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Abstract: Hydraulic fracturing technology significantly enhances the productivity of shale oil and
gas reservoirs. Nonetheless, the infiltration of fracturing fluid into shale formations can detrimentally
affect the microscopic pore structure, thereby impairing the efficacy of hydraulic stimulation. In this
study, nuclear magnetic resonance (NMR) technology was utilized to conduct high-pressure soaking
tests on shale specimens treated with EM30+ + guar gum mixed water and CNI nano variable-viscosity
slickwater, where various concentrations of a drag reducer were utilized. Additionally, the differences
in porosity, permeability, mineral composition, and iron ion concentration before and after the
measurements were compared, which were used to analyze the influence on the shale’s microscopic
pore structure. It features a reduction in the total pore volume after the interaction with the fracturing
fluid, with the pore-throat damage degree, porosity damage degree, and permeability damage
degree ranging from 0.63% to 5.62%, 1.51% to 6.84%, and 4.17% to 19.61%, respectively. Notably,
EM30+ + guar gum mixed water exhibits heightened adsorption retention, alkaline dissolution, and
precipitation compared to CNI nano variable-viscosity slickwater, rendering it more deleterious to
shale. Moreover, higher concentrations of drag reducers, such as EM30+ or CNI-B, predominantly
result in damage to the shale’s micropores. Shale compositions characterized by lower content of
quartz and elevated proportions of clay minerals and iron-bearing minerals showcase augmented
mineral dissolution and precipitation, consequently intensifying the shale damage. The hydration
expansion of mixed-layer illite/smectite profoundly diminishes the core permeability. Consequently,
the mechanisms underpinning the damage inflicted on shale’s microscopic pore structure primarily
involve fracturing fluid adsorption and retention, mineral dissolution, and precipitation, such as clay
minerals and iron-containing minerals.

Keywords: NMR; pore structure; fracturing fluid type; mineral dissolution and precipitation;
iron-containing minerals; damage characteristics

1. Introduction

Shale oil and gas, as the most potential strategic replacement resources, are also hot
spots for exploration and development in the global oil field in recent years [1–5]. Hydraulic
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fracturing technology has become an essential method to develop shale oil and gas effec-
tively [6–8]. Hydraulic fracturing forms artificial fractures in the shale, accompanied by the
intrusion of fracturing fluids into the shale matrix. The physicochemical interactions occur
between the fracturing fluid and shale, such as water sensitivity, water locking, blockage of
solid residual particles, adsorption and retention of fracturing fluid, mineral dissolution,
and precipitation [9–14]. In particular, the original microscopic pore structure is altered due
to the retention of the fracturing fluids in the shale reservoirs, thereby restricting the stimu-
lation effect. Additionally, the permeability damage degree of shale is significantly higher
than that of tight sandstone during the fracturing procedures [15]. It is a key issue that the
formation damage is induced by fracturing fluid for the effective development of shale oil
and gas reservoirs [16]. Therefore, the damage characteristics of shale’s microscopic pore
structure are evaluated, its microscopic damage mechanism is revealed, and the optimizing
performance of the fracturing fluid and improvement in the stimulation effect of hydraulic
fracturing are discussed.

The former studies reported the reservoir damage induced by fracturing liquid [17–21].
Shale with a high content of clay minerals is facilely hydrated, and the hydration damage
is aggravated due to the bedding structure and clay mineral orientation [22–25]. Bazin
et al. [26] reported that water-based fracturing fluids lead to clay mineral expansion and
particle migration, leading to a sharp decline in core permeability. Clay swelling inhibitors
can be added to fracturing fluids to mitigate clay swelling, such as new gemini surfactants,
dicationic surfactants, and imidazolium-based ionic liquids [27–29]. Furthermore, the
fracturing fluid molecules would be adsorbed on the rock surface, particle edges, and
rock bedding planes through hydrogen bonding, and entangled with each other to block
pores [30]. Complex chemical reactions between fracturing fluids and shale minerals induce
mineral dissolution, such as silicate minerals, carbonate minerals, iron-containing minerals,
the release and migration of chemical components, and the formation of new mineral pre-
cipitation, resulting in changes in permeability and porosity [31–34]. Lu et al. [35] proposed
that the dissolution of shale minerals caused an increase in the pore volume, while ion pre-
cipitation and chemical agent adsorption led to a decrease in the pore volume. Qi et al. [36]
found that a decrease in the effective pore volume and an increase in the number of pores
occurred at the early stage of fluid incursion. The pore size of larger intergranular pores
were enlarged in the high-pressure invasion process. Fractures and small dissolved pores
were the main areas where fracturing fluid stagnated. The guar gum fracturing fluid and
slick water fracturing fluid were dominantly utilized in the unconventional reservoir frac-
turing, while the differences of formulations and properties of fracturing fluids would lead
to a discrepancy in the microscopic damage of the reservoir [37]. Sun et al. [38] concluded
that the cross-linked gel promoted the precipitation of carbonate minerals, whereas the slick
water induced carbonate minerals to form the dissolute pores. Cheng et al. [39] pointed out
that guanidine gum gelout formed flocculent sediments in pores, and slickwater eroded the
gaps at the pore edges. At present, multiple testing techniques are used to characterize the
retained morphology of the fracturing fluid, microscopic pore structure, and variations in
mineral components [31,36,40,41], including scanning electron microscope (SEM), atomic
force microscope (AFM), X-ray diffraction (XRD), high-pressure mercury intrusion (HPMI),
low-pressure nitrogen adsorption (LPNA), NMR, and Computed Tomography (CT) scan-
ning, etc. Li et al. [41] comprehensively and quantitatively evaluated the damage degree of
fracturing fluid through displacement experiments and NMR. NMR is an effective method
to represent the micro-pore structure of rocks on a full scale. It is also used to discern the
characteristics of pore types at different scales, and it would not alter the mineral, pore
structure, and fluid occurrence [42,43].

The damaging effect of the fracturing fluid macroscopically manifested as the reduc-
tion of core porosity and permeability. However, the nanoscale pore structure of shale
is extremely complicated, and the damage characteristics inflicted by fracturing fluids
on the shale’s microscopic pore structure are still unclear. Meanwhile, few studies have
focused on the formation damage originated by iron-bearing minerals. In this study, two
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different types of fracturing fluids were selected, EM30+ + guar gum mixed water and CNI
nano variable-viscosity slickwater, respectively. Under high-temperature and -pressure
conditions, shale soaking tests were performed to obtain the NMR T2 spectrum of the shales
saturated with formation water before and after the experiment. The damage characteristics
of the shale pore at different scales were quantitatively characterized. Moreover, relevant
parameters, such as porosity, permeability, mineral composition, and iron ion concentration
were obtained to discern the discrepancy, which were used to evaluated the damage on
the microscopic pore structure. Finally, the damage mechanism of the fracturing fluid on
shale’s microscopic pore structure is elaborated. The novelty of this work is to compare
the difference in the effects of shale pore structure by EM30+ + guar gum mixed water
and CNI nano variable-viscosity slickwater and to clarify the microscopic damage of shale
by iron-containing minerals or iron ions. These findings provide technical support for
fracturing simulation and production enhancement in shale oil and gas reservoirs.

2. Materials and Methods
2.1. Experimental Materials

The experimental samples were taken from the laminar shale of the Chang 73 Member
of the Triassic Yanchang Formation in the Ordos Basin, China. The mudstone and fine
siltstone feature as thin interbedded layers in the shale. The laminar shale of the Chang 73
Member exhibits extremely low porosity and permeability and well-developed nanoscale
pore-throat fractures. The basic information of experimental samples is shown in Table 1.

Table 1. Basic information of experimental samples.

Core No. Porosity
(%)

Permeability
(10−3 µm2)

Fracturing Fluid Types and
Drag Reducer Concentrations

A1-2 4.49 0.0054 EM30+ + guar gum mixed water
(0.15% EM30+ drag reducer)

A2-2 4.24 0.0051 EM30+ + guar gum mixed water
(0.35% EM30+ drag reducer)

B1-2 3.97 0.0048 CNI nano variable-viscosity slickwater
(0.06% CNI-B drag reducer)

B2-2 4.11 0.0053 CNI nano variable-viscosity slickwater
(0.08% CNI-B drag reducer)

As for the shale high-pressure soaking test, the formation water was prepared with a
salinity of 49,300 mg/L CaCl2. The fracturing fluid filtrates were applied after breaking
and static filtration as the displacement agent; therefore, the harmful effects of solid phase
residues and particles could be ignored. The fracturing fluid types were EM30+ + guar gum
mixed water and CNI nano variable-viscosity slickwater, respectively. The concentrations of
EM30+ drag reducer were 0.15% and 0.35% in EM30+ + guar gum mixed water, respectively.
The pH value was set between 9 and 10. The hydroxyl groups of guar gum molecules
formed strong multiple hydrogen bond forces with the oxygen-containing groups on
the rock surface. The adsorption and retention of fracturing fluid was enhanced. The
concentrations of CNI-B drag reducer were 0.06% and 0.08%, respectively. Moreover, the
pH value of CNI nano variable-viscosity slickwater was 7. CNI-B drag reducer was a
polyacrylamide polymer, whose hydrophilic group generated a chemical bond with the
oxygen-containing group in shale, adsorbing and sticking on the micro-fracture wall and
matrix pores [44].

2.2. Shale High-Pressure Soaking Test

The equipment for the NMR-based shale high-pressure soaking test mainly includes a
PQ001 type NMR analyzer, an NM-V type vacuum pressurization and saturation device, a
ZR-3 type piston intermediate container, a high-pressure pump, and a constant temperature
heating device. The inner diameter of the probe of NMR analyzer is 2.86 cm, which is
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suitable for core samples with a diameter of 2.54 cm and a height of no less than 2.50 cm. It
supports the collection of 50,000 echoes, the magnetic field strength is 0.28 ± 0.03 T, the
detection is 1H nuclei, the uniformity of the magnet in the detection area is higher than
30 ppm, the frequency source ranges from 1 to 30 MHz, and the frequency control accuracy
reaches 0.1 Hz. The T2 spectrum was obtained using the CPMG pulse sequence and
SIRT inversion algorithm. The NMR analyzer is produced by Suzhou Niumag Analytical
Instrument Co., Ltd., Suzhou, China. The NM-V type vacuum pressurization and saturation
device has a maximum withstand pressure of 50 MPa, a working pressure varying from
0 to 40 MPa, and a core sample chamber volume of 1500 mL, manufactured by Suzhou
Niumag Analytical Instrument Co., Ltd., Suzhou, China. The volume of the ZR-3 type
piston intermediate container is 250 mL, and the working pressure is in the range of 0 to
70 MPa. The pump volume of the high-pressure pump is 200 mL, with a pressure range of
0 to 50 MPa. The temperature control range of the constant temperature heating device is
between −20 and 280 ◦C.

In this experiment, a high-pressure soaking test was performed to simulate the effect
of fracturing fluid damage. The optimal time for core soaking was usually determined
by the variation of macroscopic parameter permeability. This study proposes a method
for determining the optimal time for shale high-pressure soaking based on NMR, which
truly reflects the effect of fracturing fluid on the microscopic pore volume and greatly
shortens the test time. That is, shale NMR T2 spectrum tests of high-pressure soaking
for different times (0 h, 48 h, and 72 h) were completed, respectively (Figure 1). The
curve of the NMR T2 spectrum gradually decreases with the increase in soaking time. The
reducing amplitude of the NMR T2 spectrum curve indicates the reduction value of pore
volume from fracturing fluid damage. When the difference between the decrease in shale
T2 spectrum curve measured after soaking for 48 h and 72 h is less than 0.50%, the optimal
soaking time is 48 h.
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Figure 1. NMR T2 spectrum of shale under different soaking times.

The experimental schematic diagram is shown in Figure 2. The experimental proce-
dures are as follows:

(1) Shale cores with a diameter of 2.50 cm and a length of 6.00 cm were drilled using an
anhydrous wire-cutting machine. The length of 6.00 cm core plungers (A1-2, A2-2, B1-
2, B2-2) were cut from the core face, and then used in shale high-pressure soaking tests
(Figure 3). The permeability of the core was tested using nitrogen gas and calculated.

(2) After the shale cores were evacuated by a vacuum pressurization and saturation
device for 6 h, the formation water was saturated with high pressure for 24 h. Core
porosity was calculated by weighing, and the core’s NMR T2 spectrum test was
executed. Subsequently, the core was dried at 100 ◦C for 24 h in a drying oven.
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(3) Under the formation temperature of 65 ◦C, the dry core was placed in an intermediate
container filled with fracturing fluid, soaking at a formation pressure of 20 MPa for
48 h, and then, the core was dried at 100 ◦C for 24 h.

(4) Repeating step (2), the permeability of the core was tested using nitrogen and calculated.
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Figure 3. Schematic diagram of core cutting.

2.3. Shale Mineral Composition Test

For the shale mineral composition test, the SmartLab X-ray diffractometer was utilized,
which is manufactured by Japan Rigaku Corporation, Osaka, Japan. It has a horizontal
goniometer with a minimum step of 1/10,000 degrees. The CBO cross-optical path provides
a focusing optical path and a high-intensity and high-resolution parallel optical path.
The high-speed detector D/teX-Ultra250 is used, and its energy resolution is less than
20%. According to the Petroleum and Natural Gas Industry Standard SY/T5163-2018
“X-ray Diffraction Analysis Method for Clay Minerals and Common Non-clay Minerals in
Sedimentary Rocks”, the remaining 2.00 cm length cores (A1-1, A2-1, B1-1, B2-1) and the
cores (A1-2, A2-2, B1-2, B2-2) after soaking were selected, which were crushed and ground
until all particle sizes were less than 40 µm. The test pieces were made and loaded onto the
sample table of the SmartLab X-ray diffractometer, obtaining the characteristic diffraction
peak intensities of minerals. The content of whole rock minerals and clay minerals were
determined using SmartLab Guidance intelligent measurement and analysis software.
The quantitative analyses of the difference in shale mineral content and its effect on the
microscopic pore structure were conducted.

2.4. Test of Iron Ion Concentration in Fracturing Fluid

An UV-2600 type spectrophotometer with double beams was selected, whose wave-
length is between 185 and 900 nm, the wavelength accuracy is ±0.10 nm, and manufactured
by Japan Shimadzu Corporation, Kyoto, Japan. Before and after the high-pressure soaking
test, 10 mL of the filtrate were taken, respectively, from the EM30+ + guar gum mixed water
and CNI nano variable-viscosity slickwater. Based on the coal industry standard of the
People’s Republic of China MT/T368-2005 “Determination of iron ions in coal mine water”,
for the fracturing fluid, the phenanthroline colorimetric method was used to determine the
discrepancy in concentrations of ferrous ions, ferric ions, and total iron ions.
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2.5. Experimental Evaluation Method

According to the shale porosity, permeability, and saturated formation water NMR T2
spectrum before and after the high-pressure soaking test by the fracturing fluid, the calcu-
lated equations of pore-throat damage degree, porosity damage degree, and permeability
damage degree of the shale are given in Equations (1)–(3), respectively. The pore-throat
damage degree is utilized to calculate the pore damage ratio as Equation (4).

Ipti =
Abi − Aai

Abi
× 100% (1)

Iφ =
φb − φa

φb
× 100% (2)

IK =
Kb − Ka

Kb
× 100% (3)

Rpti =
Ipti

3
∑

i=1
Ipti

× 100% (4)

where Ipti is the pore-throat damage degree of a certain pore type, %, Abi is the overlying
area of the saturated formation water NMR T2 spectrum of a certain pore type, that is,
the total signal of the NMR T2 spectrum before the high-pressure soaking test, ms, Aai is
the overlying area of the saturated formation water NMR T2 spectrum of a certain pore
type, that is, the total signal of the NMR T2 spectrum after the high-pressure soaking
test, ms, Iφ is the porosity damage degree of the core, %, φb is the core porosity before
high-pressure soaking test, %, φa is the core porosity after high-pressure soaking test, %, IK
is the permeability damage degree of the core, %, Kb is the gas measured permeability of
the core before high-pressure soaking test, 10−3 µm2, Ka is the gas measured permeability
of the core after high-pressure soaking test, 10−3 µm2, and Rpti is the ratio of the pore-throat
damage degree of a certain pore type to the total pore-throat damage degree of the shale
core, %.

3. Results
3.1. The Influence on Pore Volume

To enhance the comparability of the measurement results of different cores, the ampli-
tude of NMR T2 spectrum was normalized for shales saturated with the formation water
before and after high-pressure soaking experiments (Figure 4). The difference in the T2
value reflects the distinct pore size, and the amplitude value (amplitude normalized value)
indicates the corresponding amount of pores with various pore apertures. The NMR T2
spectrum curve of shale saturated with the formation water exhibit three peaks (Figure 4).
Based on the former research results [45], the subregion T2 values corresponding to the
troughs of the curves were determined and averaged by the T2 spectral curves of the satu-
rated water in the four cores. The shale’s pore types are divided into micropore (<2.29 ms),
mesopore (2.29 to 48.49 ms), and macropore/microfracture (>48.49 ms). The shale’s pore
types are dominated by micropores, followed by mesopores, and lastly macropores, with
the highest content of micropores.

The amplitude curve of the NMR T2 spectrum of the core saturated with forma-
tion water declined after immersion (Figure 4), and the total pore volume decreased by
0.63%–5.62% (pore-throat damage degree). The pore volume diminished, and the pore
structure inflicted a certain degree of fracturing fluid damage. The curve areas of the T2
spectra of different pore types also presented a decline with different degrees. The de-
creased ranges of micropores, mesopores, and macropores are 0.02%–5.88%, 3.13%–5.93%,
and 0.47%–7.24%, respectively. The results demonstrated that there were differences in
damage to the shale’s microscopic pore structure, which was caused by types of fracturing
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fluids and drag reducer concentrations. While the NMR curve after soaking displayed a
small increase locally, that is, the pore volume corresponding to the T2 spectrum increased.
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Figure 5 shows a comparison of the damage ratio of different pore types in the core.
The mesopores of the A1-2 and B1-2 cores were mainly damaged by the fracturing fluid,
followed by the marcopores, and there was little damage to the micropores. For A2-2 and
B2-2 cores, the pore type of the main damage is micropores, followed by mesopores, and
the least damage to macropores.
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3.2. The Influence on Porosity and Permeability

The invasion of fracturing fluid into the shale led to different reductions in the porosity
and permeability. The porosity damage degree and permeability damage degree ranged
from 1.51 to 6.84% and 4.17 to 19.61%, respectively. The permeability damage degree is
higher than the porosity damage degree and the pore-throat damage degree. As the pore-
throat damage degree of shales intensified, the porosity damage degree increased slowly,
whereas the permeability damage degree escalated sharply (Figure 6). The fracturing fluid
is less harmful to the shale pore, but its permeability is greatly reduced, which makes it
more difficult for the subsequent injection or production fluid to flow into the shale.
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3.3. The Influence on Shale Mineral Composition

According to Figure 7a,b, shale minerals mainly include quartz and clay minerals, a
small amount of feldspar and carbonate minerals, and a very small amount of iron-bearing
minerals, such as pyrite and siderite. The content of shale minerals featured various
changes after soaking. The content of feldspar and iron-bearing minerals increased by
3.70 to 18.10% and 0.50 to 2.70%, respectively. The content of carbonate minerals and clay
minerals lessened by 0.20 to 5.50% and 1.20% to 9.40%, respectively. Nevertheless, the
obvious disparity occurred in the variation regularity of quartz content. For instance, the
quartz content after soaking in EM30+ + guar gum mixed water reduced in the range of
0.80 to 3.70%, and the quartz content soaked in CNI nano variable-viscosity slickwater had
an increase of 0.90% to 1.90%. The addition in content of illite was from 1.00 to 9.00%, the
reduction in content of mixed-layer illite/smectite was from 2.00 to 8.00%, and the kaolinite
content decreased to zero.
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3.4. The Influence on Iron Ion Concentration of the Fracturing Fluid

The variation in iron ion concentration of the fracturing fluid were compared before
and after the soaking test (Figure 8). The concentrations of ferrous ions and total iron ions
were reduced by 0.07 to 2.59 mg/L and 0.07 to 1.13 mg/L, respectively. However, the
concentrations of ferric ions were increased by 1.19 to 1.69 mg/L in CNI nano variable-
viscosity slickwater.
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4. Discussion
4.1. Effect of Fracturing Fluid Types

The NMR T2 spectrum curves of the four shales saturated with formation water are
similar in shape. Furthermore, there is basically no discrepancy in the content of micropores,
mesopores, and macropores, porosity, and permeability. Therefore, the influence of the
shale physical properties and pore structure on the results of fracturing fluid high-pressure
soaking tests was disregarded. The 0.35% EM30+ + guar gum mixed water had the highest
damage degree of the shale pore throat, followed by 0.08% CNI-B nano variable-viscosity
slickwater and 0.15% EM30+ + guar gum mixed water, and the smallest was the 0.06%
CNI-B nano variable-viscosity slickwater. The damage of EM30+ + guar gum mixed water
on the shale is higher than that of the CNI nano variable-viscosity slickwater (Figure 6). The
main reason is that guar gum molecules have the characteristics of heightened adsorption
and retention on the rock surface. Moreover, EM30+ + guar gum mixed water is an
alkaline solution, thereby enhancing the reaction of silicate minerals. As a result, the
stability of minerals deteriorated, underpinning the formation damage. Consequently,
the shale suffered less damage from CNI nano viscous slickwater fracturing fluid. With
the increase in the concentration of EM30+ or CNI-B drag reducer, the effect of the drag
reduction increased, improving the injection performance of the fracturing fluid. More
fracturing fluid molecules entered the micropores to increase the degree of damage on the
micropores. Additionally, the amount of adsorption on the rock surface grew in number,
further intensifying the pore-throat damage degree (Figure 5).

4.2. Effect of Mineral Composition

In addition to the types and properties of fracturing fluid, the physical and chemical
interactions between fracturing fluid and shale are directly dominated by the types and
compositions of minerals, which in turn, detrimentally affect the microscopic pore structure,
porosity, and permeability. Therefore, the relationship between shale mineral content
and porosity damage degree, permeability damage degree, and pore throat damage was
analyzed (Figures 9 and 10).
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The porosity damage degree, permeability damage degree, and pore-throat damage
degree are highly negatively correlated with quartz, while they are positively correlated
with clay minerals and iron-bearing minerals. The damage of shale with a low content of
quartz and high content of clay minerals and iron minerals was amplified. The degree of
chemical reaction of quartz is relatively low, and in comparison, the interactions between
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the clay minerals, iron-bearing minerals, and fracturing fluid are enhanced. Compared with
the porosity damage degree and the pore-throat damage degree, the correlation between
the permeability damage degree and the above mineral composition is significantly lower,
indicating that the mineral types and compositions have a more complex effect on the
permeability damage. The positive correlation between permeability damage degree
and feldspar is also high. That is, the higher the feldspar content, the greater the shale
permeability damage degree. From neutral to alkaline fracturing fluid, minerals (feldspar
and clay) undergo different degrees of reactions, thereby increasing the content of feldspar
and decreasing the content of clay minerals. Additionally, the dissolution of quartz in
alkaline EM30+ + guar gum mixed water increased, with a lessening in the quartz content.
Dissolved shale formed new carbonate mineral precipitation (dolomite forming calcite and
soluble carbonate after alkaline dissolution) and iron-bearing mineral precipitation, which
led to a reduction in the content of carbonate minerals and an increment in the iron-bearing
mineral content (Figure 7a).

The porosity damage degree, permeability damage degree, and pore-throat damage
degree are highly correlated with kaolinite and chlorite. They are positively correlated with
kaolinite and negatively correlated with chlorite. As the kaolinite content is higher or the
chlorite content is lower, the harmfulness to shale augments. A strong positive correlation
was also found between the permeability damage degree and mixed-layer illite/smectite.
The hydration was inflicted on the highly hydration-swellable mixed-layer illite/smectite,
causing a sharp reduction in the radius of micropores and throats, and a rapid decline in the
core permeability. After soaking, the content of kaolinite and mixed-layer illite/smectite
curtailed, indicating the occurrence of mineral dissolution, accompanied by the formation
of secondary silicate and other minerals. In addition, the chlorite was dissolved to form
dissolution pores and illite, increasing the content of illite (Figure 7b). Meanwhile, the
mineral particles on the rock surface flaked off and migrated, resulting in the deterioration
of the microscopic pore structure. This conclusion is consistent with the research viewpoints
of Hakala et al. [46] and Herz-Thyhsen et al. [47].

4.3. Effect of Iron Ion Concentration

There are two main reasons for the variations in the concentration of ferrous ions,
ferric ions, and total iron ions in fracturing fluid. Firstly, iron ions formed iron-containing
minerals and their precipitates with anions, such as CO3

2− and OH−, that is, iron ions
came from fracturing fluid or were released by dissolving minerals, such as pyrite and
siderite. Secondly, under neutral and alkaline conditions, ferrous ions are less stable
and easily converted into ferric ions and iron hydroxide precipitates, which reduced the
concentration of ferrous ions (Figure 8) and underpinned the content of iron-containing
minerals (Figure 7a). Tan et al. also proposed that mineral dissolution in neutral and
alkaline fracturing fluids will release more iron ions, followed by the formation of new
precipitates, which is consistent with the experimental results of this study [48].

Figure 11 shows the relationship between the variation values of total iron ion con-
centration in the fracturing fluid and damage parameters. As the concentration of total
iron ion diminished, the pore-throat damage degree and porosity damage degree gradually
augmented, and the permeability damage degree showed a rapid increment. The main
reason for the above phenomenon is that iron ions generated precipitated iron, reducing
the pore spaces and blocking the throats. Therefore, the formation damage caused by the
iron ion or iron-containing minerals was not neglected. Iron ion stabilizers could inhibit
the precipitation of iron precipitates and effectively reduce the damage of fracturing fluids
on shale formations, which illustrated the necessity of adding iron ion stabilizers into
fracturing fluids.
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4.4. Mechanism of Damage to Shale Pore Structure

In contrast with CNI nano variable-viscosity slickwater, the larger molecular diameter
of EM30+ + guar gum mixed water has a higher retention. When the fracturing fluid
invaded into the shale, silicate minerals, carbonate minerals, and iron-containing minerals
underwent dissolution reactions, which increased the pore volume and new flow chan-
nels and improved the microscopic pore structure. Nevertheless, the secondary mineral
precipitates and exfoliated particles deteriorated the pore-throat connectivity and then
damaged the pore structure. In particular, shale characterized by a high content of iron
minerals and clay minerals (silicate minerals) is more harmful to the microscopic pore
structure. The water-sensitivity montmorillonite produced obvious hydration expansion
in the mixed-layer illite/smectite, and the corresponding pore volume decreases sharply.
These effects led to variations in the shale pore volume, increased surface roughness, and
severe throat blockage. The small damage on the shale pores caused a large decrease in the
core permeability, which fully explained the results of the shale high-pressure soaking test
(Figure 12).
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Figure 12. Schematic diagram of damage mechanism of shale’s microscopic pore structure:
(a) original shale; (b) shale after high-pressure soaking.

5. Conclusions

The high-pressure soaking tests of shale in the fracturing fluid were launched with
NMR technology, and the damage degree of different scale pores of shale was quantitatively
characterized. The macroscopic physical properties (porosity, permeability) and damage
characteristics of pore types at different scales of shale were quantitatively characterized.
The effects of the fracturing fluid type, mineral composition, and iron ion concentration on
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the microscopic pore structure of shale were analyzed in depth. Finally, the microscopic
damage mechanism of shale was revealed.

1. The invasion of fracturing fluid caused the reduction of shale pore volume. The
permeability damage degree is higher than that of the porosity damage degree and
pore throat damage degree. EM30+ + guar gum mixed water is more harmful to
shale than CNI nano variable-viscosity slickwater. Moreover, with the increase in
concentrations of EM30+ and CNI-B, the shale pore damaged by fracturing fluid
gradually transitions from macropore and mesopore to micropore.

2. The lower content of quartz, higher content of clay minerals and iron-bearing minerals
in shale would enhance the mineral dissolution and precipitation degree, leading to
serious damage of the pore structure. Moreover, iron ions in the fracturing fluid and
iron-bearing minerals react chemically to generate iron precipitates. The damage on
the microscopic pore structure was intensified. So, the addition of iron ion stabilizers
into fracturing fluids is proposed to reduce the damage of shale formations.

3. EM30+ + guar gum mixed water fracturing fluid is highly deleterious to shale; the
main reason is that the drastic effects of fracturing fluid adsorption retention, mineral
dissolution, and precipitation. In addition, the damage mechanisms also include
the hydration expansion of the mixed-layer illite/smectite, the migration of mineral
particles and the sediments.
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curation, X.Z.; visualization, X.Z.; formal analysis, X.Z.; investigation, X.Z. and T.L.; resources, C.Z.;
writing—original draft preparation, X.Z.; writing—review and editing, T.L. and Z.C.; supervision,
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version of the manuscript.
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