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A B S T R A C T

This work aims to help improve the performance of an iterative ensemble smoother (IES) in reservoir data
assimilation problems, by introducing a data-driven procedure to optimize the choice of certain algorithmic
hyper-parameters in the IES. Generally speaking, algorithmic hyper-parameters exist in various data assimi-
lation algorithms. Taking IES as an example, localization is often useful for improving its performance, yet
applying localization to an IES also introduces a certain number of algorithmic hyper-parameters, such as
localization length scales, in the course of data assimilation. While different methods have been developed in
the literature to address the problem of properly choosing localization length scales in various circumstances,
many of them are tailored to specific problems under consideration, and may be difficult to directly extend to
other problems. In addition, conventional hyper-parameter tuning methods determine the values of localization
length scales based on either empirical (e.g., using experience, domain knowledge, or simply the practice of
trial and error) or analytic (e.g., through statistical analyses) rules, but few of them use the information
of observations to optimize the choice of hyper-parameters. The current work proposes a generic, data-
driven hyper-parameter tuning strategy that has the potential to overcome the aforementioned issues. With
this proposed strategy, hyper-parameter optimization is converted into a conventional parameter estimation
problem, in such a way that observations are utilized to guide the choice of hyper-parameters. One noticeable
feature of the proposed hyper-parameter tuning strategy is that it iteratively estimates an ensemble of hyper-
parameters. In doing so, the resulting hyper-parameter tuning procedure receives some practical benefits
inherent to conventional ensemble data assimilation algorithms, including the nature of being derivative-
free, the ability to provide uncertainty quantification to some extent, and the capacity to handle a large
number of hyper-parameters. Through 2D and 3D case studies, it is shown that when the proposed hyper-
parameter tuning strategy is applied to tune a set of localization length scales (up to the order of 103) in a
parameterized localization scheme, superior data assimilation performance is obtained in comparison to an
alternative hyper-parameter tuning strategy without utilizing the information of observations.
1. Introduction

Reservoir data assimilation (also known as history matching) aims
to find one or multiple set(s) of reservoir model parameters to match
the available field data to a good extent. Among others, ensemble-
based history-matching methods (Aanonsen et al., 2009; Oliver and
Chen, 2010), such as ensemble Kalman filter (EnKF, see Evensen, 2009;
Nævdal et al., 2005), ensemble smoother (ES, see Skjervheim and
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Evensen, 2011; Van Leeuwen and Evensen, 1996) and their iterative
versions, e.g., (Chen and Oliver, 2013; Emerick and Reynolds, 2012;
Luo et al., 2015; Luo, 2021; Evensen et al., 2019), have been extensively
used to tackle reservoir characterization problems. In real applications
of ensemble-based methods, small ensembles are often adopted to re-
duce the computational costs of reservoir simulations. However, using
a small ensemble size often leads to rank deficiency and sampling
errors in ensemble methods (Anderson, 2012; Hamill et al., 2009),
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and inferior performance could thus be obtained in data assimilation
problems.

To alleviate the adversarial effects of the small ensemble size, a
common practice in the community is to equip an ensemble data assim-
ilation algorithm with a localization scheme, which in effect modifies
the model update formula in the ensemble data assimilation algorithm.
Various localization techniques have been developed from different
perspectives, and been applied for different purposes (Anderson, 2012;
Anderson and Lei, 2013; Arroyo et al., 2008; Bishop and Hodyss, 2007;
Chen and Oliver, 2010, 2017; Emerick and Reynolds, 2011; Fertig et al.,
2007; Hamill et al., 2001; Lacerda et al., 2019; Luo et al., 2018; Luo
and Bhakta, 2020; Ranazzi et al., 2022; Soares et al., 2021).

For reservoir data assimilation problems, it is customary to conduct
Kalman-gain localization, in which a tapering matrix is applied to
modify the Kalman-gain-type matrix, in the sense that the original
Kalman-gain-type matrix is replaced by the Schur product between it
and the tapering matrix. Previously, Kalman-gain localization in reser-
voir applications has been largely focused on using distances between
the physical locations of model variables and observations to calculate
the tapering coefficients (Chen and Oliver, 2010, 2017; Emerick and
Reynolds, 2011), which is referred to as distance-based localization
hereafter. A number of issues, however, have been noticed in distance-
based localization, which includes the dependence on the availability
of physical locations of both model variables and observations, the
difficulty in dealing with non-local observations, the non-adaptivity to
some factors like the temporal change of system dynamics, ensemble
size, different types of model variables and/or observations, and case-
dependent implementation (i.e., the transferability of the localization
scheme among different case studies) (Luo et al., 2019).

In light of these challenges, there have been some recent efforts (An-
derson, 2012; Furrer and Bengtsson, 2007; Lacerda et al., 2019; Luo
et al., 2018; Luo and Bhakta, 2020; Ranazzi et al., 2022; Soares et al.,
2021) dedicated to tackling the above-mentioned issues, which use
sample correlations between model variables and simulated observa-
tions (or between model variables themselves), rather than the dis-
tances between their physical locations, to compute the tapering coeffi-
cients, and which are thus referred to as correlation-based localization
hereafter. For reservoir data assimilation problems, it has been shown
that correlation-based localization is able to avoid or mitigate the
aforementioned issues (Luo et al., 2019), works reasonably well in both
synthetic (Lacerda et al., 2019; Luo et al., 2018; Luo and Bhakta, 2020;
Ranazzi et al., 2022; Soares et al., 2021) and real field (Luo et al., 2019;
Lorentzen et al., 2020) case studies.

Most of the existing localization schemes, being either distance-
or correlation-based, have some inherent hyper-parameters that need
to be determined in one way or another. The type of the hyper-
parameters could be localization length scale (Chen and Oliver, 2010;
Emerick and Reynolds, 2011; Hamill et al., 2001; Luo and Bhakta,
2020; Soares et al., 2021), localization radius (Chen and Oliver, 2017),
certain threshold values (Lacerda et al., 2019; Luo et al., 2018), or
coefficients inside the tapering functions (Anderson, 2012; Bishop and
Hodyss, 2007; Ranazzi et al., 2022).

In many cases, the hyper-parameters of localization schemes are
determined based on either experience, expertise, domain knowledge
or simply trial and error. While this empirical tuning strategy may still
ead to satisfactory data assimilation performance, it could be time-
onsuming to search for the optimal values, cumbersome to handle
ultiple hyper-parameters, and difficult to generalize to other case

tudies or disciplines (for reflection, one may draw similarity of this
uning strategy to manual history matching). A theoretically more
ppealing strategy is to carry out a certain statistical analysis to deter-
ine the values of hyper-parameters, as was done in, e.g., Furrer and
engtsson (2007), Luo and Bhakta (2020). Often, the statistical analysis

s derived based on some simplifying assumptions (e.g., by assuming
ampling errors in sample correlations follow certain Gaussian distri-
2

utions as in Luo and Bhakta, 2020). Moreover, once specified (prior
to data assimilation), the chosen hyper-parameter values are fixed, and
do not change in the process of data assimilation hereafter. For this
reason, we refer to this hyper-parameter tuning strategy as the prior
tuning strategy.

The focus of the current work is on further improving the perfor-
mance of a correlation-based automatic and adaptive localization (Au-
toAdaLoc) scheme in Luo and Bhakta (2020), by introducing a posterior
tuning strategy to continuously update multiple hyper-parameters (local-
ization length scales) of a parameterized AutoAdaLoc (P-AutoAdaLoc)
scheme in the course of data assimilation. This posterior tuning strategy
is built upon a recently proposed Continuous Hyper-parameter OPti-
mization (CHOP) procedure (Luo and Xia, 2022), in which a model
update algorithm (either from an ensemble-based method or not) is
treated as a parametric mapping that is parameterized by some algo-
rithmic hyper-parameters (e.g., length scales of a localization scheme).
From this perspective, these algorithmic hyper-parameters have an
influence on the updated reservoir model, hence the corresponding
set of simulated observations. Therefore, similar to the criterion used
in Luo et al. (2015) to estimate reservoir model parameters, one can
update these hyper-parameters in such a way that the updated hyper-
parameters lead to reduced data mismatch between real and simulated
observations. In other words, in the posterior tuning strategy, one can
essentially convert hyper-parameter optimization into a conventional
parameter estimation problem.

One implication from the above discussion is that the hyper-
parameter optimization problem can be solved by a relevant data
assimilation method. For this purpose, we adopt the iterative ensemble
smoother (IES) proposed by Luo et al. (2015) in the current work,
although other algorithms (whether ensemble-based or not) can also
be used. The main reason behind this choice is that we use the
same IES algorithm to estimate reservoir model parameters. As such,
hyper-parameter optimization through the same IES algorithm entails
a natural extension of our ensemble-based data assimilation workflow,
which can now be used to iteratively update both ordinary reservoir
model parameters and algorithmic hyper-parameters (cf. Algorithm 2
later). Under this setting, the CHOP procedure is also ensemble-based,
hence it possesses the same practical benefits inherent to ensemble-
based algorithms, including the nature of being non-intrusive and
derivative-free, the ability of providing uncertainty quantification to
some extent, and the capacity of handling a relatively large amount of
hyper-parameters.

In terms of novelty, to the best of our knowledge, it is the first
time that an ensemble-based posterior tuning procedure is applied to
optimize algorithmic hyper-parameters in reservoir data assimilation
problems. In addition, in the previous work (Luo and Xia, 2022), one
only updates algorithmic hyper-parameters through the CHOP proce-
dure, while keeping model variables (model state and/or parameters)
fixed. In contrast, in the current work, the proposed ensemble data
assimilation workflow aims to update both reservoir model parameters
and algorithmic hyper-parameters, which requires the introduction of
an alternating optimization procedure, as will be elaborated later.

In the sequel, we first provide an overview of the ensemble-based
workflow used in the current work, which contains the IES algo-
rithm of Luo et al. (2015) as the data assimilation method, and
the AutoAdaLoc scheme of Luo and Bhakta (2020) for Kalman-gain
localization. We then propose the P-AutoAdaLoc scheme that can take
multiple localization length scales as the algorithmic hyper-parameters.
To facilitate the replacement of the original AutoAdaLoc scheme by
the P-AutoAdaLoc scheme, we introduce an ensemble-based CHOP
procedure that can iteratively update an ensemble of algorithmic hyper-
parameters through the same IES algorithm. After presenting this
methodological development, we proceed to compare in three case
studies the performance of the IES-based data assimilation workflows
that adopt the original AutoAdaLoc and the proposed P-AutoAdaLoc
schemes, respectively, for localization. Finally, we conclude the whole
work with some technical discussions and possible future research

directions.
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2. Methodology

2.1. Iterative ensemble smoother (IES) for reservoir data assimilation prob-
lems

Let 𝐦 ∈ R𝑚 be an 𝑚-dimensional vector containing a set of parame-
ers to be estimated by a certain data assimilation algorithm, which is
eferred to as a reservoir model hereafter. In addition, let 𝐠 ∶ R𝑚 → R𝑝

stand for the forward reservoir simulator that maps a reservoir model
𝐦 to a 𝑝-dimensional vector 𝐝sim ≡ 𝐠 (𝐦) ∈ R𝑝 (called simulated
observations), and 𝐝𝑜 ∈ R𝑝 for the 𝑝-dimensional real observations. We
ssume that 𝐝𝑜 is contaminated by certain observation errors that follow
multivariate Gaussian distribution with zero mean and covariance
𝑑 ∈ R𝑝×𝑝.

An IES consists of a number of iteration steps, and at each step the
ES updates an ensemble of reservoir models to a new ensemble, follow-
ng a certain rule (Emerick and Reynolds, 2012; Chen and Oliver, 2013;
uo et al., 2015; Luo, 2021; Evensen et al., 2019). In the current work,
he IES algorithm developed by Luo et al. (2015), referred to as reg-
larized Levenberg–Marquardt algorithm for a minimum-average-cost
roblem (RLM-MAC), is adopted as the data assimilation algorithm,
lthough it is expected that the main idea behind the new localization
cheme can be naturally extended to other IES algorithms. In this sub-
ection, we provide a brief description of the RLM-MAC algorithm,
hich is also referred to as the IES algorithm for brevity.

Let 𝐌𝑖 ≡ {𝐦𝑖
𝑗 ∶ 𝐦𝑖

𝑗 ∈ R𝑚}𝑁𝑒
𝑗=1 be an ensemble of 𝑁𝑒 reservoir models

btained at the 𝑖th iteration step. The RLM-MAC algorithm updates 𝐌𝑖

o a new ensemble 𝐌𝑖+1 ≡ {𝐦𝑖+1
𝑗 ∶ 𝐦𝑖+1

𝑗 ∈ R𝑚}𝑁𝑒
𝑗=1 by solving the

ollowing minimum-average-cost (MAC) problem:

min
𝐦𝑖+1
𝑗 }𝑁𝑒

𝑗=1

1
𝑁𝑒

𝑁𝑒
∑

𝑗=1
𝐶 𝑖+1
𝑗 ; (1)

𝑖+1
𝑗 ≡

(

𝐝𝑜𝑗 − 𝐠
(

𝐦𝑖+1
𝑗

))𝑇
𝐂−1
𝑑

(

𝐝𝑜𝑗 − 𝐠
(

𝐦𝑖+1
𝑗

))

+ 𝛾 𝑖
(

𝐦𝑖+1
𝑗 −𝐦𝑖

𝑗

)𝑇
(

𝐂𝑖
𝑚
)−1

(

𝐦𝑖+1
𝑗 −𝐦𝑖

𝑗

)

, (2)

at each iteration step. In Eq. (2), 𝐝𝑜𝑗 (𝑗 = 1, 2,⋯ , 𝑁𝑒) represent pertur-
bations of 𝐝𝑜, which are samples drawn from the multivariate Gaussian
distribution 𝑁(𝐝𝑜,𝐂𝑑 ); 𝛾 𝑖 is a scalar coefficient (regularization param-
eter) whose choice follows the rules in Luo et al. (2015), and 𝐂𝑖

𝑚 ≡
𝑖
𝑚
(

𝐒𝑖𝑚
)𝑇 corresponds to the sample covariance matrix with respect to

he ensemble 𝐌𝑖.
It is shown in Luo et al. (2015) that the MAC problem (Eq. (2))

s approximately solved by the following model update formula (the
LM-MAC algorithm):

𝑖+1
𝑗 = 𝐦𝑖

𝑗 + 𝐒𝑖𝑚(𝐒
𝑖
𝑔)

𝑇
(

𝐒𝑖𝑔(𝐒
𝑖
𝑔)

𝑇 + 𝛾 𝑖 𝐂𝑑

)−1

×
(

𝐝𝑜𝑗 − 𝐠
(

𝐦𝑖
𝑗

))

, for 𝑗 = 1, 2,⋯ , 𝑁𝑒 ; (3)

𝐒𝑖𝑚 = 1
√

𝑁𝑒 − 1

[

𝐦𝑖
1 −𝐦𝑖,⋯ ,𝐦𝑖

𝑁𝑒
−𝐦𝑖

]

; 𝐦𝑖 = 1
𝑁𝑒

𝑁𝑒
∑

𝑗=1
𝐦𝑖

𝑗 ; (4)

𝐒𝑖𝑔 = 1
√

𝑁𝑒 − 1

[

𝐠(𝐦𝑖
1) − 𝐠(𝐦𝑖),⋯ , 𝐠(𝐦𝑖

𝑁𝑒
) − 𝐠(𝐦𝑖)

]

. (5)

In a practical implementation, some modification of the update
formula, Eq. (3), may be introduced. For instance, Eq. (3) can be
re-written as

𝐦𝑖+1
𝑗 = 𝐦𝑖

𝑗 + 𝐒𝑖𝑚(�̃�
𝑖
𝑔)

𝑇
(

�̃�𝑖𝑔(�̃�
𝑖
𝑔)

𝑇 + 𝛾 𝑖 𝐈𝑝
)−1 (

𝐝𝑜𝑗 − �̃�
(

𝐦𝑖
𝑗

))

; (6)

�̃�𝑖𝑔 ≡ 𝐂−1∕2
𝑑 𝐒𝑖𝑔 ; (7)

𝐝𝑜𝑗 ≡ 𝐂−1∕2
𝑑 𝐝𝑜𝑗 ; (8)

�̃�
(

𝐦𝑖
𝑗

)

≡ 𝐂−1∕2
𝑑 𝐠

(

𝐦𝑖
𝑗

)

, (9)

where 𝐈𝑝 is the 𝑝-dimensional identity matrix. In Eq. (6), one normalizes
3

relevant quantities in the observation space by the square root matrix
𝐂−1∕2
𝑑 of 𝐂−1

𝑑 to avoid potential numerical issues caused by different
orders of magnitude in simulated and real observations. In addition, to
further improve the numerical stability of the IES, a truncated singular
value decomposition (TSVD) can be applied to �̃�𝑖𝑔 . For brevity, here we
skip the technical details of the TSVD-based implementation of the IES
and refer readers to Luo et al. (2015) for more information.

2.2. Correlation-based automatic and adaptive localization (AutoAdaLoc)
in the IES

When applying an IES to practical reservoir data assimilation prob-
lems, one can only afford to run a relatively small ensemble of reservoir
models, typically in the order of (102). One consequence of using
a small ensemble is that sampling errors become substantial, and
often deteriorate the performance of data assimilation. For performance
improvement, localization is often introduced to the IES algorithm.

Without loss of generality, one can re-write the model update
formula of an IES as:

𝐦𝑖+1
𝑗 = 𝐦𝑖

𝑗 +𝐊𝑖
(

𝐝𝑜𝑗 − �̃�
(

𝐦𝑖
𝑗

))

, (10)

where 𝐊𝑖 is a Kalman-gain-like matrix, e.g., 𝐊𝑖 = 𝐒𝑖𝑚(�̃�
𝑖
𝑔)

𝑇
(

�̃�𝑖𝑔(�̃�
𝑖
𝑔)

𝑇 + 𝛾 𝑖 𝐈𝑝
)−1

for Eq. (6).
In reservoir data assimilation problems, localization is conducted by

replacing the matrix 𝐊𝑖 by the Schur (Hadamard) product between 𝐊𝑖

and a tapering matrix 𝐓𝑖, so that the model update formula of the IES
becomes

𝐦𝑖+1
𝑗 = 𝐦𝑖

𝑗 +
(

𝐓𝑖◦𝐊𝑖)
(

𝐝𝑜𝑗 − �̃�
(

𝐦𝑖
𝑗

))

, (11)

where ◦ is the operator of Schur product.
A localization scheme consists of a set of rules that specify how

the tapering matrix 𝐓𝑖 is constructed. In reservoir data assimilation
problems, conventional localization schemes use the distances between
the physical locations of both reservoir model variables and observation
data points to calculate respective tapering matrices (Chen and Oliver,
2010; Emerick and Reynolds, 2011). Physical-distance based localiza-
tion schemes are often prone to a number of long-standing issues,
including, for instance, (1) the need for physical locations of both
reservoir model variables and observation data points; (2) the difficulty
in handling non-local observations; (3) the lack of adaptivity to certain
factors like the ensemble size used in the IES, the change of reservoir
fluid dynamics (e.g., due to the effects of field production), the types
of model variables and field data, and so on; and (4) case-dependent
implementations.

An alternative to distance-based localization is correlation-based
localization (Lacerda et al., 2019; Luo et al., 2018; Luo and Bhakta,
2020; Ranazzi et al., 2022), in which a tapering matrix is formulated
based on sample correlations – rather than physical distances – between
ensembles of model variables and simulated observation data points. As
elaborated in Luo et al. (2018, 2019), correlation-based localization is
able to overcome or mitigate the aforementioned long-standing issues
arising in distance-based localization, and can be used in certain situa-
tions, e.g., when model variables and/or observations do not possess
physical locations (Luo et al., 2018) or when localization needs to
be done for an ensemble of gradients projected onto ensemble sub-
spaces (Luo and Cruz, 2022), where the conventional distance-based
localization does not seem to be straightforwardly applicable.

The focus of the current work is to explore the possibility of further
improving the performance of a correlation-based automatic and adap-
tive localization (AutoAdaLoc) scheme proposed in Luo and Bhakta
(2020). To this end, we first briefly describe the AutoAdaLoc scheme,
and then present a modification of this scheme, with which further
performance improvement becomes possible.

The model-update formula with localization, Eq. (11), can be equiv-

alently written in an element-wise way, as follows:
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𝑚𝑖+1
𝑗,𝑘 = 𝑚𝑖

𝑗,𝑘 +
𝑝
∑

𝑠=1

(

𝑡𝑖𝑘,𝑠𝑘
𝑖
𝑘,𝑠

)

𝛥𝑑𝑖𝑗,𝑠 , (12)

where 𝑚𝑖
𝑗,𝑘 (𝑚𝑖+1

𝑗,𝑘 ) stands for the 𝑘th element of 𝐦𝑖
𝑗 (𝐦𝑖+1

𝑗 ). Likewise,
𝛥𝑑𝑖𝑗,𝑠 represents the 𝑠th element of the innovation term 𝛥𝐝𝑖𝑗 ≡ 𝐝𝑜𝑗 −

�̃�
(

𝐦𝑖
𝑗

)

. Meanwhile, 𝑡𝑖𝑘,𝑠 and 𝑘𝑖𝑘,𝑠 correspond to the elements on the 𝑘th
row and the 𝑠th column of the matrices 𝐓𝑖 and 𝐊𝑖, respectively.

In the AutoAdaLoc scheme proposed by Luo and Bhakta (2020), the
tapering coefficient 𝑡𝑖𝑘,𝑠 is determined by the following rules:

𝑡𝑘,𝑠 = 𝑓𝐺𝐶

(

1 − abs(𝜌0𝑘,𝑠)

1 − 𝜃𝐺𝑘 ,𝑠

)

, for 𝑘 = 1, 2,⋯ , 𝑚; 𝑠 = 1, 2,⋯ , 𝑝, (13)

with

𝑓𝐺𝐶 (𝑧) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−1
4
𝑧5 + 1

2
𝑧3 + 5

8
𝑧3 − 5

3
𝑧2 + 1 , if 0 ≤ 𝑧 ≤ 1 ;

1
12

𝑧5 − 1
2
𝑧4 + 5

8
𝑧3 + 5

3
𝑧2 − 5𝑧 + 4 − 2

3
𝑧−1 , if 1 < 𝑧 ≤ 2 ;

0 , if 𝑧 > 2 ,

(14)

and

𝜃𝐺𝑘 ,𝑠 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

√

2 ln(#𝝆0
𝐺𝑘 ,𝑠

) 𝜎𝐺𝑘 ,𝑠 , 𝜎𝐺𝑘 ,𝑠 =
median(abs(𝝐0𝐺𝑘 ,𝑠

))

0.6745
,

if 𝑚𝑖
𝑗,𝑘 belongs to a group 𝐺𝑘 of ‘‘local parameter’’;

𝑐
√

𝑁𝑒
, if 𝑚𝑖

𝑗,𝑘 belongs to a group 𝐺𝑘 of ‘‘global parameter’’.

(15)

In Eq. (13), 𝑓𝐺𝐶 represents the Gaspari–Cohn function (Gaspari and
ohn, 1999), as defined in Eq. (14); 𝜌0𝑘,𝑠 is the sample correlation

between the 𝑘th model variable and the 𝑠th simulated observation data
point, obtained from the ensembles of model variable

{

𝑚0
𝑗,𝑘

}𝑁𝑒

𝑗=1
and

imulated data point
{

[�̃�
(

𝐦0
𝑗

)

]𝑠
}𝑁𝑒

𝑗=1
, with [𝐱]𝑠 representing the 𝑠th

lement of a dummy vector 𝐱1; 𝜃𝐺𝑘 ,𝑠 corresponds to the threshold value
ith respect to a group 𝐺𝑘 of model variables, to which the model
ariable 𝑚𝑖

𝑗,𝑘 belongs. In the localization scheme developed by Luo and
hakta (2020), a model variable 𝑚𝑖

𝑗,𝑘 is classified as either a ‘‘local
arameter’’ that is distributed on an associated numerical reservoir
ridblock, or a ‘‘global parameter’’ that is not associated with any
articular numerical gridblock. For instance, if 𝑚𝑖

𝑗,𝑘 corresponds to a
orosity value, then it is considered as a ‘‘local parameter’’, and can be
rouped together with porosity values on other numerical gridblocks to
stimate a threshold value 𝜃𝐺𝑘 ,𝑠. In this case, one applies the first line
f Eq. (15), which combines the universal rule (Donoho and Johnstone,
994) and the median absolute deviation (MAD) estimator (Donoho
nd Johnstone, 1995), to calculate a common threshold value 𝜃𝐺𝑘 ,𝑠
or all model variables in the same group 𝐺𝑘. Here, 𝝐0𝐺𝑘 ,𝑠

stands for
he substitute sampling errors (which can be obtained by the random
huffle method proposed by Luo and Bhakta, 2020) in the correlation
ield 𝝆0

𝐺𝑘 ,𝑠
≡

{

𝜌0𝑘,𝑠 ∶ 𝑘 ∈ 𝐺𝑘

}

, and #𝝆0
𝐺𝑘 ,𝑠

(equal to #𝝐0𝐺𝑘 ,𝑠
) means the

umber of elements of 𝝆0
𝐺𝑘 ,𝑠

or 𝝐0𝐺𝑘 ,𝑠
. Meanwhile, 𝑚𝑖

𝑗,𝑘 can also be a
‘global parameter’’, such as the end point value of a relative perme-
bility curve. In this case, one can apply the result of the asymptotic
istribution of a sample correlation to estimate 𝜃𝐺𝑘 ,𝑠, thus leading to
he second line of Eq. (15), where 𝑐 is a positive coefficient whose rec-

1 Note that the iteration index 𝑖 of the ensembles is set to 0, meaning that
nly the initial ensembles of reservoir models and corresponding simulated
ata points are used to calculate the tapering coefficient, for the reason
xplained in Luo et al. (2018).
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ommended value can be located in, e.g., the interval [3, 4] (Luo and Xia,
2022) (also see the discussion in Luo and Bhakta, 2020). A side remark
here is that in Eq. (15), the distinction between ‘‘local’’ and ‘‘global’’
parameters is neither strict nor even necessary. For instance, one can
also apply the second line of Eq. (15) to estimate the threshold value
𝜃𝐺𝑘 ,𝑠 for ‘‘local’’ parameters, resulting in only slightly worse history
matching performance to the choice of using the first line of Eq. (15),
as reported in Luo and Bhakta (2020). In the meantime, by applying
the random shuffle method multiple times, one can also generate a
number of substitute sampling errors for ‘‘global’’ parameters, making
it possible to estimate the threshold value 𝜃𝐺𝑘 ,𝑠 for a ‘‘global’’ parameter
based on the first line of Eq. (15) (Ranazzi et al., 2022).

2.3. Parameterized AutoAdaLoc scheme

In Eq. (15), both criteria to estimate threshold values for the Au-
toAdaLoc scheme are based on certain statistical analysis methods.
Although our experience shows that the localization scheme established
in this way appears to work reasonably well in a number of studies (Luo
and Bhakta, 2020; Luo, 2021; Luo and Cruz, 2022; Ranazzi et al., 2022),
it is possible to further improve its performance. Our main idea is
that, instead of relying on a statistical analysis method to determine
the threshold values, we parameterize the threshold values instead,
and then use an ensemble-based CHOP procedure to optimize the
parameterized localization scheme.

Concretely, in the parameterized AutoAdaLoc (P-AutoAdaLoc)
scheme, we use the following formula to calculate the tapering coef-
ficients:

𝑡𝑘,𝑠 = 𝑓𝐺𝐶

(

1 − abs(𝜌0𝑘,𝑠)

𝓁𝑠

)

, for 𝑘 = 1, 2,⋯ , 𝑚; 𝑠 = 1, 2,⋯ , 𝑝, (16)

here 𝓁𝑠 > 0 represents the localization length scale associated with
he 𝑠th observation data point, and 𝑓𝐺𝐶 and 𝜌0𝑘,𝑠 remain the same as
hose in Eq. (13).

For Eq. (16), a more general parameterization strategy would be
o replace the set of length scale parameters 𝓁𝑠 (𝑠 = 1, 2,⋯ , 𝑝) by a
igger one 𝓁𝑘,𝑠 (𝑘 = 1, 2,⋯ , 𝑚; 𝑠 = 1, 2,⋯ , 𝑝). However, the improved

generality of this parameterization strategy is achieved at the expense
of a much larger hyper-parameter size (equal to model size times
data size), which may become computationally inefficient in practical
reservoir data assimilation problems. In this regard, a lighter alternative
is to let the localization length scale vary over different model variables
instead, i.e., in the form of 𝓁𝑘. While this alternative parameterization
strategy appears feasible, it would still result in a larger set of hyper-
parameters than the choice in Eq. (17), when the model size 𝑚 is larger
than the data size 𝑝, as in the numerical case studies later. Therefore,
for the purpose of numerical efficiency, in the current work, we confine
ourselves to the choice of optimizing 𝓁𝑠 (𝑠 = 1, 2,⋯ , 𝑝) (total number
equal to data size).

Comparing Eqs. (13) and (16), the number of threshold values
in Eq. (16) is seemingly less than that in Eq. (13). Nevertheless, an
inspection on Eq. (15) tells that the threshold value computed by either
the first or the second line would remain very close (or even identi-
cal). For instance, when using the first line to calculate the threshold
value, the resulting threshold value is almost the same for different
combinations of models variables and observation data points, with
slight differences coming from statistical fluctuations in computing
the standard deviation 𝜎𝐺𝑘 ,𝑠 through the MAD estimator (Donoho and
Johnstone, 1995), as illustrated in Luo and Bhakta (2020). In contrast,
the length scale parameters 𝓁𝑠 in Eq. (16) are independent of each other
by design, which entails more degrees of freedom, and serves as the
basis for further performance improvement in data assimilation, as will
be illustrated later.



Geoenergy Science and Engineering 231 (2023) 212404X. Luo et al.

N
o
t

a
c
2
o
i
E
e
w
Z

d
s
t
a
s
b
t
C
d
(
u
m

t

w
o

I
A
{

(
s

𝐦

T
o
s

d
c
t
a

𝐦

2.4. Continuous hyper-parameter optimization (CHOP) and its application
to tune hyper-parameters in the P-AutoAdaLoc scheme

Equipping an IES with the P-AutoAdaLoc scheme means that the
corresponding model update formula, Eq. (11) or (12), contains a set
of localization length scales 𝓁𝑠 (𝑠 = 1, 2,⋯ , 𝑝) that need to be specified.

ote that these parameters do not come from a reservoir model, but
riginate in the P-AutoAdaLoc scheme instead. For this reason, we call
hese variables algorithmic hyper-parameters later.

Algorithmic hyper-parameters are often encountered in various situ-
tions. For instance, within the context of ensemble data assimilation,
ovariance inflation and localization (Anderson, 2009; Hamill et al.,
001) are two common techniques used to improve the performance
f an EnKF, through which two hyper-parameters, namely, covariance
nflation factor and localization length scale, are introduced into the
nKF algorithm. Meanwhile, in machine learning problems, there also
xist various hyper-parameters, such as the learning rate and batch size,
hich need to be tuned in a stochastic optimization algorithm (Yu and
hu, 2020).

In the current work, we follow a recently proposed CHOP proce-
ure (Luo and Xia, 2022) to optimize the set of localization length
cales 𝓁𝑠. Unlike many existing hyper-parameter estimation methods in
he literature (Yu and Zhu, 2020), the ensemble-based CHOP procedure
ims to estimate multiple sets of hyper-parameters, rather than a single
et. Under this setting, it can be shown that a CHOP problem can
e converted into a conventional parameter estimation problem, and
hen be solved by an IES algorithm (Luo and Xia, 2022). As such, the
HOP procedure can be naturally integrated into an ensemble-based
ata assimilation workflow, while receiving certain practical benefits
e.g., being non-intrusive and derivative-free and providing a means of
ncertainty quantification) similar to ensemble-based data assimilation
ethods.

Specifically, let 𝐋𝑖 ≡
{

𝓵𝑖
𝑗

}𝑁𝑒

𝑗=1
be an ensemble of 𝑁𝑒 sets of localiza-

ion length scales obtained at the 𝑖th iteration step, with 𝓵𝑖
𝑗 representing

a single set of localization length scales used to update the 𝑗th reservoir
model 𝐦𝑖

𝑗 to 𝐦𝑖+1
𝑗 , as follows:

𝐦𝑖+1
𝑗 = 𝐦𝑖

𝑗 +
(

𝐓
(

𝓵𝑖
𝑗

)

◦𝐊𝑖
)(

𝐝𝑜𝑗 − �̃�
(

𝐦𝑖
𝑗

))

, (17)

where now the tapering matrix 𝐓
(

𝓵𝑖
𝑗

)

is a function of 𝓵𝑖
𝑗 , and thus

depends on the indices of both iteration step 𝑖 and ensemble member
𝑗. In this case, the element 𝑡𝑖𝑗,𝑘,𝑠 on the 𝑘th row and the 𝑠th column of
the tapering matrix 𝐓

(

𝓵𝑖
𝑗

)

is calculated by

𝑡𝑖𝑗,𝑘,𝑠 = 𝑓𝐺𝐶

(

1 − abs(𝜌0𝑘,𝑠)

𝓁𝑖
𝑗,𝑠

)

, for 𝑘 = 1, 2,⋯ , 𝑚; 𝑠 = 1, 2,⋯ , 𝑝;

𝑗 = 1, 2,⋯ , 𝑁𝑒,

(18)

here 𝓁𝑖
𝑗,𝑠 (𝑠 = 1, 2,⋯ , 𝑝) corresponds to the 𝑠th element of the set 𝓵𝑖

𝑗
f localization length scales.

Eqs. (17) and (18) constitute the model update formula, when the
ES algorithm is equipped with the proposed P-AutoAdaLoc scheme.
fter this update step, we then proceed to update the ensemble 𝐋𝑖 ≡
𝓵𝑖
𝑗

}𝑁𝑒

𝑗=1
of localization length scales to a new ensemble 𝐋𝑖+1 ≡

{

𝓵𝑖+1
𝑗

}𝑁𝑒

𝑗=1
. To this end, we exploit the notion in Luo and Xia (2022),

which treats a generic model update formula as a mapping 𝐟 that
maps a prior model (also known as background) 𝐦𝑏 to a posterior 𝐦𝑎

also known as analysis), for a given set of observations 𝐝𝑜, a forward
imulator 𝐠 and a (possible) set of hyper-parameters 𝜽, i.e.,
𝑎 = 𝐟

(

𝐦𝑏,𝜽|𝐝𝑜, 𝐠
)

≡ 𝐟
(

𝐦𝑏,𝜽
)

. (19)

he first line of Eq. (19) is a mathematical abstraction/generalization
f the model update formula in Eq. (17). Since in general the ob-
ervations and forward simulator are not considered as variables, we
5

rop these two quantities in the second line of Eq. (19) for notational
onvenience, and denote the corresponding mapping by 𝐟 instead. With
his abbreviation, we can re-express the IES update formula in Eq. (17)
s
𝑖+1
𝑗 = 𝐟

(

𝐦𝑖
𝑗 ,𝓵

𝑖
𝑗

)

. (20)

A new ensemble 𝐋𝑖+1 ≡
{

𝓵𝑖+1
𝑗

}𝑁𝑒

𝑗=1
can then be obtained by solving

a MAC problem similar to that in Eqs. (1) and (2), namely,

min
{𝓵𝑖+1

𝑗 }𝑁𝑒
𝑗=1

1
𝑁𝑒

𝑁𝑒
∑

𝑗=1
�̃� 𝑖+1
𝑗 ; (21)

�̃� 𝑖+1
𝑗 ≡

(

𝐝𝑜𝑗 − 𝐡
(

𝓵𝑖+1
𝑗 |𝐦𝑖

𝑗

))𝑇
𝐂−1
𝑑

(

𝐝𝑜𝑗 − 𝐡
(

𝓵𝑖+1
𝑗 |𝐦𝑖

𝑗

))

+ 𝛾 𝑖
(

𝓵𝑖+1
𝑗 − 𝓵𝑖

𝑗

)𝑇
(

𝐂𝑖
𝓁

)−1
(

𝓵𝑖+1
𝑗 − 𝓵𝑖

𝑗

)

; (22)

𝐡
(

𝓵𝑖+1
𝑗 |𝐦𝑖

𝑗

)

≡ 𝐠
(

𝐟
(

𝐦𝑖
𝑗 ,𝓵

𝑖+1
𝑗

))

, (23)

where 𝐂𝑖
𝓁 in Eq. (22) is the sample covariance matrix of the ensemble 𝐋𝑖

of localization length scales. In Eq. (23), 𝐡
(

𝓵𝑖+1
𝑗 |𝐦𝑖

𝑗

)

can be considered
as a function of 𝓵𝑖+1

𝑗 conditioned on the given reservoir model 𝐦𝑖
𝑗

(and 𝐡
(

𝓵𝑖
𝑗 |𝐦

𝑖
𝑗

)

in Eq. (24) later can be interpreted in a similar way).
Following (Luo et al., 2015) (also cf. Eq. (3) – (5) of the current work),
the MAC problem in Eq. (21) is approximately solved by the following
hyper-parameter update formula:

𝓵𝑖+1
𝑗 = 𝓵𝑖

𝑗 + 𝐒𝑖𝓁(𝐒
𝑖
ℎ)

𝑇 (

𝐒𝑖ℎ(𝐒
𝑖
ℎ)

𝑇 + 𝛾 𝑖 𝐂𝑑
)−1 (𝐝𝑜𝑗 − 𝐡

(

𝓵𝑖
𝑗 |𝐦

𝑖
𝑗

))

= 𝓵𝑖
𝑗 + 𝐒𝑖𝓁(𝐒

𝑖
ℎ)

𝑇 (

𝐒𝑖ℎ(𝐒
𝑖
ℎ)

𝑇 + 𝛾 𝑖 𝐂𝑑
)−1 (𝐝𝑜𝑗 − 𝐠

(

𝐦𝑖+1
𝑗

))

; (24)

𝐒𝑖𝓁 = 1
√

𝑁𝑒 − 1

[

𝓵𝑖
1 − 𝓵

𝑖
,⋯ ,𝓵𝑖

𝑁𝑒
− 𝓵

𝑖]
; 𝓵

𝑖
= 1

𝑁𝑒

𝑁𝑒
∑

𝑗=1
𝓵𝑖
𝑗 ; (25)

𝐒𝑖ℎ = 1
√

𝑁𝑒 − 1

[

𝐡(𝓵𝑖
1|𝐦

𝑖
1) − 𝐡(𝓵

𝑖
|𝐦𝑖),⋯ ,𝐡(𝓵𝑖

𝑁𝑒
|𝐦𝑖

𝑁𝑒
) − 𝐡(𝓵

𝑖
|𝐦𝑖)

]

;

≈ 1
√

𝑁𝑒 − 1

[

𝐠(𝐦𝑖+1
1 ) − 𝐠(𝐦𝑖+1),⋯ , 𝐠(𝐦𝑖+1

𝑁𝑒
) − 𝐠(𝐦𝑖+1)

]

= 𝐒𝑖+1𝑔 . (26)

In Eqs. (24) and (26), the second lines are derived based on Eqs. (20)
and (23), with 𝐡

(

𝓵𝑖
𝑗 |𝐦

𝑖
𝑗

)

= 𝐠
(

𝐟
(

𝐦𝑖
𝑗 ,𝓵

𝑖
𝑗

))

= 𝐠
(

𝐦𝑖+1
𝑗

)

for 𝑗 =

1, 2,⋯ , 𝑁𝑒. In addition, in Eq. (26) the approximation 𝐡
(

𝓵
𝑖
|𝐦𝑖

)

=

𝐠
(

𝐟
(

𝐦𝑖,𝓵
𝑖))

≈ 𝐠(𝐦𝑖+1) is adopted, mainly for the purpose to avoid
running an extra forward reservoir simulation for the reservoir model
produced by the update 𝐟

(

𝐦𝑖,𝓵
𝑖)

.
Inserting Eq. (26) into Eq. (24), one has

𝓵𝑖+1
𝑗 ≈ 𝓵𝑖

𝑗 + 𝐒𝑖𝓁(𝐒
𝑖+1
𝑔 )𝑇

(

𝐒𝑖+1𝑔 (𝐒𝑖+1𝑔 )𝑇 + 𝛾 𝑖 𝐂𝑑

)−1 (
𝐝𝑜𝑗 − 𝐠

(

𝐦𝑖+1
𝑗

))

. (27)

Following Eq. (6) – (9), normalization in the observation space and
TSVD can also be introduced to Eq. (27), although we skip the details
here for brevity. Without loss of generality, one can also re-express
Eq. (27) as something like (cf Eq. (10)):

𝓵𝑖+1
𝑗 = 𝓵𝑖

𝑗 +𝐊𝑖
𝓁

(

𝐝𝑜𝑗 − �̃�
(

𝐦𝑖+1
𝑗

))

, (28)

where 𝐊𝑖
𝓁 is a certain Kalman-gain like matrix, e.g.,

𝐊𝑖
𝓁 = 𝐒𝑖𝓁(�̃�

𝑖+1
𝑔 )𝑇

(

�̃�𝑖+1𝑔 (�̃�𝑖+1𝑔 )𝑇 + 𝛾 𝑖 𝐈𝑝
)−1

, (29)

when normalization in the observation space is conducted.
Like an ordinary IES algorithm, Eq. (28) also needs localization to

tackle the adversarial effects of a small ensemble size. To this end,
we also replace the Kalman-gain like matrix 𝐊𝑖

𝓁 by the Schur product
between 𝐊𝑖

𝓁 and a tapering matrix 𝐓𝓁

(

𝓵𝑖
𝑗

)

, which is constructed in

exactly the same way (cf. Eq. (18)) as 𝐓
(

𝓵𝑖
)

in Eq. (10), but has
𝑗
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Algorithm 1 Pseudo-code of the IES algorithm equipped with the original AutoAdaLoc localization scheme. The texts in red highlight places where
ifferences take place, in comparison to the pseudo-code in Algorithm 2.

Require: Initial ensembles of reservoir models 𝐌0 = {𝐦0
𝑗 }

𝑁𝑒
𝑗=1, simulated observations {𝐠(𝐦0

𝑗 )}
𝑁𝑒
𝑗=1 and 𝐠(𝐦0); Initial regularization parameter 𝛾0

1: Construct the tapering matrix 𝐓 ⊳ cf. Eqs. (13)–(15)
2: Iteration index 𝑖 ← 0; IES not stopped ← True
3: while IES not stopped do
4: Calculate the Kalman-gain like matrix 𝐊𝑖 for reservoir model update, e.g.,

5: 𝐊𝑖 = 𝐒𝑖𝑚(�̃�
𝑖
𝑔)

𝑇
(

�̃�𝑖𝑔(�̃�
𝑖
𝑔)

𝑇 + 𝛾 𝑖 𝐈𝑝
)−1

⊳ cf. Eqs. (4)–(9)
6: Update the reservoir models 𝐦𝑖

𝑗 , e.g.,

7: 𝐦𝑖+1
𝑗 = 𝐦𝑖

𝑗 +
(

𝐓◦𝐊𝑖)
(

𝐝𝑜𝑗 − �̃�
(

𝐦𝑖
𝑗

))

⊳ cf. Eq. (11)

8: Run reservoir simulations to get the simulated observations {𝐠(𝐦𝑖+1
𝑗 )}𝑁𝑒

𝑗=1 and 𝐠(𝐦𝑖+1),
9: Check data mismatch and update the value of 𝛾 𝑖 ⊳ cf. Luo et al. (2015)

10: Apply stopping criteria to decide whether to stop the IES or not ⊳ cf. Luo et al. (2015)
1: 𝑖 ← 𝑖 + 1
2: end while
t

s
t
I
h
m
m
a
c

f
f

i

a different number of matrix rows. As a result, we end up with the
following ‘‘tapered’’ hyper-parameter update formula:

𝓵𝑖+1
𝑗 = 𝓵𝑖

𝑗 +
(

𝐓𝓁

(

𝓵𝑖
𝑗

)

◦𝐊𝑖
𝓁

)(

𝐝𝑜𝑗 − �̃�
(

𝐦𝑖+1
𝑗

))

. (30)

Eqs. (17) and (30) thus constitute the main formulae that apply
an IES algorithm to update both reservoir model variables and al-
gorithmic hyper-parameters in an alternative way. Compared to the
localized model update formula Eq. (11) in the original IES algorithm,
a noticeable feature in Eqs. (17) and (30) is that the tapering ma-
trices 𝐓

(

𝓵𝑖
𝑗

)

and 𝐓𝓁

(

𝓵𝑖
𝑗

)

therein depend on individual members 𝓵𝑖
𝑗

of the ensemble of localization length scales. This means that the
model/hyper-parameter update formula in Eq. (17)/Eq. (30) also de-
pends on individual ensemble members. While this feature can lead to
improved data assimilation performance as will be illustrated below, in
general, it also entails increased computational cost. Later we will dis-
cuss a few possible strategies to help reduce the overall computational
cost.

3. Case studies

3.1. Case 1: Five spots (5Spots)

We start with a relatively small 2D case study, in which a reservoir
model contains an inverted five-spots (5Spots) well pattern with four
producers on the corners and one injector in the centre, as indicated
in Fig. 1. In terms of the number of gridblocks, the dimension of the
reservoir model is 50 × 50. The four producers are located at the
coordinates (2,2) (upper left, labelled as P1 hereafter), (49, 2) (upper
right, labelled as P2 hereafter), (2, 49) (lower left, labelled as P3
hereafter), (49, 49) (lower right, labelled as P4 hereafter), respectively;
whereas the injector sits at the centre with the coordinate (25, 25)
(labelled as I1 hereafter). In numerical simulations, the producers P1–
P3 and the injector I1 are set to be open, but the producer P4 is shut
off.

In this case study, the unknown parameters are porosity (PORO)
and 𝑥-directional permeability (PERMX) in the scale of the natural
logarithm. The phases present in the reservoir include oil, water, and
gas. The PERMX and PORO maps of the reference model are shown
in Fig. 1(a) and Fig. 2(a), respectively. The reference model is used to
generate a set of production data every 30 days, for a total period of
1500 days with 50 report steps. At each reporting time, the types of
production data include oil, water, and gas production rates (denoted
by OPR, WPR, and GPR, respectively) from P1–P3, and bottom hole
pressure (BHP) from P1–P3 and I1. As such, there are 13 data points at
each reporting time, and 650 data points (13 × 50) during the whole
6

time window. Subsequently, some zero-mean Gaussian white noise is a
generated to mimic the potential presence of observation errors in
practical data assimilation problems, and then added to the production
data from the reference model. Specifically, the standard deviations
(STDs) of the observation errors for OPR, WPR, and GPR data are set
to be 10% of the magnitudes of respective data,2 whereas the STDs of
he observation errors for BHP data are set to be 1 Bar.

An initial ensemble of 100 reservoir models is generated through
equential Gaussian simulation. The mean PERMX and PORO maps of
he initial ensemble are shown in Figs. 1(b) and 2(b), respectively. The
ES algorithm of Luo et al. (2015) is adopted in all numerical examples
ereafter to iteratively update the ensembles of reservoir models. The
aximum iteration step is set to be 20, while the IES will stop if the
aximum iteration step is reached, or if the relative change of the

verage data mismatch (see Eq. (32) later for its definition) at two
onsecutive iteration steps is less than 0.01%.

In this case study we investigate and compare the performance of
our different choices of localization schemes, which correspond to the
ollowing settings:

Setting (1): No localization is adopted in the IES algorithm (labelled
as ‘‘noLoc’’ hereafter);

Setting (2): The AutoAdaLoc scheme based on Eq. (12)–(15) is adopted.
Note that in this case the threshold values 𝜃𝐺𝑘 ,𝑠 are preset and
fixed during the iteration steps;

Setting (3): The P-AutoAdaLoc scheme based on Eq. (17)–(18) is
adopted. In this case, for a given iteration step index 𝑖 and
ensemble member index 𝑗, the set of localization length scales
𝓵𝑖
𝑗 only contains one element 𝓁𝑖

𝑗 , whose value is shared among
all observation elements. In other words, in Eq. (18) one has
the constraint 𝓁𝑖

𝑗,1 = 𝓁𝑖
𝑗,2 = ⋯ = 𝓁𝑖

𝑗,650 (with the number
of observations 𝑝 = 650), and 𝓁𝑖

𝑗,𝑠 = 𝓁𝑖
𝑗 , ∀𝑠 = 1, 2,⋯ , 650.

Note that 𝓁𝑖
𝑗 will be updated through the CHOP procedure

(cf. Eq. (30)), and they may thus vary over the iteration steps
and ensemble members in general. For reference later, this
localization scheme is labelled as ‘‘P-AutoAdaLoc-1’’.

Setting (4): The setting here is the same as Setting (3), except that
the set of localization length scales 𝓵𝑖

𝑗 contains 𝑝 elements
𝓁𝑖
𝑗,𝑠, 𝑠 = 1, 2,⋯ , 650, which would be distinct from each other

in general. For distinction later, this localization scheme is
labelled as ‘‘P-AutoAdaLoc-0’’.

2 If the magnitude of a data point is zero, then the corresponding STD value
s set to 10−6 instead to avoid the numerical issue of division by zero in data
ssimilation later.
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Fig. 1. PERMX maps with respect to (a) the reference model; (b) the mean of the initial ensemble; (c) – (f) the means of the final estimated (est.) ensembles obtained by the IES
algorithm with no localization scheme (labelled as ‘‘noLoc’’), the AutoAdaLoc scheme, the P-AutoAdaLoc scheme with a single common length scale for all observation elements
(labelled as ‘‘P-AutoAdaLoc-1’’), and the P-AutoAdaLoc scheme with an individual length scale for each observation element (labelled as ‘‘P-AutoAdaLoc-0’’), respectively, in the
5Spots case. In all the maps, the small white circles indicate the locations of injection (in the centre) or production (on the corners) wells.

Fig. 2. As in Fig. 1, but for PORO maps in the 5Spots case.
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Algorithm 2 Pseudo-code of the IES algorithm equipped with the P-AutoAdaLoc localization scheme. The texts in red highlight places where
differences take place, in comparison to the pseudo-code in Algorithm 1.

Require: Initial ensembles of reservoir models 𝐌0 = {𝐦0
𝑗 }

𝑁𝑒
𝑗=1, simulated observations {𝐠(𝐦0

𝑗 )}
𝑁𝑒
𝑗=1 and 𝐠(𝐦0), localization length scales 𝐋0 =

{

𝓵0
𝑗

}𝑁𝑒

𝑗=1
; Initial regularization parameter 𝛾0

1: Iteration index 𝑖 ← 0; IES not stopped ← True
2: while IES not stopped do
3: Calculate the Kalman-gain like matrix 𝐊𝑖 for reservoir model update, e.g.,

4: 𝐊𝑖 = 𝐒𝑖𝑚(�̃�
𝑖
𝑔)

𝑇
(

�̃�𝑖𝑔(�̃�
𝑖
𝑔)

𝑇 + 𝛾 𝑖 𝐈𝑝
)−1

⊳ cf. Eqs. (4)–(9)
5: for 𝑗 = 1, 2,⋯ , 𝑁𝑒 do
6: Construct the tapering matrix 𝐓

(

𝓵𝑖
𝑗

)

with the set of length scales 𝓵𝑖
𝑗 ⊳ cf. Eq. (18)

7: Update the reservoir models 𝐦𝑖
𝑗 , e.g.,

8: 𝐦𝑖+1
𝑗 = 𝐦𝑖

𝑗 +
(

𝐓
(

𝓵𝑖
𝑗

)

◦𝐊𝑖
)(

𝐝𝑜𝑗 − �̃�
(

𝐦𝑖
𝑗

))

⊳ cf. Eq. (17)
9: end for
0: Run reservoir simulations to get the simulated observations {𝐠(𝐦𝑖+1

𝑗 )}𝑁𝑒
𝑗=1 and 𝐠(𝐦𝑖+1),

11: Calculate the Kalman-gain like matrix 𝐊𝑖
𝓁 for hyper-parameter update, e.g.,

12: 𝐊𝑖
𝓁 = 𝐒𝑖𝓁(�̃�

𝑖+1
𝑔 )𝑇

(

�̃�𝑖+1𝑔 (�̃�𝑖+1𝑔 )𝑇 + 𝛾 𝑖 𝐈𝑝
)−1

⊳ cf. Eqs. (24) – (29)
3: for 𝑗 = 1, 2,⋯ , 𝑁𝑒 do
4: Construct the tapering matrix 𝐓𝓁

(

𝓵𝑖
𝑗

)

with the set of length scales 𝓵𝑖
𝑗 ⊳ similar to Eq. (18)

5: Update the set of localization length scale 𝓵𝑖
𝑗 , e.g.,

6: 𝓵𝑖+1
𝑗 = 𝓵𝑖

𝑗 +
(

𝐓𝓁

(

𝓵𝑖
𝑗

)

◦𝐊𝑖
𝓁

)(

𝐝𝑜𝑗 − �̃�
(

𝐦𝑖+1
𝑗

))

⊳ cf. Eq. (30)
7: end for
8: Check data mismatch and update the value of 𝛾 𝑖 ⊳ cf. Luo et al. (2015)
9: Apply stopping criteria to decide whether to stop the IES or not ⊳ cf. Luo et al. (2015)
0: 𝑖 ← 𝑖 + 1
1: end while
Table 1
Data mismatch (DM), root mean squared error (RMSE), and ensemble spread obtained by the IES algorithm in the 5Spots case study, when it
is equipped with the noLoc, AutoAdaLoc, P-AutoAdaLoc-1 or P-AutoAdaLoc-0 scheme. Note that the mean and standard deviation (STD) values
of DM or RMSE are computed with respect to the members of either the initial or the final ensemble, and that the lowest mean DM, mean
RMSE and spread values are highlighted by the bold font.

Data mismatch RMSE of (log) PERMX RMSE of PORO Total RMSE Spread
(mean ± STD) (mean ± STD) (mean ± STD) (mean ± STD)

Initial ensemble (1.3706 ± 4.0594) × 1010 0.4367 ± 0.0263 0.0644 ± 0.0037 0.3121 ± 0.0184 0.1413
Final ensemble (noLoc) 𝟔𝟔𝟑.𝟕𝟏𝟔𝟕 ± 𝟑𝟒.𝟐𝟐𝟗𝟑 0.4332 ± 0.0230 0.0681 ± 0.0031 0.3101 ± 0.0162 𝟎.𝟎𝟖𝟔𝟐
Final ensemble (AutoAdaLoc) (3.3649 ± 1.5646) × 103 0.4009 ± 0.0228 𝟎.𝟎𝟔𝟒𝟎 ± 𝟎.𝟎𝟎𝟑𝟑 0.2871 ± 0.0160 0.1167
Final ensemble (P-AutoAdaLoc-1) (1.3424 ± 0.6089) × 103 0.3961 ± 0.0235 0.0656 ± 0.0036 0.2839 ± 0.0165 0.0989
Final ensemble (P-AutoAdaLoc-0) (2.2806 ± 0.6770) × 103 𝟎.𝟑𝟗𝟐𝟎 ± 𝟎.𝟎𝟐𝟔𝟓 0.0651 ± 0.0034 𝟎.𝟐𝟖𝟏𝟎 ± 𝟎.𝟎𝟏𝟖𝟔 0.1109
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Although the focus of the current work is to compare the perfor-
ance of the AutoAdaLoc scheme in Setting (2) and the P-AutoAdaLoc-
scheme in Setting (4), we choose to additionally consider the P-

utoAdaLoc-1 scheme in the current case study (while using the noLoc
etting as the baseline). The reason behind this choice is that essentially
ettings (2) and (3) can be considered as similar localization schemes,
ince the threshold values 𝜃𝐺𝑘 ,𝑠 in the AutoAdaLoc scheme (cf. Eq. (15))
re almost the same for different combinations of the indices 𝐺𝑘 and
. From this perspective, the role of the quantity 1 − 𝜃𝐺𝑘 ,𝑠 in the
utoAdaLoc scheme (cf. Eq. (13)) is similar to that of the length scale
𝑖
𝑗 in the P-AutoAdaLoc-1 scheme (cf. Eq. (18), with 𝓁𝑖

𝑗,𝑠 = 𝓁𝑖
𝑗 , ∀𝑠 =

, 2,⋯ , 𝑝). An important difference is that the values of 1 − 𝜃𝐺𝑘 ,𝑠 in
he AutoAdaLoc scheme are pre-determined based on certain statistical
nalysis, whereas 𝓁𝑖

𝑗 in the P-AutoAdaLoc-1 scheme are considered as
yper-parameters and thus optimized through the CHOP procedure.
s such, a comparison between the AutoAdaLoc and P-AutoAdaLoc-
schemes would be useful for reflecting the impacts of the CHOP

rocedure on optimizing a single localization length scale.
Meanwhile, since we adopt similar abbreviations ‘‘P-AutoAdaLoc’’,

‘P-AutoAdaLoc-0’’ and ‘‘P-AutoAdaLoc-1’’ in various contexts of the
urrent work, it appears useful for us to explain the typical scenarios in
hich these abbreviations are used. Roughly speaking, ‘‘P-AutoAdaLoc’’

efers to a generic parameterized AutoAdaLoc scheme. Following the
8

m

iscussion in Section 2.3, there could be diverse parameterization
trategies that can result in different numbers of hyper-parameters
n parameterized AutoAdaLoc schemes, whereas ‘‘P-AutoAdaLoc-0’’
nd ‘‘P-AutoAdaLoc-1’’ correspond to two particular parameterization
trategies, as explained in Settings (3) and (4). In other words, one
an consider ‘‘P-AutoAdaLoc-0’’ and ‘‘P-AutoAdaLoc-1’’ as two concrete
mplementations of the ‘‘P-AutoAdaLoc’’ scheme.

In line with Algorithm 2, in Setting (3) or (4), an initial ensemble
f localization length scale(s) 𝐋0 =

{

𝓵0
𝑗

}𝑁𝑒

𝑗=1
is generated as follows:

or each ensemble member 𝓵0
𝑗 , each of its component 𝓁0

𝑗,𝑠 (𝑠 = 1 in the
-AutoAdaLoc-1 scheme, and 𝑠 = 1, 2,⋯ , 650 in the P-AutoAdaLoc-0
cheme) is drawn as an independent and identically distributed (i.i.d)
ample from the uniform distribution on the interval [0.23, 0.43]. Note
hat here the aforementioned interval is chosen manually. In principle,
he upper and lower boundaries of the interval can also be considered
s some hyper-parameters and be optimized through a certain CHOP
rocedure, which, however, is not considered in the current work.
or illustration, the first column of Fig. 3 shows the histograms of
ome localization length scales from the initial ensembles in both the
-AutoAdaLoc-1 and the P-AutoAdaLoc-0 schemes.

We evaluate three quantities, namely, data mismatch (DM), root

ean squared error (RMSE) and ensemble spread (spread for short),
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Fig. 3. Histograms of the initial (first column) and final (second column) ensembles of localization length scales in the P-AutoAdaLoc-1 and P-AutoAdaLoc-0 schemes used in the
5Spots case. Histograms on the first row depict the distributions of the single localization length scale in the P-AutoAdaLoc-1 scheme, whereas those on the second to the fourth
rows show the distributions of the 1st, the 330th, and the 650th localization length scale, respectively, in the P-AutoAdaLoc-0 scheme.
in the synthetic case study. DM (RMSE) is adopted to quantify the
distance between simulated observations (estimated reservoir model)
and real observations (reference reservoir model), whereas spread is
used to measure ensemble variability.

For the definition of RMSE, suppose that 𝐦 is an 𝑚-dimensional
reservoir model, and 𝐦𝑟𝑒𝑓 is the reference reservoir model (ground
truth) that generates the noisy observation 𝐝𝑜. Then the RMSE of 𝐦,
with respect to the reference model 𝐦𝑟𝑒𝑓 , is given by

RMSE
(

𝐦;𝐦𝑟𝑒𝑓 ) ≡ ‖𝐦 −𝐦𝑟𝑒𝑓
‖ ∕

√

𝑚, (31)
9

2

where the operator ‖ ∙ ‖2 returns the euclidean norm of its operand ∙.
Meanwhile, the DM of 𝐦, with respect to the observation 𝐝𝑜, is

defined as

DM (𝐦;𝐝𝑜) ≡ (𝐝𝑜 − 𝐠 (𝐦))𝑇 𝐂−1
𝑑 (𝐝𝑜 − 𝐠 (𝐦)) . (32)

Regarding the definition of ensemble spread, let  =
{

𝐦𝑗 ≡
[

𝑚𝑗,1, 𝑚𝑗,2,⋯𝑚𝑗,𝑚
]𝑇
}𝑁𝑒

𝑗=1
be an ensemble of estimated reservoir models,

with 𝑚𝑗,𝑘 denoting the 𝑘th element of 𝐦𝑗 (𝑘 = 1, 2,⋯ , 𝑚). In this case,
one can first construct a vector 𝐒 ≡

[

𝜎 , 𝜎 ,⋯ , 𝜎
]𝑇 , with 𝜎 being
1 2 𝑚 𝑘
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Fig. 4. Box plots of DM (first column) and RMSE of PERMX (second column) and PORO (third column) at different iteration steps of the IES algorithm, which is equipped with
noLoc (first row), AutoAdaLoc (second row), P-AutoAdaLoc-1 (third row) and P-AutoAdaLoc-0 (fourth row) scheme, respectively, in the 5Spots case.
the sample standard deviation of the ensemble {𝑚𝑗,𝑘}
𝑁𝑒
𝑗=1. Then, the

ensemble spread is computed as

𝑆𝑒𝑛 () = ‖𝐒‖2∕
√

𝑚. (33)

With the above definitions, Table 1 reports the DM and RMSE
values (in the form of mean ± STD), as well as ensemble spreads, with
respect to the initial ensemble, and the final ensembles obtained by
the IES algorithm, when it is equipped with noLoc, AutoAdaLoc, P-
AutoAdaLoc-1 or P-AutoAdaLoc-0 scheme. In comparison to the initial
ensemble, the final ensembles obtained by the IES algorithm correspond
to several-order lower mean DM values. Among the four choices of
localization schemes, noLoc leads to the lowest mean DM. Nevertheless,
10
in terms of mean total RMSE (i.e., the mean RMSE of log PERMX and
PORO together), noLoc results in the highest mean RMSE, which is
around only 0.6% lower than the mean RMSE of the initial ensemble.
This suggests that the noLoc scheme tends to overfit the observations,
which in turn may lead to a deteriorated performance in terms of RMSE,
as was also observed in other work (Luo et al., 2017). In contrast,
although the mean DM values of the other three localization schemes
are higher, the mean values of the corresponding total RMSEs become
lower than that of noLoc instead.

Moreover, in terms of ensemble spread, it can be seen from Table 1
that the final ensembles of all four localization schemes maintain
sufficiently large values, meaning that there are substantial varieties in
the final ensembles, and that ensemble collapse does appear to be an
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issue in this case study. Among the four localization schemes, noLoc
leads to the lowest spread value (as expected), AutoAdaLoc achieves
the highest spread, and P-AutoAdaLoc-1 and P-AutoAdaLoc-0 obtain
intermediate results.

Meanwhile, an inspection of the RMSE values of PERMX and PORO
in Table 1 indicates that in this particular case study, the P-AutoAdaLoc-
1 and P-AutoAdaLoc-0 schemes have somewhat different characteristics
than the AutoAdaLoc scheme: For the latter, its mean RMSE values
of PERMX and PORO are both lower than the corresponding values
of the initial ensemble. For the P-AutoAdaLoc-1 and P-AutoAdaLoc-
0 schemes, their mean RMSE values of PERMX are lower than the
corresponding values of the initial ensemble and the final ensemble
of the AutoAdaLoc scheme, but their mean RMSE values of PORO are
slightly higher than those of the initial ensemble and the final ensemble
of the AutoAdaLoc scheme instead. A possible reason behind this dif-
ferent behaviour of the P-AutoAdaLoc schemes is that in this particular
case study, there is stronger causality relation between PERMX and
production data, but weaker one between PORO and production data,
as was similarly observed in Luo et al. (2017). When applying the
CHOP procedure to the P-AutoAdaLoc schemes, the stronger causality
relation has more dominant impacts on the update of localization
length scales. As a result, the P-AutoAdaLoc schemes result in lower
mean RMSE values for PERMX, but higher mean RMSE values for
PORO. Putting together PERMX and PORO, one can see that overall the
P-AutoAdaLoc scheme with either single (P-AutoAdaLoc-1) or multiple
(P-AutoAdaLoc-0) localization length scale(s) leads to lower mean total
RMSE than that of the AutoAdaLoc scheme, whereas the P-AutoAdaLoc-
0 scheme with multiple localization length scales performs better than
the P-AutoAdaLoc-1 scheme with a single localization length scale.
This suggests that in this particular case study, it appears beneficial
to introduce tunable length scales to a localization scheme, and that
an increased number of tunable length scales tends to result in further
reduced RMSE values.

Complementary to the results in Table 1, Fig. 4 shows box plots
of DM and RMSE of PERMX and PORO at different iteration steps of
the IES algorithm, in which the noLoc, AutoAdaLoc, P-AutoAdaLoc-1
or P-AutoAdaLoc-0 scheme is adopted. With the noLoc scheme, DM
tends to reduce at a faster pace and to a lower amount. In terms
of RMSE of PERMX and PORO, however, there is a clear V-shaped
behaviour in the sense that at the first few iteration steps, the RMSE
values tend to decrease; after that, the RMSE values uprise and be-
come close to or higher than the corresponding values of the initial
ensemble, indicating the possibility of over-fitting the observations. For
the AutoAdaLoc, P-AutoAdaLoc-1, and P-AutoAdaLoc-0 schemes, their
corresponding box plots of DM exhibit somewhat similar behaviour: the
DM values change slower, and stay higher at the end of the iteration
process, than those with the noLoc scheme. In terms of RMSE, the
values of both PERMX and PORO with respect to the AutoAdaLoc, P-
AutoAdaLoc-1, and P-AutoAdaLoc-0 schemes appear lower than those
with respect to the noLoc scheme. The P-AutoAdaLoc-0 scheme leads to
the lowest RMSE of PERMX, whereas the AutoAdaLoc scheme achieves
the lowest RMSE of PORO. In terms of total RMSE, the P-AutoAdaLoc-
1 and P-AutoAdaLoc-0 schemes perform better than the AutoAdaLoc
and noLoc schemes. For the P-AutoAdaLoc-1 scheme, the box plots
exhibit V-shaped behaviour for RMSE of both PERMX and PORO. This
phenomenon is mitigated with the P-AutoAdaLoc-0 scheme, suggesting
that in this particular case study, it appears more beneficial to include
multiple localization length scales than to use a single localization
length scale in the P-AutoAdaLoc scheme.

Additionally, Figs. 1 and 2 disclose the PERMX and PORO maps
with respect to the reference model, and the mean models of the
initial and final ensembles. Given the limited spatial coverage of the
production data, the IES algorithm with either localization scheme
is not able to obtain estimations of PERMX and PORO maps that
resemble the reference maps to a satisfactory extent, although the mean
11

maps of the final ensembles do appear better than those of the initial
ensemble. Among the four localization schemes, it appears that the
final mean maps obtained by the AutoAdaLoc, P-AutoAdaLoc-1, and
P-AutoAdaLoc-0 schemes are more similar to each other due to the
similarities among the adopted localization schemes, whereas those
obtained by the noLoc scheme have more distinctions because of the
absence of localization.

Furthermore, Fig. 3 indicates the histograms with respect to the
initial and final ensembles of hyper-parameters in the P-AutoAdaLoc-1
and P-AutoAdaLoc-0 schemes. For the P-AutoAdaLoc-1 scheme, each
ensemble member 𝓵𝑖

𝑗 (𝑖 = 0 or 𝑖 = 20) only has a single element
𝓁𝑖
𝑗,1, whereas for the P-AutoAdaLoc-0 scheme used in this particular

case, each ensemble member 𝓵𝑖
𝑗 contains 650 elements 𝓁𝑖

𝑗,𝑠 (𝑠 =
1, 2,⋯ , 650) instead. For brevity, Fig. 3 only reports the histograms of
the ensembles of the 1st ({𝓁𝑖

𝑗,1}
100
𝑗=1), the 330-th ({𝓁𝑖

𝑗,330}
100
𝑗=1) and the

650-th elements ({𝓁𝑖
𝑗,650}

100
𝑗=1), respectively. Comparing the histograms

f the P-AutoAdaLoc-0 and P-AutoAdaLoc-1 schemes, it can be seen
hat there are noticeable differences (in terms of locations and heights)
mong the histograms of the initial (first column) and final (second
olumn) ensembles. However, the differences in the P-AutoAdaLoc-0
cheme appear to be less substantial than those in the P-AutoAdaLoc-1
cheme. A possible reason behind the more significant changes of the
yper-parameters in the P-AutoAdaLoc-1 scheme is that it only contains
single localization length scale in each ensemble member, which

mplies less degree of freedom for the purpose of fitting observations.
s such, it has to make more significant adjustments of localization

ength scales in order to lower DM values during data assimilation.
Putting together the results in Table 1 and Figs. 1–4, we conclude

hat in this particular case study, the AutoAdaLoc, P-AutoAdaLoc-1,
nd P-AutoAdaLoc-0 schemes surpass the noLoc scheme. The per-
ormance of the AutoAdaLoc, P-AutoAdaLoc-1, and P-AutoAdaLoc-0
chemes appears close to each other. In terms of the total RMSE,
he P-AutoAdaLoc-0 scheme performs better than the P-AutoAdaLoc-1
cheme, whereas the latter appears slightly better than the AutoAdaLoc
cheme. Taking into account these results and for brevity later, in
ubsequent investigations, we will be focused on further comparing the
erformance of the AutoAdaLoc and P-AutoAdaLoc-0 schemes in two
ore case studies.

.2. Case 2:Multiple five spots (M-5Spots)

The second example considers a larger 2D case study investigated
y Chen and Oliver (2010), in which the reservoir model contains
ultiple inverted 5-spots well (M-5Spots) patterns, with each injector

urrounded by four producers. In terms of reservoir gridblocks, the
imension of the reservoir model is 167 × 167. For the injectors, both
heir horizontal and vertical coordinates are integers taken from the
et {24, 54, 84, 114, 114}, hence there are 5 × 5 = 25 injectors in total.
eanwhile, the horizontal and vertical coordinates of the producers

re integers from the set {9, 39, 69, 99, 129, 159}, and there are 6×6 = 36
producers altogether.

In this case study, the unknown parameters are PERMX (in the
natural logarithmic scale) on all gridblocks. Hence, the total number
of parameters to be estimated is 27889. The phases in the reservoir
include oil and water. Fig. 5(a) shows the reference PERMX map, which
is used to generate observations in this case study. Specifically, the
types of observations include well oil production rates (WOPR) and well
water production rates (WWPR) from producers, and well bottom hole
pressures (WBHP) and well water injector rates (WWIR) from injectors.
The length of the data assimilation time window is 1440 days, with 9
evenly spanned reporting time steps. At each reporting time step, there
are 122 data points. Therefore, the total number of observation data
is 122 × 9 = 1098. As in the previous case study, a certain amount of
zero-mean Gaussian white noise is introduced to the observation data.
However, unlike the setting in the previous case study, here the noise
STD is specified based on absolute measurement errors. For WWPR and

3
WOPR, their noise STD is 8 m /day (around 0.9% of the maximum
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Table 2
Data mismatch (DM), root mean squared error (RMSE) and ensemble spread in the M-5Spots case.

Initial ensemble Final ensemble (AutoAdaLoc) Final ensemble (P-AutoAdaLoc-0)

DM (mean ± STD) (1.7091 ± 0.3517) × 107 (1.7896 ± 0.5328) × 105 (𝟕.𝟐𝟓𝟑𝟓 ± 𝟏.𝟏𝟖𝟖𝟏) × 𝟏𝟎𝟒

RMSE (mean ± STD) 1.6647 ± 0.0707 1.3811 ± 0.0357 𝟏.𝟐𝟓𝟓𝟎 ± 𝟎.𝟎𝟑𝟒𝟎
Spread 1.1864 0.9293 𝟎.𝟓𝟖𝟏𝟗
Fig. 5. PERMX maps (in the natural logarithmic scale) with respect to (a) the reference model; (b) the mean of the initial ensemble; (c) – (d) the means of the final estimated
(est.) ensembles obtained by the IES algorithm with the AutoAdaLoc and the P-AutoAdaLoc-0 schemes, respectively, in the M-5Spots case. In all the maps, the small dots indicate
the locations of wells.
value of WWPR and WOPR); for WBHP, the noise STD is 10 Psi (around
0.2% of the maximum value of WBHP); whereas for WWIR, the noise
STD is 5 m3/day (around 0.3% of the maximum value of WWIR).

The configuration of the IES algorithm in the M-5Spots case is
roughly the same as that in the 5Spots case. Therefore, here we choose
to only highlight some essential aspects of the algorithm configuration.
Concretely, the IES algorithm is initialized with an ensemble of 100
reservoir models, with the mean PERMX map shown in Fig. 5(b).
For the previously explained reason, here we let the IES algorithm
be equipped with the AutoAdaLoc and the P-AutoAdaLoc-0 schemes,
following Settings (2) and (4), respectively, in the 5Spots case. In
the AutoAdaLoc scheme, the threshold values 𝜃𝐺𝑘 ,𝑠 are pre-calculated
according to Eq. (15) and then fixed afterward. Meanwhile, in the P-
AutoAdaLoc-0 scheme, each reservoir model is associated with a set
of 1098 localization length scales. An initial ensemble of localization
length scales (with the ensemble size 𝑁 = 100) is generated in the same
12

𝑒

way as in the 5Spots case. For illustration, the histograms of the initial
ensembles of a few selected localization length scales are shown in the
first column of Fig. 6. Other than the above aspects, the maximum
number of iteration steps in the IES algorithm is also set to 20, and the
stopping criteria in the M-5Spots are the same as those in the 5Spots
case.

With the above experiment settings, the IES algorithm with the P-
AutoAdaLoc-0 scheme outperforms that with the AutoAdaLoc scheme.
To illustrate this point, Table 2 reports DM and RMSE (in terms of
mean ± STD), as well as ensemble spread, with respect to the initial
ensemble, and the final ones obtained by the IES algorithm with
the AutoAdaLoc and P-AutoAdaLoc-0 schemes, respectively. In terms
of mean DM, it can be seen that both localization schemes lead to
significant (at least two orders of magnitude) reduction, in contrast
to the initial ensemble without data assimilation. Comparing the Au-
toAdaLoc and P-AutoAdaLoc-0 schemes, the DM value with respect to



Geoenergy Science and Engineering 231 (2023) 212404X. Luo et al.
Fig. 6. Histograms of the initial (first column) and final (second column) ensembles of localization length scales at indices 1, 300, 600 and 900, respectively, with respect to the
P-AutoAdaLoc-0 scheme used in the M-5Spots case.
the P-AutoAdaLoc-0 scheme is around 53.5% lower than that of the
AutoAdaLoc scheme. In the meantime, the mean RMSE values obtained
by the AutoAdaLoc and P-AutoAdaLoc-0 schemes are around 17.0%
and 24.6%, respectively, lower than that of the initial ensemble. As for
ensemble spread, both localization schemes result in reduced spread
values. In this particular case, the P-AutoAdaLoc-0 scheme leads to a
more substantial (about 51.0%) spread reduction than the AutoAdaLoc
13
scheme does (about 21.7% reduction). Nevertheless, the P-AutoAdaLoc-
0 scheme is still able to maintain sufficient ensemble spread and avoid
ensemble collapse.

In addition, Fig. 7 presents the box plots of DM (first row) and RMSE
(second row) at different iteration steps, when the AutoAdaLoc (first
column) and the P-AutoAdaLoc-0 (second column) schemes, respec-
tively, are applied to the IES algorithm. Conforming with the results
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Fig. 7. Box plots of DM (first row) and RMSE of log PERMX (second row) at different iteration steps of the IES algorithm, which is equipped with the AutoAdaLoc (first column)
and the P-AutoAdaLoc-0 (second column) schemes, respectively, in the M-5Spots case.
in Table 2, one can see that with the P-AutoAdaLoc-0 scheme, the
corresponding DM and RMSE tend to converge faster to some lower
values than those of the AutoAdaLoc scheme.

Fig. 5 displays the mean PERMX maps with respect to the initial
ensemble (upper right), and the final ensembles delivered by the IES
algorithm with the AutoAdaLoc (lower left) and the P-AutoAdaLoc-0
schemes (lower right), respectively. For comparison, the true PERMX
map from the reference model is also included (upper left). Inspecting
the initial mean and the true maps, it can be seen that the initial mean
map is relatively flat, with fewer spatial variations. By assimilating
production data into the reservoir models through the IES algorithm,
the final mean maps with respect to both localization schemes exhibit
more spatial variations, and can capture some of the geological features
in the true map. A further comparison between the final mean maps of
the two localization schemes helps reveal that in this particular case,
the final mean map with respect to the AutoAdaLoc scheme appears
spatially over-smoothed, whereas the final mean map obtained with the
P-AutoAdaLoc-0 scheme is able to capture more geological features in
the true map, and thus appears geologically more realistic than that
obtained with the AutoAdaLoc scheme.

Finally, Fig. 6 plots the histograms of the initial (first column) and
final (second column) ensembles of a few selected localization length
scales used in the P-AutoAdaLoc-0 scheme. Since the initial ensemble
of localization length scales contains samples drawn from a uniform
distribution, the histograms of the initial ensemble appear relatively
flat. As in Fig. 3, after data assimilation, the histograms of the final
ensemble of localization length scales are more concentrated, but the
changes of the histograms (in terms of locations, widths, and heights,
etc.) appear less substantial, in comparison to the situation in Fig. 3(b)
of the 5Spots case.

Overall, in this particular case study, one can conclude that in terms
of DM and RMSE, the P-AutoAdaLoc-0 scheme performs better than the
AutoAdaLoc scheme.
14
3.3. Case 3: Brugge benchmark

The last example considers the 3D Brugge benchmark case (Peters
et al., 2010). The dimension of the reservoir model is 139 × 48 × 9.
There are 60048 reservoir gridblocks in total, and 44550 of them
are active. The benchmark case provides an initial ensemble of 104
members. We use one of them as the reference model to generate
observation data, and the rest to form the initial ensemble in data
assimilation.

There are 20 producers and 10 water injectors in the field. The
production period is 10 years with 20 report times. The types of
production data used in data assimilation include well oil production
rates (WOPR) and water cuts (WWCT) at 20 producers, and bottom
hole pressures (WBHP) at all 30 wells. As such, the total number
of production data is 1400. To mimic the situation in practical data
assimilation problems, we introduce zero-mean Gaussian white noise to
the production data generated by the reference model. Concretely, for
WOPR and WWCT, their noise STDs are the maximum values between
10% of their magnitudes and 10−6 (which is adopted to avoid the
potential numerical issue of division by zero); For WBHP data, their
noise STDs are set to 1 bar.

The unknown parameters to be estimated include permeability
along x-, y- and 𝑧-directions (PERMX, PERMY, PERMZ) in the natural
logarithmic scale and porosity (PORO) on active gridblocks. As such,
the total number of unknown parameters is 4 × 44550 = 178200. For
illustration, the upper panels of Figs. 8 and 9 show the maps of PERMX
and PORO, respectively, on Layer 2 of the reference model (upper left)
and the mean reservoir model of the initial ensemble (upper right).

The configuration of the IES algorithm in the Brugge benchmark
case is also very similar to those in the 5Spots and M-5Spots cases. For
the purpose of performance comparison, we apply the AutoAdaLoc and
the P-AutoAdaLoc-0 schemes to the IES algorithm. In the AutoAdaLoc
scheme, the way of determining the threshold values 𝜃𝐺𝑘 ,𝑠 is the same
as that in the previous case studies. As for the P-AutoAdaLoc-0 scheme,

each reservoir model is now associated with a set of 1400 localization
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Table 3
Data mismatch (DM), root mean squared error (RMSE), and ensemble spread in the Brugge benchmark case.

Initial ensemble Final ensemble (AutoAdaLoc) Final ensemble (P-AutoAdaLoc-0)

DM (mean ± STD) (0.3623 ± 1.4900) × 1010 (0.9481 ± 1.9730) × 107 (𝟑.𝟗𝟖𝟒𝟐 ± 𝟕.𝟎𝟏𝟕𝟑) × 𝟏𝟎𝟓

Total RMSE (mean ± STD) 1.5450 ± 0.3362 1.2610 ± 0.1663 𝟏.𝟏𝟔𝟒𝟓 ± 𝟎.𝟏𝟎𝟒𝟔
RMSE of PERMX (mean ± STD) 1.6585 ± 0.3827 1.3498 ± 0.1982 𝟏.𝟐𝟑𝟗𝟗 ± 𝟎.𝟏𝟐𝟎𝟓
RMSE of PERMY (mean ± STD) 1.6612 ± 0.3794 1.3546 ± 0.1959 𝟏.𝟐𝟒𝟒𝟒 ± 𝟎.𝟏𝟏𝟗𝟕
RMSE of PERMZ (mean ± STD) 2.0077 ± 0.4096 1.6426 ± 0.1937 𝟏.𝟓𝟐𝟖𝟐 ± 𝟎.𝟏𝟑𝟎𝟕
RMSE of PORO (mean ± STD) 0.0302 ± 0.0033 0.0298 ± 0.0031 𝟎.𝟎𝟐𝟓𝟗 ± 𝟎.𝟎𝟎𝟏𝟖
Spread 0.8661 0.6308 𝟎.𝟓𝟒𝟑𝟓
Fig. 8. PERMX maps (in the natural logarithmic scale) on Layer 2 of (a) the reference model; (b) the mean reservoir model of the initial ensemble; (c)–(d) the mean reservoir
models of the final estimated (est.) ensembles obtained by the IES algorithm with the AutoAdaLoc and the P-AutoAdaLoc-0 schemes, respectively, in the Brugge benchmark case.
In all the maps, the small dots indicate the locations of wells.
Fig. 9. As in Fig. 8, but for PORO map on Layer 2 of the Brugge benchmark case.
length scales. The localization length scales in the initial ensemble (now
with the ensemble size 𝑁𝑒 = 103) are again generated in the same
way as that in the 5Spots case. For illustration, the first column of
Fig. 10 displays the histograms of the initial ensembles of a few selected
localization length scales. Meanwhile, the IES algorithm has maximum
20 iteration steps, and it shares the same stopping criteria as those in
the 5Spots and M-5Spots case studies.

The numerical results below indicate that in this particular bench-
mark case, the P-AutoAdaLoc-0 scheme also tends to result in better
performance than the AutoAdaLoc scheme. To support this point, Ta-
ble 3 provides a summary of DM, RMSE, and ensemble spreads for the
15
initial ensemble, and the final ensembles obtained by the IES algorithm
with the AutoAdaLoc and the P-AutoAdaLoc-0 schemes, respectively.
Coupled with either localization scheme, the IES algorithm is able to
reduce the mean DM value for at least two orders of magnitude, in
comparison to that of the initial ensemble, whereas the final mean DM
of the P-AutoAdaLoc-0 scheme is at least one order of magnitude lower
than that of the AutoAdaLoc scheme.

In terms of mean total RMSE (i.e., the RMSE with respect to all
types of parameters to be estimated), the values of the IES algorithm
with the AutoAdaLoc and P-AutoAdaLoc-0 schemes are 18.4% and
24.6%, respectively, lower than that of the initial ensemble, while
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Fig. 10. Histograms of the initial (first column) and final (second column) ensembles of localization length scales at indices 1, 300, 600 and 900, respectively, with respect to
the P-AutoAdaLoc-0 scheme used in the Brugge benchmark case.
the P-AutoAdaLoc-0 scheme achieves around 6.2% lower mean total
RMSE than the AutoAdaLoc scheme does. Similar results can also be
observed for RMSE values with respect to individual types of petro-
physical parameters (PERMX, PERMY, PERMZ, and PORO). Finally,
regarding ensemble spread, one can see that the values obtained by the
AutoAdaLoc and the P-AutoAdaLoc-0 schemes are 27.2% and 37.2%,
respectively, lower than that of the initial ensemble. The ensemble
spread of the P-AutoAdaLoc-0 scheme is around 10.0% lower than
that of the AutoAdaLoc scheme, but is substantially away from zero,
meaning that ensemble collapse is avoided.
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Supplementary to the results in Table 3, Fig. 11 displays the box
plots of DM (first row), total RMSE (second row), RMSEs of PERMX
(third row) and PORO (fourth row) at different iterations of the IES
algorithm, when the AutoAdaLoc (first column) or the P-AutoAdaLoc-0
(second column) scheme is adopted. In all these box plots, it is clear
that the P-AutoAdaLoc-0 scheme tends to achieve final DM or RMSE
values lower than those of the AutoAdaLoc scheme.

For further illustration, Figs. 8 and 9 present PERMX and PORO
maps on Layer 2 of the reference model (upper left), the mean reservoir
model of the initial ensemble (upper right) and the mean reservoir
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Fig. 11. Box plots of DM (first row) and RMSE of log PERMX (second row) at different iteration steps of the IES algorithm, which is equipped with the AutoAdaLoc (first column)
and the P-AutoAdaLoc-0 (second column) schemes, respectively, in the Brugge benchmark case.
models of the final ensembles obtained by the IES algorithm with
the AutoAdaLoc scheme (lower left) and the P-AutoAdaLoc-0 scheme
(lower right), respectively. A visual comparison among these maps
reveals that the estimated PERMX and PORO maps tend to be more
similar to the reference ones, in contrast to the corresponding maps of
the initial mean reservoir model. Moreover, the maps obtained with
the P-AutoAdaLoc-0 scheme resemble the reference maps better than
17
those with the AutoAdaLoc scheme, which is particularly evident for
the PORO maps.

Fig. 10 also demonstrates the prior and posterior distributions of a
few selected localization length scales in the P-AutoAdaLoc-0 scheme.
Similar to the situations in the 5Spots and M-5Spots cases, there are
some noticeable differences between the histograms of the initial and
final ensembles of these localization length scales, but such changes can
be considered moderate in comparison to the situation in the first row
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of Fig. 3, where only a single localization length scale is adopted in the
P-AutoAdaLoc-0 scheme (cf Setting (3) of the 5Spots case).

4. Discussion and conclusion

The focus of the current work is on further improving the per-
formance of a correlation-based, automatic and adaptive localization
(AutoAdaLoc) scheme used in an iterative ensemble smoother (IES), by
introducing a continuous hyper-parameter optimization (CHOP) proce-
dure to optimize the values of localization length scales in a param-
eterized AutoAdaLoc (P-AutoAdaLoc) scheme. The CHOP procedure
converts a hyper-parameter optimization problem into a conventional
parameter estimation problem, and solves it through an IES algorithm.
In doing so, the CHOP procedure possesses some practical benefits
inherent in ensemble-based data assimilation algorithms, including the
nature of being derivative-free and the ability to provide uncertainty
quantification for the estimated quantities to some extent. As such,
in comparison to the existing distance- or correlation-based localiza-
tion schemes, there are some noticeable differences in the proposed
P-AutoAdaLoc scheme: Instead of specifying static, point values for
localization length scales, the proposed scheme iteratively estimates an
ensemble of localization length scales, and can be naturally integrated
into the IES-based data assimilation workflow. Moreover, like the abil-
ity of the IES algorithm in dealing with large-scale reservoir data
assimilation problems, the P-AutoAdaLoc scheme has the capacity to
handle a relatively large number of localization length scales. As such,
the P-AutoAdaLoc scheme can surpass the limitation in many existing
localization schemes that only contain a single hyper-parameter, in
order to avoid the complexity of simultaneously optimizing multiple
hyper-parameters. The performance of the P-AutoAdaLoc scheme is
investigated in three synthetic case studies, in which the numerical
results indicate that the P-AutoAdaLoc scheme indeed tends to perform
better than the original AutoAdaLoc scheme.

As indicated in Algorithm 2, at a given iteration step, the IES
algorithm with the P-AutoAdaLoc scheme conducts the same number
of forward reservoir simulations as that with the AutoAdaLoc scheme,
which is a desirable feature. Meanwhile, the presence of the CHOP pro-
cedure does incur additional algorithmic complexity and computational
overheads. The main cause of these overheads lies in the fact that in
the P-AutoAdaLoc scheme, each reservoir model is associated with an
individual set of multiple localization length scales, making the model
update formula (e.g., Eq. (17)) depend on the individual combination
of a reservoir model and a set of localization length scales. This means
that a tapering matrix needs to be calculated for each reservoir model,
which could consume a large amount of computer memory with both
big models and big field datasets. For the three case studies in the
current work, since the number of production data is relatively small,
this noticed issue does not appear to cause any problem. Nevertheless,
should a large number of field datasets, e.g., 4D seismic (Lorentzen
et al., 2019; Luo et al., 2017; Soares et al., 2020), be assimilated into
a big reservoir model, then it could be computationally challenging
to construct a big tapering matrix for the update of each reservoir
model. In this regard, we expect that a few strategies can be adopted
to mitigate the consumption of computer memory, which include: (1)
sparse model/data representation (Canchumuni et al., 2019; Lorentzen
et al., 2019; Luo et al., 2017; Soares et al., 2020) to reduce the size(s) of
reservoir model and/or observation data; (2) projection of observation
data onto the ensemble subspace and then using the projected data as
the effective observations (Luo et al., 2019; Luo and Cruz, 2022); (3)
local analysis in which each update focuses on a small group of model
variables and observation data points (Chen and Oliver, 2017; Soares
et al., 2021). In future work, we will test some of these strategies in
relevant data assimilation problems.

In the current work, we have confined ourselves to the tuning of
localization length scales through the CHOP procedure. At a more
general level, we expect that the CHOP procedure may be similarly
applied to optimize hyper-parameters in various data assimilation al-
gorithms, as exemplified in the preceding work (Luo and Xia, 2022).
More investigations in this regard are thus expected in our future work.
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Nomenclature

𝑐 = scalar coefficient
𝐂𝑑 = covariance matrix of data noise
𝐂𝑖
𝑚 = sample error covariance matrix of reservoir

models at the 𝑖th iteration
𝐂𝑖
𝓁 = sample error covariance matrix of

hyper-parameters at the 𝑖th iteration
𝐶 𝑖+1
𝑗 = the 𝑗th cost function at the (𝑖 + 1) iteration step in

a minimum-average-cost (MAC) problem
�̃� 𝑖+1
𝑗 = similar to 𝐶 𝑖+1

𝑗 , but for the MAC problem of
optimizing hyper-parameters

𝐝𝑜 = noisy observed data
𝐝𝑜𝑗 = the 𝑗th perturbation of 𝐝𝑜

𝐝𝑜𝑗 = 𝐝𝑜 normalized by a square root matrix of 𝐂𝑑
𝐝𝑠𝑖𝑚 = simulated observations
𝐟 = vector mapping that represents a model update

formula
𝐟 = shorter notation of 𝐟 after dropping some

invariants
𝑓𝐺𝐶 = Gaspari–Cohn function
𝐠 = reservoir forward simulator
�̃� = 𝐠 normalized by a square root matrix of 𝐂𝑑
𝐺𝑘 = the group (e.g., permeability, porosity) of

petro-physical parameters that 𝑚𝑖
𝑗,𝑘 belongs to

𝐡 = composition of the functions of 𝐟 and 𝐠
𝐈𝑝 = the p-dimensional identity matrix
𝑘𝑖𝑘,𝑠 = matrix entry at the 𝑘th row and the 𝑠th column of

𝐊𝑖

𝐊𝑖 = Kalman-gain-like matrix at the 𝑖th iteration step
for updating reservoir models

𝐊𝑖
𝓁 = Kalman-gain-like matrix at the 𝑖th iteration step

for updating hyper-parameters
𝐋𝑖 = an ensemble containing the elements 𝓵𝑖

𝑗 for
𝑗 = 1,⋯ , 𝑁𝑒

𝑚 = dimension of a reservoir model
𝑚𝑖
𝑗,𝑘 = the 𝑘th model variable of 𝐦𝑖

𝑗
𝐦 = generic reservoir model
𝐦𝑎 = analysis (posterior) reservoir model
𝐦𝑏 = background (prior) reservoir model
𝐦𝑖

𝑗 = the 𝑗th reservoir model at the 𝑖th iteration step
𝐌𝑖 = the ensemble of reservoir models at the 𝑖th

iteration step
�̄�𝑖 = mean reservoir model of 𝐌𝑖

𝐦𝑟𝑒𝑓 = reference reservoir model
𝑁𝑒 = ensemble size
𝑝 = dimension of the observation vector
𝐒𝑖𝓁 = hyper-parameter square-root matrix at the 𝑖th

iteration step
𝐒𝑖𝑔 = data square-root matrix at the 𝑖th iteration step
�̃�𝑖𝑔 = 𝐒𝑖𝑔 normalized by a square root matrix of 𝐂𝑑
𝐒𝑖ℎ = data square-root matrix at the 𝑖th iteration step

based on the composition function 𝐡
𝐒𝑖𝑚 = model square-root matrix at the 𝑖th iteration step
𝐒 = vector containing ensemble standard deviations

for all model variables
𝑡𝑖𝑘,𝑠 = matrix entry at the 𝑘th row and the 𝑠th column of

𝐓𝑖

𝑡𝑖𝑗,𝑘,𝑠 = 𝑡𝑖𝑘,𝑠 associated with the 𝑗th reservoir model
𝐓𝑖 = tapering matrix at the 𝑖th iteration step
𝐓
(

𝓵𝑖
𝑗

)

= tapering matrix as a function of 𝓵𝑖
𝑗 for updating

the reservoir model 𝐦𝑖
𝑗

𝐓𝓁

(

𝓵𝑖
𝑗

)

= similar to 𝐓
(

𝓵𝑖
𝑗

)

, but for updating the
hyper-parameter vector 𝓵𝑖

𝑗 .
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𝐱 = dummy vector
[𝐱]𝑠 = the 𝑠th element of 𝐱
𝓁𝑠 = localization length scale associated with the

𝑠th observation
𝓁𝑘,𝑠 = localization length scale associated with the

𝑘th model variable and the 𝑠th observation
𝓁𝑖
𝑗,𝑠 = the 𝑠th element of 𝓵𝑖

𝑗
𝓵𝑖
𝑗 = a set of localization length scales associated

with 𝐦𝑖
𝑗

�̄�𝑖 = mean hyper-parameter vector with respect
to the ensemble 𝐋𝑖

𝝐0𝐺𝑘 ,𝑠
= substitute sampling errors in the correlation

field 𝝆0
𝐺𝑘 ,𝑠

𝛾 𝑖 = regularization parameter at the 𝑖th iteration
step

𝜌0𝑘,𝑠 = sample correlation coefficient between the
ensembles {𝑚0

𝑗,𝑘}
𝑁𝑒
𝑗=1 and

{

[�̃�
(

𝐦0
𝑗

)

]𝑠
}𝑁𝑒

𝑗=1
𝝆0
𝐺𝑘 ,𝑠

= sample correlation field between
{

[�̃�
(

𝐦0
𝑗

)

]𝑠
}𝑁𝑒

𝑗=1
and the group 𝐺𝑘 of

petro-physical parameters
𝜎𝐺𝑘 ,𝑠 = estimated noise level in the sample

correlation field 𝝆0
𝐺𝑘 ,𝑠

𝜎𝑘 = ensemble standard deviation with respect to
the 𝑘th model variable

𝜃𝐺𝑘 ,𝑠 = threshold value for the group 𝐺𝑘 of
petro-physical parameters

𝛥𝑑𝑖𝑗,𝑠 = the 𝑠th element of 𝛥𝐝𝑖𝑗
𝛥𝐝𝑖𝑗 = normalized innovation defined as

𝐝𝑜𝑗 − �̃�
(

𝐦𝑖
𝑗

)

Subscripts

𝑒 = ensemble
𝑗 = index of ensemble member
𝑘 = index of model variable
𝑚 = model
𝑟𝑒𝑓 = reference
𝑠 = index of observation element
𝑠𝑖𝑚 = simulation

Superscripts

𝑎 = analysis
𝑏 = background
𝑖 = index of iteration step
𝑜 = observation
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