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Abstract

Prostate cancer, a significant global health challenge, necessitates innovative diagnostic
solutions. Despite the invaluable role of Magnetic Resonance Imaging (MRI), challenges
persist in analysis due to time-intensive tasks and inter-reader variability. Accurate
prostate segmentation is critical for diagnosis, influencing clinical decisions and further
testing choices.

Traditionally, Convolutional Neural Networks (CNNs) have been employed for automated
segmentation tasks, but the manual assessment of segmentation quality remains a
crucial bottleneck. This research shifts the paradigm by exploring statistical approaches,
specifically focusing on Conformal Prediction (CP), to evaluate the quality of prostate
segmentation. Clinically relevant metrics, including Dice Score, relative volume difference,
efficiency, and validity, are employed for quantitative assessment and comparison. The
conformal classifier demonstrates robustness across diverse datasets. Nearest-Neighbor
interpolation ensures image resizing uniformity, and patient-centric data splitting with
Region of Interest (ROI) extraction enhances the model’s focus.

The work we present is an innovative approach in prostate cancer segmentation using
conformal prediction. It focuses on quantifying uncertainties in segmentation and
evaluates segmentation quality through the Dice Score and RVD metrics. The study
stands out for its high validity and efficiency, achieving percentages ranging from 94.24%
to 99.34% on external datasets. This approach significantly enhances the diagnostic
accuracy in prostate cancer detection via MRI analysis, showcasing the potential of
integrating conformal classification in medical imaging to improve precision in clinical
diagnostics.

This research advances prostate cancer diagnosis methodologies, emphasizing the novel
application of conformal prediction for quantifying the segmentation obtained by other
deep learning models. The findings underscore the importance of precise segmentation
quality assessment, emphasizing the significance of specific metrics in evaluating the
proposed statistical approach for quality control in prostate cancer diagnosis.
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Chapter 1

Introduction

1.1 Motivation

Prostate cancer, ranking as the fifth leading cause of death globally, continues to present
formidable challenges in its diagnosis and subsequent treatment [1]. Magnetic Resonance
Imaging (MRI) has proven to be a valuable asset in aiding the identification and evaluation
of prostate cancer [2]. However, the analysis of MRI data for prostate cancer diagnosis is
complex, involving significant time investment and facing challenges related to inter-reader
variability among radiologists [3].

Accurate segmentation of the prostate is pivotal in the diagnosis of prostate cancer,
influencing critical clinical measures and subsequent decisions for additional testing and
treatment. While Convolutional Neural Networks (CNNs) have been widely employed
for automated prostate segmentation, the manual assessment of segmentation quality
remains a bottleneck, introducing subjectivity and potential inconsistencies [4].

Motivated by the vital need for a standardized and efficient approach, this study delves
into the exploration and testing of conformal prediction techniques for quantifying the
uncertainties of prostate segmentations done by other deep learning models [5]. Specifi-
cally, we apply class-conditional conformal classification to the predicted probabilities
generated by previous trained deep learning models. Conformal prediction (CP) is a
statistical framework that provides uncertainty estimation with strong mathematical
guarantees [6]. This offers a promising avenue for enhancing the reliability of prostate
cancer segmentation and in turn, risk factors related to it that influence the diagnosis of
prostate cancer.
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2 Chapter 1 Introduction

In this work, the primary goals include assessing the performance of conformal classifica-
tion for prostate segmentation by using different confidence thresholds with internal and
external cohorts.

1.2 Objectives

• Use predicted probabilities from deep learning models to quantify the uncertainty
of the segmentation with a technique that offers rigorous statistical guarantees.

• Use the conformal classifier to acquire and calculate various segmentation metrics
to be used in statistical analysis of the models’ performance and give an accurate
representation of their reliability.

• Test with different alpha thresholds (certainty) to explore their effect in the uncer-
tainty quantification.

• To test the effect of the uncertainty quantification technique with internal and
external cohorts.

1.3 Related work

In the field of prostate cancer diagnosis using MRI and deep learning (DL), automated
segmentation techniques have become increasingly sophisticated. On the model Fernandez-
Quilez et al. [7] developed, they demonstrated a significance decrease in DSC when
tested on datasets from other institutions. Our study is closely aligned with the research
conducted in this article, as we utilize datasets they acquired, we aim to help improve on
the model by providing insight where we hope the quantification of uncertainty obtained
will be of use. This direct connection underscores the relevance of their findings to our
work in prostate cancer segmentation using MRI and deep learning.

Another emerging area in medical imaging is the application of conformal prediction (CP)
techniques. Unlike traditional methods, conformal prediction offers statistical guarantees
of accuracy, which are indispensable in clinical settings. The incorporation of conformal
prediction to assess uncertainties in AI models has been explored notably by Olsson et
al. [6]. To evaluate the CP framework they assessed efficiency, defined as the fraction of
all predictions resulting in a correct single-label prediction, as well as validity or error
rate. Their research underscores the potential of conformal prediction in enhancing the
reliability of AI-assisted pathology, thus offering crucial insights for our study.
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The quantification of uncertainty in deep learning predictions has become a focal point
in enhancing clinical decision-making processes. Traditional techniques like Monte Carlo
(MC) dropout and model ensembles have been employed by Gal and Gahramani [8], and
Lakshminarayanan et al [9], respectively. These studies offers approximate confidence
levels, however, they fall short when compared to the exact confidence levels provided by
conformal prediction methods, which is crucial in high-precision medical applications. For
quantification, Karimi and Samavi [5], proposes a probabilistic approach for quantifying
predictive uncertainty in deep neural networks. They do this by utilizing the probabilistic
existence of true labels to provide certified uncertainty bounds.

The aim of these research endeavors, including ours, is to refine the diagnostic processes
for prostate cancer. Our work differs from the aforementioned works in that we use a
class-conditional conformal classification technique, as well as using DSC and RVD to
evaluate our models. These are noteworthy for their ability to assess the uncertainty
of segmentation predictions. This provides a more robust framework for evaluating
the reliability of automated segmentation models, making them increasingly relevant in
medical diagnostics.





Chapter 2

Background

2.1 Clinical

2.1.1 Prostate anatomy

The prostate is an integral component of the male reproductive system. It is positioned
beneath the bladder, characterized by a relatively modest size in comparison to other
organs [10]. As depicted in 2.1, this anatomical structure is categorized into four distinct
zones: the transition zone, central zone, anterior fibromuscular stroma, and peripheral
zone. Additionally, the prostate is partitioned into three segments from top to bottom,
identified as the base, mid, and apex.

Within the broader context of global health, prostate cancer (PCa) emerged as the fifth
most frequently diagnosed cancer [1]. Its malignancy is on par with lung cancer among
males. Significantly, 70-75% of PCa cases originate in the peripheral zone, with an
additional 25% found in the transition zone, designating these regions as particularly
prone to cancer development. The remaining two prostate zones rarely serve as primary
sites for cancer initiation [10].
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6 Chapter 2 Background

Figure 2.1: Figure of the prostate anatomy [11]. The colors yellow, green, blue, and
purple represents the transition, central, anterior fibromuscular stroma, and peripheral

zone, respectively. Starting from the top is the base, mid, and apex partitions.

Volume and segmentation

The volume of the prostate is a vital parameter in the diagnosis and management of
prostate conditions, particularly PCa [12]. The Prostate-Specific Antigen Density (PSAd)
is a crucial diagnostic metric, calculated as the Prostate-Specific Antigen (PSA) level
divided by the prostate volume [7]. A higher PSAd can indicate a higher likelihood of
prostate cancer. This makes accurate volume measurement essential, so that patients
can refrain from undergoing unnecessary biopsies and decrease the false positives in PCa
detection.

Accurate segmentation of the prostate in medical imaging is critical for determining its
volume [13]. Precise segmentation allows for better assessment of prostate size and shape,
which is essential for calculating PSAd. Moreover, understanding the zonal anatomy of
the prostate through segmentation helps in localizing and assessing the extent of cancer
in patients. Accurate prostate volume measurement and segmentation are also essential
for guided biopsies and targeted therapies [14]. Guided biopsies rely heavily on precise
prostate segmentation to accurately identify and sample the regions of interest. Similarly,
in radiation therapy and other treatments, accurate segmentation ensures that therapy
is accurately directed at cancerous tissues while minimizing impact on healthy areas [15].
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These applications further underscore the importance of precise and reliable segmentation
in both diagnostic and therapeutic contexts in prostate cancer management. Therefore,
segmentation accuracy directly impacts the reliability of prostate volume measurements
and, by extension, the effectiveness of PCa diagnostics.

Figure 2.2: Figure of glioma image segmentations in radiation therapy [16]. Here we
can observe the importance of accurate segmentations, so that healthy areas remain

unharmed.

2.1.2 Magnetic resonance imaging

Magnetic Resonance Imaging (MRI) serves as a non-invasive imaging technology that
exploits the interactions between strong magnetic fields and protons within the body [17].
Its optimal performance occurs in tissues characterized by high water or fat content, owing
to the abundant presence of hydrogen (protons) in water and fat molecules. The choice of
MRI sequence significantly influences the visual characteristics of the generated images.
A sequence encompasses various radio-frequency pulses and gradients applied during
the scanning process. Commonly utilized MRI sequences include T1-weighted (T1W),
T2-weighted (T2W), and diffusion-weighted imaging (DWI) [18]. These sequences play a
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crucial role in delineating different tissue characteristics and enhancing the diagnostic
capabilities of MRI.

T2-weighted (T2W) imaging in MRI is particularly advantageous for prostate segmenta-
tion due to its high resolution and clarity in depicting prostate anatomy [3, 18]. T2W
sequences provide excellent contrast between different tissue types within the prostate,
making it easier to differentiate the prostate gland from surrounding tissues. This clarity
is crucial for accurately delineating the prostate’s boundaries, which is essential for
precise volume measurement and effective segmentation. The superior image quality
in T2W MRI ensures more reliable and accurate identification of prostate zones and
potential lesions, enhancing the overall effectiveness of prostate cancer diagnosis and
treatment planning.

Figure 2.3: Example of a T2W MRI of the brain [19].
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2.2 Technical

2.2.1 Image processing techniques

Automatic prostate segmentation

In the area of medical imaging, deep learning (DL) models has provided a sophisticated
means of calculating predicted probabilities using a variety of algorithms [20]. These
probabilities serve as crucial indicators in the evaluation and diagnosis of PCa.

nnU-net

The datasets used in this study was acquired by DL models using nnU-Net, which
is an adaptive framework for medical image segmentation [21]. The architecture of
nnU-Net is dynamically configured based on the properties of the input dataset, including
decisions on using 2D, 3D, or a cascade of 2D and 3D networks. This adaptability
extends to aspects like patch size, batch size, and other network hyperparameters.
The nnU-Net framework automatically handles preprocessing steps such as resampling
and normalization, and employs data augmentation techniques to enhance the model’s
robustness against variations in imaging data [7].

The nnU-Net framework is designed to output probabilistic segmentation maps. Each
pixel (or voxel in 3D) in the output map represents the probability of that pixel belonging
to a particular segmentation class. The network architecture is trained to predict
these probabilities based on the input image data, providing us with a probability map
indicating the likelihood of each pixel belonging to regions like the prostate gland, while
differentiating it from surrounding tissues. This probabilistic approach enables a more
refined segmentation, which is crucial for accurate medical diagnoses and analyses.

The standard U-Net architecture used in nnU-Net is well-suited for biomedical image
segmentation, offering an efficient way to capture both local and global contexts from
limited data [7]. The model’s training process utilizes a combination of dice loss and
cross-entropy with a Stochastic Gradient Descent (SGD) optimizer, and it is trained for
a defined number of epochs, with the final model being an ensemble of models obtained
from a cross-validation process. This setup highlights nnU-Net’s capability in handling
diverse datasets and its utility in developing accurate and generalizable segmentation
models, making it an ideal choice for our prostate segmentation study.
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Figure 2.4: Overview of the nnU-Net framework [22].

Nearest-neighbor interpolation

In the context of image processing, nearest-neighbor interpolation emerges as a funda-
mental technique employed to ensure uniformity in resizing [23]. This method, applied
during the image preprocessing stage, determines the value of each pixel in the resized
image based on the value of the nearest pixel in the original image. Nearest-neighbor
interpolation preserves the integrity of pixel values, crucial for maintaining the diagnostic
accuracy of the images.

2.2.2 Uncertainty

In PCa diagnosis using MRI and DL, multiple factors can introduce uncertainty in the
predictions. In MRI, uncertainty can arise from image quality, variations in anatomical
structures, and the inherent complexity of interpreting soft tissue contrasts [5, 6]. DL
models, while offering advanced diagnostic capabilities, also contribute to uncertainty
due to the interpretive nature of model outputs [20]. This is particularly relevant in the
probability-based outputs of segmentation models like nnU-Net, where the confidence of
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the model in its predictions is crucial [21]. Techniques like Monte Carlo (MC) dropout
and model ensembles are used to estimate uncertainty [8, 9]. Monte Carlo dropout
randomly omits network units during inference to create output distributions, while
model ensembles aggregate predictions from multiple models to enhance stability and
reduce overfitting. Understanding and quantifying this uncertainty is vital for enhancing
the reliability and interpretability of automated diagnoses, aiding clinicians in making
informed decisions and planning effective treatments.

2.2.3 Conformal classification

Conformal prediction (CP), or conformal classification (CC), was utilized as the primary
method employed in this study for quantifying the uncertainties of the DL models
using their predicted probabilities [6]. This approach extends traditional classification
methodologies by incorporating non-conformity scores, offering a deeper understanding of
the uncertainty associated with each prediction. Alpha levels are key components in CC
and act as confidence thresholds for determining the strictness of prediction inclusion in
the conformal sets. Ranging from 0 to 1, these levels allow for a tunable balance between
prediction certainty and inclusivity, enhancing the reliability and interpretability of the
diagnostic process.

Class-conditional

Class-conditional conformal classifiers represent a specialized subset of Mondrian confor-
mal classifiers, where the categorization is driven by class labels [24]. This approach is
particularly pertinent in scenarios where the class of a test object is unknown, necessitat-
ing a unique treatment for these objects. In class-conditional conformal classification,
a non-conformity score, or p-value, is generated for each possible class label of a test
object. This score quantifies the degree of deviation or non-conformity of a test object
from a given class, thereby facilitating a probabilistic assessment of class membership.

2.2.4 Metrics

Dice similarity coefficient

The Dice similarity coefficient (DSC) serves as a quantitative metric to assess the
agreement between predicted and ground truth segmentation. This coefficient, ranging
from 0 to 1, measures the spatial overlap between two segmentation masks, where 0 means
no overlap and 1 means perfect overlap. It is calculated as the absolute difference in
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total volume between two segmented regions (e.g., a ground truth model and a predicted
model) relative to the volume of a reference segmentation, typically the ground truth.
The DSC is defined as:

DSC = 2 × |X ∩ Y |
|X| + |Y |

(2.1)

where X and Y represent the pixel sets of the ground truth and predicted segmentations,
respectively. In the context of prostate cancer diagnosis, the DSC provides valuable
insights into the accuracy of the segmentation process [25, 26].

Relative volume difference

Relative Volume Difference (RVD) is a key metric in medical image analysis for quantifying
the volumetric discrepancy between two segmentations [26]. It is calculated as the absolute
difference in total volume between two segmented regions (e.g., a ground truth mask
and a predicted mask) relative to the volume of a reference segmentation, typically the
ground truth. The formula is:

RV D = |Vref − Vpred|
Vref

× 100% (2.2)

where Vref is the reference volume and Vpred is the predicted volume. RVD provides a
percentage indicating the extent of overestimation or underestimation by the predictive
model, making it a crucial tool for evaluating the accuracy of segmentation techniques in
medical imaging.



Chapter 3

Data and methods

Figure 3.1: Overview of the methodology used in this work.

3.1 Setup

The methodology employed in our study necessitated the use of several specialized tools,
each chosen for its specific capabilities in handling various aspects of the data processing
and analysis pipeline.

• Python: Serving as the primary programming language, Python was selected
for its extensive library support and its widespread use in scientific computing
and machine learning. Python’s versatility and readability make it ideal for
implementing complex algorithms and handling large datasets.

• Crepes: For the conformal classification package, crepes was utilized for its robust
capabilities in managing the uncertainty in classification tasks. This package was
chosen for its simplicity in implementing class-conditional conformal classifiers,
allowing us to calculate non-conformity scores for each potential class label in the
MRI scans, and generating prediction sets using the classifier [24].

13



14 Chapter 3 Data and methods

• SimpleITK: This package played a crucial role in our pipeline, specifically for reading
MRI images. It is a simplified, open-source interface to the Insight Segmentation
and Registration Toolkit (ITK), known for its efficacy in processing and analyzing
high-dimensional medical images [27]. SimpleITK’s functionality was essential for
handling the intricacies of MRI data.

• Matplotlib: For visualization purposes, Matplotlib, a comprehensive library for
creating static, animated, and interactive visualizations in Python, was employed
[28]. It was particularly useful for plotting the MRI’s, segmentation results, and
predictions, thereby providing an intuitive understanding of the model’s performance
and the data characteristics.

3.2 Data

The foundation of our study rests on a meticulous selection of datasets, each contributing
unique perspectives to the evaluation of our conformal classification approach. More
specifically, we are using the predicted probabilities of the segmentations from the
trained DL models performed by Fernandez-Quilez et al. [7], as well as the ground
truths manually annotated by board-certified and approved radiologists. ProstateX, a
comprehensive repository of multi-parametric MRI data, served as the primary training
dataset for our conformal classifier (CC). This dataset was split into a training and
testing set, and to ensure a more robust assessment, we further tested the classifier
on two additional external datasets, SUS and Prostate158 (P158) [29]. This approach
expanded the diversity of our study and were used for validating the generalizability of
the model across distinct clinical contexts.

3.2.1 Dataset acquisition

The dataset used in this study were acquired from multiple institutions with varying
technical specifications and annotation protocols [7]. Segmentations were obtained using
ITKSnap v3.8 for all three datasets, and the images used are T2w images of the axial
plane. The datasets are as follows:

• ProstateX: This dataset forms the core of our model training and development and
consisted of 41 patients. It is a widely used open-source, single-institution dataset
in prostate whole gland (WG) segmentation literature. For this dataset, the ground
truth’s annotation were manually conducted by two radiologists in-training and two
experienced board-certified radiologists. The sequences used in the development of
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the DL model were acquired with a 3.0-Tesla Siemens scanner with an in-plane
resolution of 0.5 mm x 0.5 mm, 3.6 mm slice thickness and with a surface coil.

• SUS: Acquired with an in-plane resolution of 0.5 mm x 0.5 mm and a slice thickness
of 3.0 mm. The annotations of the ground truths for this dataset were performed
by a radiologist in-training, with the ethical approval obtained from the Regional
Committee for Medical and Health Research Ethics (REC Central Norway). This
dataset comprised of 48 patients and were further filtered to 41, where only the
patients that were diagnosed with PCa were used in the testing.

• P158: Characterized by segmentations conducted by two board-certified radiologists,
with technical acquisition parameters differing from ProstateX and SUS. This
dataset consisted of 139 patients and were filtered, similarly to the SUS-dataset,
down to 83 patients.

Internal and external

The internal dataset refers to the dataset used during the development and initial testing
of the model, which for our case is ProstateX. It is split into training and internal testing
sets. The model is trained on the training set and initially evaluated on the internal test
set. External datasets are also used for testing the model’s performance after it has been
trained. For our study, P158 and SUS was obtained. These were served to assess the
model’s generalizability and robustness to new, previously unseen data.

DL models details

The preprocessing of these datasets for the DL models involved normalization of pixel
intensity ranges, center cropping, axis re-ordering, and resampling of sequences to mitigate
inter-site differences arising from varying acquisition protocols employed by different
centers. This preprocessing was an integral part of the nn-UNet pipeline used for model
development.

For segmentation, a standard nn-UNet model was employed due to its wide adoption
in prostate segmentation challenges. The model was trained using the default network
configuration, combining dice loss and cross-entropy with an SGD optimizer, across 1000
epochs. Data augmentation techniques were applied on the fly. A 5-fold cross-validation
strategy was used, and the final model was an ensemble of the five models obtained from
each cross-validation iteration. The implementation was done using TensorFlow and
Python, and training and evaluation were performed on an NVIDIA A100-80G GPU.
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3.3 Method

3.3.1 Pre-Processing

The pre-processing pipeline played a pivotal role in preparing the data for model training
and evaluation.

Resizing

Some of the ground truth masks (GTM) had resolutions that differed from those of the
predicted probabilities. To address this, we implemented a resizing technique, employing
the Nearest-Neighbor interpolation method, which ensured uniformity in model training
and consistency in evaluation across all datasets. This method maintains the original
pixel values without introducing weighted averages or smoothing, and was chosen for its
simplicity and efficiency. The Nearest-Neighbor interpolation ensures that the resized
images retain the essential details crucial for accurate segmentation, contributing to the
robustness of our CC.

Training, testing, and validation

We adopted a patient-centric data splitting strategy, allocating 70% of the patients from
ProstateX to the training set and reserving 30% for internal testing. This partitioning
comprised of 28 patients in the training set and 13 in the test set. As this work is a
continuation of the study performed by Fernandez-Quilez et al. [7], using their test set
of 41 patients, this partitioning was deemed as a balanced representation of the study
population. The CC was then tested on the internal and external datasets, where the
external datasets retained their original population.

Region of interest extraction

Due to the nature of the datasets, the training data became very large and training
of the CC would at times crash the program. To counteract this we implemented a
cost-cutting strategy to reduce the size of the training data. Region of interest (ROI)
extraction constitutes a crucial step in focusing the analysis on clinically relevant areas
and reducing overhead. In this study, ROI extraction involves capturing a specific region
surrounding the prostate, incorporating a margin to encompass contextual information.
This targeted approach enhances the training of the CC and quantification of the DL
models uncertainty, contributing to more accurate and clinically meaningful results.
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To focus the CC on clinically relevant regions and reduce training data dimensionality,
we used an algorithm to extract the ROI from each slice, incorporating a 20-pixel margin
around the prostate. This margin was deemed sufficient to capture contextual informa-
tion relevant to prostate cancer diagnosis while minimizing unnecessary computational
overhead.

Figure 3.2: ROI-extraction with a 20 pixel margin for one slice of a GTM.

3.3.2 Class-conditional conformal classifier

For our study, we implemented a simple class-conditional conformal classifier using the
crepes package [24]. Our primary methodology involves class-conditional conformal clas-
sification, an extension of traditional classification approaches that provides prediction
uncertainty estimates. The CC was trained and internally tested on ProstateX. The
methodology was further validated using external data from SUS and P158 to assess its
generalizability and performance across diverse datasets. The conformal classification
framework allows us to quantify the uncertainty associated with each prediction, pro-
viding a deeper understanding of the model’s confidence. By incorporating conformal
classification, we aim to enhance the interpretability and reliability of our segmentation
results.

Non-conformity scores

Non-conformity scores form the basis of class conditional conformal classification. These
scores quantify the degree of deviation of an individual prediction from the established
class, providing a measure of uncertainty and facilitating more informed decision-making.
The above results in that alphas is assigned a vector of the same length as X_prob with
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a non-conformity score for each object, here defined as 1 minus the predicted probability
for the correct class label:

α = 1 − P (y|x) (3.1)

In our implementation we utilized the hinge function imported from crepes.extra to
calculate the non-conformity scores. This function takes the predicted probabilities, class
names and labels as input, to create a vector of same length as Xprob containing the
non-conformity score of each object. These scores are then used when fitting the CC.
Non-conformity scores for objects where y is not known, can be acquired by using the
same function using only predicted probabilities as input. This gave us an array of the
same shape as the predicted probabilities with non-conformity scores for each class in
the columns for each object.

Prediction sets

The output of our conformal classifier are in the form of prediction sets. Where the
prediction set is in the form Y × 2, where Y is the number of predictions or in our case
pixels. These prediction sets can be categorized as single, multiple, or empty predictions:

• Single predictions: These occur when the CC is confident enough to assign only
one class label to a test instance. This indicates a high level of certainty in the
prediction.

• Multiple predictions: This happens when the classifier identifies more than one
class label as a possible output for a given instance, reflecting uncertainty in the
prediction. It signifies that the model cannot definitively distinguish between
several class labels at the given confidence level.

• Empty predictions: These are cases where the classifier is unable to assign any
class label to a test instance, typically suggesting that the instance is significantly
different from the data on which the model was trained. This indicates extreme
uncertainty or a lack of confidence in making any prediction.

Quantifying the total amount of these types of predictions provided us with insight
into the classifier’s certainty and reliability across different instances and scenarios. For
simplicity, one of the methods we implemented was to convert these prediction sets to
a vector of length Y , and only assigned the value 1 for the single predictions of 1, and
setting the rest to 0. Furthermore, we converted this vector back to the original format
e.g., (20, 400, 400), representing the number of slices, x-pixels, and y-pixels, respectively.
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With this we could plot the slices where the classifier was confident in the pixels that
were 1, as can be seen later in 4.1. Another method we tested was to give different labels
to the different cases, so that we could visualize the uncertainty in a plot, as seen in 4.1.

Alphas (Confidence)

To quantify the impact of uncertainty and alpha levels on our model’s performance, we
tested the CC on a range of alpha values, including 0.25, 0.50, 0.75, and 0.95. These
alpha levels correspond to different confidence thresholds, allowing us to assess the
classifier’s performance using various degrees of certainty. The lower alpha values (e.g.,
0.25) represent a higher confidence in the predictions, whereas higher alpha values (e.g.,
0.95) indicate greater caution and a lower threshold for accepting predictions as certain.

3.3.3 Uncertainty assessment

Validity

Validity is a measure of how often the model’s prediction sets correctly include the true
label. It assesses the reliability of the model in providing prediction sets that encompass
the actual outcomes [30]. In this work, the validity is calculated as:

V alidity = Correct_classifications + Multiple_predictions

Total_predictions
(3.2)

Where Correct_classifications are instances where the prediction set contains only one
label, which matches the true label, and Multiple_predictions refer to instances where
the prediction set includes more than one label, thereby covering the true label. This
measure of validity ensures that the prediction sets accurately reflect the true outcomes
in a significant proportion of cases.

Efficiency

Efficiency is a measure of how often the model makes specific and informative predictions.
It evaluates the model’s ability to provide prediction sets that are not only correct
but also precise, typically represented by correct single-label predictions [6]. We have
calculated efficiency as the fraction of correct single predictions:

Efficiency = Correct_classifications

Total_predictions
(3.3)
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This measure of efficiency reflects the model’s precision and its effectiveness in making
definitive predictions.

3.3.4 Segmentation assessment

DSC

The DSC was computed for each slice of each patient, only taking into account the slices
that contained a mask. For each patient, we calculated the mean DSC across these
slices, and then the overall mean DSC was computed across all patients. Additionally,
we stratified the analysis by dividing the slices into base, mid, and apex sections to
assess regional differences in segmentation accuracy. DSC calculations were performed to
compare:

• GTM and CC segmentation.

• GTM and predicted probabilities, applying a threshold of 0.5, where values of 0.5
or higher were classified as 1, and values below 0.5 as 0.

This approach allowed us to evaluate the segmentation performance from multiple
perspectives, ensuring a thorough understanding of our model’s accuracy.

RVD

For RVD, the volume was determined by calculating the volumes across all slices for each
segmentation. This approach provided us with a singular, overall measurement of the
volume difference, reflecting the total discrepancy in volume between two segmentations
across the entire scanned volume. Such an approach is crucial in clinical and research
contexts, particularly for evaluating the overall size of a tumor or an organ. This singular
measure of volume difference offered us insights into the macroscopic accuracy of the
segmentation, essential for clinical assessments and comparative studies.
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Results

4.1 Methodology

The code will not be included as the work is under consideration for publication.

4.2 Experimental Results

ProstateX results

AI points predictions

Correct predictions 36498481
Incorrect predictions 27080
Accuracy (%) 99.93%
Error (%) 0.07%
DSC All 0.9834 ±0.0019
DSC Base 0.9783 ±0.0044
DSC Mid 0.9863 ±0.002
DSC Apex 0.9833 ±0.0014
RVD (%) 0.0002%
Total Volume PP 942003
Total Volume GTM 942001

Table 4.1: Metrics acquired from the predicted probabilities (PP) of ProstateX using a
threshold on 0.5. DSC and RVD are compared against the ground truth masks (GTM)

of ProstateX.

21



22 Chapter 4 Results

Conformal classifier

Prediction sets
Confidence level (%)

25% 50% 75% 95%
Empty 677982 439374 242078 133943
Single 35847579 36086187 36283483 36391618
Multiple 0 0 0 0

Applied statistics

DSC All 0.5986 ±0.2451 0.7728 ±0.1726 0.8758 ±0.0723 0.9729 ±0.0052
DSC Base 0.7023 ±0.278 0.7731 ±0.176 0.7908 ±0.2523 0.9689 ±0.0071
DSC Mid 0.5188 ±0.4024 0.7731 ±0.3343 0.9582 ±0.0114 0.9772 ±0.008
DSC Apex 0.6274 ±0.2525 0.7731 ±0.176 0.8566 ±0.0764 0.9711 ±0.0071
RVD PP (%) 59.02% 33.69% 12.74% 4.02%
RVD GTM (%) 59.02% 33.69% 12.74% 4.01%
Total Volume 386056 624664 821960 904181

Uncertainty

Correct single predictions 35847531 36085921 36282748 36386168
Points that should be 1 555971 317581 120754 42713
Points that should be 0 122059 122059 122059 96680
Efficiency (%) 98.14% 98.80% 99.34% 99.62%
Validity (%) 98.14% 98.80% 99.34% 99.62%

Table 4.2: ProstateX results
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SUS

AI points predictions

Correct predictions 211495460
Incorrect predictions 24540
Accuracy (%) 99.9%
Error (%) 0.01%
DSC All 0.9648 ±0.0672
DSC Base 0.9999 ±0.0002
DSC Mid 0.9891 ±0.0363
DSC Apex 0.7853 ±0.3584
RVD (%) 0.6958%
Total Volume PP 3550953
Total Volume GTM 3526413

Table 4.3: Metrics acquired from the predicted probabilities (PP) of SUS using a
threshold on 0.5. DSC and RVD are compared against the ground truth masks (GTM)

of SUS.
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Conformal classifier

Prediction sets
Confidence level (%)

25% 50% 75% 95%
Empty 3734128 3064130 2643608 1394302
Single 207785872 208455870 208876392 210125698
Multiple 0 0 0 0

Applied statistics

DSC All 0.5336 ±0.1963 0.6659 ±0.1619 0.7263 ±0.1269 0.8716 ±0.0771
DSC Base 0.5303 ±0.2497 0.5913 ±0.2451 0.6226 ±0.2472 0.7858 ±0.2487
DSC Mid 0.4895 ±0.3315 0.6737 ±0.2928 0.7665 ±0.2232 0.9251 ±0.0771
DSC Apex 0.4255 ±0.248 0.4908 ±0.2741 0.5235 ±0.2885 0.6843 ±0.3083
RVD PP (%) 64.92% 46.05% 34.21% 8.33%
RVD GTM (%) 64.67% 45.67% 33.75% 7.69%
Total Volume 1245761 1915759 2336281 3255258

Uncertainty

Correct single predictions 207784099 208453635 208873853 210118090
Points that should be 1 2282425 1612889 1192671 278763
Points that should be 0 1453476 1453476 1453476 1123147
Efficiency (%) 98.23% 98.55% 98.75% 99.34%
Validity (%) 98.23% 98.55% 98.75% 99.34%

Table 4.4: SUS results
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P158

AI points predictions

Correct predictions 196921390
Incorrect predictions 27834
Accuracy (%) 99.9%
Error (%) 0.01%
DSC All 0.9515 ±0.1251
DSC Base 0.9525 ±0.1653
DSC Mid 0.9722 ±0.1083
DSC Apex 0.7852 ±0.378
RVD (%) 0.3814%
Total Volume PP 7324819
Total Volume GTM 7296985

Table 4.5: Metrics acquired from the predicted probabilities (PP) of P158 using a
threshold on 0.5. DSC and RVD are compared against the ground truth masks (GTM)

of P158.
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Conformal classifier

Predictions
Confidence level (%)

25% 50% 75% 95%
Empty 11342642 10308883 9736253 6545683
Single 185606582 186640341 187212971 190403541
Multiple 0 0 0 0

Applied

DSC All 0.3523 ±0.1739 0.4353 ±0.1803 0.4712 ±0.183 0.6624 ±0.1665
DSC Base 0.2443 ±0.2191 0.2854 ±0.243 0.3107 ±0.2573 0.5062 ±0.294
DSC Mid 0.3897 ±0.2248 0.4993 ±0.2251 0.5443 ±0.2249 0.7318 ±0.2002
DSC Apex 0.1809 ±0.2188 0.211 ±0.2462 0.2283 ±0.2622 0.3707 ±0.3499
RVD PP (%) 67.25% 53.13% 45.32% 23.71%
RVD GTM (%) 67.12% 52.96% 45.11% 23.42%
Total Volume 2399079 3432838 4005468 5588348

Uncertainty

Correct single predictions 185606582 186640341 187212971 190400547
Points that should be 1 4897906 3864147 3291517 1711631
Points that should be 0 6444736 6444736 6444736 4837046
Efficiency (%) 94.24% 94.77% 95.06% 96.67%
Validity (%) 94.24% 94.77% 95.06% 96.67%

Table 4.6: P158 results.

Uncertainty plots

Figure 4.1: Visualization of the uncertainty between two different alpha levels, including
the GTM.



Chapter 4 Results 27

Figure 4.2: Visualization of the uncertainty between two different alpha levels, including
the GTM.

4.2.1 Observations

An analysis of the DSC and RVD at different alpha levels reveals a distinct trend. At a
25% alpha level, the DSC score is observed to be lower compared to the scores as the
alpha levels increases, as depicted in e.g., table 4.2. The RVD starts out higher and
decreases as the alpha level increases. A notable aspect of this trend is the high number
of empty sets at the lower alpha levels. This suggests a direct relationship between the
alpha level and the model’s confidence in making predictions, where a lower alpha level
leads to a higher frequency of instances in which the model does not make any prediction,
due to the stricter confidence threshold. From the uncertainty plots 4.1, and 4.2, we can
observe two extremely different instances where the lower alpha levels greatly impact
the uncertainty of the predictions. We observe no multi-label predictions. For almost all
the metrics, we can see a consistent increase or decrease as the alpha levels change, with
lower levels performing the worst.

When calculating for the uncertainty assessment we can find high percentages of validity
and efficiency, indicating that the model is not only consistently including the true
label in its predictions, but is also frequently making precise and correct single-label
predictions. This combination suggests a well-calibrated and reliable model that is adept
at making predictions with a high degree of certainty, offering valuable insights for the
use of conformal prediction in prostate segmentation.
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Discussion

Conformal prediction vs MC dropout and model ensembles

In the context of PCa diagnosis using MRI and DL, Monte Carlo (MC) dropout and
model ensembles are notable techniques for handling uncertainty. MC dropout functions
by randomly dropping units in neural networks during inference to generate a distribution
of outputs, thereby estimating uncertainty. Model ensembles use multiple models to
make predictions, averaging their outputs to improve reliability and reduce overfitting.
However, these methods only provide approximations of confidence levels and lack the
strong statistical guarantees offered by conformal methods. Conformal prediction, unlike
MC dropout or ensembles, can provide exact confidence levels (e.g., 95%), ensuring more
precise and statistically robust uncertainty quantification. This exactness in confidence
levels is crucial for clinical decision-making and is a primary reason for choosing conformal
methods over traditional DL techniques in this study.

Impact of alpha levels on metrics

We could observe a recurring trend in the quantified metrics across the different alpha
levels, which can be explained by the underlying mechanics of conformal prediction and
its reliance on confidence thresholds. At a lower alpha level, the model has a stricter
criterion for prediction inclusion, resulting in a higher number of empty sets. These
empty sets indicate instances where the model’s predictions do not meet the confidence
threshold. As the alpha level gradually increases, the model’s confidence threshold
becomes less strict, allowing for more predictions to be made, including those that might
be less certain. This decrease in empty sets at higher alpha levels likely contributes to
the higher DSC’s and lower RVD’s observed, as more predictions are made and evaluated
against the true labels. The increase or decrease in the metrics at higher alpha levels,
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therefore, reflects the balance between the model’s confidence in its predictions and the
inclusivity of potential outcomes within the prediction sets. The absence of multi-label
predictions in our study likely stems from the high calibration quality of the DL model we
extended from the previous study of Fernandez-Quilez et al. [7]. This suggests that the
model’s robust training and fine-tuning have resulted in precise and confident predictions.

Our prediction set handling

In calculating the DSC and RVD, a simplified approach was employed. This involved
assigning a value of 0 to every case where the prediction set was not [0 1]. The rationale
behind this approach was to focus on instances where the conformal classifier was highly
confident that a pixel would be classified as 1. This method prioritizes the identification
of pixels confidently predicted as belonging to class 1, contributing to an uncertainty in
the perceived volume of correctly classified pixels.

The primary limitation of this approach is its potential impact on the overall accuracy
and reliability of the DSC score and RVD’s, as a performance metric. Specifically, the
approach reduces sensitivity to Class 0. Simplifying these metric’s calculations to prioritize
class 1 predictions, the model’s ability to correctly identify class 0 is not thoroughly
reflected. This could lead to an overestimation of the model’s performance in scenarios
where identifying class 0 is equally important. There is a potential overestimation of
performance for class 1 predictions, as might be seen in figure 4.2. In this figure it can
clearly be observed that the volume is notably larger than the GTM. The methodology
might inflate the perceived performance for class 1 predictions. In cases where the
model fails to make a prediction (empty sets), assigning a 0 value might not accurately
represent the true uncertainty or potential error in classification. The impact on model
evaluation is significant. This approach focuses on the model’s certainty in classifying
pixels as 1, potentially overlooking the broader evaluation of the model’s overall predictive
capabilities, including its performance in situations of uncertainty or in predicting class 0.
The chosen methodology, while offering insights into the model’s performance in certain
aspects, might not provide the comprehensive view we are looking for in its overall
predictive accuracy and reliability.

Enhancing AI reliability with prediction sets

In the study conducted by Olsson et al. [6], they proposed the idea of flagging the
unreliable predictions for human intervention. The primary benefits of this approach
is that it enhances patient safety by reducing AI errors and opens up the opportunity
for a collaborative workflow between AI and human experts. In such a setting, the AI
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would handle the straightforward cases and the experts would focus on the complex
ones. This approach has been shown to significantly lower error rates compared to
traditional methods. However, it also introduces potential issues, such as the risk of
an unmanageably high number of unreliable predictions and the added complexity of
manually reviewing these cases.

Uncertainty assessment

The results of our study prominently feature high percentages of efficiency and validity
in the uncertainty assessment of prostate cancer segmentation. Efficiency percentages
ranged impressively from 94.24% to 99.34% on external datasets, with an equal measure
of validity. Comparing this to the study conducted by Olsson et al.’s [6] 78%, indicates
that our model is not only consistent in the inclusion of true label in its predictions, but
also precision in its correct single-label predictions. These tables showcases the model’s
exceptional calibration and reliability, and also its adeptness at making predictions
with significant certainty. This level of performance is particularly critical in prostate
segmentation, as it highlights the model’s capacity to effectively handle uncertainty,
ensuring trustworthy and precise predictions.





Chapter 6

Conclusions

This thesis presents a significant advancement in prostate cancer diagnosis through the
integration of Conformal Prediction (CP) with deep learning models for prostate segmen-
tation in MRI analysis. By utilizing CP, the study effectively quantifies uncertainties
in segmentation, highlighting its robustness across varied datasets. Additionally, the
impact of different alpha levels were tested to explore how varying levels of confidence
thresholds influence the model’s performance. This analysis provides deeper insights
into the trade-offs between predictive accuracy and uncertainty, guiding the optimal
configuration of the conformal prediction framework. The use of metrics like DSC and
RVD, along with high efficiency and validity rates (94.24% to 99.34%), underscores the
precision and reliability of the approach. This research not only enhances the accuracy
of prostate cancer diagnosis but also contributes to the broader field of medical imaging,
demonstrating the potential of CP in improving clinical decision-making and patient
care.

6.1 Future Directions

Although the CC implemented in this study achieved high efficiency and validity scores,
the DSC and RVD scores were not comparable. It would be interesting to see other
approaches to handling the uncertainties in DL models as well. The final goal of the
thesis was to develop an automatic quality control of prostate segmentation, however, we
never advanced that far. With that in mind, some potential future direction could be:

• Expanding to automatic quality control

• Exploring alternative uncertainty handling approaches
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• Methods for improving DSC and RVD scores
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