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Abstract

This paper deals with the modeling and identification of the Quanser Aero. The Quanser Aero is an aerospace lab-
oratory setup designed for teaching aerospace concepts. Two propellers generate thrust and allow the user to control its
dynamic response. The ability to lock axes individually makes it capable of abstracting a variety of aerospace systems,
such as half-quadrotor, 1-Degree of freedom (DOF), vertical take-off and landing (VTOL), and 2-DOF helicopter. This
paper focuses on the latter of these modes. In this configuration, the Quanser Aero can produce different pitch and
yaw angles based on the angular velocity of the propellers, which produces an interesting identification and control
problem, due to the presence of nonlinearities and significant cross-couplings between different variables. In this paper,
a nonlinear model derived from Newton’s law and Euler’s rotational dynamics is obtained, and the unknown model
parameters are identified through an experimental approach, with the model validated through real-time testing. In par-
ticular, it is shown that by means of a more detailed description of the friction, which includes the Karnopp’s model that
keeps the sum of the magnitude of all forces equal to zero until the applied forces are strong enough to overcome the
friction force, and of the centripetal forces acting on the Aero, significant improvements are obtained when compared to
state-of-the-art models. These improvements may hold the potential to enhance the performance of advanced nonlinear
model-based control algorithms for this device.
Keywords: Quanser Aero, nonlinear model, friction

1 Introduction

With the advance of technology, aerial vehicles are
steadily becoming more and more ubiquitous. For ex-
ample, their unmanned versions, commonly referred to as
drones, are widely used in several applications where it
is either dangerous or economically inefficient to employ
human pilots, e.g., for monitoring (Ren et al., 2019) and
transport (Thiels et al., 2015) tasks. In order to train en-
gineers to analyse the dynamical behaviour of aerial ve-
hicles and design efficient and effective feedback control
systems for them, small-scale devices that are apt to use
in laboratories for educational purposes have been devel-
oped. These devices solve some of the most common is-
sues encountered when unmanned aerial vehicles are ap-
plied to education, such as their limited autonomy and lo-
gistical/safety problems, among others (Shadiev and Yi,
2022). One of such devices is the Quanser Aero, a recon-
figurable dual-rotor aerospace setup designed for teaching
control and introducing aerospace concepts at an under-
graduate level, but at the same time complex enough to
enable its use in research, see e.g. (Kim and Ahn, 2021;
Fliess and Join, 2022).

Attaining a satisfactory performance when controlling a
highly coupled and nonlinear system such as the Quanser
Aero is a challenging problem. It is known that nonlinear
control algorithms are able to achieve better performance
than linear control schemes (Kumar and Dewan, 2022),

although they require a precise and reliable model that de-
scribes the system under consideration over a broad range
of operating conditions. For this reason, several students
and researchers have engaged in obtaining a model of the
Quanser Aero that goes beyond the simple linear model
provided by the manufacturer. For instance, (Frasik and
Gabrielsen, 2018) have provided a nonlinear model cali-
brated through the analysis of free-oscillation and step re-
sponses. (Schlanbusch, 2019) derived a nonlinear math-
ematical model based on an Euler-Lagrange approach,
where the uncertain parameters were updated in real-time
by an adaptive control law.(Abdelwahed et al., 2019) used
a reduced complexity autoregressive with exogenous in-
put (ARX)-Laguerre model to describe the Quanser Aero
in a selected operating point. (Segerstrom et al., 2021)
used particle swarm optimization and constrained nonlin-
ear optimization to obtain key electrical, mechanical and
aerodynamical parameters for this device. (Kumar and
Dewan, 2022) further improved the model and used it to
design linear quadratic regulator (LQR) and sliding mode
controller (SMC) algorithms.

In this paper, we obtain a nonlinear model using a
Newton-Euler approach, identify its unknown parameters
through an experimental approach, and validate the model
through real-time testing. The main feature of the pro-
posed model is a more detailed description of the fric-
tion, which includes the Karnopp’s model, and of the cen-
tripetal forces acting on the Aero. Using different per-
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Figure 1. General component arrangement of the mechanical
parts on the Quanser Aero. Adapted from (Qua, 2016)

formance indices under several operating conditions, we
highlight significant improvements in the model’s ability
to capture the nonlinearities of the system in comparison
with state-of-the-art models. Hence, the proposed model
could potentially contribute significantly to the design of
advanced nonlinear model-based control algorithms that
require a stronger match between reality and model.

The remaining of this paper is structured as follows.
Section 2 provides a description of the Quanser Aero. A
detailed explanation of the mathematical model consid-
ered in this paper is given in Section 3. Section 4 presents
the experimental comparison between the proposed model
and other state-of-the-art models encountered in the liter-
ature. Finally, Section 5 summarizes the main conclusions
of the work.

2 System description
The Aero is a dual-propeller laboratory setup designed
for education and research in aerospace control, manu-
factured by Quanser Consulting Inc. It is equipped with
two identical propellers, each of which is driven by a
brushed direct-current (DC) motor. By applying motor
voltages ranging within ±18V, the user can manipulate
the thrust produced by the propellers, thereby affecting
the dynamics of the Aero. Moreover, the experiment is
reconfigurable, meaning that the propeller assemblies can
be tilted to desired angles. This, together with its ability to
lock axes individually, allows the Aero to abstract various
aerospace systems, such as half-quadrotor 1-DOF VTOL,
and 2-DOF helicopter. This paper considers the latter
case, where the propellers are perpendicular, as shown in
Fig. 1.

The Quanser Aero can be considered as the composi-
tion of three structures: the base, the support yoke, and
the helicopter body. The base is a stationary box at the
bottom of the Aero and contains the electrical and elec-
tronic components necessary to control the system. The
support yoke, shaped like a fork, stands vertically on the
Aero base and serves to elevate the helicopter body, allow-
ing it to rotate around its vertical axis. A rotational joint

Figure 2. 3D-printed low-efficiency (left) and high-efficiency
(right) propellers (left)

between the base and the yoke combined with a slip ring
wiring system allows for an unlimited 360◦ yaw rotation.
The helicopter body comprises two coupled metal tubes
held together by a tube clamp, with a pair of propeller as-
semblies at both ends. It is horizontally attached to the
forked yoke through a rotational joint, allowing the pitch
angle of the helicopter body to rotate between −62◦ and
+54◦.

The propeller pair in the Quanser Aero system is inter-
changeable. As of now, Quanser offers two types of pro-
pellers: high-efficiency and low-efficiency (see Fig. 2).
This study considers the latter type. Although the high-
efficiency propellers are more representative of small-
scale aerial vehicles, a dynamic coupling between axes,
which is seen in real aerial vehicles, is only present when
the low-efficiency propellers are used. Thus, from a con-
trol engineering perspective, the use of low-efficiency pro-
pellers poses a more interesting and challenging problem.

The Aero setup is equipped with four optical rotary en-
coders that precisely measure the angular position of each
DC motor, as well as the pitch and yaw angles of the heli-
copter body. An inertial measurement unit (IMU), which
combines an accelerometer and a gyroscope, is also inte-
grated into the Aero.

3 Mathematical Model
The mathematical model presented in this section de-
scribes the 2-DOF helicopter configuration of the Quanser
Aero. It was derived by considering it as a rigid body and
applying Newton’s laws and Euler’s rotational dynamics.
The model is based on several electrical and mechanical
parameters outlined in Table 1, most of which are pro-
vided by the manufacturer. Unknown parameters related
to dynamical properties such as damping, friction, and
propeller thrust have been experimentally identified and
are listed in Table 2.

3.1 Propeller dynamics
The main and tail propeller dynamics are modeled as two
nonlinear differential equations containing identical pa-
rameters:

dωp

dt
=

Kτ

RaJeq
vp −

Kτ KE

RaJeq
ωp −

1
Jeq

fd(ωp) (1)



Table 1. Known/ estimated physical parameters

Symbol description Value
Dc motor
Kτ Torque constant 0.042 Nm/a
KE Motor back-emf constant 0.042 V/rad · s
Ra Terminal resistance 8.4 Ω

Jrotor Rotor inertia 4.0×10−6 kgm2

me Mass of DC motor 0.200 kg
Propeller
Jprop Low-efficiency propeller inertia 3.2×10−5 kgm2

Jhub Propeller hub inertia 3.04×10−9 kgm2

mpa Mass of propeller assembly 0.146 kg
Helicopter body
mb Total mass of helicopter body 1.15 kg
mmt Mass of main propeller tube 0.089 kg
mtt Mass of tail propeller tube 0.089 kg
mtc Mass of tube clamp 0.280 kg
lt Length of tubes and tube clamp when assembled 0.165 m
dt Thrust displacement 0.158 m
dm Aero body vertical COM displacement 0.00325 m
dc Main/tail section horizontal COM displacement 0.106 m
Forked yoke
my Mass of the forked yoke 0.526 kg
ry Radius of the forked yoke 0.02 m

dωy

dt
=

Kτ

RaJeq
vy −

Kτ KE

RaJeq
ωy −

1
Jeq

fd(ωy) (2)

where vp/y is the input voltage of the main/tail motor, ωp/y
is the angular velocity of the main/tail propeller, and Jeq
is the total moment of inertia of the main/tail propeller
subsystem.

The torques exerted by the DC motors on the propeller
shafts can be modelled as the product of a torque constant,
Kτ , and the applied armature currents, iap/y:

τmp/y = Kτ iap/y (3)

The armature current can then be expressed in terms of the
input voltages by applying Kirchhoff’s voltage law:

iap/y =
vp/y

Ra
− La

Ra

diap/y

dt
− eb

Ra
(4)

where Ra is the motor armature resistance, La is the mo-
tor inductance, and eb = KEωp/y is the back-emf voltage
which depends on the angular velocity of the propeller
shafts. As suggested by the Quanser laboratory guide, (4)
can be simplified by neglecting electrical dynamics, i.e.,
setting the motor inductance equal to zero (Qua, 2016).
Furthermore, the Quanser lab guide proposes modeling
the torque exerted by drag and air resistance as linear func-
tions of propeller angular velocities:

τd = kdωm (5)

where kd is an experimentally derived torque constant.
However, online experiments conducted on the Aero’s
main propeller have shown that the following non-linear
function provides a more accurate representation of the
drag and air resistance:

τd = fd(ωp/y) = sign(ωy/p)kd1ω
2
p/y

+kd2ωp/y + sign(ωy/p)kd3
(6)

Table 2. Experimentally identified parameters

Parameter Value Parameter Value
kMpp1 1.69×10−6 kTyp1 1.06×10−6

kMpp2 9.65×10−7 kTyp2 1.17×10−5

kMpn1 −2.55×10−6 kTyn1 −1.41×10−6

kMpn2 −4.69×10−5 kTyn2 −4.16×10−5

kMyp1 7.30×10−7 kT pp1 1.66×10−6

kMyp2 −1.61×10−5 kT pp2 −2.83×10−5

kMyn1 −6.43×10−7 kT pn1 −1.63×10−7

kMyn2 3.28×10−5 kT pn2 8.37×10−6

kd1 2.90×10−7 kDyp1 1.84×10−5

kd2 4.20×10−6 kDyp2 3.64×10−4

kd3 8.00×10−4 kDyn1 −5.05×10−5

kFyp 4.98×10−3 kDyn2 9.86×10−4

kFyn −2.90×10−3 kDp1 7.10×10−3

kF p 2.00×10−4

where kd1, kd2, and kd3 are torque constants identified by
iterative online tuning.

The total moment of inertia, Jeq, has been modeled ac-
cording to the Quanser laboratory documentation as:

Jeq = Jprop + Jhub + Jrotor (7)

where Jprop denotes the moment of inertia of the propeller,
Jhub represents the moment of inertia acting on the clamp
used to mount the propeller to the motor, and Jrotor is
the moment of inertia of the DC motor shaft. The spe-
cific values for Jhub and Jrotor can be obtained from the
Quanser laboratory documentation. However, the moment
of inertia for the propeller, Jprop, is only provided for the
high-efficiency propeller. The moment of inertia for the
low-efficiency propeller has therefore been estimated us-
ing the computer-aided design (CAD) software Autodesk
Inventor.

The resulting propeller velocity model (1)-(2) is ob-
tained by considering equations (3), (6) and (7), and ap-
plying Newton’s second law for rotation: Jθ̈ = ∑i τi.

3.2 Pitch motion
The model describing the Aero’s pitch movement is ex-
pressed as:

dΩp
dt =

fMp(ωp)dt+ fT p(ωy)dt−mbgdm sin(θp)
Jp

− (mA+mB)Ω
2
yd2

c cos(θp)sin(θp)
Jp

− fDp(Ωp)− fF p(Ωp)
Jp

(8)

dθp

dt
= Ωp (9)

where Ωp is the angular velocity in the pitch direction, θp
is the pitch angle and Jp is the moment of inertia about the
pitch axis.
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Figure 3. Free body diagram of the Quanser Aero 2-DOF heli-
copter configuration.

Fig. 3 shows a free-body diagram illustrating the forces
acting on the Aero. In the 2-DOF helicopter configura-
tion, the main propeller is fixed horizontally and produces
a vertical thrust force FMp that enables the Aero to pitch.
However, the main propeller also produces a perpendicu-
lar force FMy, which produces a cross-torque and thus a
negative yaw rotation. The tail propeller is fixed vertically
and is mainly used to counteract the cross-torque caused
by the main propeller. The predominant thrust force from
the tail propeller, which causes positive yaw rotation, is
denoted by FTy. Similar to the main propeller, the tail
propeller produces an additional perpendicular force FT p,
which causes a positive rotation about the pitch axis. The
gravitational pull Fg acts on the centre of mass (COM)
of the helicopter body, which is slightly below its pivot
point, so that the helicopter body acts like a pendulum.
This implies that the pitch angle of the Aero returns to
a horizontal equilibrium position if no force is applied.
Fig. 4 illustrates the COM displacement dm, which varies
with how the propeller assemblies are angled. Unfortu-
nately the documentation provided by Quanser Inc. gives
the COM displacement only for the 1-DOF VTOL con-
figuration. (Frasik and Gabrielsen, 2018) estimated this
value to be 2.7mm for the 2-DOF helicopter configura-
tion, whereas (Schlanbusch, 2019) suggest a higher value
3.8mm. Our testing suggests that using the mean of the
aforementioned values results in a satisfactory representa-
tion of the real system.

The torque induced by the gravitational force, which
affects the pitch movement, is derived by multiplying the
gravitational force Fg with the moment arm dm sin(θp):

τg = Fgdm sin(θp) = mbgdm sin(θp) (10)

where mb is the mass of the helicopter body.
The predominant thrust force of the main propeller FMp

and the cross-thrust of the tail propeller FT p have been
estimated using the experimental procedure proposed in
(Schlanbusch, 2019). This method involves accelerating
the propeller of interest to various rotational velocities
while the other propeller remains disengaged, with the

dt

dm

Center of
mass

dt

Pivot point

Figure 4. Center of mass and thrust displacement. Adapted
from (Qua, 2016)

yaw axis locked, thus reducing the Aero setup to a 1-DOF
system. The resulting steady-state pitch angles are then
measured to obtain estimates of the thrust forces. With
only the main/tail propeller engaged, the pitch angle at
steady state, and the yaw axis locked, the equation of mo-
tion about the pitch axis with respect to FMp/T p becomes:

FMp/T p =
mbdm sin(θp)

dt
(11)

where dt is the thrust displacement of the Aero illustrated
in Fig. 4. Then with the use of a least square approach,
it was found that the following nonlinear piecewise func-
tions provided a more accurate representation of the thrust
forces:

FMp = fMp(ωp) =

{
kMpp1 ω2

p + kMpp2 ωp if ωp ≥ 0
kMpn1 ω2

p + kMpn2 ωp if ωp < 0
(12)

FT p = fT p(ωy) =

{
kT pp1 ω2

y + kT pp2 ωy if ωy ≥ 0
kT pn1 ω2

y + kT pn2 ωy if ωy < 0
(13)

The Coulomb friction opposing the pitch movement is
modelled using a static friction coefficient:

FF p = fF p(Ωp) = sign(Ωp)kF p (14)

while a linear function identified by Quanser (Qua, 2016)
has been implemented for the pitch damping:

fDp(Ωp) = kDp1Ωp (15)

where kDp1 is a damping coefficient.
As the Aero undergoes a yaw rotation, the helicopter

body’s ends trace a spherical path. This implies that the
main and tail sections will experience a centripetal force
directed toward the centre of curvature, forcing the pitch
position toward its horizontal equilibrium. The centripetal
force acting on the main/tail part of the helicopter body
can be expressed as:

Fcm/t = mA/BΩ
2
ydc cos(θp) (16)

where mA = mtc
2 +mmt +me +mpa and mB = mtc

2 +mtt +
me +mpa, dc is the length from the pivot point to the total



COM of the main/tail tube, main/tail propeller assembly,
and half of the tube clamp. This distance has been calcu-
lated based on the dimensions of the tube clamp, which
measures approximately 90mm, the length of each tube,
which is around 130mm, and the distance from the pivot
point to the centre of each propeller assembly, which is
158mm. The net torque produced by the vertical compo-
nent of the centripetal forces acting on the tail and main
sections of the Aero has been derived following the ap-
proach described in (Christensen et al., 2006), which in-
volves a comprehensive analysis of a similar small-scale
aerospace device. The resulting net centripetal torque is
expressed as:

τCp =−(mA +mB)Ω
2
yd2

c cos(θp)sin(θp) (17)

The resulting pitch motion model (8) is obtained by
considering equations (10), (12)-(15), (17) and (31), and
applying Newton’s second law for rotation. Note that the
torques produced by the thrust forces in (12) and (13) are
computed by multiplying the forces by the moment arm
dt .

3.3 Yaw motion
The model describing the Aero’s yaw movement is ex-
pressed as:

dΩy
dt =

fTy(ωy)cos(θp)dt− fMy(ωp)cos(θp)dt
Jy(θp)

− fDy(Ωy)− fFy(Ωy,FMy,FTy)

Jy(θp)

(18)

dθy

dt
= Ωy (19)

where Ωy is the angular velocity in the yaw direction, θy is
the yaw angle, and Jy(θp) is the moment of inertia about
the yaw axis.

The predominant thrust force of the tail propeller FTy
and the cross-thrust of the main propeller FMp follow the
same model as (12) and (13):

FMy = fMy(ωp) =

{
kMyp1ω2

p + kMyp2ωp if ωp ≥ 0
kMyn1ω2

p + kMyn2ωp if ωp < 0
(20)

FTy = fTy(ωy) =

{
kTyp1ω2

y + kTyp2ωy if ωy ≥ 0
kTyn1ω2

y + kTyn2ωy if ωy < 0
(21)

As the propellers are identical, it can be assumed that the
parameters identified for fMp and fT p are representative
for fTy and fMy, respectively. However, real-time testing
indicated that this assumption resulted in more thrust than
needed for the yaw movement due to unmodeled dynam-
ics. Slightly down-tuned versions of the vertical thrust
force functions are therefore implemented for the horizon-
tal thrust force functions.

The viscous damping acting about the yaw axis,
fDy(Ωy) has been estimated by examining free-oscillation

responses, as proposed in (Qua, 2016). To obtain the free-
oscillation responses, the Aero was decelerated from vari-
ous yaw velocities with both propellers disengaged and the
pitch axis locked in its horizontal equilibrium position. By
approximating the yaw deceleration as ∆Ωy

∆t , (18) reduces
to:

∆Ωy

∆t
=−

fDy(Ωy)+FFy

Jy(0)
(22)

where FFy is the static friction force opposing the yaw ro-
tation. Then, by applying a least square regression to the
measured data, a relationship between the angular yaw ve-
locity and the sum of yaw damping and friction was ob-
tained. The damping and friction have been distinguished
by modeling the viscous damping using the regression co-
efficients and the static friction as the regression constant,
as suggested in (Frasik and Gabrielsen, 2018), resulting in
the following yaw damping function:

fDy(Ωy) =

{
kDyp1 Ω2

y + kDyp2 Ωy if Ωy ≥ 0
kDyn1 Ω2

y + kDyn2 Ωy if Ωy < 0
(23)

and static friction force :

FFy =

{
kFyp if Ωy > 0
kFyn if Ωy < 0

(24)

However, during real-time testing of the Aero system, it
was observed that the specific values obtained for the pa-
rameters kFyp/n from the aforementioned experiment were
too high. As a result, the parameter kFyp has been reduced
by 20% and kFyn by 35%. Furthermore, to ensure that
the net force acting on the yaw axis remains zero until the
applied forces exceed the friction force, a friction model-
ing technique known as Karnopp’s model has been imple-
mented. In this way, the basic friction model in (24) can
be extended to be valid at zero yaw velocity (Egeland and
Gravdahl, 2002):

fFy(Ωy,FMy,FTy) =

{
sat(FTy −FMy,FFy) when Ωy = 0
FFy else

(25)
where sat() refers to the saturation function.

The resulting yaw motion model (18), is obtained by
considering equations (20)-(21), (23), (25)-(26), and ap-
plying Newton’s second law for rotation. Here, the torque
produced by the thrust forces in (12) and (13) are com-
puted by multiplying the thrust force by the moment arm
cos(θp)dt .

3.4 Moment of Inertia about the pitch and
yaw axes

The total moments of inertia about the pitch/yaw axes Jp
and Jy have been obtained as suggested in the laboratory
documentation provided by Quanser Inc. However, by ap-
plying a more detailed description of the mass of the dif-
ferent mechanical components of the Aero, slightly lower
numerical values for both the pitch and yaw inertia were
obtained, which produced better results when the model



was tested against the actual plant. The components used
in these estimates are shown in Fig. 1. Furthermore,
Quanser’s documentation ignores the fact that yaw iner-
tia decreases with increasing pitch angle due to the mass
being more concentrated along the vertical axis. There-
fore, the yaw inertia is modelled as the nonlinear function
of the pitch angle Jy(θp) = kJy fky(θp), where kJy is the
moment of inertia corresponding to a pitch angle of zero.
In (Frasik and Gabrielsen, 2018) it was discovered that
the nonlinear dynamics of the moment of inertia about the
yaw axis are well described by a cosine function, resulting
in the expression:

Jy(θp) = kJy cos(θp) (26)

The moments of inertia of the tubes and tube clamp con-
necting the main and tail propeller assemblies can be mod-
elled as a solid cylinder perpendicular to the axis of rota-
tion, rotating about its centre, resulting in:

Jcylinder =
1
12

(mmt +mtt +mtc)l2
t (27)

By considering the two propeller assemblies as single-
point masses rotating at a distance dt from the pivot point
of the helicopter body, their moment of inertia can be es-
timated as:

Jpa = (mpa +me)d2
t (28)

The forked yoke used to raise the helicopter body from
the Aero base can be modelled as a solid cylinder rotating
about its centre which leads to the expression:

Jyoke =
1
2

myr2
y (29)

The total moment of inertia about the yaw axis with a fixed
pitch angle of zero degrees is then obtained by summing
(27), (28) and (29):

Jy(θp = 0) = kJy = Jcylinder +2Jpa + Jyoke (30)

The total moment of inertia about the pitch axis is found
as the sum of (27) and (28):

Jp = Jcylinder +2Jpa (31)

4 Experimental results
The purpose of the experiments described in this section
was to test the model’s ability to accurately predict the
pitch angle, pitch velocity, yaw angle, and yaw velocity
of the system when subjected to different input signals.
To evaluate the performance of the model under various
operating conditions, the input signal to the system was
either varied in amplitude by changing the voltage level, or
shifted in time by altering the step time. A total of twelve
different input sequences were investigated, as shown in
Fig. 5. For each sequence, ten different experiments have
been performed and the average integral absolute errors
(IAE) and integral square errors (ISE) of the model versus
the plant were computed for the pitch and yaw velocities.
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Figure 5. Input signal sequences

The performance of the model proposed in this paper
compared to other state-of-the-art models in accurately
predicting pitch angle, pitch velocity, yaw position, and
yaw velocity, have been evaluated. Table 3 summarises
the average IAE and ISE obtained for all input sequences.
Fig. 6 shows the results in one particular run of input se-
quence number 3.

The results in the table show that, in the majority of ex-
periments, the proposed model was either the best (dark
green) or the second best (light green) model. Further ex-
amination of Table 3 reveals that the most significant im-
provement relates to the ability of the proposed model to
predict yaw velocity. This is also evident in the plots pre-
sented in Figs. 6c and 6f. We can mention that the case of
input sequence number 6, for which the yaw model under-
performed, is the only observed exception. The improved
performance of the proposed model with respect to pre-
dicting pitch motion, evident in Table 3, is primarily due
to a more accurate representation of the frequency of os-
cillation and damping.



Table 3. Performance comparison of analysed models. The values are the average criteria after ten runs. Dark green color marks
the highest performing model, and light green color marks the second highest performing model.

Sequence Criteria Frasik & Gabrielsen Kumar & Dewan Schlanbusch Quanser Dyvik & al.

1
dPitch IAE 2.49 6.68 3.43 5.26 2.17

ISE 0.28 1.47 0.39 1.07 0.21

dYaw IAE 14.95 20.84 24.63 20.84 3.94
ISE 11.70 18.29 23.26 18.30 1.01

2
dPitch IAE 3.07 6.64 3.44 4.94 2.19

ISE 0.46 1.51 0.47 0.94 0.27

dYaw IAE 16.03 22.02 25.21 22.03 3.24
ISE 12.78 20.30 24.49 20.31 0.66

3
dPitch IAE 5.15 8.45 5.77 12.21 4.16

ISE 0.94 2.38 1.55 5.88 0.77

dYaw IAE 30.62 20.61 21.80 20.62 6.73
ISE 40.64 17.83 20.72 17.84 3.70

4
dPitch IAE 6.62 8.52 4.28 8.65 3.83

ISE 1.55 2.67 0.70 3.03 0.55

dYaw IAE 32.23 21.03 21.84 21.04 11.26
ISE 42.76 19.33 22.28 19.34 6.53

5
dPitch IAE 10.29 10.41 16.57 22.57 7.85

ISE 4.04 3.98 12.19 25.36 2.70

dYaw IAE 48.51 26.81 21.75 26.82 8.13
ISE 88.65 27.93 18.24 27.94 2.92

6
dPitch IAE 10.86 9.22 16.23 19.24 6.23

ISE 4.54 3.13 12.55 18.66 1.41

dYaw IAE 54.31 25.94 21.77 25.95 27.50
ISE 101.07 27.04 18.39 27.06 41.20

7
dPitch IAE 2.47 3.68 2.29 4.14 1.59

ISE 0.31 0.58 0.25 0.75 0.16

dYaw IAE 46.80 39.83 42.84 39.84 11.15
ISE 63.54 41.12 48.85 41.13 4.79

8
dPitch IAE 2.22 3.44 1.97 3.45 1.76

ISE 0.31 0.63 0.18 0.59 0.19

dYaw IAE 43.52 34.18 37.79 34.19 9.39
ISE 56.18 33.95 43.36 33.96 2.59

9
dPitch IAE 5.81 5.42 3.79 5.48 3.70

ISE 1.43 1.28 0.68 1.51 0.77

dYaw IAE 71.47 39.67 40.42 39.68 23.00
ISE 152.45 47.89 52.39 47.91 19.73

10
dPitch IAE 4.77 4.61 3.75 5.64 3.01

ISE 0.89 1.13 0.88 2.01 0.51

dYaw IAE 70.71 36.88 35.08 36.89 20.58
ISE 170.88 37.67 40.93 37.68 13.51

11
dPitch IAE 10.58 6.48 5.56 6.27 5.62

ISE 3.86 2.01 1.44 2.48 1.41

dYaw IAE 99.85 51.09 47.52 51.10 42.14
ISE 302.88 84.77 64.22 84.81 80.97

12
dPitch IAE 10.31 6.09 4.65 5.06 3.05

ISE 3.55 2.21 1.21 2.01 0.52

dYaw IAE 97.20 46.88 37.58 46.90 28.14
ISE 320.08 71.30 41.64 71.33 25.43
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Figure 6. Experiment 3 results. Note that Figs. 6b and 6e contain only the proposed model due to the possible interpretational
challenges that arise from the fact that all the considered models oscillate with slightly different frequencies and amplitudes.

5 Conclusions
This paper has proposed an improved model for describ-
ing the dynamical behavior of a Quanser Aero 2-DOF he-
licopter equipped with inefficient propellers. The model
includes a more detailed description of friction and cen-
tripetal forces acting on the Aero. An extensive ex-
perimental validation using different input sequences has
shown that the improved model provides better results, in
the sense of lower values for IAE and ISE criteria, than
other models proposed in the literature.
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