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Abstract
A metric tensor for Riemann manifold Monte Carlo
particularly suited for nonlinear Bayesian hierarchical
models is proposed. The metric tensor is built from sym-
metric positive semidefinite log-density gradient covari-
ance (LGC) matrices, which are also proposed and
further explored here. The LGCs generalize the Fisher
information matrix by measuring the joint information
content and dependence structure of both a random
variable and the parameters of said variable. Conse-
quently, positive definite Fisher/LGC-based metric ten-
sors may be constructed not only from the observation
likelihoods as is current practice, but also from arbi-
trarily complicated nonlinear prior/latent variable struc-
tures, provided the LGC may be derived for each condi-
tional distribution used to construct said structures. The
proposed methodology is highly automatic and allows
for exploitation of any sparsity associated with the model
in question. When implemented in conjunction with
a Riemann manifold variant of the recently proposed
numerical generalized randomized Hamiltonian Monte
Carlo processes, the proposed methodology is highly
competitive, in particular for the more challenging
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target distributions associated with Bayesian hierarchi-
cal models.

K E Y W O R D S

generalized randomized Hamiltonian Monte Carlo, MCMC, metric
Tensor, Riemann manifold Monte Carlo

1 INTRODUCTION

Efficient posterior sampling for Bayesian statistical models has attracted a substantial amount of
research the last decades (see e.g., Martin et al., 2022). Riemann manifold Monte Carlo methods
(Girolami & Calderhead, 2011) are in particular well suited for posterior distributions exhibiting
complicated nonlinear dependence structures and/or substantial differences in scale across the
target distribution. Posterior distributions with these properties arise (among other) for Bayesian
hierarchical models which are widely used to model dependent data (see e.g., Kleppe, 2019).
The successful application of the RMMC methods relies on the selection of a suitable met-
ric tensor, a symmetric, positive definite matrix-valued function that should reflect the local
scaling properties of the target distribution, which in this case is the posterior distribution in
question.

This article makes several contributions towards the end of selecting metric tensors that are
both of high quality and are easily applied by nonexperts in computational methods. The first con-
tribution is the introduction of the, to the author’s knowledge, new concept Log-density Gradient
Covariance (LGC) and the development of some of its properties. Informally, the LGC associated
with some probability density, say 𝜋(x|𝜽) is defined to be the (necessarily symmetric, positive
semidefinite [SPSD]) covariance matrix of the gradient of log𝜋 with respect to both x and 𝜽. Con-
sequently, the LGC generalizes the Fisher information matrix (see e.g., Pawitan, 2017) (which is
the covariance matrix of the log-density gradient with respect to 𝜽 only). Subject to regularity con-
ditions, the LGC is equal to expected negative Hessian of log𝜋 with respect to both x and 𝜽, and
may informally speaking be used to measure the information content and dependence structure
between- and among both x and 𝜽 in cases where both x and 𝜽 are sampled (e.g., when x is a
latent variable).

Secondly, a metric tensor is constructed from LGCs for a very broad class of possibly non-
linear models specified in terms of a sequence of conditional distribution statements. Very few
restrictions are imposed, and in particular the class of models considered includes nonlinear
hierarchical models, even with multiple- nonlinearly coupled layers of latent variables/priors.
Consequently, guaranteed positive definite Fisher/LGC-based metric tensors may be constructed
not only from the contributions to the posterior associated with observed data as is current prac-
tice (Girolami & Calderhead, 2011). Rather, a metric tensor may be constructed from arbitrarily
complicated non-linear prior/latent variable structures, provided the LGC may be derived for
each conditional distribution composing the posterior distribution. The proposed metric tensor
may be derived directly from the model specification and does not involve any tuning param-
eters. Third, an efficient and highly automatic numerical implementation of the metric tensor
based on Automatic Differentiation (AD) is proposed. The implementation may exploit any spar-
sity of the metric tensor, which for large scale hierarchical models is essential in a performance
perspective.
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KLEPPE 3

The proposed metric tensor could in principle be used in conjunction with any Riemann
manifold Monte Carlo method, for example, Riemann manifold Hamiltonian Monte Carlo or
Riemann manifold Langevin dynamics (Girolami & Calderhead, 2011). However, in this article,
the illustrations are done based on a Riemann manifold variant of the numerical generalized
randomized Hamiltonian Monte Carlo (NGRHMC) method of (Kleppe, 2022). NGRHMC pro-
cesses are continuous time piecewise deterministic processes (see e.g., Fearnhead et al., 2018) with
Hamiltonian deterministic dynamics (Bou-Rabee & Sanz-Serna, 2017) which are implemented
using adaptive numerical ordinary differential equations (ODEs) solvers. The usage of such ODE
solvers introduces small biases, but at the same time avoids computationally intensive- and dif-
ficult to tune implicit symplectic integrators commonly used in Riemann manifold Hamiltonian
Monte Carlo. The application of NGRHMC allows a clean comparison between samplers based on
the proposed Riemann manifold and Euclidean versions of Hamiltonian dynamics, as the same
numerical ODE solver may be used in both cases.

Finally, the paper contains several numerical illustrations, which benchmarks the proposed
methodology against relevant alternatives. It is demonstrated that the proposed methodology
may lead to substantial speed-ups in sampling efficiency (or expand the set of target distri-
butions that may reliably sampled using HMC-like methods without introducing complicated
rescaling methodology), in particular for challenging target distributions associated with large,
high-dimensional Bayesian hierarchical models.

Below, Section 2 provides background material and relation to literature, and Section 3 intro-
duces the LGC and discusses some of its properties. Section 4 derives a metric tensor based on
LGC provides some illustrations of the properties of the metric tensor and discusses automatic
implementation. Numerical examples and benchmarking are found in Sections 5 and 6, and
Section 7 provides discussion. The article is accompanied by online supplementary material S1
which provides proofs and additional information in several regards.

2 BACKGROUND

This section provides necessary background and fixes notation. For the purpose of readability, the
notation and language is as far as possible avoiding differential-geometric nomenclature. Further,
the paper assumes familiarity with Markov chain Monte Carlo (MCMC) methods and in partic-
ular Hamiltonian Monte Carlo (HMC) methods, for which, for example, Neal (2010), Girolami
and Calderhead (2011), and Bou-Rabee and Sanz-Serna (2018) may serve as references.

The paper considers a continuous target density 𝝅(q) with density kernel 𝜋(q) ∝ 𝜋(q), q ∈
RD (with respect to the Euclidean geometry) that allows evaluation. In the following, (x|𝝁,𝚺)
denotes the density of a N(𝝁,𝚺) random vector evaluated at x. 0d ∈ Rd and 0d,n ∈ Rd×n denote
vectors and matrices of only zeros. For stacking of two vectors, say x ∈ Rd and y ∈ R

n into z =
[xT yT]T ∈ Rd+n, the shorthand notation (x, y) is sometimes used. Further,∇xf (x) ∈ Rd denotes
the gradient of f ∶ Rd → R, and ∇2

xf (x) ∈ Rd×d the Hessian of f . Finally, ∇xg(x) ∈ Rp×d denotes
the Jacobian of g ∶ Rd → Rp.

2.1 Metric tensors and Riemann manifold Hamiltonian dynamics

Broadly speaking, Riemann manifold MCMC methods (Girolami & Calderhead, 2011) rely on
defining the proposal mechanism of the MCMC method on a (non-trivial) Riemann manifold
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4 KLEPPE

rather than the conventional Euclidean space RD. The Riemann manifold under consideration
here may be characterized in terms of the metric tensor G(q) ∈ RD×D, a smooth symmetric, posi-
tive definite (SPD) matrix-valued function for each q ∈ RD. For purposes of this paper, it suffices
to think of the metric tensor as giving the distance between two infinitesimally separated points
q ∈ RD and q + 𝜹q ∈ RD to be

√
(𝜹q)TG(q)𝜹q (rather than the conventional Euclidean distance√

(𝜹q)T𝜹q).
To leverage the flexibility afforded by introducing a non-trivial Riemann manifold for con-

structing HMC-like RMMC methods targeting 𝜋, Girolami and Calderhead (2011) suggested
using the dynamics associated with the Hamiltonian

(q,p) = − log 𝜋(q) + 1
2

log |G(q)| + 1
2

pT[G(q)
]−1p, (1)

as the proposal mechanism. Here p ∈ RD is the fictitious momentum variable. The dynamics
associated with (1) are governed by Hamilton’s equations, which amounts to

q̇(t) = ∇p(q(t),p(t)) = G(q(t))−1p(t), (2)
ṗ(t) = −∇q(q(t),p(t)). (3)

The joint distribution for z = (qT
,pT)T , associated with (1) is given by

𝜋(z) = 𝜋(q,p) = 𝜋(q) (p|0D,G(q)). (4)

The dynamics (2,3) preserve both the Hamiltonian (i.e., total energy), and are also volume pre-
serving. Consequently, (2,3) preserve (4) in the sense that for any initial configuration z(0) ∼ 𝜋(z),
then z(T) ∼ 𝜋(z) for any T > 0 (provided z(t) solves Hamilton’s equations (2,3) for each t ∈ [0,T]).
Clearly, the original target 𝜋(q) is the q-marginal of (4).

2.2 Riemann manifold HMC

Arguably, the most promising general purpose RMMC method is Riemann manifold HMC
(RMHMC) (Girolami & Calderhead, 2011). RMHMC is most easily explained as a discrete time
MCMC algorithm targeting 𝜋(z) (and samples targeting 𝜋(q) may subsequently be obtained
by discarding the p-coordinates of samples targeting 𝜋(z)). Each transition of RMHMC, say
from z(i) = (q(i),p(i)) to z(i+1) involves two steps, where the first step is updating the momen-
tum p∗(i) ∼ 𝜋(p|q(i)) = (p|0D,G(q(i))). In the second step, a fixed/random number of numerical
time-integration steps applied to the ODE (2,3) with initial configuration (q(i),p∗(i)) are computed.
The final state of the time-integration process is either accepted or rejected as z(i+1) according to a
Metropolis-Hastings (MH) mechanism in order to adjust for errors introduced by the numerical
integration relative to the exact solution of (2,3).

Provided the time-integration is done using a symplectic/time-reversible method (see e.g.,
Leimkuhler & Reich, 2004; Sanz-Serna & Calvo, 1994), the accept probability of the MH step
takes a particularly simple form. However, symplectic numerical methods for (2,3) are necessar-
ily implicit, with each integration step requiring the iterative solution of a set of D non-linear
equations involving the q-gradient of the Hamiltonian (1). Further, to ensure stability and conver-
gence of these iterative processes, it is typically necessary to use very short/many time-integration
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KLEPPE 5

steps in each transition. Consequently, unless special structures in the model may be exploited
(see e.g., Kleppe, 2019; Zhang & Sutton, 2014), RMHMC may be very computationally demanding
in practice for general model. It is also worth mentioning that MH adjustment mechanisms for
RMHMC-like methods may be implemented with explicit time-reversible (but not volume pre-
serving/symplectic) integrators, but this in general leads to highly nontrivial calculations for the
accept probability (see e.g., Lan et al., 2015).

2.3 Riemann manifold Numerical Generalized Randomized HMC
processes

Rather than conventional discrete time RMHMC methods, the illustrations of the proposed
metric tensor in this paper are done using Riemann manifold variants of numerical General-
ized Randomized HMC (GRHMC) processes (Kleppe, 2022). The Riemann manifold variant
of numerical GRHMC processes (see Kleppe, 2022, supplementary material), implemented
with general purpose explicit adaptive first-order ODE solvers (see e.g., Hairer et al., 1993),
bypasses the need for iterative nonlinear equation solving, while still exploiting the conser-
vative nature (2,3) and the freedom to choose G(q). The savings in computing time comes
at the cost of arbitrarily small errors introduced by the nonsymplectic and un-adjusted ODE
solver.

For numerical GRHMC processes, the same adaptive time step integrator, with the same error
tolerances may be used both for Riemann manifold-based methods endowed with the proposed
metric tensor, and Euclidean metric (i.e., G(q) = M for some fixed SPD mass matrix M). Con-
sequently, an added benefit of considering numerical GRHMC processes, rather than RMHMC
(based on implicit difficult to tune/computationally costly symplectic integrators), is that a clean
comparison between Riemann manifold- and fixed metric numerical GRHMC methods may be
carried out.

Riemann manifold GRHMC processes, say Z(t) = (Q(t),P(t)), t ≥ 0, are continuous time pro-
cesses that may be specified so that Q(t) has an arbitrary continuous stationary distribution.
The processes are special cases of piecewise deterministic Markov processes (Davis, 1993; Fearn-
head et al., 2018; Vanetti et al., 2018). For simplicity, in this paper, only constant event rate
processes, where events occur according to a time-homogenous Poisson process with intensity
𝜆 are considered. Between events, Z(t) solves (2,3). At events times t, the momentum coordi-
nate P(t) is updated according to 𝜋(p|q = Q(t)). Continuous time trajectories are simulated for
a prespecified time interval [0,Tmax], and position coordinate is subsequently sampled at dis-
crete times, say

{
qi = Q(iΔ)

}

i for some suitable time increment Δ. The discrete time samples
{

qi
}

i may be used in the same manner as samples from conventional (discrete time) MCMC
methods.

The (Riemann and Euclidean metric) numerical GRHMC processes used for illustration
are implemented in the pdmphmc R-package (https://github.com/torekleppe/pdmphmc). For
improved numerical performance, the simulations are done in standardized variables (see
Appendix A for details on standardization and other aspects related to the numerical imple-
mentation). This standardization has the added benefit of making the unit of process time
t comparable across many models/manifolds, and as a rule of thumb (obtained by trial
and error), one should expect on the order of 0.2 effective samples per unit of process
time.
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6 KLEPPE

2.4 Metric tensors in the literature

So far, the metric tensor G(q) has been left unspecified. The overarching aim of working with a
non-constant G(q) is to ensure an adequate representation of the geometry of the target distri-
bution, thus resulting in that the dynamics (2,3) exhibit efficient exploration of the support of
the target. In most applications of Riemann manifold HMC methods, G(q) is chosen to be some
sort of positive definite approximation to the negative Hessian of the log-target density, that is,
−∇2

q, log𝜋(q). Such choices may be motivated by that in the flow of q associated with (2,3), the
log-target gradient gets scaled by G−1(q) (see e.g., Kleppe, 2018, Eq. 9). It is well known from the
numerical optimization literature (see e.g., Nocedal & Wright, 1999) that scaling the target func-
tion gradient using some form of positive definite approximation to the inverse target Hessian
typically result in moves well adapted to the target distribution.

When the target distribution is the posterior distribution of a nonhierarchical statistical model,
that is, 𝜋(q) ∝ 𝜋(y|q)p(q) (where 𝜋(y|q) is the likelihood function for observations y and param-
eters q, and p(q) is the prior.), Girolami and Calderhead (2011) suggest using the metric tensor

G(q) =  (q) +. (5)

Here  (q) = −Ey|q[∇2
q log𝜋(y|q)] is the Fisher information matrix (see e.g., Pawitan, 2017,

Chap. 8) associated with the likelihood function, and = −∇2
q log p(q̂), q̂ = arg maxq p(q), is the

negative Hessian at the maximizer of the prior, a common approximation to the precision matrix
of p(q). Based on that  (q) is the natural metric tensor for the parameter space Riemann mani-
fold associated with the statistical model 𝜋(y|q), Girolami and Calderhead (2011, Sec. 4) provide
a discussion of why (5) constitutes a suitable metric tensor. See also Amari (1998) for further dis-
cussion of the application of Fisher information for the closely related natural gradient, but again
restricted to non-hierarchical models.

Betancourt (2013) and Kleppe (2018) propose to use positive definite approximations
to/modifications of −∇2

q log 𝜋(q) as the metric tensor. Such procedures have the benefit of
allowing for a high degree of automation, as−∇2

q log𝜋(q)may be computed from a program spec-
ifying the log-target density using automatic differentiation (AD) techniques (Griewank, 2000).
Betancourt (2013) uses a full eigen-decomposition and modifies any small positive or neg-
ative eigenvalues of the negative Hessian. Kleppe (2018) on the other hand uses modified
Cholesky factorization that exploits any sparsity of the Hessian, commonly present under
hierarchical models (see e.g., Rue et al., 2009), to a similar end. Common for both tech-
niques is that they require the non-trivial selection of a regularization parameter which
chooses a tradeoff between the smoothness of the resulting G(q) against the difference between
−∇2

q log 𝜋(q) and G(q). Further, computing the required derivatives of the Hamiltonian (3)
effectively amounts to third order AD, which may both be computationally demanding and
require highly specialized techniques or additional input by the user if sparsity is to be
exploited.

Recently, Hartmann et al. (2022) proposed the Monge metric, which in the present notation
amounts to G(q) = ID + 𝛼

2[∇q log𝜋(q)][∇q log 𝜋(q)]T for with 𝛼 being a tuning parameter. The
Monge metric also does not assume any particular structure on the model, and would allow imple-
mentation based on second order AD. The identity plus rank 1 update structure of the Monge
metric affords substantial savings in the numerical linear algebra involved in each update, but it
is not clear how to choose 𝛼 for any given statistical model. Note also that the expectation of the
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KLEPPE 7

gradient outer product of the Monge metric is the Fisher information provided a similar model
structure as for (5) and flat priors.

To reduce the cost of each RMHMC update for hierarchical models, certain structure can be
imposed on the metric tensor. Zhang and Sutton (2014) propose semi-separable HMC, and the
dynamic rescaling method of Kleppe (2019) may also be interpreted in terms a metric tensor with
certain properties which would simplify RMHMC sampling. Both approaches are based on Fisher
information matrices, but requires different, rather strict assumptions on the model which does
not lend themselves easily to automatic implementation.

In what follows, a new metric tensor, along with an efficient and automatic method of
computation of this metric tensor is proposed. The proposed metric tensor may be seen as a gener-
alization of the Fisher-based metric (5) of Girolami and Calderhead (2011) to hierarchical/latent
variable models that allows for a high degree of automation.

3 LOG-DENSITY GRADIENT COVARIANCE

Before discussing metric tensors per se, the log-density gradient covariance (LGC) is introduced.
The LGC generalizes the Fisher information matrix (see e.g., Pawitan, 2017) for sufficiently
smooth probability densities, and will constitute an important building block for the proposed
metric tensor.

3.1 Log-density gradient covariance

Assumption 1. Probability density 𝜋(x|𝜽) on Rd has continuous first-order deriva-
tives w.r.t. x for each 𝜽 ∈ Ω ⊆ Rp, where Ω is the set of allowed parameters.

Under Assumption 1, the LGC V𝜋[x|𝜽] associated with probability density 𝜋(x|𝜽) is defined as

V𝜋[x|𝜽] = Var
𝜋(x|𝜽)

[
∇(x,𝜽) log𝜋(x|𝜽)

]
=

[
(𝜽) (𝜽)
T(𝜽)  (𝜽)

]

,

where the blocks (𝜽) ∈ Rd×d, (𝜽) ∈ Rd×p and  (𝜽) ∈ Rp×p conform in sizes with the sizes
of x and 𝜽. Clearly  (𝜽) is the Fisher information matrix associated with 𝜋(x|𝜽). Being proper
covariance matrices, both V𝜋[x|𝜽] and (𝜽) (in addition to  (𝜽) obviously) are symmetric and
positive semi-definite. In general, the LGC is a SPSD matrix-valued function of 𝜽, and sometimes
the notation V𝜋[x|𝜽](𝜽) is needed.

3.2 Basic properties of the log-density gradient and the LGC

The log-density gradient, ∇(x,𝜽) log𝜋(x|𝜽), and the LGC have properties that mirror those of the
score function and Fisher information:

Proposition 1. Under Assumption 1,

I ∶ E
𝜋(x|𝜽)

[
∇(x,𝜽) log𝜋(x|𝜽)

]
= 0d+p,
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8 KLEPPE

and

II ∶ V𝜋[x|𝜽] = − E
𝜋(x|𝜽)

[

∇2
(x,𝜽) log𝜋(x|𝜽)

]

.

The proof is provided in Appendix B.1.

The second part of the proposition indicates, via the established explicit relation to the Hessian
matrix with respect to (x,𝜽), that V𝜋[x|𝜽] is a sensible “scale matrix” for statistical computing
purposes in cases where variation in x,𝜽 jointly is considered.

The above proposition relies critically on the smoothness of Assumption 1, which in turn
implies that ∫ 𝜕

𝜕xi
𝜋(x|𝜽)dx = limxi→∞ 𝜋(x|𝜽) − limxi→−∞ 𝜋(x|𝜽) = 0 for all i = 1,…, d. Failures to

be sufficiently smooth, for example, the exponential distribution (interpreted as a distribution on
R with density evaluating to 0 for negative arguments), may in certain cases be worked around
by transformations of x, see, for example, ExpGamma distribution below. The regular Gamma
distribution is sufficiently smooth for shape parameter > 2 as then it will have continuous first
order derivative with respect to x everywhere.

3.3 A transformation result

It is well known that the Fisher information matrix for some alternative parameter, say 𝜼, may be
expressed in terms the Fisher information associated with the original parameter, say 𝜽 = 𝚿(𝜼).
A similar result can be derived for the LGC subject to transformations between (x,𝜽) and (z, 𝜼) of
the form

x = a(𝜼) + Bz,𝜽 = 𝚿(𝜼), (6)

where it is assumed that matrix B is invertible (and hence the dimensions of x and z are equal).
Denote by p(z|𝜼) = 𝜋(a(𝜼) + Bz|𝚿(𝜼))|B| the density of z|𝜼 implied by x|𝜽 being distributed
according to 𝜋(x|𝜽) and (6). Then the LGC associated with p(z|𝜼) may be expressed in terms of
V𝜋[x|𝜽], namely

Vp[z|𝜼] = U(𝜼)T{V𝜋[x|𝜽](𝚿(𝜼))}U(𝜼),U(𝜼) = ∇(z,𝜼)(x,𝜽) =

[
B ∇𝜼a(𝜼)
0 ∇𝜼𝚿(𝜼)

]

. (7)

The rather elementary proof of (7) is detailed in Appendix B.2. Clearly, setting a(𝜼) = 0,B = I
recovers the conventional re-parameterization formula for the Fisher information (Pawitan, 2017)
(with the cross-information modified to be[z|𝜼] =[x|𝜽 = 𝚿(𝜼)]∇𝜼𝚿(𝜼)). Further, the LGC
exhibit intuitive behavior by being unchanged under constant (w.r.t. parameters) location shifts
of the random variable (B = I, 𝜽 = 𝜼 and ∇𝜼a = 0 so that U = I). Even further, (7) entails that
the LGC random variable block  scales as conventional precision matrix under invertible linear
transformations of the random variable.

3.4 Examples of LGCs

This section gives some examples of LGCs for common probability distributions. The Gaussian
distribution with density (x|𝜇, 𝜎2) has the LGC
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KLEPPE 9

V [x|(𝜇, 𝜎)] = 𝜎
−2

⎡
⎢
⎢
⎢
⎣

1 −1 0
−1 1 0
0 0 2

⎤
⎥
⎥
⎥
⎦

. (8)

More generally, for a multivariate Gaussian distribution, say (x|𝝁,P−1(𝝎))where the precision
matrix P(𝝎) depends on a parameter vector 𝝎, it is clear that

V [x|(𝝁,𝝎)] =
⎡
⎢
⎢
⎢
⎣

P(𝝎) −P(𝝎) 0
−P(𝝎) P(𝝎) 0

0 0 𝝎

⎤
⎥
⎥
⎥
⎦

,

where 𝝎 is the Fisher information of (x|𝝁,P−1(𝝎)) with respect to 𝝎.
For densities 𝜋(y|𝜽) that do not have a everywhere continuous derivative with respect x, LGCs

may be derived after first transforming y. Examples include the ExpGamma-distribution (named
analogous with the LogNormal distribution), that is, if X ∼ ExpGamma(𝛼, 𝛽), then Y = exp(X) ∼
Gamma(𝛼, 𝛽)where 𝛽 is the scale parameter. The ExpGamma distribution has density 𝜋(x|𝛼, 𝛽) ∝
exp(𝛼x − 𝛽

−1 exp(x)), x ∈ R, and yields the LGC

V𝜋[x|(𝛼, 𝛽)] =
⎡
⎢
⎢
⎢
⎣

𝛼 −1 −𝛼𝛽−1

−1 Ψ′(𝛼) 𝛽
−1

−𝛼𝛽−1
𝛽
−1

𝛼𝛽
−1

⎤
⎥
⎥
⎥
⎦

, (9)

where Ψ′(a) = d2

da2 log(Γ(a)).
Another such example would be the InverseLogitBeta, defined via X ∼

InverseLogitBeta(a, b) ⇒ Y = logit−1(X) ∼ Beta(a, b), where logit−1(x) = exp(x)
exp(x)+1

. The InverseL-

ogitBeta distribution, which has density 𝜋(x|a, b) ∝
[
exp(x)∕(1 + exp(x))

]a[1∕(1 + exp(x))
]b
, x ∈

R, has LGC given by

V𝜋[x|(a, b)] =
⎡
⎢
⎢
⎢
⎣

ab
a+b+1

− b
a+b

a
a+1

− b
a+b

Ψ′(a) − Ψ′(a + b) −Ψ′(a + b)
a

a+1
−Ψ′(a + b) Ψ′(b) − Ψ′(a + b)

⎤
⎥
⎥
⎥
⎦

.

Note that in the context of statistical computing using HMC-like methods, it is common practice to
transform constrained variables into un-constrained ones (to obtain continuous first-order deriva-
tives), as in the two latter examples, before sampling is performed. For example, Stan also uses
internally the log- and logit-transforms to arrive at unconstrained variables from lower-bounded
and compactly supported variables respectively (Carpenter et al., 2017). Hence, for applica-
tion of the LGC within statistical computing, the requirement that the involved densities fulfill
Assumption 1 is not too restrictive.

4 METRIC TENSORS BASED ON LGC

Commonly, Bayesian hierarchical models are built from sequences of known conditional distribu-
tions, for which deriving LGCs (or Fisher information matrices in the case of discrete observation
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10 KLEPPE

likelihoods) is usually relatively easy. This section discusses how leverage such LGCs to arrive at
the proposed metric tensor for models built from such sequences of conditional distributions with
potentially non-linear interconnections which may generate complicated dependence structures.

4.1 Model formulation and notation

The proposed methodology assumes that:

Assumption 2. The joint posterior distribution of statistical model under consider-
ation may be written as

log𝜋(q) ∝
∑

𝓁

log𝜋𝓁(𝝓𝓁(q)|𝝍𝓁(q)), (10)

for suitably chosen probability densities/mass functions {𝜋𝓁}𝓁 , “argument functions”
{𝝓𝓁(q)}𝓁 and “parameter functions” {𝝍𝓁(q)}𝓁 .

Assumption 3. Provided ∇q𝝓𝓁(q) ≠ 0, then 𝜋𝓁(x𝓁|𝜽𝓁) admit a LGC V𝜋𝓁
[x𝓁|𝜽𝓁]. If

∇q𝝓𝓁(q) = 0, then 𝜋𝓁(x𝓁|𝜽𝓁) admits a Fisher information matrix.

Note that both 𝝍𝓁(q) and 𝝓𝓁(q) may be constant with respect to the sampled quantity q. For
example, 𝝍𝓁 being some fixed hyper-parameters if 𝜋𝓁 is a prior, or 𝝓𝓁(q) being equal to a set
of observations/data. In cases where ∇q𝝓𝓁(q) = 0 and 𝜋𝓁 does not admit a LGC (e.g., a discrete
distribution), 𝓁 and𝓁 are taken to be the zero-matrices in the subsequent derivations.

4.2 Proposed metric tensor

Based on the above model formulation and Assumptions 2 and 3, this Section proposes a metric
tensor suitable for statistical computing applications. Define the Jacobian matrix

J𝓁(q) =

[
∇q𝝓𝓁(q)
∇q𝝍𝓁(q)

]

.

In the current paper, it is proposed to use

G(q) =
∑

𝓁

G𝓁(q), where G𝓁(q) = JT
𝓁 (q)

{
V𝝅𝓁

[x𝓁|𝜽𝓁](𝝍(q))
}

J𝓁(q), (11)

as the metric tensor. Note that G(q) is the sum of induced (pull-back) pseudo-metric tensors from
(the domain of) (x𝓁|𝜽𝓁) to the sampling space characterized by q.

Before proceeding, some remarks are in order.

• Under certain additional assumptions, (certain rows/columns of) G𝓁 may itself be interpreted
as a LGC. More precisely, momentarily assuming that there exist subsets I and J of {1,…, d}
where I ∩ J = ∅, functions a, c and invertible matrix B so that𝝓𝓁(q) = a(qJ) + BqI and𝝍𝓁(q) =
c(qJ). Then it follows from (7, with𝚿 = c) that the I ∪ J-rows/columns of G𝓁 is the LGC of the
density of qI|qJ implied by 𝜋𝓁 , 𝝓𝓁 and 𝝍𝓁 .
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KLEPPE 11

• Informally speaking, (11) correctly represents the precision matrix of any (possibly degenerate)
linear Gaussian structure. More precisely, in the case characterized by 𝜋𝓁 = (a +AqI|b +
BqI ,P−1(qJ)), where again I ∩ J = ∅, and A,B not necessarily invertible, the I-rows/columns
of G𝓁 are equal to −∇2

qI
log 𝜋𝓁 .

• In general, (10) admit nonlinear 𝝓𝓁s, and G𝓁 will be a SPSD matrix also in the case of such
nonlinear 𝝓𝓁s. Inclusion of this possibility is mainly done as the automatic implementation of
(11) (see Section 4.4) does not distinguish between linear and nonlinear𝝓𝓁s. Still, the interpre-
tation of nonlinear 𝝓𝓁s is not obvious as (10) does not involve the log-Jacobian determinants
of the 𝝓𝓁s. Hence, the use of nonlinear 𝝓𝓁s is advised against. Further, if 𝝓𝓁 is bijective from
some subset of q, the need for nonlinear 𝝓𝓁s may be alleviated by choosing an equivalent base
distribution on the pre-image of 𝝓𝓁 .

• For models not involving latent variables so that q may be interpreted as a parameter vec-
tor, (11) reduces to (5) with the modification the matrix  is now the sum of prior argument
log-gradient covariances 𝓁 for 𝓁s corresponding to prior terms in (10). Further, for terms cor-
responding to the log-likelihood function, say 𝓁 ∈ ,

∑
𝓁∈G𝓁(q) is exactly the Fisher of the

observations with respect to the parameter q. In this sense, the proposed methodology may be
seen as a generalization of the suggestion of Girolami and Calderhead (2011) to a much more
general class of models involving latent variables.

Further, for a given model with target distribution 𝜋(q), the metric tensor (11) is in general not
invariant to how the factorization (10) is carried out, as will be illustrated with following example.
Consider the simple funnel-model q1 ∼ N(0, 1), q2|q1 ∼ N(0, exp(−3q1)). The factorization (10)
may be done either as

1. 𝜋(q) = 𝜋1(q1)𝜋2(q2|q1), which leads to G(q) = diag(11∕2, exp(−3q1)), or simply
2. 𝜋(q) = 𝜋1(q1, q2), which leads to G(q) = V𝜋1[q1, q2|] = diag(11∕2, exp(−9∕2)).

Clearly, factorization 1 above leads to metric tensor provides useful (q-dependent) scaling
information for sampling from the funnel distribution. For factorization 2 above, on the other
hand, the metric tensor is constant/leads to Euclidean sampling which is not desirable for such
target distributions. From this simple example, it seems advisable if possible, to factorize highly
non-Gaussian joint distributions rather than to derive and use the LGC of the joint distribution.
In fact, working with a single factor with 𝜙1 = q in (10) would, as exemplified by factorization
2 above, always result in a constant (Euclidean) metric tensor. The factorization issue is further
explored in Section 6.

4.3 Examples

To get a sense of the workings of the proposed methodology, some small examples are considered
here.

4.3.1 Nonlinear parameter transformations

First, a nonhierarchical model similar to that of Bornn and Cornebise (2011) is considered. The
model involves two parameters q = (𝜃1, 𝜃2) and may be summarized by
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12 KLEPPE

𝓁 = 1,…,n ∶ y𝓁|𝜃1, 𝜃2 ∼ N(𝜃1 + 𝜃
2
2 , 1) and 𝓁 = n + 1 ∶ (𝜃1, 𝜃2) ∼ N(0, 100I2). (12)

Then (11) result in

G𝓵 =

[
1 2𝜃2

2𝜃2 4𝜃2
2

]

,𝓁 = 1,…,n, and Gn+1 = 100−1I2. (13)

The resulting metric tensor is the same as (5) obtained in Bornn and Cornebise (2011), which owes
to the fact that for the Gaussian prior 𝜋n+1, then+1 is equal to the negative Hessian at the mode.
In Figure 1a, it is seen that (13) appears to accurately represent the local scaling properties of the
target distributions.

4.3.2 A simple hierarchical model

Now consider a simple hierarchical model with q = (𝜆, z) where 𝜆 is the a priori log-precision of
the latent variable z. The model is characterized by

𝓁 = 1 ∶ 𝜆 ∼ N(0, 32),𝓁 = 2 ∶ z|𝜆 ∼ N(0, exp(−𝜆)) and 𝓁 = 3 ∶ y|z ∼ N(z, 1). (14)

In this case, (11) results in

G1 =

[
3−2 0
0 0

]

,G2 =

[
1
2

0
0 exp(𝜆)

]

,G3 =

[
0 0
0 1

]

. (15)

Figure 1b illustrates (15), where it is seen that the scaling properties of the target distribution
appears well represented.
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F I G U R E 1 Illustrations of the proposed metric tensor for (a): model (12) and (b): model (14) with y = 1. In
both plots, gray lines indicated target log-density contours, whereas the black closed curves are equi-probability
ellipsis’ associated with N(q,G−1(q)) for values of q indicated by +-signs. (a) Nonlinear parameters; (b) Simple
hierarchical model.
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KLEPPE 13

4.3.3 Intrinsic Gaussian

In the final small example, consider the intrinsic Gaussian model (see e.g., Rue & Held, 2005) for
q ∈ R3 characterized by

𝓁 = 1 ∶ q1 − q2 ∼ N(0, 𝜅−1), q1 − q3 ∼ N(0, 𝜅−1) and q2 − q3 ∼ N(0, 𝜅−1), (16)

for some fixed 𝜅. This formulation still fits directly into (10), even with noninvertible argument
functions, for example,𝜙1(q) = q1 − q2 and with 𝜋1 corresponding to (x|0, 𝜅−1). Further, in line
with the second comment of Section 4.2, the metric tensor (11),

G =
⎡
⎢
⎢
⎢
⎣

2𝜅 −𝜅 −𝜅
−𝜅 2𝜅 −𝜅
−𝜅 −𝜅 2𝜅

⎤
⎥
⎥
⎥
⎦

,

is the (degenerate) precision matrix associated with (16).

4.4 Automatic computation of G(q)

Equation (11) may at first glance appear somewhat intimidating to compute for a gen-
eral nonlinear model (10). However, it may be computed in a completely automatic fash-
ion based on AD, provided the distribution families {𝜋𝓁(x|𝜽)}𝓁 composing the posterior dis-
tribution all have known LGCs {V𝜋𝓁

}𝓁 (or Fisher information matrices in cases of dis-
cretely distributed observations). More specifically, the proposed methodology leading to (11)
has been implemented in the C++ library amt, which is a part of the pdmphmc pack-
age (https://github.com/torekleppe/pdmphmc) which will be described shortly. With access
to library amt, the user is only responsible for providing C++ code for specifying the
model (10).

As an illustration, a working implementation of the model in Section 4.3.2 using library amt
is given in the code column of Table 1. The computations arriving at (15) are done in an auto-
matic manner as described in the comments column of Table 1. The library consist firstly of an
AD-type amtVar, which is used to store both the value and also the gradient (w.r.t. q) of every
quantity in the model that depends on q. The amtVar type is based on an implementation of
first-order forward mode AD, which is sparse in the sense that it only stores the nonzero ele-
ments of each given gradient. This practice (as opposed to the celebrated backward mode AD) is
informed by the fact that the rows of J𝓁 are typically very sparse (each parameter/latent variable
plays only a limited number of “roles”) for hierarchical models. In Table 1, lines 1, 2, and 4 illus-
trates the how the amtVar type is used to maintain the gradient of 𝜆, z and 𝜎 = exp(−𝜆∕2) with
respect to q.

Secondly, theamt library consist of a collection of probability distributions with known LGCs,
illustrated here by the univariate Gaussian distributionnormal_ld() in Table 1, lines 3, 5, and 6.
Whenever such a function is called, the posterior log density kernel (10) is incremented by the
appropriate log𝜋𝓁 . Further, if the function is called with arguments and/or parameters ofamtVar
type, (11) is incremented by the appropriate G𝓁 , computed from the LGC of the distribution and
the gradients of the arguments and/or parameters.

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12705 by N

orw
egian Institute O

f Public H
ealt Invoice R

eceipt D
FO

, W
iley O

nline L
ibrary on [10/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://github.com/torekleppe/pdmphmc


14 KLEPPE

T A B L E 1 An implementation of the model in Section 4.3.2 using the amt library, were G1,G2 and G3 are
given in (15) and q = (𝜆, z)T .

Line number Code Comments
1 PARAMETER_SCALAR(lambda); Stores 𝜆 as an amtVar variable and

sets ∇q𝜆 = [1, 0].

2 PARAMETER_SCALAR(z); Stores z as an amtVar variable and
sets ∇qz = [0, 1].

3 model__ +=
normal_ld(lambda,0.0,3.0);

Computes log 𝜋1 = log (𝜆|0, 32)
and G1 = [∇q𝜆]T3−2[∇q𝜆

]
.

4 amtVar sigma =
exp(-0.5*lambda);

Computes 𝜎 = exp
(

− 𝜆

2

)

and sets

∇q𝜎 = − 1
2

exp
(

− 𝜆

2

)

∇q𝜆.

5 model__ +=
normal_ld(z,0.0,sigma);

Computes log 𝜋2 = log (z|0, 𝜎2),

J2 =
[[
∇qz

]T
,

[
∇q𝜎

]T
]T

and G2 = JT
2 diag(𝜎−2

, 2𝜎−2)J2.

6 model__ +=
normal_ld(1.0,z,1.0);

Computes log 𝜋3 = log (1|z, 1) and
G3 =

[
∇qz

]T [1]
[
∇qz

]
.

The methodology for computing log-densities
{

log𝜋𝓁
}

𝓁 , LGCs {V𝜋𝓁
}𝓁 , Jacobians {J𝓁}𝓁 and

the Cholesky-factorization of the resulting G(q) required to compute (1) are in turn differentiated
using the backward mode Stan AD (Carpenter et al., 2017) to obtain the gradient in (3). The library
supports both dense- and sparse (Davis, 2006) storage of G(q), where the latter is in particularly
relevant when the model exhibit some sort of Markov structure (see e.g., Rue & Held, 2005). Con-
sequently, the relative merits (in terms of computational complexity and storage requirements)
of dense- and sparse storage and associated Cholesky factorizations is highly model dependent,
and should be kept in mind when specifying the model.

From a computational performance perspective, it is still advisable to keep the parameter func-
tions {𝝍𝓁(q)}𝓁 as simple as possible to avoid lengthy forward mode AD Jacobian calculations.
This may be accomplished by defining new base distributions based on (6,7, with a = 0, B = I)
taking into account the reparameterization represented by 𝜳 = 𝝍𝓁 . As an example, consider a
model involving a normal linear model y ∼ N(X𝜷, 𝜎2I)with constant design matrix X and 𝜷 = qI
for some index set I. Then it would be more effective to use the base distribution y|(𝜷, 𝜎) with
𝝍(q) = (qI , 𝜎(q)), rather than base distribution y|(𝝁, 𝜎)with𝝍(q) = (XqI , 𝜎(q)). This follows from
that large savings may be realized by precomputing the factor XTX of the LGC of y|(𝜷, 𝜎). In the
y|(𝝁, 𝜎), 𝝍(q) = (XqI , 𝜎(q)) case, on the other hand, both calculating the nontrivial Jacobian of
𝜓 using the forward mode AD routines, and also calculating the matrix product (11) would have
to be repeated for each evaluation of G. Deriving and implementing LGCs for the most common
non-trivial “submodels” is an ongoing effort.

5 EXAMPLES

This section considers real data example problems chosen in order to illustrate several aspects
of the proposed methodology. In addition to the examples below, a further example, a mixed
effects model for the Salamander mating data of McCullagh and Nelder (1989, Chapter 14.5)
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KLEPPE 15

may be found in Appendix E. For this model, due to rather high CPU time usage, the proposed
methodology does not outperform the benchmark Euclidean metric sampler.

5.1 Implementation details

The examples are all implemented using the pdmphmc C++ library (development version avail-
able at https://github.com/torekleppe/pdmphmc) which provides both Riemann manifold (RM)-
and Euclidean metric (EM) numerical GRHMC (NGRHMC) processes, along with the library
for automatic computation of (11) and an interface to R to facilitate building and running
of models.

A snapshot of the version of pdmphmc used in this paper, along with R code, data sets etc
used in this paper is also available at https://github.com/torekleppe/AMTpaperCode.

If not otherwise mentioned, in all the cases below, RM NGRHMC processes, along with EM
NGRHMC processes as reference, are run with Tmax = 10,000 with the former half discarded as
burn in. The “sampling”-part of the trajectories are sampled at 1000 equidistant times. In all
cases, eight independent trajectories were used, and the reported figures are calculated across
these eight trajectories. The eight trajectories were run in parallel in two batches of four tra-
jectories on a 2020 macbook pro. The reported CPU times are the sum across trajectories of
the CPU times required for generating the “sampling”-parts of the trajectories. The effective
sample sizes (ESS) and (modified) Gelman-Rubin R̂-statistics (Gelman et al., 2014) are calcu-
lated using the rstan::monitor()-function (Stan Development Team, 2017). Note that the
reported results involve more trajectories than one would use in a typical application of the
methodology, in order to reliably compare ESSes and time-weighted ESSes across sampling meth-
ods. For example, for a typical application one would rather use say four trajectories computed in
parallel (resulting in wall-clock time being 1∕8 of reported CPUtimes) to obtain roughly half the
reported ESSes.

As a further benchmark, the examples were also implemented and sampled using Stan
through the R interface rstan (version 2.26.23 with StanHeaders version 2.26.28) on the same
computer. In all cases, eight chains of 1000 transitions (post warmup) and otherwise default
settings were used for Stan.

5.2 Zero-inflated Poisson mixed regression

The first model considered is a mixed effect regression model with zero-inflated Poisson count
responses. Specifically, for a response yi the response distribution is given by

P(yi = 0|𝜂i, gi) =
exp(gi) + exp(− exp(𝜂i))

1 + exp(gi)
, (17)

P(yi = x|𝜂i, gi) =
exp(x𝜂i − exp(𝜂i))
(1 + exp(gi))x!

, x = 1, 2,… (18)

which may be interpreted as mixture of a point-mass in yi = 0 and a Poisson distribution with
mean exp(𝜂i), were the mixture weight of the yi = 0 point mass is exp(gi)(1 + exp(gi))−1. Con-
sequently, E(yi|𝜂i, gi) = exp(𝜂i)(1 + exp(gi))−1

. The Fisher information of (17,18) with respect to
(𝜂i, gi) has closed (but complicated) form and is given in Appendix C.1.
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16 KLEPPE

The data set considered is the Salamander data set originally discussed by Price et al. (2016)
which is included in the R-package glmmTMB (see Brooks et al., 2017) and consist of n = 644
observations. The “mean” linear predictor 𝜼 involves a total of seven fixed effects (including an
intercept term, with corresponding parameter 𝜷

𝜂
∈ R7) and a total of 23 random effects b ∈ R23

with common variance parameter 𝜎2. The “zero inflation” linear predictor g consist of the same
seven fixed effects (with corresponding parameter 𝜷g ∈ R7). Due to a complicated sparsity struc-
ture in G(q), and the moderate dimension of q = (log(𝜎2),b, 𝜷

𝜂
, 𝜷g), dense storage of G(q) was

used as it resulted in slightly better performance. Further details are provided in Appendix C.1.
Table 2 provides results for the RM, EM, and Stan samplers. The R̂-statistics indicated that all

samplers exhibits satisfactory mixing. It is seen that RM sampler is substantially slower than EM
in terms of simulating the same (process time) amount of trajectory, owing to that each evalua-
tion of Hamilton’s equations is substantially more costly than for the EM counterpart. Further,
Stan uses an order of magnitude less time than EM. The ESS of 𝜎 along with the worst case ESSes
across 𝜷

𝜂
, 𝜷g, and b are similar for RM and EM except for a much poorer ESS for 𝜷g for the EM

sampler. This shortfall is likely to be related to the non-linear interaction between 𝜷g and the
remaining sampled quantities. The RM sampler, on the other hand, exhibit no such inefficien-
cies indicating that the proposed metric tensor is able to reflect these interactions. Even if Stan
has relatively moderate raw ESSs for 𝜷

𝜂
, 𝜷g and b, the very small CPU time of Stan result in the

smallest time-weighted ESS for all parameters/latent variables for this model.

5.3 Random walk stochastic volatility with leverage effect

Next, a random walk stochastic volatility (SV) model with leverage effect (see e.g., Yu, 2005) is
considered. The latent log-volatility z = (z0,…, zT) evolves according to a Gaussian random walk

zt|zt−1, 𝜎 ∼ N(zt−1, 𝜎
2), t = 1,…,T. (19)

T A B L E 2 Results for the zero-inflated Poisson mixed regression for Salamander count data.

𝝈 𝜷𝜼 𝜷g b

CPU time post. post. ESS min min min

(s) max R̂ mean SD ESS ESS ESS

RM 7178 1.002 1.37 0.21 5811 5894 10,537 5557

[0.8] [0.8] [1.5] [0.8]

EM 1034 1.002 1.37 0.22 7740 4367 514 2545

[7.5] [4.2] [0.5] [2.5]

Stan 65 1.008 1.38 0.22 5522 1095 985 1166

[85] [17] [15] [17]

Notes: CPU time is the total computing time spent sampling (post warmup) by eight independent trajectories. max R̂ is the
maximum R̂-statistic of over all quantities that are sampled. The table provides the posterior mean and SD, and ESS of the
random effects variance parameter 𝜎, in addition to the worst-case ESS and CPU time-weighted ESS (measured ESS per second
CPU time) in []-brackets.
Abbreviations: EM, Euclidean metric; ESS, effective sample sizes; RM, Riemann manifold.
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KLEPPE 17

Further, the log-return observations y = (y1,…, yT) are modeled as

yt|zt, zt−1, 𝜌, 𝜎 ∼ N
(

𝜌 exp
[zt−1

2

]zt − zt−1

𝜎

, exp(zt−1)(1 − 𝜌
2)
)

, t = 1,…,T. (20)

Finally, the priors 𝜌 ∼ Uniform(−1, 1) and 𝜎
2 ∼ 0.1∕𝜒2

10 completes the model. The dataset con-
sisted of T = 2515 log-return×100 observations of the S&P500 index spanning October 1, 1999 to
September 30, 2009 (previously used by Grothe et al., 2019). Note that scale/covariance of condi-
tional posterior z|y, 𝜌, 𝜎 depends nonlinearly on both 𝜌 and 𝜎, that is, the posterior will be “funnel
shaped along two separate dimensions”. Consequently, posterior sampling may be troublesome
for many MCMC methods, and the model may be considered a rather challenging one.

For the RM variant of the sampler, the LGCs of z|𝜎 consistent with (19) and yt|zt, zt−1, 𝜌, 𝜎, t =
1,…,T consistent with (20) were used. In addition, otherwise identical calculations were done
based on the LGC V[x|(𝜇, 𝜎)] for the x ∼ N(𝜇, 𝜎2)-distribution for the observation Equation (20)
(and hence parameter functions 𝝍 = (𝜇, 𝜎) = (𝜌 exp

[
zt−1

2

]
zt−zt−1

𝜎

,

√
exp(zt−1)(1 − 𝜌

2))). The latter
approach, where nontrivial calculations are done using the general-purpose forward mode AD
system, leads to an increase in computing time by around 30% (but otherwise identical results,
hence not reported). Sparse storage with variable ordering q = (z,−1 + 2logit(𝜌), log(𝜎))was used,
so that the sparsity structure has an arrowhead shape, which lends itself well to the spare Cholesky
factorization. For the EM and Stan implementations, the sampled quantity corresponding to the
latent variable was z0∶T = (z0, (z1 − z0)𝜎−1

,…, (zT − zT−1)𝜎−1) (i.e., so that z1∶T ∼ N(0, IT) a priori)
rather than z in order to reduce “funnel” effects determined by 𝜎.

Table 3 provides effective sample sizes and other diagnostic information for the EM and RM
samplers, whereas Stan failed to produce meaningful results, issued a large number of warning
messages, and is hence not reported on. From Table 3, it is seen that computing times are roughly
equal, whereas the EM sampler fails to properly explore the posterior distribution of 𝜌. This failure
is likely to be related to that the z-parameterization does not take into account how the scale of
z|y, 𝜎, 𝜌 varies with 𝜌. No such deficiencies are seen for the RM sampler, as the dependence of the
scale of z|y, 𝜎, 𝜌 on the parameters (𝜎, 𝜌) is automatically accounted for in the metric tensor.

5.4 CEV model with additive noise

This section considers a daily time-discretization of constant elasticity of volatility model
(Chan et al., 1992) with additive Gaussian noise for interest rate data previously considered by

T A B L E 3 Effective sample sizes and diagnostics for the stochastic volatility model with leverage effect
(19,20) applied to a data set of S&P500 log-returns.

CPU time 𝝆 𝝈 z0 zT

(s) max R̂ ESS ESS ESS ESS
RM 9397 1.006 1762 1864 11,240 13,306

[0.19] [0.20] [1.20] [1.42]

EM 9238 1.101 60 1767 8809 4143

[0.01] [0.19] [0.95] [0.45]

Abbreviations: EM, Euclidean metric; ESS, effective sample sizes; RM, Riemann manifold.
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18 KLEPPE

Kleppe (2018). The model is formulated in continuous time with unit of continuous time being
1 year, and time-discretized to (business day) daily observations with time steps Δ = 1∕252. The
model may be summarized by the time-discretized nonlinear latent “true” short-term interest
rate

xt = xt−1 + Δ(𝛼 − 𝛽xt−1) + 𝜎x
√
Δx𝛾t−1𝜀t, 𝜀t ∼ iid N(0, 1), t = 2,…,T, (21)

x1 ∼ N(0.09569, 0.012), (22)

and the daily observations contaminated with additive Gaussian noise:

yt = xt + 𝜎y𝜂t, 𝜂t ∼ iid N(0, 1), t = 1,…,T. (23)

The dataset considered was T = 3082 observations of the 7-day Eurodollar deposit spot rates from
January 2, 1983, to February 25, 1995 previously used by Aït-Sahalia (1996) and Kleppe (2018).
Further details, including priors may be found in Appendix C.2, and were chosen to be identical
to the setup of Kleppe (2018) to allow for comparison with modified Cholesky Riemann manifold
HMC.

The proposed methodology was implemented using univariate Gaussian LGCs with the stan-
dard parameterization, that is, V[x|(𝜇, 𝜎)] for the x ∼ N(𝜇, 𝜎2)-distribution, (and not a bespoke
LGC for say xt|xt−1, 𝛼, 𝛽, 𝜎x, 𝛾 in the case of (21)) thus relying on the general purpose forward mode
AD system to handle the nonlinear relations between the sampled quantities. Using the variable
ordering q = (z, 𝛼, 𝛽, log(𝜎2

x ), 𝛾, log(𝜎2
y )), the metric tensor G(q) again has an arrow head sparsity

structure which lend itself well to the sparse Cholesky factorization used.
Only results for RM based sampler are presented in Table 4, as direct EM-based or Stan-based

sampling methods for this model failed to be even remotely competitive/produce reliable results,
and dynamic rescaling methods for EM/Stan are not directly applicable due to the nonlinear
nature of (21). Table 4 indicate that the proposed methodology produces reliable output with
ESSes being quite even across the reported dimensions.

As a benchmark for sampling efficiency, Kleppe (2018) reports sampling efficiencies about
an order of magnitude slower than those reported in between Table 4 (0.062 and 0.035 ESS
per second) for a Riemann manifold HMC method (based on reversible symplectic integrator).
Disentangling the effect of the here proposed metric tensor versus the modified Cholesky applied

T A B L E 4 Posterior distributions and diagnostics information CEV model with additive noise model (21–23).

Post. Post. ESS

mean SD
𝛼 0.010 0.009 6163 [0.31]

𝛽 0.171 0.174 6186 [0.31]

𝜎x 0.404 0.061 7695 [0.39]

𝛾 1.180 0.060 6914 [0.35]

𝜎y 0.00054 2.3 × 10−5 3698 [0.19]

x1 0.095 0.0005 6419 [0.32]

xT 0.061 0.0005 6273 [0.31]

Note: Total CPU time for the eight trajectories was 19,933 s, and max R̂ for the stored states (parameters and x1, xT ) was 1.001977.
Abbreviation: ESS, effective sample sizes.
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KLEPPE 19

to Hessian approach of Kleppe (2018), from the effect of different ODE integration strategies is
impossible based on this information. Still, the combination of Riemann manifold NGRHMC pro-
cesses and the here proposed metric tensor is highly competitive while at the same time requiring
minimal expertise and coding efforts from the user.

5.5 The Stock and Watson (2007) model

The final smaller example model considered is the Stock and Watson (2007) quarterly inflation
rate model. The model may be summarized by a pair of latent stochastic volatility processes with
first-order Gaussian random walk structure

zt|zt−1, 𝜎 ∼ N(zt−1, 𝜎
2), t = 2,…,T − 1, (24)

xt|xt−1, 𝜎 ∼ N(xt−1, 𝜎
2), t = 2,…,T. (25)

Further, a latent stochastic trend process is modeled as a first order random walk with stochastic
volatility

𝜏t|𝜏t−1, zt−1 ∼ N(𝜏t−1, exp(zt−1)), t = 2,…,T. (26)

Finally, the observed time series of inflation rates y is modeled as

yt|𝜏t, xt ∼ N(𝜏t, exp(xt)), t = 1,…,T. (27)

The model is completed by the prior 𝜎−2 ∼ Gamma(5.0,0.5), and is applied to the same dataset as
in Kleppe (2019), namely quarterly log-returns ×100 of the US CPI between 1955Q1 and 2018Q1.
It is seen that the model involves two layers (z and (x, 𝝉)) of nonlinearly coupled latent variables,
which poses substantial challenges for most MCMC methods.

The model was implemented for the RM sampler with q = (z, x, 𝝉 , log(𝜎−2)) to obtain a
tri-diagonal sparsity structure suitable for the sparse Cholesky factorization employed. As bench-
marks, EM- and Stan samplers based on two modes of Dynamic Rescaling denoted DR0 and
DR1 (see Kleppe, 2019, Sec. 6 for details) were considered. Direct EM or Stan sampling (i.e., with
q = (z, x, 𝝉 , log(𝜎−2))) was not competitive.

Diagnostic results are provided in Table 5. It is seen that the proposed methodology produces
reliable results with minimal requirements of the user. Implemented both with EM and Stan, the
DR1 method is more efficient than RM, but it is worth noticing that the implementation of the
DR1 methodology in this case requires substantial user input- and expertise (essentially involving
integrating out the complete 𝝉|z, x, y, 𝜎 using bespoke tri-diagonal Cholesky algorithms). Further,
when implemented in Stan, DR0 has performance roughly on par with RM, but again the DR0 is
also here highly nontrivial to implement.

6 A WISHART TRANSITION RANDOM WALK
STOCHASTIC VOLATILITY MODEL

This section considers a restricted case of the multivariate stochastic volatility model of Philipov
and Glickman (2006), where the precision matrix of the log-return vectors follows a random walk
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20 KLEPPE

T A B L E 5 Effective sample sizes and diagnostics for the Stock and Watson (2007) model (24–27).

CPU 𝝈 zt xt 𝝉t

time Post. Post. ESS min min min

(s) max R̂ mean SD ESS ESS ESS
EM DR0 876 1.020 0.31 0.05 1825 782 189 916

[2.1] [0.9] [0.2] [1.0]

EM DR1 214 1.004 0.31 0.05 3950 2885 2043 5317

[18.5] [13.5] [9.6] [24.9]

Stan DR0 86 1.061 0.31 0.05 842 186 143 387

[9.8] [2.2] [1.7] [4.5]

Stan DR1 30 1.038 0.32 0.05 1267 199 624 851

[42.1] [6.6] [20.7] [28.3]

RM 658 1.007 0.31 0.05 1917 977 2054 3273

[2.9] [1.5] [3.1] [5.0]

Note: Two variants of Dynamic Rescaling (DR0 and DR1) was applied for the EM sampler (see Kleppe, 2019, Sec. 6 for details).
Abbreviation: ESS, effective sample sizes.

model with Wishart distributed transitions. Denote byp(V, 𝜈) the Wishart distribution on p × p
SPD matrices the for 𝜈 > p − 1 degrees of freedom and with SPD scale matrix V (so that E(P) = 𝜈V
when P ∼p(V, 𝜈)). Then the model considered here may be summarized by

Pt|Pt−1, 𝜈 ∼p(𝜈−1Pt−1, 𝜈), t = 2,…,T, (28)
yt|Pt ∼ N(0,P−1

t ), t = 1,…,T, (29)

where yt ∈ Rp
, t = 1,…,T, are log-return vectors of p assets. The model is finalized with the prior

𝜈 ∼ N(250.0, 20.02), with no special attention given to the constraint on 𝜈 as 𝜈 ≈ p − 1 is highly
unlikely under the posterior distribution considered here. The dataset (with p = 3 and T = 1095)
under consideration consist of daily observations of exchange rates of Australian Dollars (AUD),
Canadian Dollars (CAD) and Swiss Francs (CHF) against the US Dollar between January 2, 2008
and April 4, 2012. The data are a subset of the exrates data set from the R package stochvol
(Kastner, 2016).

6.1 LGCs of SPD matrix-variate distributions

The p × p SPD matrices Pt, t = 1,…,T, are represented in terms of of unrestricted vectors zt ∈
Rp(p+1)∕2 via the transformation

Pt = (zt) = L(zt)𝚲(zt)LT(zt),𝚲(zt) = diag(exp([zt]1),…, exp([zt]p)),

and where L(zt) is unit lower triangular with the below diagonal columns filled with [zt]L =
[zt]p+1∶p(p+1)∕2. See Appendix D for details. Hence internally, the sampled quantities are q =
(z1, z2,…, zT , 𝜈), but the details of the representation of SPD matrices is hidden from the user in
the model specification code.
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KLEPPE 21

Appendix D.2 provides the LGC V[yt|zt] consistent with yt|zt ∼ N(0, [(zt)]−1) needed to
implement (29). Appendix D.5 gives the distribution of zt|zt−1, 𝜈 so that(zt) ∼(𝜈−1(zt−1), 𝜈),
which is needed to implement the time dynamics of {zt}t consistent with (28). Two vari-
ants of the proposed methodology are considered for zt|zt−1, 𝜈 consistent with (28), corre-
sponding to two different factorizations in target representation (10). In the former, denoted
RM-J, 𝜋(zt|zt−1, 𝜈) is considered a factor in (10), and the LGC V[zt|zt−1, 𝜈] may be found in
Appendix D.5. In the second factorization, denoted RM-F, 𝜋(zt|zt−1, 𝜈) is further factorized as
𝜋([zt]1∶p|zt−1, 𝜈)𝜋([zt]L|[zt]1∶p, zt−1, 𝜈). Here [zt]i, i = 1,…, p under 𝜋([zt]1∶p|zt−1, 𝜈) are indepen-
dent ExpGamma-distributed (with LGC given in (9)), and 𝜋([zt]L|[zt]1∶p, zt−1, 𝜈) consist of a
sequence of independent multivariate Gaussian distributions with covariance matrices having
(different) -representations, whose LGCs are given in Appendix D.3. Note that {zt}t is Marko-
vian, which leads to an arrow-head structure of G(q) which lends itself well to efficient sparse
Cholesky factorization. Also for the EM and Stan benchmarks for this model were carried out
using q = (z1, z2,…, zT , 𝜈) as the sampled quantity.

6.2 Results

Diagnostic results, and posterior moments of 𝜈 are provided in Table 6. It is seen that the EM sam-
pler fails to properly explore the target distribution, whereas both RM samplers provide reliable
results. The Stan sampler uses roughly double the amount of CPU time, and produces only low
ESS for the parameter 𝜈, which all in all results in that the RM-based methods have uniformly the
best time weighted ESSs.

The difference in raw ESSs between the two RM samplers are rather small, whereas the RM-F
sampling is somewhat slower, leading to slightly slower time-weighted ESSs. Figure 2 presents
posterior quantiles of the marginal volatilities and correlations. It is seen that the model cap-
tures substantial time-variation in the correlations, which is missed in other multivariate SV
specifications.

T A B L E 6 Diagnostic results and posterior moments of 𝜈 under the Wishart transition RWSV model (28,29)
applied to exchange rate data (AUS, CAD, CHF against USD).

CPU 𝝂 zt , t = 1,…,T

time Post. Post. ESS Min Median Max

(s) max R̂ mean SD ESS ESS ESS
RM-J 24,020 1.0036 256.8 16.78 3880 2602 12,738 31,225

[0.162] [0.108] [0.530] [1.300]

RM-F 27,451 1.0032 256.9 16.87 3874 2780 12,694 31225

[0.141] [0.101] [0.462] [1.137]

EM 21,635 1.1618 258.7 17.01 25 1727 5410 7093

[0.001] [0.080] [0.250] [0.328]

Stan 58,293 1.018 254.7 17.21 264 2706 5579 10,898

[0.005] [0.046] [0.096] [0.187]

Note: Figures in square brackets are time-weighted ESS (ESS/s computing time).
Abbreviations: EM, Euclidean metric; ESS, effective sample sizes; RM, Riemann manifold.
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F I G U R E 2 Marginal volatilities and correlations associated with the with the Wishart transition RWSV
model model (28,29) for a single RM-GRHMC trajectory. In the upper panels, the absolute returns |yi,t| are given

in grey, and the lines indicate 0.1,0.5,0.9-quantiles of the volatility
√

[P−1
t ]i,i (i.e., measured in standard

deviations). In the lower panel, the lines indicate the 0.1,0.5,0.9-quantiles of the correlations implied by the
posterior distributions of each Pt .

The MCMC method proposed by Philipov and Glickman (2006) was a Gibbs sampler involving
each updating each Pt using a random walk Metropolis steps, and which would be both time
consuming and require substantial experience to develop. Though a direct comparison of the
(probably highly autocorrelated) output from a Gibbs sampler against the output of the proposed
methodology is not done here, it is at least clear that the proposed methodology can produce
highly reliable results for large and complicated models with minimal user intervention. That is,
the specification of the model requires only a handful of C++ lines corresponding to (28,29) and
the prior, the rest is handled by software.

7 DISCUSSION

Log-gradient covariances and a new metric tensor G(q) built from log-gradient covariances was
proposed. Through numerical experiment and illustrations, it is shown that the metric tensor in
conjunction with numerical generalized randomized HMC processes allows pushing the bound-
ary for which hierarchical models can be fitted efficiently. The methodology is easy to use as the
sole responsibility of the user is to specify the sequence of conditional distribution making up the
model without much regard for imposing special structures in the model. The nuts and bolts of
the proposed methodology, including derivative calculations and sparse matrix numerical linear
algebra may be completely hidden from the user.

Deriving LGCs for further models and implementing these in the library holds scope for
further work. Common structures such as linear regression models, logistic regression models,
in addition to Gaussian spatial models are such examples. Further, adding functionality that
hides the requirement to transform any variable to take values on the complete real line will
also be developed. In addition, this paper only leverages a subset of what is possible within the
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NGRHMC framework (Kleppe, 2022). Deriving more adaptive event rates, and corresponding
methods for momentum updates, in the context Riemann manifold NGRHMC is an avenue that
will be pursued.

ACKNOWLEDGMENTS
The author wishes to express warm thanks to the Editor, Professor Peltonen, an anonymous
Associate Editor, two anonymous reviewers, Nawaf Bou-Rabee, Roman Liesenfeld and Hans J.
Skaug for comments and suggestions for improvements on earlier versions of this paper. Kleppe
acknowledges support from Finansmarkedsfondet, grant #337601.

ORCID
Tore Selland Kleppe https://orcid.org/0000-0001-8469-908X

REFERENCES
Aït-Sahalia, Y. (1996). Testing continuous-time models of the spot interest rate. Review of Financial Studies, 9(2),

385–426.
Amari, S.-I. (1998). Natural gradient works efficiently in learning. Neural Computation, 10(2), 251–276.
Betancourt, M. (2013). A general metric for Riemannian manifold Hamiltonian Monte Carlo. In F. Nielsen & F. Bar-

baresco (Eds.), Geometric science of information Lecture Notes in Computer Science (Vol. 8085, pp. 327–334).
Springer.

Bornn, L., & Cornebise, J. (2011). Comment on “Riemann manifold Langevin and Hamiltonian Monte Carlo
methods”. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(2), 123–214.

Bou-Rabee, N., & Sanz-Serna, J. M. (2017). Randomized Hamiltonian Monte Carlo. Annals of Applied Probability,
27(4), 2159–2194.

Bou-Rabee, N., & Sanz-Serna, J. M. (2018). Geometric integrators and the Hamiltonian Monte Carlo method. Acta
Numerica, 27, 113–206.

Brooks, M. E., Kristensen, K., van Benthem, K. J., Magnusson, A., Berg, C. W., Nielsen, A., Skaug, H. J., achler,
M. M., & Bolker, B. M. (2017). glmmTMB balances speed and flexibility among packages for zero-inflated
generalized linear mixed modeling. The R Journal, 9(2), 378–400.

Carpenter, B., Gelman, A., Hoffman, M., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M., Guo, J., Li, P., &
Riddell, A. (2017). Stan: A probabilistic programming language. Journal of Statistical Software, 76(1), 1–32.

Chan, K. C., Karolyi, G. A., Longstaff, F. A., & Sanders, A. B. (1992). An empirical comparison of alternative models
of the short-term interest rate. The Journal of Finance, 47(3), 1209–1227.

Davis, M. H. A. (1993). Markov models and optimization. Chapman & Hall.
Davis, T. A. (2006). Direct methods for sparse linear systems Fundamentals of algorithms (Vol. 2). SIAM.
Fearnhead, P., Bierkens, J., Pollock, M., & Roberts, G. O. (2018). Piecewise deterministic Markov processes for

continuous-time Monte Carlo. Statistical Science, 33(3), 386–412.
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. (2014). Bayesian data analysis (3rd

ed.). CRC Press.
Girolami, M., & Calderhead, B. (2011). Riemann manifold Langevin and Hamiltonian Monte Carlo methods.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(2), 123–214.
Griewank, A. (2000). Evaluating derivatives: Principles and techniques of algorithmic differentiation. SIAM.
Grothe, O., Kleppe, T. S., & Liesenfeld, R. (2019). The gibbs sampler with particle efficient importance sampling

for state-space models. Econometric Reviews, 38(10), 1152–1175.
Hairer, E., Nørsett, S. P., & Wanner, G. (1993). Solving ordinary differential equations I (2nd Revised. Ed.) Nonstiff

problems. Springer-Verlag.
Hartmann, M., Girolami, M., & Klami, A. (2022). Lagrangian manifold Monte Carlo on Monge patches.

arXiv:2202.00755.
Kastner, G. (2016). Dealing with stochastic volatility in time series using the r package stochvol. Journal of

Statistical Software, 69(5), 1–30.

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12705 by N

orw
egian Institute O

f Public H
ealt Invoice R

eceipt D
FO

, W
iley O

nline L
ibrary on [10/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0001-8469-908X
https://orcid.org/0000-0001-8469-908X


24 KLEPPE

Kleppe, T. S. (2018). Modified Cholesky Riemann manifold Hamiltonian Monte Carlo: Exploiting sparsity for fast
sampling of high-dimensional targets. Statistics and Computing, 28(4), 795–817.

Kleppe, T. S. (2019). Dynamically rescaled Hamiltonian Monte Carlo for Bayesian hierarchical models. Journal of
Computational and Graphical Statistics, 28(3), 493–507.

Kleppe, T. S. (2022). Connecting the dots: Numerical randomized Hamiltonian Monte Carlo with state-dependent
event rates. Journal of Computational and Graphical Statistics, 31(4), 1238–1253.

Lan, S., Stathopoulos, V., Shahbaba, B., & Girolami, M. (2015). Markov chain Monte Carlo from Lagrangian
dynamics. Journal of Computational and Graphical Statistics, 24(2), 357–378.

Leimkuhler, B., & Reich, S. (2004). Simulating Hamiltonian dynamics. Cambridge University Press.
Martin, G. M., Frazier, D. T., & Robert, C. P. (2022). Computing Bayes: From then ‘til now’. arXiv:2208.00646.
McCullagh, P., & Nelder, J. A. (1989). Generalized linear models (2nd ed.). Chapman & Hall.
Neal, R. M. (2010). MCMC using Hamiltonian dynamics. In S. Brooks, A. Gelman, G. Jones, & X.-L. Meng (Eds.),

Handbook of Markov chain Monte Carlo (pp. 113–162). CRC Press.
Nocedal, J., & Wright, S. J. (1999). Numerical optimization. Springer.
Pawitan, Y. (2017). In all likelihood: Statistical modelling and inference using likelihood. Oxford University Press.
Philipov, A., & Glickman, M. E. (2006). Multivariate stochastic volatility via Wishart processes. Journal of Business

& Economic Statistics, 24(3), 313–328.
Price, S. J., Muncy, B. L., Bonner, S. J., Drayer, A. N., & Barton, C. D. (2016). Effects of mountaintop removal mining

and valley filling on the occupancy and abundance of stream salamanders. Journal of Applied Ecology, 53(2),
459–468.

Rue, H., & Held, L. (2005). Gaussian Markov random fields: Theory and application. Chapman and Hall-CRC Press.
Rue, H., Martino, S., & Chopin, N. (2009). Approximate Bayesian inference for latent Gaussian models by

using integrated nested Laplace approximations. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 71(2), 319–392.

Sanz-Serna, J., & Calvo, M. (1994). Numerical Hamiltonian problems. Dover Publications Inc.
Stan Development Team. (2017). RStan: the R interface to Stan. R package version 2.17.4.
Stock, J. H., & Watson, M. W. (2007). Why has U.S. inflation become harder to forecast? Journal of Money, Credit

and Banking, 39(s1), 3–33.
Vanetti, P., Bouchard-Côté, A., Deligiannidis, G., & Doucet, A. (2018). Piecewise-deterministic Markov chain

Monte Carlo. arXiv:1707.05296v2.
Yu, J. (2005). On leverage in a stochastic volatility model. Journal of Econometrics, 127, 165–178.
Zhang, Y., & Sutton, C. (2014). Semi-separable Hamiltonian Monte Carlo for inference in Bayesian hierarchical

models. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, & K. Weinberger (Eds.), Advances in neural
information processing systems 27 (pp. 10–18). Curran Associates, Inc.

SUPPORTING INFORMATION
Additional supporting information can be found online in the Supporting Information section at
the end of this article.

How to cite this article: Kleppe, T. S. (2024). Log-density gradient covariance and
automatic metric tensors for Riemann manifold Monte Carlo methods. Scandinavian
Journal of Statistics, 1–24. https://doi.org/10.1111/sjos.12705

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12705 by N

orw
egian Institute O

f Public H
ealt Invoice R

eceipt D
FO

, W
iley O

nline L
ibrary on [10/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1111/sjos.12705
https://doi.org/10.1111/sjos.12705

	Log-density gradient covariance and automatic metric tensors for Riemann manifold Monte Carlo methods 
	1 INTRODUCTION
	2 BACKGROUND
	2.1 Metric tensors and Riemann manifold Hamiltonian dynamics
	2.2 Riemann manifold HMC
	2.3 Riemann manifold Numerical Generalized Randomized HMC processes
	2.4 Metric tensors in the literature

	3 LOG-DENSITY GRADIENT COVARIANCE
	3.1 Log-density gradient covariance
	3.2 Basic properties of the log-density gradient and the LGC
	3.3 A transformation result
	3.4 Examples of LGCs

	4 METRIC TENSORS BASED ON LGC
	4.1 Model formulation and notation
	4.2 Proposed metric tensor
	4.3 Examples
	4.3.1 Nonlinear parameter transformations
	4.3.2 A simple hierarchical model
	4.3.3 Intrinsic Gaussian

	4.4 Automatic computation of [[math]]

	5 EXAMPLES
	5.1 Implementation details
	5.2 Zero-inflated Poisson mixed regression
	5.3 Random walk stochastic volatility with leverage effect
	5.4 CEV model with additive noise
	5.5 The Stock and Watson (2007) model

	6 A WISHART TRANSITION RANDOM WALK STOCHASTIC VOLATILITY MODEL
	6.1 LGCs of SPD matrix-variate distributions
	6.2 Results

	7 DISCUSSION

	ACKNOWLEDGMENTS
	ORCID
	REFERENCES
	Supporting Information

