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Summary 

In 2021, digital pathology was deployed in the hospitals of the western 

health region of Norway. Histological tissue specimens previously 

viewed under the microscope on glass slides, are now being scanned, 

and whole slide images (WSIs) are viewed digitally. Digitisation enables 

the use of advanced technologies to take over repetitive and time-

consuming tasks such as biomarker quantification. Furthermore, digital 

image analysis (DIA) and artificial intelligence (AI) can be used to 

perform complex tasks such as pattern recognition and classification, to 

assist healthcare professionals.  

The research presented in this thesis aims to explore methods which 

may improve current diagnostic and prognostic guidelines for breast 

cancer and endometrial hyperplasia in pathology.  To challenge current 

limitations of visual assessments and investigate if addition of 

quantitative methodology and AI-assistance tools can improve 

reproducibility and accuracy of diagnosis and prognosis. The end goal 

to reduce the risk of under- and over-treatment of these patients. 

In Norway, 3,000 to 4,000 women will be diagnosed with endometrial 

hyperplasia every year. This condition is characterised by the excessive 

proliferation of endometrial glands in the uterine lining. The diagnosis 

of endometrial hyperplasia has undergone several important evolutions 

in recent decades. However, the prognostic evaluation, to assess the 

likelihood of this condition to progress to endometrial cancer, is still 

limited by subjective visual assessment of tissue morphology. In the first 

study, the biomarkers PTEN and PAX2 were evaluated for their 

prognostic value in endometrial carcinogenesis. A quantitative method 

assessing PAX2 protein expression revealed prognostic separation of 

patients diagnosed with endometrial intraepithelial neoplasia with low- 
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and high-risk of progression to cancer. In a second study, an AI-based 

tool was developed, to detect and quantify morphological features of 

endometrial hyperplasia. The tool (ENDOAPP) was able to identify 

patients with low-risk and high-risk for progression. Furthermore, its 

accuracy was equal to and marginally superior to a semi-quantitative 

morphometric method (D-score) and traditional visual classifications 

(WHO94, WHO20, EIN), respectively. 

To state that the diagnosis and treatment of cancer has a long history 

would be an understatement. The arrival of new technology, molecular 

advances and AI continues to revitalise the way cancer is viewed in the 

clinic. The measurement of proliferation in breast cancer has 

undisputed prognostic implications. However, quantification of 

proliferation markers is controversial citing lack of standardisation. AI 

may provide a promising solution for the establishment of improved 

methods for objective, automated, reproducible quantification of 

proliferation markers such as mitotic count and Ki67. In the third study, 

in-house and commercial DIA tools were investigated alongside manual 

Ki67 quantification methods for their prognostic capability and 

variability. It was observed that DIA tools were superior to their manual 

counterparts with regards to their discriminative ability for separation 

of low-risk and high-risk for distant metastasis free progression. 

Furthermore, the cut-offs currently used for binary risk categorisation 

of proliferation markers should be carefully re-evaluated if we wish to 

standardise quantification of Ki67. In the final study, a deep learning 

tool was investigated for the detection and quantification of mitotic 

count in several cancers, including breast cancer. It was observed that 

automated mitotic count was prognostic in multiple cancer types in 

addition to breast cancer, where it is routinely performed.  

It is important to emphasise that the results presented in this thesis are 

limited to the datasets presented. These were retrospective datasets, 
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and often confined to a single hospital, with the exception of the fourth 

study. Therefore, the methods run the risk of overfitting and hidden 

bias. It is therefore imperative that these tools are validated in external 

datasets to ensure their robustness, uncover any bias or overfitting, and 

to confirm their prognostic validity. Although the studies presented in 

this thesis suggest the validity of investigating AI-tools for clinical use, 

further study to critically evaluate their worth is still required. 
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1 Introduction 

1.1 Digital Pathology 

1.1.1 A Brief Overview of Pathology 

Pathology can be traced in time throughout the records of the civilized 

peoples of antiquity, its foundation is built from our desire to 

understand disease. Pathology, from the greek ‘πάθος’ – ‘pathos’ 

meaning condition or suffering, is a branch of medicine that studies the 

origins and causes of disease1. The knowledge collated throughout the 

centuries forms the basis for how we view, study, and practice medicine 

today.  

Pathology may be considered as a central hub in modern medicine. Any 

tissue or cytological sample removed in an operating theatre, or 

sampled by a general practitioner are sent to a pathology laboratory for 

evaluation. The specimens are handled and prepared by a team of 

medical laboratory personnel and a pathologist will assess and diagnose 

the tissue. This workflow is outline in Figure 1.  

New technology has been at the forefront of paradigm shifts in 

medicine. In the mid-nineteenth century, the microscope was 

responsible for huge advances with Virchow’s “omnis cellula e cellula” 

forming the basis of how we view disease today: all cells arise from 

other cells2. Recently, the field of pathology has undergone significant 

changes. The molecular advances made since the 1990’s has played a 

key role in the evolution of precision medicine3. More recently, 

pathologists are transitioning from viewing histological slides under a 

microscope to inspecting digitized images on screens. This paradigm 

shift is referred to as Digital Pathology. 
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“I am inclined to think that the limit of what the microscope could and 

has done for us is now approaching and that for a further penetration 

into the important, all-governing problem of cell life even the most 

highly refined optical aids will be of no use to us”4 – Paul Erlich, 1908 

 

Figure 1: Workflow of a Modern Pathology Laboratory. Created with BioRender.com. 

1.1.2 Digital Pathology 

Digital Pathology is defined as the acquisition, management and 

assessment of digitised pathological information often in the form of 

images and data5. Glass slides are digitised by whole slide scanners and 

then stored and retrieved by a picture archiving and communication 

system (PACS). Medical personnel can view these images, annotate, and 

run digital image analysis (DIA) algorithms. Previously, examination of 

glass slides was performed using a microscope and any annotations 

were limited to the size of the slide itself and much less precise than 

digital annotations. Furthermore, the use of DIA was limited. With the 

digitisation of images, advanced technologies such as artificial 
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intelligence (AI) can expand the number of tasks available for DIA. This 

includes complex tasks such as object detection, pattern recognition, 

and even classification and prediction of treatment response and 

prognosis. 

1.1.3 Strengths and Drawbacks of Digital Pathology 

The primary goal of implementing digital pathology is to improve the 

accuracy, reproducibility, efficiency, and availability of diagnosis. It 

provides pathologists and technicians with the tools to better tackle the 

increasing workload without an equivalent increase in personnel6-9. The 

number of samples being processed in a pathology department each 

year is increasing due to growing and aging populations. Additionally, 

the complexity of diagnosis is increasing. In developing regions, where 

the number of pathologists and resources is severely lacking in 

comparison to developed regions10,11, digitisation enables remote 

access to personnel and specialists12,13.  

1.1.3.1 Strengths 

Numerous benefits have been cited in favour of implementing a digital 

workflow in pathology. Firstly, institutions can save on time and cost of 

shipping glass slides to other sites for specialist consultation14. 

Moreover, pathology departments no longer require internal 

transportation of slides from the laboratory to a pathologist’s office; 

there is complete control over the whereabouts of physical slides. The 

time saved from this allows the lab to focus more on quality control of 

the slides themselves than on transport. The samples entering the 

laboratory are registered with a unique patient identifier so they can be 

easily tracked all the way through the lab and into the PACS. Within the 

PACS viewer, multiple examiners can view an image and give feedback 

in tandem, saving on time15. Collaboration within and between medical 
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fields is enhanced, particularly during multi-disciplinary (MDT) 

meetings, for training or simulation and for research purposes. 

Other benefits of digital pathology include that annotations and 

measurements can be performed quickly, accurately, and stored for 

future reference. Risk of misplacing slides in the local archive is greatly 

reduced due to automatic assignment and storage in the local PACS 

according to the patient identifier. Observations from an early digital 

pathology implementation study included remarks from participants 

that areas of concern were easier to identify at a low power 

magnification on a whole slide image (WSI) than on glass slides. 

Furthermore,  it was easier to assess a multi-slide case digitally owing 

to ease of transition between immunohistochemistry (IHC) slides in 

comparison to physical14.  

1.1.3.2 Drawbacks 

The drawbacks of implementing digital pathology are often due to 

technical limitations of available technology. To start with when 

creating a digitised image from a glass slide it is expected that the WSI 

can replicate the tissue section on the glass slide, completely16. Any 

areas that are out of focus or missing in the scan could result in 

important information being lost16. WSIs should be evaluated to assess 

the quality of the scan and out of focus regions may cause a case to be 

sent for rescanning, which may delay diagnosis. Many scanners have 

integrated algorithms for detection of such regions, and such errors 

occur less frequently as technology improves.  

There is yet currently no consensus on a standard image file format in 

Pathology. Each scanner will usually produce a WSI image file using a 

proprietary format and visualisation of the WSI using different image 

viewers or a PACS viewer can result in variations in colour and quality. 
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This can be equated to the staining variation observed between 

automated staining machines and institutions. This lack of 

standardisation is not optimal and requires time and resources to 

normalise the images. DICOM is an international standard for medical 

images and associated information17. It professes interoperability 

amongst different imaging hardware and viewing platforms and 

complies with the ISO 12052 standard17. It has been deployed in 

Radiology, and a working group (WP-26) has been established to 

develop this format for use in Pathology17. At present, it is one of the 

least represented formats in the field of pathology, although more and 

more scanner vendors offer DICOM format18. Not only file format can 

affect visualisation and thus interpretation of an image, but the display 

screen can also be influential. However, this has not been as thoroughly 

investigated as it has been in Radiology19. 

Most microscopes have a turn dial for coarse focus adjustment and fine 

focus adjustment. Translating the latter to a digital platform has been a 

challenge. Some scanners may be equipped with a multiplanar focusing 

option, referred to as z-stacking, which is mandatory for cytological 

slides and also beneficial for mitosis counting20. Z-stacking is a digital 

processing method where the tissue is scanned at different focal planes 

and can be combined into one composite image that has a greater 

depth of field21. However, there are limitations associated with z-stack 

acquisition, firstly a longer scanning speed and secondly larger file 

sizes22,23.  Studies by Sturm et al.24 and Kim et al.25 have observed that 

although z-stacking provides some benefit regarding diagnostic 

accuracy in specialised cases, it is modest and does not necessarily 

justify its widespread use. Furthermore, Tabata and colleagues, 

observed that a higher pixel resolution and numerical aperture is 

sufficient to resolve this issue in the context of digital mitotic 

counting23. With time as scanner technology improves, this issue may 

be overcome as pathologists adjust to digital microscopy.  
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Deployment of digital pathology demands new skill sets. The expertise 

required to maintain a PACS system and its connection to the local 

laboratory information and management system (LIMS) is beyond 

medical training and requires IT competency. Creating a close 

partnership between IT and medical personnel is crucial for successful 

implementation. This ensures successful communication between 

parties with different skill sets and safeguards that each other’s needs 

are met. This is particularly essential for development, validation, 

testing, and implementation of DIA. 

In summary, although the deployment of digital pathology may face 

several technical challenges, these may eventually be overcome with 

advances in technology and experience.  

1.2 Digital Image Analysis 

Digital image analysis (DIA) refers to the examination of a digitised 

specimen by using a computer to extract data, often using algorithms26. 

Basic DIA tasks include counting objects or measuring object properties 

such as area or quantification of pixel values. More recently, DIA by 

means of AI has begun to tackle more advanced tasks such as class 

prediction i.e., tumour vs. non-tumour and histological grading. 

1.2.1 What is an image? 

To understand how DIA works we need to go back to the basics. An 

image is a representation of something27; a digital image is a 2D 

rectilinear array of pixels each consisting of a spatial coordinate and a 

value28,29. A digital image will exist in a colour space, pixels in a greyscale 

image will have a coordinate (x, y) and a value between 0-255, whilst an 

RGB image will have a coordinate and value in each colour space: red, 

green and blue28 (Figure 2). Whilst a pixel is the smallest unit of an 
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image or display, a bit is the smallest increment of data, existing as 0 or 

128. The bit depth or number of bits per pixel in an image describes the 

colour information (Figure 3). A bit depth of 1 can display two shades: 

0 or 1 (21). A bit depth of 3 (23) can display 8 shades, with 8 different 

combinations of 0’s and 1’s: 000, 001, 010, 011, 100, 101, 110, and 111. 

In an 8-bit greyscale image, there are 256 possible combinations (28) 

and a single pixel will have a value of 0 (black) to 255 (white)28. This 

conveniently closely represents what is perceivable by the human eye 

(Figure 2). In an RGB image, each colour space (red, blue and green) will 

have 256 possible combinations and together create a 24-bit image 

with 16,777,216 possible combinations28,29 (figure 2).  

 

Figure 2: Bit depth in an RGB image. A specific pixel (arrow) has a unique value from 
0-255 in each colour space. An image with a bit depth of 24 has 16,777,216 possible 
combinations. 
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Figure 3: Bits and bit depth explained in greyscale. 

1.2.2 Image Processing 

Image processing refers to the use of algorithms to manipulate the 

attributes of an image for certain tasks. These tasks include, amongst 

others, classification, feature extraction and segmentation. Filters are 

tools used in imaging processing tasks such as edge detection or noise 

removal. Examples of such filters include mean or median filters often 

used for segmentation tasks. 

1.3 Artificial Intelligence 

1.3.1 Background 

Artificial intelligence (AI), a term coined by John McCarthy in 1955, has 

become a current topic of interest and debate in the media. Defined as 

a computer’s ability to mimic human intelligence or behaviour, AI 

encompasses the disciplines machine learning which in turn covers 

deep learning (Figure 4). In machine learning (ML), algorithms are 

developed to perform specific tasks without being explicitly 

programmed to do so30. A ML algorithm is designed to learn from a 

dataset, extracting information from that data whilst also learning the 

context of the data in order to make decisions or define outcomes31.  
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Figure 4: Artificial intelligence 
definitions: AI, Machine 
Learning, and Deep Learning.  

 

 

 

 

 

 

 

ML approaches vary from strongly supervised learning to unsupervised 

learning. The type of learning method describes whether labelled or 

unlabelled data is used to train the algorithm. A summary of the types 

of learning can be found in Table 1. Both supervised and unsupervised 

learning were used in the works presented in this thesis. 

Deep learning (DL) relies on multi-layered neural networks. Neural 

networks are paralleled to the neuronal network of the human brain, 

whereby an intricate layer of neurons is activated by a signal, which 

activates downstream layers resulting in an output. One of the most 

popularised networks in the field is the convolutional neural network 

(CNN), which will be discussed later in this section. Deep learning (DL) 

has made notable progress in recent years due to advancements in 

computer hardware, such as the graphics processor unit (GPU), 

breakthroughs in research on neural network architectures, and the 

acknowledgement that large datasets are required for DL training 

tasks36. As a result, it has been increasingly used for problem-solving 

tasks in medicine. 
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Table 1: Types of Machine Learning (ML) Methods used to Train ML models, as defined 
by the International Medical Device Regulators Forum32 

Type of Learning Definition 

Strongly supervised During training, an algorithm will learn the 
relationship between independent features and a 
known defined attribute (the label). This is 
considered the most time-consuming approach due 
to the requirement of large amounts of annotated 
data. 

Semi-supervised This approach uses both labelled and unlabelled 
data to train. “It is a hybrid technique between 
supervised and unsupervised learning”33. This is a 
less label-intensive method than strongly 
supervised learning. The algorithm will use 
traditional supervised learning to train the model, 
whilst for unlabelled data it will minimise the 
difference the predictions made between other 
training examples33. 

Unsupervised The unsupervised ML approach is often used to 
handle more complex tasks than the other 
approaches. What distinguishes it from the other 
approaches is its use of unlabelled data. Clustering 
is a type of unsupervised ML where a model will 
find patterns in the data and natural clusters34. 
Association is also another method, where the 
association between variables can be used to map 
them in a way that is useful34. Unsupervised 
learning is the least labour-intensive approach as it 
does not require annotations; however, it does 
require large, complete datasets that are 
representative of the context.  

Reinforcement Another type of ML approach is reinforcement 
learning. As its name suggests the algorithm will 
learn and adapt according to feedback or to 
maximise the return/reward. This process can be 
described as trial and error35. 
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1.3.2 Machine Learning 

Several examples of ML methods can be found in the medical literature. 

Linear and logistic regression, familiar to those working in the field of 

statistics, are popular choices. Other types of supervised machine-

learning methods include support vector machines (SVMs), Naïve 

Bayes, K-nearest neighbour (kNN), decision forest and random forest. 

Each of these methods has their own unique advantages and 

disadvantages. The methods to be discussed in this thesis are K-means 

clustering and deep learning networks that use a convolutional neural 

network (CNN).  

1.3.3 K-Means Clustering 

K-means clustering is an unsupervised ML method. Clustering is a 

method of unsupervised learning where the model finds patterns and 

natural clusters in data34. K-means will aggregate collections of data 

points according to similarities. This clustering will generate centroids 

according to the mean of the datapoints. Each centroid will represent a 

class and the number of centroids is determined by k 37 (Figure 5). A 

new datapoint will be compared to these centroids and a class assigned 

based on the centroid with the closest proximity. 

 
Figure 5: K-means Clustering. 



Introduction 

12 

1.3.4 Deep Learning: Neural Networks 

1.3.4.1 Artificial Neural Network 

An artificial neural network (ANN) is one of the simplest forms of a 

neural network. An ANN consists of artificial neurons, modelled after 

the biological neuron (Figure 6). An artificial neuron consists of inputs 

(xi) and weights (wi)36. Each input will be weighted and the weight 

indicates the strength of the connection between the nodes38. The 

activation function will calculate the sum of the weights and add the 

bias, if these exceed a specified threshold, then the node is activated 

and a signal passes on to the next layer39 (Figure 6). 

 

Figure 6: Example of an artificial neuron36. Created with BioRender.com 

In an ANN model, multiple neurons are linked together in layers (Figure 

7). The first layer is the input layer, followed by a hidden layer. Each 
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layer consists of n number of nodes. In a fully connected network, each 

node will have a connection to all the nodes in the previous layer and 

all the nodes in the next layer39. The strength of an ANN comes from 

many nodes working in parallel40. The final layer of the ANN is the 

output layer, where the network generates an outcome/prediction. The 

weights of each neuron are iteratively adjusted to increase the accuracy 

of the outcome prediction. 

 

Figure 7: A multi-layer neural network. A multilayer perceptron (MLP) is a type of 
feed-forward ANN consisting of fully connected neurons, an input layer, hidden layers 
(1-4 in this example), and an output layer. Created with BioRender.com 

The training of an ANN begins with random weights36. Training of a 

neural network is an iterative process where these weights are 

optimised. This process requires the calculation of the error using a loss 

function. For example, in a feed-forward network, the loss function 

generates an error from a forward pass through the network40. The 
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error is obtained by calculating the difference between the expected 

outcome and the model prediction41. The weights are then adjusted to 

minimise this error. Backpropagation is a commonly used optimisation 

algorithm that aims to reduce the loss function by calculating the 

gradient of error (direction and magnitude) that is used to adjust the 

network weights42. It requires that the error rate produced from the 

forward pass of the network is then fed back through the neurons of 

the network layers from back to front. A technique referred to as 

gradient descent is used to find the most optimal adjustments that 

minimises the error as much as possible43. The learning rate describes 

how large of a change is made to the weights, referred to as step size43. 

If the learning rate is too high, the changes might be extreme, and the 

minimum error overshot (Figure 8). If the learning rate is too small, the 

changes to the error are inconsequential and it take a long time before 

the minimum error rate is achieved44. The learning rate of a neural 

network can be manually adjusted during the training process and the 

resulting error rate monitored after each iteration (Figure 8).   

 

Figure 8: The learning rate of a neural network. The learning rate regulates the level 
of change to the network weights. A learning rate that is too large will oscillate and 
overshoot the minimum error. If the learning rate is too small it will take a long time 
before reaching the minimum error43,44. 
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1.3.4.2 Convolutional Neural Network 

A convolutional neural network (CNN) is a type of neural network that 

consists of three main types of layers: a convolutional layer, a pooling 

layer, and a fully connected layer39. The convolutional layer is what 

makes a CNN unique. Its ability to analyse an image using specific filters 

for feature recognition have made it an attractive model for object 

detection and classification tasks on pathological images45. In each 

convolutional layer, the input is convolved with a set of filters (kernels) 

which produces feature maps39. Different filters will generate different 

feature maps and capture different features within the same image. The 

second type of layer is a pooling layer and results in downsampling of 

the feature maps. The purpose of this layer is to reduce the 

computational power required by downsizing the feature map but 

retaining the essential information46. This is performed for example by 

max pooling or average pooling. Prior to the final layer, the 2D arrays 

from the pooled layer are ‘flattened’ into a single continuous linear 

vector. This is then fed into the final layer: the fully connected layer. The 

final layer resembles a feed forward MLP, with input features, N-hidden 

layers, and an output layer. Prior to the output layer, the softmax 

activation function will normalise values by classifying inputs into a 

probability from 0 to 1 for each prediction outcome46. Popular examples 

of neural network architectures, that use a CNN, are U-Net, R-CNN, 

DeepLabv3, VGG, GoogLeNet, and ResNet45. The U-Net, DeepLabv3 and 

R-CNN models were utilised in two of the studies presented in this 

thesis. 

1.3.5 AI in Medicine 

Although the term AI originated in the 1950’s, shortly followed by the 

term machine learning by Arthur Samuel and later deep learning in 1986 

by Rina Dechter, it would take many years before the medical field 
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would take an active interest47. In the 1970’s and 80’s, AI was slated to 

take a prominent role in medicine in the near future, acting as “a 

powerful extension of the physician’s intellect”48. Early algorithms 

relied heavily on rule-based systems; specific patterns and situation 

dependent features could be organised by a machine to make logical 

conclusions48. The original conviction began to weaken as researchers 

realised medical patterns were not so simple and the technology not 

yet sufficient to handle them. The intricacies of medical reasoning 

revealed that diagnosis is too complex a task to develop a single set of 

rules to cover all variables.  

 

Figure 9: AI Publications on PubMed. The number of publications per year up until 
2022 using the search query: “artificial intelligence” on PubMed. 

At the turn of the millennium, technology was making significant 

advances. Radiology was well into the transition from analogue film to 

digital radiography, additionally the first whole slide scanners were 

introduced allowing for the digitisation of pathology slides47,49. The last 

two decades has witnessed a rise in the number of public repositories, 

from the sequencing of the human genome to the establishment of 

public image databases such as the TCGA-BRCA, CAMELYON 16 & 17 
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breast cancer WSI datasets and many more50-52. The prominence of AI 

in medical research may be visualised in the context of the number of 

publications registered on PubMed from the 1950’s up until present day 

(Figure 9).  

One of the major obstacles developers have faced in the past is the lack 

of adequately labelled datasets. The performance of deep learning 

models is dependent on the availability of such data to create sufficient 

training and validation datasets53. These datasets should be 

accompanied by complete and accurate documentation. If labels are 

missing or incorrect then a model will be incorrectly trained.  

Private datasets may also be used to train AI models and may be 

combined with public datasets to improve diversity. Private datasets 

usually contain more information because of stricter confidentiality 

agreements and therefore, may contain treatment and survival data, 

which can provide a more accurate insight into how the AI model is 

performing53.  

Validation of AI tools for use in a clinical setting is often performed in 

the form of clinical trials. Many such trials compare the performance 

and accuracy of diagnosis with and without the use of AI tools. AIMS 

Norway is a national, randomised controlled trial investigating 

interpretation of mammography scans by radiologist(s) with or without 

the assistance of the AI tool Transpara54. CONFIDENT-B, -P are 

controlled clinical trials performed at the University Medical Centre 

Utrecht55. Prostate cancer specimens (-P) and breast cancer specimens 

(-B) will be assessed by pathologists with or without an AI assistance 

tool55. However, before any implementation it is important to 
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understand the development process of an AI tool, why it was 

developed and how and what data was used to train and validate it.  

1.3.6 Developing an AI tool 

Prior to development of an AI tool for medical purposes, it should be 

ascertained if AI is indeed the correct choice for tackling the problem at 

hand56. If a task is considered a burden and is repetitive in nature, AI 

may be the appropriate choice. The National Health Service 

Transformation Directorate (NHSX) in the United Kingdom define 

several criteria that should be met if an AI tool is an appropriate solution 

for a medical task: 

1. The data is repetitive in nature or on such a large-scale that there 

is an above-average risk for human error during processing. 

2. Any outcomes can be tested against a ground truth 

3. Outcomes should have real-world implications, i.e. will have 

implications on patient treatment, workflow efficiency, etc. 

4. The data is real and not synthetic 

5. Using the data is ethical and safe 

A Buyer’s Guide to AI in Healthcare, 202056 

1.3.6.1 Clinical demand 

The purpose of the AI tool needs to be clearly defined and there needs 

to be a clinical demand or benefit that the tool must meet. The context 

in which the AI tool is to be used should also be clarified early on, as this 

will affect the type of training data that should be included in 

development. Lastly, there needs to be a measurable benefit to using 

the tool.  
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1.3.6.2 Ground truth 

The purpose of using AI may be with the intent to improve on existing 

methodologies and workflows. To measure this, the outcome must be 

compared to a ground truth or reference standard. Ground truth is 

defined as information that is known to be real, often in the form of 

empirical evidence or observations57.  

However, when defining a ground truth, a problem arises when it is 

generated by a method with intrinsic weaknesses. It is likely that the 

ground truth in pathology will be a pathologist as there is often not any 

other comparable reference standard. A pathologist’s diagnosis, though 

expertly trained, is based on a subjective visual assessment of the tissue 

and therefore the ground truth falls victim to their inherent 

irreproducibility58. Factors influencing intra- and inter-observer 

variability include the type of training received, years of experience, 

recall bias and fatigue. It is by no means a poor ground truth, but its 

inherent imperfections should not be ignored, and its limitations 

expressly considered. A way to combat this is to use an expert panel. A 

predefined, minimum consensus agreement amongst a panel of 

pathologists, preferably from different laboratories can be required to 

affirm a ground truth8,58. Other ground truths may be worth 

investigation such as molecular testing or even survival data or data on 

treatment response. 

1.3.6.3 Datasets 

The Development Dataset: Training & Tuning 

The data used to train, tune, and validate an AI algorithm is perhaps one 

of the most important considerations during study design. Datasets to 

be covered are the development and test dataset. The definitions from 
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Liu et al. (2019) will be used here59. The development dataset may 

consist of a training and tuning set, often only a training set. 

The training set consists of cases used to train the model. The input data 

may consist of unlabelled images or annotated images. The tuning set 

will be used to adjust the hyperparameters such as the learning rate. 

The tuning set is used to optimise the model selection32.  

To produce the best possible AI model, the development dataset should 

be representative of the clinical setting. It should include unique 

challenges such as rare subtypes, artefacts, and diagnostic mimics. The 

proportion of cases should reflect the real-world scenario. 

Considerations should be made for inclusions of images scanned by 

different scanners and tissue stained with different antibodies, using 

different automated staining instruments for the detection of the same 

markers. A model will only ever be as good as the data you put in (Figure 

10). 

 

Figure 10: Garbage in → Garbage out. An AI model will only ever be as good as its 
training data. If the training data is of poor quality and unrepresentative of the task 
the result will reflect this. Figure created using biorender.com. 

Transparency is a stepping-stone to credibility. It is important to 

describe which dataset is being used whether it be a public or private 

dataset and to acknowledge any limitations and how the data has been 

annotated. Case studies have shown that an algorithm will learn specific 
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patterns in images and assigns an outcome, but in some cases further 

examination reveals that these patterns are not in fact related to the 

condition at all and are essentially artefacts. Radiologist Lauren 

Oakden-Rayner questioned the validity of the ChestXray14 dataset, in 

2017, to train a model to detect pneumothorax60. She observed that a 

model was performing acceptably, however, further examination of the 

images, revealed that all the patients classified with a pneumothorax by 

the algorithm, had chest drains. This meant the patient had already 

been treated for pneumothorax. Therefore, the AI had simply learnt to 

detect the chest drain and not the pneumothorax, which “isn’t a 

medically important problem. We want to avoid missed 

pneumothoraxes, and by definition these have not been missed”60. This 

emphasises the need for explainable AI, to ascertain what is being 

detected. Lauren’s observation also raises the potential pitfalls of using 

open datasets to train medical AI systems. 

The Test Set 

The test set is sometimes referred to as the validation set. The test set 

is used to evaluate model performance before it can be applied in the 

clinic. It will test that the model performs as intended and uncover any 

overfitting or bias in the model61. The model can only be run on the test 

set once. It should also be representative of the clinical setting61. 

Confusion arises when this term is mistakenly used to describe the 

tuning set. The most important distinction between the development 

dataset and the test set is that they are independent of each other61. 

The algorithm should not have been exposed to any of the data in the 

test set during training. Ideally, the data used in the test set should also 

be temporally and geographically distinct from the data used in the 

development dataset61. This will evaluate the robustness of the model 

and its clinical applicability. Furthermore, the test set can confirm any 

limitations of the model, for example: certain scenarios such as poor 
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staining or inadequate fixation where the algorithm will not perform 

accurately. Such limitations must be determined as either 

“catastrophic”, the algorithm is not approved; or “acceptable”, the 

algorithm is approved with recognition of its limitations. 

1.3.6.4 Overfitting & Bias 

Overfitting describes when a model is trained so perfectly on the 

training dataset that it cannot be applied to any other dataset59. It has 

therefore learnt parameters specific to the training dataset that have 

no relationship with clinical outcome59. Techniques exist for avoiding 

this such as early stopping, where training is stopped early enough that 

the algorithm reaches an acceptable error rate before becoming too 

fitted to the training data (Figure 11). 

 

Figure 11: Early stopping and the bias-variance trade-off. Figure created using 
BioRender.com. 

Bias refers to a prejudice resulting in favour of or against a group or 

person62. In ML bias occurs when a model is prejudiced due to faulty 

datapoints63. Variance, is a type of error which describes a model’s 

sensitivity to changes in the features used to train the model, thereby if 

overfit, the model is very sensitive to small details in the relationship 
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between variables63. In ML, to achieve the most optimal model, both 

bias and variance should be low63 (Figure 11).  

Bias in medicine is usually implicit: not intentional or with ill intent64. It 

is usually introduced by unforeseen differences between groups, either 

due to poor study design or the assumption that there are no 

differences. In medicine, women and minorities have been historically 

under-represented65-68. Research over time has exposed a multitude of 

variables that are highly relevant to clinical outcomes including 

biological sex, socioeconomic status, ethnic background, etc. One 

should strive to account for and acknowledge this, where applicable, in 

datasets used to train and/or test AI algorithms35. Systemic bias occurs 

when a model will consistently over- or under-estimate an outcome as 

a result of training35. It often refers to how the data was collected.  

Several forms of systemic bias exist including selection bias, gender 

bias, measurement bias, and racial bias. Selection bias can occur when 

the target population is not accurately represented in the training data 

whilst measurement bias is a result of an error made during collection69. 

Selection bias is particularly important to be aware of when using open 

datasets. For example, the TCGA dataset, consisting of 1133 H&E 

stained WSIs from 1062 breast cancer patients, was collected from 

patients solely in the USA, majority white women and a large 

percentage younger women52,53. This may not be representative of the 

US population, let alone in another demographic. One should always be 

aware of potential bias by critically assessing inclusion criteria, when 

using open datasets.  

“The introduction of AI to diagnostics seems to be accompanied by 

little to no acknowledgement of the well-documented and chronic 

gaps in medical data when it comes to women. And this could be a 

disaster… particularly given what we know about machine-learning 

amplifying already-existing biases.”65 – Caroline Criado Perez, 2019 
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Gender bias, disparate inclusion, or lack of necessary representation of 

sexes in training datasets, can result in certain sex-specific patterns 

being overlooked or overshadowed. In many clinical evaluation studies 

and even animal studies, one sex is disregarded entirely or inadequately 

represented65. This can result in an underestimation of outcomes in one 

sex and even life-threatening consequences65. For example, an 

algorithm trained on a dataset overrepresented by male patients, may 

lead to accurate detection of male-specific patterns of a disease but 

those more frequently manifested in females are not. Therefore, 

women risk being underdiagnosed. Gender differences in disease has 

been reported in the literature for cardiovascular disease70,71, 

Parkinson’s disease72 and cancer73. Therefore, it is important to 

consider potential differences between genders and account for them 

where necessary. 

Racial bias may occur when an algorithm is not adequately trained on 

data collated from multiple ethnicities. For example, in dermatology 

concerns have been raised regarding ML algorithms developed to 

detect melanoma. Melanoma will present differently in white skin types 

than darker skin types. Therefore, if one or the other is not adequately 

represented in the training data this will limit the algorithm to 

accurately detect melanoma in a range of skin colours74.  

A well-collated test set may be a method of uncovering potential biases 

in the training of the AI. An adequate sample size for training AI, in 

addition to balanced datasets, can also help to reduce bias. Effectively, 

AI technology has the ability to mitigate systemic bias if designed 

properly, but may also magnify existing disparities if a bias is not 

corrected for75. To summarise, it is important to address the need for 

equitable AI and to express any limitations of datasets. 
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1.3.6.5 Performance metrics 

To assess the performance, quality, and selection of the most optimal 

model, statistical performance metrics are measured. Two of the most 

common methods used are a receiver operating characteristics curve 

(ROC curve) and a confusion matrix.  

A ROC curve is used to determine the efficacy of a model by measuring 

the area under the curve (AUC). An AUC above 0.8 is preferred, with 1.0 

indicating perfect prediction, and less than 0.5 indicates an inadequate 

model76. The ROC curve itself is a graphical representation of the true 

positive rate (sensitivity) and the false positive rate (1-specificity)76. This 

metric can be used to determine optimal cut-off points often where 

there are binary outcomes, such as disease is present or absent or low- 

and high-risk of progression of disease.  

The confusion matrix is a contingency matrix that describes the 

performance of an algorithm, by assessing predicted values against 

actual values77. A variety of metrics can be calculated from the 

confusion matrix including sensitivity (recall), specificity, positive 

predictive value (PPV or precision), negative predictive value (NPV), F1 score 

and accuracy (Table 2). Each of these metrics is used to evaluate the 

predictive ability of the test or model as defined in Table 2. 

A perfect test will have 100% sensitivity and 100% specificity or a PPV 

of 1 and NPV of 1. However, in a realistic clinical setting, this is 

extremely unlikely. There is often a trade-off where an increase in 

sensitivity may lead to a decrease in specificity. Therefore, when 

designing a test, it is important to consider if it should be more sensitive 

or specific. This will depend on the consequence of a false positive or 

false negative result. For example, a highly sensitive test will correctly 

identify those with a condition i.e., few false negatives. This will ensure 

the ability to rule out disease if the test is negative78 (Figure 12). A 
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highly specific test will correctly identify individuals who do not have 

the condition i.e., few false positives. This will ensure the ability to rule 

in disease if the test is positive78 (Figure 12). The mnemonic SNOUT and 

SPIN can be useful in remembering this difference78: 

SNOUT: Sensitivity, negative, out 

SPIN: Specificity, positive, in 

Table 2: Overview of performance metrics used to evaluate the efficacy and quality of 
a test77. 

Performance Metric Definition 

True positive (TP) The number of cases scored positive by the test that 
have the condition. 

True negative (TN) The number of cases scored negative by the test that do 
not have the condition. 

False positive (FP) The number of cases scored positive by the test but do 
not have the condition. 

False negative (FN) The number of cases scored negative by the test but do 
have the condition. 

Positive predictive 
value (PPV) 

The PPV describes the odds that an individual with a 
positive result actually has the disease/condition. 

Negative predictive 
value (NPV) 

The NPV describes the odds that an individual with a 
negative result does not have the disease/condition. 

Sensitivity The sensitivity of a test is an indication of the 
proportion of individuals that have a positive result 
among those that have the condition. 

Specificity The specificity of a test indicates that the proportion of 
individuals with a negative result among those that do 
not have the condition. 

Prevalence The number of cases in a defined population with a 
condition at a single point in time.  

F1 Score A measure of a test’s accuracy based on the PPV 
(precision) and sensitivity (recall) of a test. The F1 score 
ranges from 0 to 1, with 1 indicating perfect precision 
and recall.  

Accuracy Accuracy is a measure of a test’s ability to distinguish 
between individuals with or without a condition – how 
precise is the test 
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Ideally, a test with a high specificity, or high PPV, is recommended for 

tests where a positive result carries the risk of harm from subsequent 

treatment or diagnosis i.e. surgery or a terminal diagnosis. A test with a 

high sensitivity, or high NPV, is adequate for screening, where tests are 

usually minimally invasive and cheaper. For example, an HPV test is 

used as a screening tool for cervical cancer. The test itself is minimally 

invasive, and if positive will lead to further examination and/or a biopsy. 

A test with high specificity is adequate for a diagnostic test.  

It is also important to note that PPV and NPV define a slightly different 

context to sensitivity and specificity. The latter is used to indicate the 

credibility of a test in comparison to a trusted reference standard. 

Whilst the former indicates the probability of the test to successfully 

identify individuals that do or do not have a condition according to the 

test results78. In summary, sensitivity, specificity, and predictive values 

may be used to describe the usefulness and adequacy of a model or 

test, however, a clear description of how they have been determined 

should be stated. Furthermore, no test is perfect, and therefore the 

consequences of under- or over-treatment should be evaluated to 

determine and adjust the weight of different performance metrics 

accordingly. 
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Figure 12: Sensitivity and Specificity. A test with a high sensitivity will correctly 
identify patients with a disease and is used to rule out patients with a negative test 
i.e. few false negatives. A test with a high specificity correctly identifies patients 
without the disease and is used to rule in patients with a positive test i.e. few false 
positives. Blue individuals indicates without the condition, orange indicates 
individuals with the condition. Created with BioRender.com 
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1.4 Cancer 

“Cancer is a flaw in our growth, but this flaw is deeply entrenched in 

ourselves. We can rid ourselves of cancer, then, only as much as we 

can rid ourselves of the processes in our physiology that depend on 

growth – aging, regeneration, healing, reproduction”2 – Siddhartha 

Mukherjee, 2010 

1.4.1 The Hallmarks of Cancer 

Cancer has long been present in the history of humankind. It’s 

designation as a modern disease is likely owed to the fact that as 

humans begin to live longer, civilisation and modern medicine has 

“unveiled it”2,79. 

As described by Virchow in 1859, all cells arise from other cells. Cancer 

arises from the normal cells in the tissue, from which it is discovered80. 

Cancer is the uncontrolled growth and proliferation of cells; a mass of 

cells described as a tumour in solid cancers81. This is the result of several 

biological capabilities that are acquired during a multi-step process, 

which are referred to as the hallmarks of cancer (Figure 13)82. These 

capabilities also contribute to a cancer’s ability to spread throughout 

the body to establish new growths (metastases) in a process known as 

metastatic dissemination81. From the original six hallmarks described in 

2000 by Weinberg and Hanahan83, two functional capabilities were 

added alongside two enabling characteristics in 201182, and in 202284 a 

further four were added (Figure 13). 
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Figure 13: The Hallmarks of Cancer (left) and the newly proposed emerging hallmarks 
(right). Reprinted from Cancer Discovery, 2022, 12 (1), 31-46, Hanahan, Hallmarks of 
Cancer: New Dimensions, with permission from AACR. 

Perhaps the most fundamental characteristic of cancer cells is their 

ability to proliferate unrestricted82. In normal tissue, the growth of cells 

is carefully regulated with the controlled release of growth-promoting 

signals initiating entry into the cell cycle82. This ensures a balance in the 

number of cells present in the tissue at any one time82. Cancer cells gain 

the ability to manipulate such signals and initiate cell proliferation 

unencumbered by normal checkpoint regulators. This capability often 

coincides with changes to mechanisms in cell survival and energy 

metabolism82. To sustain proliferation, cancer cells must also avoid 

growth suppressors. These suppressors are either encoded or 

dependent on tumour suppressor genes. such as RB (retinoblastoma-

associated) and TP53 proteins. These proteins play a key role in systems 

that initiate proliferation or activate senescence and apoptosis85.  

As affirmed by Hanahan and Weinberg, the complexities of cancer 

cannot be understated82. These hallmarks provide researchers with the 

tools to better understand cancer; its pathology and to generate new 

targeted treatments.  
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1.4.2 Biomarkers 

A biomarker is defined as a “biological molecule found in blood, other 

bodily fluids, or tissues that is a sign of a normal or abnormal process, 

or of a condition or disease”86. Biomarkers are commonly used for 

diagnosis, monitoring, prognosis, prediction of response to treatment, 

susceptibility, pharmacodynamics, and assessing of toxicity of exposure 

to a medical product87. A variety of classes exist and are outlined in the 

BEST (Biomarkers, EndpointS, and other Tools) Resource published by 

the FDA-NIH Biomarker Working Group87, as summarised in Table 3. 

Biomarkers may exist in the form of proteins, molecular profiles, a 

biological state, or hormones but most importantly, they can be 

measured87. Biomarkers are a cornerstone of precision medicine as 

research shows that “no two patient’s cancers are exactly the same”3. 

Despite sharing many general similarities, different cancers behave and 

evolve in different ways, possess different genetic profiles, and have 

variable responses to treatment3. Precision medicine is designed to 

optimise patient treatment by assigning treatment strategies according 

to specific traits to maximise therapeutic benefit (Figure 14). This is in 

contrast to the current one treatment fits all approach3. 

“that’s the promise of precision medicine -- delivering the right 

treatments, at the right time, every time to the right person.  And for 

a small but growing number of patients, that future is already here”88 

- Former President Barack Obama, 2015  
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Figure 14: Precision medicine. A) A one treatment fits all approach. B) A precision 
medicine approach. Created with BioRender.com. 

To evaluate the clinical performance of a biomarker it is compared to a 

reference standard (ground truth). Typically, calculation of a test’s 

performance metrics (Table 2) indicates the efficacy of the biomarker. 

A perfect diagnostic biomarker has 100% sensitivity and 100% 

specificity, but this is unlikely in a real-world setting. Additionally, a 

biomarker test, like an AI model, should have defined conditions of 

use87. For example, a patient must be in a fasting state prior to sampling 

blood, or a biomarker only demonstrates benefit in certain subtypes of 

a disease, like Ki67 measurement is only recommended in luminal-like 

breast cancer89. 
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Table 3: Classes of Biomarkers as defined by the FDA-NIH Biomarker Working Group87 

Class Definition Example 

Diagnostic To confirm the presence or 
absence of a disease/condition 

C-reactive protein (CRP) 
–a measure of 
inflammation, indication 
of infection.90  

Monitoring A biomarker is measured at 
defined intervals to assess the 
status of a condition/disease in 
response to treatment or 
exposure to an environmental 
agent  

HIV RNA – can be 
measured to assess the 
effectiveness of anti-HIV 
therapies.91 

Prognostic To predict the likelihood of a 
clinical event e.g. disease 
recurrence, progression or 
mortality 

Ki67 – a marker of cell 
proliferation commonly 
used in breast cancer to 
assess outcome89,92 

Predictive To evaluate if an individual has 
a greater response to a 
treatment or agent in 
comparison to others.  

HER2 – breast cancer 
patients with HER2 
protein overexpression 
may benefit from 
treatment with 
trastuzumab89,92 

Susceptibility 
/Risk 

A biomarker that indicates if an 
individual is more likely to 
develop a disease or condition, 
who does not yet have the 
disease or condition.  

BRCA – A mutation in the 
BRCA1/2 gene has been 
associated with 
increased risk of 
developing breast 
cancer.89 

Pharmacodynamic 
/Response 

To show that a biological 
response is present in an 
individual following exposure 
to a treatment or 
environmental agent. This class 
is often used in clinical trials. 

Blood pressure reduction 
– indication of a desired 
response to anti-
hypertension 
treatments93.  

Safety A biomarker that is measured 
before and after an individual 
has been exposed to a 
treatment or agent. This is 
usually to assess the toxicity of 
the exposure.  

Neutrophil count – to 
assess the cytotoxcitiy of 
chemotherapy in order 
to determine correct 
dosage or intervene.94,95 

 



Introduction 

34 

1.4.3 Cancer in Norway 

The Cancer Registry of Norway has systematically collated information 

on cancer occurrence in the Norwegian population since 195396. The 

Norwegian population has since grown by 64%, with 5 488 984 

inhabitants recorded as of 1 January 202396. Furthermore, the 

population is aging, with 13% of the population in 2022 over 70 years 

of age and predicted to rise to 22% in 206096. Most cancers in Norway 

are diagnosed in persons over 50 years of age (90% for males, 86% for 

females) and 55% (49%) of new cancers are diagnosed in males over 70 

(females over 70)96. An aging population is not only associated with an 

increased incidence and risk of cancer but is also set to impact 

healthcare in other ways. This includes increases in cost of treatment 

and long-term management, shortage of qualified workers and an 

increasing dependency ratio. Therefore, prevention, early detection 

and targeted therapies are key in the fight against cancer, particularly 

in the face of an aging population.  

In 2022, 38 265 new cases of cancer, in 37 277 individuals, were 

recorded in Norway96. The four most common forms of cancer were: 

prostate, female breast, lung and colon cancer (Figure 15)96. Incidence 

rates for most forms of cancer have increased, with the exception of 

stomach cancer and, until recently, cervical cancer96. The cumulative 

risk for prostate cancer in males (16.1%) and breast cancer in females 

(10.7%) is highest of all cancer types96. One in ten Norwegian females is 

expected to be diagnosed with breast cancer before their 80th birthday 

and four in ten Norwegians are expected to be diagnosed with a cancer 

before the age of 8096. 
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Figure 15: Cancer in Norway. The most frequent types of cancer by age and sex, 2018-
2022 (all ages)96. Reproduced with permission from the Cancer Registry in Norway. 

1.5 Breast Cancer 

1.5.1 Epidemiology 

In 2020, the GLOBOCAN global estimate for the number of new cases of 

female breast cancer was 2 261 41997. This was the highest of all cancer 

types recorded97. It is also the leading cause of cancer death in women 

and the fifth leading cause of cancer deaths when disregarding sex, with 

a reported 684 996 cancer deaths in 202097. The highest incidence rates 

have been observed in developed countries such as Belgium and 

Australia97. However, mortality rates are higher in developing countries 

in comparison to developed (15.0 vs. 12.8 per 100,000, respectively)97. 

Contrast in incidence rates reflect differences in reproductive trends 

and lifestyles factors e.g. fewer number of children, advanced maternal 

age at first birth and excess body weight are more commonly observed 

in developed countries than developing97. The difference in mortality 

rates, may be attributable to diagnosis of breast cancer at a later stage 

in developing countries perhaps due to more limited access to 

healthcare. Several risk factors for breast cancer are reported (Table 4). 
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Table 4: Established risk factors for breast cancer. 

Associated risk factors 

Lack of exercise98 

Obesity99  

Alcohol consumption100 

Smoking100 

Lower parity101 

Reduced length of lactation101 

Late age for first birth102 

Early menarche103 

Late menopause103 

Family history of breast cancer104 

BRCA 1/2 mutations105 

 

In Norway, 4 247 new cases were reported in 2022, and breast cancer 

was the third leading cause of cancer-related deaths in women96. 

Although, 5-year survival rates have increased in recent decades (89.3% 

in 2009-2013, 90.7% in 2014-2018), the incidence is still rising96,106. 

1.5.2 Anatomy of the breast 

The breast of an adult woman is primarily composed of glandular tissue, 

fibrous connective tissue and fatty tissue107 (Figure 16). The connective 

tissue also includes supportive ligaments that keep the breast tissue in 

place through connections between the skin and chest wall. Although 

the breast itself does not contain any muscle, the pectoral muscle lies 

against the chest wall and beneath both breasts providing support107. 

The fatty tissue fills the space between the connective tissue and 

glandular tissue and is the main determinant of breast size107. The 

glandular tissue refers to the glands, called lobes, embedded in the fatty 

and fibrous tissue. Each breast contains between 15 and 20 lobes, each 

of which comprises many smaller lobules which are the milk producing 

centres108. Lobules are arranged in clusters. Connecting the lobes to the 
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nipple are ducts, thin tubes that carry milk to small openings in the 

nipple of nursing mothers108. The breast tissue is sensitive to three 

major hormones: oestrogen, progesterone and prolactin108.  

 

Figure 16: Breast anatomy. Anatomy of a normal breast in an adult woman. Created 
with BioRender.com. 

1.5.3 A Brief History of Breast Cancer 

On a poorly copied papyrus, dating from 2625BC, Ancient Egypt, the 

physician Imhotep describes a patient with bulging masses of the 

breast2,79. Designated case number 45, it was the only case of which no 

treatment or therapy was prescribed2,79. Accepted as one of the first 

clinical descriptions of breast cancer, over time its treatment would 

expand to include primitive therapies and brutal surgeries, up until 

today’s modern precision medicine79,109.  

In the 1890’s, in the male-dominated medical field, the breast was 

viewed by many physicians as “one of the most dispensable parts of the 

body” and easily disposed of2,79. William Halsted (1852-1922), an 
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American surgeon, was a pioneer of radical surgery. He believed that 

breast cancer would arise in a small cluster and spread outwards in a 

radial fashion, thus he conjectured that not only removal of the primary 

tumour, but the surrounding tissue and pectoralis major muscle could 

completely cure the patient2,79. Halsted reported a recurrence rate of 

6%, a great improvement compared to other surgeries of the time 

which reported more than 9 times this number110,111. However, these 

surgeries would leave women traumatised and disfigured, resulting in 

fewer women seeking treatment early out of fear112. Furthermore, 

more than half of Halsted’s patients succumbed to the disease within 

three years post-surgery2. Even so, this method would go relatively 

unquestioned as the standard treatment of breast cancer for nearly 50 

years2,79.  

“Standardization  must not, however, be allowed to create a fixed 

belief that no further improvement is possible and that any suggested 

change is necessarily to be regarded with disapproval”112 – Geoffrey 

Keynes, 1937 

In 1937, English surgeon Geoffrey Keynes (1887-1982), expressed his 

doubt on the radical mastectomy112. Keynes trialled and advocated that 

some patients would benefit more from treatment with irradiation, 

whilst others benefit from a combination of conservative surgery and 

irradiation112. His results were comparable to the radical method 

(three-year survival rates: 83.5%, irradiation;  79.2% radical 

mastectomy)109,112. Keynes’ method came with obvious advantages: if 

patients could receive the same results and be spared from 

disfigurement and risk of operative mortality, would this not be an 

avenue worth pursuing?112. Unfortunately, the reception of his voice of 

caution was met with disbelief and he was regarded as an eccentric109. 

The concept of categorising patients was popularised in the early 

1900’s. Boston surgeon, Robert B. Greenough (1871-1937) and German 
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physician Steinthal (dates unknown), would come to categorise breast 

tumours into three groups109. Greenough assigned classes based on 

microscopic examinations, whilst Steinthal assigned stages on the basis 

of invasiveness and involvement of lymph nodes109. Steinthal advocated 

that stage III tumours should not be operated on. Staging of breast 

tumours would become popularised in Germany and Scandinavia, but 

was not commonplace in the USA before the 1950’s109. Today, staging 

and grading of breast tumours remains a prominent feature of breast 

cancer diagnosis. 

Throughout the 20th century the rate of discovery would influence the 

way breast cancer was treated. Preceding the fall of radical surgery in 

1981, the era of drug discovery brought about a new approach to 

treating cancer. The discovery of oestrogen and its receptor (ER) would 

eventually lead to the separation of breast tumours that do or do not 

express ER2,113-115. The discovery that tamoxifen, originally developed as 

a form of birth control, was a potent modulator of oestrogen, 

demonstrated the first use of a chemopreventative drug in cancer 

treatment116. Patients with ER+ breast tumours treated with tamoxifen 

reduced relapse rates by almost 50%2. 

The diagnosis and treatment of breast cancer in the 20th century was a 

period of heated debates, the collapse of “an entire culture of surgery”2 

and molecular and genetic discovery. Today, breast cancer may be 

treated with surgery, chemotherapy, hormone therapy, targeted HER2 

therapy, radiation, immunotherapy, or combinations of the 

aforementioned. History has paved the way to the treatments in use 

today, but it has also done so for the methods in which to guide these 

treatments, all derived from the painstaking labours of researchers 

before us. Perhaps, in turn, we too will one day be humbled by the 

inevitable future of discovery. 
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1.5.4 Clinicopathological Features of Invasive Breast 

Cancer 

Clinicopathological features are manifestations and symptoms directly 

observable by a physician through laboratory examination117. 

Traditionally breast cancer is grouped according to these features which 

will influence the way a patient is diagnosed and treated. For breast 

cancer, clinicopathological features include but are not limited to: 

• Tumour size 

• Lymph node status 

• Morphological subtype 

• Histological grade 

• Hormone receptor status 

• HER2 status 

• Proliferation status 

• Molecular profile 

In Norway, these features, in addition to age, will indicate response and 

the type of adjuvant systemic treatment a patient will receive118. The 

focus of this thesis is breast cancer in women. 

1.5.4.1 TNM Classification 

The TNM classification is an anatomic classification used in breast 

cancer119. It consists of the prognostic factors: tumour size (T), regional 

nodal involvement (N), and distant metastasis (M) to describe the 

extent of disease and to group patients into stages with comparable 

outcomes119. The tumour size (T) may describe not only the size of the 

tumour but how invasive it is. Regional nodal involvement (N) indicates 

if cancer is present in the lymph nodes. The presence or absence of 
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distant metastasis (M) is also indicated. The TNM system is outlined in 

the WHO19 Breast Tumours Guidelines89. 

All three factors are strong prognostic indicators. Increasing tumour size 

is associated with decreasing survival120-125. In a node negative cohort, 

patients with tumours <1cm were observed to have a higher 10-year 

recurrence free survival (82%) than patients with tumours between 2 

and 5cm (66%)126. This was also apparent for overall survival (79% vs. 

66%, respectively)126. Projected relapse survival rates over a 20-year 

period after initial treatment were reported by Rosen and 

Groshen124,125 (Table 5). Furthermore, although tumour size is 

independently prognostic, it is also correlated with lymph node 

involvement89,120,127. Data from the SEER programme in the United 

States, indicated that patients with tumour diameters ≥5cm with lymph 

node involvement (LN+) had a survival rate from 45.5% compared to 

96.3% for patients with tumour diameters <2cm and with no lymph 

node involvement (LN-)127. Lymph node involvement is also 

independently prognostic, the higher the number of positive nodes, the 

worse the prognosis128-131. Presence of distant metastases is an 

indication of the primary tumour’s ability to disseminate, survive, and 

grow in other regions of the body. As for all cancers, presence of distant 

metastasis is associated with poor survival outcomes.  

Table 5: Projected relapse survival rates according to tumour size, over a 20-year 
period following initial treatment, as reported by Rosen and Groshen (1990)124,125. 

Tumour size Projected relapse survival rate 

<1cm 88% 

1.1 – 1.3cm 73% 

1.4 – 1.6cm 65% 

1.7 – 2.2cm 59% 
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1.5.4.2 Morphological subtype 

Breast cancer is categorised into different types according to 

clinicopathological features. Each type has distinct morphologies and 

clinical implications132. Approximately 70-80% of all invasive breast 

cancer is of the type invasive carcinoma of no special type also referred 

to as invasive carcinoma NST or invasive ductal carcinoma118. Other 

specialised types are classified if more than 90% of the morphology 

correspond to, for example, lobular, mucinous, tubular or cribiform89. If 

50-90% of the tumour displays specialised morphology then the tumour 

will be classified as mixed non-specific and the specific type118. 

Approximately 5-20% of all invasive breast cancer is lobular, and the 

remaining specialised types account for between 1-2% each89,118. 

1.5.4.3 Histological Grade 

Histological grading of breast tumours for prognostic stratification of 

patients is widely performed using the Nottingham Grade. The 

Nottingham Grade was modified from the Scarff-Bloom-Richardson 

grading system, which can be traced back to the principles of 

Greenough in 1925133,134. The Nottingham Grade is composed of three 

features: tubular formation, nuclear pleomorphism and mitotic count 

(Table 6). These features describe the degree of tumour differentiation. 

Tubular formation refers to the percentage area within the tumour that 

display tube-shaped structures, whilst nuclear pleomorphism refers to 

the degree of irregularity of nuclear outlines and number and size of 

nucleoli89. Mitotic count is an indicator of the level of proliferation in 

the tumour as result of assessing the number of actively dividing cells 

(mitoses). Each feature is scored, and the score combined determines 

the grade of the tumour (Table 6). Patients with a grade 1 tumour have 

a higher 10-year survival rate (85%) in comparison to patients with a 

grade 3 tumour (45%)124. 
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Table 6: Nottingham Grade Scoring System89 

Feature Score Description 

Tubular formation 1 >75% 

 2 10-75% 

 3 <10% 

Nuclear pleomorphism 1 - Nuclei similar in size and shape to benign 
epithelial cells. 
- Nucleoli are not visible or inconspicuous 

 2 - Nuclei are larger than benign epithelial cells 
(1.5-2x). 
- Nucleoli are small or inconspicuous 

 3 - Nuclei are larger and vary in size and shape 
(>2x). 
- Nucleoli are prominent. 

Mitotic Count  1-3 See Appendix 2 –  

Grade Score Description 

Nottingham Grade 1 3-5 Well differentiated tumour 

Nottingham Grade 2 6-7 Moderately differentiated tumour 

Nottingham Grade 3 8-9 Poorly differentiated tumour 

 

The Nottingham Grade has been combined with lymph node status and 

tumour size to form the Nottingham Prognostic Index (NPI) which is 

routinely used in the United Kingdom135. The NPI is calculated using the 

following formula136: 

𝑁𝑃𝐼 = (0.2 × 𝑇𝑆) + 𝑁 + 𝐺 
TS: tumour size, the maximum diameter of the tumour (cm) 

N: number of lymph nodes involved (0 nodes = 1, 1-3 nodes = 2, >4 = 3) 

G: grade of the tumour (grade 1= 1, grade 2 = 2, grade 3 = 3) 

The NPI identified three prognostic groups with decreasing 15-year 

survival rates: good prognosis (80%), moderate prognosis (42%) and 

poor prognosis (13%), as reported in a cohort of 1629 patients with 

operable breast cancer <70 years of age136. Similarly, a study on a 

Danish cohort (n= 4,791 patients) reported 10-year survival rates as 
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79%, 56%, and 25% for good, moderate and poor prognosis groups, 

respectively137.  

The Nottingham Breast Pathology Research Group, who developed the 

NPI, is also working on developing and evaluating two updated versions 

of this index. These are the NPI+, which factors in molecular subtypes, 

and the Nottingham Px (NPx) which aims to be more cost-effective and 

consists of the tumour size, grade, progesterone receptor status, and 

Ki67 score138,139.  

1.5.4.4 Hormones and their Receptors  

Oestrogen 

Prior to its purification in 1929, by Edward Doisy, oestrogen had already 

been linked to breast cancer in 18962,140. Scottish surgeon, George 

Beatson, observed that when he removed the ovaries of three breast 

cancer patients, the tumours shrank in response79. However, when he 

tried to replicate these experiments, not all the tumours responded2. In 

an interview with Elwood Jensen (1920-2012), credited for the 

discovery of the oestrogen receptor (ER), he explained that a common 

treatment of breast cancer in the 1950’s was the removal of the ovaries 

(source of oestrogen in pre-menopausal women) or adrenal glands 

(source of oestrogen in menopausal women)109,114. However, only 

around 1/3 of patients responded to this therapy, and clinicians would 

have to wait around 8 months to see if they did114,141,142. During this 

time, the tumours of the patients that did not respond to the surgery, 

would continue to grow114. Yet, if the clinicians could identify which 

patients would respond and which would not, non-responders could 

receive chemotherapy early, and responders could potentially avoid 

chemotherapy114,143. This observation is used in precision treatment 

strategies today. 
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The majority of all invasive breast cancers are ER positive (ER+)89. The 

sex steroid hormone oestrogen exerts its action by binding to it’s 

receptors (ERα and ERβ)144. This activates a downstream signalling 

pathway that controls gene expression of a large number of target 

genes144,145. These targets play a role in the processes of cell 

proliferation, differentiation, and apoptosis146. Oestrogen is primarily 

synthesised in the ovaries but is also produced by the adrenal glands 

and adipose tissue144. Oestrogen refers to four female hormones 

estrone, estradiol, estriol and estretrol. Estradiol is the predominant 

oestrogen circulating in humans, whilst the others are synthesised 

during specific conditions such as pregnancy (estretrol, estriol) and 

menopause (estrone)144.  

 

Figure 17: Stains used in breast cancer histopathology. Haematoxylin and eosin is the 
gold standard stain for visualisation of tissue morphology (yellow circles highlight 
mitotic figures). Immunohistochemical stains allow for the detection of specific 
proteins such as ER, PR, HER2 and Ki67. 
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Progesterone 

The sex steroid hormone progesterone was first isolated by William M. 

Allen and George W. Corner in 1929 and eventually named in 

1935147,148. Like oestrogen, progesterone is derived from cholesterol, 

but is also an important upstream intermediate in the biosynthesis of 

estradiol and other hormones148. Purification of the progesterone 

receptor (PR) occurred in the early 1970’s, and its synthesis is regulated 

by none other than oestrogen149. In addition, PR is a dominant 

modulator of ER activity149. PR expression is an independent prognostic 

variable in breast cancer, where absence of expression is significantly 

associated with poorer overall and disease-free survival, in both ER+ 

and ER- disease150. 

Histopathological Examination of ER and PR 

ER+ status is determined by examining a tissue section stained using IHC 

for detection of ER (Figure 17). In Norway, if ≥1% of tumour nuclei are 

stained, the tumour is considered ER+, and if <1% it is considered ER-
118. For PR status the tissue is stained for detection of PR, and if ≥10% of 

tumour nuclei are stained, the tumour is considered PR+, if <10% it is 

considered PR-118 (Figure 17). Additionally it is reported if ER or PR is 

>50% or an estimated percentage is reported118. 

Effect of ER and PR Status on Treatment Decisions 

Presence of ER and PR indicates the likelihood of response of breast 

cancer to endocrine therapy. ER+ tumours are receptive to anti-

oestrogen therapies* and these are usually prescribed for 5-10 years 

post-diagnosis118,151. Adjuvant treatment with tamoxifen has 

demonstrated improved survival over a 5 year period, and reduced 

 
*Some patients will inevitably display intrinsic or acquired resistance. 



Introduction 

47 

recurrence rates over a 10 year period152. Tamoxifen is primarily used 

in pre-menopausal women to block the action of ER, whilst aromatase 

inhibitors are used in post-menopausal women or in combination with 

tamoxifen151. Aromatase inhibitors alone is not recommended for pre-

menopausal women as the ovaries in these women are highly active 

and produce such a quantity of oestrogen that aromatase inhibitors are 

inefficient at blocking its production151. Tamoxifen response has a high 

degree of variability between patients, due to differences in 

metabolism153. Tamoxifen is a prodrug, whereby its metabolites are the 

causative factors153. Measurement of these metabolites has suggested 

prognostic and monitoring potential, which can be used to adjust 

dosage according to a patients ability to metabolise tamoxifen154. 

Whilst tamoxifen has an antagonistic effect in the breast by competitive 

inhibition of oestrogen binding to ER, it has a agonistic effect on ER in 

the uterus in postmenopausal women155,156. The biological mechanism 

behind the contradictory roles of tamoxifen in the breast and 

endometrium, is not yet fully understood. It has been theorised that it 

may be due to recruitment of different co-activators and co-repressors 

in these tissues, compensatory expression of ERα isoforms, or 

activation of an orphan G-protein couple receptor (GPR30) in the 

endometrium157.  

Although ER status is the primary predictor for endocrine therapy 

decisions, PR status is also indicative for therapy response118. The role 

of PR in breast cancer is primarily as a prognostic and predictive marker 

of response to endocrine therapy by predicting the existence of 

functional ER158,159. ER+ tumours that display a loss of PR expression 

during tamoxifen therapy have a worse prognosis149,160,161 

PR is expressed to varying degrees in ER+ breast cancers. While ER+/PR+ 

tumours are more common than ER+/PR-, ER-/PR+ tumours are 
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rare162,163. Several studies have demonstrated differences in survival in 

tumours with double, single, or null receptor positivity159,164-168. 

Tumours positive for both ER and PR have a greater response to 

tamoxifen therapy, and a better overall and relapse-free survival than 

single or null receptor positive tumours159,164,166,167. One study reported 

that ER-/PR+ tumours benefited from tamoxifen therapy compared to 

no tamoxifen168. Two studies report decreasing breast cancer specific 

survival from double, to single, to null receptor positive tumours165,169. 

Also, single receptor positivity has been demonstrated to be associated 

with other clinicopathologic markers. For example, ER-/PR+ tumours 

have been associated with larger tumour size166. 

1.5.4.5 HER2 

HER2, also referred to as ERBB2, is a receptor tyrosine-protein kinase, 

encoded by the ERBB2 gene170. It is a cytoplasmic membrane-anchored 

protein. ERBB2 does not directly bind any known ligands, but it can be 

phosphorylated by another receptor, by forming a heterodimer with its 

preferred partner, another ERBB receptor, such as EGFR 

(ERBB1/HER1)171. When activated, it can induce downstream signalling 

pathways such as PI3K/AKT, MAPK, PLYγ/PKC and JAK/STAT170. These 

pathways regulate genes that play a role in cell survival, proliferation, 

differentiation, motility, apoptosis, invasion, migration, adhesion and 

angiogenesis, all of which are key in carcinogenesis170. 

HER2 in Breast Cancer 

HER2 overexpression (HER2+) is commonly observed and accounts for 

approximately 10-25% of all invasive breast cancer89,118,172. 

Furthermore, it is associated with more aggressive tumours and poorer 

prognosis89,173-175. In 1998, trastuzumab (Herceptin®), a recombinant 

monoclonal antibody targeting HER2, was approved by the FDA for the 
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treatment of women with HER2+, metastatic breast cancer176. 

Treatment with trastuzumab has demonstrated delayed disease 

progression, longer survival and a reduction in the risk of death177. In 

the early 2000’s clinical trials reported benefits for adjuvant treatment 

with trastuzumab in HER2+ patients178-180. Other anti-HER2 therapies 

also report similar results181-183. Recently an intermediate category to 

HER2+ and HER2-, was introduced: HER2-low. Previously these patients 

were categorised as HER2-, however, recent evidence suggests that 

patients with an IHC score 1+, or 2+ with negative ISH (see next 

paragraph) may benefit from treatment with trastuzumab184. 

Treatment of this patient group was recently approved in the USA and 

the EU185,186.   

Histopathological Examination of HER2 

HER2 status should be examined in all newly diagnosed and metastatic 

breast cancers. HER2 status is determined by IHC and/or in situ 

hybridisation (ISH) procedures such as fluorescent ISH (FISH). HER2 is 

first assessed by IHC (Figure 17). The breast tissue section is stained for 

the detection of the HER2 protein. The membrane staining is scored as 

0 (negative: no/incomplete membrane staining in <10% of invasive 

tumour cells), 1+ (negative: faint/weak membrane staining in >10% of 

invasive tumour cells), 2+ (borderline: weak to moderate complete 

membrane staining in >10% of tumour cells), or 3+ (positive: strong 

complete membrane staining in >10% of invasive tumour cells), which 

reflects the completeness and intensity of the stain89,187. Tumours 

scored as 2+ and 3+ are recommended for verification of HER2 status 

by in situ hybridisation (ISH)118. While the IHC method assesses HER2 

status at the protein level, ISH measures HER2 overexpression at the 

gene level. Further details on ISH scoring criteria are outlined in the 

ASCO®/CAP 2019 guidelines188. 



Introduction 

50 

1.5.4.6 Proliferation 

Proliferation is one of the most fundamental biological processes in 

normal mammalian cells. Yet, sustaining proliferation is also one of the 

hallmarks of cancer (Figure 13). Cellular proliferation is the process of 

replicating DNA within a cell followed by cell division189. The cell cycle 

describes a series of tightly regulated events which include protein 

phosphorylation cascades that initiate movement through the cycle and 

checkpoints that monitor completion of critical events that can delay 

progression189. Progression is heavily regulated by cyclins and cyclin-

dependent kinases (CDKs)190, where the cyclins are the activators and 

CDKs are the catalytic units190. One of the major inhibitors of cell cycle 

progression is detection of DNA damage. 

The cell cycle is separated into five phases: G0, G1, S, G2 and M (Figure 

18A). The first phase, G0, is the resting phase of the cell also known as 

quiescence. Cells in G0 can be stimulated to enter the cell cycle at G1 to 

begin the process of cellular proliferation. The G1 phase is characterised 

as period of cell growth when the cell prepares for DNA synthesis. At 

the end of G1 the cell will commit to traversing the entire cell cycle189. 

DNA is replicated during the S phase, following by another period of 

growth in G2 when the cell prepares to enter the M phase191. The last 

phase, M phase, is when the cell undergoes mitosis, active cell division 

(Figure 18B). During mitosis, the chromosomes will condense into two 

chromatids held together at the kinetochore in prophase, connect to 

spindle microtubules and align at the equator of the cell in metaphase, 

separate and be pulled to opposite poles in anaphase, before eventual 

separation and unravelling in telophase191 (Figure 18B). Finally, the cell 

cleaves into two identical daughter cells by a process termed 

cytokinesis191.  
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Figure 18: A) The Cell Cycle. B) Interphase and the stages of mitosis – M phase. Created 
with BioRender.com. 

As previously described, cancer is the result of uncontrolled growth and 

proliferation. To reach this state, cancer cells develop mechanisms by 

which they escape the tightly controlled regulation of the cell cycle. 

These mechanisms include gain-of-function mutations of oncogenes 

that promote cell proliferation or loss-of-function mutations in tumour-

suppressor genes which inhibit checkpoint regulation189. For example, 

the tumour-suppressor gene for p53 is commonly mutated in cancer85. 

The p53 protein is activated in response to checkpoints detecting DNA 

damage, but due to a loss-of-function mutation in its gene, it is unable 

to halt progression in the cell cycle189. This is a way in which the cancer 

cell can continue to proliferate but also increase the presence of 

potentially oncogenic mutations.  

In breast cancer, measurement of proliferation has prognostic and 

predictive value192-194. Histopathological examination of proliferation is 

performed by counting mitotic figures and assessing Ki67 positivity in 

IHC stained tissue sections.  
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Mitosis in Breast Cancer 

Mitotic count is an important component of histological grading. The 

quantification of mitotic activity in breast cancer is also independently 

prognostic195,196 and often reported separately. The mitotic count is 

generated by counting the number of mitotic figures in a predefined 

area and usually reported as the number of mitoses per mm2. The 

mitotic count can be performed directly on HE stained tissue sections 

(Figure 17). Further details regarding quantification of mitoses can be 

found in section 3.4.1.  

Ki67 in Breast Cancer 

Assessment of proliferation using IHC allows for a clearer distinction 

between normal, negatively stained cells and cells positively stained for 

a proliferation marker (Figure 17). The protein Ki67, encoded by the 

MKI67 gene, is expressed during all phases of the cell cycle, except for 

G0 (Figure 18). It has documented prognostic, predictive, and 

monitoring value196-202. Ki67 is primarily assessed in hormone receptor 

positive (HR+), HER2- breast cancer, and can be used as a surrogate 

marker for distinguishing between the luminal subtypes. The most 

recent St. Gallen (2021) consensus recommend that tumours (ER+, 

HER2-) with a Ki67 score <5% are not recommended for adjuvant 

chemotherapy, whilst patients with a Ki67 score ≥30% are 

recommended for adjuvant chemotherapy203. Despite its value, it is a 

controversial marker due to its lack of standardisation and 

consequently poor intra- and inter-variability118,203-206. Although efforts 

have been made towards standardisation of quantification 

methodologies and cut-offs for assigning low and high proliferation, 

different methods are still used. For example, Norway still advocates 

the use of hotspot score, whilst Sweden now uses the global score118,207.  
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1.5.4.7 Molecular Profiling 

At the turn of the millennium, the molecular profiles of breast cancer 

were being described208-211. This led to the classification of five intrinsic 

subtypes (Figure 19). These pioneer studies emphasised the genomic 

diversity of these tumours and highlighted how gene expression 

patterns may be used in precision medicine. Numerous commercial 

gene panels are available including Oncotype DX®, MammaPrint®, 

Prosigna® (PAM50), and EndoPredict®. Each panel, as a whole, is unique 

though there is some slight overlap in gene coverage212. Also, several 

biological and molecular pathways are share and proliferation and HR-

related genes are frequently represented212. The multi-gene signature 

panels have demonstrated potential for several clinical applications, in 

addition to molecular subtyping, such as predicting treatment 

response, prognosis and staging210,213-216. 

 

Figure 19: The PAM50 molecular and IHC (surrogate) subtypes of invasive breast 
cancer. Created with BioRender.com. 
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A comparative study assessing the prognostic value of 

clinicopathological features and gene expression models, revealed that 

the latter was superior217. Despite a correlation between the two, 

clinicopathological features are not able to fully recapitulate the 

intrinsic subtypes199,216,218. The use of molecular signatures over 

traditional markers has its own advantages, such as increased 

objectivity and improved prognostic value, and disadvantages, such as 

increased costs, and increased processing times. 

At the St. Gallen 2021 consensus discussion, 61% of the panel believed 

that Ki67 should still be tested regardless of multigene signature203. 

Several studies have demonstrated a correlation between Prosigna®, 

EndoPredict® and Oncotype DX® and Ki67 score219-224. As proliferation 

is a major driver of the molecular profile, this observation is 

unsurprising. Yet, despite the advantages of these panels, Ki67 is still a 

relevant and cheaper alternative for prognostic assessment in breast 

cancer221,225. Particularly when molecular panels are unavailable or 

considered too costly. Ki67 has also been suggested as a screening tool 

for recommending molecular testing in cases Ki67>5% and <30%226. 

1.5.5 AI in Breast Cancer 

“[Cancer] has ever been the reproach of the medical art, and the most 

learned and experienced of the profession have employed their time 

and attention to but little purpose, towards perfecting its cure”227 

Robert White, 1784 

Although breast cancer treatment has vastly improved in recent 

decades, the consequence has been that diagnosis and treatment 

decision pipelines have become more complex. Although oncologists 

and pathologists alike are experienced in these decisions, the influx of 

new data is constantly changing the way cancer is viewed and treated. 

Therefore, the use of AI as a decision-support tool may help lift this 
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burden and allow for the allocation of time on the more complex 

aspects of diagnosis. It may also expand our knowledge beyond what 

we know today. 

Applications for AI in breast cancer include detection/screening, 

classification and prediction, and cover a range of imaging modalities 

such as mammograms, ultrasound, magnetic resonance imaging (MRI), 

and histopathological images228. 

1.5.5.1 Mitosis Detection 

Tools for AI-assisted histological grading of breast cancer have been 

developed229-231. AI-assisted detection of mitoses has been a popular 

task in the field and has inspired international challenges such as the 

Mitosis Domain  Generalisation (MIDOG) Challenge232,233, the 

Assessment of Mitosis Detection Algorithms 2013 (AMIDA13) 

Challenge234 and TUPAC16 Challenge235. Several studies have 

developed tools, majority CNNs, for automated detection of mitotic 

cells in breast cancer236-243. The utilisation of AI support tools has been 

shown to enhance accuracy, sensitivity, and specificity compared to 

settings without it244,245. Furthermore, overall time-saving of 27.8%, in 

one study, was reported when AI support was used244. Implementation 

of a locally developed AI algorithm for mitotic figure detection, 

integrated with the local PACS, is reported by the University Medical 

Centre Utrecht246.  

1.5.5.2 Lymph Node Metastasis Detection 

Detection of small clusters of metastatic breast cancer cells in lymph 

tissue is challenging. AI-assisted detection of micrometastases in lymph 

nodes may assist a pathologist for more efficient identification and 

spare IHC. One study reported higher accuracy for pathologists using AI-

assistance tools than the algorithm or pathologist alone247. An AI-
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assistance tool for this purpose has also reported notable time-saving 

benefits247,248. Commercial algorithms for detection of lymph node 

breast micrometastases are available. 

1.5.5.3 Biomarker quantification  

Many DIA platforms/applications offer CE-IVD/FDA approved 

quantitative biomarker solutions (ER, PR, HER2, Ki67, P53). Each differs 

in design and methodology. Open-source, research use only, solutions 

are also available, such as QuPath249. Automated scoring of ER by DIA 

reports excellent agreement with pathologists and may eliminate the 

shortcomings of a subjective evaluation250. Some studies have trained 

deep learning models to predict ER or PR status in HE (haematoxylin and 

eosin) images251,252 

Several studies have demonstrated Ki67 quantification using DIA as 

being equal or superior to manual counting regarding reproducibility 

and accuracy198,206,253-256. Many of these studies have compared 

automated counts with manual counts and found good to excellent 

agreement. One study observed increased inter-observer agreement, 

reduced turnaround time, and decreased Ki67 error when AI was 

introduced in comparison to no AI256. Those studies that have 

investigated its prognostic potential using survival/recurrence analysis 

demonstrate improved prognostic value for DIA methods in comparison 

to manual, specifically in the HR+ subgroup257,258. However, no fixed 

cut-off has yet been recommended for DIAs, and each DIA method 

differs – some use hotspot quantification, some global, some average. 

Although reported reproducibility and prognostic value may be 

sufficient, further investigation for validation and standardization 

regarding cut-off for low and high-Ki67 is required. 
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Scoring of HER2-IHC has been a target of DIA algorithms. With HER2-

FISH as the ground truth, one study observed that automated DIA of 

HER-IHC had high specificity (93.2%) and sensitivity (96.4%)259. The 

study reported that DIA would have resulted in a reduction in FISH in 

the cohort, which would have resulted in time- and cost-savings259. 

Algorithms for quantitation of tumour infiltrating lymphocytes (a 

prognostic and predictive biomarker) in TNBC have also been 

reported260-264. 

1.6 Endometrial Carcinogenesis 

1.6.1 The Female Reproductive System 

 

Figure 20: The Female Reproductive System. Created with BioRender.com 

The female reproductive system is composed of the uterus, ovaries, 

fallopian tubes, vagina, accessory glands, and external genital organs265 

(Figure 20). The primary function of this system is to regulate processes 

involved in reproduction in females. These processes include the 

production of female sex hormones, producing and sustaining eggs, and 

regulating a favourable environment for a growing foetus265.   
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The menstrual cycle (Figure 21), is the cyclic process by which the 

uterine lining is shed, in absence of egg fertilisation, and prepared, in 

anticipation of fertilisation. This process occurs in response to the 

interactions of hormones produced by the hypothalamus, pituitary 

gland, and ovaries266.  

 

Figure 21: The Menstrual Cycle. Created with BioRender.com 

Four hormones play an essential role in the regulation of the menstrual 

cycle: oestrogen, progesterone, follicle stimulating hormone (FSH) and 

luteinising hormone (LH). Oestrogen induces endometrial growth 

(proliferative phase) during the follicular phase, resulting in a thickening 

of the uterine lining, to prepare it for implantation of a blastocyst267. 

Peak oestrogen levels are reached prior to ovulation, and production 

continues during the luteal phase (Figure 21). Progesterone levels 

increase following ovulation, and stimulates the transition of the 

endometrium from a proliferative phase to the secretory phase268. FSH 
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regulates oestrogen synthesis and stimulates follicular development269. 

LH stimulates the release of the follicle from the ovary and peaks just 

prior to ovulation266. 

The endometrium is affected by varying concentrations of oestrogen 

and progesterone (Figure 21). ER is dominant in stromal and myometrial 

epithelial cells and PR in endometrial epithelial cells267. PR levels 

decrease in the late luteal phase alongside oestrogen when 

implantation does not occur. Whilst oestrogen induces proliferation of 

the endometrium, progesterone inhibits it267. 

As a result of oestrogen and progesterone action, morphological 

changes in the endometrium occur. These characteristic changes 

indicate the stage of the menstrual cycle the endometrium is currently 

in, for example proliferative (follicular phase) or secretory (luteal 

phase)266.  

1.6.2 Epidemiology 

Endometrial cancer, cancer of the corpus uteri, is the sixth most 

common malignancy in women worldwide97. In 2020, 417 367 new 

cases were diagnosed and 97 370 women succumbed to endometrial 

cancer worldwide97. Incidence of endometrial cancer has increased 

over recent decades, thought to be due to a rise in obesity and shifts in 

female reproductive patterns270,271.  

In Norway, 817 endometrial cancer cases were newly diagnosed in 

202296. Five-year relative survival (2018-2022) is 86.2%, markedly 

improved since 1970 which reported 70.7%96,106. Although incidence 

has been increasing since 1965, it has plateaued in the last 10-15 years 

(Figure 22). 
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Figure 22: Cancer of the corpus uteri. Trends in incidence, mortality and 5-year 
survival relative survival proportions for cancer of the corpus uteri in Norway96. The 
top line (brown) represents survival, the middle line (red) represents incidence, and 
the bottom line (pink) represents mortality. Figure reproduced with permission from 
the Cancer Registry in Norway. 

Risk factors for development of endometrial cancer are listed in Table 

7. Exposure to unopposed oestrogen stimulation is cited as one of the 

major causes of endometrial cancer development272-275.  The primary 

source of oestrogen in the body is the ovary and adrenal glands. 

Another source of oestrogen, primarily in post-menopausal women, is 

adipose tissue276. Various studies have demonstrated the association of 

obesity and weight gain with endometrial cancer risk277-280. A study by 

Stevens et al. (2014) reported that a high BMI at age 18, and weight gain 

in adulthood was strongly associated with the risk of endometrial 

cancer281. Administration of tamoxifen, prescribed in the treatment of 

HR+ breast cancer, has been associated with increased risk for 
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endometrial cancer282-284. Patients taking tamoxifen should be made 

aware of the symptoms of endometrial cancer whilst they are being 

treated275,285.  

Table 7: Risk factors for endometrial cancer 

Associated risk factors for endometrial cancer 

Increased age286 

Long-term, unopposed oestrogen stimulation272-274 

Early menarche, late menopause287 

Low parity287 

Obesity286,288 

Diabetes289,290 

PCOS291-293 

Lynch syndrome294 

Cowden syndrome295 

Tamoxifen treatment in breast cancer282-284 

Family history of endometrial, ovarian, breast, or colon cancer 

 

1.6.3 Endometrial Hyperplasia 

1.6.3.1 Definition 

Endometrial hyperplasia is characterised by the excessive proliferation 

of endometrial glands as a result of prolonged exposure to unopposed 

oestrogen stimulation296. It is described as a lesion with a greater gland-

to-stroma ratio in comparison to normal surrounding endometrium297. 

It usually precedes endometrial endometrioid carcinoma. 

1.6.3.2 Background 

In 1985, Kurman and colleagues published a paper on the long-term 

study of 170 patients with endometrial hyperplasia298. They classified 

endometrial hyperplasia into two categories: those that did not display 
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cytological atypia and those that did. Further subgrouping of these 

categories, by glandular complexity, resulted in four classifications: 

simple hyperplasia (SH), complex hyperplasia (CH), simple atypical 

hyperplasia (SAH) and complex atypical hyperplasia (CAH). The simple 

categories displayed less glandular crowding than the complex 

categories. Additionally, progression to carcinoma differed from 1% 

(SH), 3% (CH), 8% (SAH), to 29% (CAH). The trend observed was not 

statistically significant. In 1994, this classification was adopted by the 

World Health Organisation (WHO) guidelines for diagnosis of 

endometrial hyperplasia299. It would form the basis of the classification 

of endometrial hyperplasia and prognostic stratification for treatment 

decisions for nearly 20 years. 

The WHO94 scheme would unify the terminology and classification of 

endometrial hyperplasia in a time when previous terminology was 

confusing and a source of disagreement between experts299. However, 

the classification was still based on a visual assessment of 

morphological features of which cytological atypia is particularly poorly 

reproducible299-303. Furthermore, classification of four groups did not 

adequately reflect the treatment options: monitoring, progestin 

treatment or hysterectomy299. New classifications were proposed to 

improve the WHO94 scheme302,304. In 2003, the WHO recognised the 

EIN scheme proposed by the Endometrial Collaborative Group, fronted 

by George Mutter,304,305 and in 2014 this was adopted (WHO14)306. 

Improved reproducibility of diagnosis and clinical applicability has been 

reported following transition from a 4-tiered classification system to a 

two-tiered system307-310. The latest classification WHO20 is an updated 

version of the WHO14 scheme275. 
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1.6.3.3 The WHO20 Classification 

The WHO20 terminology classifies two diagnostic groups: 

1. Endometrial hyperplasia without atypia (EHwA) 

2. Endometrial atypical hyperplasia (EAH) or Endometrial 

Intraepithelial Neoplasia (EIN) 

Patients with endometrial hyperplasia may present with 

postmenopausal or irregular bleeding275. A histological sample is 

required for diagnosis, to assess morphological features of the 

endometrium. EHwA presents as a proliferation of glands of irregular 

size and is often lacking cytological atypia275. On the other hand, EAH 

presents as an increased gland to stroma ratio (glandular crowding) and 

cytological atypia, which is distinct from surrounding normal 

endometrium275. EHwA has a low risk of progression to endometrial 

cancer (1-5%) in comparison to EAH (8-40%) which also has a high-risk 

of concurrent carcinoma275,311-318.  

1.6.3.4 D-Score 

The D-score was developed in the 1980’s. Designed as a prognostic 

assistance tool, it utilised objective, morphometric measurements of 

morphological features to assign a risk of progression score (Table 8)319. 

There are three components to the D-score algorithm: the volume 

percentage stroma (VPS), outer surface density (OSD) and standard 

deviation of the shortest nuclear axis (SDS). This measures the 

architectural (VPS and OSD) and cytological (SDS) features of 

endometrial hyperplasia. Several studies discuss its prognostic value, 

and it has been validated in the USA, the Netherlands and Norway320-

327. D-score can be used to assist with the classification of non-EIN and 

EIN (Table 8)299,328. A meta-analysis by Raffone et al. (2019) reported 

that classification of endometrial hyperplasia by the EIN system in 
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conjunction with D-score better predicted the risk of cancer than the 

WHO systems329. Several studies report similar accuracy between the 

EIN classification and the WHO schemes although sensitivity and 

specificity may differ308,330-332.  

Table 8: Risk of progression and EIN classification prediction according to the D-score. 

Score Risk EIN prediction 

D-score ≥ 1 Low Benign hyperplasia 

D-score 0-1 Slightly higher EIN 

D-score <0 High  

 

1.6.3.5 Endometrial Hyperplasia in Norway 

There is no national registry for endometrial hyperplasia, in Norway. 

However, with more than 750 new cases of endometrial cancer 

reported each year, the Norwegian Department of Health, estimates 

that the number of cases diagnosed with endometrial hyperplasia is 

between 3,000 and 4,000 per year328. Classification of endometrial 

hyperplasia using the latest WHO scheme and D-score is recommended 

in Norway328. Patients considered low-risk, with a D-score ≥0 or EHwA 

diagnosis, are recommended for conservative treatment (progesterone 

treatment)328. Patients considered high-risk, with a D-score <0 or 

EAH/EIN diagnosis, are recommend for surgical treatment, where 

hysterectomy is the primary recommendation328. However, pre-

menopausal women wishing to conserve fertility may receive 

conservative treatment with regular monitoring328.   
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1.6.3.6 From Endometrial Hyperplasia to Cancer 

The relationship between endometrial hyperplasia and cancer was first 

recognised in 1932 by Howard Taylor333. Approximately 80% of 

endometrial cancers are preceded by endometrial hyperplasia298. It is 

believed that the pathogenesis of the two begins with oestrogen†. It is 

well-established that endometrial hyperplasia occurs in a background 

of unopposed oestrogen stimulation272-275,334. As discussed in section 

1.5.4.4, oestrogen is involved in regulating biological pathways related 

to cell proliferation, differentiation, and survival146. The term 

“unopposed” in conjunction with oestrogen stimulation refers to 

insufficient counterbalance by progesterone. Increased proliferation is 

observed during the follicular phase of the menstrual cycle, when 

progestin levels are low148 (Figure 21). As a result of unopposed 

stimulation, prolonged proliferation gives rise to disordered 

endometrium335. Over time, this disorder increases and tissue 

transitions into early-stage EHwA335 (Figure 23). Distinguishing 

disordered proliferative endometrium from EHwA is possible, as the 

former lacks a prominent increase in the overall ratio of glands to 

stroma335. Increased endometrial cancer risk is observed in women 

administered with exogenous oestrogens in the absence of 

progestins146,273. This observation is negated when progesterone is 

administered in combination274,336,337. One study suggested that 

unopposed oestrogen as a direct cause of endometrial carcinogenesis, 

is just as likely as progesterone deficiency336.  

 
† Endometrial cancer in this context refers to type I endometrioid cancer. 
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Figure 23: Endometrial carcinogenesis (simplified). Created with BioRender.com 

Whilst the average age of women diagnosed with EAH is 50-55 years, 

this is 5-10 years younger than for endometrial carcinoma, suggesting 

that progression of EAH to cancer may take several years275,307,323. In 

fact the average interval has been reported as 4 years, in the absence 

of coexisting cancer323. The emergence of EIN/EAH as localised 

monoclonal outgrowths of endometrial cells with altered cytology and 
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architecture is well-established275,326,338,339. Monoclonal growths 

acquire a growth advantage in comparison to normal surrounding 

tissue, that is polyclonal326. The emergence of mutationally active 

clones may eventually lead to an aggressive phenotype and lead to 

cancer (Figure 23). This emergence has been described as a separate 

event to oestrogenic stimulation, however, oestrogen may act as a 

positive selector of mutant cells335,340,341.  

1.6.4 Biomarkers in Endometrial Hyperplasia  

To combat the interobserver variability of visual assessment of 

endometrial hyperplasia, a “panel approach” may improve accuracy of 

diagnosis. This could include assessment of protein biomarkers by IHC, 

genetic profiling, or quantitative measurement of morphological 

features. Several biomarkers have been investigated for their promise 

as candidates for such a panel. The WHO20 recognises that MSI 

(microsatellite instability), PAX2 inactivation, PTEN, KRAS and CTNNB1 

(encodes β-catenin) mutation alterations are observed in EAH275 (Figure 

23). Alterations have also been reported in FGFR2, ARID1A, p53, and 

MYC296. No single gene alone has been sufficiently indicative of risk of 

progression, although assessment of mutational burden may have 

prognostic value296. 

1.6.4.1 PTEN 

The tumour suppressor gene PTEN (phosphatase and tensin 

homologue) encodes a phosphatase protein of the same name. In 1997, 

it was mapped to chromosome 10 (10q23) and identified as frequently 

disrupted in multiple sporadic tumour types342,343. PTEN is an inhibitor 

of the PI3K/AKT signalling pathway344. Loss of PTEN function results in 

upregulation of this signalling pathway and promotion of cell survival 

and proliferation345. Elevated PI3K/AKT signalling is associated with 
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carcinogenesis346. PTEN expression fluctuates during the menstrual 

cycle347. Literature suggests that PTEN may be regulated by steroid 

hormones and microRNAs in the endometrium348. Oestrogen has been 

demonstrated to downregulate PTEN through increased 

phosphorylation, whilst progesterone upregulates PTEN by decreasing 

its phosphorylation348-350. Furthermore, PTEN germline mutations were 

discovered in Cowden disease, a disease conferring increased risk of 

cancer such as endometrial cancer351.  

Inactivation of PTEN has been described as an early event in 

endometrial carcinogenesis352-355 (Figure 23). One study reported that 

PTEN mutations were more common in EAH progression cases than 

non-progression cases (60% vs. 35%)296. Furthermore, progressive PTEN 

protein loss is associated with cancer progression and concurrent 

cancer334,355-358. However, it is not considered a good independent 

predictor of progression or response to conservative 

treatment334,355,359-361. Approximately equal levels of PTEN-normal and 

PTEN-loss has been observed in women with proliferative endometrium 

and endometrial hyperplasia358,359. Additionally, presence of 

inactivated PTEN glands are reported in histologically normal 

endometrium362. Thus, PTEN may be recommended as an informative 

biomarker, but its role as an independent predictive and prognostic 

marker remains controversial. 

1.6.4.2 PAX2 

The PAX2 gene encodes the transcription factor PAX2 (paired-box 

protein 2), which is active in embryogenesis, resistance to apoptosis and 

promotion of proliferation363,364. It is suggested that PAX2 is indirectly 

regulated by oestrogen and its receptors but its molecular mechanism 

in endometrial carcinogenesis is not yet thoroughly understood365,366. 

Additionally, PAX2 may regulate p53 through binding to its regulatory 
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region, inhibiting protein production367. As with PTEN, progressive loss 

of expression of PAX2 has been observed from normal endometrium to 

hyperplasia to cancer358,366,368-370, however, one study observed an 

increase in PAX2 expression371 (Figure 23). The role of PAX2 as a 

prognostic marker for progression is debated372. Some studies report 

no association between PAX2 expression and progestin therapy 

resistance or relapse following conservative treatment patients352,373. 

Although the usefulness of PAX2 as an independent diagnostic marker 

is debated, it may be useful in combination with histological evaluation 

as an adjunct marker for detection of EAH/EIN374,375. 

1.6.5 Endometrial Cancer 

Endometrial carcinoma (EC) has been traditionally classified into two 

histopathological types: type I (endometrioid) tumours and type II (non-

endometrioid). Type I tumours are often low-grade and associated with 

oestrogen stimulation275. Type II tumours are associated with more 

aggressive tumours and are unrelated to oestrogen stimulation275. 

Further stratification may be performed by staging (FIGO stage) and 

histological grading. Type I tumours represent 80-90% of all EC and have 

a better prognosis than type II275. The focus of this thesis is type I. 

The stratification of EC into type I and type II is criticized for its poor 

inter-observer variability particularly in high-grade EC275,376-378. In 2013, 

the Cancer Genome Atlas (TCGA) described four distinct molecular 

subtypes of EC and suggested reclassification of EC379. The four 

subtypes were based on identification of different molecular markers 

(Table 9). These new subtypes demonstrated prognostic potential for 

more objective classification of EC, providing an opportunity for 

improvement on current clinical management of patients380,381. The 

POLE-mutated subgroup have distinctly higher 5-year relative survival 

in comparison to the other subgroups, in particular the p53-mutant 
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subgroup275. It is not yet extensively implemented in clinical practice 

due to high costs and requirement of fresh or frozen tumour 

tissue328,379,382,383.  Therefore, a surrogate solution to molecular 

classification of endometrial cancer has been proposed using a 

combination of targeted POLE sequencing and immunohistochemistry 

for MMR (mismatch repair) and p53 proteins275 

Table 9: Molecular classification of endometrial carcinoma275 

Subtype Molecular status Prognosis 

POLEmut Pathogenic POLE variants 
identified. 

Excellent 

MMRd Mismatch repair deficient 
POLE wt, non-pathogenic 

Intermediate 

NSMP p53 wt 
POLE wt, non-pathogenic 
MMR-proficient 

Intermediate-excellent 

p53mut p53 mutant 
POLE wt, non-pathogenic 
MMR-proficient 

Poor 

 

1.6.6 Challenges in the Diagnosis of Endometrial 

Hyperplasia 

“The trouble is that overdiagnosis and underdiagnosis are often 

intrinsically conjoined, locked perpetually on two ends of a seesaw.”2 - 

Siddhartha Mukherjee, 2010 

Despite improvements of the guidelines for the classification of 

endometrial hyperplasia, diagnosis is still based on a visual assessment. 

Therefore, it suffers from its inherent subjectivity. Although, D-score 

may improve prognostic assessment by objective, quantitative scoring, 

it is not widely available, and analysis is time-consuming. Accurate 
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prognosis is necessary to reduce the risk of over- or under-treatment of 

patients. The primary curative treatment remains hysterectomy for 

EAH, however, varying rates of malignant transformation should be 

factored into treatment decisions384. The endometrium itself is dynamic 

and undergoes cyclic shedding. This may result in a natural “removal” 

of abnormal lesions, where some patients will spontaneously 

regress385,386. Additionally, there is no distinct threshold that separates 

EHwA from EAH morphologically, and even EAH from EC; it is a 

continuous spectrum. Therefore, even for the trained eye, borderline 

cases are difficult to distinguish as one or the other. With the rise in 

obesity in the population and rising incidence of endometrial cancer, it 

is more important than ever to improve guidelines for treatment 

decisions, particularly in patients wishing to preserve fertility.  

1.6.7 AI in Endometrial Carcinogenesis 

A review article published in 2023, identified 30 studies that have 

utilised machine-learning in endometrial cancer387. Exploring the role of 

AI in refining the diagnosis and prognosis of endometrial carcinogenesis 

has covered several topics (listed below), in the areas of Radiology388-

393, Pathology394-400, and pre-diagnostic screening401-404. 

• Detection and Diagnosis 

• Predictive modelling and prognosis 

• Risk assessment 

• Decision-making support 

The most frequently utilised algorithms are neural networks and 

SVMs387. Collaborations between experts in AI, oncology, and 

gynaecology will be crucial to advancing research in these areas and 

translating AI innovations into improved outcomes for individuals 

affected by endometrial cancer.  
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Exploitation of AI has potential in the development of diagnostic and 

prognostic support tools for classification of normal, EAH/EIN and EC394-

397. Downing and colleagues developed a feature extraction tool and a 

random forest model to classify normal, precancerous (EIN) or 

malignant (type I EC) endometrium394. The most optimal model 

contained 75 variables. The top ten predictor variables consisted of 

fragment-level, gland-level, and lumen-level features394. The top 

predictor was percentage stromal surface area per fragment394. 

One study used automated feature extraction on HE stained WSIs, and 

a cox regression risk model for assignment of low- and high-risk scores 

for progression in endometrial cancer399. Two features were used in 

their final model: proportion of medium elongated stromal nuclei 

(ratio_bin5) and proportion of nuclei with medium crowded neighbours 

(distMean_bin6)399. In addition to providing accurate predictions of EC 

survival, the model contributed additional prognostic value to factors 

like tumour stage and grade399. Furthermore, the study reported 

association with features and mutation status in TP53 and TTN. 

Alternatively,  Makris et al. (2017) present an ANN model to 

discriminate between benign and malignant endometrial nuclei in 

cytological specimens400. Use of cytology represents a less invasive 

alternative for early detection of malignant disease.  

Introduction of AI to a clinical workflow must present with notable 

advantages. The AI method must be an improvement on or equal to the 

current method, specifically with regards to patient diagnosis and 

treatment. If the model fulfils this requirement other benefits will aid 

the likelihood of adoption, for example a reduction in hands-on time or 

elimination of fatigue and recall bias. Although research shows AI as 

having the potential to improve patient diagnosis and treatment, it 

must still fit into the context of the clinic and not overcomplicate or 

make diagnosis inefficient for the clinician.   
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2 Aims 

The overall objective of this thesis is to develop and evaluate 

biomarkers and AI-tools for use in breast cancer and endometrial 

carcinogenesis. Both diagnosis and prognosis of breast cancer and 

endometrial hyperplasia have potential for improvement. Subjective 

assessments due to visual evaluation of morphological criteria may be 

reduced through objective quantification of morphological features and 

biomarkers. This may lead to improvements in treatment allocation 

through improved accuracy of diagnostic classification and prognostic 

predictions. The works presented in this thesis endeavour to evaluate 

and validate biomarkers for the prognostic assessment of endometrial 

hyperplasia and breast cancer. Additionally, to develop and evaluate AI-

tools for automated feature extraction and progression risk prediction 

in endometrial hyperplasia and quantification of proliferation 

biomarkers in breast cancer.  

AIMS PAPER I 

To explore the prognostic value of PAX2 and PTEN in predicting 

progression in endometrial hyperplasia and cancer. We aim to assess 

PAX2 and PTEN expression in normal proliferative, hyperplastic, and 

cancerous endometrial tissue and if manual scoring of these protein 

biomarkers is associated with progression.  

AIMS PAPER II 

To develop an automated feature extraction tool and risk assessment 

model for prediction of progression in endometrial hyperplasia.  
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AIMS PAPER III 

To evaluate and develop automated quantification tools for Ki67 

scoring in HR+/HER2-/LN- breast cancer. We aim to compare manual 

hotspot and global methods in addition to automated in-house tools 

using a commercial platform, a commercial CE-IVD tool and an in-house 

tool developed using open-source software.  

AIMS PAPER IV 

To validate the prognostic value of an automated mitosis detection tool, 

using deep learning, in several cancer types. To assess if mitotic 

counting can be generalised for use in many cancers, both where clinical 

usability is known and unknown.  
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3 Methodology 

3.1 Ethical Considerations 

All patient material used in the investigations conducted in this thesis 

complied with national ethical requirements. For paper I, II and III 

ethical approval was requested and granted by the Regional 

Committees for Medical and Health Research Ethics (REK), Western 

Health Region (REK vest). For paper I and II, the ethical approval was 

covered by the REK 2010/2464. For paper III, ethical approval was 

covered by REK 2010/1241. For paper IV, ethical approval was granted 

for each patient cohort and is outlined in their respective 

publications405-414. For paper IV, the Stavanger breast cohorts were 

covered by REK 2010/1241.  

3.2 Patient Cohort 

For papers I-III, archival FFPE material tissue from Stavanger University 

Hospital (SUH) was used. For paper IV, archival material from SUH for 

the breast cancer cohort was used for the prognostic validation dataset. 

Additionally archival material from 11 cohorts were used as 

described414. 

3.2.1 Endometrial Database 

A retrospective patient cohort, consisting of 2671 patients with a 

diagnosis of proliferative endometrium, endometrial hyperplasia or 

endometrial cancer was available. For paper I, tissue with a primary 

diagnosis of proliferative endometrium, EIN and endometrioid 

carcinoma were eligible for inclusion (Figure 24). Inclusion criteria were 

as follows: available FFPE material (endometrioid carcinoma cases were 

available as TMA blocks) and at least one clinical follow-up which for 
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non-progression cases was required to be more than 6 months after 

primary diagnosis415. For paper II, tissue with a primary diagnosis of 

endometrial hyperplasia were eligible for inclusion (Figure 24). The 

following inclusion criteria were used: original diagnosis of endometrial 

hyperplasia, at least one follow-up sample (non-progression cases 

required to be more than 6 months after primary diagnosis), FFPE tissue 

block available, and a minimum area of 4.0mm2 endometrial tissue 

available in the tissue section398. These cases (N=467) made up the 

development dataset, further details are outlined in paper II. 

 

Figure 24: Overview of the Stavanger Endometrial Database, consisting of 
retrospective material. Created using BioRender.com. 

3.2.2 Breast Cancer Database 

For paper III and IV, patients who received a primary diagnosis of breast 

cancer in the years 1990-1998 and 2000-2004, at SUH, were eligible for 

inclusion in the study (N=687). As the purpose of paper III was to 

investigate Ki67 quantification and its prognostic value, the following 

inclusion criteria were used: <71 years of age, LN- status, HR+/HER2- 

status, and at least one clinical follow-up which for non-progression 

cases was required to be more than 6 months after primary diagnosis 
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(Figure 25). These cases (N=367) made up the development dataset, 

further details are outlined in paper III. For paper IV, inclusion criteria 

for entry to the study included if patients had FFPE material which 

allowed for creation of new HE stained tissue sections (Figure 25). These 

new sections, alongside the pseudonymised database, were sent to the 

Institute for Cancer Genetics and Informatics (ICGI), located at the 

Norwegian Radium Hospital in Oslo, Norway. 

 

Figure 25: Overview of the Breast Cancer Database, used in this thesis. Created using 
BioRender.com. 

3.3 Immunohistochemistry 

Immunohistochemistry (IHC) is essential to and extensively used in 

pathology, particularly cancer416. The technique itself utilises antibodies 

to localise and bind cellular antigens in FFPE tissue417. De Matos et al. 

(2010)418 outlines six scenarios where IHC is used in pathology: 
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1. Identification of cell types, cell secretions, organisms, and structures. 

2. Discrimination of benign versus malignant cells 

3. Histopathological diagnosis of tumours 

4. Subtyping of tumours 

5. Characterisation of primary site of a tumour 

6. Prognostic assessment for therapeutic indication 

 

Figure 26: Immunohistochemistry staining using horseradish peroxidase and DAB. 
Created using BioRender.com. 

The advantage of IHC is that the antigen-antibody complex is visualised 

as a colour signal417. Tissue sections are also counterstained with 

haematoxylin (blue stain) for clearer visualisation of tissue 

morphology417. Following fixation, embedding, and sectioning, the IHC 

staining process consists of several steps as outlined in Table 10 and 

visualised in Figure 26. The process of IHC is now mostly automated. 

Proper fixation is required for a good IHC stain; under- (<12hrs) or over-

fixation (>48hrs) may lead to false negative results/weak stains419. 

Quality control is essential to ensure adequate IHC staining. This 

includes optimal antibody dilution and optimised protocols. Progressive 
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loss of antigenicity over time may occur in FFPE tissue, particularly if the 

tissue blocks are stored incorrectly such as in ambient or higher 

temperatures418-420. This is particularly prevalent for some markers and 

should be considered when using retrospective material. For most IHC 

stains, sections should be freshly cut, and the stained tissue should be 

quality controlled wherever possible. 

Table 10: The IHC process. 

Step Description 

 Deparaffinisation and Rehydration 

1 Antigen retrieval 
This is used to “unmask” epitopes for antibody binding417. It involves 
the breaking of protein crosslinks that were introduced during 
fixation419. Common antigen retrieval techniques include heating 
sections in water or a buffered solution such as citrate or EDTA 
buffer417. 

 Blocking 
A procedure used to block endogenous peroxidase 

2 Primary antibody incubation 
The tissue section is incubated with either a monoclonal or 
polyclonal antibody. The former targets a single epitope and is more 
specific, whilst a polyclonal antibody can bind to multiple epitopes 
and is more sensitive419. 

3 Visualisation 
Most modern methods utilise highly sensitive labelled 
polymer/multimer methods, which amplifies the signal. 
The tissue section is incubated with a polymer/multimer labelled 
with both the secondary antibody and enzyme molecules such as 
horseradish peroxidase (HRP).421  

Chromogen  
The tissue is incubated with a chromogen substrate, 
diaminobenzidine (DAB), these enzymes will produce a coloured 
product (brown)417,419. 

5 Counterstain 
The section is counterstained with haematoxylin (a blue nuclear 
stain) to visualise negative nuclei and morphology.  
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3.4 Conventional quantification of biomarkers 

3.4.1 Mitotic Count in Breast Cancer 

As described in section 1.5.4.6, the mitotic count is reported 

independently in the pathology report. Counting of mitoses is 

performed in areas with the highest mitotic activity, often at the 

periphery of the tumour89. These regions should be free of necrosis and 

inflammation, if possible. Only active mitotic cells should be counted. A 

score is then generated based on the number of mitoses counted in the 

field area (see appendix 2). Mitotic counting, at SUH, is now performed 

digitally on WSI using the local PACS. Counting is still performed 

manually but the observer can now use manual annotations, and the 

total field area can also be measured. The benefit of this method is that 

all annotations can be saved and reviewed later if necessary.  

Prior to the establishment of the mitotic count, the mitotic activity 

index (MAI) was developed as a more standardised method for counting 

mitoses. Previously mitoses were counted in 10 high power fields (HPF) 

regardless of the diameter of the field of view (FOV), of which it has 

been criticised422. For MAI assessment, the number of mitoses is 

counted in the highest proliferative area in the periphery of the tumour, 

in n high power fields (400x) with a total area of 1.59mm2. Areas with 

benign tissue, necrotic tissue or high inflammation are avoided. Only 

well-defined mitotic figures are counted192,193. The MAI was used in 

paper III and IV and counted with a microscope. 

3.4.2 Ki67 Score in Breast Cancer 

The Ki67 score is expressed as the percentage of positively stained 

invasive tumours cells in a defined region. Several methods exist for this 

quantification.  
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3.4.2.1 Hotspot Score 

The hotspot score requires visual evaluation of the entire invasive 

region of the tumour section at low power for selection of the most 

proliferative region, the hotspot, for scoring. Once the most 

proliferative region is identified, both positive and negative nuclei are 

counted in a single FOV at high power (40X). A recommendation of 500 

total tumour nuclei should be counted118. Usually one FOV is used, 

however, a consecutive FOV may be used if <500 nuclei are counted. 

This scoring method was used in paper III. 

𝐾𝑖67 𝑆𝑐𝑜𝑟𝑒 (%𝐾𝑖67) =  
# 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐾𝑖67 𝑡𝑢𝑚𝑜𝑢𝑟 𝑛𝑢𝑐𝑙𝑒𝑖

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑝𝑜𝑠. 𝑎𝑛𝑑 𝑛𝑒𝑔. 𝑡𝑢𝑚𝑜𝑢𝑟 𝑛𝑢𝑐𝑙𝑒𝑖
× 100 

3.4.2.2 Global Score 

The global score method, developed by the International Ki67 in Breast 

Cancer Working Group (IKWG)423, requires identification of the relative 

percentage of negative, low, medium, or high Ki67 expression in the 

invasive tumour region. The number of positive and negative tumour 

nuclei are then counted in a typewriter fashion, in up to four 

representative fields (up to 100 nuclei per field). These fields are 

assigned based on the relative percentage present in the tumour area. 

For example, if the entire tumour region is negative – all fields chosen 

should be negative. If 75% of the tumour is low and 25% is high, then 3 

FOVs should be placed in a representative low region and 1 FOV in a 

representative high region. The unweighted and weighted global scores 

are then calculated. The IKWG provide a protocol and visual scoring tool 

on their website423. This scoring method was used in paper III. 
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3.4.3 PTEN Scoring in the Endometrium 

There is currently no standardised method for the interpretation of 

PTEN IHC. A variety of methods are reported in the literature424. Such 

methods score PTEN according to complete loss of PTEN in the area of 

interest, presence of any PTEN-null gland, the percentage of PTEN-

positive cells or the intensity of the PTEN staining424. Some methods 

result in a dichotomous classification whilst others in three or more 

groups424. Travaglino and colleagues investigated optimal scoring of 

PTEN and reported varying accuracy between methods, and concluded 

further study is required424. In paper I, for scoring of PTEN, we utilised 

the “presence of any PTEN-null gland” method, in accordance to a 

previous study by our group (Steinbakk et al. 2009)425. A lesion was 

scored as PTEN negative if one or more PTEN-null gland(s) (absence of 

nuclear or cytoplasmic PTEN staining) was observed in the lesion of 

interest. Stromal PTEN acted as a positive control415. 

3.4.4 PAX2 Scoring in the Endometrium 

Like PTEN, there is currently no standardised method for PAX2 IHC 

scoring. In paper I, the H-score was used to quantify PAX2 protein 

expression. The H-score takes into account both intensity of the stain 

and the percentage of cells at each staining intensity. The percentage 

of glandular nuclei that display negative (0), weak positive (1), positive 

(2), strong positive (3) intensity is measured. This percentage is then 

multiplied with the respective staining score to generate a value 

between 0 and 300. To reduce subjective influence, two independent 

observers may score the lesion of interest, and if the H-score differs by 

50, a consensus discussion is held. Alternatively, the mean score can be 

calculated. The former strategy was used in paper I415. 
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3.5 Digital Image Analysis 

3.5.1 Visiopharm 

Visiopharm® was founded in 2002 by CEO Michael Grunkin and CTO 

Johan Doré Hansen in Denmark426. The company focuses on the design, 

development, manufacturing, installation, and service of AI-driven 

diagnostic pathology software426. The company provides both research 

solutions and IVDR cleared diagnostic algorithms. 

The Visiopharm® image analysis platform (Visiopharm®, Hørsholm, 

Denmark) allows for the user to develop their own in-house algorithms 

using the APP author. The user can design their own classification 

algorithms, measurements and scoring of images. The APP author 

consists of several components:  

1) Training labels (image classes for training),  

2) Magnification and region of interest specifications  

3) Classifier method (AI - Deep Learning, Bayesian, K-

means, Decision Forest, etc.), colour channel (RGB-R, 

RGB-G etc.), and filters (mean, median etc.),  

4) Post-processing (morphological operators such as dilate, 

erode, etc.) 

5) Output variables (measurement of segmented features 

and simple calculations) 

An in-house application (APP) can be designed according to the desired 

endpoint and multiple APPs can be developed and run in tandem. For 

example, one APP could demarcate the tissue region, which would 

exclude background and background noise from later analysis. Another 

could perform a segmentation task within the demarcated tissue, and a 

final APP could perform measurements of these segments. This design 

is a trademark feature of Visiopharm®. Its advantage lies in the ability 



Methodology 

84 

to run or rerun parts of the APP individually, to identify sources of error 

or to correct for any mistakes without having to rerun the entire 

process, which can be time-consuming and require significant computer 

processing power. A basic illustration of our Visiopharm® workflow for 

APP development is shown in Figure 27. 

 

Figure 27: The workflow used for in-house APPs developed in Visiopharm®. 

3.5.1.1 The ENDOAPP 

The ENDOAPP sequence was designed, developed, and trained in-house 

using the Visiopharm® system (Version 2020.08 Visiopharm A/S, 

Hørsholm, Denmark). It consists of several independent APPs that are 

designed to be run in tandem. A description of each APP in sequence is 

provided below and in Figure 28: 

• 01 Tissue detection 

• 02 Gland, stroma, and lumen segmentation 

• 03 Hotspot detection 

• 04 Architectural feature extraction 

• 05 Nuclei segmentation pre-processing 
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• 06 Epithelial nuclei segmentation 

• 07 Nuclei feature extraction. 

Table 11: Overview of training criteria, type of classifier, post-processing requirements 
and if the APP included a calculation step for each APP in the ENDOAPP. 

APP OUTPUT TRAINING / 
ANNOTATIONS 

CLASSIFIER POST-
PROCESSING 

CALCULATIONS 

01 Tissue ROI ✓ K-means 
clustering 

✓  

Tissue + 
background  

02 Gland, stroma 
and lumen 
segmentation 

✓ K-means 
clustering 

✓  

Gland, lumen, 
and stroma  

03 Heatmap and 
hotspot ROI 
placement 

  ✓  

04 Measurement 
of % stroma 

   ✓ 

05 Gland ROI   ✓  

06 Epithelial nuclei 
segmentation 

✓ K-means 
clustering 

✓  

Nuclei  

07 Measurement 
of shortest 
diameter of 
epithelial nuclei 

   ✓ 

 

For each APP that required training labels (01, 02, 06), manual 

annotations were made on representative structures (Table 11). The 

APPs were trained using these annotations from the training dataset. 

Annotations were added iteratively, and the APP retrained, until the 

result was considered satisfactory. A satisfactory result was decided by 

the operator and based on sufficient segmentation of features. For 

example, for APP 02 glands were required to be correctly labelled and 

clearly distinguishable from surrounding stroma. Additionally post-

processing steps were added to further enhance segmentation. 

Following training, the APPs were run on the tuning set and 

performance evaluated.  



Methodology 

86 

 

Figure 28: The ENDOAPP. Seven APPs were developed in Visiopharm® for 
segmentation and feature extraction. These features were input into a logistic 
regression model to generate a risk score for progression. 

Using output data from the development dataset, a logistic regression 

model was used to generate a risk score, and a threshold for risk of 

progression (low or high) was determined using ROC curve analysis. The 

logistic regression model was separate to the Visiopharm® APP 

sequence. The output file from Visiopharm®, containing feature 

extraction data (the area of all labels in the hotspot ROI, % stroma, and 

the lesser diameter of each epithelial nuclei label), was entered into the 

model. Further information on the model can be found in paper II.  
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3.5.1.2 The In-House Ki67 APP (VIS1-HS) 

A Ki67 quantification APP sequence was designed, developed, and 

trained in-house using the Visiopharm® system (Version 2020.08). Like 

the ENDOAPP it consists of several independent APPs that are designed 

to be run in tandem. A description of each APP in sequence in Table 12 

and in Figure 29: 

• 01 Tissue detection 

• 02 Positive nuclei detection  

• 03 Hotspot detection 

• 04 Tumour segmentation 

• 05 Nuclei segmentation 

• 06 Hotspot quantification 

For each APP that required training labels (01, 02, 04, 05), manual 

annotations were made on representative structures (Table 12). 

Annotations were added iteratively, and the APP retrained, until the 

result was considered satisfactory. A satisfactory result was decided by 

the operator and based on sufficient segmentation of features. For 

example, for APP 05 positive and negative nuclei needed to be correctly 

labelled and clearly distinguishable. Additionally post-processing steps 

were added to further enhance segmentation. Following training, the 

APPs were run on the tuning set and performance evaluated. 
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Table 12: Overview of training criteria, type of classifier, post-processing requirements 
and if the APP included a calculation step, for the in-house Visiopharm® APP sequence 
(VIS1-HS). 

APP OUTPUT TRAINING CLASSIFIER POST-
PROCESSING 

CALCULATIONS 

01 Tissue ROI ✓ K-means 
clustering 

✓  

Tissue and 
background 
annotations 

02 Positive nuclei 
segmentation 

✓ K-means 
clustering 

✓  

Positive nuclei 
annotations 

03 Heatmap and 
hotspot ROI 
placement 

  ✓  

04 Tumour 
segmentation 

✓ K-means 
clustering 

✓  

Tumour and non-
tumour area 
annotations 

05 Nuclei 
segmentation 

✓ K-means-
clustering 

✓  

Positive and 
negative nuclei 

annotations and 
background 

06 Hotspot Ki67 
Score 

   ✓ 

 

For positive cell detection (APP 02) negative nuclei (tumour) were not 

segmented as this extended analysis time 10-20-fold. As a result, only 

negative and positive nuclei were segmented in the hotspot ROI. 

Therefore, a global score was not generated for the in-house APP as the 

APP took too long to run and often crashed. The VIS1 APP runtime was 

between 30s to 3 minutes.  
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Figure 29: The Ki67 applications. Visual overview of the Visiopharm® APPs and QuPath 
workflows for Ki67 quantification.  

3.5.1.3 The Visiopharm® Ki67 APP (VIS2-HS/G) 

The Visiopharm Ki67 APP is CE-IVD approved, and consisted of several 

independent APPs that are designed to be run in tandem. A description 

of each APP in sequence is provided below and in Figure 29. The 

sequence for global scoring (VIS2-G) utilised APPs 01-04, whilst the 

sequence for hotspot scoring (VIS2-HS) utilised APPS 01-06.  

• 01 #10182 – IHC Tissue Detection, AI 

• 02 #10180 – Invasive Tumor Detection, AI  

• 03 #10180 – Invasive Tumor Postprocessing 

• 04 #10173 – Ki-67 Nuclei APP, Breast Cancer, AI 

• 05 #10114 - Hot Spot Detection  

• 06 #10114 - Hot Spot Quantification 

The APPs were provided free-of-charge for research purposes, as 

outlined in paper III. The APPs were pre-trained/validated and 

approved for Ki67 scoring in breast cancer. 
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Table 13: Overview of the type of classifier and if the APP included a calculation step, 
for the commercial Visiopharm® APP sequence (VIS2-HS/G). 

APP OUTPUT CLASSIFIER CALCULATIONS 

01 Tissue ROI DeepLabv3  
02 Invasive tumour ROI DeepLabv3  
03 Invasive tumour postprocessing   
04 Nuclei segmentation. 

Global Ki67 score 
U-Net ✓ 

05 Hotspot detection   

06 Hotspot Ki67 Score  ✓ 

 

3.5.2 QuPath 

QuPath is an open-source, biomedical image analysis platform, 

designed for digital pathology249. It’s development aimed to meet the 

growing need of the community for a free, user-friendly image analysis 

software that could handle complex texts, without the need of an IT 

background249. A PubMed search, “QuPath”, revealed 204 publications 

and the pioneer publication from 2017 has been cited over 4000 times, 

according to Google Scholar (as of January 2024). The software offers 

both unsupervised ML-based cell detection and supervised 

classification of WSIs427. 

3.5.2.1 The QuPath Ki67 Tool (QuPath) 

Several studies have published on the use of QuPath for quantitation of 

Ki67 in breast cancer428-432. The IKWG also link to a QuPath protocol for 

Ki67 evaluation on core biopsy WSIs on their website423. For this thesis 

and as described in paper III, a cell classifier script was created using the 

cell detection and cell classifier tools in QuPath (Appendix 3). 

Annotations of positive and negative tumour nuclei from the breast 

training dataset were used to train the classifier. It was possible to save 

the code/script of the most optimal model. The script was run on all 
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cases in the development dataset. The workflow is outlined below and 

illustrated in Figure 29. 

• 01 Manual delineation of the invasive tumour region 

• 02 Nuclei cell classifier script. 

• 03 Density heat map applied for automated placement of hotspot ROI. 

• 04 The hotspot ROI is dynamic – it can be moved and the Ki67 hotspot 

score is updated automatically. 

• 05 Ki67 score was generated automatically. 

3.5.3 The Mitosis Detection Tool 

A mitosis detection model was validated in paper IV. Deep learning 

models (Mask R-CNN neural networks) were previously trained and 

tuned using annotated mitotic figures from the TUPAC16 dataset235. 

This dataset contains 73 WSIs of HE stained breast cancer tissue 

sections, scanned by the Aperio ScanScope XT and Leica SCN400 

scanners (Leica Biosystems, IL, USA). Ground truth annotations were 

created by consensus agreement of at least two pathologists. The Mask 

R-CNN (regional-based CNN) is an object segmentation network. 

Essentially the network will take an image and detect objects (objects 

are marked with a bounding box) of which it will assign a probability 

that the object is a mitotic figure. A detailed description of how the 

network was trained, tuned, and validated can be found in the 

supplementary material for paper IV. The models were validated on 

WSIs from a total population of uterine sarcomas433. The best 

performing model was selected for prognostic validation (paper IV). For 

prognostic validation of the model, 13 cohorts representing different 

cancer types (breast, bladder, prostate, colorectal, lung, liver 

metastases and endometrial) comprised the dataset. The tumour 

region was annotated manually prior to model prediction.  The number 

of mitotic figures detected by the model, in the entire tumour tissue, 
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was divided by the total area of the tumour to calculate the number of 

mitoses per mm2.  

3.6 Statistical Analysis 

All statistical analyses, for paper I-III, were performed using SPSS for 

windows (version 26.0.0; IBM SPSS Statistics) and R Studio (2022.02.0 

Build 443). For paper IV, statistical analyses were performed using R 

(version 3.5.2). Assumptions for each statistical test were considered 

and verified. A p-value of <0.05 was considered as significant.  

3.6.1 Agreement 

The intraclass correlation coefficient (ICC) was used to measure 

agreement. In paper II, the ICC was used to assess agreement between 

manual operators of the ENDOAPP, between scanners, and between 

classification methods and the ENDOAPP. In paper III, the ICC was used 

to assess agreement between manual and DIA scoring methods. The 

guidelines proposed by Koo and Li (2016)434 for interpretation of the ICC 

were used, as depicted in Table 14. Cohens κ was used to assess the 

agreement of the D-score against all other methods, using categorical 

variables, in paper II.  

Table 14: Interpretation of the Intraclass Correlation Coefficient (ICC) as suggested by 
Koo and Li (2016) 

ICC Interpretation 

<0.50 Poor 

0.05 – 0.75 Moderate 

0.75 – 0.90 Good 

>0.90 Excellent 
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3.6.2 ROC Curve 

A receiving operating characteristic (ROC) curve was created to assess 

the discriminative ability of the ENDOAPP in paper II, and each Ki67 

scoring method in paper III. The area under the curve (AUC) ranges from 

0.5 – 1.0 and indicates the model’s ability to discriminate between 

individuals with or without the outcome of interest76. The ROC curve 

was used define cut points for binary classification of individuals. For 

paper II, the intention was to assign a cut-off for patients with low or 

high-risk for progression to endometrioid carcinoma. For paper III, the 

intention was to evaluate cut-offs for low- and high-risk Ki67. Different 

cut-offs will also affect the trade-off between sensitivity and 

specificity76. A general guideline for interpretation of the AUC has been 

described by Hosmer and Lemeshow (2013)76 (Table 15). 

Table 15: Guidelines for interpretation of the AUC statistic in ROC curve analysis, 
defined by Hosmer and Lemeshow (2013)76. 

AUC Interpretation 

=0.50 No discrimination 

0.05< AUC < 0.7  Poor discrimination 

0.70 ≤ AUC < 0.8 Acceptable discrimination 

0.80 ≤ AUC < 0.9 Excellent discrimination 

≥0.9 Outstanding discrimination 

 

3.6.3 Performance Metrics 

Performance metrics were calculated to assess the prognostic value and 

predictive capacity of classification methods in paper II and III and are 

described in Table 16. For a more detailed description of each metric 

see Table 2. 
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Table 16: Performance Metrics 

Metric Acronym Calculation 

True positive TP  

True negative TN  

False positive FP  

False negative FN  

   

Positive predictive 
value (Precision) 

PPV 
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Negative predictive 
value  

NPV 
=

𝑇𝑁

𝐹𝑁 + 𝑇𝑁
 

   

Sensitivity (Recall) Se. 
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Specificity Sp. 
=

𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 

   

Accuracy  
=

𝑇𝑃 + 𝑇𝑁

𝑁
 

  
=

𝑝𝑟𝑒𝑣.× 𝑠𝑒.

(𝑝𝑟𝑒𝑣.× 𝑠𝑒. ) + ((1 − 𝑝𝑟𝑒𝑣. ) ∗ 𝑠𝑝. )
 

 

3.6.4 Survival and Multivariate Analysis 

For paper I-IV, Kaplan Meier analysis was used to determine association 

between variables and progression-free survival. Significant differences 

were analysed by the log-rank test. The endpoint for paper I and II was 

diagnosis with progression (see Table 17) in the follow-up (event) or 

censored to the last known follow-date or date of hysterectomy. 

Patients without progression in the follow-up were required to have a 

minimum of six months follow-up. The endpoint for paper III and IV, 

was the first diagnosis of a distant metastasis in the follow-up, or as 

otherwise specified in paper IV for the non-breast cancer types. 
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Patients with no distant metastasis in the follow-up were censored to 

last known follow-up and were required to have at least six months 

between this date and primary diagnosis date. Hazard ratios were 

generated using cox regression survival analysis for paper III and IV.  

Table 17: Kaplan Meier survival analysis endpoint (event) for endometrial cases in 
paper I and II. 

Primary diagnosis Event 

Proliferative endometrium Endometrial hyperplasia or endometrioid 
carcinoma 

Endometrial hyperplasia Endometrioid carcinoma 

Endometrioid carcinoma Distant metastasis or death due to 
disease. 

 

3.6.5 Univariate and Multivariate Analysis 

Logistic regression analysis was used to assess the relationship between 

one predictor variable (univariate) or several predictor variables 

(multivariate) and a binary outcome (progression or no progression) in 

paper II. Furthermore, the formula for the most optimal model, 

determined by the backward wald method, was used to establish the 

risk score formula for the ENDOAPP (Figure 28).  

Cox regression survival analysis was not only used to report hazard 

ratios but also to assess the relationship between one predictor variable 

(univariate) or several predictor variables (multivariate) and a binary 

outcome (progression or no progression) in paper II-IV. One of the main 

differences between logistic regression and cox regression, is that the 

latter factors time to progression into the analysis. 
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4 Summary of the Papers 

4.1 Paper I: Assessing the prognostic value of PAX2 and 

PTEN in endometrial carcinogenesis. 

Current methods for diagnosis of endometrial hyperplasia (EH) are 

based on subjective visual assessments. The EIN classification, 

incorporated into the WHO guidelines in 2014306, has demonstrated 

improved reproducibility and prognostic value of diagnosis in 

comparison to previous classifications304,307,323,435. However, the 

WHO20 classification, is still based on a qualitative assessment. 

Therefore, use of prognostic biomarkers may improve the stratification 

of low- and high-risk patients. Loss of PTEN and PAX2 expression has 

been demonstrated in endometrial carcinogenesis and may be an 

interesting target for prognostic assessment355,358,368,436.  

In paper I we investigated if the quantification of PTEN and PAX2 can 

predict progression free survival in endometrial intraepithelial 

neoplasia (EIN) and endometrial endometrioid carcinoma (EEC). The 

patient cohort (N=348) consisted of endometrial cases diagnosed 

between 1977-2004 at SUH, with proliferative endometrium (N=75), 

EIN (N=36) and EEC (N=237). Long-term clinical follow-up was available 

(6-310 months, median: 126). No progression to EEC was observed for 

proliferative cases, whilst 28% of EIN cases had progression (N=10). We 

evaluated PTEN and PAX2 expression detected by IHC. A case was 

classified as PTEN null when absence of staining was observed in one or 

more glands. PAX2 expression was quantified by H-score. Absence of 

PTEN expression was more common in EEC than EIN and proliferative 

endometrium (64% vs. 11%, respectively). A progressive decrease in 

PAX2 expression was observed from proliferative to EIN to EEC. We 

investigated if binary categorisation of PAX2 in EIN cases could predict 



Summary of the Papers 

97 

progression-free survival. Notably, patients with a high-risk score (H-

score ≤ 75) had a significantly lower progression-free survival than 

those with a low-risk score. PAX2 expression was not prognostic for EEC 

progression. Nor was PTEN expression prognostic in EIN or EEC. 

To conclude, we were unable to validate the prognostic value of PTEN. 

The literature reports conflicting results, some studies associated PTEN 

positive status with favourable prognosis437,438, whilst others suggest 

PTEN negative status is indicative439,440. On the other hand, we reported 

that quantification of PAX2 expression in EIN had prognostic value for 

predicting progression-free survival. However, the H-score method is 

still based on a subjective visual assessment. Therefore, we considered 

this investigation as a pilot study and planned to verify our findings in a 

larger cohort and investigate the use of DIA for evaluation. 

4.2 Paper II: Automated Prognostic Assessment of 

Endometrial Hyperplasia for Progression Risk 

Evaluation using Artificial Intelligence 

Quantitative measurement of the morphological features used in the 

diagnosis of endometrial hyperplasia (EH) has demonstrated prognostic 

value324,441.  

In paper II we developed a tool (ENDOAPP) using AI for the automated 

measurement of morphologic and cytological features of endometrial 

tissue and quantification of progression risk score in EH. The 

development dataset consisted of whole slide images of PAN-CK+ 

stained tissue sections, from 388 patients diagnosed with endometrial 

hyperplasia between 1980 and 2007. Follow-up data was available for 

all patients (mean: 140 months). The ENDOAPP was developed using 

Visiopharm® and was designed to detect the region with the highest 

density of glands, and then to measure percentage stroma and 
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epithelial gland nuclei variation in this region. A logistic regression 

model was developed using the recommended predictor variables to 

generate a progression risk score. The ENDOAPP had acceptable 

discriminative power (AUC: 0.765). Furthermore, it had the highest 

accuracy alongside the semi-automatic method D-score (88-91% vs. 

91%, respectively), and marginally outperformed the WHO94, WHO20 

and EIN clinical classification schemes. Additionally, we observed that 

inter-observer agreement was strong to moderate for manual 

operators of the ENDOAPP (ICC: 0.828), and moderate between 

scanners (ICC: 0.791).  

In summary, we observed comparable performance metrics for the 

ENDOAPP method compared to the D-score299,319-321,327. Notably, we 

reported comparable and improved performance metrics in 

comparison to traditional visual assessments327,442. Interobserver 

variability and inter-scanner variability was comparable to 

interobserver variability of traditional classification schemes305,308,435. 

We therefore propose that AI-based tools demonstrate potential for 

more objective, prognostic evaluation of endometrial hyperplasia. 

Furthermore, we need to validate our findings on a test set, preferably 

temporally and geographically distinct from the development set.  

4.3 Paper III: The Ki67 Dilemma: Investigating Prognostic 

Cut-Offs and Inter-Platform Reproducibility for 

Automated Ki67 Scoring in Breast Cancer 

New technological advances and the deployment of digital pathology 

allows for the development and implementation of AI-based scoring 

tools in the clinic. Quantification of Ki67 score in breast cancer has 

documented prognostic and predictive value197-201. Therefore, it is a 

primary target for automated scoring on a digital platform. 
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In paper III, we evaluated the agreement between manual (hotspot and 

global) and respective DIA scoring methods. Furthermore, we explored 

cut-offs for stratification of low and high Ki67 score. We aimed to 

address the concern whether cut-offs that are prognostic using manual 

methods remain prognostic using automated, DIA methods. From a 

cohort of 367 HR+/HER2-/LN- breast cancer patients, 294 were eligible 

for analysis. The 73 cases removed from the study cited issues relating 

to poor staining quality. Manual scoring of invasive tumour regions in a 

hotspot or by global unweighted/weighted scoring was performed. 

Additionally, a commercial and an in-house algorithm, developed on 

the commercial platform Visiopharm®, were used for DIA quantification 

of Ki67. An open-source (QuPath) algorithm was also developed. 

Reproducibility analysis revealed good agreement between manual 

methods and their respective DIA methods (ICC>0.8). The DIA methods 

had better discriminative ability than the manual methods. A range of 

cut-offs were prognostic in the study cohort. However, the use of a 

single cut-off for all scoring methods demonstrated differences in 

distributions of prediction outcomes (e.g., false negative and positives).  

In conclusion, we reported strong agreement between platforms and 

manual scoring methods. Automated scoring methods outperformed 

manual methods, although all were prognostic. These observations 

were comparable to other studies206,219,220,429,430,443. However, we 

report the need for caution regarding adoption of a single cut-off for 

different methods as this can affect the number of over and under-

treated patients. As current guidelines also recommend molecular 

profiling for treatment decisions, we would need to verify our results 

alongside these risk scores. Particularly if automated, digital Ki67 

scoring is useful in the intermediate risk category. Furthermore, the in-

house tools require validation on a test set.  
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4.4 Paper IV: Applicability of mitotic figure counting by 

deep learning: a development and pan-cancer 

validation study. 

Quantification of mitotic figures is used to measure proliferation in 

cancer and is incorporated in the grading system for breast cancer. 

Mitotic figures have been assessed manually but deep learning 

algorithms are being investigated for the automation of this task. 

In paper IV, a deep learning method (Mask R-CNN), for automated 

mitosis detection on WSIs, was validated for its prognostic impact in 

several cancer types. The network was trained on images from the 

TUPAC16 breast cancer database235. The model was validated on a test 

set consisting of 372 uterine sarcomas, and the best performing model 

was selected for further validation. To assess prognostic impact and 

generalisability, the deep learning model was validated on 14 571 

patients, from 13 cohorts, with cancer samples from the prostate, 

breast, lung, endometrium, colon, rectum, and colorectal liver 

metastases. The prognostic value of the mitotic count (number of 

mitotic figures per mm2) was evaluated using cox regression analysis. 

The mitotic count was prognostic in breast, prostate, endometrial, lung 

cancer and liver metastases from colorectal cancer. It was not 

prognostic in colorectal cancer.  

In summary, the use of automated mitotic figure counting using a deep 

learning model, has potential to be used for the prognostic evaluation 

of mitotic count in several cancers. The method was prognostic in 

several cancer types which currently do not routinely perform mitotic 

counting including prostate and bladder cancer. To conclude, we 

present an automated method that has potential as an alternative to 

manual counting. 
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5 Discussion and Future Perspectives 

“Medical breakthroughs take time…  If we start today, and seize this 

moment, and the focus and the energy and the resources that it 

demands, there is no telling how many lives we could change.  And 

every single one of those lives matter.”88 - Former President of the 

USA, Barack Obama, 2015 

5.1 The Future of PTEN and PAX2 as a Biomarker 

Research many times over, has demonstrated the prognostic relevance 

of PTEN and PAX2 in endometrial carcinogenesis296,334,352-358,366,368-370. 

However, their expression varies in normal, hyperplastic, and neoplastic 

endometrium, to the extent that their value as a quantifiable biomarker 

is controversial334,352,355,359-361,372,373. It seems pinpointing the exact 

moment in which their expression changes and accurately associating it 

with one of two outcomes – progression or no progression, remains a 

challenge.  

In paper I, PTEN scoring was not significant for prediction of progression 

of endometrial hyperplasia and endometrioid cancer. This may be 

attributed to the choice of scoring method. Despite this we still 

observed decreasing expression from normal and hyperplastic 

endometrium to neoplasia. Travaglino and colleagues discuss 

differences in prognostic accuracy of PTEN scoring methods424. The 

authors determined that the scoring method we used in paper I, 

presence of any null gland, had the lowest accuracy of the methods 

investigated. It was reported to have a low sensitivity (0.57), low 

specificity (0.55), and low overall accuracy (AUC=0.63)424. Therefore, 

one might presume that perhaps another method would yield a more 

accurate quantification. In comparison, the only methods Travaglino 

and colleagues report, with moderate diagnostic accuracy (AUC=0.78), 
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were intensity scoring methods which classified weak-to-null 

expression424. One might postulate that a different scoring method, 

such as this, would yield a different result for the evaluation of PTEN in 

the study cohort. However, literature suggests that current scoring 

methods for PTEN are still not sufficient to suggest its value as an 

independent predictor of progression or response to conservative 

treatment334,355,359-361. 

Unlike PTEN, in paper I, we observed a significant difference between 

progression and non-progression EIN patients for PAX2 expression 

quantified by H-score. These results are promising and indicate its 

potential as a biomarker in EAH. However, the study cohort used in 

paper I was small, consisting of only 36 EIN patients. It would be 

worthwhile to validate these findings in a larger cohort. Small cohorts 

run the risk of producing false positive or false negative results due to 

bias or overfitting444. Furthermore, although valuable for exploration or 

pilot studies, such as ours, they cannot completely reflect trends in a 

population. Therefore, validation studies in larger and new cohorts are 

essential for biomarker investigation. Unfortunately, when we 

investigated PAX2 expression, by H-score, in a larger cohort, we found 

no association with progression-free survival in EIN (unpublished). 

Although, PTEN and PAX2 play a role in endometrial carcinogenesis, 

their role as biomarkers for improved diagnosis and stratification of 

patients with endometrial hyperplasia appears limited. However, 

perhaps evaluation of PTEN and PAX2 by AI could reveal new insight. 

Whilst manual scoring methods have been limited to human capability, 

AI has the power to overcome flaws such as recall bias and fatigue. It 

can also enhance analysis by combining the assessment of 

morphological features on HE with IHC-quantification of biomarkers. 

This may reveal new avenues not yet investigated. If could also be 

combined with molecular analysis or be used to predict molecular 
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subtypes on HE. To conclude, although a standstill may have been 

reached for manual evaluation of PAX2 and PTEN, new technology 

might yet uncover patterns unseen to us at present. For example, it may 

be more prudent to use molecular data to assess these biomarkers or 

even use AI to predict biomarker expression patterns directly on HE, 

avoiding IHC altogether. In turn we may find new applications for the 

use of PTEN and PAX2 as clinical biomarkers, perhaps we have merely 

lacked the tools to sufficiently evaluate them.  

5.2 Validation of AI as a Diagnostic Assistance Tool 

5.2.1 Validation and Verification 

Validation and verification is a continuous process, and should be 

conducted prior to implementation and throughout the lifecycle of a 

system, product, software, or tool. The purpose of this is to identify any 

discrepancies or deviations from a product’s intended use or 

specifications. Validation involves testing a product to see whether it 

performs as intended, complies with predefined requirements, and 

aligns with the parameters established within the medical context. 

Verification requires confirmation that a product behaves as expected 

and fulfils its objectives in the environment it was intended for. The 

validation process is usually more extensive than verification. For 

example, a newly developed algorithm must be validated on a test set, 

whereas a CE-IVD approved algorithm must be verified when first 

deployed at a new site. Validation or verification may be required 

following changes to the model’s design, such as a software update, or 

when new variables are introduced, such as a new scanner.  

Validation of an algorithm requires testing that the model can be 

generalised on relevant populations, outside of the development 

dataset, from different locations and using different equipment such as 



Discussion and Future Perspectives 

104 

scanners or staining/fixation procedures445. A rigorous performance 

evaluation is recommended to assess if the algorithm still functions 

under a variety of conditions, that may not be covered by a test set. This 

is often performed in an external validation, often in a multi-centre trial. 

This requires a broad validation of multiple cohorts that represent the 

intended target population with respect to age, sex, ethnicity, 

prevalence and additionally samples taken from a range of laboratories 

also their own technical equipment and protocols445. Prospective trials 

are also a way to assess the generalisability of a tool, by assessing real-

world data in real-time. Validation studies are vital to uncover any bias 

or overfitting in the model. This also applies to biomarker validation 

studies. 

In paper II, we have developed the ENDOAPP and reported a promising 

performance for the prognostic evaluation of endometrial hyperplasia. 

However, the APP was not validated on a test set. Therefore, its clinical 

potential and performance is limited to the development dataset and 

no substantial conclusions can be made. Many factors will need to be 

considered and a multi-stage validation study will be required before 

considering clinical implementation. Firstly, only two scanners were 

evaluated, whereas many exist on the market. We reported some 

variation between scanners, which although not significant, still 

affected the proportion of false negative and false positive cases. The 

scanners used were produced by the same manufacturer, and therefore 

use the same image file format: ndpi. It would be prudent to test the 

ENDOAPP on other WSIs produced by other scanners. Furthermore, to 

test different staining protocols and antibodies. In paper II, we only 

used one antibody and one staining protocol. Staining variation is one 

of the most important factors to keep in mind when evaluating model 

performance. We are currently in the early stages of a validation study, 

which will utilise the staining and scanning protocols of four hospitals in 

the western health region of Norway. Additionally, an external dataset 
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from Colombia is currently being collated by our collaboration partner 

and we are also collecting new samples locally for a test set for 

validation of the ENDOAPP on more recent samples. Another avenue to 

be explored for future work would be to investigate a combination of 

the ENDOAPP with molecular analysis of biomarkers/expression 

profiles. Developing an AI model for prediction of progression or 

diagnostic classification on HE, using a deep learning model, would also 

be a worthwhile pursuit. 

For paper III, we have compared in-house developed and commercial 

CE-IVD tools. We demonstrate good agreement between the methods, 

but ideally would need to further validate the tools on a larger cohort 

representing different scanners and staining protocols. Commercial 

algorithms for the quantification of Ki67 in breast cancer have been 

validated and certified for this purpose. Most of these tools appear to 

use pathologist annotations or score as ground truth, the level of 

agreement between the algorithm and annotations/pathologist score is 

assessed. How this validation data is reported varies and it is not always 

easy to access. To note, the cut-offs used have not been validated, and 

it is this that affects diagnostic and treatment decisions. These still 

require considerable validation and standardisation and this was the 

focus of paper III. The study cohort used in paper III, is however, not 

sufficient to consider a cutoff suitably validated. Further research in 

prospective trials and multi-centre validation studies are required to 

elucidate if cut-offs currently in use for manual methods are 

transferable to automated methods, and if they are transferable 

between different platforms.  

Planning a validation study, one should also consider the desired clinical 

context: is the model designed to be used on a local, regional, national, 

or international scale? In-house (local) validation could require fewer 

test variables. If the goal is to implement the APP locally, then local 
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factors such as the scanner and staining protocol used at the local site 

should be sufficient for validation. In comparison, if the APP is intended 

to be used on a larger scale, national approval, CE-IVD, or FDA 

certification would be required. This is a much more extensive and time-

consuming approach. To choose in-house validation vs. multi-centre 

validation is also unfortunately dependent on the resources available. 

Regardless, choice of in-house or multi-centre validation must be 

ethically permissible. 

Regulations set by the FDA (USA) and EU (European Union) define a 

diagnostic AI-assistance tool as a medical device also termed a “medical 

device software”, “health software” or “software as a medical device”. 

A medical device software is “software intended to be used for one or 

more medical purposes that perform these purposes without being part 

of a hardware medical device” as defined by the International Medical 

Device Regulators Forum (IMDRF)446. Strict protocols outline the 

approval and use of software medical devices. This is favourable for 

ensuring good clinical practice and patient safety; however, there may 

be negative impacts, for example the cost of approving a device for the 

company or public institutions (funded by taxpayers), delays in 

implementation and so on447. However, stringent regulations are 

required, as the quality of evidence surrounding some devices have 

been criticized. This includes lack of external validation, multi-centre 

evaluation, majority are based on retrospective studies which run the 

risk of biased data, heterogeneity in performance metrics used and lack 

of availability of datasets allowing for replication and/or extensive 

validation447. Furthermore, the in-house exception rule requires certain 

requirements to be met and no equivalent CE-IVD certified product 

must be available on the market.  

Regarding the certification of AI tools for clinical use, a study by Wu and 

colleagues aimed to shed light on how these tools were being assessed 



Discussion and Future Perspectives 

107 

and evaluated prior to approval by the FDA (2015-2020)448. The authors 

reported that 72% (93 of 130) did not publicly report multi-site 

evaluation and for 55% (71 of 130) of devices, the median evaluation 

sample size was 300. Although the FDA has access to the number of 

sites evaluated and sample size, this is not always publicly available 

which makes it difficult for a technician or clinician to critically evaluate 

how the AI tool has been trained and validated448. 

The outcome of an AI tool will also influence the extent to which the 

tool will require validation. For example, tools where the outcome will 

decide treatment decisions might require more extensive validation 

than a tumour vs. non-tumour segmentation tool. Ultimately, patient 

safety is most important, and therefore how an AI tool is developed and 

validated must be sufficient, transparent, and comply with good clinical 

practice and regulatory guidelines. 

5.2.2 Retrospective vs. Prospective Datasets 

Retrospective datasets are valuable in that the data is readily available, 

in comparison to prospective datasets. However, established 

retrospective databases are more likely to have been collated for a 

different purpose than to train AI. Therefore, there is a higher risk of 

systemic bias in these datasets. The U.S. Food and Drug Administration 

(FDA) in a 2021 action plan, recognised that AI/ML algorithms are 

vulnerable to the bias already present in historical datasets and 

healthcare systems449. Furthermore, they address the need to identify 

and eliminate such bias in order to ensure robustness and 

generalisability of these algorithms over time449. Interestingly, in a 

study investigating FDA-approved AI devices, approved between 2015-

2020, almost all the devices were evaluated in retrospective studies 

(126 of 130)448. In Norway, many AI tools in radiology, prior to 

implementation, are being validated in prospective clinical trials.  
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5.2.3 Considerations on Technology 

AI diagnostic assistance tools in pathology are intended to analyse 

either WSIs of HE stained tissue or IHC stained tissue. In paper II, the 

ENDOAPP was developed to quantify morphology in IHC stained tissue 

(PAN-CK+). The use of IHC, instead of HE, was proposed due to the 

clearer distinction of glands and stroma. Although performance was 

satisfactory, with acceptable discrimination, it did not come without its 

limitations. Firstly, it was sensitive to staining variation, in cases where 

gland DAB visualisation was weak, segmentation was poor and the 

ENDOAPP would overestimate the %stroma, and underestimate 

%gland. This increased the risk of a false negative result. This is a 

weakness of study design, as the model was highly dependent on 

colour. This was also notable in the epithelial nuclei segmentation step, 

if the nuclei staining was weak then nuclei segmentation was poor and 

thus the measurement of nuclei variation became more inaccurate. The 

ENDOAPP is entirely dependent on good staining i.e., distinct 

separation of blue and brown visualisation, to obtain accurate results 

and predictions. In hindsight, with the technologies now available, a 

deep learning method, trained on HE slides, may be a more robust 

choice. Nonetheless, the ENDOAPP demonstrates that the use of AI to 

quantify the morphological features in endometrial hyperplasia, can be 

prognostic, as previously encountered with D-score.  

5.3 The Future of Proliferation in Breast Cancer 

It is universally acknowledged that scoring of Ki67 should be 

standardised. However, with a plethora of methods available and many 

expert opinions to be regarded, deployment of a single, optimised 

method is unlikely. Perhaps a single method is not the answer. It is more 

likely that many methods can be standardised according to the same 
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specifications. To achieve this requires international cooperation and 

inter-disciplinary collaboration, of which the IKWG has a head start.  

The future of Ki67 in breast cancer, I believe lies in validation. For 

example, as demonstrated in paper III, and other studies198,206,253-258, 

Ki67 scoring is prognostic under a variety of conditions, may it be type 

of digital platform or the cut-off. Importantly, automated digital scoring 

is equivalent or better than manual methods. Yet, adoption of DIA 

methods is not as simple as we would be led to believe. As we 

investigated in paper III, as did another443, the total number of tumour 

cells contributes to reproducibility and prognostic accuracy of Ki67 

score. Manual global score, despite its terminology, estimates a relative 

global score and scores 300-400 tumour cells. Manual hotspot score 

usually scores ≥500 tumour cells. With DIA, there is no technological 

limit to the number of tumour cells that can be counted in a WSI. It gives 

us the opportunity to identify new thresholds which were limited by 

what was efficient and physically possible by pathologists and 

technicians. However, there is currently no standard tumour cell count 

specification in commercial DIA scoring APPs available. It is therefore up 

to the institution. Furthermore, commercial scoring APPs tend to mimic 

a pathologist rather than be designed to optimise prediction of 

prognosis or treatment response by evaluation of a cut-off. Therefore, 

there is still a need for improvement of Ki67 scoring. In the future, if we 

wish to standardise Ki67 DIA scoring, further investigation should be 

performed into the consequences of unstandardised and standardised 

tumour cell counts.  

Future work should include further comparisons with molecular 

profiling methods. Additionally, better definition of cut-offs and how 

they should be used: if Ki67 should be used independently of molecular 

profiles or as a pre-screening tool. This needs to be validated in large 

multi-centre studies but should also be verified locally. In addition, one 
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may expect that with improvements in AI technology, perhaps other 

methods will replace Ki67. Already, studies have demonstrated the 

potential of AI to predict molecular subtypes on HE450-452. As 

demonstrated in paper IV, it is possible to develop algorithms to detect 

objects in HE slides, with prognostic success. In the future it is likely that 

the tasks taken on by AI will be more complex, combining object 

detection and molecular findings. A panel approach might even be 

covered by a single AI method. Perhaps idealistic, considering the same 

was hypothesised nearly 50 years ago, yet not impossible knowing what 

we do now.  

As Geoffrey Keynes stated all those years ago, “Standardization must 

not, however, be allowed to create a fixed belief that no further 

improvement is possible and that any suggested change is necessarily 

to be regarded with disapproval”112. Yet, change takes time, and the 

technology available is still evolving. It is doubtful that the Ki67 scoring 

dilemma will be solved any time soon, but I do believe it will be 

improved. Furthermore, we are creatures of habit, we find comfort in 

what is familiar, so to ignore the prognostic value of Ki67 in favour of 

other methods would be to slight it too soon. However, to believe that 

Ki67 will be just as important in the future as it is today, would be too 

unimaginative.  

The future of mitotic counting in pathology might be a little clearer than 

for Ki67. It’s role in TNM staging of breast cancer is indisputable and 

many laboratories are transitioning from mitotic counting using a 

microscope to digital WSIs. The next step is likely to be the 

implementation of AI-based object detection tools, like the model 

evaluated in paper IV. Furthermore, validation in multiple cancer types 

not only increases the robustness of such a tool, due to the variable 

visual presentation of mitotic figures in different cancer types, but also 

its generalisability. As observed in paper IV, mitotic counting may be 
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prognostic in more than just breast cancer and this is worth pursuing in 

further studies. Additionally, it will be important to pursue 

investigations focusing on prognostic thresholds in other cancer types, 

as well as in breast cancer. In the development of AI, it is important to 

look beyond the confines of what is relevant today to access the full 

potential of these tools.  

5.4 Implementation of AI for Clinical Practice 

Institutions across continents are at varying stages of deployment of 

digital pathology and several have now begun the process of 

implementing AI in their clinics. Despite the promise of AI in digital 

pathology, implementation of such tools is not yet widespread and the 

number of in-depth implementation case studies for AI tools is lacking. 

Potential reasons for this may be attributed to scepticism surrounding 

the use of such tools due to ethical and safety concerns but also due to 

lack of understanding amongst various stakeholders (e.g. health care 

professionals, patients, IT technicians, legal entities, etc.)453. 

Furthermore, concerns have arisen regarding the cost of such tools, 

with the business case requiring the reduction of other costs such as 

IHC as a direct result of AI implementation246. An in-house developed 

algorithm may save on the cost of purchasing a commercial solution, 

but the resources for integration, monitoring and updating will also 

need to be supplied from within. Unfortunately, in many countries 

public institutions will be unable to allocate the time and personnel 

required due to budget constraints. Furthermore, we need to consider 

which APP or vendor to choose, and if APPs are selected from multiple 

vendors a new problem arises regarding usability – training pathologists 

to familiarise themselves with different user interfaces (UIs) in addition 

to the systems they already use. Also, whether DICOM or proprietary 

image file formats should be used, with considerations made for if they 

affect APP performance. With time, vendors and users alike will most 
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likely adapt as we already begin to see with some vendors working 

together to provide their APP solutions via each other’s systems454,455.  

Protocols for implementation of digital pathology have been described 

by Williams and colleagues at Leeds Teaching Hospitals in Leeds, 

UK14,456,457. Furthermore, checklists for the critical evaluation of AI tools 

prior to clinical implementation have been published35,58. These provide 

useful guidelines to consider when implementing AI locally. This is 

particularly important with the recent EU-IVDR regulations (EU 

2017/746). Additionally, development, validation and implementation 

of AI are not the only important steps to consider, but what happens to 

the AI after deployment. Quality control and monitoring should be 

performed, just as it is for other medical techniques such as IHC. For AI, 

monitoring over time will be critical to ensure patient safety. Quality 

control should be considering and where necessary performed regularly 

and following changes to the pipeline, e.g. software update, a new 

antibody, a new scanner, following scanner calibration, and so on. Not 

only monitoring of the hardware or algorithm performance is 

necessary, but we need to acknowledge how the pathologist will be 

influenced by the deployment of AI-assistance tools. We still need to 

address how to handle scenarios where the pathologist disagrees with 

the tool, yet the literature shows the AI-tool as being more prognostic 

than the former. Where does the ethical responsibility and liability lie? 

With the pathologist or with AI? Such scenarios must be considered to 

ensure ethical use of diagnostic assistance tools in the clinic and that 

they are being managed in the best way possible. There is also the 

concern of reliance, whereby a pathologist or technologist may become 

less critical of AI over time and therefore, tools of lower quality or with 

critical, yet subtle errors may slip through into the clinic.  

Designing an AI tool is just the first step in a much larger process. The 

patient and intended use, should always be at the focus during 
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development, validation, implementation, and monitoring. The use of 

AI has the potential to revolutionise patient care in medicine, with the 

clinician at the helm. This will only be achievable through the 

collaborative efforts of healthcare professionals, computer scientists 

and policymakers. Furthermore, international collaboration is essential 

to ensuring equal and fair access to healthcare. AI has the potential to 

achieve this, to mitigate bias in a landscape littered with it, but only 

through extensive testing and validation. Only by research can we 

improve upon technology, contribute to medical breakthroughs, 

uncover, and eliminate bias, to relieve the burden upon healthcare 

professionals and improve patient health. 
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6 Concluding Remarks 

Progress is inevitable. Paradigm shifts spurred by new technology may 

yield a greater understanding of the role of biomarkers in disease. The 

progress we have made today has been dependent on the discoveries 

of the past. At the core of this thesis is the objective to explore methods 

for their potential to improve diagnosis and prognosis by reducing the 

risk of over- and under-treatment. Deployment of digital pathology and 

AI creates new avenues for exploring biomarkers, tissue, and molecular 

data alike. The findings of this thesis demonstrate the need for 

validation of this new technology. Furthermore, as research continues 

to prove, the complexity of cell biology and pathology is immense. To 

narrow down a disease such as cancer, to a single biomarker, is too 

simplistic. However, to consider every aspect of each cancer and the 

individual it resides in is dauntingly complex, particularly in the face of 

the ever-increasing molecular data influx. Here, AI has the potential to 

aid us in tackling this problem.  

Where science fiction has encouraged us to fear AI, it is unsurprising 

that society is apprehensive to its extensive adoption and integration. 

However, as with all change, it is important to meet it, albeit with 

caution. In days where news headlines are inundated with mention of 

AI, following the explosive popularity of AI solutions such as ChatGPT, 

the lack of knowledge regarding the consequences surrounding their 

unregulated use is a real concern. In medicine, digital pathology and AI 

is designed for the simple purpose of aiding a clinician; to relieve the 

burden placed on too few to help the many. Furthermore, to expand 

healthcare access beyond physical borders. The consensus in the fields 

of radiology and pathology has been that AI will not replace medical 
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personnel but will augment them often citing that those who do not use 

AI will be the ones who are replaced35,49,458,459.  

Humans are notoriously resilient and demonstrate rapid adaptability, 

and as humans are the driving force behind AI, we expect it to do the 

same. Yet, we stand now, as the physicians of the past did before us, 

with new technology that present us with opportunity. At present it is 

yet unknown how AI will shape healthcare and society or to what extent 

it should, but we must utilise the resources at hand and adapt as we 

always have, one day at a time.  

 

 

“Science is an endurance sport. To produce that single illuminating 

experiment, a thousand nonilluminating experiments have to be sent into the 

trash; it is battle between nature and nerve.”460  

– Siddhartha Mukherjee, 2016 
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Appendix 2 – Mitotic Count 

Table: Mitotic Count (score) according to diameter of the high-power field and its 

corresponding area, as described by the WHO Classification of Breast Tumours (2019) 

Field 
diameter 

(mm) 

Field area 
(mm2) 

Mitotic count (score) 

1 2 3 

0.40 0.126 ≤ 4 5 – 9 ≥ 10 

0.41 0.132 ≤ 4 5 – 9 ≥ 10 

0.42 0.138 ≤ 5 6 – 10 ≥ 11 

0.43 0.145 ≤ 5 6 – 10 ≥ 11 

0.44 0.152 ≤ 5 6 – 11 ≥ 12 

0.45 0.159 ≤ 5 6 – 11 ≥ 12 

0.46 0.166 ≤ 6 7 – 12 ≥ 13 

0.47 0.173 ≤ 6 7 – 12 ≥ 13 

0.48 0.181 ≤ 6 7 – 13 ≥ 14 

0.49 0.188 ≤ 6 7 – 13 ≥ 14 

0.50 0.196 ≤ 7 8 – 14 ≥ 15 

0.51 0.204 ≤ 7 8 – 14 ≥ 15 

0.52 0.212 ≤ 7 8 – 15 ≥ 16 

0.53 0.221 ≤ 8 9 – 16 ≥ 17 

0.54 0.229 ≤ 8 9 – 16 ≥ 17 

0.55 0.237 ≤ 8 9 – 17 ≥ 18 

0.56 0.246 ≤ 8 9 – 17 ≥ 18 

0.57 0.255 ≤ 9 10 – 18 ≥ 19 

0.58 0.264 ≤ 9 10 – 19 ≥ 20 

0.59 0.273 ≤ 9 11 – 20 ≥ 20 

0.60 0.283 ≤ 10 11 – 21 ≥ 21 

0.61 0.292 ≤ 10 12 – 22 ≥ 22 

0.62 0.302 ≤ 11 12 – 22 ≥ 23 

0.63 0.312 ≤ 11 12 – 23 ≥ 23 

0.64 0.322 ≤ 11 12 – 23 ≥ 24 

0.65 0.332 ≤ 12 13 – 24 ≥ 25 

0.66 0.342 ≤ 12 13 – 24 ≥ 25  

0.67 0.352 ≤ 12 13 – 25 ≥ 26 

0.68 0.363 ≤ 13 14 – 26 ≥ 27 

0.69 0.374 ≤ 13 14 – 27 ≥ 28 
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Appendix 3 – QuPath Ki67 Cell Classifier Script 
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A B S T R A C T

Endometrial hyperplasia is a precursor to endometrial cancer, characterized by excessive prolifer-
ation of glands that is distinguishable from normal endometrium. Current classifications define 2
types of EH, each with a different risk of progression to endometrial cancer. However, these schemes
are based on visual assessments and, therefore, subjective, possibly leading to overtreatment or
undertreatment. In this study, we developed an automated artificial intelligence tool (ENDOAPP) for
the measurement of morphologic and cytologic features of endometrial tissue using the software
Visiopharm. The ENDOAPP was used to extract features from whole-slide images of PAN-CKþ

estained formalin-fixed paraffin-embedded tissue sections from 388 patients diagnosed with
endometrial hyperplasia between 1980 and 2007. Follow-up data were available for all patients
(mean ¼ 140 months). The most prognostic features were identified by a logistic regression model
and used to assign a low-risk or high-risk progression score. Performance of the ENDOAPP was
assessed for the following variables: images from 2 different scanners (Hamamatsu XR and S60) and
automated placement of a region of interest versus manual placement by an operator. Then, the
performance of the application was compared with that of current classification schemes: WHO94,
WHO20, and EIN, and the computerized-morphometric risk classification method: D-score. The
most significant prognosticators were percentage stroma and the standard deviation of the lesser
diameter of epithelial nuclei. The ENDOAPP had an acceptable discriminative power with an area
under the curve of 0.765. Furthermore, strong to moderate agreement was observed between
manual operators (intraclass correlation coefficient: 0.828) and scanners (intraclass correlation
coefficient: 0.791). Comparison of the prognostic capability of each classification scheme revealed
that the ENDOAPP had the highest accuracy of 88%-91% alongside the D-score method (91%). The
other classification schemes had an accuracy between 83% and 87%. This study demonstrated the
use of computer-aided prognosis to classify progression risk in EH for improved patient treatment.

© 2023 THE AUTHORS. Published by Elsevier Inc. on behalf of the United States & Canadian Academy
of Pathology. This is an open access article under the CC BY license (http://creativecommons.org/

licenses/by/4.0/).
Introduction

In 2020, more than 417,000 new cases of endometrial cancer
were reported globally, with the highest incidence recorded in
Asia followed by Europe, in Norway, 764 new cases were
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reported.1,2 Approximately 80% of endometrial cancers are pre-
ceded by endometrial hyperplasia.3 According to theWorld Health
Organization’s 2020 guidelines (WHO20),4 endometrial hyper-
plasia can be classified into 2 types: endometrial hyperplasia
without atypia (HwA) and endometrial atypical hyperplasia
(EAH). HwA is defined as the pathologic proliferation of endo-
metrial glandswithout cytologic atypia, whereas EAH is defined as
an excess of endometrial glands in comparison with stroma
alongside changes to epithelial cytology that is distinct from sur-
rounding normal endometrium.4 Risk of progression to cancer
varies between the 2 types: HwA is considered low risk (<5%
progression risk)4-6 and EAH high risk (8%-40% progression
risk).4,7 Additionally, EAH has a high risk of concurrent endome-
trial cancer.4,6,8,9 Therefore, these diagnoses receive different
treatments. High-risk EAH is commonly treated with surgery such
as hysterectomy, whereas low-risk HwA is assigned conservative
management with monitoring and progestin treatment. A weak-
ness of the WHO20 scheme is the dependence on subjective
qualitative criteria, resulting in poor reproducibility.

Another diagnostic classification scheme, which distinguishes
high-risk endometrial intraepithelial neoplasia (EIN) from low-
risk non-EIN, also experiences this shortcoming. A computer-
ized, morphometric, semiautomatic assessment tool, D-score, is
used to objectively evaluate the progression risk of patients with
hyperplasia. This method measures key features of endometrial
hyperplasia, including percentage stroma and variation in diam-
eter of epithelial nuclei, to define progression risk: low or high.
Themethodwas both reproducible and prognostic in cohorts from
the United States, Netherlands, and Norway.10-12 However, it is
time consuming and not widely available.

With the digital transformation of pathology departments
across the globe come new opportunities for integration of arti-
ficial intelligence (AI) tools for computer-assisted prognostic
assessment. Such applications can contribute to increased effi-
ciency in routine workflows by automating time-consuming tasks,
such as the D-score method, and have the potential to improve
diagnostics through more objective and reproducible methods. In
this study, we developed an AI-assistance tool that can classify
endometrial hyperplasia into low-risk and high-risk forms to
reduce overtreatment and undertreatment of patients.
Materials and Methods

Study Population

The study was retrospective and received approval from the
Regional Ethics Committee of Health West Norway (2010/2464)
and informed consent waived. The patient database consisted of
602 cases who received a diagnosis of endometrial hyperplasia
between 1980 and 2007 at Stavanger University Hospital, Norway.
Inclusion criteria for this study were as follows: (1) original
diagnosis of endometrial hyperplasia by WHO94, (2) at least 1
follow-up sample, for nonprogression cases required to be �6
months after the initial diagnosis, (3) material available as a
formalin-fixed paraffin-embedded (FFPE) tissue block, and (4) a
minimum area of 4.0 mm2 of endometrial tissue in the whole-
slide image (WSI). Of the 467 cases that met inclusion criteria,
388 had D-scores available. Patients were treated according to the
Norwegian National Guidelines at the time of primary diagnosis
(total: n ¼ 388; no treatment: n ¼ 317; hormone/progesterone
therapy: n ¼ 71). Cases were previously diagnosed using the
WHO94 guidelines.3,13 Each case was reviewed by a pathologist
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(E.G.), on original hematoxylin-eosin and saffron (HES)estained
slides, according to the WHO20 guidelines4 and EIN criteria.13
Immunohistochemistry (PAN-CKþ), Image Acquisition, and D-score

Tissue sections were cut from FFPE tissue blocks at a thickness
of 3.0 mm. Sections were mounted on SuperFrost Plus slides
(Menzel Gl€aser). After incubation at 60 �C for 1 hour, slides were
transferred to the Dako Omnis. Slides were stained for pan cyto-
keratin plus (PAN-CKþ) using a preoptimized protocol. The PAN-
CKþ antibody (clone AE1/AE3þCK8/18; Biocare Medical) was used
at a dilution of 1:150 and visualized with the EnVision FLEX
detection system (Dako). Sections were counterstained with he-
matoxylin for detection of nuclei.

Whole PAN-CKþestained sections were scanned at 400�
magnification using the Hamamatsu Nanozoomer XR (Hama-
matsu Photonics) at Haukeland University Hospital, Bergen, Nor-
way, and the Hamamatsu Nanozoomer S60 at Stavanger
University Hospital.

D-scores were calculated on HES-stained sections as previously
described.14 Lesions scored as �0 were defined as low risk and
lesions scored <0 as high risk.
Training and Tuning of an AI Application

Digitized WSIs were uploaded to the Visiopharm system
(version 2020.08; Visiopharm A/S). An in-house application
(ENDOAPP) was developed to detect specific morphologic features
based on staining patterns using a combination of classifiers, fil-
ters, and postprocessing steps. The ENDOAPP consists of several
individual algorithms/stages, which can be run separately or in
batches (Fig. 1). The training data set (Fig. 2) was used to develop
the ENDOAPP. Manual annotations were required for stages 1, 2,
and 6. Annotations were added iteratively until the training was
considered satisfactory (satisfactory alignment of feature and
output label) as assessed by the operator (E.R.).

The algorithms were developed and trained as follows:

� Stage 1: Segmentation of images into tissue and nontissue
using a threshold classifier trained on manually annotated la-
bels of representative regions.

� Stage 2: Further segmentation of tissue into stroma, lumen,
and epithelial (gland) compartments using a K-means classi-
fier. Manually annotated labels (brown pixels: PAN-CKþ

[gland], blue pixels: hematoxylin [stroma], and white pixels:
absence of stain [background and lumen]) were used to train
the classifier. Segmentation of lumen compartments used
relational and size criteria (eg, surrounded by gland label).

� Stage 3: A heat map was generated using a built-in package to
detect dense regions of green label (gland compartment) for
delineation of a 4.0-mm2 region of interest (ROI) around the
densest region, the hotspot.

� Stage 4: Extraction of measurements of the segmented com-
partments within the hotspot.

� Stage 5: Outlining of the gland compartment within the hot-
spot with a ROI.

� Stage 6: Segmentation of the gland compartment into nuclei
and background using a K-means classifier. Manually anno-
tated labels of brown pixels (background) and blue pixels
(hematoxylin [nuclei]) were used to train the classifier.

� Stage 7: Extraction of measurements of the segmented nuclei.



Figure 1.
The ENDOAPP workflow for progression risk assessment of endometrial hyperplasia. The workflow is divided into 7 stages, which run independently or in batch. The ENDOAPP
can be paused, reviewed, or rerun at any stage. A manual review is performed after stages 4 and 7. Stage 1: Segmentation of tissue and nontissue, followed by delineation of
tissue with a region of interest (ROI). Any tissue region smaller than 4.0-mm2 total area was excluded. Stage 2: Segmentation of the stromal compartment (blue label), epithelial/
gland compartment (green label), and lumen compartment (yellow label). Stage 3: A heat map is generated to detect the largest area of green label (gland). A single, circular, 4.0-
mm2 ROI is placed automatically around the hotspot. Stage 4: Measurements of all labeled features is performed within the hotspot ROI. Stage 5: The gland/epithelial
compartment is delineated with a new ROI. Stage 6: The gland compartment is segmented into nuclei (blue label) and background (no label). Stage 7: Feature measurement and
extraction for all segmented nuclei within the gland compartment. After completion of stage 7, all features extracted are input into the risk stratification model for calculation of
progression risk score.
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The features extracted in stage 4 and 7 are outlined in Table 1.
The tuning set (Fig. 2) was used tomonitor and evaluate ENDOAPP
performance after adjustments to the algorithms.
Comparison of a Manual and Automatic ROI Method

To assess the prognostic value of the ENDOAPP, a manually
placed ROI, by a trained operator, was compared with the auto-
mated ROI placement by the ENDOAPP. This was performed on
Hamamatsu XR scanned images from the development data set
(Fig. 2). The automatic method proceeded as described (Fig. 1). For
the manual method, 3 independent operators (E.A.M.J., E.R., E.G.),
blinded to the outcome and previously trained in the D-score
analysis (E.G. is an experienced pathologist), were instructed to
place a 4.0-mm2 circular ROI on an unclassifiedWSI. The operators
were instructed to use the following criteria: the ROI must include
at least 2.0 mm2 of endometrial tissue, fragmented regions
(Supplementary Fig. S1) should be avoided where possible, and
the ROI should contain the area of tissue the operator deemed to
have the highest density of glands. Stages 2-7 of the ENDOAPPwas
run, excluding stage 3 (hotspot detection) (Fig. 1). To avoid
retention bias for the operator (E.R.), a mandatory washout period
of 6 weeks was required between reviewing any results/classified
images and performing manual analysis.

For both manual and automated ROI placement, a classified
image was reviewed (E.R.) after stages 4 and 7 and the case
assigned either pass or fail (Fig. 1). If the analysis failed owing to
tissue or scanning artifacts (Supplementary Fig. S2), a new ROI
was placed by the original operator if a similarly dense regionwas
available. If no similar region was available, the analysis was
3

classified as a fail. For the automated method, artifacts, including
benign mimics such as metaplasia, were excluded from the tissue
ROI (stage 1) and the ENDOAPP rerun from stage 2. If no similarly
available regionwas present, the ENDOAPP was not rerun and the
case classified as a fail. Performancewas recorded for bothmanual
and automatic methods.
Statistical Analysis

All statistical analyses were performed using SPSS for Win-
dows (version 26.0.0; IBM SPSS Statistics). For all analyses a P
value of <.05 was considered significant and assumptions were
verified for each statistical test. The Kruskall-Wallis and Pearson
c2 tests were used to determine differences between the original
database cohort (N ¼ 602) and the study database (n ¼ 388). The
development data set was used for all statistical analyses (Fig. 2).

Feature Assessment
Preliminary feature assessment was performed on data from

WSI from the Hamamatsu XR. Descriptive statistics and crosst-
ables were generated for all extracted variables as defined in
Table 1. Patients were grouped according to progression or no
progression to endometrial carcinoma. Nonprogression was
defined by no diagnosis of endometrial endometrioid carcinoma
in the follow-up period and progression as a diagnosis of endo-
metrial endometrioid carcinoma in the follow-up period.

Risk Classification Modeling
A logistic regression analysis was used to identify any mean-

ingful relationship between the outcome (progression status) and



Figure 2.
Overview of cases from the original database of 602 patients with a primary diagnosis of endometrial hyperplasia between the years 1980 and 2007 diagnosed at Stavanger
University Hospital, Stavanger, Norway. Inclusion and exclusion criteria for the development data set are described. Training and tuning data sets were generated from the 363
cases available from the development data set and prevalence of progression was aimed to be between 0.1 and 0.25 in each group. The ENDOAPP was trained on annotations
from the training data set. The tuning data set was used to evaluate the training and identify any adjustments required. The full development data set was used to develop the
logistic regression model for risk stratification. Further comparative analysis was performed to assess performance and prognostic capability across classifications. Cases that
were included or excluded are described.
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the predictor variables. The predictor variables tested were age;
WHO20, WHO94, and EIN classifications; and the features
described in Table 1. The best performing combination of features
recommended using the backward Wald method was used in the
final logistic regression model. The feature standard deviation of
the lesser diameter of the nuclei (LDSD) was transformed by a
factor of 10 to avoid values between 0 and 1.

Survival Analysis
A receiver operating characteristic (ROC) curve was

created to identify potential risk category cut-offs. The area
4

under the ROC curve (AUC) was used to evaluate the model’s
discriminative ability according to the guidelines by Hosmer
et al.15 Kaplan-Meier curves were generated using the most
optimal cutoff. Significant differences were assessed using
the log-rank test. The end point was progression-free sur-
vival, with progression to endometrial cancer defining an
event. Patients with no progression were censored according
to the last known follow-up date or if they received a hys-
terectomy, censored to the date of the procedure. Kaplan-
Meier survival curves were generated using R studio
(2022.02.0 Build 443).



Table 1
Overview of the features measured and extracted by the application

Feature Units Type of measurement Type of measure

Structural features

Percentage stroma % Area Total

Percentage gland % Area Total

Percentage lumen % Area Total

Ratio of glandsþlumen:stroma Area Total

Perimeter length of glands mm Linear Total; mean

Interface length of glands mm Linear Total; mean

Gland count Count Total

Ellipticalnessa (gland) 0-1 Score Mean

Form factorb (gland) 0-1 Score Mean

Nuclear features

Lesser diameter mm Linear Mean ± SD

Minor axis mm Linear Mean ± SD

Largest diameter mm Linear Mean

Major axis mm Linear Mean

Ellipticalness (nuclei) 0-1 Score Mean

Form factor (nuclei) 0-1 Score Mean

a A measure of how elliptical an object is.
b A measure of how round an object is.
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Performance Metrics
For each classification scheme (ENDOAPP, WHO94, WHO20,

EIN, and D-score), performance metrics were calculated: sensi-
tivity, specificity, positive predictive value (PPV), negative pre-
dictive value (NPV), and accuracy. Accuracy was calculated based
on a prevalence of progression of 0.25, as estimated by the Nor-
wegian Department of Health,16 and 0.1, as estimated from the
study cohort.

Concordance Analysis
To assess reproducibility of the model, Cohen k (categorical

variables) and the intraclass correlation coefficient (ICC) were
calculated (ICC: absolute agreement, 2-way mixed effects model
with 95% confidence intervals). Agreement levels, as defined by
Koo and Li,17 was assessed between XR and S60, operators of the
manual method, manual and automatic ROI placement, and the
model and D-scores (k only).
Results

Case Overview

From the original database of 602 endometrial hyperplasia
cases, 388 cases met the inclusion criteria and had D-scores
available. Of the 388 cases, 25 were removed owing to the
following reasons: 2 duplicates, 3 cases failed scanning
(Hamamatsu XR only), 15 cases had no tissue remaining in the
FFPE block, and 5 cases had inadequate staining, leaving 363
cases for analysis, of which 328 had no progression to endo-
metrial cancer (90%) and 35 cases had progression (10%). Be-
tween the original 602 cases and final 388 cases, there was
little to no significant difference in the proportion of cases
according to diagnostic category, progression status, or age
(Table 2). Furthermore, there was no significant survival dif-
ference between treated and untreated patients according to
diagnostic category: WHO94, WHO20, and EIN (Kaplan-Meier,
P > .1).
5

ENDOAPP Performance

The ENDOAPP ran successfully on 325 WSIs (n ¼ 363, 90%)
scanned on the Hamamatsu XR (XR) and for 332 WSI (n ¼ 366,
91%) scanned on the Hamamatsu S60 (S60). For both WSIs scan-
ned on the XR and S60, 8% (n¼ 49) of cases failed because of either
out-of-focus regions resulting in failure of stage 6 (Fig.1) or lesions
being smaller than 2.0 mm2 (n ¼ 21, 2%). WSIs scanned using the
XR had a higher edit rate after review than those by the S60 (44%
vs 33%). The main types of edits included removal of artifacts such
as benign mimics such as metaplasia (2 cases) and fragmented
regions and correcting erroneous labels due to suboptimal stain-
ing intensity caused by too thick sections. Edits were performed
after a manual review (Fig. 1). Thus, 325 cases were available for
further analysis for the XR and 332 cases for the S60. For
comparative analysis between the 2 scanners, 302 cases were
available (Fig. 2).

Prognostic Feature Extraction

The ENDOAPP measured and extracted 15 different features
(Table 1). A logistic regression analysis was performed to identify
any associations between the features and progression, with age
included. Five features were identified as significant predictors of
progression, independently (Table 3). These features were further
analyzed in a multivariate logistic regression. Percentage stroma
and LDSD were recommended as optimal predictor variables of
progression (P < .001 and P ¼ .005, respectively). This model had
acceptable discriminative power, with an AUC of 0.765 (95% CI,
0.655-0.875) in an ROC curve analysis. The most optimal cutoff
was used, and cases were defined as low risk (�0) or high risk
(>0), with a score range of �5 to 3.
Survival Analysis

All included cases had follow-up data available, ranging from
10 to 366 months (mean ¼ 144 ± 75.8 months) for no progression



Table 2
Overview of cases included in the original patient database and the final study database

Characteristics Original database Study database Statistical difference

N 602 388

Age (y) H ¼ 3.600, P ¼.058

Mean 53 51

Range 21-98 24-88

Progression (% cases) c2 ¼ 0.694, P ¼.707

No progression 86 89

Cancer 6 8

Concurrent cancer 3 3

Lost to follow-up 5 0

Original diagnosis (WHO94) (% cases) c2 ¼ 5.745, P ¼.332

Simple hyperplasia 64 67

Simple hyperplasia with atypia 4 3

Complex hyperplasia 21 21

Complex hyperplasia with atypia 9 7

Unclear hyperplasia 2 2
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cases and 0 to 247 months (mean ¼ 70 ± 68.4 months) for pro-
gression cases. The Kaplan-Meier survival analysis revealed that
high-risk patients (as defined by the ENDOAPP) showed signifi-
cantly lower progression-free survival than low-risk patients did
over a period of 20 years (Fig. 3A). The ENDOAPP, using XR-
scanned images, had a sensitivity of 50% and specificity of 92%
(n ¼ 325).
Comparison of Scanners

In addition to XR-scanned images, the ENDOAPP was run on
WSIs obtained from the S60 scanner. Similar to results from the
XR, S60 classifications revealed a significant separation in
progression-free survival between low-risk and high-risk patients
(Fig. 3). In addition, there was moderate absolute agreement be-
tween scanners (ICC: 0.770; 95% CI, 0.282-0.899). The agreement
of the feature percentage stroma between the scanners was strong
(ICC: 0.890; 95% CI, 0.864-0.912; P < .001), whereas the agreement
of LDSD was weak (ICC: 0.536; 95% CI, �0.081 to �0.801). Sensi-
tivity and specificity of the model for the S60 were similar to those
of the XR (42% and 50% and 96% and 92%, respectively).
Comparison of Manual and Automatic ROI Placement

In addition to automated ROI placement, 6 operators per-
formed manual ROI placement and evaluated the variability and
performance of the ENDOAPP. There was strong agreement (risk
scores) between the 6 operators for manual placement (ICC:
0.828; 95% CI, 0.789-0.861; P < .001) and moderate agreement
between the operators and the automated method (ICC: 0.791;
95% CI, 0.752-0.827; P < .001). The ROIs chosen by the operators
Table 3
Prognostic features for assessment of risk of progression of endometrial hyperplasia ev

Feature Units

Age <55, �55 y

Percentage stroma %

Percentage lumen %

Ratioa

SD of the lesser diameter of gland nuclei �10 mm

a The ratio of glandsþlumen to stroma.
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tended to overestimate the risk score, with higher a number of
false-positive results than the automated method. Following
further investigation of falsely predicted cases, most (58%) had
borderline scores (0 ± 0.5). The remainder were either highly
fragmented or showed uniform morphology throughout the tis-
sue. We observed little difference in morphology between HES-
stained and PAN-CKþestained sections for most of the cases
(97%). Comparison of the ENDOAPP with the D-score method
revealed minimal (XR) (k: 0.361; 95% CI, 0.194-0.528; P < .001)
to moderate agreement (S60) (k: 0.506; 95% CI, 0.328-0.684;
P < .001).
Comparison of Classification Schemes

Risk classification by all methods (WHO94, WHO20, EIN, D-
score, XR-ENDOAPP, and S60-ENDOAPP) was available for 285
matched cases (216 for additional manual operator comparison)
(Fig. 2). Performance metrics were calculated for each method
(Table 4). The number of false-negative results was similar for all
classification methods (Table 4). There was notable variation in
the number of false-positive results among the classification
schemes, with fewest recorded by the ENDOAPP (S60) and D-score
method and the highest recorded by the EIN scheme (Table 4).
Overall, the highest accuracy was reported for the ENDOAPP (S60)
and D-score method at 91% (Table 4). NPVs were similar across all
classifications, whereas PPVs were highest for the ENDOAPP (S60)
and D-score method at 52% and 54%, respectively (Table 4). When
the metrics were adjusted to only include matched cases (n ¼
216), our observations remained relatively unchanged (Table 4,
data in parentheses). Furthermore, when WHO20 and EIN were
added to the logistic regression model, only WHO20 was recom-
mended as an additional predictor; however, there was no
aluated independently by a logistic regression model

OR 95% CI P

2.902 1.304-6.456 .009

0.930 0.901-0.959 <.001

1.120 1.055-1.189 <.001

2.990 1.559-5.735 .001

1.687 1.170-2.431 .005



Figure 3.
Kaplan-Meier curves demonstrating progression-free survival in patients diagnosed with endometrial hyperplasia, stratified by risk score according to the ENDOAPP logistic
regression model. (A) Progression-free survival estimates extracted from XR scanned images (n ¼ 325). (B) Progression-free survival estimates extracted from S60 scanned
images (n ¼ 332).
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noteworthy improvement to the resulting NPVs and PPVs, nor
accuracy, comparedwith those by the ENDOAPP (data not shown).
When progressive cases were subdivided into concurrent and
nonconcurrent cases, the D-score method had the fewest mis-
classifications (n ¼ 1) in comparison with WHO20 and EIN, which
recorded the most (n ¼ 3) (Table 5). In summary, the ENDOAPP
(S60) and D-score method obtained higher performance metrics
than the other classifications.
Discussion

AI has been used to identify and diagnose endometrial hy-
perplasia and carcinoma in histologic tissue,18-22 but prognostic
assessment has not yet been studied in depth. In this study, we use
Table 4
Performance metrics for the ENDOAPP according to scanner type (XR, S60) and 3 ope
diagnostic classification schemes: WHO94, WHO20, and EIN

Performance metrics ENDOAPP

XR S60 Operators

N 325 (216) 332 (216)

True-positive results 14 (6) 13 (5)

True-negative results 274 (182) 289 (194)

False-positive results 23 (18) 12 (6)

False-negative results 14 (10) 18 (11)

Sensitivity (%) 50 (38) 42 (31) 50-58 (44-56

Specificity (%) 92 (91) 96 (97) 95-96 (84-86

NPV (%) 95 (95) 94 (95) 95-96 (95-96

PPV (%) 38 (25) 52 (45) 24-26 (19-21

Accuracy (0.25)a (%) 82 (78) 82 (81) 76-79 (75-77

Accuracy (0.1)b (%) 88 (86) 91 (90) 82-83 (81)

Values are both unadjusted and adjusted (in parentheses) for matched cases based on
NPV, negative predictive value; PPV, positive predictive value.

a Accuracy based on a prevalence of progression of 0.25 estimated by the Norwegia
b Accuracy based on a prevalence of progression of 0.1 estimated from the study co
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AI to classify the risk of progression of endometrial hyperplasia.
The ENDOAPP is an improvement on traditional prognostic
guidelines and has equal prognostic values to those of the estab-
lished, quantitative D-score method in the study cohort.

The ENDOAPP performed successfully on 89%-91% of WSIs,
where reasons for failure constituted preanalytical errors such as
out-of-focus scans, too thick sections, and too small lesions. If
these errors are corrected, fewer cases would fail at the analytical
stage. In digital pathology optimization of preanalytical protocols
should be prioritized, including steps for quality control of WSI,
before implementation of AI algorithms.23

At present, 3 classification systems are used in the clinic to
assess prognosis of endometrial hyperplasia: theWHO20, EIN, and
D-score. A meta-analysis by Raffone et al24 debates that there is
not enough evidence to suggest that either WHO20 or EIN is
rators for manual ROI placement, and performance metrics for D-score and the

D-score WHO94 WHO20 EIN

363 (216) 378 (216) 349 (216) 348 (216)

13 (6) 18 (5) 16 (5) 18 (8)

317 (193) 317 (179) 285 (183) 272 (174)

11 (7) 25 (21) 30 (17) 42 (26)

22 (10) 22 (11) 18 (11) 16 (8)

) 37 (38) 39 (31) 47 (31) 53 (50)

) 97 (97) 93 (90) 90 (92) 87 (87)

) 94 (95) 94 (94) 94 (94) 94 (96)

) 54 (46) 36 (19) 35 (23) 30 (24)

) 82 (82) 79 (75) 80 (76) 78 (78)

91 (91) 87 (84) 86 (85) 83 (83)

data availability.

n Department of Health.16

hort.



Table 5
Diagnosis of concurrent progression cases according to WHO94, WHO20, and EIN classification schemes and risk classification according to D-score, ENDOAPP (XR), and
ENDOAPP (S60)

WHO94 WHO20 EIN D-score ENDOAPP (XR) ENDOAPP (S60)

No. of cases according to diagnostic category ¼ 9

CH 1 HwA 3 Non-EIN 3 Low 1 Low 2 Low 2

CAH 8 EAH 5 EIN 5 High 8 High 7 High 7

Cancer 1 Cancer 1

CAH, complex atypical hyperplasia; CH, complex hyperplasia.
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superior to the other but conclude that the D-score method has
the highest prognostic value.24-30 In this study, the 2 most prog-
nostic features in a multivariate logistic regression model were
percentage stroma and LDSD. This is not unexpected because both
features are also measured for the D-score analysis.12 The final
ENDOAPP incorporated both these features.

In comparison with canonical classifications, we assessed the
prognostic value of the ENDOAPP. In the clinic, a test with a high
PPV is desired when treatment is highly invasive. Therefore, it is
prudent to develop a model that has a low likelihood of producing
false-positive results: patients who would be likely to be over-
treated. Ideally, with a progression prevalence of 10%, an optimal
PPV is approximately 50%, with an NPV of 99%. The ENDOAPP
achieved a PPV of 38%-52%, whereas the traditional schemes (EIN,
WHO20, and WHO94) had a lower PPV of 30%-35% in the study
cohort, also lower than the target. Ørbo et al12 noted for the
WHO94 scheme an NPV and PPV of 94% and 44%, respectively,
which is in line with our observations for the WHO94 (NPV: 94%,
PPV: 36%) andWHO20 (NPV: 94%, PPV: 35%). It is also comparable
with the findings of Sanderson et al,20 who reported an NPV of
91.6% for WHO94 and 98.4% for WHO14/EIN scheme. At present,
we acknowledge that the evaluation of the ENDOAPP has been
limited to a development data set with a small number of pro-
gression cases. Therefore, we cannot make any definitive conclu-
sions on clinical implementation yet. To assess clinical relevance,
validation of the ENDOAPP should be performed on an indepen-
dent test set with a sufficient number of representative samples
(eg, benign mimics and progressive cases).

A reference or gold standard is requiredwhen evaluating a new
test or biomarker for its predictive and prognostic values. In our
case, the gold standard could be D-scores or one of the other
classification schemes. We demonstrated weak to minimal
agreement between the ENDOAPP and D-score method. However,
as noted by Pepe et al,31 assessing the agreement between 2 tests
does not consider the target of the test: in this case, presence or
absence of progression. Therefore, we find it more appropriate to
use survival data as our “ground truth” and compare the perfor-
mance metrics of each test. We report similar PPVs for the
ENDOAPP (38%-52%) and D-score (54%), which is comparable with
the literature where the PPV for the D-score method varies be-
tween 38% and 67%,12,13,32,33 with an average of 50.8% reported.14

Although the NPV reported in this study is a little lower
(ENDOAPP: 94%-95%, D-score: 94%) than the average 100% re-
ported by Baak et al.14 The similarities between the D-score
method and ENDOAPP suggest that our method thus far is
equivalent to the D-score method.

In addition to assessing the prognostic value of our method, we
wish to assess the reproducibility of the ENDOAPP in comparison
with other classification schemes. Since the transition from a
multitiered classification (WHO94/WHO03) to a 2-tiered classifi-
cation (WHO14/WHO20 and EIN), the consensus is that repro-
ducibility of endometrial hyperplasia classifications has
improved.25,29,34 In this study, we report good reproducibility
8

with a moderate agreement between different operators and
scanners using a 2-tiered system (ICC: 0.791). Usubutun et al35

evaluated the reproducibility of a 3-class EIN scheme (benign,
EIN, and carcinoma) and reported an average weighted k value of
0.72, while Ordi et al29 reported a full agreement among pathol-
ogists at 70% for WHO0336 and 69% for EIN. The reproducibility
observed in the literature is similar to what we observe between
the scanners (ICC: 0.770). Moreover, of the 2 features suggested by
the logistic regression model, LDSD, a measure of cytologic atypia,
had a weaker agreement (ICC: 0.536) in comparison with per-
centage stroma (ICC: 0.890). This is consistent with observations
that cytological atypia is the diagnostic criteria with the highest
disagreement between pathologists.13,37e40

We acknowledge that there are limitations with the ENDOAPP.
Although we argue that automated methods are objective, we
were unable to remove subjective influence completely. Owing to
the nature of sampling techniques, endometrial tissue is often
subject to mechanical stress, resulting in either a fragmented
appearance or artifact crowding due to compression of glands,
which makes it difficult to obtain a whole, representative sample.
Fragmented regions often lose the stromal compartment, leaving
disjointed and incomplete epithelium that appears as dense
clusters. This can result in a false-positive score, and such artifacts
should be removed from the analysis. The ENDOAPP is able to
remove only smaller fragmented regions (<4.0 mm2). Therefore,
an operator must identify and remove them during the review
process. This requires knowledge of endometrial tissue for correct
identification. We observed that fragmented regions were still
approved for analysis because it was sometimes difficult to
differentiate between sampling artifacts and true tissue. Fragment
artifacts represented 18% of misclassified cases. A more advanced
AI approach such as deep learning may be more suitable to
perform this task, although fragmented lesions have also been
noted as a source of error in a deep learning model.22 Neverthe-
less, scores achieved through automated placement and manual
placement showed strong agreement, and therefore, any variation
introduced owing to manual editing may have little impact.
However, operators had a tendency to overestimate, with a higher
number of false-positive results than the automated method. In
difficult cases, manual placementmay be acceptable. As discussed,
a deep learning neural network may be a favorable approach
because it would allow utilization of hematoxylin and
eosinestained slides over PAN-CKþestained slides. This would
remove the extra step of immunohistochemistry, saving on cost
and time, andmay bemore relevant to pathologists who primarily
diagnose on hematoxylin and eosinestained slides.

Regarding clinical implementation, the ENDOAPP must be
validated on an independent test set before any conclusions of
realistic clinical implementation can be made. Practical aspects
should also be considered, such as integration of the ENDOAPP
into a pathology workflow and feasibility and cost of software
integrations into the existing laboratory systems. Implementation
of an AI algorithm will be dependent on the cost-benefits judged
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by the demands of the individual institution. In laboratories where
the D-score method is used, implementation of the ENDOAPPmay
be very relevant because there is a considerable time-saving
aspect: shortening analysis time from 15 to 60 minutes per case
to 2 to 15 minutes. The tradeoff between the logistics of integra-
tion, time spent on the analysis, and the potential prognostic effect
compared with the shortcomings of present-day diagnostics
should be weighed carefully.

Pathologists use diagnostic guidelines such as the WHO20 to
diagnose endometrial hyperplasia. However, owing to interob-
server variability, a “panel approach” is recommended because
morphologic criteria alone may not be sufficient for accurate
prognosis.20,41,42 We propose that AI tools should also be consid-
ered for such panels, either for objective and quantitative evalu-
ation of morphologic features or for assessment of prognostic
biomarkers. The biomarkers PAX2 and PTEN have prognostic
values and may be potential candidates for such a panel.43,44

Endometrial tissue can be notoriously difficult to assess owing
to the common presence of sampling artifacts, the influence of
hormones, and the presence of benign mimics such as polyps and
metaplasia. Therefore, a combinatorial approach using comput-
erized analysis, molecular analysis and/or immunohistochemistry,
which are less affected by the mentioned pitfalls, may be a more
standardized and robust method than a single classification
system.

In brief, use of the ENDOAPP intends to assist a pathologist in
the prognostic assessment of endometrial hyperplasia. The
ENDOAPPmay improve the reproducibility of prognostic decisions
and make them more objective through automation. At present,
the ENDOAPP has been evaluated on a development data set, and
it needs to be validated on an independent test set, where per-
formance, value of clinical implementation, and practical usability
should be assessed.

To conclude, the ENDOAPP presented in this study demon-
strates equal prognostic value and improved practicality to the D-
score method. Moreover, it has the potential to improve prog-
nostic evaluation of endometrial hyperplasia for improved patient
treatment.
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Supplementary figure 1: A) Example of endometrial hyperplasia (no progression) with highly

fragmented regions due to mechanical stress during sampling. Scale bar 5mm. B) A close-up of a

fragmented region consisting primarly of dense glands but lacking much of the stromal

compartment. The only remaining stromal compartment is marked by a black arrow. Scale bar

500μm. C) The labeled image of the region shown in B, only the epithelial structures are labelled

with minimal stroma. Measurement of this region would result in a higher than expected

percentage stroma due to the loss of much of the stromal compartment. For this particular case,

when the fragmented region was not removed manually it was selected for analysis by the

ENDOAPP resulting in a percentage stroma of 32% and a high-risk score, false positive result.

When removed the ENDOAPP selected an intact region resulting in a percentage stroma score of

60% and a low-risk result.
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Supplementary figure 2: Examples of artifacts that may require manual removal: A) tissue artifact

(scale bar 2.5mm) B) tissue fold (scale bar 1mm) C) coverslip glue artifact (scale bar 2mm) D) thick

section resulting in a strong blue stain (hematoxylin) and weak brown stain (DAB) that in this case

resulted in mislabelling by the ENDOAPP (scale bar 2mm).
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Abstract 

Purpose 

Quantification of Ki67 in breast cancer is a well-established prognostic and predictive marker, but inter-

laboratory variability has hampered its clinical usefulness. This study compares the prognostic value 

and reproducibility of Ki67 scoring using four automated, digital image analysis (DIA) methods and two 

manual methods. 

Methods 

The study cohort consisted of 367 patients diagnosed between 1990 and 2004, with hormone receptor 

positive, HER2 negative, lymph node negative breast cancer. Manual scoring of Ki67 was performed 

using predefined criteria. DIA Ki67 scoring was performed using QuPath and Visiopharm® platforms. 

Reproducibility was assessed by the intraclass correlation coefficient (ICC). ROC curve survival analysis 

identified optimal cutoff values in addition to recommendations by the International Ki67 Working 

Group and Norwegian Guidelines. Kaplan-Meier curves, log-rank test and cox regression analysis 

assessed the association between Ki67 scoring and distant metastasis (DM) free survival. 

Results 

The manual hotspot and global scoring methods showed good agreement when compared to their 

counterpart DIA methods (ICC>0.780), and good to excellent agreement between different DIA 

hotspot scoring platforms (ICC: 0.781-0.906). Different Ki67 cutoffs demonstrate significant DM-free 

survival (p<0.05). DIA scoring had greater prognostic potential for DM-free survival using a 14% cutoff 

(HR: 3.054-4.077) than manual scoring (HR: 2.012-2.056). The use of a single cutoff for all scoring 

methods affected the distribution of prediction outcomes (e.g., false positives and negatives). 

Conclusion 

This study demonstrates that DIA scoring of Ki67 is superior to manual methods, but further study is 

required to standardize automated, DIA scoring and definition of a robust cut-off.  
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Introduction 

Breast Cancer is the most common cancer globally and the fifth leading cause of cancer deaths [1]. In 

Norway, 4,247 new cases were reported in 2022 [2]. A panel of immunohistochemistry (IHC) 

biomarkers can classify breast cancer into four surrogate subtypes: hormone receptors (HR) (estrogen 

(ER) and progesterone (PR)), HER2 and Ki67. These classify luminal A-like (low Ki67, HR+, HER2-), 

luminal B-like (high Ki67, HR+, HER2-), HER2 positive (HER2+) and triple negative (HR-, HER2-) tumors 

[3, 4]. The endocrine-therapy sensitive luminal-like group is the largest category and may be further 

categorized, using the biomarker Ki67, into luminal A-like (low-Ki67) and luminal B-like (high-Ki67). The 

latter benefiting from additional chemotherapy, whilst the former does not [5].  

The Ki67 score defines the percentage of positively stained tumor cells in a defined hotspot or global 

region [6, 7] and has prognostic, predictive, and monitoring potential [8-13]. Patients with a low Ki67 

score have a low recurrence risk and may be spared from chemotherapy whilst patients with a high 

Ki67 score are associated with an increased risk of recurrence, higher mortality rate and may benefit 

more from adjuvant chemotherapy [14-20].  

Despite its value as a prognostic biomarker, there is no global consensus on how to standardize Ki67 

scoring. This includes standardization of pre-analytical and analytical conditions, a protocol for 

measurement of Ki67, and cutoff score for adjuvant treatment [6, 21-24]. In 2021 the St. Gallen 

consensus recommended the guidelines set by the International Ki67 in Breast Cancer Working Group 

(IKWG): patients with low Ki67 < 5% are not recommended for adjuvant chemotherapy whilst patients 

with a high Ki67 ≥ 30% are recommended [21]. However, treatment recommendations for the 

intermediate category (>5%, <30%) is still debated, and other cut-offs are still used. 

With the rise of digital pathology and artificial intelligence (AI), digital scoring of Ki67 by automated 

algorithms or applications (APPs) have provided a new avenue for improved quantification. Various 

studies have demonstrated equal or improved reproducibility and accuracy using automated digital 

image analysis (DIA) compared to manual scoring methods [9, 25-30]. However, no recommendation 
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exists currently for automated DIA methods and established cutoffs for these methods have not yet 

been extensively validated. 

In this study, we aim to compare the reproducibility and prognostic capacity of Ki67 score using four 

DIA scoring methods compared to using two manual methods (conventional-HS and global unweighted 

and weighted).  

Materials and Methods 

Study Cohort 

The study received approval from the Regional Ethics Committee of Health West Norway (2010/1241) 

and informed consent waived. Patients who received a primary diagnosis of breast cancer between 

1990-1998 (N=346) and 2000-2004 (N=253) at Stavanger University Hospital (SUH) were available for 

this study. Patients who received neoadjuvant treatment (N=8) were excluded. The following inclusion 

criteria were used to select cases: 1) archive tumor material available as a formalin-fixed paraffin 

embedded (FFPE) tissue block, 2) HR+ (ER ≥1%, and/or PR ≥10%) and HER2- status, and 3) at least one 

follow-up sample, for non-progression cases >6 months after initial diagnosis. Of the 591 cases, 64 

(11%) were removed due to missing blocks/lack of tumor material, 19 (3%) were lost to follow-up and 

141 HER2+/TNBC were excluded. In summary, 367 cases comprised the study cohort.  

Datasets 

The development dataset consisted of a training and tuning set (figure S1). A training set was used to 

create manual annotations to train classification algorithms. Five whole slide images (WSI) of good 

quality and representative of strong and weak staining, and high and low Ki67 positivity were selected. 

The WSIs were annotated with training labels for segmentation of key features: tissue and background, 

tumor and non-tumor, and positive brown and negative blue nuclei. Two of the four DIA methods 

required training (VIS1-HS, QuPath), whilst the two remaining methods (VIS2-HS, VIS2-G) were pre-
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trained and validated. All DIA methods were run on the tuning dataset, which was used to monitor and 

evaluate algorithm performance, assess reproducibility, and define prognostic cutoffs.  

Immunohistochemistry and Imaging 

New 3µm tissue sections were cut, mounted on SuperFrost® Plus slides (Menzel Gläser, Braunschweig, 

Germany), and dried overnight at 37°C followed by 1 hour at 60°C. Sections were transferred 

deparaffinized to the Dako Omnis (Dako, Glostrup, Denmark). Antigen retrieval was performed using 

the EnVision FLEX Target Retrieval Solution High pH (Dako Omnis), heated at 97°C for 30 minutes. 

Sections were stained for Ki67 using a pre-optimized protocol using the Dako MIB-1 clone (dilution 

1:50) and incubated for 20 minutes. Additionally, signal amplification was performed using the 

EnVision FLEX+ Mouse LINKER (Dako Omnis) with a 10-minute incubation.  

Manual Hotspot Ki67 Quantification (conventional) 

Using a microscope, the whole section was viewed at low power to identify the most proliferative 

region (hotspot) in the invasive tumor region. Non-invasive regions, necrotic regions and areas with 

high lymphocytic infiltration were avoided.  

For the 1990-1998 cohort, a 40X objective was used to count positively stained tumor nuclei (brown) 

and the total number of tumor nuclei in the hotspot. For each case, at least 500 tumor cells were 

counted. If fewer than 500 tumor cells, adjacent fields of view (FOV) were counted. Ki67 score was 

calculated as the percentage positive Ki67 (Ki67 positive/(Ki67 positive + Ki67 negative)).  

For the 2000-2004 cohort, the interactive QPRODIT system (Leica, Cambridge, UK) was used to score 

Ki67 as described by previously [31]. Within a hotspot tumor region, 250-350 FOV were defined, and a 

test grid used to classify each field as Ki67 positive or negative. A field was classified as positive if the 

first tumor cell that intersected with a grid point was positive, and vice versa for negative cells. Ki67 

score was calculated as the percentage positive Ki67.  

Both methods were grouped under the term conventional Ki67 score. 
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Manual Global Ki67 Quantification (Global unweighted and weighted) 

Global weighted and unweighted scoring was performed according to the protocol set by the IKWG 

[32]. The IKWG Ki67 mobile counting tool was used (https://www.ki67inbreastcancerwg.org/). Using 

the NDP2.view2 image viewing software (v.2.9.29, Hamamatsu Photonics, Japan), a WSI of the Ki67-

stained tissue was examined and the percentage area of negligible, low, medium, or high Ki67 was 

estimated and entered into the counting tool. Three to four circular annotations were placed to 

simulate a field of view, in each field type, as directed by the tool. In a typewriter fashion, 100 nuclei 

were counted as either negative or positive in each ROI. The unweighted and weighted global scores 

were recorded for each slide.  

Digital Image Analysis (DIA) 

Scanning: Whole sections stained with Ki67 were scanned at 40X magnification using the Hamamatsu 

Nanozoomer S60 (Hamamatsu Photonics, Hamamatsu City, Japan) at SUH. 

Two platforms were used to score Ki67 on whole slide images (WSI): QuPath [33] and Visiopharm® 

(Version 2022.09.3.12885, Visiopharm A/S, Hørsholm, Denmark). The following hardware was used: 

Dell Precision 3640 Tower, Intel Core i9-10900, Nvidia GeForce RTX 2080 Ti. 

VIS1-HS: An in-house APP (VIS1-HS) was developed using the Visiopharm® platform for quantification 

of Ki67 score (figure 1). Six standalone APPs were developed, that were batch run: 01 Tissue detection, 

02 Positive nuclei detection, 03 Hotspot detection; 04 Tumor detection, 05 Nuclei segmentation, and 

06 Hotspot Ki67 score quantification. Manual annotations from the training dataset were used to 

create labels to train the classifier APPs: (01) tissue and non-tissue training labels to train a tissue 

classifier, (02) positive nuclei labels to train a positive nuclei classifier, (04) tumor and non-tumor labels 

to train a tumor classifier, and (05) positive and negative nuclei labels to train a nuclei classifier. 

Training was performed until the classifier achieved accurate and consistent predictions, as 

determined by the operator. All classifier APPs used supervised K-means clustering. Specific 

parameters were trialed with the VIS1-HS APP (figure S1): the drawing radius for the heatmap 

https://www.ki67inbreastcancerwg.org/
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configuration (175µm, 400µm), number of hotspot ROI (1-5), and ROI size criteria (0.2mm2, 1mm2, 

minimum 550 tumor cell count, minimum 1000 tumor cell count).  

 
Figure 1: Visualization of each digital image analysis Ki67 scoring method. The VIS1-HS method, 

developed in-house using the Visiopharm® commercial platform, utilized a 1mm2 hotspot (red/cyan 

ROI) for Ki67 scoring. The VIS2 method, a commercial APP provided by Visiopharm®, measured both 

global Ki67 score in the entire tumor region – blue ROI (VIS2-G) and in a 0.96mm2 hotspot – red ROI 

(VIS2-HS). The QuPath method required manual demarcation of the tissue (yellow ROI). The Ki67 score 

was calculated in a hotspot (red ROI) with minimum 500 tumor cells. Stars indicate when the Ki67 score 

was calculated for each method. 

VIS2-HS/G:  Visiopharm® provided a commercial, CE-IVD Ki67 quantification APP (VIS2-HS/G) (figure 

1). This method consists of six standalone APPs that were batch run, in the following order: 01 #10182 

– IHC Tissue Detection, AI; 02 #10180 – Invasive Tumor Detection, AI; 03 #10180 – Invasive Tumor 

Postprocessing; 04 #10173 – Ki-67 Nuclei APP, Breast Cancer, AI; 05 #10114 Hot Spot Detection; 06 

#10114 Hot Spot Quantification (table S1). This method generated both a global score (VIS2-G), which 

assessed the invasive tumor region of the entire WSI, and a hotspot score (VIS2-HS).  
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QuPath: A classifier for quantification of Ki67 score was developed using QuPath (figure 1), based on 

the protocol established by Acs and colleagues [34]. To train the cell classifier, positive and negative 

tumor cell nuclei were annotated manually on WSI from the training dataset. A tumor ROI was first 

manually drawn around the invasive tumor region and the cell classifier script (table S2) run. The 

density maps tool generated a heatmap and three ROIs were automatically placed on suspected 

hotspots. Each hotspot was reviewed, and the highest scoring hotspot was approved according to the 

following criterion: minimum 500 tumor cells and satisfactory labelling of positive and negative tumor 

nuclei. If the ROI contained less than 500 tumor cells, it was manually enlarged until this criterion was 

met. The QuPath method was semi-automated; manual delineation of the tumor region was required 

for each case, and the classifier and density maps were run separately per case.  

Statistical analysis 

Statistical analyses were performed with SPSS for Windows (version 26.0.0; IBM SPSS Statistics) and R 

studio (2023.06+561). Assumptions were verified for each test and p<0.05 was significant. Mann 

Whitney U and Kruskall Wallis tests were used to test for significant differences between patients with 

no distant metastases (DM) and with DM. Level of agreement, using the intraclass correlation 

coefficient (ICC), was assessed on transformed Ki67 scores (multiplied by a factor of 10 and log 

transformed). Receiving operating characteristic (ROC) curves were generated for each scoring method 

and the area under the curve (AUC) was used to assess a method’s discriminative ability. Kaplan Meier 

survival analyses were performed to assess the prognostic value of DM-free survival and compared 

using log-rank (endpoint: first diagnosis of a DM in the follow-up or censored according to last-known 

follow-up date). Cox regression models for univariate and multivariate analysis was performed for: 

age, tumor size, mitotic activity index, Nottingham grade, operation type, adjuvant treatment, and 

Ki67 score. 
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Results 

Overview 

Of the 367 cases from the development dataset, 12 cases were ineligible for analysis due to poor 

quality material and 61 cases due to poor staining (figure S2). This left 294 cases (table S3). A further 9 

cases failed analysis with QuPath due to: a false positive edge effect, high numbers of inflammatory 

cells, necrosis, and artefacts (figure S2).  

Performance of DIA methods 

For the VIS1-HS method various ROI specifications were trialed and differences in Ki67 scores for each 

was considered marginal (table S4). A 1mm2 ROI was selected for the final VIS1-HS method as it was 

the most consistent for detecting over 500 tumor cells.  

All DIA methods required manual editing for some or all cases. For VIS1-HS, nearly all cases required 

manual removal of either DCIS, artefacts, inflammatory cell clusters or normal tissue. For VIS2-HS, 13% 

of cases (37/294) required a manual edit. The VIS2-G method required a manual edit in 28% of cases 

(81/294). For QuPath, all cases required a manual delineation of the tissue region for analysis, and 45% 

of cases (128/285) required a manual intervention for HS ROI placement or expansion.  

Comparison of Ki67 score for four DIA scoring and two manual methods 

For DIA and manual scoring methods the mean Ki67 score ranged from 9.5% (VIS2-G) to 16.2% 

(QuPath) (table 1, figure S3). For cases with no distant metastases (no DM) compared to cases with 

distant metastases (DM) in the follow-up, the greatest mean difference was recorded for QuPath 

(11.9%), followed by the VIS2-HS (9.6%), global weighted (8.6%), VIS1-HS (7.2%), VIS2-G (6.9%), global 

unweighted (6.8%), and conventional hotspot (5.9%) methods. Furthermore, QuPath recorded higher 

scores on average, with the VIS2-G method recording the lowest (table 1).  
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Table 1: Quantification of Ki67 and total tumor cell count according to four digital scoring methods, 

and two manual scoring methods (conventional hotspot, global unweighted and weighted). 

Method N= %Ki67  
(all) 

%Ki67  
(No DM) 

%Ki67  
(DM) 

Total TC 
count (all) 

Conventional 
hotspot 

N=284 
No DM: 243  
DM: 41 

13.7 
(0-83) 

12.8 
(0-83) 

18.7 
(0-65) 

No data 

Global 
unweighted 

N=294 
No DM: 257  
DM: 37 

15.9 
(0-100) 

15.0 
(0-100) 

21.8 
(0-57.3) 

No data 

Global 
weighted 

N=294 
No DM: 257  
DM: 37 

16.0 
(0-100) 

14.9 
(0-100) 

23.5 
(0-77.9) 

No data 

VIS1-HS N=294 
No DM: 254 
DM: 40 

13.3 
(0-79) 

12.3 
(0-79) 

19.5 
(2.8-74.6) 

2907 
(410-12727) a 

VIS2-HS N=294 
No DM: 254 
DM: 40 

14.4 
(0.2-89.8) 

13.1 
(0.2-.78.2) 

22.7 
(1.1-89.8) 

4094 
(251-11853) b 

VIS2-G N=294 
No DM: 254 
DM: 40 

9.5 
(0.1-70.3) 

8.6 
(0.1-.70.3) 

15.5 
(0.7-64.6) 

122966 
(531-1013920) 

QuPath N=285 
No DM: 245 
DM:40 

16.2 
(0-92.9) 

14.6 
(0-91.3) 

26.5 
(2.5-92.9) 

662 
(500-1697) 

Mean values are reported with range in parentheses. 
aTwo cases were <500 tumor cells. 
bThree cases were <500 tumor cells. 

Reproducibility is one of the primary concerns regarding scoring of Ki67. In the study cohort, there was 

moderate to excellent agreement between all scoring methods (table 2). Comparison of all hotspot 

scoring methods revealed good to excellent agreement (ICC: 0.781–0.906). Agreement was on average 

higher between automated hotspot methods than between automated and manual hotspot methods 

(table 2). There was good agreement between the global DIA method and manual global method (ICC: 

0.803–0.810). Agreement was lower between global and hotspot scoring methods (ICC: 0.636–0.759).  
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Table 2: Agreement of manual and digital image analysis Ki67 quantification methods as assessed by 

the intraclass correlation coefficient (ICC). 

Method Measure Method 

Conventional Global 
unweighted 

Global 
weighted 

VIS1-HS VIS2-HS VIS2-G 

Conventional ICC 
(95% CI) 

      

Global 
unweighted 

ICC 
(95% CI) 

0.758 
(0.698-0.806) 

     

Global 
weighted 

ICC 
(95% CI) 

0.746 
(0.684-0.797) 

0.986 
(0.982-0.989) 

    

VIS1-HS ICC 
(95% CI) 

0.802 
(0.743-0.848) 

0.648 
(0.559-0.719) 

0.636 
(0.535-0.715) 

   

VIS2-HS ICC 
(95% CI) 

0.846 
(0.794-0.884) 

0.759 
(0.698-0.807) 

0.752 
(0.681-0.806) 

0.874 
(0.843-0.899) 

  

VIS2-G ICC 
(95% CI) 

0.834 
(0.642-0.909) 

0.803 
(0.731-0.853) 

0.810 
(0.756-0.852) 

0.735 
(0.166-0.887) 

0.863 
(0.152-0.955) 

 

QuPath ICC 
(95% CI) 

0.781 
(0.680-0.845) 

0.729 
(0.643-0.792) 

0.709 
(0.609-0.781) 

0.835 
(0.796-0.867) 

0.906 
(0.881-0.926) 

0.786 
(0.153-0.918) 

 

Defining a prognostic threshold 

In this study, a ROC curve was generated to assess DM-free survival and identify optimal cutoffs. The 

two methods with the highest AUC were QuPath, 0.721 (95% CI: 0.643-0.798) and VIS2-HS, 0.705 (95% 

CI: 0.625-0.785). The manual methods recorded the lowest AUC: conventional hotspot, 0.655 (95% CI: 

0.569-0.741); global weighted, 0.648 (95% CI: 0.554-0.744); and global unweighted, 0.636 (95% CI: 

0.541-0.731). A range of coordinates were selected from the ROC curve for binary categorization of 

Ki67 score, which revealed similar DM-free survival (table S5, figure S4). The manual methods 

demonstrated lower p-values (log-rank) for cut-offs around 10%, whereas automated methods 

reported lower p-values between 10-14% (table S5). A 14% cutoff was chosen for further evaluation, 

due to its recommendation by the Norwegian Guidelines [35].  

Binary categorization of Ki67-14% for all methods was significantly associated with DM-free survival in 

a 20-year follow-up period (figure 2a). All methods demonstrated a significant separation of patients 

with DM-free survival for low (<14%) and high (≥14%) Ki67, with the manual methods reporting the 

smallest separation in comparison to DIA (figure 2a). Additionally, percentage agreement was highest 

for VIS1-HS and VIS2-HS methods and lowest between VIS2-G and QuPath methods (table S6). 
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Figure 2: Evaluation of a prognostic cutoff. a) Distant-metastasis free survival of patients with HR+, 

HER2-, LN- breast cancer categorized by low Ki67 (<14%) and high Ki67 (≥14%) over a 20-year follow-

up period. Scoring of Ki67 was performed by two manual scoring methods (conventional hotspot and 

global weighted and unweighted) and four digital image analysis methods: VIS1-HS, QuPath, VIS2-HS 

and VIS2-G. b) Proportion of cases assigned a low (<5%), intermediate (>5% & <30%) and high (≥ 30%) 

Ki67 score according to two manual scoring methods (conventional hotspot, global weighted and 

unweighted) and four DIA scoring methods (VIS1-HS, VIS2-HS, VIS2-G, and QuPath). 

International recommendations suggest <5% to assign low Ki67 and ≥30% to assign high Ki67, with 

remaining cases falling into an intermediate category. The VIS2-G method had the largest proportion 
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of low (<5%) Ki67 cases (58%) of all methods (figure 2b). QuPath and global weighted/unweighted 

methods had the highest proportion of high (≥30%) Ki67 cases (17-18%). The VIS2-G method reported 

the highest number of false negatives (low Ki67, DM), whilst the highest number of false positives was 

recorded by the manual global methods (high Ki67, no DM), respectively (figure 3). This was also 

observed at a 10-year follow-up. 

 

Figure 3: Prediction classes using <5% and ≥30% Ki67 thresholds set by the International Ki67 in 

Breast Cancer Working Group, as measured by a manual and digital image analysis scoring methods. 

Multivariate analysis 

To assess the prognostic value of Ki67 scoring, we performed Cox regression analysis of each method 

alongside established prognostic markers. Of the variables tested, Nottingham grade, mitotic activity 

index (MAI10), tumor-size (2 cm), and Ki67 for all methods (14%) were statistically significant 

predictors of DM-free survival in univariate analysis (table 3). Hazard ratios (univariate) for all DIA 

methods (Ki67 14%) ranged from 3.054 to 4.077, with overlapping 95% confidence intervals whilst the 

manual methods had lower hazard ratios: 2.012-2.056 (table 3). In a multivariate analysis, Nottingham 

Grade, treatment and operation type were predictors in the final model.  

 



14 
 

Table 3: Distant-metastasis free survival in hormone receptor positive, HER2 negative, lymph node 

negative, breast cancer patients (values reported in italics use continuous variables). 

Characteristic All  Log rank p-
value 

HR Cox 
regression  
p-value 

95% CI 

 Event/At risk      

Age  N=316  
 

0.976 0.168 0.944-1.010 

<55 18/134 13% 0.676 1.140 0.677 0.617-2.107 

≥55 24/182 13%     
       

Nottingham Grade N=314  
 

   

Grade I (3-5) 6/108 6% 0.001* 2.441 0.054 0.984-6.053 

Grade II (6-7) 21/149 14%  5.344 <0.001* 2.070-13.794 

Grade III (8-9) 15/57 26%     
       

Tumor sizea N=314  
 

1.927 <0.001* 1.404-2.645 

≤2cm 28/258  11% 0.003* 2.553 0.004* 1.341-4.862 

>2cm 14/56 25%     
       

Operation Type N=250      

Conservative/ 
Lumpectomy 

15/152 10% 0.004* 2.524 0.005* 1.313-4.850 

Mastectomy 23/98 23%     
       

MAI N=309  
 

1.018 0.062 0.999-1.037 

<10 26/242 11% 0.005* 2.410 0.007* 1.276-4.553 

≥10 15/67 22%     
       

Ki67       

Conventional N=267  
 

1.014 0.041* 1.001-1.028 

<14 20/181 11% 0.026* 2.012 0.029* 1.073-3.774 

≥14 19/86 22%     
       

Global unweighted N=294   1.010 0.133 0.997-1-023 

<14 19/187 10% 0.021* 2.047 0.024* 1.099-3.813 

≥14 21/107 20%     
       

Global weighted N=294   1.012 0.048* 1.000-1.024 

<14 19/187 10% 0.020* 2.056 0.023* 1.104-3.829 

≥14 21/107 20%     
       

VIS1-HS N=294  
 

1.021 0.006* 1.006-1.037 

<14 18/205 9% <0.001* 3.054 <0.001* 1.633-5.711 

≥14 22/89 25%     
       

VIS2-HS N=294  
 

1.023 0.001* 1.010-1.037 

<14 16/195 8% <0.001* 3.245 <0.001* 1.721-6.116 

≥14 24/99 24%     
       

VIS2-G N=294  
 

1.025 0.004* 1.008-1.042 

<14 22/228 10% <0.001* 3.088 <0.001* 1.654-5.766 

≥14 18/66 27%     
       

QuPath N=285  
 

1.022 <0.001* 1.010-1.034 

<14 12/175 7% <0.001* 4.077 <0.001* 2.070-8.030 

≥14 28/110 25%     

*Denotes significance p<0.05 
aOnly one case had a tumor sizes ≥5cm, so tumor size was grouped into ≤2cm and >2cm (T1 and T2), instead of 

three groups (T1, T2, T3).  
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Discussion 

We compare several automated DIA tools for global and hotspot Ki67 compared to two manual 

methods in HR+, HER2-, LN- breast tumors. Although Ki67 is considered an important biomarker in 

breast cancer, the concerns surrounding lack of standardization and poor reproducibility, have brought 

its value into question. In this study, we observed that commercial DIA tools (VIS2-HS, VIS2-G) required 

notably less manual editing compared to the in-house methods (VIS1-HS, QuPath). 

Inter-platform variability demonstrated good to excellent agreement between all hotspot scoring 

methods and all global methods (ICC>0.8). Another inter-platform study reported excellent 

reproducibility (ICC>0.9) [26] and our observation of strong agreement between manual and DIA 

platforms is consistent with observations in the literature [7, 9, 36-42]  

Although efforts have been made to standardize Ki67 scoring, both hotspot and global Ki67 score are 

still reported in the literature and in the Nordics [6, 38, 43, 44]. In addition, a range of cutoffs for 

defining low and high Ki67 are still reported (range: 10-20%) [17, 26, 45, 46]. We observed a range of 

prognostic cutoffs, with 14% being optimal and in agreement with Norwegian guidelines [6]. The 

hazard ratios (HR: 2.7-3.7) reported by Acs et al. [26] for DIA scoring on core needle biopsies and tissue 

microarrays were similar to those reported in our study (HR: 3.1-4.1) and Boyaci et al. [47] (HR: 2.6-

4.2) for DIA scoring on surgical specimens. Furthermore, we observed that DIA methods had a greater 

discriminative capacity, using the AUC metric, than manual methods. This was reflected in the hazard 

ratios for Ki67 score (14%) and DM-free survival (DIA HR: 3.054-4.077 vs. Manual HR: 2.012-2.056). 

Another study observed similar hazard ratios for DIA scoring (hotspot HR: 6.88; global HR: 3.13) 

compared to a manual hotspot method (HR: 2.76), for recurrence free survival [48].  

In 2021, the St. Gallen consensus adopted the IKWG recommendation of <5% (low) and >30% (high), 

with patients between 5-30% (intermediate) not recommended for treatment decisions by Ki67[38]. 

In our study, evaluation of Ki67 score using these thresholds revealed that QuPath had the largest 

proportion of Ki67 high cases and highest number of false positives (high Ki67, no DM). Whilst, the 
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VIS2-G, global scoring method, demonstrated the highest proportion of Ki67 low cases and highest 

number of false negatives (low Ki67, DM). This suggests that regardless of using a more restrictive 

cutoff, patients are still at risk of over- and under-treatment. Furthermore, assessing the number of 

false positives and negatives revealed differences in clinical consequence between methods. This is 

important for future implementation of DIA methods as the choice of method: hotspot or global 

scoring, can have notable differences in classification of patients.  

A high total tumor count resulted in lower Ki67 scores. The average total number of tumor cells 

measured for global DIA score was >100,000, far more than for all other methods and it consistently 

reported lower Ki67 scores than the others. Norwegian guidelines and IKWG recommendations for 

Ki67 scoring recommend a minimum of 400 to 500 tumor cells scored [6, 49]. Our results suggest that 

Ki67 scores from tumor cell counts around 2000-4000 cells, generated by a 1mm2 ROI, were more 

consistent, with fewer potentially under- or over-treated cases. Observations from Robertson et al. 

revealed greater reproducibility with increasing tumor cell counts (from 200 to 1000 tumor cells)[48]. 

This suggests the need for caution when translating current manual methods to a DIA method. A larger 

study is required to affirm the optimal number of total tumor cells for Ki67 score by DIA. 

As use of molecular signature tests for classification of breast cancer increases, the use of Ki67 for 

treatment decisions is called into question. Molecular testing has demonstrated prognostic and 

predictive value [50-54]. However, where such molecular panels are unavailable, considered costly, or 

introduce delays to treatment due to slower return of results, Ki67 could be an equivalent approach. 

Furthermore, Ki67 has the potential to be used as a screening tool for recommending molecular testing 

in intermediate cases (Ki67>5%, <30%) [38]. Majority consensus warrants use of both multigene panels 

and Ki67 score [21]. 

This study does not come without its limitations. The study utilized a retrospective cohort, and many 

of the tissue blocks were >20 years old, therefore the staining protocol had to be adjusted due to 

antigen decay. Previously stained Ki67 slides (from 2011) were used as a quality control. Additionally, 
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only one scanner type and one automated IHC-instrument was used whereas multiple different 

scanners and staining methods, from different locations and time periods, on different or the same 

tissue blocks, would be worth investigating. In the present study, we only used one global scoring DIA 

method (VIS2-G), and future work to compare global DIA reproducibility could be pursued. For a future 

study, it would be worthwhile to investigate DIA scoring of Ki67 in a prospective cohort, with molecular 

profile data, with a planned long-term follow-up, such as the EMIT study [55]. 

In summary, we report good agreement between manual and counterpart DIA scoring methods. DIA 

Ki67 scoring methods had a greater discriminative capacity for DM-free survival than manual methods. 

A range of cutoffs was prognostic for each method, but the choice of scoring method and cutoff can 

lead to notable differences in the number of patients to be treated or tested, emphasizing the need 

for further validation in a prospective cohort. Total tumor cell count contributed to changes in risk 

categorization using the recommended 5% and 30% threshold. Automated, DIA methods may improve 

reproducibility and prognostic value of Ki67 scoring in comparison to manual methods, if standardized. 
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Supplementary Information 
Supplementary Table S1 
Supplementary table S1: Identification and version number for each Visiopharm® AI Ki67 Application 

Number Identification Version 

01 #10182 – IHC Tissue Detection 2022.09.0.12236 

02 #10180 – Invasive Tumor Detection 2022.07.0.12224 

03 #10180 – Invasive Tumor Postprocessing 2022.07.0.11960 

04 #10173 – Ki-67 Nuclei APP, Breast Cancer, AI 2022.07.0.11960 

05 #10114 Hot Spot Detection 2022.09.0.12417 

06 #10114 Hot Spot Quantification 2022.09.0.12417 

 

Supplementary Table S2 
Supplementary table S2: The Ki67 nuclei classifier script developed in QuPath. 

setImageType('BRIGHTFIELD_H_DAB'); 

setColorDeconvolutionStains('{"Name" : "H-DAB default", "Stain 1" : "Hematoxylin", "Values 1" : 
"0.65111 0.70119 0.29049 ", "Stain 2" : "DAB", "Values 2" : "0.26917 0.56824 0.77759 ", 
"Background" : " 255 255 255 "}'); 

runPlugin('qupath.imagej.detect.cells.PositiveCellDetection', '{"detectionImageBrightfield": 
"Optical density sum",  "requestedPixelSizeMicrons": 1.0,  "backgroundRadiusMicrons": 10.0,  
"medianRadiusMicrons": 0.1,  "sigmaMicrons": 1.5,  "minAreaMicrons": 15.0,  "maxAreaMicrons": 
400.0,  "threshold": 0.1,  "maxBackground": 2.0,  "watershedPostProcess": true,  "excludeDAB": 
false,  "cellExpansionMicrons": 5.0,  "includeNuclei": true,  "smoothBoundaries": true,  
"makeMeasurements": true,  "thresholdCompartment": "Nucleus: DAB OD mean",  
"thresholdPositive1": 0.2,  "thresholdPositive2": 0.4,  "thresholdPositive3": 0.6000000000000001,  
"singleThreshold": true}'); 

runPlugin('qupath.lib.plugins.objects.SmoothFeaturesPlugin', '{"fwhmMicrons": 25.0,  
"smoothWithinClasses": false}'); 

runPlugin('qupath.lib.plugins.objects.SmoothFeaturesPlugin', '{"fwhmMicrons": 25.0,  
"smoothWithinClasses": true}'); 

runPlugin('qupath.lib.plugins.objects.SmoothFeaturesPlugin', '{"fwhmMicrons": 25.0,  
"smoothWithinClasses": false}'); 

runPlugin('qupath.lib.plugins.objects.SmoothFeaturesPlugin', '{"fwhmMicrons": 25.0,  
"smoothWithinClasses": false}'); 
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Supplementary Table S3 
Supplementary Table S3: Overview of patient characteristics including age, follow-up time, tumor 

size, Nottingham Grade, treatment, and operation type for the 294 cases eligible for conventional 

and digital analysis of Ki67. 

Characteristics N=  
 

All No DM DM 

All No 
DM 

DM 

Age 
Mean (Range) 

294 254 40 
56 

(29-70) 
56 

(32-70) 
53 

(29-70) 

Follow-up 
time 

(months)* 
Mean (range) 

294 254 40 
161 

(8-345) 
173 

(9-345) 
88 

(8-302) 

Tumor size** 292 252 40 
1.55 

(0.2-6.5) 
1.49 

(0.2-4.2) 
1.92 

(0.7-6.5) 

Nottingham 
Grade*** 

292 252 40 

I 102 (35%) 96 (38%) 6 (15%) 

II 138 (47%) 118 (47%) 20 (50%) 

III 52 (18%) 38 (15%) 14 (35%) 

Adjuvant 
Systemic 
Therapy 

202 167 35 
NTRa 187 (93%) 158 (95%) 29 (83%) 

TRb 

15 (7%) 9 (26%) 6 (17%) 

Operation 
Type**** 

231 195 36 

Conservative/ 
Lumpectomy 

139 (60%) 124 (64%) 15 (42%) 

Mastectomy 92 (40%) 71 (36%) 21 (57%) 

*Significant difference between no DM and DM groups (Mann-Whitney U, p<0.001) 

**Significant difference between no DM and DM groups (Mann-Whitney U, p=0.007) 

***Significant difference between no DM and DM groups (Kruskall Wallis, p<0.001) 

****Significant difference between no DM and DM groups (Kruskall Wallis, p=0.014) 
aNTR: No Treatment 
bTR: Treatment: Treatment types included chemotherapy, HRT or chemotherapy combined with HRT 
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Supplementary Table S4 
Supplementary table S4: Overview of the ROI specifications tested for the VIS1-HS method and 

resulting mean total tumor cell count and Ki67 score. 

Specifications (VIS1) 

N= 
Mean total 
tumor cell 

count 

%Ki67 

Mean Median Range Drawing 
radius 

Size of 
ROI 

Number of 
ROIs 

175µm 0.2mm2 1 98 705 18.0 13.8 0.8 – 87.8 

400µm 0.2mm2 1 98 704 16.7 10.7 1.0 – 76.9 

175µm 1mm2 1 98 2849 15.7 10.6 1.0 – 77.4 

400µm 1mm2 1 98 3360 16.0 10.9 0.4 – 81.1 

400µm 0.2mm2 2 27 782 22.3 16.1 4.7 – 68.2 

400µm 0.2mm2 3 27 752 22.0 17.1 4.8 – 64.6 

400µm 0.2mm2 4 26 753 20.2 16.4 4.4 – 62.4 

400µm 0.2mm2 5 26 753 20.3 15.6 4.5 – 60.1 

400µm 550 TC 
min 

1 27 692 23.2 17.5 4.2 – 74.9 

400µm 1000 TC 
min 

1 27 1119 23.0 16.2 3.7 – 76.2 

These specifications were used for the main investigations of the study. 
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Supplementary Table S5 
Supplementary table S5: Performance of tested cutoffs for binary categorization of Ki67 score as 

assessed by manual and DIA scoring methods.  

Method  
(Ki67 cut-off) 

Log-rank 
(p-value) 

N=   

False negative False positive True 
negative 

True 
positive 

Sens. Spec. 

Conventional 
 3.5% 
 6.5% 
 10.6% 
 14% 
 20% 
 30% 
 48% 

 
0.004 
0.001 
0.001 
0.026 
0.023 
0.004 
0.253 

 
4 
9 

14 
20 
25 
29 
35 

 
153 
114 
83 
67 
46 
24 
11 

 
75 

114 
145 
161 
182 
204 
217 

 
35 
30 
25 
19 
14 
10 
4 

 
88% 
76% 
63% 
49% 
36% 
26% 
10% 

 
32% 
49% 
64% 
71% 
80% 
89% 
95% 

Global UW 
 2% 
 8% 
 10% 
 14% 
 20% 
 31% 
 40% 

 
0.068 
0.031 
0.016 
0.021 
0.317 
0.087 
0.011 

 
4 

12 
13 
19 
26 
29 
32 

 
195 
134 
121 
86 
68 
40 
21 

 
59 

120 
133 
168 
186 
214 
233 

 
36 
28 
27 
21 
14 
11 
8 

 
92% 
73% 
70% 
51% 
38% 
30% 
22% 

 
23% 
49% 
53% 
68% 
74% 
84% 
92% 

Global W 
 2% 
 5% 
 10% 
 14% 
 20% 
 30% 
 40% 

 
0.110 
0.069 
0.007 
0.020 
0.081 
0.198 
0.008 

 
5 

10 
13 
19 
25 
30 
31 

 
193 
153 
113 
86 
61 
41 
23 

 
61 

101 
141 
168 
193 
213 
231 

 
35 
30 
27 
21 
15 
10 
9 

 
89% 
76% 
70% 
57% 
41% 
27% 
24% 

 
24% 
40% 
56% 
67% 
77% 
84% 
90% 

VIS1-HS 
 4% 
 8% 
 10% 
 14% 
 20% 
 30% 
 41% 

 
0.022 
0.001 
0.001 
0.000 
0.000 
0.002 
0.858 

 
2 
9 

12 
18 
23 
31 
38 

 
198 
126 
103 
67 
46 
21 
12 

 
56 

128 
151 
187 
208 
233 
242 

 
38 
31 
28 
22 
17 
9 
2 

 
95% 
78% 
70% 
55% 
43% 
23% 
5% 

 
22% 
50% 
59% 
74% 
82% 
92% 
95% 

VIS2-HS 
 3.4% 
 6% 
 10% 
 14% 
 20% 
 30% 
 41% 

 
0.005 
0.001 
0.000 
0.000 
0.007 
0.001 
0.136 

 
1 
5 

11 
16 
23 
29 
35 

 
195 
149 
106 
75 
57 
27 
15 

 
59 

105 
148 
179 
197 
227 
239 

 
39 
35 
29 
24 
17 
11 
5 

 
98% 
88% 
73% 
60% 
43% 
28% 
13% 

 
23% 
41% 
58% 
70% 
78% 
89% 
94% 

VIS2-G 
 2.3% 
 7.6% 
 10% 
 14% 
 20% 
 42% 

 
0.027 
0.001 
0.001 
0.000 
0.010 
0.190 

 
5 

15 
19 
22 
30 
37 

 
178 
86 
67 
48 
28 
8 

 
76 

168 
187 
206 
226 
246 

 
35 
25 
21 
18 
10 
3 

 
81% 
62% 
46% 
45% 
25% 
12% 

 
28% 
68% 
75% 
81% 
89% 
98% 

QuPath 
 14% 
 20% 
 30% 

 
0.000 
0.000 
0.000 

 
12 
19 
24 

 
82 
62 
33 

 
163 
183 
212 

 
28 
21 
16 

 
70% 
53% 
40% 

 
67% 
75% 
87% 
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Supplementary Table S6 
Supplementary table S6: Percentage agreement of Ki67 quantification methods using a 14% cutoff. 

Method Measure Method 

Conventional Global uW Global W VIS1-HS VIS2-HS VIS2-G 

Conventional % Agreement       

% Disagreement       

Global uW % Agreement 87%      

 % Disagreement 13%      

Global W % Agreement 85%      

 % Disagreement 15%      

VIS1-HS % Agreement 91% 86% 84%    

% Disagreement 9% 14% 16%    

VIS2-HS % Agreement 91% 89% 88% 95%   

% Disagreement 9% 11% 12% 5%   

VIS2-G % Agreement 89% 84% 84% 89% 88%  

% Disagreement 11% 16% 16% 11% 12%  

QuPath % Agreement 87% 87% 86% 89% 92% 83% 

 % Disagreement 13% 13% 14% 11% 8% 17% 
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Supplementary Figure S1 

 

Supplementary Figure S1: Case summary of the study cohort. A development dataset was used to 

train and tune two in-house Ki67 scoring algorithms using a commercial platform (VIS1-HS) and an 

open-source platform (QuPath). Cases from the development dataset were also evaluated using a 

using two manual methods (conventional hotspot Ki67 scoring and global unweighted and weighted 

scoring) and a commercial CE-IVD application (VIS2-HS/G). Specifications for each method is outlined. 

A variety of parameters was investigated for specification of hotspot ROI criteria.  
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Supplementary Figure S2 

 

Supplementary figure S2: Examples of optimal and poor quality Ki67 staining patterns and artefacts. A) Optimal 

Ki67 staining for clear distinction of negative (blue) nuclei and positive (brown) nuclei. B-C) Background staining 

observed in the cytoplasm and a staining edge effect observed between tumor cell clusters. This affected analysis 

to varying degrees depending on the intensity of the background stain, software used and area coverage (smaller 

areas could be excluded from analysis). A case was rejected when background staining resulted in an 

unacceptable number of false positive nuclei detections. D) Example of an artefact that required manual removal 

due to the negative (blue nuclei) beneath the fragment being labelled as positive by all digital methods. E) An 

example of a poor quality tissue section likely due to poor fixation. F) A region where a high number of tumor 

infiltrating lymphocytes are present amongst tumor cells. These regions could cause the analysis to be rejected 

or were manually excluded from analysis. 
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Supplementary Figure S3 

 

Supplementary Figure S3: The distribution of Ki67 score for all manual (conventional-HS, global 

unweighted-UW and weighted-W) and automated (VIS1-HS, VIS2-HS, VIS2-G, QuPath) scoring 

methods. The line intersecting all box plots indicates 14%. 

Supplementary Figure S4 

 

Supplementary figure S4: ROC curves for manual (conventional HS, global weighted, global 

unweighted) and digital (VIS1-HS, VIS2-HS, VIS2-G, QuPath HS) Ki67 scoring methods. 
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