnePetro, 2021.

[53] SLB. Osdu data platform. Oneline; accessed 05-Aug-2023. URL https://www.software.slb.com/data/

guide-to-osdu-data-platform.

[54] Dataiku. Dataiku key capabilities. Oneline; accessed 10-May-2023. URL https://www.dataiku.com/

product/key-capabilities/.

[55] Xiao Xiao, Tung X Trinh, and Tae-Hyun Yoon. Improved performance of nanotoxicity prediction models
using automated machine learning.

[56] MZ Naser. Machine learning for all! benchmarking automated, explainable, and coding-free platforms on
civil and environmental engineering problems. Journal of Infrastructure Intelligence and Resilience, 2(1):
100028, 2023.

[57] Victor Aarre and Jimmy Kilinger. Solving the challenge of seismic data management—from compres-
sion to open-sourcing. Online: accessed 10-May-2023. URL https://www.software.slb.com/blog/

solving-the-challenge-of-seismic-data-management#.

[58] Gitlab link to openzgy. Online: accessed 10-May-2023. URL https://community.opengroup.org/osdu/

platform/domain-data-mgmt-services/seismic/open-zgy.

[59] Andrzej T Tunkiel, Tomasz Wiktorski, and Dan Sui. Drilling dataset exploration, processing and interpre-
tation using volve field data. In International Conference on Offshore Mechanics and Arctic Engineering,
volume 84430, page V011T11A076. American Society of Mechanical Engineers, 2020.

[60] Erlend Magnus Viggen, Erlend Hårstad, and Jørgen Kvalsvik. Getting started with acoustic well log data
using the dlisio python library on the volve data village dataset. In Proceedings of the 43rd Scandinavian
Symposium on Physical Acoustics. Norsk Fysisk Selskap, 2020.

[61] Disclosing all volve data. Online: accessed 03-July-2023. URL https://www.equinor.com/news/archive/

14jun2018-disclosing-volve-data.

[62] Attila Nagy. Availability and quality of drilling data in the volve dataset. Master’s thesis, University of
Stavanger, Norway, 2019.

[63] Andrzej T Tunkiel, Dan Sui, and Tomasz Wiktorski. Reference dataset for rate of penetration benchmarking.
Journal of Petroleum Science and Engineering, 196:108069, 2021.

[64] Nikolay O Nikitin, Ilia Revin, Alexander Hvatov, Pavel Vychuzhanin, and Anna V Kalyuzhnaya. Hybrid and
automated machine learning approaches for oil fields development: The case study of volve field, north sea.
Computers & Geosciences, 161:105061, 2022.

[65] Christine Ikram Noshi, Marco Risk Eissa, and Ramez Maher Abdalla. An intelligent data driven approach
for production prediction. In Offshore Technology Conference, page D041S048R007. OTC, 2019.

[66] Tom Inglis. Directional drilling, volume 2. Springer Science & Business Media, 2013.

[67] Eric Cayeux, Jean-Michel Genevois, Stephan Crepin, and Sylvain Thibeau. Well planning quality improved
using cooperation between drilling and geosciences. In SPE Annual Technical Conference and Exhibition.
OnePetro, 2001.

[68] Walt Aldred, Dick Plumb, Ian Bradford, John Cook, Vidhya Gholkar, Liam Cousins, Reginald Minton, John
Fuller, Shuja Goraya, and Dean Tucker. Managing drilling risk. Oilfield review, 11(2):2–19, 1999.

[69] Abdul-Razzaq Aqrawi, Moses Tantuoyir Maalidefaa, Jarle Haukås, Gideon Ofosu-Budu, and Dan Sui. Re-
inforced q-learning for automation in well trajectory design and drill planning. AAPG ICE, 2023.

https://hdl.handle.net/11250/3024569
https://www.software.slb.com/data/guide-to-osdu-data-platform
https://www.software.slb.com/data/guide-to-osdu-data-platform
https://www.dataiku.com/product/key-capabilities/
https://www.dataiku.com/product/key-capabilities/
https://www.software.slb.com/blog/solving-the-challenge-of-seismic-data-management#
https://www.software.slb.com/blog/solving-the-challenge-of-seismic-data-management#
https://community.opengroup.org/osdu/platform/domain-data-mgmt-services/seismic/open-zgy
https://community.opengroup.org/osdu/platform/domain-data-mgmt-services/seismic/open-zgy
https://www.equinor.com/news/archive/14jun2018-disclosing-volve-data
https://www.equinor.com/news/archive/14jun2018-disclosing-volve-data

REFERENCES 53

[70] ICE. Aapg international conference exhibition. AAPG ICE. URL https://madrid2023.iceevent.org/.

[71] Mohamed Halafawi and Lazar Avram. Wellbore trajectory optimization for horizontal wells: the plan versus
the reality. J Oil Gas Petrochem Sci, 2(1):49–54, 2019.

[72] Gideon Ofosu-Budu. Thesis code, 2023. Oneline; accessed 30-Aug-2023. URL https://github.com/

GideonOB23/well-path-planning/tree/main.

https://madrid2023.iceevent.org/
https://github.com/GideonOB23/well-path-planning/tree/main
https://github.com/GideonOB23/well-path-planning/tree/main

Appendices

54

Appendix A

GitHub Link to Python Code

The whole python code for the model can be found on [72]

A.1 Adding Configuration

Adding configuration.py is where configuration is added

A.2 Initializing Environment and Training

Initializing the environment.py initializes environment

A.3 Terminal state

Terminal state.py set terminal conditions

A.4 Search for endLoc

Search for endLoc.py has next action function, next location functions

A.5 Shortest path to endLoc

Shortest path to endLoc.py searches for shortest path

56

A.6. TRAINING OF THE REINFORCEMENT ALGORITHM 57

A.6 Training of the reinforcement algorithm

Training of the algorithm.py is where training begins

Appendix B

Plots

B.1 Shortest path training failures

Figure B.1: Plot 1

58

B.1. SHORTEST PATH TRAINING FAILURES 59

Figure B.2: Plot 2

Figure B.3: Plot 3

60 APPENDIX B. PLOTS

Figure B.4: Plot 4

Figure B.5: Plot 4

B.1. SHORTEST PATH TRAINING FAILURES 61

Figure B.6: Plot 5

Figure B.7: Plot 6

62 APPENDIX B. PLOTS

Figure B.8: Plot 7

Figure B.9: Plot 8

B.1. SHORTEST PATH TRAINING FAILURES 63

Figure B.10: Plot 9

Figure B.11: Plot 10

	Abstract
	Acknowledgments
	List of Abbreviations
	List of Figures
	List of Tables
	Introduction
	Motivation
	Problem Definition
	Outline

	Literature Review
	Well Trajectory Design Background
	Basic Parameters of Well Path
	Types of Well Profiles
	Survey Calculation Techniques
	Traditional Methods of Designing Well Trajectory
	Computer Applications
	Well Trajectory Design using Search Methods

	Machine learning Background
	Supervised Learning
	Unsupervised Learning
	Semi-supervised Learning
	Reinforcement Learning
	Automated Machine Learning (AutoML)

	Related Work
	Proposed Solution in 2D environment
	Proposed Solutions in 3D environment

	Platforms, Dataset & Model
	Platforms Used
	OSDU Data Platform
	DELFI Digital Platform
	Dataiku Data Science Studio (Dataiku DSS)
	OpenZGY

	Dataset
	Overview of the Volve field dataset

	Model
	Technicalities to be Considered
	Reward Function

	Implementation
	Introduction
	Start and Target Points
	Obstacles

	2D Approach Using Q-Learning
	Initial Proposed Model
	Flow of Implemented Model

	Results and Discussion
	2D representation of VOLVE field
	RL 2D Grid Environment
	Sensitivity Analysis
	Effect of grid size location, start and end points in finding the shortest path
	The effect of reward or cost factor in finding the shortest path
	Effect of hyper-parameters in finding the shortest path

	Conclusions and Future Work
	Conclusions
	Future Work
	Training data
	Adding more granularity to the obstacles
	Considering the technicalities of drilling
	Using 4D seismic

	References
	Appendices
	Appendix GitHub Link to Python Code
	Adding Configuration
	Initializing Environment and Training
	Terminal state
	Search for endLoc
	Shortest path to endLoc
	Training of the reinforcement algorithm

	Appendix Plots
	Shortest path training failures

