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Abstract. Microgrids are considered as the crucial element in the integration of various 
distributed energy resources in buildings. They are capable of operating in both grid-connected 
and islanded mode and have shown immense potential in absorbing renewable energy. However, 
the widespread implementation of intermittent renewable energy sources, coupled with variable 
electricity pricing, has significantly increased the operation uncertainty of microgrids. This paper 
presents an analysis of the operation strategies of an integrated energy system that includes a 
micro gas turbine, a ground source heat pump, PV panels with the aim of meeting the heating 
and electricity demands of a commercial building. To facilitate this endeavor, a neural network 
model for micro gas turbines was developed with a focus on fast computation time and high 
accuracy in capturing off-design performance. Furthermore, mathematical models for ground 
source heat pump, PV panel were developed and validated using the Modelica language. Dymola 
optimization package was utilized to derive the day-ahead scheduling followed by one-hour 
intervals for the system, with the purpose of minimizing the electricity and heating costs 
associated with the system. The results demonstrate that the total costs could be reduced by 
approximately 51% during the analyzed period, indicating a promising avenue for cost savings 
in the system's operation. 

1.  Introduction 
To address climate change, there is a growing global shift towards renewable energy sources as a 
sustainable and eco-friendly alternative to fossil fuels. However, the intermittent nature of renewable 
energy poses a significant obstacle to its consistent and reliable generation. One potential solution to 
tackle this challenge is the implementation of microgrid. A microgrid is a decentralized energy system 
that integrates a variety of distributed energy resources and energy storage techniques to meet users’ 
demands, such as heating, cooling, and electricity [1]. It offers the flexibility to operate in both grid-
connected and islanded configurations.  

The MGT has captured considerable attention worldwide due to its compact size, high power-to-
weight ratio, and fuel flexibility. As a dispatchable generation source, MGT can integrate with 
renewable energy sources, ensuring a reliable energy supply when renewable energy is not available. 
Extensive investigations have been conducted on MGT-based microgrids. Das et al. [2] examined the 
techno-economic aspects of an off-grid community's microgrid that consisting of PV, wind turbine, 
battery, and MGT, aimed to meet the electricity and heating demand. The findings revealed a significant 
reduction in the initial investment by utilizing waste heat from MGT. Furthermore, the proposed system, 
capable of meeting both electricity and heating demand, achieved a 40% reduction in CO2 emissions 
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compared to a system focused solely on electricity. Kumar et al. [3] proposed a microgrid that 
encompasses PV, battery, MGT, a desalination unit, and a gasifier. This hybrid energy system aims to 
meet the community's demand for electricity, clean water, and gas. Through techno-economic 
optimization, the researchers determined that the optimized system could generate 80,423 kWh of 
electricity and 34,778 MJ of heat annually. Moreover, the recovery of waste heat from MGT allowed 
the desalination unit to produce 9,516 liters of clean water per day.  

Considering the intermittency of renewable energy and the continuously shifting user demands, 
implementing day-ahead scheduling in microgrids is paramount to efficiently manage energy supply 
and storage. Pallante et al. [4] conducted a study on day-ahead scheduling for a real office building 
equipped with a heating system, fan coil power supply network, and lighting network. 
MATLAB/Simulink was employed to create a physical model of the building. Taking into account 
weather conditions and hourly energy prices, the study determined optimal schedules for room 
temperature set points and flow water temperature set points. The results demonstrated significant 
potential cost savings, ranging from 10% to 28% across diverse scenarios. Reynolds et.al [5] developed 
a data-driven model for a small office building located in Cardiff, UK, using artificial neural networks. 
Genetic algorithm was employed to derive the day-ahead scheduling for the room temperature set-point. 
The study highlighted a significant 25% reduction in energy consumption achieved through optimized 
scheduling compared to a baseline heating strategy. 

This paper examines a day-ahead scheduling strategy for a microgrid that integrates a MGT, PV 
system, and GSHP. Dynamic simulation models for the primary components have been developed and 
validated. The genetic algorithm has been employed for the dynamic scheduling. A comparison to a 
rule-based operation strategy emphasizes the advantages of the proposed approach. 

2.  System description 
Within this study, we investigated a microgrid integrating a MGT, PV system, and GSHP to satisfy both 
the heating and electricity needs of an office building. The MGT, PV system, and grid power are utilized 
to address the electricity demand. Additionally, GSHP and the waste heat from the MGT was utilized 
to meet the heating demand. The schematic of the microgrid is shown in the Figure 1. 

 

 

Figure 1. Schematic of the microgrid 
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The electricity and heating demand profiles for the office building is shown in the Figure 2. 

 

Figure 2. Electricity and heating demand for the office building (24 hours) 

3.  Modeling and validation 
This study employs Modelica, an equation-based object-oriented language, to analyze the dynamic 
performance of the microgrid. The global Modelica community has made significant contributions by 
developing well-established open-source packages tailored for modeling and simulating microgrids and 
building energy systems. Some notable packages include IDEAS [6], Buildings [7], AixLib [8], and 
BuildingSystems [9]. 

3.1.  Micro gas turbine 
Assessing the off-design performance of MGT involves the use of detailed thermodynamic models, 
which have been extensively developed to analyze the influence of changing operational and 
environmental conditions. However, these detailed models come with a high computational load, 
making them impractical for operational optimization. Hence, this study introduces a data-driven model 
for MGT based on the real-world operation data, which can provide fast computational speed and 
accurate prediction. Inspired by the brain, an ANN models complex data relationships through weight 
and bias adjustments. The FFNN, one of the most common types of ANN, processes data 
unidirectionally from input to output layers. In this study, FFNN is utilized for modeling a MGT 
incorporating 4 inputs (ambient temperature, ambient pressure, air humidity, and power demand) and 2 
outputs (fuel consumption and waste gas temperature). Optimizing internal model parameters, often 
referred to as hyperparameters, is a crucial aspect of developing effective ANN model.  This 
encompasses parameters like the learning rate, the architectural aspects such as the hidden layer count, 
neuron number within each layer, as well as the activation functions and optimizer. These 
hyperparameters are of paramount importance in shaping the model's capacity to acquire knowledge 
from training data effectively and generalize this knowledge for accurate predictive outcomes. In this 
study, Table 1 presents an overview of the hyperparameters and their respective ranges. 

Table 1: Hyperparameter and range 

Hyperparameter Range 
Neurons in the hidden layers [8 – 128] 
Number of hidden layers [1 – 4] 
Activation function [Relu, Elu] 
Optimizer [AdaGrad, RMSprop, SGD] 
Learning rate [1e-4, 1e-3, 0.01, 0.1] 
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The search for optimal hyperparameters is conducted via Bayesian optimization, with the results 

presented in Table 2. 
Table 2. Parameter of ANN model for MGT 

Parameter Description 

Number of hidden layers 3 
Number of neurons of hidden layer 1 33 
Activation Function of hidden layer 1 Elu 
Number of neurons of hidden layer 2 95 
Activation Function of hidden layer 2 Relu 
Number of neurons of hidden layer 3 21 
Activation Function of hidden layer 3 Relu 
Cost function Mean squared error 
Optimizer AdaGrad 

 
Operation data obtained from Turbec T100, encompassing a variety of ambient conditions and power 

outputs, were harnessed in developing a data-driven model. The dataset was divided into training (70%), 
validation (10%), and testing (20%). Figure 3 displays a comparison between the predictions of the data-
driven model and testing data that not utilized in the training process. The resulting MAPEs for fuel 
consumption and waste gas temperature were found to be 0.25% and 0.19%, respectively. More detailed 
information about modeling and validation of MGT can be found in our previous publication [10]. 

 

Figure 3. Validation of micro gas turbine 

3.2.  Ground source heat pump 
In the ground source heat pump system, there are two essential components: the borehole heat exchanger 
and the brine to water heat pump. The borehole heat exchanger utilizes a series of vertical boreholes in 
the ground to aid in heat transfer. These boreholes are filled with a circulating fluid, commonly a mixture 
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of water and antifreeze, that absorbs heat from the surrounding ground in winter and releases excess 
heat during summer. The brine to water heat pump is responsible for extracting or injecting heat by the 
circulating fluid, ensuring effective heating or cooling for the building or system.  

The modeling of the borehole heat exchanger involves utilizing MoBTES [11], an open-source 
package developed using the Modelica language. The TRCM is employed to accurately model heat 
transfer within the borehole, emphasizing short-term accuracy. Additionally, the finite difference 
method is adopted to model heat exchange between the borehole and the ground. The accuracy of the 
borehole heat exchanger model is validated using real-world operation data from UPV, Spain [12]. The 
borehole heat exchanger consists of six single U-tube boreholes interconnected in a balanced parallel 
arrangement. Each borehole has a depth of 50 meters, and there is a 3-meter spacing between them. 
These six boreholes are organized in a rectangular grid layout of 2 by 3, covering a total area of 18 m2. 
For additional details, refer to Table 3. 
 

Table 3. Parameter of borehole heat exchanger model 

Parameter Description 

Working fluid Water 

Tube outer diameter 0.016 m 

Tube inner diameter 0.0127 m 

Tube shank spacing  0.07 m 

Borehole depth 50 m 

Borehole diameter 0.150 m 

Borehole number 6 

Borehole distance 3 m 

Pipe thermal capacity  1.81∙106 J/(m3.K) 

Pipe thermal conductivity  0.4 W/(m.K) 

Grout thermal capacity  3.2e6 J/(m3.K) 

Grout thermal conductivity  2.09 W/(m.K) 

Ground thermal capacity  3∙2e6 J/(m3.K) 

Ground thermal conductivity  2.09 W/(m.K) 

 
A 4-day measurement data period (from September 13th to 16th, 2005) during the GSHP system's 

cooling mode operation has been selected for validation. The Figure 4 illustrates two boundary 
conditions for validation: the borehole heat exchanger 's inlet temperature and flow rate. The continuous 
stop-start intervals of the GSHP operation can also be observed through the flow rate of the borehole 
heat exchanger. The accuracy of developed model is established by comparing the predicted borehole 
heat exchanger outlet temperature with the measured data. The comparison result is represented in the 
Figure 4, indicating a good agreement between the model's predictions and the actual measurements. 
During the off periods of the GSHP system, some deviations are observed, however, these have no 
impact on the calculation of the GSHP system's heating capacity and energy consumption. Excluding 
these off periods, a statistical analysis yields a low MAPE of 2.81% when comparing the measured and 
simulated outlet temperatures. 
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Figure 4. Validation of borehole heat exchanger model 

For modeling the brine to water heat pump, a regression model based on performance data obtained 
from manufacturers is employed. This regression model considers key input parameters: source side 
brine inlet temperature, brine flow rate, load side water inlet temperature, and water flow rate. With this 
model, power consumption and heat capacity can be predicted. To demonstrate the model's accuracy, a 
validation study has been conducted using a 130 kW heat pump. In Figure 5 and Figure 6, we present 
a comparative analysis of the simulation results and the catalog data concerning the heating capacity 
and power consumption of heat pump. The visual representation clearly indicates a close match between 
the simulation results obtained from the regression model and the catalog data, with a relative error of 
less than 5% for both heating capacity and power consumption. Detailed information can be found in 
our previous publication [10]. 

 

Figure 5. Validation of heating capacity of heat pump 
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Figure 6. Validation of power consumption of heat pump 

3.3.  PV panel 
AixLib, an open-source package developed in the Modelica language, is employed to model PV systems. 
This model enables accurate prediction of the nonlinear electrical behavior of PV systems, which are 
affected by variations in cell temperature and solar irradiance. The Single-Diode method [13] is 
employed to model the physical behavior of the PV cell, while an empirical approach is utilized to model 
the cell temperature based on the specific mounting types of PV. 

To validate the model's accuracy, operation data collected from a PV system installed on the rooftop 
of the NIST Campus building is employed. The PV array is comprised of 312 Sharp NU-U235F2 
modules, with a rated power output of 73.3 kW. Each panel is oriented southwards and fixed at a 10-
degree tilt angle. One week of operation data, ranging from June 6, 2016, to June 13, 2016, is utilized 
to illustrate the model's accuracy. By utilizing solar irradiance, wind speed, and ambient temperature, 
the model can predict power generation from the PV system. Figure 7 demonstrates a good agreement 
between the predicted and measured power generation. The resulting MAPE is 6%. 

 

Figure 7. Validation of PV system model 
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4.  Optimization 
Day-ahead scheduling is a critical aspect of microgrid operations, enabling efficient energy resource 
management by planning generation and storage, considering variable load and energy prices. Day-
ahead scheduling allows microgrids to harness the benefits of price fluctuations, redistributing user load 
to low-price periods. Furthermore, day-ahead scheduling promotes the integration of renewables like 
solar and wind, aligning with sustainability targets. 

In this study, the optimization objective is to minimize operation costs, including both the cost of 
natural gas for the MGT and the cost of purchasing electricity. Calculating the operation cost involves 
utilizing the prices of electricity and natural gas. Figure 8 displays the hourly electricity prices. In this 
study, the cost of natural gas is set at 0.75 NOK/kWh. 

 

Figure 8. Electricity price for 24 hours 

The operation cost can be represented as follows: 
 

𝐶𝑜𝑠𝑡 𝐸 ∙ 𝑃 𝑑𝑡 𝐹𝑢𝑒𝑙 ∙ 𝑃 𝑑𝑡 

 
Where: 
𝐶𝑜𝑠𝑡 – operation cost of the microgrid (NOK) 
𝐸  – Electricity purchased from grid (kWh) 
𝑃  – Price of electricity (NOK/kWh) 
𝐹𝑢𝑒𝑙  – Fuel consumption of MGT (kWh) 
 

The optimization variable in this study is the capacity and on-off status of the MGT. The optimization 
is carried out at one-hour intervals, which results in a 24-hour capacity time profile. This time profile is 
essential for effectively managing the energy generation and consumption patterns over the course of a 
day, considering varying demands and available resources. To achieve this, we employ the Dymola 
optimization package, a powerful tool that supports multiple optimization algorithms. In this case, the 
genetic algorithm is chosen as the optimization algorithm due to its capability to navigate and search 
through an extensive and complex solution space effectively. Genetic algorithms mimic the process of 
natural selection and evolution, making them adept at finding nearly optimal solutions in a 
computationally efficient manner. 

5.  Results and discussions 
Day-ahead scheduling for the microgrid involved computing the capacity for the MGT, PV system, and 
purchased grid electricity for every hour. A comparison of performance was made by evaluating a 
baseline case utilizing rule-based operation. 
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5.1.  Day-ahead scheduling of the microgrid 
The genetic algorithm was utilized to determine the optimization variables—specifically, the MGT's 
capacity and its on-off status for each hour, illustrated in Figure 9. At the start of the day, MGT is 
switched on at 7 am, with a capacity of 108 kW. Shortly thereafter, MGT undergoes shutdown. In the 
afternoon, MGT operates for several hours. During the night, specifically at 8 pm, MGT is turned on. 

 

Figure 9. Optimization results for capacity and on-off status of MGT 

The day-ahead scheduling results for the microgrid are depicted in Figure 10. The PV system 
contributes to electricity generation during the day's peak when solar irradiance is at its highest. MGT 
operations at 7 am, in the afternoon, and at 8 pm. Any additional demand is supplied through purchased 
electricity from the grid. Utilizing day-ahead scheduling, an operational cost of 3965 NOK is achieved. 

 

Figure 10. Day-ahead scheduling of the microgrid 

5.2.  Comparison with rule-based operation 
A comparison was made between the day-ahead scheduling strategy and a rule-based operation approach 
for the microgrid. Under this rule-based strategy, the priority is to optimize electricity generation through 
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the PV system. When the PV capacity proves insufficient, the MGT steps in to generate electricity and 
satisfy demand. If the MGT operates at its peak capacity and demand persists, grid electricity is acquired 
to meet the energy needs. Similarly, the waste heat produced by the MGT is utilized to meet the heating 
needs. If the waste heat proves inadequate, the GSHP operates to meet the remaining heating demand.  

The rule-based operation strategy is applied to the microgrid, considering same electricity and 
heating demands. This approach results in an operational cost of 8116 NOK. Notably, the 
implementation of a day-ahead scheduling strategy showcases a significant 51% reduction in operational 
costs. 

6.  Conclusions 
A day-ahead scheduling for the microgrid, integrating a MGT, PV system, and GSHP, is conducted to 
meet the heating and electricity demands of the office building. Key conclusions from this study can be 
outlined as follows: 

‐ The models for the primary components within the microgrid were developed and validated. 
The MAPE for the borehole heat exchanger model was recorded at 2.81%, while the MAPE for 
the PV system model stood at 6%. 

‐ The microgrid's operation cost was minimized by optimizing the capacity and on-off status of 
the MGT using a genetic algorithm, considering the provided demand profile and energy price. 
The optimal scheduling obtained resulted in a daily operation cost of 3965 NOK. 

‐ A comparison was conducted between a rule-based operation strategy and a day-ahead 
scheduling strategy for the microgrid. The comparison revealed that the day-ahead scheduling 
strategy achieved a 51% reduction in operation costs compared to the rule-based operation 
strategy. 

Abbreviation 
ANN – Artificial neural network 
CO2 – Carbon dioxide 
FFNN – Feed-forward neural network 
GSHP – Ground source heat pump 
MAPE – Mean absolute percentage error 
MGT – Micro gas turbine 
PV – Photovoltaic 
TRCM – Thermal resistance and capacity model 
 

References  
[1] Gu W, Wu Z, Bo R, Wei L, Zhou G, Chen W and Wu Z 2014 Modeling, planning and optimal energy 

management of combined cooling, heating and power microgrid: A review, Int. J. Electr. Power 
Energy Syst. 54, 26–37. https://doi.org/10.1016/j.ijepes.2013.06.028 

[2] Das BK, Tushar MSHK and Zaman F  2021 Techno-economic feasibility and size optimisation of an 
off-grid hybrid system for supplying electricity and thermal loads, Energy, 215,119141. 
https://doi.org/10.1016/j.energy.2020.119141. 

[3] Kumar N and Karmakar S 2022 Techno-economics of a trigeneration HRES; a step towards 
sustainable development, Renew Energy 198:833–40. 
https://doi.org/10.1016/j.renene.2022.08.107. 

[4] Pallante A, Adacher L, Botticelli M, Pizzuti S, Comodi G and Monteriù A 2020 Decision support 
methodologies and day-ahead optimization for smart building energy management in a dynamic 
pricing scenario, Energy and Buildings, 216, 109963. 
https://doi.org/10.1016/j.enbuild.2020.109963 

[5] Reynolds J, Rezgui Y, Kwan A S K and Piriou S 2018 A zone-level, building energy optimisation 
combining an artificial neural network, a genetic algorithm, and model predictive control, Energy, 
151, 729–739. https://doi.org/10.1016/j.energy.2018.03.113 



Fourth Conference of Computational Methods & Ocean Technology
IOP Conf. Series: Materials Science and Engineering 1294  (2023) 012055

IOP Publishing
doi:10.1088/1757-899X/1294/1/012055

11

 
 
 
 
 
 

[6] Jorissen F, Reynders G, Baetens R, Picard D, Saelens D and Helsen L 2018 Implementation and 
verification of the IDEAS building energy simulation library, J Build Perform Simul 11:669–88. 
https://doi.org/10.1080/19401493.2018.1428361. 

[7] Wetter M, Zuo W, Nouidui TS, and Pang X 2014 Modelica Buildings library, J Build Perform Simul, 
7:253–70. https://doi.org/10.1080/19401493.2013.765506. 

[8] Müller D, Lauster M, Constantin A, Fuchs M and Remmen P AixLib - An Open-Source Modelica 
Library within the IEA-EBC Annex 60 Framework. 

[9] Nytsch-Geusen C, Huber J, Ljubijankic M and Rädler J 2013 Modelica BuildingSystems − eine 
Modellbibliothek zur Simulation komplexer energietechnischer Gebäudesysteme. Bauphysik 
35,21–9. https://doi.org/10.1002/bapi.201310045. 

[10] Zhang Q, Banihabib R, Fadnes F, Sazon T, Ahmed N and Assadi M 2023 Techno-economic analysis 
of a biogas-fueled micro gas turbine cogeneration system with seasonal thermal energy storage. 
Energy Conversion and Management, 293, 117407. 
https://doi.org/10.1016/j.enconman.2023.117407 

[11] Formhals J, Hemmatabady H, Welsch B, Schulte D, and Sass I 2020 A Modelica Toolbox for the 
Simulation of Borehole Thermal Energy Storage Systems, Energies 13:2327. 
https://doi.org/10.3390/en13092327. 

[12] Ruiz Calvo F and Montagud C 2014 Reference data sets for validating GS HP system models and 
analyzing performance parameters based on a five year operation period, Geothermics, 51, 417 
428. https://doi.org/10.1016/j.geothermics.2014.03.010 

[13] Batzelis, E., & Papathanassiou, S. A. (2016). A method for the analytical extraction of the Single-
Diode PV model parameters, IEEE Trans. Sustainable Energy, 7(2), 504–512. 
https://doi.org/10.1109/tste.2015.2503435 

 


