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Abstract— A model describing glitch disturbances is intro-
duced and analysed. The model is used to find the response of
glitch disturbances when adding a periodic dither to the input
and applying low-pass filtering to the output. This averaged
response is used to find a criterion to determine a sufficiently
large dither amplitude that will make the averaged glitch
disturbances appear as a constant on the output of the low-
pass filter. An important resulting property is that the averaged
response to glitch disturbances is independent of the model
input. By fitting the model to the measured response of a
common off-the-shelf digital-to-analogue converter, simulations
are used to verify the analytical results.

I. INTRODUCTION

Glitches can be described as unwanted, transient distur-
bances of short duration, often resembling spikes in a wave-
form. As such, they are known to occur in e.g. multilevel
power converters [1]-[3], systems with friction [4,5] and in
digital-to-analogue converters [6]—-[9]. In this paper, a glitch
model is developed and analysed and applied and fitted to
the response seen in a digital-to-analogue converter (DAC).

For DACs, glitches are typically caused by timing mis-
matches for transistor switching [6]-[9] and is a deterministic
effect generated when a DAC switches between two output
levels. Specifically, a glitch occurs when the analogue signal
value corresponding to a given digital code appears before
or after the signal value of the previous code disappears at
the DAC output. The glitch properties of a DAC are often
specified by the net area of the glitch impulse response [10]
or sometimes by the arca at the worst-case code transi-
tion [11]. Fig. 1 illustrates deviations from ideal operation
common in conventional DACs. The diagram shows the
effects of a static non-linearity known as element mismatch
or integral non-linearity (INL), as well as glitches of different
severity. It should be noted that some non-ideal effects in
DACs, including INL, can effectively be mitigated when the
DAC is part of a closed-loop system. However, glitches will
not be mitigated due to their wide-bandwidth, impulse-like
behaviour, where most of the power in the disturbance is
outside the bandwidth of the control law.

Dither is a well-known method for static non-linear effects
mitigation, including quantisation [12,13] and element mis-
match [14]. Dynamic effects are also known to be mitigated
in a similar fashion [4,15]; this effect has been demonstrated
specifically for glitches [16]. Dither is a high-frequency
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Fig. 1. Persistent non-linear deviations in conventional DACs including
INL, and glitches. Where A-;. (A(. ), indicate net areas of impulse responses
for glitches due to references of rising (falling) trend.

periodic or stochastic signal introduced into a system to
modify its non-linear characteristics [4,17]-[20]. If sufficient
averaging (low-pass filtering) is present on the output of the
non-linear element, there is a smoothing effect on the non-
linearity, typically making it less pronounced. An advantage
of this method is that no specific knowledge of the non-
linearity is needed in order to obtain improved performance.
Specifically, dithering can easily be retrofitted to existing
devices such as DACs, with little effort.

A. Contributions

Previous investigations utilising large-amplitude, high-
frequency periodic dither [16] note that the response of
dithered glitches with averaging using a low-pass filter con-
verts the glitches from large-amplitude impulse-like (short
duration) disturbances, into small-amplitude, step-like (long
duration) disturbances. Exploiting this behaviour combined
with feedback control in [21], suggests that a large enough
dither amplitude has the potential of almost complete glitch
mitigation. This work aims to analytically determine the
averaged response of dithered glitches due to the injection
of large-amplitude, high-frequency periodic dither. A survey
of existing glitch models can be found in [16], as well as a
novel model for symmetric and asymmetric glitches that is
amenable to mathematical analysis. Glitch response bounds
are provided for the two types of glitches when excited
by stochastic or periodic dithers. In this paper, a simplified
glitch model is developed; it still predicts the most salient
effects caused by glitches, but enables the development of an
analytical criterion for determining a sufficiently large dither
amplitude for complete glitch mitigation.



B. Notation

In this paper we generally assume that signals are func-
tions of the following type

RZU — [Xm,in: X'm,u.'::]; t T‘(t)

When there is no chance of misunderstanding we often leave
out index sets, that is, a statement like [; = I for i < j and
all i,5 € {1,2,....k} would be written simply as F; = F}
for @ < j.

II. DITHERING

In general, a (periodic) dither is understood to be any
bounded, periodic and sufficiently regular function p
[0,00) — R, e.g. a sinusoidal, square wave or triangular
wave signal. In this paper, p is thought of as a periodic high-
frequency (HF) signal. Now let n(w) denote any function
of bounded variation (e.g. the input-output behaviour of a
quantiser, see Q(w) in (23)), then using a p-periodic dither
signal p we may define the smoothed non-linearity N(z) as

N(z) 2 / n(z+v)dF,(v) , (D
R

where F),(v) is the amplitude distribution function of p given
by F,(v) = 1/p-p{t € [0,p) | p(t) < v} where p is the
Lebesgue measure. See [18]-[20] for a detailed mathematical
treatment of dither signals. Given that I, is an absolutely
continuous distribution, the averaging effect of the dither p
on the non-linearity n(w) is generally found by evaluating
the Lebesgue-Stieltjes integral (1) as

/ n(x +v)dFy,(v) = / n(x +v) fy(v)do , (2)
Jr JR

where f,,(v) is the amplitude density function, defined by

A d
folv) = an(i)) . (3)

This means the smoothed non-linearity N (z) can be found as
the cross-correlation of the function n(w) and the amplitude
density function of the dither. The integral (1) is equivalent
to the time-average over one period p of the periodic dither,
where z is assumed to be constant for the duration of the
period [20]:

/ n(z +v)dF,(v) = 1 /P n(x+p(t))dt. 4
B P Jo

To make this more precise, in [20] it is shown that when
Lp £ sup,.g |fs(2)| < oo; then for each t > 0 let J; =
[t — p,t) denote the interval of length p > 0; if z(t) has a
Lipschitz constant Lx = Lx(./;) on .J; then:

‘/ n(x(7) + p(r))dr — [ n(z +p(7))dr
S0y J Iy
< 2LpLxTV(n)p®> (5)

where T'V (n) is the total variation of n(u), with  satisfying

inz(t) <z < maxx(t). 6
jef 70 = 7 < et ©
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Fig. 2. System block diagram - reference input = — z(t), periodic dither
p = p(t). (dithered) input to non-linear element w — w(t), (dithered) non-
linear element output § — (), averaged output y, — yy-(1).

Note that from (5), the error due to the assumption of =
being piece-wise constant with duration p, goes to zero as
p— 0.

A signal with uniform amplitude density

1 v = |v| < Ay
et () =) 2 = A
24, (QA,I) { 0 Ju| > Ay

where A is the periodic dither amplitude, is an example of
a signal with an absolutely continuous amplitude distribution
function F,(v) (with Lp = ﬁ}. In this paper, the chosen
dither representation is a p-periodic triangular wave dither p
given by

fp(v) = )

— 4444 te0,p/2]
d y U3 4 g
p(t) - 4A, 0 ﬂ'( —A 2 - (8}
P (t 2) ds te [P/ HO)
We assume that for given reference x(t), the period p is

chosen (sufficiently small) such that x(¢) is approximately
constant on any time interval of length p, i.e. the error (5)
is negligible.

III. ANALYTICAL FRAMEWORK

A diagram of the modelled system is shown in Fig. 2.
It consists of a non-linear element ®, and a reconstruction
filter.

A. Modeling Glitches

Let g(t) = ¢(w(t)) denote the input-output behavior of
®. We work under the assumption that the effect of glitches
is an additive disturbance. That is, we may write ¢(w(t)) =
n(w(t)) + ng(w(t)) with ngy(w(t)) describing the effect of
glitches and n = ¢ — n, accounts for all other effects. We
use the following (input-dependent) glitch model

Ny Nr
ng(w(t)) £ ng, (w(t) 2> Af (w(t)d(w(t) - T).
i=1 i=1

®
with & the Dirac delta function, T} a threshold value where
a glitch is triggered and T; = T} only when 7 = j, and Np
the number of glitch transitions T;. Thus, n,, describes the
glitch related to transition level 7;. The (input-dependent)
glitch arca A} is defined as

(0 w(t —7) = w(t)
Al (w(t) 2 i/l: w(t — 1) > w(t)

A wt—T1) <wl(t)

(10)



with 7 > 0 a finite time-delay. Here, the time delay is used
to determine if the input is rising or falling, but is in practice
determined by, e.g. the sampling time in a device (the non-
linear element @). For a DAC 7 is limited by the duration
between two consecutive input writes, typically the inverse
of the maximum sample rate. A; are the glitch areas for
falling input, and A the glitch areas for rising input.

B. Dithered Glitch Response

Now for each glitch n,, define the smoothed non-lincarity
N;(x) by

Ni@) 2+ [ (ot pl0)
2 Jo
7]
_ % / AZ(z 4 p(t))d(z + p(t) — T)dt zeR. (1)
JO

Clearly N;(x) # 0 iff = + p(t) — 13 = 0. Using (8) we
therefore get

Ni(z) #0 iff
{ %t-l—(Ti_Ad)’ te0,p/2]
T =

24t 4+ (T; +3A4), t€[p/2,p)
implying that = € [T; — Ag,T; + Ag) £ I,.. To calculate
the value N;(z) (for = € ) first note that A (z + p(t)) =
Af(p(t)), hence we need to find the sign of p(t) — p(t — )
at the one or two time instances where p(t) = T; — = (see
Fig. 3 for illustration). Again using (8) we get

(12)

A (p(t)) + A (p(t2)) =
[A?‘—i—/lf’ for Ay>T,—x>p(3)
[0+ AF for T; —xz=p(3)
1/1;—1—/1?' for 3](%)>T¢-.’i‘:>3](%+5)

A7 +0 for Zﬂ—:nzp(%-i-g)
lA_:—f—A_: for —Ag<Ti—z<p(3+5)
or
A.L-I (p(t1)) = {A;‘ for T, —z= Ay
A; for T, —x=—Ay
and therefore
Ni(z) =
0 for xz<T;,— A4
Aj' for =z=T,— Ay
Aj‘—f—fl:' for ZI}—A,;<:!:<T;—p(§)
) 0—1—/13' for :n:Tt-—p(%)
;<A.;+Aj for T,—p(3)<z<Ti—p(3+%)
A7 +0  for z=T,—p(3+5%)
A7 + A7 for 1}+A,g>a:>T¢—p(§+§)
A7 for ==T,+ Ay
0 for =>T;,+ Ay

\

(13)

_Ad,

Fig. 3. Mlustrating p(t), p(t — 7): where for a certain level T fixed on
the vertical axis, x is viewed as a vertical shift to the plots p(t), p(t — 7).
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Fig. 4. Nji(x) - the smoothed non-linearity of a single glitch ny;, due to

a periodic dither p(t).

as depicted in Fig. 4. It is remarked that for a given practical
DAC implementation, the range of DAC input values z(f)
is set depending on the performed operation. Moreover, the
thresholds 7}, the accompanying areas A; , A7, and the time-
delay 7 are the hardware-dependent quantities related to
the DAC topology, non-linear deviations from ideal DAC
response and time-duration between consecutive write com-
mands, respectively. Hence, the design freedom to obtain
a desired N;(z) for a set range of DAC input values
x(t) remains in the choice of the dither signal, which is
determined from (8) and (13) by choice of A, and p.

IV. CRITERIA FOR SUFFICIENTLY LARGE DITHER

A. Choosing the Dither Frequency

The time-delay 7 is an implementation-dependent param-
eter typically determined by the maximum allowable rate
for DAC write operations, or maximum sample-rate. We
assume that maximising the sample-rate for a specific DAC
is beneficial and this is determined by 1/7. The period of
the dither p can be chosen considering (5) in Sec. II; where
the dither should vary at a high rate relative to the reference



input = in order to minimize the error for the piece-wise
constant approximation on z over any .Jj; i.c., choosing
0 < 7 << psuch that (x — ) — 0 for p — 0. Furthermore,
since we are analysing the system in continuous time, the
sampling rate should be at least 5-10 times higher than the
dither frequency in order for the discrepancy between the
continuous description and discrete-time description to be
small [22]. If the ratio between the sampling frequency and
dither frequency becomes too small, discrete-time effects
start to dominate and the presented analysis and behaviour
of the system become very different. Summarily, the dither
frequency should be chosen as high as possible to minimise
the approximation error (5), but at least 5-10 times below
the sampling-rate to avoid discrete-time artefacts.

The dither frequency is constrained by the possible sam-
pling rate, and the effect of the dither is then determined by
the amplitude A,.

B. Criterion I: Single Glitch

It is evident from (9) that n, (x(¢)) only depends on
x(t) when T; is in the range of x(#), that is, when T} €
[Xinins Xmax)- Note from (13) that A, affects the width
of the various sectors in Fig. 4. The sector heights are
determined by implementation-dependent parameters. The
width of the sector where N;(z) = (A; + A])/p for z €
(T3 —p(7/2), T; —p(7/2+ p/2)) can be adjusted by varying
Ag. The goal is to suppress the effect of ng, (x(t)). The
smooth image N;(z(#)) cannot be made null for any choice
of Ay unless A7, A7 are null, or A; + A = 0. In practice,
it is more likely for A; + A to be closer to zero than
either A; or Af; i.e. A7, A7 have opposing signs. Hence,
Ay can be chosen such that N;(z) = (A] + A])/p for z €
[Xmins Xemax)» which implies that N;(z(t)) = (A7 + A])/p
for ¢ = 0.

A sufficiently large dither amplitude A; is defined as
one such that N;(z(t)) is constant. A constant N;(z(t)),
independent of the DAC input, can then be removed if the
DAC is operating in closed-loop or by an offset correction
circuit if operated in open-loop. A sufficiently large dither
amplitude A, is determined using (13) and (8); N,(x) =
(A7 + Aj)/p when

T )
T£—11(5)<7<T—p(2+;)
:>—Ad(1 2T)<T—I<Ad( ﬁ) (14)
p p

and the averaged non-linearity N;(z) = (A7 + Af)/p for
all Ay = p/(p— 27)|T; — =|. Extending this to a range of
x values, Ay is a sufficiently large dither amplitude for all
T € [ X min, Xmax if

Ad = ( P ) III;]‘X“Ti - Xmiu| 5 |T1. - Xma.xl} - (15}
p— 27

C. Criterion II: Several Equidistant Glitches

Since glitch thresholds correspond to quantisation lev-
els in DACs, consecutive glitch thresholds are treated
to be equidistant; ie., 7; — T;—; = AT. Equidistant

glitches can, as in Sec. IV-B, be minimized in the same
sense by choosing a sufficiently large dither amplitude
Ag. Note that for Ay > AT/2 there will be an over-
lap between N;(z), N;_1(z), meaning that the proposed
criteria in (15) would only render N,(z) constant for
all z € [Xuin, Xmax] when [Xupin, Xmax] € [T7 —
(p—27)AT [2p, Ti+(p — 27)AT /2p|. An alternative trivial
solution would be to take

{Ad(?)} (16)

I[lrl.X
je{1,2,3,.

where
. P
Ad(]) = (.0 — 2’1’) nax {lTJ - Xmin| 3 |TJ - Xmaxl} .
(17)

This is undesirable as p(t) will occupy the entire permissible
input range; i.e., x(t) + p(t) will exceed the DAC input
limits for any non-zero z(t). Note the special case for when
Af = A} = A}, we have N;(z) = N; (q +(;-'—z‘)AT)
for Jj =i By this property, (,hoosmg Ag : T; — p(7/2) =

T, 1+ Agand T, —p(7/2+4p/2) = T,y — Ad will join the
sectors of neighbouring N; such that N, is almost constant
over the entire allowable range of mpulx

(2)+A“_T T =Tipa—Ti = Aa— (§+_)

) (18)

(19)

= AT: 2/1‘1 (

Therefore,

AT

Ay — ( p ) AT
p—T1) 2

The choice of Ay as in (19) results an averaged non-linearity

N, of several equidistant glitches n4(z) as follows (with
A+—A+ and A= = A7):

Ny(z) =
0 for =z<T),— Ay
AT for z=T, — Ay
At + AT for Ty —Ag<z<Ti—p(3)
0+ AT for =="T1—p(3)

2(A= + At)  for
A=+ AT for
2(A= + At)  for
—J AT+ AT for
2(A~ + AT)  for
AT+ AT for
2(A~ + AT)  for

Tici—Ag <z <Tia+ A4
Tiot+Ag<z<T;— Ay
Ti—Ag<z<Ti1+ Aa
Tia+Ag<x<Tip1 — Ay
Tiy1 —Ag <z <Ti+ Ay
Ti+Ag <2 <Tiyo — Ay

Tiyo — Ag <z <Tiy1 + Ay

A= +0 for z=Tn, —p(5+%

A=+ A- for Ty, + Ay >x > TN, — p(% + £
A~ for = ="Tn, + Aa

L0 for = >Tn, + Aa

(20)
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Fig. 5. Ny(x) - the smoothed non-linearity of the total glitch ng for Ny —
4, due to a periodic dither p(t) of sufficiently large amplitude from (19).

Fig. 5 illustrates an example of N, following (20) for n,
as a sum of 4 (Nr = 4) equidistant glitches of identical
(input-dependent) glitch areas A; .

V. VERIFICATION MODEL

The non-lincar DAC model in [21], is used to verify the
analysis in Sec. III. The model is an instance of the non-
linear element © in Fig. 2. The model parameters are fitted
to the measured response of a commercial 16-bit DAC; the
Texas Instruments DAC8544. The model includes quantisa-
tion error ¢ and element mismatch n.,,, as experimentally
validated in [14], and glitches n, as experimentally validated
in [16]. The model response describes the measured response
to a high degree [14,16].

A. Modelling the DAC
1) Uniform Quantization: A DAC has 27 levels, where
B is the word size (bits). The quantization step size is
A
2B -1~
where A is the physical output range of the DAC. A
mid-tread uniform quantizer is defined using the truncation
operator T'(w)

d = (21)

k=T(w) = |2+ 1 22
= (UJ)—[(SJrQJ, (22)
where |-| denotes the floor operator and w the input which
typically is dependent on time £, that is, w = w(t). The
truncation operator is a discontinuous function. The output
y of the quantizer given an input w is

y=Q(w) =0T (w) = dk. (23)
The quantization error g(w) is defined as the function
gw) 2y —w=Qw) —w. (24)
The output can then be modeled as:
y=w+q(w). (23)

2) Modelling Glitches: The glitch model proposed in [16],
constructs glitches as short, symmetric or asymmetric rect-
angular pulses with unit areas driving a linear-time invariant
(LTT) filter. The pulse response of the LTT filter can be de-
signed to approximate any glitch shape. Symmetric glitches
ng4, have an input-dependent polarity; where glitch polarity
is determined by how the DAC input signal crosses threshold
values where glitch transitions occur (i.e. rising or falling)
while glitch amplitudes remain symmetric in both directions.
For asymmetric glitches n,_ both the glitch polarity and
amplitude depend on whether the DAC input is falling or
rising; i.e. rising glitch transitions may have different polarity
and amplitude than falling glitch transitions. A symmetric
glitch is modelled as

N,
ng, (w(t)) £ Z (g: * Ay;) (1),

i=1

(26)

where * denotes convolution, Nz, is the number of
marginal symmetric glitch transitions occurring at each least-
significant bit (LSB), g; is a linear time-invariant (LTT) filter
impulse response determining the shape of glitch ¢ and

Ayi(t) = L(HQM(®) ~ T:) — H(Q(u(t — 7)) — 1)

with H(-) the Heaviside step-function, 7; a threshold value
where a glitch is triggered and T; = T} only when i = j.
The time-delay 7; > 0 defines the glitch width and height
(here 7; is chosen such that 7 = 7; = 7; for all i, j; which
means unit-area rectangular pulses).

For Texas Instruments DAC8544 the major asymmetric
glitch transitions N7, occur at code intervals of 4096; i.c. 16
glitch thresholds in total. For the more general asymmetric
glitch model ng_ see [16].

3) Complete Non-linear DAC Model: Element mismatch
Tem 18 modelled as an additive static non-linearity given by

N, = OINL(w) , (27)

where the static non-linear function INL(w) is called the
integral non-linearity [8,14] defined by
J(w) — 6T (w)

5 ?
where g(w) are measured DAC output values corresponding
to an input value w obtained to reflect DAC output devia-
tion from the ideal quantization value (23) due to element
mismatch (without accounting for glitches). From (28) we
therefore get the following DAC output model

7(w) = y(w) + JINL(w) .

INL(w) £ (28)

(29)
To incorporate the effect of glitches into the non-linear DAC
model, the dynamic non-linearity n, is introduced. Let n, =
Ty, +ng. denote the effect of the symmetric and asymmetric
glitches [16], the DAC output (29) can then be modified by
the following DAC output model:

J(w(t)) = y(w(t)) + nem(w(t)) + ngy(w(t))

A diagram of the non-linear quantiser is shown in Fig. 6.

(30)
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Fig. 6. Non-linear DAC model [21].
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B. Reconstruction Filter

The smoothing filter in Fig. 2 is implemented as a fourth-
order filter (two cascaded Butterworth filters) with transfer-
function W,.(s). A reconstruction or smoothing filter is re-
quired to reduce repeated spectra due to sampling and also re-
duces quantisation effects. These filters are usually designed
to attenuate frequency content above the Nyquist-frequency.
In terms of averaging non-linear effects by dithering, the
filter is a practical implementation of the time-average on
the right-hand side of (4). To increase the averaging effect
the cut-off frequency should be chosen significantly lower
than the Nyquist-frequency. Note that retrofitting dither to
a conventional application requires minimal changes since
averaging is achieved using an existing component. W,.(s)
has the form

w 2 2
”’,1- 5) — (& .
( ) (32 + \/§L¢J;_-S + wcz) .

where w,. is the cut-off frequency in rad/s.

(3D

VI. RESULTS AND DISCUSSION

The models used for analysis and for verification are
different; the analysis model in Sec. III-A is a simplification
capturing the most salient response and enabling analytical
results, whilst the verification model in Sec. V-A.2 behaves
more in accordance with physical implementation. The two
models are related via the net areas A, A7 for a given
threshold T;. For the model fitted to the Texas Instruments
DAC8544 response, Ny = 218 — 1 = (Np, + Nr.) and
T; represents the quantisation levels. Symmetric glitches in
Sec. V-A.2 is a special case of asymmetric glitches when
Aj = —A;. Both symmetric (minor) and asymmetric
(major) glitches are described by the values T}, A, A7 for
each glitch in (9) and (10).

For the verification model the parameter 7 also determines
the glitch duration. For the majority of DACs this would
most accurately be set equal to the duration of a write
operation (i.e. the inverse of the maximum sample-rate). The
glitch energy is delivered within this duration; AH_/ ) =
Ay

A. Simulations

The full-scale range (FSR) of the Texas Instruments
DACS8544 is +5 V. A least significant bit (LSB) is therefore
§ =10/(2® — 1) V. The 16 areas for the major (asymmetric)
glitches (equidistant with AT; = 4096 LSB) were measured
to be A;F = —60.6 nVs for rising input, and A} = 51.9 nVs
for falling input. The 2'%—16 areas of the minor (symmetric)
glitches (equidistant with AT, = 1 LSB) were measured (o
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be A;F = —A; = £2.40 nVs. The glitch duration was sct
to 7 = 1ps matching the inverse of the maximum sample-
rate for the DAC. As no additional dynamic effects were
included in the modelling, the simulation time step was
set equal to the inverse of the maximum sample-rate; i.c.,
fs = 1 MHz. For a given glitch of area A(H ), the rcxullzml
glitch height is AE‘H }/'r. The cut-off fn,qut,m,y w, was
set to 27 f,/100 = 27 10 krad/s (lower than the Nyquist-
frequency fs/2).
B. Results

First consider the equidistant symmetric (minor) glitches
ng, where AT, =1 LSB and A;r = —Aj_. The dither fre-
quency 1/p should be chosen within the constraints discussed
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a 69 kHz dither.

in Sec. IV, but note from (19) that if

p
p—T

~1

and we choose the dither amplitude A, : 245 = nAT,,n €
Z~, then the smoothed non-linearity N,_ can be minimised
(i.e.. Ny, (z) = 0 since A] + A7 = 0). This means that
the effect of these glitches can be neglected for any dither
amplitude that is an integer multiple of the LSB. Hence, we
focus on the mitigation of the equidistant major (asymmetric)
glitches n,,, with AT; = 4096 LSB.

The performance is measured by the error between an ideal
DAC response, after the smoothing filter, and the response
of the validation model. The benchmark response ,, is
obtained by bypassing the DAC model; referring to the

diagram in Fig. 2, this means setting § = x. The smoothing
filter is included in the benchmark response to account for
the phase lag of this filter. The response error e, due to the
model (30) is then e, = ¥, — Ypm- The error ¢, measures the
effect of quantization g, element mismatch n.,, and glitches
ng, after averaging.

Fig. 7 shows the effect of a single major glitch, without
dithering, as well as when applying dithers with different
frequencies and amplitudes. In this case, the averaged re-
sponse corresponds closely to the analytical prediction (13).
The error e, due to ng is shown in Fig. 7-B.

As predicated by (13), note that the effect of progressively
increasing Ay is to widen the sector where NN; is (on aver-
age) a constant equal to (A7 + A])/p = —8.6363/p nV;
ie., —0.25,-0.423, —-0.596 mV for 1/p = 29,49, 69 kHz
respectively. When Ay is increased to a value that meets
Criterion I in (15) then N;(z) at 7; = 0 LSB is con-
stant at —0.596 mV for all z € [—62.5,62.5] LSB when
1/p = 69 kHz. The criterion is met when the amplitude
is Ad = [,0/(,0 - 27—) ) III%].X{|T1-' - Xmiu| ’ |T1. - Xmﬂ.x|}§| -
[1.16 - max{|0 — (—62.5)|,|0 — 62.5]}] = 73 LSB; ie.
dither peak-to-peak amplitude 24, = 146 LSB.

The output is not completely constant; there is some ripple.
This is explained by (5), where (z — %) — 0 as p — 0. The
ripple is reduced by increasing the dither frequency, and it
can be seen that the ripple is smaller for 1/p = 69 kHz than
1/p =49 kHz or 1/p = 29 klHz.

As can be seen in Fig. 7, the effective glitch can essentially
be converted from an impulse-like disturbance with large
amplitude to a constant (with some ripple). It can be noted
that a lower cut-off frequency in the smoothing filter reduces
the effect of the non-dithered glitch, but also reduces the
ripple in the dithered case. In practical terms, this means that
by introducing dither the detrimental effect of glitches can be
reduced in many applications. As an example, in closed-loop
applications, the control bandwidth is not sufficient to at-
tenuate impulse disturbances, but compensating for constant
disturbances is feasible by using e.g. integral action [21].

Fig. 8 demonstrates how the error e, is generally input-
dependent; i.e. it depends on the trajectory of the input (e.g.
the number of T} crossings and the input value distribution in
the neighbourhood of T}). Fig. 8-B shows how ¢, converges
to a constant regardless of the realisation of z(t) over a set
range, as long as A4 meets Criterion L. This is in accordance
with the results in Sec. IV-B; where Criterion I 1s shown to
render e, constant over the range of x(#). Note that the error
e, is dependent on the input signal realisation (sinusoidal,
triangular, or random walk) for dither amplitudes below the
limit in Criterion I, but remains constant for all input signals
once the dither amplitude satisfies (15). With 1/p = 49 kllz,
we have A; = 1.11 - max{|0 — (—125)|,|0 — 125|} =
138.5 LSB; i.e. 24, = 277 LSB.

Fig. 9 shows the results validating Criterion I by sim-
ulation for a large variety of dither and reference signals.
The model includes a single major glitch with T; = 0 LSB.
The reference signal peak-to-peak amplitude AX = X 0 —
Xomin was increased starting from AX = 15 LSB up to




AX = 1015 LSB such that 7; € (Xumin, Xmax). For a
given AX(j) at simulation run j, a suitable random walk
x(t) was generated, similar to the one shown in Fig. 8-A.
Ag(7) from Criterion I was predicted at run j given the fixed
Xumin(7), Xmax(7)- Then the dither amplitude was gradually
increased producing a result similar to Fig. 8-B. Then the
smallest amplitude Aipiima(j) to render e, constant from
the simulation was selected for each run j. The predicted
Ay from (15) and simulated A, ;0.1 amplitudes are com-
pared to each other in Fig. 9. The analytical prediction and
verification via simulation correspond well; for all 7} in the
range of x(t), the smallest dither amplitude to render e,
constant is bound between AX /2 (lower prediction limit)
and AX (upper prediction limit). Not all simulated results
fall between the predicted limits, but this is likely due to
using an analytical model that is a simplification of the
validation model.

Fig. 10 shows an example for the case of several, equidis-
tant glitches, where the dither amplitude meets Criterion
IT for a dither frequency of 1/p = 69 kHz. Here A; =
1.07411-AT%/2; i.e. dither peak-to-peak amplitude is 2A,; =
4400 LSB. Note that the input is a rising ramp where
x(t) € [—3,+3] V, 60% of FSR. For the non-dithered case,
only rising glitches are therefore excited. The number of
major glitches to be excited by x(t) is |60% x Nz, | = 9. For
the dithered case there are sections with a larger amplitude
between consecutive glitches Tj. These are in accordance
with (20) and Fig. 5. Note that the filtered glitches (no
dither) have the same attenuation observed for the major
filtered rising glitch in Fig. 7-B. However, it is noted that
the sufficiently dithered glitch at —0.596 mV, has a larger
variance around the constant offset compared to what is seen
in Fig. 7-B at the same dither frequency; i.e., 69 kHz. This
is explained by (5) as Lx for the ramp reference in this
case is much larger than that of the 125 LSB peak-to-peak
amplitude, 9 Hz triangular reference.

VII. CONCLUSIONS

A behavioural analytical model describing glitches was
introduced and used to derive criteria for sufficiently large
dither amplitudes to mitigate glitches by when using high-
frequency periodic dithering and low-pass filtering. The
proposed criteria prescribe dither amplitudes where the av-
eraged glitch response becomes a constant over the entire
range of operation for the input. The analytical results
are validated by a non-linear DAC model with parameters
fitted to the measured responses of a commercial DAC. The
model includes all significant, observed DAC non-linearities,
including glitches. The simulations demonstrate the validity
of the analytical results.
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