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ABSTRACT: Injection of carbon dioxide (CO2) in aquifers for
underground natural gas storage (UNGS) can improve the
operating efficiency of the storage facility during gas injection
and production and later serve as a solution for permanent CO2
storage. However, mixing of the gases can lead to undesired CO2
production during seasonal withdrawal periods, which requires
costly treatment of the produced gas. This work quantifies the
optimal production time (until the well stream exceeds 1% mole
fraction of CO2) in idealized, CO2-filled reservoirs subjected to an
injection and production cycle of methane (CH4) in a single well.
A set of 1200 compositional reservoir simulations with systematic
variation of reservoir temperature, porosity, permeability, height,
and injection time shows that reservoir height and permeability have the most significant impact on the production time. The
generated data enable the development of artificial neural networks (ANN) that describe relations between the varied input
parameters and the optimal production time with excellent accuracy. Reducing the amount of data sets in the ANN training from
1050 (87.5%) to 600 (50%) and augmenting the ANN output with other parameters, like maximal reservoir pressure, average CO2
mole fraction, and well-block pressure at the end of production, only marginally reduces the accuracy of the data-driven models. In
all cases, the developed ANNs exhibit an RMSE less than 0.02 and an R2 score above 0.99. Hence, we conclude that trained and
validated ANNs are useful tools to determine relations between important parameters in UNGS operations where CO2 is used as
cushion gas, with the aim at reaching higher CH4 production time and larger amounts of delivered gas with minimal CO2
production.

1. INTRODUCTION
Subsurface storage technologies like carbon dioxide (CO2)
storage, underground hydrogen storage (UHS), and under-
ground natural gas storage (UNGS) are technologies needed to
mitigate climate change and to ensure a stable energy
production in a transition from fossil fuels to renewable energy
resources.1 Natural gas (e.g., methane (CH4)) is a cleaner fossil
fuel than oil and coal that could play a role as an energy reserve to
fluctuating wind and solar energy.2 In UNGS, natural gas is
injected and stored temporarily in salt caverns or subsurface
reservoirs, such as depleted gas reservoirs or aquifers, before it is
produced to meet fluctuations in demand due to seasonal
variations (e.g., electrical heating in winter seasons) or variable
energy supply from other sources.1,3

Gas storage in an underground reservoir can benefit from
using a cushion gas to improve the operating efficiency of the
working gas by contributing with pressure support.3,4 The
compressible property of CO2, especially near its critical
pressure, is an advantage for a cushion gas as it allows for large
storage capacities of natural gas in the reservoir, while its
expansion to lower pressure aids the gas production.5 Moreover,

the CO2 will displace the formation water downward, and the
injected natural gas will mainly contact the CO2 in the overlying
reservoir zone, which prevents extensive capillary trapping6 of
the working gas during injection and production cycles. The
injected CO2 can be stored permanently in the reservoir after it
has served as a cushion gas for UNGS. However, a potential
drawback is that the mixing of gases in the reservoir can lead to
undesired CO2 production during continued seasons of
injections and withdrawals.7

Important measures for a UNGS facility with cushion gas
are3,4,8 (i) total gas storage capacity, which is the maximum
volume of gas that can be stored in the reservoir; (ii) cushion gas
volume, which is the amount of gas in the reservoir used to
maintain pressure and withdrawal rates; (iii) working gas
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capacity, defined as the total gas storage capacity minus the
cushion gas volume; and (iv) deliverability, defined as the
amount of gas that can be withdrawn from a storage facility per
day. These storage measures depend further on parameters
describing the reservoir and its conditions, including bulk
volume and shape of the reservoir, porosity, permeability,
reservoir pressure and temperature, and bottom-hole pressure in
the wells. In practice, these measures are constrained by
reservoir pressure that should stay below a critical maximum
level to maintain mechanical stability of the reservoir,9 whereas
the amount of cushion gas in the producing well stream should
stay below given threshold values.

Reservoir simulation studies of UNGS with CO2 cushion gas
focus on demonstrating the advantageous density changes of
CO2 near its critical pressure in idealized reservoirs;5 the
mechanical responses to pressure build-ups in idealized, yet
inclined reservoirs;9 and simulations of working gas quality
caused by mixing with cushion gas.7,10 Cao et al.7 simulated 15
years of UNGS operation where CO2 and CH4 were injected the
first two years, followed by one-year cycles of CH4 injection and
production. Their results show that the extent of the CO2/CH4
mixing zone increases during production and decreases during
injection. Further, both the mixing zone and the fraction of CO2
in the produced gas increased with the CO2 fraction used as a
cushion gas. This presents limitations on the volume of the CO2
cushion gas in a successful UNGS facility to ensure a low,
acceptable CO2 fraction in the produced gas.

The entry of data-driven methods has proven useful in
research on CO2 storage11−13 and on CO2 injection for
enhanced oil recovery,14 but there are to date few data-driven
methodologies demonstrated for UNGS in depleted gas
reservoirs or aquifers. In the literature, most data-driven
approaches are concerned with describing the relations between
gas deliverability, bottom hole pressure (BHP) in the well, and
reservoir pressure.15,16 On the other hand, Mann and Ayala17

developed an artificial neural network (ANN) model aimed at
determining the optimum design of a storage facility, but their
model did not include information on which gas was considered
as cushion gas, nor the reservoir conditions, both of which are
important for the behavior of the gases and their mixtures.

When the cushion gas and working gas are different, it is
important to predict the gas fractions in the produced well

stream over time to be able to implement measures that improve
the deliverability of pure natural gas. This can be explored
through the relationship between mole fractions in the well
block versus production time, but such a relationship depends
on the mixing behavior of the gases and will require accurate
knowledge of the reservoir conditions (pressure and temper-
ature). To date, data-driven methods based on ANN have not
been developed to explore this relationship for UNGS
operations in reservoirs with CH4 as working gas and CO2 as
cushion gas. The main advantage with using ANN, once
developed and validated, is that it typically takes only a fraction
of a second to produce results that could take hours or days to
produce with physics-based numerical simulation tools. Also,
the strong interpolation capability of ANN suggests it is
sufficient with results (obtained from simulations or measure-
ments) for a finite number of discrete points in the parameter
space for total coverage of the whole domain.

In this work, we perform systematic UNGS simulations in
idealized reservoir geometries with one cycle of CH4 injection
and production using CO2 as cushion gas, inspired by
Oldenburg5 and Ma et al.9 The objective is to use the set of
generated data to develop data-driven models based on artificial
neural networks (ANN) that describe the maximal production
time until themole fraction of CO2 in the well block rises above a
certain level (set here as 1%). The ability to predict the duration
of production in this manner is important, as higher CO2
fractions in the well (with continued production) are less
economically profitable due to costly treatment of the produced
gas, and it may also be against legislation.7 The results can easily
be translated to the total volume of gas delivered from the facility
by the product of time and the constant production rate. In
addition, we explore the accuracy of the ANN predictions when
augmenting the output layer of the ANN with other important
parameters, including well-block pressure (which is important to
predict well performance in UNGS15,16), maximal reservoir
pressure, and average CO2 mole fraction in the reservoir at the
end of production. Following Ali,15 we also test how well these
models perform when reducing the amount of data used in the
training of the ANN. The paper is organized as follows: Section
2 describes the reservoir simulation tool, the conducted
reservoir simulations, and the generated data, while section 3

Figure 1. MRST simulation results of the CH4 mole fraction distribution in the reservoir after 90 days (top, left), 180 days (top, right), 240 days
(bottom, left), and 300 days (bottom, right). The simulation used grid blocks of size 10 × 1 × 2 m3 and a maximal time step of 0.25 days.
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describes the data-drivenmodels and their performance. Section
4 provides conclusions and suggestions for future work.

2. RESERVOIR SIMULATION MODEL
This work uses the Matlab Reservoir Simulation Toolbox
(MRST)18,19 to solve the mathematical model for two-

component flow of CO2 and CH4 in idealized reservoirs.
MRST is an open-source software package for reservoir
modeling and simulation written in Matlab and developed by
SINTEF Digital in Norway, and the MRST module Composi-
tional provides well-known solution strategies for compositional
simulations.19 Lie and Møyner19 have previously benchmarked

the compositional module of MRST against the commercial
reservoir simulator Eclipse 30020 as well as AD-GPRS (the
Stanford University research simulator).21 In section 2.2, we also
present a comparison between MRST and the commercial
reservoir simulator CMG-GEM.22

2.1. Model Formulation.MRST uses a general formulation
for two-component flow in a porous medium, where both
components (in our case, CH4 and CO2) can exist in both liquid
(l) and vapor (v) phases. We let x1 and x2 denote the molar
fractions of the two components in the liquid phase, whereas y1
and y2 denote the corresponding molar fractions in the vapor
phase, respectively. Moreover, the overall mole fraction of a
component is denoted by zi (i = 1, 2), and the liquid and vapor
phase mole fractions read f l and f v. Clearly, the mole fractions
must then fulfill the relations

x f yf zi i il v+ = (1)

where

f f 1l v+ = (2)

We also need to introduce liquid and vapor phase saturations, sl
and sv, such that

s s 1l v+ = (3)

Figure 2.MRST and CMG-GEM simulation results for the CH4 mole fraction (left) and pressure (right) in the well block over time using different
grid-block sizes and a maximal time step of 0.25 days. The inset plots highlight the behavior in the initial stage of production.

Figure 3.MRST simulation results for the CH4 mole fraction (left) and pressure (right) in the well block over time using a grid-block size of 5 × 1 × 2
m3 and different maximal time steps.

Table 1. List of Parameter Values Varied Independently in
the MRST Simulations

temperature
T [K]

reservoir
thickness H

[m]
porosity
ϕ [frac.]

horizontal
permeability Kh

[mD]

injection
time tinj
[days]

313.15 30 0.11 100 150
323.15 40 0.14 300 180
333.15 50 0.17 500 210
343.15 70 0.20 900

90 1300
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and mass fractions Xi and Yi such that

X
m x

m xi
i i

i i i1
2=
= (4)

and

Y
m y

m yi
i i

i i i1
2=
= (5)

Figure 4.Well block pressure (left column) and CH4 mole fraction (right column) from simulations with midrange parameter values compared to
simulations with maximum and minimum values of each of the varied parameters: temperature T (first row), reservoir thickness H (second row),
porosity ϕ (third row), horizontal permeability Kh (fourth row), and injection time tinj (fifth row). In the case with varied tinj, the CH4 mole fraction is
plotted against midrange time to enable comparison.
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where m̂i denotes the molar mass of the component i.
The following mass continuity equation is then required for

the mass of each component mi (i = 1, 2):

m
t

U Qi
i i+ · =

(6)

where U⃗i represents the appropriate total mass flux vector for
each component, andQi is a source term for component i, which
is closely connected to the actual well model being used.
Moreover, the mass of each component and the corresponding
total mass flux vector are defined as follows:

m s X s Y( )i i il l v v= + (7)

and

U K
k k

i
rl

l
l

rv

v
v= +

i
k
jjjjj

y
{
zzzzz

(8)

Here, ϕ is the porosity and K is the absolute permeability of the
porous medium; krl and krv are the liquid and vapor phase
relative permeabilities; and ρl, μl, ρv, and μv are the density and
viscosity of the liquid and vapor phases, respectively. Finally, the
quantities Θ⃗k (for k = l, v) reads

s p g( )k k k k k= + (9)

where g⃗ is the acceleration of gravity.

The above set of equations are solved by an implicit numerical
method, where equation-of-state methods based on thermody-
namics determine the vapor and liquid compositions of the
hydrocarbon system (i.e., flash calculations), as described in
detail by Lie and Møyner.19 The model requires the equation of
state (EoS) as a constitutive relationship, typically described by a
third degree algebraic equation for the phase compressibility
factor with coefficients depending on pressure, temperature, and
mole fractions for a given mixture. The Peng−Robinson EoS23

and Lohrenz−Bray−Clark viscosity correlation for hydrocarbon
mixtures24 are used as default settings in MRST and are also
employed in the simulations presented in this work. Since we
consider mixtures of CO2 and CH4 existing as vapor phase only
(sl = 0), the mole fractions reduce to zi = yi, i = 1 and 2, and the
flash calculations become trivial. Also, relative permeabilities are
not required in this single-phase system; krl = 0 and krv = 1.
2.2. Comparison of Reservoir Simulators on a Test

Case. Before using the MRST simulator to generate data for
data-driven methods, we perform simulations on a test case and
compare the results against the commercial simulator CMG-
GEM.22 The reservoir in the test case is a vertically aligned,
rectangular 2D domain with a height of 22 m and a length of
1000 m. The thickness of the 2D geometry is 1 m. We consider
an isotropic and homogeneous porous rock with absolute
permeability K = 1000 mD and porosity ϕ = 0.3. All boundaries
are closed with imposed no-flow conditions. We place a vertical
well with a radius of 10 cm in the upper left corner of the
reservoir (3 m below the top boundary; see Figure 1). Initially,
the reservoir is filled with CO2, and we inject CH4 at a constant
rate for 180 days followed by production from the same well for
another 180 days. Both the injection and production rates are set
to 0.015 m3/s (given at standard surface conditions with a
pressure of 1 atm and a temperature of 273.15 K). The initial
reservoir pressure is 6 MPa, and the reservoir temperature is
constant and equals T = 313.15 K. Hence, the reservoir
temperature is above but the reservoir pressure is below the
critical values for CO2 (Tcrit = 304.13 K and pcrit = 7.38 MPa).
However, during CH4 injection the reservoir pressure rises and
the CO2 transitions from the gas to a supercritical state. Thus,
the simulations capture the sharp density changes with pressure
in this region, which is advantageous for a cushion gas.5,9 When
comparing the simulators on this test problem, we explore the
impact of grid resolution through three sets of simulations with

Figure 5.MRST simulation results of the CH4 mole fraction distribution in the reservoir after 240 days for the simulations with midrange parameter
values and variation of H (top) and Kh (bottom): (top, left) H = 30 m, (top, right) H = 90 m, (bottom, left) Kh = 100 mD, and (bottom, right) Kh =
1300 mD.

Table 2. Data Written to the File from MRST Simulations

parameters

height of reservoir H
temperature T
porosity ϕ
horizontal absolute permeability Kh

injection time tinj
maximum reservoir pressure after injection, pmax

average reservoir CO2 mole fraction after injection, zC̅Od2
(tinj)

average reservoir CO2 mole fraction after production, zC̅Od2
(tprod)

average reservoir pressure after production, p̅(tprod)
well-block pressure after production, pwb(tprod)
production time until well block exceeds 1% CO2 mole fraction, tprod
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grid-block sizes 10 × 1 × 2 m3, 5 × 1 × 2 m3, and 2.5 × 1 × 2 m3,
respectively. Due to differences in internal numerical imple-
mentations, the MRST and CMG-GEM simulators determine
different, lower time steps adaptively during the simulations
given a maximal time step as input. To minimize the differences
in time steps between the simulators, a small maximal time step
of 0.25 days was used for the comparison.

Figure 1 shows the CH4 mole fraction field from the MRST
simulation with grid-block size 10 × 1 × 2 m3 after 90 days, 180
days (end of injection), 240 days, and 300 days. The lighter
component, CH4, stays above the denser CO2 with a mixing
zone developing in between. We observe that the degree of
CH4/CO2 mixing and the size of the mixing zone increases with
time, particularly in the production phase, which is consistent
with other works.7

Figure 2 compares the pressure and CH4 mole fractions in the
well block over time from the MRST and CMG-GEM
simulations with different grid-block sizes. Generally, there is
an excellent overall agreement between the two simulators. The
well-block pressure increases throughout the injection period,
and then it starts to decrease steeply right after the onset of
production. At later stages the pressure still falls, but at a pace
more similar to the increase in the injection period. Although the
well-block pressure decreases slightly with increased grid
resolution in the MRST simulations, it remains at a slightly
higher level than in the CMG-GEM simulations where smaller
grid blocks have negligible impact on the well-block pressure.

Obviously, the well-block CH4 mole fraction equals one
throughout the entire injection period and also throughout
the early phase of the production period. A small discrepancy
between the two simulators occurs for the well block CH4 mole
fraction during production, which starts to decline slightly earlier
for the results produced by the MRST simulator and in
simulations with coarser grids. However, both simulators
successfully predict that the reduction of this mole fraction
happens with a delay from the onset of production, and they
both display convergence in the results with increased grid
resolution. These minor differences in results are within
acceptable tolerances and are likely caused by differences in
the internal implementations of the numerical schemes in the
two simulators. Slight differences in the numerical well models
probably also contribute to some discrepancies in the end
results.

For the MRST simulator, we also investigated the impact of
using different maximal time steps in simulations with a grid-
block size of 5 × 1 × 2 m3. Finer temporal discretization leads to
slightly lower well-block pressure and a slightly delayed decline
of the CH4 mole fraction in the well block during early stages of
production, see Figure 3. As in the case of refined grids, the
simulation results converge with a decreasing maximal time step.
2.3. Reservoir Simulations for Data-Driven Methods.

With favorable results from the comparison of reservoir
simulators, we proceed with usingMRST to perform simulations
with systematic variations of parameters in the idealized 2D case

Figure 6. Pearson correlation matrix including all of the varied input parameters and the saved output from the 1200 MRST simulations.
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with a single well to generate data for the data-driven methods.
Such 2D setups promote investigations with the variation of a
large number of independent parameters as the computational
time for simulations in 2D being lower than in 3D. Hence, our
objective is to explore the proof-of-concept in using data-driven
methods to describe relationships between important parame-
ters for UNGS with cushion CO2 rather than describing storage
in a real reservoir. These investigations still consider a reservoir
with length L = 1000m, initial pressure p0 = 6MPa, imposed no-
flow conditions at the external boundaries, and the same well
location at coordinate (x, z) = (0, 3) (with a downward positive
z-axis). The rate for CH4 injection and production is 0.015 m3/s
(at standard conditions). However, nowwe consider anisotropic
and homogeneous media, in which the vertical permeability Kv
(perpendicular to bedding) and horizontal permeability Kh
(parallel with bedding) are different and related as Kv = 0.1Kh.
Typically, a permeability anisotropy ratio Kv/Kh < 1 occurs due
to grain sorting and bedding laminations, whileKv/Kh > 1 occurs
in rocks with fractures perpendicular to the bedding.25 Even for
sandstones without fractures, this ratio could vary significantly.26

However, using a permeability ratio Kv/Kh = 0.1 for non-
fractured rock is considered as a rule-of-thumb in the absence of
available data.25

The simulations aim at describing the behavior in the top zone
of reservoirs where we assume only CH4 andCO2 are present. As
this zone is above the gas/water transition zone, the water
saturation is small and irreducible and can be neglected for
practical purposes. Measurements on sandstone core samples
show that the irreducible water saturation can be very small,
ranging from 0.02 to 0.13 in Bentheimer sandstone.27 Thus, in
our simulations, we interpret the reservoir heightH as the height
of the top zone in the reservoir that contains only CH4 and CO2.
We note that the absence of a water saturation is also consistent
with similar simulation studies.9

The parameters that are varied independently in the
simulations are the reservoir temperature T, vertical reservoir
height H, porosity ϕ, horizontal permeability Kh, and injection
time tinj. This also leads to variation in the volumes of the
cushion gas (CO2) and working gas (CH4). For this set of
simulations, we use higher spatial grid resolution and slightly
lower time step resolution as a trade-off between accuracy and
computational efficiency. Grid-block size is always set to 5 × 1 ×
1 m3, which means that the number of grid blocks used in a
simulation depends on reservoir height H. Further, the maximal
time step size is set to 3 days. Convergence tests have shown that
this is an adequate resolution for these problems (cf. section
2.2).

Table 1 shows the range and resolution of the parameters that
we vary independently in the simulations. Note that the chosen
ranges in porosity and permeability are typical for sandstone,28

while the temperature range captures various reservoir
conditions encountered in sedimentary basins.29 Thus, we
have carried out a total number of 1200 (= 4 × 5 × 4 × 5 × 3)
simulations with different parameter combinations. The
midrange of each parameter is T = 328.15 K, H = 60 m, ϕ =
0.155, Kh = 700 mD, and tinj = 180 days. A simulation with
midrange parameter values was then compared with new
simulations in which the midrange value of one parameter at a
time was substituted with its maximum and minimum value.
These simulations show that the vertical reservoir height H and
horizontal permeability Kh have the most significant impact on
the CH4 mole fraction in the well block during production
among the varied parameters, especially for parameter values in

the interval between the minimum and midrange values (see
Figure 4). Thus, this interval employs a finer resolution in the
selection of values of these parameters than that in the interval
between the midrange and maximum values, as shown in Table
1. Figure 4 shows that the CH4 production is most favorable for
low H and Kh. This is further investigated in Figure 5, which
shows the CH4 mole fraction distribution in the reservoir after
60 days of production. WhenH is large, CH4 occupies the upper
part with CO2 located entirely below, separated by a mixing
zone. For small H, CH4 reached the bottom boundary during
injection, which causes CH4 to occupy the upper left diagonal
area during the simulation. The impact of horizontal
permeability Kh is quite similar; a large Kh leads to considerable
lateral transport of CH4 during injection and production, while a
low Kh yields a CH4 distribution that enters a larger fraction of
the vertical distance. We also observe that the CH4/CO2 mixing
zone is larger with increasing H and decreasing Kh, consistent
with other studies.7

While the simulations shown in Figures 4 and 5 were
performed with equal time periods for injection and production,
the data saved for the data-driven methods consider the state in
which the well-block CO2mole fraction exceeds 1% as the end of
production. The production time when this occurs is denoted as
tprod. Table 2 lists all of the data written to file from the 1200
simulations, where the first five parameters are the varied input
parameters, and the last six are output parameters. Hence, from
the end of injection, we save the maximum reservoir pressure
pmax and the average mole fraction of CO2 in the reservoir,
zC̅Od2

(tinj), while from the end of production, we again save the
average CO2 mole fraction in the reservoir, zC̅Od2

(tprod), as well as
the average reservoir pressure p̅(tprod), the well-block pressure
pwb(tprod), and the production time tprod. These data were saved
in an .xlsx file where the parameters are organized in different
columns with one row of data per simulation (see Supporting
Information).

To explore correlations among the set of 11 parameters, we
calculated the Pearson correlation matrix, as shown in Figure 6.
The Pearson correlation coefficient takes values within the
interval [−1, 1], and it describes the degree of linear correlation
between two parameters. Coefficients with values −1 or 1
indicate perfect linear correlation, while values far within these
limits (close to zero) indicate either no correlation or other
nonlinear correlations. Obviously, as the five input parameters
were varied independently they show no correlation. Among the
output parameters, the maximum pressure pmax exhibits high
correlation with the parameters that alters the pore volume, such
as H and ϕ, while it has a lower degree of correlation with Kh, as
is also evident from Figure 4. Production time shows the least
correlation with ϕ among the input parameters, consistent with
Figure 4. We also note that p̅(tprod) and pwb(tprod) show similar
behaviors, which indicates that the reservoir pressure only has a
marginal spatial variation in a simulation although it varies
significantly over time. The average CO2 mole fractions after
injection and production, zC̅Od2

(tinj) and zC̅Od2
(tprod), also show

relatively similar behaviors, except that zC̅Od2
(tprod) shows higher

correlation with Kh.

3. DATA-DRIVEN MODELING FOR UNGS WITH
CUSHION CO2

For the data-driven modeling, we explore feed-forward neural
networks with backpropagation, utilizing the data generated
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from the MRST simulations. The ANN models were
implemented in a Python environment using TensorFlow and
the high-level Keras library. This code framework offers high
flexibility in determining the optimal structure of the ANN and
in training the models. These tools have also been utilized in
data-driven methods that describe trapping mechanisms in CO2
storage.11

Before developing the ANNmodels, the data from the MRST
simulations were rescaled to the interval [0, 1], which is crucial
to achieving numerical stability in the training, as the data vary
significantly in magnitude. Then the data rows from the 1200
simulations were shuffled randomly, with the possibility to
replicate the shuffle if needed. In the shuffled data, we extract the
Nv first set of rows as the validation data set, the Nv next set of
rows as the test data set, and the large remainder of the data as
the training data set. Here, the training data set is used only for
training of the ANN, and the test data set is used only to explore
the predictive capability of the trained model. In this work, the
role of the validation data is merely to evaluate the performance
during the training to determine when to terminate the training
based on accuracy and to avoid overfitting. Hence, the validation
data set does not directly cause modification of parameters
(weights and biases) in the neural network.

Table 3. Overview of the Input and Output Parameters for
the ANN Models Generated in This Study

ANN model input parameters (#) output parameters (#)
case 1 H, T, ϕ, Kh, tinj (5) pmax (1)
case 2 H, T, ϕ, Kh, tinj, VCOd2

(6) pmax (1)

case 3 H, T, ϕ, Kh, tinj (5) tprod (1)
case 4 H, T, ϕ, Kh, tinj, VCOd2

(6) tprod (1)

case 5 H, T, ϕ, Kh, tinj, VCOd2
, pmax (7) tprod (1)

case 6 H, T, ϕ, Kh, tinj (5) tprod, pmax (2)
case 7 H, T, ϕ, Kh, tinj (5) tprod, pwb (2)
case 8 H, T, ϕ, Kh, tinj (5) tprod, zCOd2

(2)

case 9 H, T, ϕ, Kh, tinj (5) tprod, pmax, pwb (3)
case 10 H, T, ϕ, Kh, tinj (5) tprod, pmax, pwb, z COd2

(4)

Figure 7.Calculation of pmax versus corresponding data sets from training, validation, and testing, using ANNmodels for case 1 (left) and case 2 (right).

Table 4. RMSE and R2 for ANNs with a Single Output and
Different Number of Inputs, Using 1050 Data for Training
and 75 Data Each for Validation and Testing

training (87.5%) validation (6.25%) testing (6.25%)

ANN
model RMSE R2 RMSE R2 RMSE R2

case 1 0.0106 0.9962 0.0130 0.9965 0.0104 0.9965
case 2 0.0105 0.9963 0.0114 0.9973 0.0097 0.9970
case 3 0.0105 0.9975 0.0118 0.9975 0.0110 0.9975
case 4 0.0108 0.9975 0.0127 0.9970 0.0113 0.9973
case 5 0.0110 0.9973 0.0115 0.9976 0.0122 0.9969

Figure 8. Calculation of tprod versus corresponding data sets from
training, validation, and testing, using the ANN model for case 3.
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When developing the optimal choice of the ANN structure,
we started with a small number of hidden layers and a small
number of neurons in each layer. Then, the networks were
trained by systematically increasing the number of neurons and
layers until no significant improvement in the results was

observed. For each network the choice of activation function and
specifications of the learning rate were altered. We also
investigated the possibility of deactivating a fraction of neurons
in each layer (called “dropout fraction”) and the use of
regularization weights in every layer based on a metric (for

Figure 9. (Top) Calculation of tprod versus corresponding data sets from training, validation, and testing, using the ANN model for case 5 with L2
regularization weights 10−4 (top, left) and 10−3 (top, right). (Bottom) Loss function and mean squared error vs epoch for training and validation data
sets during training of the ANN model for case 5.

Table 5. RMSE and R2 for ANNs with Multiple Outputs,
Using 1050 Data for Training and 75 Data Each for
Validation and Testing

training (87.5%) validation (6.25%) testing (6.25%)

ANN
model RMSE R2 RMSE R2 RMSE R2

case 6 0.0159 0.9932 0.0173 0.9942 0.0163 0.9933
case 7 0.0134 0.9940 0.0162 0.9936 0.0133 0.9948
case 8 0.0129 0.9958 0.0136 0.9963 0.0116 0.9968
case 9 0.0149 0.9932 0.0169 0.9936 0.0152 0.9932
case 10 0.0163 0.9916 0.0186 0.9920 0.0161 0.9922

Table 6. RMSE and R2 for ANNs with Multiple Outputs,
Using 900 Data for Training and 150 Data Each for
Validation and Testing

training (75%) validation (12.5%) testing (12.5%)

ANN
model RMSE R2 RMSE R2 RMSE R2

case 6 0.0152 0.9935 0.0162 0.9942 0.0155 0.9940
case 7 0.0128 0.9949 0.0141 0.9945 0.0127 0.9948
case 8 0.0151 0.9942 0.0145 0.9955 0.0149 0.9945
case 9 0.0145 0.9936 0.0144 0.9946 0.0146 0.9932
case 10 0.0180 0.9893 0.0185 0.9908 0.0171 0.9904
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example, L2-norm) that will add a penalty to the total loss
function. These functionalities are useful means to avoid
overfitting in ANN models. As the optimization method, we
use the Adam optimizer,30 which is a stochastic gradient descent

method, while mean squared error (MSE) was used both as the
loss function and as the metric to assess the performance of the
training of every epoch. The training of the ANNwas terminated
when the MSE versus epoch curve reached a flattening trend
with anMSE value around 10−4 for both the training data set and
the validation data set. We observed this behavior after 200
epochs and terminated the training then.

Based on this experimentation, ANNmodels with two hidden
layers and a relatively large number of neurons were developed.
The optimized models use the rectified linear unit (ReLu)
function as the activation function. The training alsomade use of
a slightly declining learning rate and L2-regularization weights in
each layer set to 10−4. Although we explored the use of nonzero
dropout fractions of neurons in the development, this feature did
not improve the results.

In this work, we optimize the neural network structure in two
ANNmodels that predict pmax and tprod separately. Then, we use

Table 7. RMSE and R2 for ANNs with multiple outputs, using
600 data for training, and 300 data each for validation and
testing

training (50%) validation (25%) testing (25%)

ANN
model RMSE R2 RMSE R2 RMSE R2

case 6 0.0148 0.9942 0.0163 0.9940 0.0172 0.9916
case 7 0.0139 0.9937 0.0157 0.9925 0.0162 0.9914
case 8 0.0142 0.9951 0.0158 0.9945 0.0162 0.9930
case 9 0.0145 0.9934 0.0157 0.9928 0.0162 0.9915
case 10 0.0171 0.9906 0.0183 0.9903 0.0189 0.9885

Figure 10. Performance of ANN models for case 6 with respect to the output parameters tprod (left) and pmax (right), using 87.5% of the data in the
training and 6.25% for validation and testing (top) and 50% of the data in the training and 25% for validation and testing (bottom).
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these network architectures in further experimentation to
explore if the training of these models with the addition of
derived input parameters and other output parameters impacts
their predictive capabilities. Table 3 provides a summary of the
input and output of these ANNmodels, organized from case 1 to
case 10.
3.1. ANN Models with One Output Parameter:

Maximum Pressure and Production Time. We begin by
developing ANNmodels with a single output parameter (cases 1
to 5 in Table 3), for both the maximal pressure pmax and the
production time tprod. The size of the validation set and that of
the test set were both set as Nv = 75 (6.25% each), leaving data
from 1050 (87.5%) simulations for the training, which is
consistent with data shares used in training of models for CO2
storage.12 The optimized ANN model for pmax has 12 and six
neurons in the first and second hidden layer, respectively. In case
1, the input layer consists of the five parameters varied
independently in the simulations (H, T, ϕ, Kh, tinj). The
inclusion of input parameters derived from other input
parameters has been shown to improve previously developed
ANN models.17 Case 2 explores this aspect by including the
volume of CO2 cushion gas, VCOd2

, as a derived input parameter
to the input layer of this network before the training was
repeated. Since only CO2 is present in the reservoir initially,VCOd2

is obtained from the formula for original gas in place:23

V
V
B

B
p T

T p
Z p T, ( , )CO

B

g
g

stc

stc
2

= =
(10)

Here, VB is bulk reservoir volume, Bg is the gas volume formation
factor, which can be readily calculated from the initial condition
based on reservoir pressure p0, temperature T, and compressi-
bility factor Z, as well as the pressure and temperature at
standard conditions, pstc and Tstc, respectively.

Figure 7 shows that both the ANNmodels for case 1 and case
2 exhibit excellent performance with respect to the training,
validation, and test data sets, and they perform very alike. The
most conspicuous discrepancy between the ANN predictions
and the data occurs at a high pmax where the amount of data is
scarce. Using the data on the nondimensional form (rescaled to
the interval [0, 1]), we calculated the root mean squared error
(RMSE) and R2 score to compare the ANN performance, as
shown in Table 4. The addition of VCOd2

as the derived input
parameter in case 2 results in only marginal improvement of the
ANN compared with case 1.

The optimal network structure in the ANN model for tprod
consists of 42 neurons in the first hidden layer and 15 neurons in
the second hidden layer. Here, case 3 takes the five parameters
varied in the simulations as input (H, T, ϕ, Kh, tinj), while case 4
augments this input with the cushion CO2 volume VCOd2

. Case 5
extends the input to bothVCOd2

and pmax. The RMSE and R2 score
in Table 4 do not reveal a clear trend in improved performance
by the addition of input parameters (case 4 and case 5). Cases 3
to 5 all perform excellently with an RMSE below 0.013 and an R2

score above 0.997, of which case 3 obtains the best results on
most of the estimates. Figures 8 and 9 confirm this very alike
behavior for case 3 and case 5, with respect to the training,
validation, and test data sets. Figure 9 also explores the impact of
using 10−3 rather than 10−4 as regularization weights in the L2-

Figure 11. Performance of ANNmodels for case 9 with respect to the output parameters tprod (left), pmax (middle), and pwb (right), using 87.5% of the
data in the training and 6.25% each for validation and testing (top) and 50% of the data in the training and 25% each for validation and testing
(bottom).
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norm during the training of the ANN model for case 5. The
results show that the performance detoriates when using weights
of 10−3. In this case, the loss function and mean squared error
both reside at a higher level at the end of training, and the
resulting RMSE and R2 score are 0.03 and 0.98, respectively.
3.2. ANN Models with Multiple Output Parameters.

The inclusion of the derived parameters did not significantly
impact the predictive performance of the two ANN models for
pmax and tprod. Here, we use the architecture of the ANN model
for tprod (case 3) and explore its performance when augmenting
the output layer to enable simultaneous prediction of multiple
parameters that are important toUNGSwith cushionCO2.With
reference to Table 3, we extend the output as described in case 6
to case 10 and train the models again. The number of input
parameters remains fixed. Note that we do not explore the use of
zC̅Od2

(tinj) and p̅(tprod) in these ANNs, as their behaviors are very

similar to zC̅Od2
(tprod) and pwb(tprod), respectively, as discussed in

section 2.3 (cf. Figure 6).
Following Ali,15 we also explore the performance of the

resulting ANNs when reducing the amount of data used in the
training. For this purpose, we train the networks for cases 6−10
on three extracted data sets obtained withNv = 75, 150, and 300,
respectively. Thus, the corresponding training data sets
constitute results from 1050 (87.5%), 900 (75%), and 600
(50%) simulations. If each of the five input parameters was
varied an equal number of times in the MRST simulations, this
corresponds to the scenario where each parameter on average is
varied 4.02 (= 10501/5), 3.90 (= 9001/5), and 3.59 (= 6001/5)
numbers of times in these differently sized training data sets. The
remaining data is split in two equal parts, used for validation and
testing.

Cases 6−8 investigate the ANN capability with the inclusion
of either pmax (case 6), the well-block pressure pwb(tprod) (case 7),
or average mole fraction in the reservoir, zC̅Od2

(tprod) (case 8), as

Figure 12. Performance of the ANNmodel for case 10 with respect to the four output parameters tprod (top, left), pmax (top, right), pwb (bottom, left),
and zC̅Od2

(bottom, right), using 87.5% of the data in the training and 6.25% each for validation and testing.
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an additional output parameter alongside tprod in the ANN
model. Table 5 presents estimates for the overall RMSE and R2

scores based on all the output data (nondimensionalized and
rescaled to the interval [0,1]) in these ANNmodels using 87.5%
of the data for training. Compared with the excellent results for
tprod in case 3 (with RMSE around 0.011 and R2 score of 0.9975,
cf. Table 4), the addition of another parameter in the ANN
model degrades the performance slightly, with RMSEs between
0.012 and 0.017 and R2 scores from 0.993 to 0.996. With respect
to these metrics, case 8 performs best, suggesting zC̅Od2

(tprod) is
less challenging to predict accurately with ANNmodels than the
pressures pmax and pwb(tprod).

Tables 6 and 7 present the performance of the corresponding
ANNs using 75% and 50% of the data for training, respectively.
Reducing the amount of training data reduces the accuracy of
the ANN for case 8, while case 6 and case 7 remain largely
unaffected.With a share of 75% training data, the overall RMSEs

are between 0.013 and 0.016 and the overall R2 scores are
between 0.994 and 0.996, while for a share of 50% the RMSEs
are between 0.014 and 0.017 and the R2 scores range from 0.991
to 0.995. Figure 10 supports these findings as the ANN
predictions against data for case 6 with shares of 87.5% and 50%
of the data in the training are very similar. However, in
comparison with the single-output ANNs (cases 1 and 3 shown
in Figures 7 and 8, respectively), there is a larger discrepancy in
the predictions of both pmax and tprod. In case 6, the disparity at
high pmax is more visible than in the single-output ANN models
(cf. Figure 7).

The ANN model for case 9 takes the three parameters tprod,
pmax, and pwb(tprod) as output. Figure 11 shows the ANN
calculations of all output parameters versus the simulated data. A
reduction in the share of training data from 87.5% to 50% does
not impact the model performance significantly. Both models
exhibit an increased deviation from the data for high pmax and pwb

Figure 13. Performance of the ANNmodel for case 10 with respect to the four output parameters tprod (top, left), pmax (top, right), pwb (bottom, left),
and zC̅Od2

(bottom, right), using 50% of the data in the training and 25% each for validation and testing.
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where data is scarce. Looking at Figure 6, the Pearson correlation
between pmax and pwb is 0.79, which indicates that in many
scenarios, high pmax and pwb describe similar conditions where
the ANN models are less accurate. However, this is not always
the situation; the horizontal permeability Kh represents an
exception to this behavior as its Pearson correlations with pmax
and pwb are −0.06 and 0.45, respectively. Figure 4 (fourth row)
supports this behavior further; lower Kh leads to higher pmax and
lower pwb. Tables 5−7 show that case 9 yields RMSE estimates
between 0.014 and 0.017 and R2 scores between 0.992 and
0.995. Hence, an extension of the number of output parameters
from two to three did not lead to any noteworthy losses of
accuracy in the ANN predictions.

Finally, the ANN model of case 10 augments the output layer
to enable simultaneous predictions of tprod, pmax, pwb(tprod), and
zC̅Od2

(tprod). Figures 12 and 13 show ANN calculations of all four
output parameters compared with the generated data when the
share of training data is 87.5% and 50%, respectively. Overall, the
ANN calculations of tprod display a larger spread in a thicker band
around the ideal line in the plot, whereas the results for high
values of pmax and pwb deviate more than in the previous cases.
The ANN model shows the best performance for the average
mole fraction, zC̅Od2

, except for a deviation at low values. From
Figure 6, the Pearson correlation coefficients between zC̅Od2

and
the pressures pmax and pwb are −0.78 and −0.93, respectively,
which overall suggests that a low zC̅Od2

corresponds to high pwb

and often a high pmax. In terms of the performance metrics,
Tables 5−7 show that the ANN model with an 87.5% share of
training data performs slightly better than the model with only a
50% share of training data. The overall RSMEs range from 0.016
to 0.019, while the R2 scores range from 0.989 to 0.992.
3.3. Application of the ANNModels on Sampled Data.

Thus far, we have demonstrated the accuracy of the developed

ANN models by only using data from reservoir simulations
generated with systematic variation of the input parameters (H,
T, ϕ, Kh, tinj). Here, we explore the predictive capabilities of the
ANN models on 20 new data sets where the values of the input
parameters are generated with Latin hypercube sampling
(LHS).31 The sampling method uses the maximum and
minimum values of each parameter in Table 1 as the upper
and lower limits in the parameter generation. The sampled data
provide input to the ANN models as well as 20 new MRST
simulations with otherwise the same specifications as those
described in section 2.3. The data from theseMRST simulations
were saved in a separate .xlsx file (available in Supporting
Information) and used for comparisons against the predictions
of the output parameters from the ANN models for case 3 and
case 10. Figure 14 presents this comparison for the ANN model
of case 3, which was trained with data from 1050 (87.5%) of the
original MRST simulations. The ANN predictions exhibit
excellent results, with an RMSE of 0.009 and an R2 score of
0.996. Figure 15 shows that the ANNmodel for case 10, trained
with data from 600 (50%) of the original simulations, accurately
describes the output parameters tprod, pmax, pwb(tprod), and
zC̅Od2

(tprod) from the new MRST simulations with sampled input
data. We performed the same exercise using the ANNmodel for
case 10 trained on 1050 (87.5%) of the original data sets. In both
cases, the estimates of RMSE and R2 are 0.010 and 0.991,
respectively.

The results also show that a small number of 20 sampled data
is insufficient to assess the behavior at high values of tprod, which
typically corresponds to data combinations with long injection
times tinj, as well as low Kh and H. Similarly, an evaluation of
ANN predictions in the range with high pmax and pwb requires
that the sampling method provides data combinations with high
tinj and low ϕ andH. This also points at an abundance of training
data at low and intermediate values of pmax and pwb, which likely
leads to a lower accuracy of the ANN models at high values of
pressure where the amount of data from the original MRST
simulations is scarcer (cf. Figure 13).
3.4. Discussion.The ANNmodels proposed in this work are

useful tools that could both aid in the selection of the most
suitable site for gas storage with cushioned CO2 as well as
provide guidance in the initial planning of a seasonal gas storage
cycle. Training of such ANN models on data from 3D reservoir
simulations will provide fast identification of optimal parameter
combinations for a prolonged withdrawal time of CH4 with
minimal CO2 production from the top zone of the reservoir
where only a small or negligible amount of water resides. These
initial ANN calculations guide the selection of input parameters
for more detailed reservoir simulations of the most promising
scenarios that is possible for the facility as identified by the ANN
models. The focus here has been on determining the time tprod at
which the well-block mole fraction exceeds 1% CO2. The
favorable results suggest it is also possible to develop ANN
models for the full relationship between well-block mole fraction
and production time or rather specify the production time as
input and predict the well-block mole fraction. Simultaneously,
the ANN models provide information on constraining factors
for the operation of the gas storage facility, such as the maximal
pressure which should not become too high to avoid damaging
the rock and change its permeability in an unpredictable
manner.9

There is enormous potential for saving time by performing
calculations with ANN models instead of reservoir simulators.

Figure 14. Predictions of tprod using the ANN model for case 3 on
sampled data (LHS data set) compared to corresponding MRST
simulation results. The ANN model was trained on 87.5% of the
original MRST simulations with systematic variation of input
parameters. For comparison with the LHS data set, the figure also
shows the results from the test set which constitute 6.25% of the
previously generated data.

Energy & Fuels pubs.acs.org/EF Article

https://doi.org/10.1021/acs.energyfuels.3c03382
Energy Fuels XXXX, XXX, XXX−XXX

N

https://pubs.acs.org/doi/suppl/10.1021/acs.energyfuels.3c03382/suppl_file/ef3c03382_si_002.xlsx
https://pubs.acs.org/doi/suppl/10.1021/acs.energyfuels.3c03382/suppl_file/ef3c03382_si_002.xlsx
https://pubs.acs.org/doi/10.1021/acs.energyfuels.3c03382?fig=fig14&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.energyfuels.3c03382?fig=fig14&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.energyfuels.3c03382?fig=fig14&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.energyfuels.3c03382?fig=fig14&ref=pdf
pubs.acs.org/EF?ref=pdf
https://doi.org/10.1021/acs.energyfuels.3c03382?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


For the MRST simulation with midrange parameters in section
2.3, the wall-clock time of the simulation is 234.8 s, using a
Lenovo X390 Yoga laptop with a Windows 10 Pro operating
system, Intel Core i7−8565UCPU@18.0 GHz, and 16.0 GB of
RAM. Changing H to its minimum value, which corresponds to
the smallest number of grid blocks, reduces the simulation time
to 123.3 s, while changing H to its maximum value yields the
largest number of grid blocks and a simulation time of 413.0 s. In
comparison, data processing and training the ANN models for
case 10 on 87.5% and 50% of the data, followed by making the
predictions, generates wall-clock times of respectively 26.1 and
22.2 s in total, using the same laptop. However, the potential for
saving time by using ANN models is much larger in comparison
against 3D reservoir simulations.

Overall, the results presented in this work suggest that, with
five varied input parameters, the training of the ANN models
could be performed with a smaller amount of data generated
from the simulations. In this work, a systematic and independent
variation of the five parameters shows that a reduction in the
amount of training data from 1050 to 600 equiv introduces only
a minor loss of accuracy in the ANN predictions. Future work
will explore if advanced sampling strategies31 can guide the
generation of a sufficient amount of data for UNGS with CO2
cushion gas. This is important in extensions of the idealized
reservoir setup explored here, which likely will require the
variation of additional parameters in simulations. As examples,
reservoirs with nonzero inclination angles have been shown to
be advantageous for UNGS,9 while a surface roughness of the
caprock likely will impact the lateral transport of CH4 as

Figure 15. Predictions with the ANNmodel for case 10 on sampled data (LHS data set) compared with the results from newMRST simulations with
respect to the four output parameters tprod (top, left), pmax (top, right), pwb (bottom, left), and zC̅Od2

(bottom, right). The ANN model was trained on
50% of the original MRST simulations with a systematic variation of input parameters. For comparison with the LHS data set, the figures also show the
results from the test set, which constitutes 25% of the previously generated data.
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previously investigated for CO2 migration.32 Further, the
presence of a water phase5,7 introduces convective mixing,33

wetting behavior, capillary trapping, and related diffusion.6,34 On
the other hand, some parameters could assume a correlation, as
is often the case with permeability and porosity, depending on
rock type.35 In this work, we varied these two parameters
independently, and hence, the simulation results likely capture
any such correlations. Last, there is also room to vary other
parameters that we have treated as constants here, including the
initial reservoir pressure and injection/production rate. This
renders possible investigations of the relation between well-
block pressure, reservoir pressure, and gas deliverability.15

4. CONCLUSIONS
This work applied compositional reservoir simulations on an
idealized reservoir with one well to investigate a seasonal cycle of
CH4 injection and production, using CO2 as cushion gas. For
this purpose, we used the open-source simulator MRST, which
was shown to yield consistent results with the commercial
simulator CMG-GEM for the reservoir setup considered here.
Then, MRST simulations with independent variations of five
input parameters (reservoir temperature, height, porosity,
permeability, and injection time) generated data from 1200
cases that captured various conditions. The results show that the
reservoir height and permeability are the most influential
parameters for the well-block mole fraction during production.

The generated data were used to develop two ANN models
that describe separately the maximum reservoir pressure and the
production time until the CO2 mole fraction in the well block
exceeds 1%, using the five varied parameters from the
simulations as input. These ANN models exhibit excellent
performance, and the inclusion of volume of cushion gas as a
derived input parameter to the ANNs did not improve the
results any further.

The network structure of the ANNmodel for production time
was trained again after augmenting its output with up to three
more parameters: the maximum pressure as well as the well-
block pressure and average reservoir mole fraction at the end of
production. We also investigated the impact of reducing the data
share used in the training from 87.5% to 50%. Overall, an
increase in the amount of output parameters leads to a slightly
reduced accuracy in the ANN predictions for all of the output
parameters, especially at conditions with high maximum
reservoir pressure and high well-block pressure. On the other
hand, a reduction in the amount of training data had almost
negligible impact on the predictive capabilities of the ANN
models. In all cases, the developed ANN models perform well
with an RMSE lower than 0.02 and an R2 score above 0.99.
Testing of the ANN models on a new set of data generated with
Latin hypercube sampling showed excellent agreement with the
corresponding reservoir simulations. Hence, we conclude that
trained and validated ANNs are capable tools for describing
relations between important parameters in UNGS operations
that utilize CO2 as cushion gas, with the aim of reaching higher
CH4 production time, larger amounts of delivered gas, and
minimal CO2 production.

A natural extension of this work is to explore the use of data-
driven methods to describe production behavior over multiple
cycles of seasonal CH4 storage with different schedules for
injection and production and to optimize the placements of
cushion CO2 injection wells and CH4 injection and production
wells.
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