
MigraMEC: Hybrid Testbed for MEC App Migration
Prachi V. Wadatkar
prachi.v.wadatkar@uis.no
University of Stavanger
Stavanger, Norway

Rosario G. Garroppo
rosario.garroppo@unipi.it

University of Pisa
Pisa, Italy

Gianfranco Nencioni
gianfranco.nencioni@uis.no
University of Stavanger
Stavanger, Norway

ABSTRACT
Multi-access Edge Computing (MEC) enhances the capabili-
ties of 5G by enabling the computation closer to the end-user
for real-time and context-aware services. One of the main
challenges of MEC is the migration of the MEC applica-
tion in the presence of user mobility. MigraMEC is a hybrid
testbed that simulates the network scenario and user mobil-
ity and emulates the MEC framework by using AdvantEDGE.
Moreover, MigraMEC implements two physical MEC Hosts
(MEHs) by using an extended version of Kubernetes (K8s).
Finally, the MigraMEC controller interacts with both the
emulative and experimental environments to ensure an effi-
cient migration of the MEC application. Based on network
information, the MigraMEC controller not only enforces the
MEH where the MEC application is running but also the
Point of Access (PoA) to which the user is connected. In our
demonstration, the MEC application is a video streaming
service, and the results highlight the need for multiple MEHs
and efficient migration to maintain a high user experience.

CCS CONCEPTS
• Networks → Network experimentation; Cloud comput-
ing.

KEYWORDS
MEC, Migration, AdvantEDGE, Kubernetes

ACM Reference Format:
Prachi V. Wadatkar, Rosario G. Garroppo, and Gianfranco Nen-
cioni. 2023. MigraMEC: Hybrid Testbed for MEC App Migration.
In Proceedings of 29th Annual International Conference On Mobile
Computing And Networking (ACM MobiCom ’23). ACM, New York,
NY, USA, 3 pages. https://doi.org/10.1145/3570361.3614069

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ACM MobiCom ’23, Oct 02–06, 2023, Madrid, Spain
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-9990-6/23/10. . . $15.00
https://doi.org/10.1145/3570361.3614069

1 INTRODUCTION
The Fifth Generation (5G) of mobile networks enables new
advanced services, such as Ultra-Reliable Low-Latency Com-
munications (URLLC), where the end-to-end delay between
the user and the application must be very low [4]. Multi-
access Edge Computing (MEC) allows to achieve low latency,
real-time awareness of the local environment, cloud offload-
ing, and the reduction of the traffic congestion [5].

ETSI is standardizing MEC [6]. Among the tools available
in the ETSI MEC Ecosystem, AdvantEDGE [8] empowers
application developers to test MEC services by creating net-
work models and facilitates the study of network character-
istics and their impact on applications and services.

This work focuses on the availability of a MEC application
running on a Multi-access Edge Host (MEH) considering the
mobility of the User Equipment (UE). In suchmobile scenario,
the migration from one MEH to another MEH may become
necessary and can be accomplished by using containers or
pods, which are units used for deploying containerized appli-
cations [7, 10]. This work considers the pod migration, since
it is preferred over container migration due to the orchestra-
tion and management capabilities provided by Kubernetes
(K8s) [13]. However, the default K8s framework does not
support manual pod migration; a migration is considered
only when nodes face resource constraints or health issues.
Pods can be migrated by using an extended K8s [12] that has
been implemented in our testbed platform, called MigraMEC,
to enable a seamless MEC application migration. Moreover,
MigraMEC includes a controller that retrieves the informa-
tion from the ETSI-MEC APIs implemented by AdvantEDGE,
such as ETSI MEC 013 [3] Location and ETSI MEC 012 [2]
Radio Network Information, and applies the decisions to the
MEHs by using K8s.
The MigraMEC has been evaluated by using the Multi-

objective Dijkstra Algorithm (MDA) to select the best Point
of Access (PoA) and MEH based on various metrics. Once
the MEH is selected, the MigraMEC controller facilitates the
migration of the MEC application between MEHs.

2 SYSTEM DESIGN
Figure 1 presents a schematic overview of the MigraMEC
testbed, showing the interaction between the controller, Ad-
vantEDGE, and K8s. The NUCs have an Intel i7 with (32/512)

https://orcid.org/0000-0002-0776-1211
https://doi.org/10.1145/3570361.3614069
https://doi.org/10.1145/3570361.3614069

ACM MobiCom ’23, Oct 02–06, 2023, Madrid, Spain Prachi V. Wadatkar, Rosario G. Garroppo, and Gianfranco Nencioni

Figure 1: Schematic Representation of the MigraMEC Testbed

GIGABYTE. TheAdvantEDGE platform is deployed onNUC1,
which also serves as the host for a user VideoLAN Client
(VLC) [9]. Initially, the MEC application, named mec-app
and which is a VLC server, is deployed on NUC2 (MEH
named Edge1) and later migrated to NUC3 (MEH named
Edge2) based on the location of the UE. NUC2 also serves as
the master node within the K8s cluster. Instead, NUC3 is a
worker node within the same cluster.

In addition to the default K8s cluster framework, NUC2
and NUC3 incorporates extended version of K8s and Con-
tainer Runtime Interface (CRI) [11], which is supported by
CRIU project [1]. Extended K8s and CRI version is necessary
to facilitate the seamless pod migration. The mec-app is a
VLC server application deployed as a pod that runs within
a container. By utilizing K8s service and Kube-proxy map-
ping, the mec-app is made accessible to end-users (in this
case, mapped to the AdvantEDGE emulator) through an IP
address and port number. Pod-migration controller and
API server are part of the extended K8s framework that
controls and tracks the pod migration activities, respectively.
Kube API server interacts with K8s elements and operator (in
this case, MigraMEC controller). The NFS server and client
are used to share the pod checkpoint information during the
migration. The controller manager, scheduler, etcd, are de-
fault elements of the K8s cluster responsible for node control,
pod scheduling activities, and functioning as a database for
cluster information, including authentication keys.

3 DEMONSTRATION
The considered network scenario consists of two sets of
WiFi, 5G, and 4G PoAs with coverage radius of 200, 500, 1000
meters, respectively. Network characteristics, such as latency,
jitter and packet loss, have been set. Furthermore, PoAs and
UE have their geographical locations and an actual map
representation can be created by AdvantEDGE.

During the demonstration, we will enable the UE mobility
by using AdvantEDGE automation. We will show how MDA
will select the best PoA and MEH based on the UE location.

Our demonstration focuses on evaluating the performance
of the system through two experimental tests. First test corre-
sponds to having only single MEH (i.e., Edge1). The absence
of an MEH (i.e., Edge2) noticeably degrades the video quality,
resulting in visible blurriness, while VLC statistical values
indicate the loss of frames. Moreover, the absence of an MEH
significantly affects the latency and throughput between the
MEH and UE, especially when compared to the VLC server
throughput. This impact is primarily due to the longer path
between the UE and MEH, resulting in increased latency and
decreased throughput for MEH-UE communication.
Having two MEHs that support the mec-app migration

showcased superior performance compared to a single MEH.
During UEmovement, the mec-appwas seamlessly relocated
to the nearest MEH depending on UE location, resulting in
an enhanced Quality of Experience (QoE) for the user. MEH-
UE latency and throughput were optimized in comparison to
the single MEH test. While migrating the mec-app between
MEHs, there was a brief buffering period for video frames as
the mec-app transitioned and restoration took place. How-
ever, the average buffering time was less than 3 seconds,
considering that the VLC client is typically set with a default
buffering value of 1 second.
In the future, the MigraMEC controller will be further

developed to not only retrieve network information from
AdvantEDGE, but also computing information from K8s.

ACKNOWLEDGMENTS
This work was partially supported by the NFR through the
5G-MODaNeI project (no. 308909) and the Italian Ministry
of Education and Research (MIUR) in the framework of the
FoReLab project (Departments of Excellence).

MigraMEC: Hybrid Testbed for MEC App Migration ACM MobiCom ’23, Oct 02–06, 2023, Madrid, Spain

REFERENCES
[1] CRIU. [n. d.]. A project to implement checkpoint/restore functionality

for Linux. https://github.com/checkpoint-restore/criu. (Accessed:
2022-05-07).

[2] ETSI. 2019. GS MEC 012 V2.1.1: Multi-access Edge Computing (MEC);
Radio Network Information API.

[3] ETSI. 2019. GS MEC 013 V2.1.1: Multi-access Edge Computing (MEC);
Location API.

[4] ETSI. 2020. TS 123 501 V16.6.0: 5G; System architecture for the 5G
System (5GS) (3GPP TS 23.501 version 16.6.0 Release 16).

[5] ETSI. 2022. ETSI TS 123 304 V17.3.0: 5G; Proximity based Services
(ProSe) in the 5G System (5GS) (3GPP TS 23.304 version 17.3.0 Release
17).

[6] ETSI. 2022. GS MEC 003 V3.1.1: Multi-access Edge Computing (MEC);
Framework and Reference Architecture.

[7] Mohammed A. Hathibelagal, Rosario G. Garroppo, and Gianfranco
Nencioni. 2023. Experimental comparison of migration strategies for
MEC-assisted 5G-V2X applications. Computer Communications 197
(2023), 1–11. https://doi.org/10.1016/j.comcom.2022.10.009

[8] InterDigitalInc. 2023. AdvantEDGE on github. https://interdigitalinc.
github.io/AdvantEDGE/. (Accessed: 2022-12-02).

[9] Video LAN organization. [n. d.]. Video LAN website. https://www.
videolan.org/index.it.html. (Accessed: 2022-05-07).

[10] Jakob Schrettenbrunner. 2020. Migrating Pods in Kubernetes. Ph. D.
Dissertation. https://doi.org/10.13140/RG.2.2.31821.97762

[11] Schrettenbrunner, Jakob. [n. d.]. containerd-cri. https://github.com/
schrej/containerd-cri. (Accessed: 2022-05-07).

[12] SSU-DCN. [n. d.]. podmigration-operator. https://github.com/SSU-
DCN/podmigration-operator/blob/main/init-cluster-containerd-
CRIU.md. (Accessed: 2022-05-07).

[13] The Kubernetes Authors. [n. d.]. Kubernetes. https://kubernetes.io.
(Accessed: 2022-05-07).

https://github.com/checkpoint-restore/criu
https://doi.org/10.1016/j.comcom.2022.10.009
https://interdigitalinc.github.io/AdvantEDGE/
https://interdigitalinc.github.io/AdvantEDGE/
https://www.videolan.org/index.it.html
https://www.videolan.org/index.it.html
https://doi.org/10.13140/RG.2.2.31821.97762
https://github.com/schrej/containerd-cri
https://github.com/schrej/containerd-cri
https://github.com/SSU-DCN/podmigration-operator/blob/main/init-cluster-containerd-CRIU.md
https://github.com/SSU-DCN/podmigration-operator/blob/main/init-cluster-containerd-CRIU.md
https://github.com/SSU-DCN/podmigration-operator/blob/main/init-cluster-containerd-CRIU.md
https://kubernetes.io

	Abstract
	1 Introduction
	2 System Design
	3 Demonstration
	Acknowledgments
	References

