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Abstract

A comprehensive understanding of the overall performance of the tests is critical in
software testing to make necessary adjustments to the test schedule or conduct targeted
investigations. In ABB Bryne, the software testing is processed by a test system named
NAST for the IPS software for paint robots. This thesis addresses the critical challenges
by investigating two key aspects: ranking frequently failing test cases and clustering test
cases based on error messages.

Two models were employed for the ranking task: the conventional Analytic Hierarchy
Process-Weighted Sum Model (AHP-WSM) and the Learning-to-rank model Lamb-
daMART. The results highlight the superiority of the AHP-WSM model over Lamb-
daMART, attributed to the influence of dataset quality and size in the machine learning
technique.

Agglomerative clustering with Jaccard and cosine similarity metrics was applied for the
clustering. The findings reveal that cosine similarity yielded superior outcomes due to
its calculation characteristics to capture semantic relationships between texts based on
overall content rather than relying on exact term matches.

This research provides valuable insights into e�ective methodologies for addressing the
complexities associated with test case prioritisation and clustering in software testing.
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Chapter 1

Introduction

This chapter will begin by discussing the motivation behind this study, followed by
introducing the use cases that will be applied. Subsequently, the objectives of this
research, which incorporate the research questions, will be presented. The thesis outline
will be provided last.

1.1 Motivation

In the context of ABB Bryne, where hundreds of tests run continuously every day, gaining
a clear view of test run performance is crucial for optimizing development time. Two
key analysis strategies can be implemented to provide valuable insights into the test run
performance: identifying and prioritizing frequently failing test cases and clustering test
cases based on error messages. E�ective implementation of these strategies enhances
the developer’s understanding of test run dynamics and contributes to streamlined
development processes.

This research undertakes a comprehensive investigation, employing advanced method-
ologies toward each challenge. The Analytic Hierarchy Process-Weighted Sum Model
(AHP-WSM) and LambdaMART are considered for ranking, while for clustering, ag-
glomerative techniques with Jaccard and cosine similarity metrics are explored. The
following chapters will present the performance of the methodologies, discuss the results
and provide a detailed performance analysis for each.

1



2 Chapter 1 Introduction

1.2 Use Cases

Analysing test results is a critical aspect of software testing and quality assurance, playing
a pivotal role in ensuring the reliability and robustness of software systems. This section
introduces the two strategies that can be applied to present the analysis for test run
performance e�ciently.

1.2.1 Ranking Frequently Failed Tests

A practical approach involves using a ranking model to identify the ten most often
failing test cases. From the test framework runs in ABB Bryne, a test case is a defined
file that outlines the requirements for testing a particular function or segment of the
software. Evaluating test case performance is crucial in guaranteeing the testing process’s
comprehensiveness.

This analysis provides an understanding of the under-performance of test cases by
assigning a rating to the test cases that have continuously failed recently. The term
"failed" denotes that the outcome of a test case falls into one of the following categories:
Abort, Error, or Warning. This strategy enables developers to prioritise and concentrate
on resolving these concerns.

1.2.2 Clustering Test Cases Based on Error Messages

Another beneficial approach entails grouping test cases according to their error messages.
The primary cause of test run failure is usually discovered by extracting an error message
from the raw log generated during the test run. A test clustering method can e�ectively
categorise error messages into distinct groups based on similar debugging di�culties,
streamlining the root cause analysis process. This is particularly advantageous given
that most tests operate on comparable software. By classifying test cases in this manner,
the debugging process is enhanced, facilitating the development team’s ability to tackle
various di�culties originating from known sources using a unified solution. The primary
objective is to expedite the development cycle, minimise the duration spent on debugging,
and augment the overall quality of the product.
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1.3 Objectives

The objective of this study is to identify an optimized ranking and clustering algorithm
that can yield a satisfactory outcome within the context of our specific circumstances.
In order to do this, the following objectives have been identified:

• Organize and process the data obtained from the test runs.

• To provide an initial ranking result for frequently failing test cases, it is proposed
to implement the AHP-WSM model as the non-machine learning ranking method.

• Deploy a machine learning ranking model using LambdaMART and evaluate its
outcomes and e�cacy compared to the AHP-WSM model.

• Two machine learning clustering methods will be implemented to compare their
performance and results for text clustering of error messages: Agglomerative
Clustering with Jaccard similarity (ACJ) and Agglomerative Clustering with
Cosine similarity (ACC).

• Analyze the performance from the models and select the optimal solution for
utilization.

Based on the above objectives, several research questions can be listed:

• RQ1: What data preprocessing techniques are most suitable for preparing the test
data for ranking and clustering algorithms?

• RQ2: By comparing the conventional ranking model and the learning-to-rank
model, which one performed better and why?

• RQ3: How do the two machine learning clustering models compare their performance
and results when applied to error message text clustering?

• RQ4: Based on the analysis of the results, which model is the most optimal for
clustering the test cases?

These objectives and research questions will guide this study to develop an optimized
ranking and clustering algorithm.
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1.4 Outline

The thesis is organized into the following chapters:

Chapter 1: Introduction

Chapter 2: Background

– This chapter provides an overview of the technique employed in this study.
It introduces the methodology and discusses the prior work done at ABB.
Additionally, it explores the relevant literature in the field.

Chapter 3: Approaches for Ranking Model

– This chapter primarily focuses on the conventional ranking algorithm
utilized in the current study and introduces a learning-to-rank model.
Furthermore, an evaluation of the learning-to-rank model is presented.

Chapter 4: Approaches for Clustering Model

– This chapter will provide an overview of the two clustering methods
utilized in this study and an evaluation of both of them.

Chapter 5: Results

– The results of the models implemented in this study are provided in this
chapter, including both ranking and clustering implementations.

Chapter 5: Discussion

– This chapter compares the outcomes generated by di�erent models, along
with an analysis of their respective performance.

Chapter 7: Conclusion

– This chapter serves to summarize the findings of the study and provide
answers to the research questions. And a discussion about potential future
work.



Chapter 2

Background

This chapter will provide an overview of the research approaches taken for this study
and the previous work done at ABB. To begin with, it will expound upon the ranking
and Learning to Rank algorithms used in creating the platform’s frequently failed test
cases feature. Then, the clustering algorithms assist in dividing the test cases into groups
to boost the debugging process’s e�ciency. And finally, ABB’s already-established test
system and database will be presented.

2.1 Ranking and Learning to Rank

This section presents the methodologies to develop a function to get the frequently
failed test cases. This study uses two methods: a conventional ranking model and
a learning-to-rank model. The conventional ranking model used in this study is the
AHP-WSM model, which integrates the Weighted Sum Model (WSM) with the Analytic
Hierarchy Process (AHP). For the learning-to-rank algorithm, LambdaMART is used.

2.1.1 AHP-WSM Model

Firstly, the Multi-Criteria Decision Making problem is introduced in this part. Then, the
AHP-WSM model is presented by going through a step-by-step presentation of WSM
and the AHP model.

Multi-Criteria Decision Making

Multi-Criteria Decision Making (MCDM) is a field of study that aims to identify the
optimal alternative or establish a ranking of alternatives by considering all relevant

5



6 Chapter 2 Background

criteria with varying levels of importance[1]. Criteria, also referred to as attributes or
goals, represent the di�erent dimensions from which the alternatives can be viewed, could
be quantitative or qualitative and may relate to cost, performance, quality, sustainability,
and other factors.

MCDA methods are usually divided into Multi-Attribute Decision Making(MADM) and
Multi-Objective Decision Making(MODM). The significant di�erence is that MADM
operates within a continuous decision space involving a finite number of attributes. On
the other hand, MODM operates within a discrete decision space with an infinite number
of choices and attributes. Nevertheless, the names MADM and MCDM refer to the same
category of methodologies[2][1]. A general structure of MCDA is shown in Figure 2.1.

Figure 2.1: A general structure of MCDA.

The Weighted Sum Model

The Weighted Sum Model (WSM) is a widely used approach within MCDM for addressing
ranking problems, it requires that criteria be assigned weights of importance and aggregate
these criteria to calculate an overall score for each alternative. Alternatives can then
be ranked based on their calculated scores. A MADA problem can be easily expressed
in matrix format. As shown in Table 2.1, a decision matrix (n ◊ m) is formed, where
A = {Ai, for i = 1, 2, 3, ..., m} be a set of alternatives, c = {cj , for j = 1, 2, 3, ..., n} be a
set of criteria and w = {wj , for j = 1, 2, 3, ..., n} is the corresponding weight for criteria.
Then the score for each alternative can be calculated by equation 2.1, where element
aij indicates the value of the i-th alternative in terms of the j-th criteria, and wj is the
weight of j-th criteria[3]. Then, the alternatives get sorted based on their score.

Si =
nÿ

j=1
aijwj , for i = 1, 2, 3, ..., m (2.1)
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Criteria
c1 c2 c3 . . . cn

Alts. (w1 w2 w3 . . . wn)
A1 a11 a12 a13 . . . a1n

A2 a21 a22 a23 . . . a2n
...

...
...

...
...

...
Am am1 am2 am3 . . . amn

Table 2.1: A typical decision matrix for MADA problem.

Analytic Hierarchy Process

As previously mentioned, the WSM requires the allocation of weights to each criterion.
This study uses the Analytic Hierarchy Process (AHP) to assign these weights. As
a popular approach developed by Satty in the 1970s[4], AHP has been used in many
situations related to MCDM. The subsequent procedure outlines the stages of employing
AHP to compute the weight assigned to each criterion[5].

In the first step, the pairwise comparison matrix (n ◊ n), as shown in Table 2.2, is
constructed based on the relative importance of each criterion. Each criterion will be
compared with another criterion at a time, and the decision maker will then assign a
relative importance scale based on the scales in Table 2.2.

Scale Definition
1 Equal importance
2 Weak or slight
3 Moderate importance
4 Moderate plus
5 Strong importance
6 Strong plus
7 Very strong or demonstrated importance
8 Very, very strong
9 Extreme importance
1/9,1/8,...,1 Reciprocals of above

Table 2.2: Fundamental scale of AHP [6].

C =

S

WWWWWWU

c11 c12 . . . c1n

c21 c22 . . . c2n

... . . . ...
cn1 cn2 . . . cnn

T

XXXXXXV
(2.2)
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Then, the sum for each column is calculated. After that, each element cij in the matrix
is divided by the sum of its respective column to get the normalised pairwise matrix C Õ

as in Equation 2.3.

C Õ =

S

WWWWWWWWWWWWWWWWWWWU

c11
nÿ

j=1
cj1

c12
nÿ

j=1
cj2

. . .
c1n

nÿ

j=1
cjn

c21
nÿ

j=1
cj1

c22
nÿ

j=1
cj2

c2n
nÿ

j=1
cjn

... . . . ...
cn1

nÿ

j=1
cj1

cn2
nÿ

j=1
cj2

. . .
cnn

nÿ

j=1
cjn

T

XXXXXXXXXXXXXXXXXXXV

=

S

WWWWWWU

cÕ
11 cÕ

12 . . . cÕ
1n

cÕ
21 cÕ

22 . . . cÕ
2n

... . . . ...
cÕ

n1 cÕ
n2 . . . cÕ

nn

T

XXXXXXV
(2.3)

Following this, the weights wi for each criterion will be calculated by adding each row in
the normalised pairwise matrix and dividing by the number of criteria.

W =

S

WWWWWWWWWWWWWWWWWWWU

nÿ

j=1
cÕ

1j

n
nÿ

j=1
cÕ

2j

n...
nÿ

j=1
cÕ

nj

n

T

XXXXXXXXXXXXXXXXXXXV

=

S

WWWWWWU

w1

w2
...

wn

T

XXXXXXV
(2.4)

Before using the calculated weights in WSM, a validation is needed. First, a weighted
sum matrix (Csum) is calculated by multiplying the pairwise comparison matrix and the
weights.

Csum =

S

WWWWWWU

w1 ◊ c11 w2 ◊ c12 . . . wn ◊ c1n

w1 ◊ c21 w2 ◊ c22 . . . wn ◊ c2n

... . . . ...
w1 ◊ cn1 w2 ◊ cn2 . . . wn ◊ cnn

T

XXXXXXV
(2.5)

Then, the Consistency Vector (CV) is generated by dividing the row sum of Csum

by weights, as shown in Equation 2.6. The Consistency Index (CI) is calculated by
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CI = ⁄max≠n
n≠1 , where ⁄max is the average of CV, and n is the number of criteria[7].

CV =

S

WWWWWWWWWWWWWWWWWWWWU

nÿ

j=1
c1j ◊ wj

w1
nÿ

j=1
c2j ◊ wj

w2...
nÿ

j=1
cnj ◊ wj

wn

T

XXXXXXXXXXXXXXXXXXXXV

(2.6)

Finally, the Consistency Ratio can be obtained by CR = CI
RI , where RI is the Random

Index value from Table 2.3. The acceptable value of CR is less than 0.1[8][9]. If CR is
larger than 0.1, the pairwise comparison matrix’s judgement is inconsistent and needs to
be re-determined.

N 1 2 3 4 5 6 7 8 9 10
Random Index 0 0 0.52 0.89 1.11 1.25 1.35 1.40 1.45 1.49

Table 2.3: Random Index[10].

2.1.2 LambdaMART

To compare with the AHP-WSM model, a Learning to Rank method, LambdaMART, is
used. This section will start by introducing the idea of Learning to Rank, followed by an
explanation of the LambdaMART methodology.

Learning to Rank

Learning to Rank (LTR) is a supervised machine learning technique that aims to address
the ranking tasks, such as search results, documents or recommendations, in the order
that aligns users’ preferences.

A typical LTR flow is shown in Figure 2.2. The process contains training and test
phases since it is a supervised learning task. A training set is needed in the training
phase, which contains several queries qi(i = 1, 2, ...m) and the associated documents
Di = {di

1, di
2, ..., di

n}. Also, a list of relevance labels represents the degree of relevance
of the document concerning the query. Moreover, a set of features, such as the length,
date or other attributes from the documents, are also fed to the learning model, which
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can help the ranking model learn how to rank the list. Then, the training set is fed to
the learning system that employs a specific learning algorithm and produces a ranking
model h. This ranking model will assign a weight to the features that can be used in the
test phase.

In the subsequent test phase, a test set will be given to the training model, which is a
query q with the related documents D = {d1, d2, ..., dn}. The trained ranking model is
then used to assign a score to each document based on the weight of their features, and
it subsequently ranks the list of documents in descending order based on their assigned
scores.

Figure 2.2: A typical learning-to-rank flow.

LambdaMART

This study used the LambdaMART algorithm to implement the LTR model for comparison
with the AHP-WSM model. LmabdaMART can be divided into two distinct components,
Lambda and MART. Lambda refers to lambda gradients and denotes a weighting factor
that adjusts the gradient employed to optimise the loss function during the training
process. The loss function is defined based on the di�erences between anticipated and
true ranking. The term MART, short for Multiple Additive Regression Trees, refers to a
model design that integrates decision trees and gradient boosting. [11][12].

The general algorithm is presented in 2.1, where the boosting iterations begin at line 4.
Within each iteration, the relevance label yi is assigned, followed by the computation
of the gradient wi for yi using the prediction Fk≠1 from the previous model. Next, a
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regression tree {Rlk}L
l=1 is constructed with L leaves. The values for each leaf in the tree

are determined by dividing the predicted relevance label of the data point given to the
leaf by the sum of the importance weights of the data points. Subsequently, the model
will go through an update process by utilising the recently generated decision tree. To
account for each data point xi, the model Fk(xi) is modified by taking a step toward the
leaf value “lk if xi belongs to leaf Rlk in the decision tree. The step size taken during
each iteration is determined by the learning rate, denoted as ÷. The final model will be
produced after the boosting iterations.

Algorithm 2.1 LambdaMART
Input: Training Data:{xm, ym},m = 1, 2 . . . , m;

Number of Trees: N ;
Number of Leaves(per tree): L;
Learning Rate: ÷

Output: Model: f(x, N)
1: for i = 0 to m do
2: f(x, 0) = BaseModel(x) //If BaseModel is empty, set f(x, 0) = 0.
3: end for
4: for k = 1 to N do
5: for i = 0 to m do
6: yi = ⁄i

7: wi = ˆyi
ˆFk≠1(xi)

8: end for
9: {Rlk}L

l=1 //Create L leaf tree on {xi, yi}m
i=1.

10: “lk =
q

xiœRlk
yiq

xiœRlk
wi

//Assign leaf values.

11: Fk = Fk≠1(xi) + ÷
q

l “lkI(xi œ Rlk) // Take step with learning rate ÷.
12: end for

2.2 Clustering

This section presents the clustering algorithms that divide the test cases into groups. The
clustering methodology can be split into two main components: the similarity metrics
and the clustering algorithm. First, this paper presents a comprehensive overview of the
clustering method. Subsequently, the similarity metrics are explained: Jaccard Similarity
and Cosine Similarity. Next, a thorough examination of the Agglomerative Clustering
algorithm is o�ered.
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2.2.1 Clustering Method

Clustering is an unsupervised machine-learning technique that categorises items into
clusters according to their similarity. Typically, the grouping process will start by calcu-
lating the similarity between each data point and generating the similarity matrix[13][14].
Then, the clustering algorithm will employ the similarity matrix to group data points
into clusters based on the characteristic grouping strategy with the restriction that each
data point should be assigned to just one cluster. The outcome clusters can be described
as follows:

Given a set of cluster C = C1, C2, . . . , Ck that generated from dataset X:

1. Ci ”= „, i = 1, 2, . . . , k ;

2.
tk

i=1 Ci = X;

3. Ci fl Cj = „, i, j = 1, 2, . . . , k and i ”= j.

2.2.2 Similarity Matrix

Before introducing the details about the clustering algorithms, it is essential to understand
the concept of measuring the similarity between data points. A similarity matrix is a tool
used to compare two vectors, xi and xj , by assigning a numerical value that quantifies
the level of similarity between them, denoted as s(xi, xj) and s(xi, xj) = s(xj , xi). Higher
values indicate a higher degree of similarity, while lower values indicate dissimilarity[13].

Jaccard Similarity

Jaccard similarity, denoted as Jaccard(A, B), measures the similarity between two sets,
A and B. As defined in Equation 2.7, where |A fl B| represents the size of the intersection
of sets A and B, capturing the number of common elements between them, and |A fi B|
denotes the union’s size of A and B, encompassing all unique elements from both sets.

The Jaccard similarity ranges from 0 to 1, where 1 implies complete set identity, indicating
that the sets A and B are identical. Conversely, a Jaccard similarity of 0 suggests absolute
dissimilarity, signifying that there are no common elements between the sets[15].

JaccardSimilarity = |A fl B|
|A fi B| (2.7)
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Cosine Similarity

Cosine Similarity measures the similarity by computing the cosine of the angle between
the two vectors, as expressed by Equation 2.8. In this equation, A and B represent
the vectors, and A · B denotes the dot product of vectors A and B, the ||A|| and ||B||
calculates the magnitudes of vectors A and B, respectively[15].

As in Jaccard Similarity, the resulting Cosine Similarity range ranges from 0 to 1, and 1
denotes the two vectors are perfectly aligned, signifying maximum similarity—conversely,
a similarity score of 0 suggests no similarity between the vectors.

CosineSimilarity = A · B

||A|| · ||B|| (2.8)

2.2.3 Agglomerative Clustering

Agglomerative clustering is a hierarchical clustering technique that produces a dendro-
gram, a tree-like structure representing the relationships between data points. A typical
dendrogram structure is illustrated in Figure 2.3. In the dendrogram, the bottom nodes
correspond to individual items in the dataset, forming the initial clusters. Subsequent
levels of the dendrogram are constructed through a series of merge operations, ending at
the root node, representing the entire dataset as a single group. The number of clusters
can be determined by selecting an appropriate level to cut the dendrogram.

Figure 2.3: The typical structure for Agglomerative Clustering.

2.3 Previous Work

This section begins with a brief introduction to the software test system in ABB Bryne.
Then, a detailed description of the current database structure used for this test system
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is presented. The database is separated into two components: Cosmos DB, responsible
for storing detailed data of each execution, and Blob Storage, which stores logs and
attachments.

2.3.1 ABB’s Test System

The tested software is the Integrated Process System (IPS), an embedded and distributed
software suite specifically developed to control the paint robots manufactured by ABB.
The test is conducted using the Norway Automatic System Test (NAST), and the data
analysed in this study are the outcomes obtained from executing the test cases with
NAST.

The test case run by NAST is a file that specifies how a particular function or section
of the IPS should be tested, detailing the test parameters, input data, and anticipated
results for a specific function or component. After a test case has been run, NAST creates
a JSON file with detailed information about that particular test run, including details
such as the test case’s name, unique identifier, the script used to execute it, and more.
Moreover, the raw log and additional attachments, such as PNG images or CSV files,
will also be generated.

2.3.2 Database

As mentioned, the database structure combined Azure Cosmos DB and Azure Blob
Storage. After the NAST processes the test cases, the JSON file generated is uploaded
to Azure Cosmos DB. In contrast, the raw log file and any additional attachments are
stored in Azure Blob storage. The execution flow in ABB is visually shown in Figure 2.4.

Azure Cosmos DB

The amount of data produced by test case runs has been rising significantly at ABB
Bryne, and it now averages 400 MB records every week, from 200 to 400 test runs. The
database currently has a vast collection of more than 60,000 test results.

Microsoft o�ers a cloud-native NoSQL database solution called Azure Cosmos DB[16]. Its
outstanding scalability makes data distribution across several servers or nodes possible,
making it ideally suited for managing large data volumes and high-velocity applications.
Additionally, because of its inherent flexibility, data in various structured and semi-
structured formats, including the JSON files, may be easily accommodated while allowing
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for quick change adaptation. Furthermore, strong authentication and role-based access
control techniques are provided by Azure Cosmos DB.

In this scenario, the database is accessed through a connection string with a distinct
identifier. Data is retrieved by formulating queries using the Structured Query Language
(SQL) as a JSON query language.

Figure 2.4: The overall execution flow in ABB includes the customary arrangement of
the input, specifically the test script, and the output, comprising the detail, log, and

attachment files.

Azure Blob Storage

Azure Blob Storage is a suitable storage solution for storing raw logs and diverse attached
files. It serves as an optimal repository for handling large volumes of unstructured data
that lack a predefined data model or description. This includes both textual and binary
data. The retrieval of objects in blob storage can be easily accomplished by utilising
the HTTP/HTTPS protocols. Furthermore, to increase security measures, establishing
a connection to Blob Storage can be accomplished by utilising the Secure Shell File
Transfer Protocol (SFTP). Additionally, the mounting of Blob Storage containers can be
facilitated by employing the Network File System (NFS) 3.0 protocol[17].

In this structure, to build the connection between Cosmos DB and Blob Storage, first, the
local name and the remote name for the log file and attachments are added in the JSON
file that is stored in the Cosmos DB from the result of a test case run. The local name

refers to an easily understandable name for a specific file. The remote name refers to
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the designated name assigned to Blob storage, which includes the localname of the file
and a 16-character unique identifier for the blob file. In the case of a log file, this name
typically represents the system on which the test case was executed. On the other hand,
for attachment files, the name is typically provided by the user responsible for writing the
test execution script. By utilising the HTTPS protocol combined with a distinct Shared
Access Signature (SAS) token, it becomes possible to display the human-readable name
and gain access to the blob file through the remote name. In this manner, a connection
between Cosmos DB and Blob storage is established.

2.4 Related Work

Previous studies on ranking models have yielded valuable insights across several ap-
plications, serving as the basis for the approaches applied in this research. The study
conducted by [9] employed the Analytic Hierarchy Process-Weighted Sum Model (AHP-
WSM) to assess seismic risk. The research emphasized the e�ectiveness of the AHP-WSM
in easing decision-making procedures.

The research conducted by [18] presented an application that utilized LambdaMART
with XGBoost. The study also incorporated two assessment techniques, Normalized
Discounted Cumulative Gain (NDCG) and Mean Average Precision (MAP), to assess
the application’s performance.

The research conducted by [19] o�ers significant insights into agglomerative cluster-
ing. This study primarily examines several similarity measurements to enhance our
comprehensive comprehension of the strengths and limits of the agglomerative algorithm.

The research by reference [20] also presents an in-depth investigation of using Jaccard
similarity and cosine similarity metrics in nearest-neighbour clustering. This work
examines the performance and associated attributes of both similarity measures.



Chapter 3

Approaches for Ranking Model

The ranking models developed in this study will be presented in this chapter, first with
the data preprocessing needed before the implementation, then the detailed explanation
of the conventional ranking model: AHP-WSM model. After that, the LTR ranking
model implemented with LambdaMART is presented.

3.1 Data Preprocessing

The data preprocessing for later use in the ranking model is divided into feature filtering
and data transformation, as described separately in the following sections.

Feature Filtering

As the information provided in Chapter 2.3, following the execution of each test case,
a JSON file will be generated and uploaded to the database. This file contains various
details such as the date of the test run, the duration of the run, the software version used
(identified by the build_id), the corresponding test case (identified by the test_case_id),
the outcome of the run, the individual responsible for executing the run, and specific
information about each subtest. The subtest details encompass elements such as the
name of the subtest, the system on which it was executed, the duration of the subtest,
the name of the associated log file, and additional relevant information. The JSON file
representing a single run can range from several hundred to several thousand lines. To
optimize the performance of the ranking algorithm, it is necessary to extract essential
details while minimizing the inclusion of extraneous data.

17
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Attribute Name Description
test_case_id The identifier for the respective test case
test_case_name The name assigned to the test case
test_result Indicates the outcome of this particular run
start_of_test Indicates the date and time of this run’s execution

Table 3.1: The information extracted from each run.

The needed information for each run are as follows: the test case ID and name it
belongs to, the date and the result. Table 3.1 presents a comprehensive overview of each
attribute’s name and briefly explains each attribute.

Data Transformation

To rank the test cases based on their performance, it is necessary to group the features
from each execution and restructure the data at the test case level. After combining
those extracted details, the generated attributes for each test case are as follows:

• test_case_id: the identifier for the test case.

• test_case_name: the name assigned to the test case.

• total_runs: the number of runs from this test case.

• most_recent_run: the date from the latest run.

• MRR: as the most recent run’s result.

• RFP : as the recent failures percentage, is calculated by the count of failed runs
until a successful one is reached (also can be denoted as recent failures) divided by
total_runs. A failed result can be denoted as abort, error, or warning.

• AP : as abort percentage, is calculated by dividing the number of runs resulting in
abort among the recent failures by the total number of recent failures.

• EP : as error percentage, is calculated by dividing the number of runs resulting in
error among the recent failures by the total number of recent failures.

• WP : as warning percentage, is calculated by dividing the number of runs resulting
in warning among the recent failures by the total number of recent failures.

The reason abort, error, and warning are calculated separately instead of a single failed
percentage is that although abort, error, and warning are all denoted as a failed run,
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they hold di�erent priorities in ABB. Specifically, abort holds the highest priority, error
follows, and warning assumes the lowest importance among all three. The percentage of
each is one of the influential factors for ranking the test cases list.

The RFP counts the failed runs until it reaches the most recent successful run because
when it reaches a successful run, the results before it only have minor importance since a
successful run indicates the issue that caused the failure before it was resolved.

Additionally, percentages are preferred to calculate each test case’s historical running
state over the exact number of events. This approach ensures an unbiased perspective,
as the various test cases may have distinct running schedules. Some test cases may be
executed numerous times within a day, while others may only run once a week. The
comparison of the percentage of the events and the exact number of them are shown in
Figure 3.1.

Figure 3.1: The counts for each result and the percentage of each result from the given
test case ID.

After this process, the precise information of 223 test cases is generated from 59109 runs,
which can be used in the following ranking models in the next section.

3.2 AHP-WSM model

As described in section 2.1, the conventional ranking model implemented in this study
combines AHP and WSM. The AHP was chosen to calculate the weight for each criterion
since the hierarchical structure can benefit complicated decision scenarios, as it allows
for a systematic review of multiple criteria. Moreover, it takes the user’s preference as a
count. The WSM will then utilise the calculated weight to generate a score for each item
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based on the values from each criterion. The major advantage is that the straightforward
calculation can be valuable for a large number of criteria or requires real-time processing,
which can provide computational e�ciency and clarity. The subsequent sections will
provide a detailed description of the implementation process.

3.2.1 AHP

The AHP determines the weight assigned to each criterion. First of all, a pairwise
comparison matrix is needed. As outlined in section 2.1, the pairwise comparison matrix
is derived from the relative importance of each criterion pair regarding the Fundamental
scale table[4].

Following the data processing outlined in the previous section, this situation involves the
consideration of five criteria. These criteria include the percentage of runs that led to
abort, error, and warning, denoted as AP , EP , and WP , respectively. Additionally, the
percentage of recent failures referred to as RFP , and the outcome of the most recent
execution of the test case is also considered, denoted as MRR. The determination of the
priority of each criterion, as shown in Table 3.2, is established in the following manner:

The RFP attribute holds the highest priority compared to the other four attributes. It
signifies the most current outcomes seen in the test scenario. Suppose a test case exhibits
a high value for this property. In that case, it indicates that the test case has yet to
achieve a successful execution for a considerable period when considering the test case’s
execution schedule.

The MRR is in the second place. The priority for di�erent outcomes from the test run
is abort> error > warning, as described before. Suppose the outcome of the test case is
aborted during the most recent execution. In that case, it indicates that the script for
the test case includes a critical problem that requires immediate resolution.

Next, the analysis includes evaluating the failure rate for each outcome, namely AP ,
EP , and WP . These three attributes can o�er helpful insights where test cases have
performed similarly in RFP and MRR. Among these three, the priorities are similar to
the MRR: AP > EP > WP .

The normalized pairwise comparison matrix is presented in Table 3.3, while the cor-
responding weights derived from this matrix are displayed in Table 3.4. To verify the
consistency of the weights, the weighted sum matrix (Table 3.5) and consistency vector
(Table 3.6) are computed. The confidence interval (CI) value is

CI = ⁄max ≠ n

n ≠ 1 = (5.3896 + 6.3064 + 6.4962 + 5.7497 + 5.6384)/5 ≠ 5
5 ≠ 1 = 0.08533
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WP EP AP RFP MRR
WP 1 1

2
1
3

1
9

1
7

EP 2 1 1
3

1
9

1
7

AP 3 3 1 1
9

1
7

RFP 9 9 9 1 3
MRR 7 7 7 1

3 1

Table 3.2: Pairwise comparison matrix.

WP EP AP RFP MRR
WP 0.0454 0.0243 0.0162 0.0662 0.0316
EP 0.0909 0.0487 0.0162 0.0662 0.0316
AP 0.1363 0.1463 0.0491 0.0662 0.0316

RFP 0.4090 0.4390 0.4426 0.6024 0.6787
MRR 0.3181 0.3414 0.3443 0.1987 0.2262

Table 3.3: Normalized pairwise comparison matrix.

WP 0.0367
EP 0.0507
AP 0.0859

RFP 0.5143
MRR 0.2857

Table 3.4: Weights.

WP EP AP RFP MRR
WP 0.0367 0.0253 0.0283 0.0565 0.0399
EP 0.0734 0.0507 0.0283 0.0565 0.0399
AP 0.1101 0.1521 0.0859 0.0565 0.0399

RFP 0.3303 0.4563 0.7731 0.5143 0.8571
MRR 0.2569 0.3549 0.6013 0.1697 0.2857

Table 3.5: Weighted sum matrix.

WP 5.0857
EP 4.9072
AP 5.1746

RFP 5.6992
MRR 5.8400

Table 3.6: Consistency vector.
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Criteria
WP EP AP RFP MRR

Alts. ( 0.036 0.0507 0.085 0.514 0.285)
tc_115370 0.454 0.454 2.272 0 0
tc_528035 1.923 65.384 17.307 75.0 3
tc_519922 1.834 44.954 21.100 6.422 3
tc_354400 0 3.846 96.153 100.0 5
tc_507580 57.758 6.896 0 54.741 3

Table 3.7: Decision matrix.

While the correlation coe�cient (CR) is

CR = CI

RI
= 0.0862

1.11 = 0.0768

It is less than 0.1, which means the judgement is consistent, and the weights for criteria
are available to use in the next step.

3.2.2 WSM

In order to construct a decision matrix suitable for utilization in the WSM, it is necessary
to transform all linguistic variables into numerical values. As previously mentioned, the
data preprocessing stage generates five criteria: AP , EP , WP , RFP , and MRR. MRR

is the only one with linguistic value, indicating the outcome from the most recent run.
In this study, the propriety for outcomes is established, and the corresponding number
values assigned to linguistic outcomes are as follows: abort = 5, error = 3, warning = 2,
pass = 0. An example of a decision matrix is shown in Table 3.7, which contains five
test cases.

The score can be calculated by following the formula 2.1 of the given test cases, which
are:

Stc_115370 = 0.454 ◊ 0.036 + 0.454 ◊ 0.0507 + 2.272 ◊ 0.085 + 0 ◊ 0.514 + 0 ◊ 0.285

= 0.232
(3.1)

Similarly, the others are: Stc_528035 = 14.606, Stc_519922 = 8.294, Stc_354400 = 61.19,
Stc_507580 = 31.420.

Therefore, among the five test cases provided as examples, the following ranking is
derived: tc_354400 > tc_507580 > tc_528035 > tc_519922 > tc_115370. The overall
result will be presented in Chapter 5.
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3.3 LambdaMART

LTR has three main types of approaches: pointwise, pairwise and listwise. The main
di�erence between these three types of approach is how many documents they will
consider each time and what/when the loss function is used. The pointwise approach
only considers one document at a time and uses standard regression and classification
algorithms as loss functions. The pairwise approach considers pairs of documents within
a query, and the loss functions used here target to minimize the number of inversions to
increase the correct ranking of pairs. The listwise approach considers all the documents
in a query simultaneously and uses particular loss functions capable of assessing the
overall quality of the entire list[18].

The reason pairwise LambdaMART is chosen is the robustness in handling label noise,
which often happens in real-world datasets. Instead of relying on absolute relevance scores,
the model learns from the relative ordering of alternatives, making it more adjustable to
noisy or uncertain labels.

3.3.1 Additional Data Preprocessing

Inside the data preprocessing phase of the AHP-WSM model, the dataset undergoes two
essential procedures: feature selection and transformation. It is important to note that
LambdaMART, a supervised machine learning technique, requires a relevant label for
each item inside the dataset. In addition, it is necessary to partition the dataset into two
sets, namely the training set and the test set, to employ them in their respective phases.

Relevance Label Assigning

The primary approach for assigning relevance labels to items is by human judgment.
However, in the context of this study, the implemented feature might require daily
execution. Therefore, a more practical approach involves automating the process of
assigning labels.

As discussed in the preceding section, the AHP-WSM model involves the computation of
scores for each test case. These scores are then utilized to give relevance labels in this
section. The assignment of labels is accomplished by categorizing the scores into five
distinct groups, each associated with a label ranging from 4 to 0, representing di�erent
levels of relevance, with higher values indicating higher relevance.

The reason for not using the original score derives from its wide range of 60 to 0, which
creates significant relevance levels. This wide range of levels can complicate the training
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Label 0 1 2 3 4
Number 207 9 1 3 13
Pct(%) 88.84% 5.57% 3.86% 1.28% 0.43%

Table 3.8: The number and percentage of the values that are labelled in the range of 0
to 4.

process and demand a larger dataset. However, as previously discussed in the data
preprocessing section in the AHP-WSM model, the dataset size becomes significantly
reduced after performing the transformation procedure. A comparison of the range of
calculated labels and the original score is shown in Figure 3.2.

Figure 3.2: The comparison of the range of calculated labels and the original scores.

Dataset Splitting

Once the relevance labels have been assigned, the data is prepared for split into a training
set and a test set. The technique employed for this purpose is known as Stratified
Sampling[21]. The rationale for selecting this approach stems from the presence of an
imbalanced dataset in the current investigation. According to the statistics presented in
Table 3.8, most of the data, precisely over 88%, was labeled as 0. Conversely, a relatively
minor portion, approximately 11.15%, was categorized into groups ranging from 1 to 4.
Furthermore, the levels of relevance can be regarded as strata, and each test case can be
treated as an independent unit that fits the requirements for Stratified Sampling[22].

Stratified sampling can be implemented using the pandas, an open-source Python library,
with a division of 70% for training and 30% for testing. Figure 3.3 displays the range
covered within each set, and the corresponding number and percentage are as shown in
Table 3.9.
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Figure 3.3: The label covered by the training set and the test set.

Label 0 1 2 3 4

Training Number 145 6 1 2 9
Pct(%) 88.95% 3.68% 0.61% 1.22% 5.52%

Test Number 62 3 0 1 4
Pct(%) 88.57% 4.28% 0 1.43% 5.71%

Table 3.9: The number and percentage of the values labelled in a range of 0 to 4 from
the training and test sets.

Transformation

An additional transformation is needed to calculate the decision matrix that is going to
be fed into the LambdaMART algorithm. An example dataset that may be used for this
purpose is MSLR-WEB30k[23], a dataset released by Microsoft specifically for research
on learning to rank. The required format needs to be the following structure:

• The first column represents the relevance label.

• The query ID and corresponding value will be in the second column.

• The remaining columns will consist of the features and their respective values,
presented in the format of featurenumber : value.

One row from the training set is shown in Figure 3.4. In this scenario, all query IDs are
equal to 1 because there is only one query, which is "find the often failed test cases.".
The feature number to the corresponding feature is in the order of RFP, WP, EP, AP,
and MRR.
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Figure 3.4: A example for a line in the dataset after transformation.

3.3.2 Modelling

XGBoost is used to implement the LambdaMART ranking model. XGBoost, short for
Extreme Gradient Boosting, is an open-source library that provides an optimised gradient
boosting framework in which the machine learning algorithms are implemented[24].
Gradient Boosting is a machine learning technique that combines the predictions of
multiple weak learners, such as the decision trees in LambdaMART, to create a strong
predictive model. The fundamental idea behind gradient boosting is to iteratively improve
the model’s performance by optimising a loss function. XGBoost’s exceptional speed and
e�ciency have made it a popular choice among Kaggle competition winners compared to
other implementations.

By specifying the objective parameter as rank : pairwise, setting the learning rate to
0.01, and running 1000 iterations, a LambdaMART ranking model can be e�ectively
trained. Once the training set is fed into the model, the resulting decision tree and
feature importance are visualised, as depicted in Figure 3.5 and 3.6.

Figure 3.5: The visualized decision tree from the trained LambdaMART ranking model,
where f1 represented RFP as feature 1, and each leaf represented a determined value

from the dataset.

Subsequently, the model is used to make predictions by applying the test dataset. These
predictions are numerical values representing the relevance of each document for a specific
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Figure 3.6: The visualized feature importance from the trained LambdaMART ranking
model, where f1 represented RFP as feature 1, and the feature score (F score) for

importance is 17.

query derived from the leaves of the decision tree. The ranked list is created by sorting
these predictions and presented in Chapter 5.

3.4 Evaluation

The Normalised Discounted Cumulative Gain (NDCG) evaluation metric is used to
evaluate the LambdaMART model’s performance. NDCG is a widely used evaluation
metric in learning-to-rank scenarios. This metric evaluates the accuracy of the ranking
produced by the model, considering both the relevance labels and the ranking position
assigned by the model. A higher NDCG value indicates a more satisfying ranking quality,
representing that the items at the top of the ranked list have higher relevance labels
compared to others. The NDCG calculation comprises two components: Discounted
Cumulative Gain (DCG) and ideal DCG (iDCG). DCG can be computed using the
following formula (3.2), where relevancei represents the relevance score of items, and i

denotes the position of an item in the ranked list. iDCG, on the other hand, represents
the ideal DCG score when the top-k items are perfectly ranked in descending order of
relevance labels. NDCG is calculated by the formula 3.3.

DCGk =
kÿ

i=1

relevancei

log2(i + 1) (3.2)

NDCG = DCG

iDCG
(3.3)
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As illustrated in Figure 3.7, multiple k levels are used to evaluate the model.

Figure 3.7: NDCG result at various level K.



Chapter 4

Approaches for Clustering Model

The primary topic of this chapter is the implementation of clustering. The initial
data preprocessing stage will be discussed, containing its fundamental characteristics.
Subsequently, the rationale behind the choice of similarity metrics, the clustering method,
and the implementation specifics are presented within the modelling section.

4.1 Data Preprocessing

In order to cluster test cases based on error messages, it is required to consider solely
the most recent execution details for each test case. Furthermore, this latest execution
should yield either an Error, Abort, or Warning result. Though the clustering algorithms
only need the error messages, the essential information is also needed to present the
result to the user: the test case ID, the unique identifier for the most recent execution,
the date of execution, and the corresponding outcome.

After extracting the needed information, the dataset contains 228 items. The basic
properties of the dataset are shown in Table 4.1.

Texts Vocabulary Avg. Words Max. Words Min. Words
228 347 19.54 316 25

Table 4.1: The basic properties of the dataset, include the total number of texts, the
vocabulary size, the average, maximum, and minimum number of words in messages.

29
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4.2 Modelling

This section provides further information regarding the similarity measures employed
in the present study, namely Jaccard Similarity and Cosine Similarity. The motivation
behind selecting these two similarity metrics will be clarified, followed by their imple-
mentation specifics. Subsequently, a comprehensive explanation of the Agglomerative
Clustering algorithm will be provided, along with a discussion of its implementation
details.

4.2.1 Jaccard Similarity and Cosine Similarity

In the context of text data, both Jaccard and cosine similarities are popular choices due
to their e�ectiveness in capturing di�erent aspects of textual similarity.

As mentioned in Section 2.2.2, Jaccard similarity is a measure that quantifies the similarity
between two sets by comparing the intersection and union of their elements. On the
other hand, the cosine similarity measures the cosine of the angle between two vectors,
representing the direction of similarity between them.

Jaccard similarity leans more keenly towards capturing topical overlaps, but not consid-
ering terms’ frequency can overlook the importance of terms that appear multiple times.
In contrast, cosine similarity considers both the presence and frequency of terms, which
can benefit the capturing semantic similarity and make it less sensitive to the text length
but also can be vulnerable to noise[25].

Given the distinctive characteristics of these two measures, a reasonable choice can be
made for the dataset at hand by conducting a close analysis. This assessment e�ciently
determines which measure aligns more closely with the requirements of the dataset.

Implementation of Jaccard Similarity

The Jaccard Similarity for a pair of messages is computed using Algorithm 4.1. Each
pair of messages is processed through the algorithm to construct the overall similarity
matrix for the dataset. The resulting similarity matrix is depicted on the left side of
Figure 4.1.



Chapter 4 Approaches for Clustering Model 31

Algorithm 4.1 Jaccard Similarity
Input: Text Data: m1, m2
Output: Jaccard Similarity: similarity_score

1: set1 = tokenize(m1)
2: set2 = tokenize(m2)
3: intersection = set1 fl set2
4: union = set1 fi set2
5: similarity_score = |intersection|

|union|

A step-by-step calculation containing two sample messages is given to make the algorithm
more straightforward to understand.

step 1. Given two messages m1 and m2:
m1 = "interrupt count expected 1 got 0"
m2 = "0 is not Equal to the expected value: 3"

step 2. Tokenize m1 and m2:
set1 = {interrupt, count, expected, 1, got, 0}
set2 = {0, is, not, Equal, to, the, expected, value:, 3}

step 3. Calculate the intersection between set1 and set2:

intersection = set1 fl set2

= {expected, 0}

= 2

step 4. Calculate the union between set1 and set2:

union = set1 fi set2

= {interrupt, count, expected, 1, got, 0, is, not, Equal, to, the, value:, 3 }

= 13

step 5. Calculate the similarity score:
similarity_score = |intersection|

|union| = 2
13 ¥ 0.154

Implementation of Cosine Similarity

Algorithm 4.2 outlines the process for calculating the Cosine Similarity between pairs of
messages. The resulting Cosine Similarity matrix is presented on the right side of Figure
4.1.
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Figure 4.1: The Jaccard Similarity matrix (left) and the Cosine Similarity matrix
(right). The similarity scale next to the cosine similarity matrix applies to both figures.

Algorithm 4.2 Cosine Similarity
Input: Text Data: m1, m2
Output: Cosine Similarity: similarity_score

1: vector1 = vectorize(m1)
2: vector2 = vectorize(m2)
3: dot_product =

qn
i=1(vector1[i] ◊ vector2[i])

4: magnitude_vector1 =
qn

i=1(vector1[i]2)
5: magnitude_vector2 =

qn
i=1(vector2[i]2)

6: similarity_score = dot_product
magnitude_vector1◊magnitude_vector2

As the step-by-step calculation for jaccard similarity, an example of cosine similarity is
also given.

step 1. & step 2. Same with the jaccard similarity.

step 3. Identify all the unique words from both sets and create the vocabulary:
vocabulary = {interrupt, count, expected, 1, got, 0, is, not, Equal, to, the, value:, 3 }

step 4. Vectorize two sets based on the vocabulary. If a word is present in the set, then
the binary vector for this word is 1, otherwise is 0:
vector1 =< 1, 1, 1, 1, 1, 1 >

vector2 =< 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1 >

step 5. Calculate the dot product for vector1 and vector2:

dot_product =
nÿ

i=1
(vector1[i] ◊ vector2[i])

=< 1, 1, 1, 1, 1, 1 > · < 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1 >

= (1 · 0) + (1 · 0) + (1 · 1) + (1 · 0) + (1 · 0) + (1 · 1) + (0 · 1) + (0 · 1) + (0 · 1)...

= 2
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step 6. Calculate the magnitude for vector1 and vector2:

magnitude_vector1 =
ı̂ıÙ

nÿ

i=1
(vector1[i]2)

=


12 + 12 + 12 + 12 + 12 + 12

=
Ô

6

magnitude_vector2 =
ı̂ıÙ

nÿ

i=1
(vector2[i]2)

=


02 + 02 + 12 + 02 + 02 + 12 + 12 + 12 + 12 + 12 + 12 + 12

=
Ô

8

step 7. Calculate the similarity score:

similarity_score = dot_product

magnitude_vector1 ◊ magnitude_vector2

= 2Ô
6 ◊

Ô
8

¥ 0.452

4.2.2 Agglomerative Clustering

Before explaining why the agglomerative clustering algorithm is used, a more detailed
discussion about the clustering algorithm is needed.

Clustering algorithms can be broadly categorized into two main types: hierarchical
and partitioning methods. The key distinction lies in their approach to clustering.
Hierarchical algorithms generate a dendrogram, a tree-like structure, and the user selects
the number of clusters by choosing a specific level to cut the dendrogram. In contrast,
partitioning methods require the user to specify the desired number of clusters before
running the algorithm.

As in this study, a flexible cluster number can be more beneficial to the user, as the
di�erent aspect of the overall error messages appears in the recent run test cases, so the
Agglomerative Clustering, a hierarchical method, is selected. Furthermore, based on the
calculation of the distance between two clusters, the agglomerative clustering can be
further classified into three types:
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• Single-link clustering: consider the distance between two clusters equal to the
closest objects from each cluster.

• Complete-link clustering: consider the distance between two clusters equal to the
longest distance between two objects from each cluster.

• Average-link clustering: consider the distance between two clusters equal to the
average distance between any object from the two clusters.

Among these three types, complete-link clustering usually creates more compact clusters
and more usable hierarchies than the other two because single-link clustering might lead
two nearby clusters to merge. In contrast, average-link clustering may cause elongated
clusters to split. Overall, this study uses the complete-link agglomerative clustering
algorithm.

Agglomerative Clustering with Jaccard Similarity

To implement Agglomerative Clustering, the scikit-learn library (sklearn) is utilized.
Sklearn, a widely-used open-source machine learning library for Python[26], provides a
comprehensive set of tools for various machine learning tasks. This study specifies the
linkage =Õ completeÕ parameter to enable complete-link agglomerative clustering. The
Jaccard similarity matrix, generated in the previous section, is then used as input to
create an agglomerative clustering model based on Jaccard similarity.

The resulting dendrogram illustrates the hierarchical merging of clusters at each step,
o�ering insights into the underlying structure of the data is presented in Figure 4.2.

Figure 4.2: The clustering dendrogram from ACJ with data points as the x-axis and
the distance between each data point as the y-axis.
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Agglomerative Clustering with Cosine Similarity

Similarly, the agglomerative clustering model with cosine similarity can be generated by
feeding the cosine similarity matrix to the complete-link clustering function. Moreover,
the corresponding dendrogram is shown in Figure 4.3

Figure 4.3: The clustering dendrogram from ACC with data points as the x-axis and
the distance between each data point as the y-axis.

Cluster Cut

The cluster cut operation extracts a certain number of clusters from the dendrogram
produced by the clustering algorithm. Specifically, a preferred number of clusters
is selected, leading to a distance on the dendrogram, which indicates the dissimilarity
between the data points, and then makes the cut at that level. An example containing ten
error messages selected from the dataset, labelled from 0 to 9, provides a straightforward
understanding. To clarify, while the labels presented here provide understanding, they
do not correspond to the actual labels in the dataset.

The dendrograms generated by ACJ and ACC for the above example messages are shown
in Figures 4.4 and 4.5, respectively. The required number of clusters for this case is 5.
This implies that the distance for performing cluster cuts is 0.93 from ACJ and 0.14 from
ACC, which is also shown in the figures. The resulting clusters obtained from the cluster
cuts and their respective members are displayed in Table 4.3.

The full results of the ACJ and ACC for the entire dataset are outlined in Chapter 5.
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Index Error Message

0 1 configfiles failed to load

1 Unable to write signal; ICI Error: Failed to write signal
number ’3’ on: b’V1’

2 EasyICI: Unable to query signals on device: Board under
client: b’\x01 \x04’; Error: Failed to retrieve signal list:
b’unexpected response (internal error 2)’

3 Actual elog sequence is not as expected

4 interrupt count expected 1 got 0

5 $0 was not received when running command ips tic 2
Spi1/Fosi1 Connect

6 FPGA upgrade failed expected 20210326.2_Paint.Hardware,
got 20230820.2_Paint.Hardware

7 readres/degrees: 247.637 is not Between 245.6 and 247.6

8 RunTestIteration CycleUnitTestRackPower error: [Errno
Expecting value] : 0

9 PortMcobIn1/Value: 61695 is not Equal to the expected
value: 37119

Table 4.2: The selected ten messages contain labels from 0 to 9.

cluster No. Included data points

ACJ ACC

cluster 1 [ 0, 1, 2, 8 ] [ 1, 2 ]

cluster 2 [ 6 ] [ 0, 4, 6 ]

cluster 3 [ 3, 5, 7 ] [ 5 ]

cluster 4 [ 9 ] [ 3, 7, 9 ]

cluster 5 [ 4 ] [ 8 ]

Table 4.3: Clustering Results (k=5) from ACJ and ACC of the given example, shows
the cluster number and the members belonging to it, where the underlined members

di�er between the two models.
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Figure 4.4: The clustering dendrogram
from ACJ where data points are the
x-axis, and the distance between each
data point is the y-axis. The required
cluster cut happens at distance=0.93.

Figure 4.5: The clustering dendrogram
from ACC where data points are the
x-axis, and the distance between each
data point is the y-axis. The required
cluster cut happens at distance=0.14.

4.3 Evaluation

The evaluation measure used is the silhouette score, which computes the average silhouette
coe�cients of all data points. The following equation 4.1 calculates the silhouette
coe�cient: a is the mean distance from a data point to other data points in the same
cluster, and b is the mean distance from a data point to other data points in di�erent
clusters. The range of silhouette score is from -1 to 1, where a high value indicates that the
object is well-matched to its cluster and poorly matched to neighbouring clusters[27][28].

SilhouetteScore = b ≠ a

max(a, b) (4.1)

To measure the quality of the clustering model, a number of clusters are used, ranging
from 3 to 10, as shown in Table 4.4.

No. of Clusters 3 4 5 6 7 8 9 10

Silhouette ACJ 0.191 0.308 0.307 0.261 0.342 0.346 0.348 0.508
ACC 0.605 0.686 0.749 0.728 0.713 0.730 0.708 0.707

Table 4.4: Silhouette scores for the agglomeration clustering method with Jaccard
similarity and Cosine similarity.
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Result

This chapter presents the outcomes of the implementations covered in earlier chapters.
The first outcome is ranking the 20 most commonly failed test cases produced from the
AHP-WSM model and the LambdaMART model. Then, the result of clustering the test
cases based on the error messages.

5.1 Ranking Results

The ranking outcomes are presented as lists, displaying the identified features alongside
the scores or predictions provided by di�erent models. Table 5.1 shows the outcomes
generated from the AHP-WSM model, including the computed score. The results obtained
from the LambdaMART model and corresponding predictions are o�ered in Table 5.2.

38
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ID WP EP AP RFP MRR Score
1 tc_354400 0.000 3.846 96.154 100.000 5 61.313
2 tc_513421 0.000 40.000 60.000 100.000 3 59.469
3 tc_282458 0.000 97.500 2.500 94.787 3 54.764
4 tc_114854 0.000 100.000 0.000 94.787 3 54.676
5 tc_115285 0.000 100.000 0.000 94.787 3 54.676
6 tc_114909 0.000 100.000 0.000 94.737 3 54.650
7 tc_115003 0.000 100.000 0.000 94.545 3 54.552
8 tc_115004 0.000 100.000 0.000 94.545 3 54.552
9 tc_115188 0.000 100.000 0.000 94.118 3 54.332
10 tc_115189 0.000 100.000 0.000 94.037 3 54.290
11 tc_112180 0.000 99.500 0.500 93.897 3 54.236
12 tc_115294 0.000 100.000 0.000 93.897 3 54.218
13 tc_112289 0.000 100.000 0.000 93.868 3 54.203
14 tc_528035 0.000 82.051 17.949 75.000 3 45.131
15 tc_519604 0.000 83.871 16.129 57.407 3 36.019
16 tc_507580 0.000 99.213 0.787 54.741 3 34.108
17 tc_547519 0.000 0.000 100.000 15.385 5 17.931
18 tc_519922 0.000 100.000 0.000 6.422 3 9.230
19 tc_112482 0.000 100.000 0.000 0.948 3 6.415
20 tc_526033 0.000 100.000 0.000 0.746 3 6.311

Table 5.1: Results from the AHP-WSM model, with the value from each attribute and
the score calculated by the model.

ID WP EP AP RFP MRR Preds
1 tc_354400 0.000 3.846 96.154 100.000 5 0.075
2 tc_115003 0.000 100.000 0.000 94.545 3 0.075
3 tc_115294 0.000 100.000 0.000 93.897 3 0.075
4 tc_112180 0.000 99.500 0.500 93.897 3 0.075
5 tc_115188 0.000 100.000 0.000 94.118 3 0.075
6 tc_115004 0.000 100.000 0.000 94.545 3 0.075
7 tc_115189 0.000 100.000 0.000 94.037 3 0.075
8 tc_114909 0.000 100.000 0.000 94.737 3 0.075
9 tc_115285 0.000 100.000 0.000 94.787 3 0.075
10 tc_114854 0.000 100.000 0.000 94.787 3 0.075
11 tc_282458 0.000 97.500 2.500 94.787 3 0.075
12 tc_513421 0.000 40.000 60.000 100.000 3 0.075
13 tc_112289 0.000 100.000 0.000 93.868 3 0.059
14 tc_528035 0.000 82.051 17.949 75.000 3 0.059
15 tc_519604 0.000 83.871 16.129 57.407 3 0.059
16 tc_507580 0.000 99.213 0.787 54.741 3 0.059
17 tc_547519 0.000 0.000 100.000 15.385 5 0.052
18 tc_198620 0.000 100.000 0.000 0.452 3 0.047
19 tc_439419 0.000 100.000 0.000 0.273 3 0.047
20 tc_219232 0.000 100.000 0.000 0.275 3 0.047

Table 5.2: Results from the LambdaMART model, with the value from each attribute
and the prediction generated by the model.
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5.2 Clustering Results

The clustering outcomes consist of two components: firstly, the dendrograms generated
by two approaches, which illustrate the distance between each data point and the cluster
cuts for two di�erent required cluster numbers; secondly, the tables that display the
allocation of data points to certain clusters.

The dendrogram generated from ACJ is shown in Figure 5.1, and the one produced by
ACC is in Figure 5.2. As presented in Section 4.3, the evaluation results for the optimal
cluster numbers, denoted as k, for Jaccard Similarity and Cosine Similarity, are k = 5
and k = 10, respectively. Therefore, the cluster cuts to meet the requirements are made
and shown in the figures.

Figure 5.1: The clustering dendrogram from ACJ where data points are the x-axis, and
the distance between each data point is the y-axis. The required cluster cut happens at

distance=4.39(k=5) and distance=2.67(k=10).

Figure 5.2: The clustering dendrogram from ACJ where data points are the x-axis, and
the distance between each data point is the y-axis. The required cluster cut happens at

distance=0.72(k=5) and distance=0.28(k=10)
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Then, Table 5.3 shows the allocation of data points to specific clusters when the cluster
number (k) is set to 5 for both ACJ and ACC. Table 5.4 displays the corresponding
results when the cluster number (k) is set to 10.

cluster No. Included data points

ACJ ACC

cluster 1 [ 167, . . . , 227 ] [ 167, . . . , 227 ]

cluster 2 [ 122, . . . , 158, 161 ] [ 122, . . . , 158 ]

cluster 3 [ 3, 4, 5, 6, 9, 11, 13, 14, 20, 27,
28, 29, 30, 31, 32, 36, 37, 38, 44,
45, 46, 47, 48, 53, 54, . . . , 93, 113,
114, 115, 116, 117, 118, 159, 160,
163, 164, 165, 166 ]

[ 54, . . . , 93 ]

cluster 4 [ 7, 17, 22, 42, 50, 96,. . . , 112 ] [ 7, 17, 42, 50, 96,. . . , 112 ]

cluster 5 [ 0, 1, 2, 8, 10, 12, 15, 16, 18, 19,
21, 23, 24, 25, 26, 33, 34, 35 39,
40, 41, 43, 49, 51, 52, 94, 95, 119,
120, 121, 162 ]

[ 0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12,
13, 14, 15, 16, 18, 19 20, 21, 22,
23, 24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 35, 36, 37 38, 39, 40,
41, 43, 44, 45, 46, 47, 48, 49, 51,
52, 53, 63, 94, 95, 113, 114, 115,
116, 117, 118, 119, 120, 121, 159,
160, 161, 162, 163, 164, 165, 166 ]

Table 5.3: Clustering Results (k=5) from ACJ and ACC, shows the cluster number
and the members belonging to it, where the underlined members di�er between the two

models.
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cluster No. Included data points

ACJ ACC

cluster 1 [ 167, . . . , 184, 185, 186, 187, 188,
189, 190, 191, . . . , 227]

[167, . . . , 184, 191, . . . , 227 ]

cluster 2 [ 122, . . . , 158, 161 ] [ 122, . . . , 158 ]

cluster 3 [ 64, 67, 68, 69, 76, 79, 80, 81, 83,
86, 87, 88, 90, 91, 92, 93 ]

[ 54, 55, 56, 57, 58, 59, 60, 61, 64,
65, 66, 67, 68, 69, 70, 71, 72, 73,
74, 75, 76, 77, 78, 79, 80, 81, 82,
83, 84, 85, 86, 87, 88, 89, 90, 91,
92, 93 ]

cluster 4 [ 20, 27, 28, 36, 44, 48, 54, 55, 56,
57, 58, 59, 60, 61, 62, 63, 65, 66,
70, 71, 72, 73, 74, 75, 77, 78, 82,
84, 85, 89, 117, 160, 164 ]

[ 62 ]

cluster 5 [ 6, 11, 29, 30, 31, 32, 38, 45, 46,
47, 53, 113, 114, 115, 116, 118,
159, 165, 166 ]

[ 159 ]

cluster 6 [ 3, 4, 5, 9, 13, 14, 37] [ 2, 3, 4, 5, 6, 8, 9, 10, 12, 13, 14,
15, 16, 18, 19, 25, 26, 35, 37, 38,
39, 49, 51, 52, 113, 119, 120, 121
]

cluster 7 [ 163 ] [ 45, 46, 47, 114, 115, 116, 118,
163, 165 ]

cluster 8 [ 7, 17, 22, 42, 50, 96, . . . , 112] [ 7, 17, 42, 50, 96, . . . , 112 ]

cluster 9 [ 2, 8, 10, 12, 15, 16, 18, 19, 23,
24, 25, 26, 34, 35, 39, 49, 51, 52,
94, 95, 119, 120, 121 ]

[ 181, 185, 186, 187, 188, 189, 190,
200 ]

cluster 10 [ 0, 1, 21, 33, 40, 41, 43, 162 ] [ 0, 1, 11, 20, 21, 22, 23, 24, 27,
28, 29, 30, 31, 32, 33, 34, 36, 40,
41, 43, 44, 48, 53, 63, 94, 95, 117,
160, 161, 162, 164, 166 ]

Table 5.4: Clustering Results (k=10) from ACJ and ACC, shows the cluster number
and the members belonging to it, where the underlined members di�er between the two

models.
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Discussion

A discussion of the results will be presented in this chapter, which includes comparing the
results from di�erent models and analysing the reasons behind the di�erent performances.
Start with analysing the results presented by the ranking models, followed by the results
generated from the clustering methods ACJ and ACC.

6.1 Ranking Model Results Analysis

This section presents an analysis of the ranking results and the performance of the
models. The initial step involves comparing the outcomes obtained from both models.
Subsequently, the analysis of the dataset view is o�ered, taking into account the conclusion
drawn from the previous comparison.

6.1.1 Results Comparison

Figure 6.1 displays the attributes statistic from the ranked list generated by the AHP-
WSM model, whereas Figure 6.2 presents the attributes statistic obtained from the
LmabdaMART model. The di�erences appear in the second and twelfth positions, where
the values of the attributes are presented in Table 6.1.

Among the two items, tc_513421 has a higher value of the RFP, with a value of 100%,
as opposed to tc_115003’s 94.545%. As previously said, the RFP holds significant
importance among the five attributes. Therefore, in the current case, the outcome
produced from the AHP-WSM is accurate. Subsequently, the disagreement in the twelfth
position is likewise addressed, as it relates to the comparison between tc_115294 and
tc_513421, with the latter one considered suitable for the second position.

43
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Index Test case ID WP EP AP RFP
2 tc_513421 0 40.000 60.000 100.000

tc_115003 0 100.000 0.000 94.545
12 tc_115294 0 100.000 0.000 93.897

tc_513421 0 40.000 60.000 100.000

Table 6.1: The comparison of values of the second place and twelfth place in both lists.

In summary, the outcome obtained by the AHP-WSM model shows a higher level of
accuracy.

Figure 6.1: The attributes’ values from the ranked results.

Figure 6.2: The attributes’ values from the ranked results..

6.1.2 Analysis

As shown in the results from the previous section, it is evident that the conventional
ranking model, employing AHP-WSM, outperforms the LambdaMART model. A de-
tailed examination of the dataset is critical to explain the underperformance of the
LambdaMART model. For that, two critical factors come to the forefront: data size and
data quality.
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Dataset Size

As described in data preprocessing, the dataset used in this study contains only 233 test
cases after preprocessing. Furthermore, the training set covers simply 163 test cases.
This limitation implies that the model might not have access to a su�cient amount of
data to promote e�ective learning during the training phase. Moreover, as depicted
in Figure 6.3, features contributing to the model’s ability to learn the importance of
each feature are non-zero values. However, these values represent an exceedingly minor
fraction of the dataset, all falling below the 20% threshold.

Figure 6.3: The zero and non-zero values are contained in each feature.

Data Quality

Regarding data quality, according to [29], one dimension that can a�ect the performance
of a machine-learning model is class balance. A class represent the items containing
the same label in the dataset used in this study. An imbalanced dataset can cause the
algorithm to fail at identifying the structure or miss the smaller classes. The class balance
can be measured by the following equations:

ImBalance(d) = 1
2 ◊

ÿ

i,jœ1,...,m

|ncli ≠ nclj | (6.1)

Balance(d) = 1 ≠ ImBalance(d)
Ám

2 Ë ◊ Âm
2 Ê ◊ ncmax

(6.2)

In these equations, the variables |ncli ≠ nclj | represent the pairwise di�erence between
two classes: cli and clj within a set containing m classes. Meanwhile, ncli and nclj denote
the number of items within their respective classes, and ncmax signifies the maximum
number of items a class contained.
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Label 0 1 2 3 4
Number 207 9 1 3 13

Table 6.2: The number of items in each class(label group).

According to the data presented in Table 6.2, the calculated Balance(d) for the dataset
used in this study can be computed as the following calculation, which indicates the
dataset is highly imbalanced.

ImBalance(d) =1
2(|cl0 ≠ cl1| + |cl0 ≠ cl2| + |cl0 ≠ cl3| + |cl0 ≠ cl4| + |cl1 ≠ cl2|

+ |cl1 ≠ cl3| + |cl1 ≠ cl4| + |cl2 ≠ cl3| + |cl2 ≠ cl4| + |cl3 ≠ cl4|)

= 422

Balance(d) = 1 ≠ 422
Á5

2Ë ◊ Â5
2Ê ◊ 207

= 0.59

In general, the LambdaMART model’s performance was unsatisfactory due to limited
data supply and imbalanced class distributions. However, the conditions mentioned
above are based on the test runs conducted in ABB, which are carefully planned and
scheduled. Therefore, to implement the feature of ranking the frequently failed test cases,
the AHP-WSM has been used.

6.2 Clustering Model Results Analysis

The comparison of results and the corresponding analysis of ACJ and ACC are presented
in this section. The result is visualised in section 5.2, and a specific example is given to
give more insight into the di�erent characteristics of the two methods.

6.2.1 Result Comparison

The following figures show the visualized results from Section 5.2. Figures 6.4 and 6.5
depict the outcomes obtained from the ACJ and ACC model when the number of clusters
is set to 5. Conversely, Figures 6.6 and 6.7 illustrate the results obtained when the
number of clusters equals 10.
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The visualized results provided insight into ACJ and ACC performance in text clustering:
whether a data point is assigned in a suitable cluster or not.

The clusters produced from ACJ contain overlapped clusters, where data points are
closely positioned but assigned to di�erent clusters. This phenomenon especially appears
when the number of clusters increases, indicating a limitation in the ability of Jaccard
similarity to capture the relationships contained in the text data.

Conversely, the clusters obtained with cosine similarity demonstrate clear and well-defined
edges and the visualizations reveal a more accurate grouping of similar documents. Even
as the number of clusters varies, the distinctiveness of the clusters remains clear.

Figure 6.4: ACJ Clustering Results
(k=5), where x-axis and y-axis repre-

sents similarities.

Figure 6.5: ACC Clustering Results
(k=5), where x-axis and y-axis repre-

sents similarities.

Figure 6.6: ACJ Clustering Results
(k=10), where x-axis and y-axis repre-

sents similarities.

Figure 6.7: ACC Clustering Results
(k=10), where x-axis and y-axis repre-

sents similarities.
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6.2.2 Analysis

Given that the performance of ACJ and ACC depends on the choice of the similarity
matrix, this investigation will primarily examine the utilisation of Jaccard similarity and
cosine similarity.

The cluster that was discovered exhibits overlap in terms of Jaccard similarity. This
can be explained by its set-based calculation, where the metric primarily considers the
existence or absence of terms rather than the words’ frequency. This sensitivity to
term occurrences may lead to imprecise clustering outcomes, especially when texts share
similar content but di�er in specific terms or frequencies.

The clarity and accuracy of the cluster boundaries obtained with cosine similarity align
with its ability to consider the angle between vectors. This property makes cosine
similarity more robust to variations in text lengths. It enables it to capture the semantic
relationships between texts based on the overall content rather than relying on exact
term matches.

A specific example is provided, along with two error messages below, labelled as 10 and
113 in the dataset.

m10 = "idi1/value: 1 is not Equal to the expected value: 0"

m113 = "0 is not Equal to the expected value: 3"

Before calculating the similarities, the messages need to be converted into two sets of
words and the vocabulary for them.

Set10 = {idi1/value:, 1, is, not, Equal, to, the, expected, value:, 0}

Set113 = {0, is, not, Equal, to, the, expected, value:, 3}

V ocabulary = {id1/value :, 1, is, not, Equal, to, the, expected, value :, 0, 3}

The Jaccard and Cosine similarity between them can be calculated by following the
algorithm from Section 4.2.1, as shown below:

J(m10, m113) = |{is, not, Equal, to, the, expected, value :}|
|{id1/value :, 1, is, not, Equal, to, the, expected, value :, 0, 3}|

= 7
11

¥ 0.636
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C(m10, m113) = <1, 1, 1, 1, 1, 1, 1, 1, 1, 1> · <0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1>Ô
10 ◊

Ô
9

= 8Ô
90

¥ 0.843

Based on this, as demonstrated in the ACC result, two variables m10 and m113 are
assigned to a single cluster, cluster 6, as shown in Figure 5.4, which is recommended.
However, from the results generated by the ACJ, m10 is assigned to cluster 6, but m113

is in cluster 5.

Moreover, based on the evaluation results, namely the silhouette scores obtained in
Section 4.3, it can be shown that the scores derived from ACC are significantly higher
than those obtained from ACJ, denoting that ACC produced more accurate results than
ACJ.
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Conclusions

In conclusion, this study has analysed and developed an optimal solution based on
the selected approaches for ranking the frequently failing test cases and clustering test
cases based on error messages. The examination of ranking approaches employing the
AHP-WSM model and LambdaMART highlights the importance of considering dataset
features. The higher performance of the AHP-WSM model can be attributed to its
e�cient and straightforward calculation method, which is particularly advantageous
when dealing with small datasets. Similarly, comparing agglomerative clustering with
Jaccard and cosine similarity metrics reveals the latter’s higher e�ectiveness in grouping
texts containing high-frequency terms like error messages.

Following are the answers to the research questions provided in Chapter 1:

RQ1: What data preprocessing techniques are most suitable for preparing the test data
for ranking and clustering algorithms?
Regarding data preprocessing, for the AHP-WSM model and both clustering models,
the suitable preprocessing can be straightforward, which relates to removing redundant
information and transforming the data structure provided in Sections 3.1 and 4.1.
However, LambdaMART needs an additional process: dataset splitting for the training
and test phases. The method used in this study is Stratified Sampling as presented in
Section 3.3.1.

RQ2: By comparing the conventional ranking and learning-to-rank models, which per-
formed better and why?
In this study, the conventional ranking model, which is the AHP-WSM model, performed
better. The reason is that the dataset used in this study contains unusual characteristics
unsuitable for machine learning models, especially in learning-to-rank. The detailed
analysis is presented in Section 6.1.2.
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RQ3: How do the two machine learning clustering models compare their performance
and results when applied to error message text clustering?
The evaluation matrix named silhouette score and the visualisation of results are used
to compare the clustering methods’ performance, which is presented in Section 4.3 and
Section 6.2.2. The silhouette scores provided an overall performance from both models,
but the visualised results gave more details to analyse when selecting an optimal solution.

RQ4: Based on the analysis of the results, which model is the most optimal for clustering
the test cases?
The two methods used in this study are ACJ and ACC. Based on the analysis in Section
6.2.2, the ACC performed better than the ACJ, showing that the error messages’ high-
frequency terms need to be considered when calculating the similarity between two
texts.

7.1 Future Directions

The future direction for this study is mainly focused on the ranking task, with a specific
emphasis on addressing the limitations associated with the LambdaMART model. Among
the approaches in this study, the AHP-WSM model is chosen because the limitations of
the current dataset make it unable to be used in the LambdaMART model. It is possible
to solve them in continuous development.

The first limitation arises from the size of the current dataset. LambdaMART’s two-
stage process requires a su�ciently large dataset for training and testing. Strategies
to overcome this limitation include a focus on increasing the dataset size through the
continuous accumulation of test runs at ABB. Additionally, applying data augmentation
techniques, such as introducing noise or transformations to existing data, can enhance
the dataset’s richness and utility.

The second limitation is data quality, a critical factor influencing machine learning model
performance. The current dataset exhibits a highly imbalanced distribution of items
across label groups. This imbalance can be addressed by implementing re-sampling
techniques, which involve duplicating or generating synthetic examples to increase the
number of items in the minority group.

As the study progresses into future phases, implementing these strategies promises to
expand the analytical capabilities to encompass LambdaMART. As the dataset grows,
employing a machine-learning model instead of a conventional one is essential.
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cluster No. Included data points
ACJ ACC

cluster 1 [167 168 169 170 171 172 173
174 175 176 177 178 179 180
181 182 183 184 185 186 187
188 189 190 191 192 193 194
195 196 197 198 199 200 201
202 203 204 205 206 207 208
209 210 211 212 213 214 215
216 217 218 219 220 221 222
223 224 225 226 227]

[167 168 169 170 171 172 173
174 175 176 177 178 179 180
181 182 183 184 185 186 187
188 189 190 191 192 193 194
195 196 197 198 199 200 201
202 203 204 205 206 207 208
209 210 211 212 213 214 215
216 217 218 219 220 221 222
223 224 225 226 227]

cluster 2 [122 123 124 125 126 127 128
129 130 131 132 133 134 135
136 137 138 139 140 141 142
143 144 145 146 147 148 149
150 151 152 153 154 155 156
157 158 161]

[122 123 124 125 126 127 128
129 130 131 132 133 134 135
136 137 138 139 140 141 142
143 144 145 146 147 148 149
150 151 152 153 154 155 156
157 158]

cluster 3 [ 3 4 5 6 9 11 13 14 20 27 28
29 30 31 32 36 37 38 44 45 46
47 48 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 113 114 115 116 117
118 159 160 163 164 165 166]

[54 55 56 57 58 59 60 61 62 64
65 66 67 68 69 70 71 72 73 74
75 76 77 78 79 80 81 82 83 84
85 86 87 88 89 90 91 92 93]

cluster 4 [ 7 17 22 42 50 96 97 98 99 100
101 102 103 104 105 106 107
108 109 110 111 112]

[ 7 17 42 50 96 97 98 99 100
101 102 103 104 105 106 107
108 109 110 111 112]

cluster 5 [ 0 1 2 8 10 12 15 16 18 19 21
23 24 25 26 33 34 35 39 40 41
43 49 51 52 94 95 119 120 121
162]

[ 0 1 2 3 4 5 6 8 9 10 11 12 13
14 15 16 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32 33 34
35 36 37 38 39 40 41 43 44 45
46 47 48 49 51 52 53 63 94 95
113 114 115 116 117 118 119
120 121 159 160 161 162 163
164 165 166]

Table A.1: Clustering Results (k=5) - Cluster Number(No.) and Included Data Points
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cluster No. Included data points
ACJ ACC

cluster 1 [167 168 169 170 171 172 173
174 175 176 177 178 179 180
181 182 183 184 185 186 187
188 189 190 191 192 193 194
195 196 197 198 199 200 201
202 203 204 205 206 207 208
209 210 211 212 213 214 215
216 217 218 219 220 221 222
223 224 225 226 227]

[167 168 169 170 171 172 173
174 175 176 177 178 179 180
182 183 184 191 192 193 194
195 196 197 198 199 201 202
203 204 205 206 207 208 209
210 211 212 213 214 215 216
217 218 219 220 221 222 223
224 225 226 227]

cluster 2 [122 123 124 125 126 127 128
129 130 131 132 133 134 135
136 137 138 139 140 141 142
143 144 145 146 147 148 149
150 151 152 153 154 155 156
157 158 161]

[122 123 124 125 126 127 128
129 130 131 132 133 134 135
136 137 138 139 140 141 142
143 144 145 146 147 148 149
150 151 152 153 154 155 156
157 158]

cluster 3 [64 67 68 69 76 79 80 81 83 86
87 88 90 91 92 93]

[54 55 56 57 58 59 60 61 64 65
66 67 68 69 70 71 72 73 74 75
76 77 78 79 80 81 82 83 84 85
86 87 88 89 90 91 92 93]

cluster 4 [ 20 27 28 36 44 48 54 55 56 57
58 59 60 61 62 63 65 66 70 71
72 73 74 75 77 78 82 84 85 89
117 160 164]

[62]

cluster 5 [ 6 11 29 30 31 32 38 45 46
47 53 113 114 115 116 118 159
165 166]

[159]

cluster 6 [ 3 4 5 9 13 14 37] [ 2 3 4 5 6 8 9 10 12 13 14 15
16 18 19 25 26 35 37 38 39 49
51 52 113 119 120 121]

cluster 7 [163] [ 45 46 47 114 115 116 118 163
165]

cluster 8 [ 7 17 22 42 50 96 97 98 99 100
101 102 103 104 105 106 107
108 109 110 111 112]

[ 7 17 42 50 96 97 98 99 100
101 102 103 104 105 106 107
108 109 110 111 112]

cluster 9 [ 2 8 10 12 15 16 18 19 23 24
25 26 34 35 39 49 51 52 94 95
119 120 121]

[181 185 186 187 188 189 190
200]

cluster 10 [ 0 1 21 33 40 41 43 162] [ 0 1 11 20 21 22 23 24 27 28
29 30 31 32 33 34 36 40 41 43
44 48 53 63 94 95 117 160 161
162 164 166]

Table A.2: Clustering Results (k=10) - Cluster Number(No.) and Included Data Points
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Instructions to Compile and Run
System

The source code for this project can be accessed by requirement.
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