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Preface

This thesis is submitted as partial fulfilment of the requirements for the
degree of Philosophiae Doctor at the University of Stavanger, Norway. The
research has been carried out at the Department of Electrical Engineering
and Computer Science, University of Stavanger in the period of September
2020 to February 2024. The compulsory courses were taken at the University
of Stavanger.

The thesis is based on a collection of five papers - three published and
two currently under review. For increased readability, the papers have been
reformatted for alignment with the format of the thesis and are included
as chapters.

Saul Fuster Navarro, May 2024
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Abstract

This thesis presents a comprehensive investigation into the development
and application of advanced computational techniques for the extraction of
crucial diagnostic and prognostic information from histological images of
non-muscle invasive bladder cancer (NMIBC). Computational pathology
(CPATH) relies on digitized high-resolution tissue samples, referred to
as whole slide images (WSIs). Histological examination of WSIs plays a
pivotal role in the diagnosis and prognosis of NMIBC. The primary focus of
this research is the utilization of deep learning algorithms to automatically
analyze histological images and extract visual cues with diagnostic and
prognostic significance.

With respect to diagnostics, several convolutional neural network archi-
tectures are designed and trained on diverse datasets of NMIBC tissue
specimens to identify and classify key histological features, including tumor
grading and staging. Moreover, the variability of histological visual fea-
tures between pathology laboratories during the training of convolutional
neural network (CNN) models is questioned. Emphasis is placed on the
development of label-efficient guidelines for domain-adapting deep learning
models. In addition, an architecture for machine learning is introduced to
stratify regions of interest (ROIs) in weakly supervised learning. This addi-
tional data stratification aids in localizing ROIs and mitigating cross-noise
variability among them.

Furthermore, this thesis explores the integration of deep learning tech-
niques for prognostic assessment. Through an analysis of the relative spatial
distribution among urothelium and contingent stromal immune cells, our
model predicts patient treatment outcomes and the likelihood of recurrence
with a high degree of precision. These prognostic models provide invaluable
support to clinicians in customizing personalized treatment strategies and
offering patient counseling.
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The work presented in this thesis represents a substantial advancement
toward improving the diagnostic and prognostic capabilities in the man-
agement of NMIBC. Leveraging the potential of computational analysis,
we offer pathologists state-of-the-art tools to augment diagnostic precision
and optimize patient care, ultimately contributing to better outcomes and
quality of life for individuals affected by this prevalent form of bladder
cancer.
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ŷ Output prediction

L Loss function

i, j, k Index

xi Neuron i input

wi Neuron i weight

b Neuron bias

θ Activation function

N Number of samples in a dataset D

X Bag of instances

l Instance number

L Number of instances

XT Data points of training set

ix



NT Number of samples in training set

X′ Data points of initial training set

N0 Number of samples in initial training set

P Data points of data pools

NP Number of samples in data pools

Nb Number of samples in a batch

Lc Contrastive loss

Lce Cross entropy loss

α, β, γ FTL parameter
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ŷ Model output prediction

Ψρ Classifier

HWSI WSI feature embedding representation

HREG Region feature embedding representation

hTILE Tile feature embedding representation

µ Mean value

σ Standard deviation

Paper V - Self-Contrastive Weakly Supervised Learning Frame-
work for Prognostic Prediction Using Whole Slide Images

SEMC Erasmus Medical Center cohort

SSUH Stavanger University Hospital cohort

Dy Dataset corresponding to a region of interest y

y Region of interest corresponding to a tissue type

X ,Y Dataset pair of bags of instances and labels

x Tile of a WSI, corresponding to X

N Batch size

H Feature embeddings of X

Z Projected features of H

xvi



Gθ Feature extractor

Fϕ Multi-layer perceptron

sim(zi, zj) Cosine similarity between feature vectors zi and zj

1[k ̸=i] Binary indicator to indicate all other instances than
i

τ Temperature coefficient

P(i) Cardinality of i

Lc Unsupervised contrastive loss

Lsc Supervised contrastive loss

Lmulti Multi-task loss

αc Scaling factor of Lc

αce Scaling factor of Lce

i Bag index

Hi Bag of instances i from dataset H

yi Label i from dataset Y

l Instance index

L Number of instances in bag H

hl Instance l from bag H
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Chapter 1

Introduction

Pathology is a highly specialized field where pathologists analyse biopsies of
tissue samples with the main aim to verify cancer diagnosis. Pathological
analysis is the core of the diagnostic process. Traditional pathologists’
workflow relies on bench marking microscopy assessment based on individual
expertise. This expertise is complemented, when needed, with additional
literature background or colleagues support, which occasionally leads to
a high level of discrepancy among experts in complex scenarios [1]. As
a consequence, diagnostic pathology in practice today is still a slow and
cumbersome process that relies heavily on the subjective interpretation of
a microscopic image. These intrinsic limitations increase when pathologists
are not specialized in a particular area, a situation which is frequent in small
pathology departments [2]. In these cases, consequently, the probability of
early and correct diagnose is hindered, as reproducibility, objectivity and
precision are severely limited [3].

In addition to the procedural issues, the workload that pathology depart-
ments assume is exponentially growing due to the increasing number of
biopsies, cancer cases and screening programs, designed with a very high
sensitivity and quite low specificity [4]. This creates an increasing demand
to analyse normal or near normal biopsies that it is estimated to go up to
47% by 2040 worldwide [5]. As a result, the saturation of the pathology
departments leads to delays in diagnosis that have a significant adverse
impact on treatments’ assignment and effectiveness [6].

Digital pathology is an image-based information environment that enables
the management and interpretation of pathological information generated
from the digitalization of a tissue sample [7]. It has been only recently that
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improved scanning, storage, data transfer speeds, and advances in software
and computer processing power have made digital pathology progress
possible. Digital microscopy scanners are today capable of scanning entire
stained tissue sections from glass slides in a few seconds and to generate high-
resolution digital images from the scanned tissue sections, also named whole
slide images (WSI), in a fully automatic way. Thanks to the digitisation
of the medical image, non-invasive techniques have appeared to help to
the diagnosis through the computational analysis of the image. These new
approaches allow the quantification of image biomarkers and the detection
and classification of pathology detection by means of artificial intelligence
techniques in a fast and efficient way. Computer-aided diagnosis (CAD)
systems can support pathologists in the task of diagnosing and giving
valuable prognostic information [8].

Bladder cancer (BC) is a heterogeneous disease with high prevalence
and recurrence rates [10]. Notably, the stage and grade of bladder cancer
plays a very important role in prognostication and risk assessment of
this disease, particularly non-muscle invasive bladder cancer (NMIBC).
Its clinical behavior is usually related to pathological grade. Low-grade
non-invasive papillary carcinoma tumors have a low progression rate and
require initial endoscopic treatment and surveillance but rarely present
a threat to the patients, while high-grade tumors have a high malignant
potential associated with significant progression and cancer death rates.

Figure 1.1: Estimated age-standardize mortality rates in 2020 for bladder cancer.
Reprinted from Global Cancer Observatory: Cancer Today [9].
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Current mortality rates are displayed in Fig. 1.1. On average, 70% of
bladder tumors present as superficial disease and the remainder, as muscle-
invasive disease. Many characteristics of urothelial carcinoma have been
studied in an attempt to predict variable tumor behavior. These include
pathologic features, cytologic analysis, and molecular markers. Although
the management of NMIBC tumours has significantly improved during the
past few years, it remains difficult to predict the heterogeneous outcome of
such tumours, especially if high-grade NMIBC is present. Transurethral
resection is the initial treatment of choice for NMIBC [11]. However,
the high rates of recurrence and significant risk of progression in higher-
grade tumours mandate additional therapy with intravesical agents [12].
Accurate staging and grading of the disease is important to decide the
optimal treatment. An understanding of the epidemiology helps in the
prevention and early detection of the disease.

The 2022 version of the European Association of Urology (EAU) guide-
lines on non-muscular infiltrating urothelial carcinoma suggests that patients
are further stratified into risk groups for low, intermediate, high-risk (HR)
and ’highest-risk’ based on the hazard to progress to a muscle invasive
disease [10]. Accurate assessment of the risk is of utmost importance for
NMIBC management, as the treatment strategy depends not only on the
presence of muscle invasion. Efficient treatment guidelines would allow
uropathologist to distinguish patients who respond to treatment, those who
experience recurrence, or progress to a higher stage, from those who do
not. This differentiation is particularly relevant at the time of their initial
transurethral resection of a bladder tumor (TURBT) [13]. Identifying these
patients at the first stage would significantly reduce the mortality rate
and treatment cost, hence contributing to more adequate patient-based
treatment strategies.

Over the last decade, the field of computational pathology (CPATH) has
been extensively explored [14–17]. Among the various cancer types studies
in the literature [18–22], research on BC is negligible in comparison [23–25].
Regarding diagnostics, there has been a considerable list of applications,
such as tissue segmentation [26–28], cell segmentation [29, 30], grading
[31–33] or staging [34–36]. In comparison, prognostic methods have not
been researched enough. Some of the most common applications to discern
clinical outcome include recurrence of the disease after treatment [32, 37, 38],
progression to a higher stage of the disease [38, 39], survival prediction [40,
41] and response to treatment [42, 43]. The implementation of a computer-
aided diagnosis (CAD) system in the clinic has the potential to address
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several key challenges, including enhancing the reproducibility of diagnoses,
reducing variability in interpretations, alleviating the growing workload on
healthcare professionals, and ultimately improving both workflow efficiency
and patient outcomes.

1.1 Research Challenges and Opportunities

Pathological evaluation of histological features remains the prime method
for disease assessment. Despite pathology laboratories slowly shifting
towards a fully-digital workflow, there exists a vast amount of manual
labour to be performed by pathologists. In the context of large whole
slide images (WSIs), this labour mostly consists of carefully visualizing
all present tissue areas in the slides and annotating relevant regions of
interest (ROIs). Pathology datasets often favor supervised learning for
tile-level classification within WSIs [44, 45]. However, at that scale, it is
unfeasible to depend on costly and time-consuming manual annotations
[46–48]. Moreover, annotation strategies are missing, and efforts towards
more efficient guidelines is imperative to reduce excessive input from expert
pathologists.

Even if annotated datasets are available, there is a lack of consensus
among pathologists with respect to risk assessment for accurate clinical
outcome forecasting. These inconsistencies lead to biased or unreliable
predictions [49]. While deep learning (DL) supervised learning methods have
been widely utilized in the field of pathology, non-supervised approaches for
NMIBC are critically uninvestigated. Complementing traditional supervised
learning techniques could ultimately enhance diagnostic and prognostic
capabilities in NMIBC.

Most of the research literature focuses on diagnostic applications, ne-
glecting the essential verdict of clinical outcome. Although the impact of
particular prognostic factors has been explored, they often lack confirma-
tory evidence that these are intrinsically related to a positive prognosis. To
the best of the authors knowledge, no automatic system based on image
features for treatment prediction has been reported in the literature.

1.2 Objectives

The main goal of this thesis is to automatically extract diagnostic and
prognostic histological features from NMIBC WSIs by means of artificial
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intelligence. It is of utmost importance to stratify patients into risk groups
to predict clinical outcome, according to EAU guidelines on NMIBC. This
risk group categorization is subject to age of the patient, whether it is a
primary tumour, tumour size, number of tumours, concomitant carcinoma in
situ (CIS), grade and stage. Therefore, algorithms that obtain quantitative
results of these factors are necessary. Furthermore, as annotation of WSIs
is a cumbersome and time-consuming process, we delve into methodologies
aimed at mitigating the reliance on thoroughly annotated data and reducing
dependence on expert pathologist opinions.

The thesis objectives are divided into one main objective (O1) and three
sub-objectives (SO1-SO3) as follows:

• O1: Creating clinic-relevant risk factor assessment of NMIBC patients
using artificial intelligence.

– SO1: Explore the utilization of non-supervised learning ap-
proaches to address the absence of annotations.

– SO2: Create automated deep learning systems for classifying
risk factors based on histological features.

– SO3: Propose a deep learning method for predicting clinical
outcome from histological slides of NMIBC patients.

1.3 Proposed Approaches

Different ML and DL algorithms and pipelines were proposed in five aca-
demic papers to meet the different thesis’s objectives. Figure 1.2 displays
a general overview of the topics analyzed in the included papers and how
they are connected.

The five papers of the thesis focus on the main objective (O1). The
methodology developed in this thesis addresses the first research sub-
objective (SO1): in Paper I, a weakly supervised learning machine learning
(ML) architecture is proposed for localization and stratification of the
disease. The second research sub-objective SO2 is addressed in Paper II,
III and IV. In Paper II, invasive patterns are discerned from non-invasive
using a context-aware multi-magnification convolutional neural network
(CNN) model. In Paper III, an active learning approach is proposed for
tissue segmentation of BC slides. In Paper IV, an end-to-end DL system is
proposed for grading WSIs of NMIBC. The last research sub-objective SO3
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Figure 1.2: Overview of the contributions and their categorization. Non-supervised
learning, such as active and weakly supervised, aligns with SO1, diagnosis with SO2, and
prognosis with SO3. Paper II, III and IV fall under diagnosis, while Paper V corresponds
to prognosis. All Papers but II, explored non-supervised approaches.

is mainly addressed in Paper V, where we concatenate several DL models
for extracting tissue relevant areas, learn meaningful features, and predict
clinical outcome.

1.4 Project Contributions

The overall contribution of this thesis was to develop algorithms and
systems to extract diagnostically relevant information for use with digital
pathology, more specifically for histological WSIs of NMIBC. The thesis’s
main contributions are the five included papers summarized in the following:

I. Saul Fuster, Trygve Eftestøl, Kjersti Engan, “Nested Multiple In-
stance Learning with Attention Mechanisms”, 21st IEEE Inter-
national Conference on Machine Learning and Applications (ICMLA),
2022.

II. Saul Fuster, Farbod Khoraminia, Trygve Eftestøl, Tahlita C.M. Zuiv-
erloon, Kjersti Engan, “Active Learning Based Domain Adapta-
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tion for Tissue Segmentation of Histopathological Images”,
31st European Signal Processing Conference (EUSIPCO), 2023.

III. Saul Fuster, Farbod Khoraminia, Umay Kiraz, Neel Kanwal, Vebjørn
Kvikstad, Trygve Eftestøl, Tahlita C.M. Zuiverloon, Emiel A.M.
Janssen, Kjersti Engan, “Invasive Cancerous Area Detection in
Non-Muscle Invasive Bladder Cancer Whole Slide Images”,
IEEE 14th Image, Video, and Multidimensional Signal Processing
Workshop (IVMSP), 2022.

IV. Saul Fuster, Umay Kiraz, Trygve Eftestøl, Emiel A.M. Janssen, Kjer-
sti Engan, “NMGrad: Advancing Histopathological Bladder
Cancer Grading with Weakly Supervised Deep Learning”,
2023.

V. Saul Fuster, Farbod Khoraminia, Julio Silva-Rodríguez, Umay Ki-
raz, Geert J. L. H. van Leenders, Trygve Eftestøl, Valery Naranjo,
Emiel A.M. Janssen, Tahlita C.M. Zuiverloon, Kjersti Engan, “Self-
Contrastive Weakly Supervised Learning Framework for
Prognostic Prediction Using Whole Slide Images”, 2023.

Paper I This paper proposes the implementation of a machine learning
architecture for weakly supervised learning. The proposed model archi-
tecture leverages sets and localization as stratified input. The study was
performed to define how intricate sets of data require versatile models.

Paper II This paper proposes a domain adaptation of deep learning
models via an active learning procedure. Active learning reduces the number
of labeled data necessary in an efficient effort to retrain an algorithm, in
comparison to a supervised learning approach. We explore the use of
the class balance evolution over the procedure to recommend annotation
guidelines.

Paper III This paper explores the detection and localization of invasive
cancerous areas in NMIBC WSIs. The models utilized rely on a multiscale
input CNN for leveraging cellular features and morphological structures.
The research analyzes the strengths, limitations, and potentials of various
magnification levels, tissue type differentiation and domain-shift between
different hospital cohorts.
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Paper IV This paper explores the use of weakly supervised learning
techniques for grading NMIBC WSIs. We compare classic approaches to
that proposed in Paper I, weighting the impact of magnification levels in
addition. Multiple instance learning and its architectural variants showed
state of the art performance.

Paper V This paper depicts the use of self-contrastive weakly supervised
learning for prognostic applications using histological images. We propose
a two-step method for training a feature extractor using self-contrastive
learning and multiple instance learning for patient classification, as proposed
in Paper I. Furthermore, we delve into the relevance of tissue regions as
prognostic markers.

1.5 List of Other Works

In addition to the papers included in this thesis, several other works
conducted during the PhD period have contributed to the field, offering
alternative perspectives and methodologies that enrich the understanding
of deep learning in histopathological image analysis. These publications re-
sulted from collaborations with project partners and supervision of master’s
students. Contributions involved tasks such as writing and development.
The following list presents additional publications related to the thesis
topic, distinct from the thesis itself:

VI. Neel Kanwal, Saul Fuster, Farbod Khoraminia, Tahlita C.M. Zuiver-
loon, Chunming Rong, Kjersti Engan, “Quantifying the effect of
color processing on blood and damaged tissue detection in
Whole Slide Images”, IEEE 14th Image, Video, and Multidimen-
sional Signal Processing Workshop (IVMSP), 2022.

VII. Christopher Andreassen, Saul Fuster, Helga Hardardottir, Emiel A.M.
Janssen, Kjersti Engan, “Deep Learning for Predicting Metas-
tasis on Melanoma WSIs”, IEEE 20th International Symposium
on Biomedical Imaging (ISBI), 2023.

VIII. Farbod Khoraminia, Saul Fuster, Neel Kanwal, Mitchell Olislagers,
Kjersti Engan, Geert J.L.H. van Leenders, Andrew P. Stubbs, Farhan
Akram, Tahlita C.M. Zuiverloon, “Artificial Intelligence in Digi-
tal Pathology for Bladder Cancer: Hype or Hope? A Sys-
tematic Review”, Cancers, 2023.
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IX. Marie Bø-Sande, Edvin Benjaminsen, Neel Kanwal, Saul Fuster, Helga
Hardardottir, Ingrid Lundal, Emiel A.M. Janssen, Kjersti Engan, “A
Dual Convolutional Neural Network Pipeline for Melanoma
Diagnostics and Prognostics”, Northern Lights Deep Learning
(NLDL) Workshop, 2024.

1.6 Outlines

The thesis is structured in four parts: I) Methodology, II) Clinical Applica-
tions, III) Contributions, and IV) Included Papers.

Methodology describes basics ML and DL concepts relevant for the thesis
(Chapter 2). Clinical Applications introduces knowledge about WSI and
NMIBC, and provides a brief overview of existing approaches to interpret
tissue features for diagnostic and prognostic interpretation (Chapter 3).
It also provides an overview of the dataset used in the various papers
included in the thesis (Chapter 4). Contributions summarize the ML and
DL methods proposed tfor quantifying risk factors for NMIBC patients
(Chapter 5), as well as their application (Chapter 6-8). Finally, it provides
remarks on this work (Chapter 9). Included Papers lists the included papers
in this thesis.
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Chapter 2

Technical Background

This chapter introduces the technical background in artificial intelligence
and related topics that are the foundation of this thesis.

2.1 Artificial Intelligence

Artificial intelligence (AI) is a field of study aiming to teach intelligent
agents to perform human actions. These are computer systems that mimic
the decision-making capabilities of a human expert in a specific domain.
They use a knowledge base comprising facts and rules to provide expert-
level advice or solve complex problems. Some applications may include
robotics [50] automatic language replies [51, 52], genetic algorithms [53],
among others [54]. The versatility and value of AI is prone to reimagine
our society [55–57].

2.1.1 Machine Learning

Machine learning (ML) is a sub-field of AI concerned with developing
algorithms without explicit guidance, distilling data patterns. ML was
originally categorized into three major subgroups based on the learning
paradigm, those groups being supervised, unsupervised and reinforcement
learning [58]. Lately, the variance in learning methods has led to the
emergence alternative means to exploit the model learning [59, 60].

Datasets, D, are of the essence, as ML relies on data to form algorithms.
These are sets of data points coming in various forms, often with a cor-
responding attribute or label. A dataset contains the insights necessary
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Figure 2.1: Depiction of a MLP. Artificial neurons, represented as circles, transform
and propagate input values toward the output layers. A cryptic representation of an
artificial neuron is also depicted.

for drawing conclusions. To facilitate learning, the algorithm iteratively
processes datasets D through models to extract those insights and learn
from mistakes. A model is a structure of rules, random variables and/or
perceptrons. The most commonly used are support vector machines, ran-
dom forest, decision trees, Bayesian networks, and neural networks [61].
Forward propagating the data points x through the model M serve for
generating an output ŷ. Yet, in favor of learning, a recursion mechanism is
established to reconfigure the internal variables of the model, also known
as weights, back propagating the findings from the obtained output based
on the calculated loss L.

Neural Networks

Neural networks are a ML model type based on artificial neurons. An
example of a neural network in shown in Fig. 2.1. Models are usually
formed by concatenation of multi layer perceptrons (MLP), comprising
a multitude of artificial neurons. These neurons are interconnected and
transfer information from one layer to the next. In practice, a neuron
receives a set of inputs xi. Then, using a configurable set internal variables,
referred to as weights wi, the neuron applies a linear factor over the input.
Neurons also use a bias term b to leverage its linear output, as well as an
activation function θ to introduce non-linearity. Neurons within the same
MLP layer are not directly connected; instead, the outputs from neurons
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in the preceding layer serve as inputs for neurons in the current layer, and
so forth. The output of a neuron can be expressed as:

y = θ(
∑

i

xiwi + b) ∀i in the previous neuron (2.1)

2.1.2 Learning Techniques

There is a substantial amount of learning techniques in the repertory of
machine learning. These differ on the utilisation of labels, or absence of
them, to train models. The ones used in our work are presented in the
following subsections.

Supervised Learning

Supervised learning involves the training of a model using labeled examples.
During this process, input data points x and their corresponding labels y
are made available for training and validation. Consequently, a dataset of
N samples can be represented as a set D = {(xi, yi), i ∈ [1, N ]}.

Weakly-Supervised Learning

Weakly-supervised learning model involves training samples defined as a
collection of instance data points with unknown labels, referred as bag.
Although the true class of the instances is not given, the label of the group
altogether is provided. A bag of instances X = {xl, l ∈ [1, L]} is paired to
a label y. Thus, the dataset is defined as D = {(Xi, yi), i ∈ [1, N ]}.

Active Learning

Active learning is driven by acknowledging that labeled examples do not
hold equal importance.The practice prioritizes data that provides the most
useful information to maximize its impact on training a supervised model.
The most informative data is designated by means of a query strategy,
often based on model classification uncertainty. Then, using an acquisition
function, data points are sampled either through selection by an expert
oracle or automatically chosen based on higher scores derived from the
selected query strategy. Therefore, active learning comprises splitting a
training set XT = {xi, i ∈ [1, NT ]} into an initial small subset of the training
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set X′ = {xj , j ∈ [1, N0]} and a pool of unlabeled data P = {xk, k ∈ [1, NP ]}.
Initially, the model is trained with the starting train set X′ and samples
are adhered progressively from the pools P. The training procedure relies
on training the same model several times until a criteria is met. Deciding
when to stop training involves balancing performance improvement with
resource utilization. Common approaches include monitoring performance
plateau, allocating labeling or computational budgets, assessing annotation
efficiency or setting convergence criteria. Ultimately, the decision should be
guided by the objectives, available resources, and limitations of the project.

Contrastive Learning

Contrastive learning has emerged as a promising technique for acquiring
feature representations from extensive unlabeled data. In contrast to
previous learning techniques that focus on classification, contrastive learning
aims to train a feature extractor. Therefore, the focus relies on the loss
function for feature representation comparison. Given a batch of Nb random
samples from a training set of images XT , a set of two image transformations
are applied to all images in the batch in order to obtain 2Nb augmentations.
These augmentations are forwarded through the model to obtain feature
representations z and later compared using a contrastive loss function Lc.

2.1.3 Loss Functions

This section highlights a comprehensive summary of loss functions used in
the frame of this thesis.

Cross Entropy Loss

Cross entropy measures the distribution of the true label y and the predicted
value ŷ. The binary cross entropy loss is defined as:

Lce = −
N∑

i=1
yi log(ŷi) (2.2)
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Focal Tversky Loss

The Tversky index (TI) leverages false predictions, emphasizing on recall in
case of large class imbalance tuning parameters α and β. TI is defined as:

TIc(ŷ, y) = 1 +
∑N

i=1 ŷi,cyi,c + ϵ

1 +
∑N

i=1 ŷi,cyi,c + α
∑N

i=1 ŷi,ĉyi,c + β
∑N

i=1 ŷi,cyi,ĉ + ϵ
(2.3)

where ŷi,ĉ = 1− ŷi,c and yi,ĉ = 1− yi,c are the probability that sample
i is not of class c ∈ C. ϵ is used for numerical stability, preventing zero
division operations. Focal Tversky Loss (FTL) employs another parameter
γ for leveraging training examples hardship:

FTLc(ŷ, y) =
∑

c

(1− TIc(ŷ, y))1/γ (2.4)

Contrastive Loss

Let sim(zi, zj) = z⊤
i zj/ ∥zi∥ ∥zj∥ be the cosine similarity between l2 nor-

malized vectors zi and zj , then the loss function is defined as:

Lc = − 1
2N

∑
i∈I

log exp(sim(zi, zj)/τ)∑2N
k=1 1[k ̸=i]exp(sim(zi, zk)/τ)

(2.5)

where 1[k ̸=i] is a binary indicator to indicate all other instances than
i, and τ is a temperature coefficient to control the strenght of penalties
on hard negative samples. Lc corresponds to the unsupervised version,
although the supervised contrastive learning loss Lsc does exist. The
supervised loss Lsc considers images from the same class in the batch,
using the corresponding image label y, and does not punish the model for
generating similar representations among images from the same class:

Lsc =
∑
i∈I

−1
|P(i)|

∑
p∈P(i)

log exp(sim(zi, zj)/τ)∑2N
k=1 1[k ̸=i]exp(sim(zi, zk)/τ)

(2.6)

where P(i) ≡ p : yp = yi , while |P(i)| represents its cardinality.
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Figure 2.2: The neural network model undergoes a lifecycle, commencing with its
untrained state. Through iterative training, the model acquires new capabilities by
extracting insights from a designated training set. This iterative process involves feeding
data forward through the network, utilizing backpropagation to adjust weights based
on computed loss. Upon completion of the training phase, the model transitions to the
inference stage, where it leverages its acquired knowledge to generate predictions on new
unseen data.

From Training to Inference

The structure and training process of neural networks are pivotal for their
functionality. However, it is crucial to highlight a notable distinction within
their lifecycle: the transition from training to inference, as illustrated in
Fig. 2.2.

The journey of a neural network begins with its inception, often in an
untrained state. Through training, the network undergoes a transformative
process wherein it learns to discern patterns and relationships within
data, essentially acquiring the ability to perform specific tasks. This
training phase is characterized by iterative adjustments to the network’s
weights, guided by an optimization process like backpropagation, gradually
enhancing its performance.

Once the training phase concludes and the network achieves a satisfactory
level of performance, it transitions into the inference stage. Here, the
network’s learned knowledge is put to practical use. When presented
with new, unseen data, the network applies its acquired understanding to
make predictions or decisions. Unlike training, where the emphasis lies on
adjusting parameters to minimize error, inference focuses on leveraging the
network’s learned representations to generate accurate predictions.

18



2. Technical Background

2.1.4 Deep Learning

Deep learning (DL) is a sub-field of ML that utilizes deeper neural networks.
The presence of additional layers permits more refined understanding of
intricate concepts, while handling data with little to no preprocessing. With
conventional neural network models, neurons can only establish connections
with individual data points, leading to a significant number of connections
(e.g., all pixel values in an image need to be connected with all input
neurons). To mitigate this processing overload, machine learning models
depend on meticulously crafted feature extraction strategies before initiating
model training. In contrast, DL models do not require hand-crafted feature
extraction [62]. In exchange for these advantages, DL algorithms require
larger amounts of data to judge which features are important. They cover
a wide range of applications, in terms of data modalities and disciplines.
These include activity recognition [63, 64], natural language processing
[65, 66], object segmentation [67, 68], signal processing [69, 70], privacy
[71, 72], and many others.

Convolutional Neural Networks

Since DL models need to carefully extract features from the raw data,
dedicated tools are utilized to accomplish this objective. In the case of
images and video, it is common to use a convolutional neural network
(CNN). CNNs are well-suited for the image modality, as convolutions are
translation invariant and focused on local features. Also, CNNs contain
lesser number of trainable parameters than a MLP would have given the
vast number of pixels an image contains. Moreover, extensive research on
image processing has led to a substantial number of pre-trained models
to transfer learning from [73, 74]. A CNN is often formed of a series of
convolutional and pooling layers. A convolutional layer conducts discrete
convolutions on the input I using a learnable kernel K. Here, I(xh, yv) ∈ R2

and K(k1, k2) ∈ R2 represent a 2D image and a 2D kernel, with (xh, yv)
and (k1, k2) denoting their width and height. The convolution operation
between I and K is defined as:

g′′(xh, yv) = K(k1, k2)⊛I(xh, yv) =
k1−1∑
i=0

k2−1∑
j=0
K(i, j)I(xh+k̃1−i, yv +k̃2−j)

(2.7)
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where ⊛ denotes the convolution operation, and k̃1 ≡ ⌊1
2(k1 − 1)⌋ and

k̃2 ≡ ⌊1
2(k2 − 1)⌋ correspond to the half-width and half-height of the kernel

K. The convolutional layer utilizes kernels and strides to generate feature
maps capturing local patterns in the input data. Pooling layers then
downsample feature maps spatially, reducing dimensionality and enhancing
model robustness. Average-pooling and max-pooling are common pooling
operations, calculating the average and maximum values from input regions
to create downsampled feature maps, respectively. Ultimately, a CNN
Gw : I → H with trainable weights θ is transforming input images into
feature embeddings.

Multi-scale Models

Multi-scale models represent a versatile approach to data analysis, oper-
ating across multiple resolutions to capture hierarchical information and
extract discriminative features. By considering data at various scales, these
models enhance understanding by discerning fine-grained details alongside
broader patterns [26, 31, 75, 76]. Additionally, multi-scale models offer
adaptive analysis capabilities, allowing them to adjust the level of analysis
based on task requirements or data characteristics. Overall, multi-scale
models provide a flexible framework for analyzing complex systems, offering
improved insights and performance across diverse domains. In this thesis,
models that operate on a single scale are denoted as MONO, those on
two scales as DI, on three scales as TRI, and so forth. An example of a
multi-scale CNN input is represented in Fig. 2.3.

Scale 1

Input 
Images
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Scale 3
CNN
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Figure 2.3: Illustration of a multi-scale CNN input, showcasing the convention of
denoting models operating on varying scales. MONO refers to single-scale models, DI to
dual-scale models, and TRI to triple-scale models.

20



2. Technical Background

Sequential and Attention Models

In regards to language processing, an architecture that supports the se-
quential nature of words needs to be adopted. Typically, recurrent neural
networks (RNNs) and long short-term memory (LSTM) architectures are
utilized [77]. These architectures thrive in sequential data-handling and
understanding the contextual information. An evolution of these sequential
networks emerged in transformers [78]. The effectiveness of transformers is
rooted in their capacity to capture long-range dependencies, process data in
parallel, and leverage the self-attention mechanism. Transformers quickly
have become widely popular, and adaptations have crossed disciplines for
imaging [79, 80] and video [81]. However, transformers demand even larger
amounts of data to achieve satisfying performance. In the medical domain,
severe data limitations hinder its widespread adoption [82]. It’s noteworthy
that the use of attention mechanisms for image processing, the main appeal
of the model architecture, predates the incorporation in vision transform-
ers [83]. It was found that attention-based learning increases predictive
performance and enhances feature discrimination in histopathological ap-
plications [84]. Moreover, attention scores influence forward propagation.
An attention score ai for a feature embedding hi can be calculated as:

ai = exp{w⊤(tanh(Vh⊤
i )⊙ sigm(Uh⊤

i ))}∑L
l=1 exp{w⊤(tanh(Vh⊤

l )⊙ sigm(Uh⊤
l ))}

(2.8)

where L is the number of elements in a set of data points, w ∈ RL×1,
V ∈ RL×M and U ∈ RL×M are trainable parameters and ⊙ is an element-
wise multiplication. Furthermore, the hyperbolic tangent tanh(·) and
sigmoid sigm(·) are included to introduce non-linearity for learning complex
applications. The main advantages of attention in imaging relies on the
flexibility to decide which data points are highly informative, and the
interpretability provided by the output attention scores. Furthermore,
during the inference stage, we can visualize these scores to gain deeper
insights into the model’s reasoning, thereby enhancing its interoperability
and addressing the challenges posed by the "black box" problem.
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Chapter 3

Medical Application

In this chapter, we introduce bladder cancer disease, diagnostic assessment,
risk factors for analysis and treatment strategies.

3.1 Histopathological Workflow

Figure 3.1: Histopathological workflow. Tumour samples are extracted from a biopsy,
followed by a histological process to stabilize the biological tissue. The tissue sample is
sectioned, stained, and later, digitally scanned, for visual examination. Analysis of image
features and clinicopathological data leads to a report that dictates disease management.
Image reprinted with permission from QPS Neuropharmacology [85].

A pathologist examines the tissue to provide a diagnosis that will re-
sult in a treatment intervention for a given patient. Understanding the
histopathological process is beneficial for more accurate diagnostics and
prognostics, as it provides insights into the underlying cellular and tissue-
level changes associated with various diseases, enabling clinicians to make
informed and precise decisions. This same understanding serves as founda-
tional knowledge for guiding the development of computational pathology
algorithms.

The clinical histology process begins when a treating physician determines
histological confirmation necessary in order to evaluate and determine the
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appropriate treatment procedure, or a when a tissue sample is collected.
Tissue samples are extracted from the patient, usually via a biopsy or
excision, so a pathologist can evaluate in detail the biological properties of
the sample [86]. After a tumor tissue is extracted, the tissue is chemically
and physically stabilized. The tissue is first immersed into a fixative solution
that will stop cellular degradation and prevent microorganism proliferation.
After fixation, the tissue is dehydrated and cleared for paraffin infiltration.
The paraffin is liquefied to infiltrate the tissue and later cooled down to keep
the tissue firm. A block of paraffin is formed after pouring the liquid over
the tissue that is placed on the bottom of a mold and left onto a cooling
plate to harden the paraffin. Positioning of the tissue during this step is
fundamental for sectioning in the correct orientation. Proper orientation
helps on visualizing the resected area that otherwise wouldn’t have been
visible. A microtome cuts thin slices of the tissue paraffin block. These
sections are plunged onto water slightly about paraffin melting point to
prevent tissue wrinkling and expand it. Once the section is heated, it is
mounted on glass slides for later examination. Slices are normally 3-4µm
thick to display relevant cellular local information, since thinner sections are
harder to extract and usually are cauterized and thicker slides tend to make
staining dark and lose contrast which makes nuclear detail observation
difficult.

After undergoing this process, the tissue presents little contrast and
biological diversity is almost invisible for the naked eye. Tissue samples
are stained to create contrast among different tissue types and cellular
elements. Most staining procedures are based on dyes that will highlight
certain cellular features. The amount of dye used should be interdependent
of the thickness of the sectioned tissue. For very thin slices, lower amounts
of dye are recommend to not saturate the coloring, while a minimal doses of
dye would result in low contrast and hardly visible differentiation between
cellular components. On clinical practice, the chemical properties of these
dyes produce a desired visual appearance based on the components to
be evaluated. The most commonly used stain for diagnostic purposes is
hematoxylin and eosin (HE) stain [87, 88]. HE provides excellent contrast
between cellular, for which hematoxylin turns cell nuclei purple wherein
eosin turns cytoplasm pink. Some studies have used saffron additionally
(HES) for further enhancing the visual characteristics of morphological
structures of the lamina propria, mainly for contrasting pink cytoplasm [89–
91]. Labs usually section multiple adjacent slices from the same sample to
observe different patterns and morphological features using different stains,
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also called immunohistochemistry. Immunohistochemistry is a procedure
that aims to detect, amplify and make visible a specific antigen, which
is usually a protein. This technique makes it possible to identify the
localization of a specific substance at the tissue or cellular level, based on
the use of antibodies that specifically bind to a substance to be identified.
Emphasis is also given to laboratory applications with the aim of providing a
valuable support to medical diagnostics, which in the case of histopathology
is to underline the presence of immune cells within the tissue, being the
latter a positive prognostic indicator.

Traditionally glass slides are stored in a mayor archive for later selection
and observation through a microscope. Nowadays, glass slides are scanned
and digitized into whole slide images (WSIs), which allows pathologists to
examine tissue through computer screens. A pathologist analyzes possible
abnormalities that may be present including tissue architecture, texture and
presence of malignant cellular types, among others, to elaborate an accurate
diagnosis. Based on the evidence gathered from the histological images,
and molecular data from sequencing techniques, the pathologists elaborate
a study report on the patient current status and follow-up procedures for
eliminating the disease.

3.2 Bladder Cancer

Figure 3.2: Stages of bladder cancer. At the left-hand side, we have non-muscle invasive
bladder cancer (NMIBC), for which we have flat lesions (Tis), and papillary lesions (Ta,
T1). Ta is a non-invasive carcinoma while T1 invades the subepithelial connective tissue.
On the right-hand side, we have muscle invasive bladder cancer (MIBC). At T2 stage the
tumour has invaded the muscle layer, T3 the perivesical tissue and T4 adjacent organs.
Image reprinted with permission from Roswell Park - Comprehensive Cancer Center [92].
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Figure 3.3: Grading of bladder cancer. At the left-hand side, normal or healthy
urothelium. The middle and right-hand side cellular structures represent low- and
high-grade urothelial tissue, according to the WHO04 grading system. With increasing
grade, the cellular arrangement becomes more intricate, leading to a greater degree of
cell entanglement and increased amorphousness. Image reprinted with permission from
Bladder Cancer Academy Network [93].

Bladder cancer (BC) is a heterogeneous disease emerging from the urothe-
lial lining of the bladder. In Fig. 3.2, we highlight examples of tumours at
different T-stages, following the Tumour Node Metastasis (TNM) staging
system. TNM defines the stage of the cancer according to the deepest
layer invasion, ranging from tumours contained within the urothelial lining
(Tis) to adjacent organ invasion (T4) [94]. As the stage increases, the
prognosis becomes more unfavorable. BC is further subdivided into two
major subcategories based on muscle invasion: non-muscle invasive bladder
cancer (NMIBC), encompassing Ta, T1 and Tis tumours; and muscle inva-
sive bladder cancer (MIBC), including T2, T3 and T4 tumours. NMIBC
prognosis, hence treatment options, are vastly more positive than MIBC
[95]. Patients diagnosed with MIBC are urgently prompted with radical
cystectomy surgery, meaning that the entire bladder and contiguous lymph
nodes are removed, resulting in increased morbidity and reduced quality of
life.

Grading refers to the degree of differentiation of cancer cells in comparison
to non-cancerous cells [96]. Nowadays, the World Health Organization has
two grading systems in place. WHO73 proposes three grades, namely 1, 2
and 3; while WHO04 proposes low- and high grade. Recent studies show
a benefit in using WHO04 over WHO73, although hybrid classification
systems have been prevalent [97, 98]. For this reason, in this thesis, we
will proceed with WHO04. An example showing low- and high grade
urothelial tissue in comparison to normal urothelium is shown in Fig. 3.3.
Nevertheless, a significant component of inter- and intra-observer variability
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exists for either of the classification systems [99, 100]. All MIBC cases are
high-grade, thus grading carries no prognostic value [36].

In this thesis, we are solely focusing on NMIBC, as 75% of newly di-
agnosed patients with BC are NMIBC [101]. Moreover, NMIBC patients
are eligible for treatment that may effectively eliminate any remaining
cancer cells left in the bladder. Active surveillance is advised after the
first transurethral resection of a bladder tumour (TURBT) for potential
recurrence or progression of the disease [102, 103].

3.2.1 Diagnosis and Risk Factors

Haematuria, which refers to the presence of blood in the urine, is often the
earliest indication of NMIBC disease [104]. Several non-invasive imaging
techniques are adopted for determining the presence of NMIBC, being
computed tomography [105], ultrasound [106] and magnetic resonance
imaging [107]. However, histopathological analysis remains the ultimate
test for disease risk assessment, hence it remains as the gold standard due
to its precise diagnostic capabilities [108].

The main diagnostic risk factors for BC occurrence include external and
genetics [109]. Smoking tobacco is the leading risk factor, followed by
exposure to gases rich in carcinogenic chemical compounds and chlorinated
liquids. The impact of diets is limited, yet highly saturated fats are linked
to an increased incidence rate [110].

3.2.2 Prognosis

In pursuance of predicting the risk of disease recurrence and progression,
several prognostic models have emerged. These models rely on a scor-
ing system with significant clinical and pathological factors. The most
prominent factors are age, gender, number of tumours, grade, concomitant
CIS, tumour size and prior recurrence. The most used scoring models
are introduced by the European Organisation for Research and Treatment
of Cancer (EORTC), Club Urológico Español de Tratamiento Oncológico
(CUETO) and European Association of Urology (EAU) [10, 111, 112].

Based on the 2022 EAU NMIBC scoring model, patients are categorized
into risk groups according to their likelihood to progress to MIBC. The
calculation is formulated based on an analysis of individual patient data,
considering age>70, multiple papillary tumours and tumour size >3cm
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as additional clinical risk factors. This risk stratification is essential for
a tailored treatment and intervention. Finally, DNA and RNA genetic
alterations result in molecular subtypes with distinct prognostic implications
[113].

Risk groups prescribe guidelines for appropriate disease management.
Low-risk patients benefit from a single instillation of chemotherapy for
reducing the recurrence rate, while for intermediate-risk patients repeated
instillations are required for recurrence free survival [114]. In addition,
several studies agree that intravesical Bacillus Calmette-Guérin (BCG)
immunotherapy results in more positive outcomes for intermediate, high
and highest-risk patients [115–117] For intermediate-risk disease, guidelines
typically recommend a 1-year course of BCG treatment. This treatment
protocol typically begins with an induction phase comprising six weekly
instillations, followed by a maintenance phase involving additional regular
instillations over a predetermined period. For patients with high-risk of
disease progression 1-to-3 years of BCG treatment is indicated, although rad-
ical cystectomy is suggested. Immediate radical cystectomy for highest-risk
is advised, albeit the patient may opt for regular BCG therapy. Nonethe-
less, NMIBC may exhibit inadequate treatment response or experience
recurrence despite an initial positive response [11]. In those cases, radical
cystectomy is the established procedure of choice.

3.3 Computational Pathology

As slide scanning technology becomes faster and more reliable, the avail-
ability of WSI data for training convolutional neural network models is
rising. Integrating clinical information, biomarkers, and sequencing data,
computational pathology (CPATH) is set to become standard practice [118].
This approach streamlines pathology workflows and provides a comprehen-
sive view, aiding pathologists in monitoring complex disease progression
for better patient care [119].

3.3.1 Whole Slide Images

Whole slide images (WSIs) are high-resolution digital files from a scanned
microscope slide of sectioned tissue biopsy. The nature of these images is
of voluminous size, as a typical size of 200 000 × 200 000 can be found
for 800x magnification, as the visual appearance of the tissue has been
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Figure 3.4: Whole-slide images (WSIs) are stored in a pyramidal format, with the
highest magnification level represented by the base image. Here, a set of three tiles with
the same center physical point are extracted at different magnification levels.

enlarged 800 times. For this reason, WSIs are also referred as gigapixel
images [8, 120–122].

WSIs are stored in a pyramidal structure, where the original glass slide
is scanned at the highest resolution, and multiple down-sampled versions
are retained. This emulates the behavior of a traditional microscope for
pathologists, facilitating rapid zooming in and out. We refer to magnifi-
cation as the ratio between the apparent size of the tissue and its actual
size. The usual base magnification used is 400x, although others are also
adopted [44, 45, 123]. It is worth noting some might use either 40x or 400x
to describe the same level of magnification. The roots of this discrepancy
originate from historical microscope conventions. Traditional microscopes
labeled objectives relative to the combined magnification with a 10x eye-
piece, resulting in a 40x objective being labeled as providing 400x total
magnification [124]. In digital imaging, however, the terminology may refer
solely to objective magnification, leading to different labels for the same
level of magnification. Moving forward, we will use the total magnification.
A visual representation of the pyramidal nature of WSIs is shown in 3.4.

Due to the bare size of the WSIs, tiling is a essential step for their effi-
cient analysis in CPATH tasks. A sliding window algorithm is adopted for
extracting tiles from the raw slides. These tiles are individually processed,
which enables processing for computing hardware while reducing compu-
tationally intensive and memory-consuming operations. Also, selectively
extracting tiles from selected regions diminishes the need to load the entire
slide, permitting the exclusion of non-diagnostically relevant tissue areas
and magnification selection.
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3.3.2 Image Analysis and Applications

Extensive work on assessment of slide quality and pre-processing has been
a main point of interest in the research community [125–127]. As the
surgical procedures for tumor removal are intrinsically complicated, several
artifacts and other undesired tissue come to be present at WSIs [128].
Works on artifact removal focus on the detection and removal of blur,
damaged tissue and tissue folds from the slides [129–133], although others
focus on the overall evaluation of the slide quality for discarding artifact
noisy WSIs [134–137]. Nonetheless, artifact-free WSIs still suffer from
stain variability. Approaches to mitigate the color variability include
augmentation [138, 139], normalization [140–143], and deconvolution to
obtain separate images for each stain [144–146]. Another emerging trend
in this regard is the use of generative deep learning models for potentially
addressing the aforementioned challenges [147, 148]. A software tool for
quality control of WSIs is HistoQC [149]. It automatically detects and
flags common issues such as artifacts and stain abnormalities, resulting in
a valuable tool for ensuring the reliability of slides.

An overview of software tools for digital pathology is provided by Guer-
rero et al. [150]. Among the most prominent tools we find Ilastik [151],
ImageJ [152], and CellProfiler [153]. Ilastik provides capabilities for image
classification and segmentation, employing an intuitive machine learning
toolbox with support for both pixel-level and patch-level analysis. ImageJ
is a popular open-source software tool used in medical image analysis.
CellProfiler, on the other hand, is a versatile tool with a user-friendly inter-
face for quantifying cell features. Another tool is QuPath, a digital image
analysis software platform with integrated machine learning algorithms
that can be trained by users. [154]. Additionally, Visiopharm, a prominent
company in the field of digital pathology, offers a range of software solu-
tions for image analysis, quantification, and interpretation. Notable works
employing Visiopharm’s software include studies focusing on image-based
biomarker assessment, tissue morphometry, and digital pathology workflow
optimization [155–158].

Regarding CPATH algorithms emphasizing on bladder cancer, we observe
a significant lack of research in comparison to the other more popular
cancer types, like breast and prostate, among others [18, 19, 23, 159, 160].
In the realm of bladder cancer diagnostics, numerous applications have
been explored, each contributing to different aspects of histological image
analysis. Notably, tissue segmentation has garnered attention. Wetteland
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et al. [26, 27] employed a multi-scale CNN input for segmenting all tissue
into five distinct classes using patches at different magnification levels;
while Niazi et al. [28] used a U-Net for pixel-level segmentation of distinct
pathology elements. Similarly, advancements in cell segmentation have
been made, as evidenced by the works of Zheng et al. [29], who employed
QuPath in-built functions to preprocess the slides and extract cell features
for training a naive neural network. Schmidt et al. [30] proposed a method
based on star-convex polygons, a more suitable method for detecting
round shapes of cell nuclei. Results demonstrate that the proposed solution
outperformed state-of-the-art pixel-segmentation deep learning methods like
U-Net and Mask R-CNN. In the context of grading, another critical aspect
of histological analysis, significant progress has been achieved. Wetteland
et al. [31] use a multi-magnification CNN backbone for grading NMIBC
urothelium patches. Then, it leverages individual patch predictions into a
WSI-level prediction using a voting mechanism. Barrios et al. [32] employ
an ensemble of four weight-independent CNNs to predict grade and stage,
to ultimately correlate the predictions into risk hazard. Zhang et al. [33]
introduce an automated pipeline employing deep learning models. This
pipeline delineates lesion areas, generates reports based on the identified
lesions, and ultimately provides a grade prediction at the WSI-level. In
regards to staging methods for bladder cancer, only one work was found. Yin
et al. [34], from pathology-annotated ROIs, used CellProfiler for segmenting
cells and ImageJ for extracting features from those cells. Subsequently,
various neural networks were employed to ascertain the stage of the ROI,
with probabilistic models demonstrating superior performance.

In contrast to diagnostics, prognostic methods have not received as much
research attention. However, several crucial applications aim to discern
clinical outcomes based on histological images. Recurrence prediction has
been a focal point for researchers. In Tokuyama et al. [37], pathologists
manually extracted ROIs from relevant WSIs, to then use Ilastik to segment
cell nuclei and CellProfiler to measure nuclear morphologic and texture
features. Ultimately, extracted nuclei features are fed through support
vector machines and random forest algorithms to predict the event of
tumor recurrence. In Urdal et al. [38], a pathologist similarly delineates
a ROI per WSI. Features are subsequently extracted from the histogram
and inputted into a classifier. In Lucas et al. [161], they exploit a pre-
trained CNN for feature extraction of lesion areas and a bidirectional gated
recurrent unit for predicting recurrence. They also delve into the impact
of clinicopathological data, and they found that an hybrid approach of
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clinical and histological features worked best. Unfortunately, progression
prediction has not been directly addressed by means of histopathological
image analysis. Nevertheless, survival prediction studies, such as those
conducted by Chen et al. [40, 41], have aimed to provide insights into
long-term patient outcomes. They used QuPath to segment cell nuclei
and CellProfiler to extract nuclei features, to subsequently use a machine
learning model for risk stratification. Additionally, the assessment of
response to treatment has been investigated by Mi et al. [42], where they
used a mixture of QuPath and the previously discussed work in [30], to
delineate nuclei and extract features, to consequently employ clustering
methods for grouping distinct responses. This work further contributed to
the prognostic modeling in bladder cancer.
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Data Material

This chapter describes the data material used in this work. The majority
of the data used consists of histological whole slide images, some of which
are annotated by pathologists, along with associated clinicopathological
data from the corresponding patients. The image dataset overview for each
of our contributions is also presented.

4.1 Dataset Overview

The overview of the image data material is described in the following
section. In this thesis, we have used public and private datasets. We refer
to the private medical datasets using capital letters for increased readability.
This notation is extended to the rest of the thesis. The private datasets
were provided by either Erasmus Medical Center (EMC), Rotterdam, The
Netherlands, or Stavanger University Hospital (SUH), Stavanger, Norway.

For training and evaluating the different models, multiple training, val-
idation, and test sets were created. While some WSIs appear in multi-
ple datasets, precautions were taken in all experiments to avoid cross-
contamination between training and testing sets of the same model.

4.2 Public Datasets

4.2.1 MNIST

The MNIST (Modified National Institute of Standards and Technology)
database is a classic image dataset consisting of handwritten digits [162].
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MNIST consists of tiles of size 28 × 28, with a training and test set of
60,000 and 10,000 examples, respectively. The dataset contains 10 classes
corresponding to the 10 existing digits represented in the images.

In Paper I, the models were trained and tested with 20,000 and 5,000
bag-of-bags, respectively, constructed by randomly extracting 16 instances
within the class of desired instance labels. The digit 9 was prompted as
the positive instance class.

4.2.2 PCAM

PCAM (PatchCamelyon) is an image dataset consisting of patches extracted
from WSIs of lymph node sections [163, 164]. PCAM consists of 327,680
patches of size 96 × 96 × 3, where each patch is annotated in a binary
manner to indicate the presence of metastatic tissue.

In Paper I, the models were trained and tested with 20,000 and 5,000
bag-of-bags, respectively, constructed by randomly extracting 16 instances
within the class of desired instance labels. The presence of metastasis was
prompted as the positive instance class.

4.3 Private Cohorts

The database from EMC is a multi-center cohort of HE stained WSIs of
HR-NMIBC. A total of 779 WSIs were scanned using a 3DHistech P1000
scanner at 800x magnification stored as MRXS files. The cohort from SUS
is a retrospective study of NMIBC patients. The data consists of 314 WSIs,
with either HE or HES staining, digitized using a Leica SCN400 scanner at
400x magnification stored in the SCN file format.

In computational pathology and medical imaging modalities, labels can be
region-based (e.g. identifying tissue types within images) or patient-based
(reflecting disease progression or treatment response). Some labels can
serve both purposes (e.g., tumor grade), while others are inherently region-
or patient-based. To integrate both label types, we adopt annotations over
WSIs for region-based labels and clinicopathological data for patient-based
labels.
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Figure 4.1: Microdraw is a web-based tool for annotation of large histopathological
images. The image shows the different classes considered in our annotation guidelines as
well as an illustration of annotated areas by a pathologist.

4.3.1 Annotations

Labeled ground truth holds major significance for training models, but
more so for validating them. Unsupervised and weakly supervised strategies
offer learning opportunities without detailed annotations, but a test set
annotation can be crucial for model evaluation. In order to incorporate
annotations, along with our project collaborators at Univesitat Politècnica
de València (UPV), we implemented a web-tool for histological image
annotation named Microdraw, based on the OpenSeadragon library [165].
The main goal of using a web-based annotation software was to preserve
our WSIs locally, but remotely accessible through the portal. The remote
annotation reduces data transfers and quickens the overall process. This tool
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allows free-hand drawing as well as point insertion for defining an enclosed
area. Different tissue type and subclass labels can be assigned to the
drawn areas (e.g., ’urothelium: high grade’, ’lamina propria: with tumour
infiltrating lymphocytes’). The annotation guidelines were structured to
enable untrained pathologists to conduct the majority of annotations in
the NMIBC dataset. Specifically, a non-expert would undergo training
to classify tissue types (e.g., urothelium, lamina propria, muscle, blood
and artifacts), after which an expert pathologist would further categorize
subclasses and/or grade a portion of the dataset.

4.3.2 Clinicopathological Data

All WSIs collected were accompanied by a comprehensive set of clinical
labels ranging from grading and staging, to follow-up data on recurrence and
disease progression. However, only slides collected from the EMC cohort
contained a wider set of patient demographics and treatment strategies.

It is imperative to delineate between distinct categories of clinical labels.
These categories encompass labels employed directly for the ultimate clas-
sification of WSIs and those utilized to provide supplementary information,
complementing the analysis of image features. In this thesis, the WSI-level
labels included WHO04 grade during the first TURBT, recurrence with
a median follow-up of 82 months, and BCG treatment response for up
to 3-years follow-up. As for the complementary labels used, we included
age, gender, smoking status, grade WHO04, grade WHO73, stage, tumor
focality and size of the tumor. Note that grade was listed under both
categories, as it can either serve as the primary objective for analysis or
offer supplementary information for prognostic purposes.

4.3.3 Private Datasets

A comprehensive overview of the datasets created from the private cohort
data is presented. Table 4.1 summarizes the dataset information.

Dataset A

Dataset A contains 155 WSIs from EMC, and it served for training and
validating models presented in Paper II. A pathologist was asked to annotate
areas in a rough, imprecise manner in order to obtain several annotated
regions per WSI, within a time limit. The time usage was limited to a
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Table 4.1: Overview of private cohorts. We outline the datasets and associated papers
they were utilized in. The total number of WSIs is specified, along with their distribution
across training, validation, and test sets respectively. Additionally, details regarding the
region- and WSI-based labels employed are provided.

Cohort Dataset Papers WSIs Region labels WSI labels

EMC

A II 155 (127/16/12)

Blood
Lamina propria

Muscle
Urothelium

Artifacts

-

B III 37 (27/10/-)

Invasive cancerous area
Tumour infiltrating lymphocytes

Blood
Lamina propria

Muscle
Urothelium

Artifacts

-

D V 503 (399/52/52)

Invasive cancerous area
Tumour infiltrating lymphocytes

Lamina propria
Urothelium

WHO04 grade
WHO73 grade

BCG treatment response

SUH B III 14 (10/4/-)

Invasive cancerous area
Tumour infiltrating lymphocytes

WHO04 grade
WHO73 grade

-

C IV, V 300 (220/30/50) WHO04 grade Recurrence, WHO04 grade

maximum of one hour per WSI. As a result, some regions were annotated in
every WSI, but not the entirety of present tissue was annotated. The aim
of this annotation protocol was to collect diverse scenarios, hence capture
the tissue heterogeneity characteristic from bladder cancer. In total, 127,
16, and 12 WSIs were annotated and used for training, validation and test,
respectively.

Dataset B

Dataset B contains 37 WSIs from EMC and 14 from SUS, for staging in
Paper III. The combined dataset included 23 non-invasive and 28 invasive
tumours. All slides were partially annotated and revised by pathologists,
with the annotations serving as ground truth. Only representative regions
were annotated from each WSI; thus, no slide was fully annotated. Anno-
tated regions from EMC included mainly tissue types (urothelium, lamina
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propria, blood, muscle and artifacts), while SUH annotations contain pri-
marily urothelium grading. In some cases, these tissue annotations might
come with a subclass, such as grading of urothelium, presence of tumour
infiltrating lymphocytes (TILs) in both urothelium and lamina propria,
ICA, artifact type, among others.

Dataset C

Dataset C contains 300 WSIs from SUH for training and evaluating the
grading models in Paper IV. All WSIs were rigorously graded in accordance
with the WHO04 classification system, as either low-grade or high-grade,
thus providing valuable slide-level diagnostic information. However, they
lack location annotations pinpointing the precise areas of low- or high-grade
regions within the WSI. As a result, the dataset is considered weakly labeled.
The dataset employed in this study was divided into three subsets: 220
for training, 30 for validation, and 50 for test. In addition, pathologists
annotated a set of 14 WSIs of NMIBC patients from the test set with low-
and high-grade areas.

The WSIs used in Dataset C for train, validation and test, with the
same distribution, are also used for recurrence prediction in Paper V. The
prognostic labels correspond to recurrence or no recurrence. No WSIs
were annotated, hence only weak labels regarding recurrence outcome were
available.

Dataset D

Dataset D contains 503 WSIs from 453 patients, all from the EMC cohort,
for prognostic models in Paper V. Since the treatment outcome is related
to the patient as a whole and not to a specific region of the tumor, patches
from various WSIs that belong to the same patient were merged as a single
entity. A trainee pathologist annotated 217 WSIs, although none of the
WSIs were fully annotated due to time and database storage constraints.
Annotations contain tissue types, artifacts, grading and staging. Moreover,
a detailed report of clinicopathological information per patient was disclosed
with info about number of BCG instillations, responsiveness, among others.

40



4. Data Material

4.3.4 Ethical Approval

For the EMC cohort, we refer to the ethical approval from Daily Board of
the Medical Ethics Committee Erasmus MC, Rotterdam, The Netherlands,
METC number: MEC-2019-704.

For the SUH cohort, we refer to the ethical approval from Regional
Committees for Medical and Health Research Ethics (REC), Norway, ref.no.:
2011/1539, regulated in accordance to the Norwegian Health Research Act.
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Chapter 5

Learning Methods

In this chapter, we present the methods proposed in the outline of this
thesis. We aim to define all the methods that serve as the foundation for
all applications investigated. Paper 1 is dedicated to the topic, and the
main methods, results, and contributions will be presented. In the thesis,
Paper 1 is part of sub-objective SO1 on utilizing non-supervised learning
approaches to address the lack of annotations.

5.1 Active Learning

Labeled data is often scarce or costly for medical applications. An alter-
native to be more efficient on the usage of labeled data comes from using
active learning. Learning and sample selection typically revolve around
uncertainty metrics. We want to emphasize that missing a positive instance
is detrimental, which hold true for medical diagnostics. The proposed active
learning approach is explained in detail, see Algorithm 1. A training set X
is divided into initial training subset X0 and pools of training data P . The
proposed active learning algorithm selects new samples based on model
performance. Considering the false negative ratio (FNR) on the validation
set V and total sample size S, N i

j samples from the pools P are appended
into the current training set, for every class i on iteration j. Furthermore,
we define a relative class balance size δj

i to represent the percentage of data
points for class i on the current training set Xj . These steps are iteratively
repeated until P cannot provide more samples of the requested class or J
iterations have passed.
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5. Learning Methods

Algorithm 1 Active Learning Train Procedure
procedure ALtrain(X ,V, J, S)

1: X0,P ← X ▷ Split train set into initial subset and pools
2: while j < J or len(Pi) > N i

j do
3: for j ← 1 to J do
4: MODELT RAIN (Xj)
5: MODELEV AL(V)
6: for i← 1 to I do
7: N i

j = F NRi
j−1·S∑

i
F NRi

j−1
▷ Per class new data points

8: X i
j

+← sample(P, N i
j)

9: end for
10: end for
11: end while
12: return ŷ

5.2 Weakly-Supervised Learning

In the medical imaging domain, labeled data is scarce or expensive to obtain.
As a result, enabling the development of models in scenarios where fully
supervised learning may be impractical or infeasible. Weakly supervised
learning is valuable for training machine learning models with minimal
labeled data, utilizing global image labels and disregarding annotations,
cutting down on time and costs. Multiple instance learning (MIL) is a
weakly supervised method trained in a supervised manner considering
outermost bags and their corresponding labels. For the conventional MIL
setting, a dataset X ,Y =

{
(Xi, yi),∀i = 1, ..., N

}
is formed of pairs of

sample sets X and their corresponding labels y, where i denotes the current
sample for a total of N samples. A sample X consists of a bag of instances
xl of feature embeddings:

X = {xl, ∀l = 1, ..., L} (5.1)

where L is the number of instances in the bag. In order to obtain an
instance representation or embedding from input data, for example an image
patch, we make use of a feature extractor. An image feature extractor
Gf : i→ x is typically a convolutional neural network which maps an image
patch i into a feature embedding vector x. Instance representations x from
a bag X are aggregated to form a bag representation using an aggregation
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function Ξ, which can, for example, be replaced by either the mean or max
operators.

A label y ∈ {0, 1} is associated with the bag X. Although each instance,
x , might be associated with a label yl, they are generally unknown; hence
only bag labels are used during training. At the inference stage, a test
set might be associated with labels both at the bag and instance level to
provide performance metrics. Under the conventional binary classification
MIL assumption, a bag label is positive with the single presence of a
positive instance. Then, the model learns comparing y with the prediction
ŷ, computed by the bag classifier Θc.

y = max
l
{yl} (5.2)

ŷ = Θc(Ξ(X)) (5.3)

Conventional weakly supervised models may overlook spatial context,
which is intrinsically necessary for image processing. Therefore, more
refined techniques can help address this issue by grouping extracted patches
from regions separately during model training.

5.2.1 Paper 1 - Weakly Supervised Nested Model Architec-
ture

In this section, the contributions in Paper 1 are presented. This paper
presents a novel machine learning model architecture. Nested Multiple In-
stance with Attention (NMIA) overcomes the intricate relationship between
instance and bag labels with nesting, while offering a high degree of inter-
pretability using attention mechanisms. The datasets utilized correspond
to Datasets MNIST and PCAM, as listed in Chapter 4.2.

The concept of bag-of-bags, or a nested setting, consists of levels of bags
within bags where only the innermost bags contain instances. In Figure
5.1, the idea of grouping instances in inner-bags, inner-bags in larger bags,
and finally in one outermost bag is illustrated. Let J denote the number of
nested levels, Kj number of bags at level j and Lj,k denote the number of
instances or bags in a bag k. A set Xj contains a set of inner-bags Xj,k:

Xj = {Xj,k, ∀k = 1, ..., Kj} (5.4)
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Figure 5.1: Nested bag-of-bags. Instances from two different classes (crosses and circles)
are drawn into the innermost bags to form sets which are recursively grouped finally
forming the outermost bag.

for j defining the current nesting level up to J levels of nesting. For
J = 1, one level of nesting, the notation corresponds to the ordinary MIL
notation described in Eq. (5.1). The number of inner-bags Kj can vary
from level to level. For a given inner-bag k at level j, where l defines the
instance number up to Lj,k, a bag of instances Xj,k is expressed as:

Xj,k = {xj,k,l,∀l = 1, ..., Lj,k} (5.5)

By latent labels, we refer to the actual, but in general unknown, labels
of an instance or inner-bag. When defining the dataset, however, these are
necessary to determine the final bag-of-bags weak label y. For simplicity,
we will refer to an instance latent label yj,k,l as yj

l to describe the latent
label of an instance l in a level j, omitting bag index k.

According to Ilse et al [84], a multiple instance attention block is con-
structed using an embedding-level approach to obtain a bag-level represen-
tation from the instances within, as depicted in Figure 5.2. The proposed
attention module’s input corresponds to low-dimensional embeddings x.
These are generated by a feature extractor Gf or by bag embedding represen-
tations of previous levels. The attention module analyzes those embeddings
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Figure 5.2: MIA block. Input embeddings are fed into the attention module to compute
attention scores. Green instances represent a positive class, while a red represents a
negative class. Attention scores are used to compute weighted representations of the
instance embeddings. The weighted embeddings are thereafter aggregated to create a
final bag embedding.

and computes attention scores that leverage the meaningfulness of the
features extracted for the given task by learnable parameters. Finally, the
attention scores are aggregated to obtain the bag representation.

For ease of exposition, we define indexes δ = (j, k, l), δ′ = (j + 1, k′, l′),
γ = (j, k). We omit the use of training sample index i. An attention score
aδ for a given input embedding xδ is calculated as:

aδ = exp{w⊤(tanh(Vx⊤
δ )⊙ sigm(Ux⊤

δ ))} (5.6)

where w ∈ RL×1, V ∈ RL×M and U ∈ RL×M are trainable parameters
and ⊙ is an element-wise multiplication. Furthermore, the hyperbolic
tangent tanh(·) and sigmoid sigm(·) are included to introduce non-linearity
for learning complex applications. The attention scores aδ are normalized
into ãδ to ensure that the sum of the components of the attention scores
vector is 1, as this makes it possible to have variable bag sizes.

ãδ = aδ∑Lγ

l=1 aδ

(5.7)

Note that the unnormalized aδ would better reflect the attention score
directly, and we use that for visualization in the experiments. Finally, the
aggregation function Ξ(·) transforms a leveraged bag of embeddings X̃γ to
obtain a bag representation xδ′ as:

xδ′ = Ξ(X̃γ) = Ξ({ãδ · xδ,∀l = 1, ..., Lγ}) (5.8)
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The proposed neural network architecture NMIA combines a recursive
bag processing of low-dimensional embeddings and attention mechanisms.
The multiple instance with attention (MIA) block computes attention scores
for each input embedding and aggregates them to create an embedding that
represents the bag’s contents, see Figure 5.2. Instances are transformed into
embeddings, weighted and aggregated into a bag-of-bags embedding after
passing through the MIA blocks. As a result, a bag-of-bags embedding
xJ+1,1,1 is formed. Finally, a classifier Θc predicts the label ŷ for the
sample X. The model’s forward propagation is summarized in Algorithm
2. Although the example given corresponds to features extracted from
images, this problem can be extrapolated to other signal types that can be
represented as feature embeddings.

Algorithm 2 NMIA Forward Propagation
Input: image bag-of-bags sample X̄ = {x̄l,∀l = 1, ..., L}
Output: classifier prediction ŷ

/*Transform input image instances into feature embeddings*/
for l = 1 to L do

x̄l = Gf (xl)
end for
for j = 1 to J do

for k = 1 to Kj do
for l = 1 to Lk,j do

/*Define indexes δ = (j, k, l), δ′ = (j + 1, k′, l′)*/
aδ = exp{w⊤(tanh(Vx⊤

δ )⊙ sigm(Ux⊤
δ ))}

end for
ãδ = aδ∑Lk,j

l=1 aδ

xδ′ =
∑Lk,j

l=1 x̃δ =
∑Lk,j

l=1 xδãδ

end for
end for
/*Resulting bag-of-bags embedding is fed into the classifier*/
ŷ = Θc(xJ+1,1,1)
return ŷ

We conduct an experiment where at least two instances from the same
inner-bag have to be positive for the weak bag-of-bags label to be positive,
as described in Eq. (5.9). we have considered the positive instance class y1

l+

as the digit 9 for MNIST and tiles with metastatic tissue for PCAM. This

50



5. Learning Methods

is motivated from region-based analysis of medical images, where typically
an object belonging to a positive class is located in a specific region and not
scattered across the entire image. Therefore, this particular positive region
of the image will contain several positive instances. Regions containing few
positives are regarded as noise or misclassified instances, and they should
not be reflected in the overall prediction.

1st 2nd

y2
l =

{
0, #y1

l+ ≤ 1
1, #y1

l+ > 1
y =

{
0, y2

l /∈ 1
1, y2

l ∈ 1
(5.9)

Implementing a model with an attention mechanism provides an edge
over the model that does not in terms of interpretability, as shown in Figure
5.3. We can observe that the attention mechanism can correctly identify the
positive instances at the instance level and recognise the positive inner-bags,
distinguishing them from those containing noisy instances. A conventional
weakly supervised model would not perceive this sense of location since
all instances are encapsulated under the same bag. This results in more
interpretable predictions on account of which instances and inner-bags the
model weighs more.

Summary of Contributions

This paper proposes the NMIA architecture with the aim of overcoming
intricate data dependencies for weakly supervised scenarios. A generalized
notation for the implementation of nesting for any number of levels is
formulated. NMIA grants higher flexibility and performance in comparison
to non-nested architectures.
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(a) MNIST

(b) PCAM

Figure 5.3: Examples of attention scores aδ in test samples with 2-level NMIA for (a)
MNIST and (b) PCAM. A single positive instance in the inner-bag is considered noise
whereas two or more should give a positive inner-bag, resulting in a positive bag-of-bags
bag. Instances are categorized by colors indicating inner-bag belonging, while digits
represent the true label of the instance. Bar plots on the left column show the attention
at level 1, while on the right, at level 2. Positive instances obtain the highest attention
scores.
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Chapter 6

Region of Interest Extraction

The following chapter covers the complex process of extracting regions of
interest (ROIs) from WSIs. We explore the methodologies, techniques,
and challenges associated with this crucial step. We aim to unravel the
significance of precise ROI extraction. We compare the impact of manually
annotated and automatically segmented areas on deep learning models
performance. We also investigate data-efficient approaches to minimize
manual labor. Paper 2 is dedicated to the topic, and the main methods,
results, and contributions will be presented. In the thesis, Paper 2 is part
of sub-objective SO1, on utilizing non-supervised learning approaches to
address the lack of annotations, and SO2, for enabling the implementation
of automated deep learning pipelines.

6.1 Paper 2 - Tissue Segmentation

In this section, the contributions in Paper 2 are presented. This paper
presents an active learning-based method for domain adaptation of a WSI
tissue segmentation model, as highlighted in Fig. 6.1. The proposed active
learning method is explained in 5.1. The dataset utilized corresponds to
Dataset A, as listed in Chapter 4.3. Tiles were extracted at 25x, 100x and
400x magnifications, thus forming a triplet, and a maximum of 500 triplets
were extracted per WSI. A tile size of 128×128 was used, and all three tiles
in a triplet share a common physical point as the center pixel.

We compare the performance of the model pre-adaptation TRI-CNN,
where we obtain the trained model [26], to models trained with our proposed
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Figure 6.1: Active learning framework for training a model TRI-AL. Pathologists
annotate ROIs, from which tile triples are extracted at different magnifications levels
(25x, 100x, 400x) to form a triplet. During the training stage, a starting training set
is defined for training a multiscale model. The model performance is evaluated on the
validation set. Then, stopping criteria decides to resume with another training iteration
or conclude the learning. In case that the criteria is not met, new samples from the pools
of data are drawn and appended to the current version of the train set.

active learning strategy to train a model TRI-AL. The initial training set X0
is made of 25000 triplets per class. At every iteration i, 20000 new samples
S from the pool P are added to the training data set Xj . We defined a
maximum number of iterations for training the model TRI-ALITER.

The development of the training set class distribution for the active
learning-trained model TRI-ALITER in comparison to fixed distribution of
the training set X is shown in Fig. 6.2. Looking at the relative data balance
per class, we identify a tendency over the iterations where damaged, muscle
and urothelium class distribution δ reach an asymptote. Also, we observe
that the algorithm deems to suggest that stroma is significantly harder to
learn and requires a more extensive number of data points in comparison
to other classes. Even then, the margin for δ progressively slows down and
we would expect it to become stagnant. By evaluating the progression of
class balance, we can propose more effective annotation guidelines. This
approach would accurately indicate pathologists the specific annotations
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Figure 6.2: Class relative size per class δi over the iterations for TRI-ALITER model.
We observe that the algorithm prioritizes harder classes over simpler ones as the iterations
pass. As Xj increases, δi reaches an asymptote for damaged, muscle and urothelium
tissue classes, while penalizing blood in favor of stroma. Class distribution does not
match that annotated from a pathologist, as per the SL section.

required for deep learning models, allowing them to efficiently invest time
before committing to substantial efforts.

Pathologists also visually inspected the model’s segmentation results by
overlaying the predicted masks over the raw WSIs. Illustrative examples of
the model’s segmentation results for a representative WSI of the test set are
shown in Fig. 12.3 for a ROI and the entire WSI, respectively. Upon visual
inspection of the results by experts, according to TRI-CNN segmentation,
we have identified four main observations: staining effects leading to false
positives of blood in regions with high levels of eosin stain, non-cauterized
damaged areas such as blur or folding, the risk of misinterpreting infiltrative
immune cells as urothelial cells, and the potential for the model to predict
urothelium with significant cytoplasm as stroma. As per TRI-ALITER, it
was confirmed that the model accurately segmented and classified different
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TRI-CNN TRI-ALITER

Figure 6.3: Segmentation masks of a WSI. Areas from all tissue types are extracted for
analysis at the inference stage, resulting in a labelled colormap based on tile predictions.
The active learning model TRI-ALITER yields a more accurate segmentation than the
pre-trained model TRI-CNN.

tissue types. In comparison to supervised learning (SL) strategies, active
learning strategies excel in achieving higher performance by utilizing data
more efficiently, thereby demonstrating their ability to achieve comparable
or superior results while requiring less data for training.

Summary of Contributions

This paper proposes an active learning framework with a multi-scale CNN
for domain adaptation of a tissue segmentation model of bladder cancer
histopathological images. This method outperforms supervised learning
strategies using a limited fraction of the training set. The method also serves
as suggested annotation guidelines based on class distribution demand.

6.2 Exploiting Domain Knowledge using Segmen-
tation Maps

Exploiting domain knowledge through segmentation maps is a pivotal
aspect of the CPATH framework in computer-aided pathology and the work
presented in this thesis. These maps provide detailed annotations of WSIs,
delineating ROIs and aiding in the interpretation of medical data.
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Figure 6.4: Schematic representation of ROI definition based on tissue segmentation
maps. Given a segmentation mask with the listed tissue types, we define ROIs automati-
cally using morphological operations. In the example presented, we extract the border
area between urothelium and lamina propria applying dilation and a distance limitation
determined by domain knowledge from expert pathologists. We further delineate a subset
of the borders by extracting only those areas where muscle is present within the same
tissue section, aiming to represent the potential invasive front.

One of the primary benefits of segmentation maps within CPATH is
their role in enhancing the performance and interpretability of other model
predictions. By visually representing pathological features such as tissue
types, these maps provide precise annotations for enabling practitioners
to contextualize model outputs within the intricate anatomical structures
present in WSIs. Moreover, segmentation maps play a crucial role in
guiding feature extraction within the CPATH framework. By highlighting
relevant regions, they assist in the identification of discriminative features
associated with specific pathologies, thereby empowering other models to
make more accurate predictions. Furthermore, segmentation maps can
support transfer learning by serving as auxiliary tasks for pretraining on
related datasets. This strategic approach allows the model to leverage
knowledge from external sources, enhancing its adaptability across diverse
pathology datasets and expanding its potential for real-world applications.

Building upon the previously mentioned advantages, this thesis capitalizes
on the segmentation maps obtained to enhance tile extraction strategies.
This enables the exclusion of irrelevant tissue areas, which may introduce
noise to the application under development, allowing us to concentrate
solely on the designated ROI. To define and extract tiles from ROIs, we
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employ automated image processing techniques such as morphological
operations, following insights derived from domain experts. This concept
is illustrated in Figure 6.4. Segmentation mapping produces tissue masks
outputs, including lamina propria, urothelium, and muscle. However,
determining tumor proximity areas, such as the bordering regions between
lamina propria and cancerous urothelium, or selecting regions adjacent
to muscle tissue, relies on identifying the invasive front, which in turn
depends on domain-specific knowledge. To automatically obtain these
self-defined regions, as delineated in the two aforementioned examples, we
utilize a disk dilation morphological operation on the urothelium and lamina
propria masks, determined by the desired physical depth and pixel size.
Then, overlapping areas are segmented for tile extraction within the newly
delineated bordering region. Alternatively, we can refine this border ROI
by employing a region-growing algorithm along these borders to eliminate
areas lacking muscle tissue within a tissue section.
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Chapter 7

Diagnostics

In this chapter, we present diagnostic applications for NMIBC WSIs, specif-
ically focusing on the grading and staging. We aim to highlight the signifi-
cance of these applications in advancing precision diagnostics for improved
patient outcomes. Papers 3 and 4 are dedicated to the topic, and the main
methods, results, and contributions will be presented. In the thesis, Papers
3 and 4 are part of sub-objective SO2 on the development of automated
deep learning methods for classifying risk factors based on histological
features.

7.1 Contributions overview

The primary objective is to underscore the substantial contributions of
deep learning methodologies in advancing precision diagnostics for NMIBC
WSIs. Specifically, the implementation of fully automated deep learning
pipelines for grading and staging (see Section 3.2). By doing so, we aim
to offer more efficient tools for the assessment of NMIBC, optimizing the
overall pathology practice while enhancing patient management decisions.
Accurate grading and staging of the tumor is important to categorize
patients into risk groups, and guides which treatment strategy the patient
will receive, and, thus, patient outcome.

Automated systems capable of identifying critical malignant areas can
aid uropathologists by diminishing the effort required to provide accurate
diagnostic reports. Given the high heterogeneity of bladder cancer, it is
relevant to interpret visual local patterns based on contextual neighbouring
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regions, thus a pathologist would zoom in and out to get an understanding
of both cellular and morphological details. Similarly, the performance of a
DL model is expected to improve when patches from various magnification
levels are provided as input to the system. Furthermore, it is important to
leverage the impact of manual annotations for supervised models and self-
supervised learning methods, which operate without labels or rely solely on
overall patient labels. Although annotations grant ground truth, they are
time-consuming and limited to expert input efforts, rendering supervised
methods dependent and costly. However, by using automated methods that
employ non-supervised methods and clinical labels exclusively, eliminates
the requirement of manual input and enables applications to autonomously
analyze raw data and produce results during the inference stage.

7.2 Paper 3 - Invasive Cancerous Areas

In this section, the contributions in Paper 3 are presented. This paper
presents a CNN-based deep learning algorithm that can process all available
tissue areas in a WSI and produces a heatmap to detect invasive cancerous
areas (ICA). The algorithm finds ICA associated with T1 stage across the
WSI without the need of previous ROI or tumour segmentation. The dataset
utilized corresponds to Dataset B, as listed in Chapter 4.3. Multiple models
using different combinations of magnification levels were trained and tested.
The following combinations of magnification views were used: MONO
(400x), DI (400x, 100x), and TRI-scale (400x, 100x, 25x). Tiles of size 256×
256 were extracted from annotated regions at 400x magnification, utilized
for training purposes. Tiles at different magnifications were extracted
so that the center of the tile remains the same for all views. Extracted
tiles at 400x are required to be covered by at least 70% of a tissue mask
in order to be assigned such label. From the extracted tiles, we defined
two subsets; i) a control set, and ii) an inclusion set. On the one hand,
a control set is sampled, containing ICA and selected non-invasive areas
(Uro, LP). Extracting carefully selected tiles, we remove the surrounding
tissue present in the slides while maintaining tiles related to the ROI. On
the other hand, the inclusion set encompasses all tissue present in a WSI,
adding non-diagnostically relevant tissue. The objective of considering all
tissue simultaneously is to manage ROI definition and invasion detection
automatically. This ensures that during the inference stage, we are not
reliant on a separate algorithm for ROI definition.
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Figure 7.1: Input tiles at different magnification levels are extracted from the WSI and
fed into the feature extractors. Extracted features are concatenated and fed into the
dense layers which will give the final prediction.

The algorithm consists of a combination of VGG16 backbones with input
tiles at different magnification levels to obtain detailed as well as contextual
information. This information is later concatenated to embeddings from
other magnification views and fed into the dense layers which will give the
final prediction, as shown in Fig. 7.1.

For the first set of experiments, denoted Emag, MONO, DI and TRI-
scale models are evaluated to determine the relevance of contextual tissue
morphology for discerning invasion. TRI-scale models provide the best
results for ICA detection, inferring that regional context derived from tissue
morphology is beneficial in the task of discerning invasive patterns over
non-invasive ones. Hence, models that incorporate lower magnification
views provide better performance than those who focus on local patterns
solely.

For the second set of experiments, denoted Eds, we ascertain the per-
formance variation for adding non-ROI tissue. Results on the control set
demonstrate that discerning invasive from non-invasive patterns is possible.
We observe that models trained on the inclusion set provide comparable,
but lower, results. It is, however, with models trained on the inclusion set
that we can directly deploy the algorithm in an inference pipeline for WSI
analysis. The best performing model of the inclusion set, TRIincl, was used
to produce probability heatmaps over WSIs from the test set, as shown in
Fig. 7.2. To simplify the visualization, ICA was designated as the positive
class, while all other tissues were grouped into a single negative class.

For the third set of experiments, denoted Etils, we excluded all tiles
which included "tumour infiltrating lymphocytes" (TILs). TILs are small
immune cells that can be found either in the urothelium or the lamina
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Figure 7.2: Heatmaps showing the probability of a patch to belong to the ICA class,
based on the TRIincl model. Two test WSI samples with stage Ta (left) and T1 (right)
are shown. An annotated ICA region is highlighted by a white border in the T1 WSI.
Inclusion set models support the analysis of the entire WSI, not limited to pre-defined
ROIs. A thumbnail of the original WSI is displayed at the bottom right corner.

propria. TILs may lead to confusion for discerning them from invasion. We
noticed that the presence of TILs dampers the predictive performance, as
models struggle to differentiate such areas from ICA. Tiles where TILs are
present are often missclassified for ICA.

Finally, for the fourth set of experiments, denoted Eemc, we used tiles
from one of the hospitals exclusively. We chose EMC over SUH since the
number of available data from EMC is far greater, especially regarding
the number of ICA tiles. Eemc will show how impactful data balance
among classes and domain shift are toward detecting invasive cancerous
patterns. Also, the experiments were run in a binary and multi-class
manner to assess whether grouping of non-invasive tissue improves ICA
detection performance. Despite reducing scanning and staining variability,
performance was poorer in comparison to the other experiments. This can
be due to the lack of a substantial number of extracted urothelium tiles,
which are present mostly in the excluded SUH cohort.

Summary of Contributions

This paper proposes multi-scale CNN based models for detecting ICA across
the WSI. Eliminating non-diagnostically relevant regions barely increases
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model performance. Automatic ICA detection sets the first step towards
automatic staging of NMIBC tumors, as the presence of ICA is indicative
of higher stages.

7.3 Paper 4 - Pathological Grade

In this section, the contributions in Paper 4 are presented. This paper
presents a new pipeline for grading NMIBC WSIs named NMGrad. The
pipeline involves tissue segmentation, categorization of urothelium areas
into location-dependent regions, and employs weakly supervised learning
and attention mechanisms for grading, resulting in innovative diagnostic
suggestions with heatmaps highlighting tiles and ROIs. The dataset utilized
correspond to Dataset C, as listed in Chapter 4.3. As we employ a multi-
scale CNN input, various magnification are used. In the case of mono-scale
models MONO, we employed 400x magnification. For di-scale models DI,
we used 400x and 100x. Finally, for tri-scale models TRI, we used all three
available magnification levels (400x, 100x, and 25x, organizing them into
triplets by bundling the corresponding tiles. We do, however, maintain a
consistent tile size of 128× 128 across magnifications.

We introduce a three-step fully-automated pipeline that combines lesion
segmentation, ROI definition and multiple instance learning (MIL) for pre-
dicting the WSI-level grade, as depicted in Fig 7.3. First, the urothelium
lesion of a raw WSI is segmented using a pre-trained algorithm. Next,
employing the segmented urothelium mask, we divide it into regions by
implementing morphological operations to eliminate smaller areas. Sub-
sequently, we cluster larger regions based on image coordinates, ensuring
comparable region sizes. Then, tiles are extracted from the defined regions
to train MIL models for WSI grading.

We explored the significance of magnification-embedded information, by
comparing MONO, DI and TRI-scale models. We promptly discovered that
increasing the number of input magnifications enhances overall performance,
resulting in TRI-scale models to yield the best results. We also compared
various aggregation techniques in weakly supervised learning, including
the NMIA architecture proposed in Paper 1. Utilizing NMIA resulted in a
notable performance improvement, particularly in enhancing performance
when analyzing scattered tissue regions across the WSIs. An example of
the region attention score heatmap is depicted in Fig. 7.4. The analysis
reveals that low-grade instances tend to have lower attention scores and
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Figure 7.3: NMGrad pipeline. Initially, we apply a tissue segmentation algorithm for
ROI extraction Then, we pinpoint diagnostically significant urothelium areas within
WSIs. Subsequently, we split the urothelium mask into regions, based on proximity
and size, and extract tile triplets. In a hierarchical fashion, we further transform these
triplets within their corresponding regions into region feature embeddings using an
attention-based aggregation method. All the region representations are then consolidated
into a comprehensive WSI-level representation through a weight-independent attention
module. Finally, this WSI feature embedding is input into the WHO04 grading classifier
in order to produce accurate WSI grade predictions.

prediction outputs, while high-grade instances exhibit the opposite. This

64



7. Diagnostics
LO
W

H
IG
H

-

-

0.96

0.200.24

0.49

Figure 7.4: Region-level attention score heatmaps. Example regions of annotations of
low- and high-grade ROIs annotated by an uropathologist are compared to the output
attention provided by the proposed model NMGrad, left to right respectively. The choice
of annotated ROIs correspond to highest attention scores, for red and blue correspond to
low and high attention correspondingly. We have included the WSI-level prediction score
for reference.

aligns with observations indicating that positive high-grade instances have
more focused attention scores, as the positive class is more meaningful
than the negative for MIL. Interestingly, misclassified WSIs show distinct
characteristics, with low-grade slides displaying both high attention and
prediction scores, and high-grade slides exhibiting a broader range of values.
Additionally, regression lines for true positives and false positives, as well
as true negatives and false negatives, display similar trends, suggesting
consistent misprediction characteristics across different classes.

We enhance the evaluation process by incorporating correlation calcula-
tions with follow-up information, ensuring a comprehensive assessment of
our model’s performance. These correlations indicate that NMGrad’s grade
may offer greater predictive value in assessing the likelihood of progression
in NMIBC, with no correlation found for recurrence as anticipated.
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Summary of Contributions

This paper proposes a fully-automated framework for grading NMIBC WSIs.
We integrate a tissue segmentation algorithm to outline the urothelium.
Additionally, we utilize morphological and clustering operations to define
ROIs. Ultimately, leveraging multi-magnification inputs and nested model
architectures, we deliver a grade prediction at the WSI-level. Clinical
evaluations suggest that our model outperforms previous state-of-the-art
methods, while yielding statistically significant correlations with clinical
outcomes.
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Chapter 8

Prognostics

This chapter is dedicated to prognostic prediction of clinical outcome of
NMIBC patients using histological WSIs. Paper 5 is dedicated to the topic,
and the main methods, results, and contributions will be presented. In
the thesis, Paper 5 answers the sub-objective SO3 on the development of
clinical outcome prediction from NMIBC WSIs.

8.1 Paper 5 - Prognostic Prediction

In this section, the contributions in Paper 5 are presented. This paper
presents a pioneering investigation into the application of deep learning
techniques to analyze histopathological images for addressing the substantial
challenge of automated prognostic prediction. The prognostic applications
covered are recurrence and treatment outcome prediction. The treatment
corresponds to BCG, and the usage of deep learning for BCG response
prediction using WSI has not been previously explored. The datasets
utilized correspond to Dataset C and D, as listed in Chapter 4.3. Various
magnification levels and tile sizes are used. In the case of mono-scale
models, we used a tile size of 256×256 for 100x magnification and 512×512
for 200x magnification. This decision was made to ensure that the patches
covered the same physical area, i.e. field of view. In the case of multi-scale
models TRI, we used a tile size of 128 × 128 for all three magnification
levels (400x, 100x, and 25x).

We introduce a three-step fully-automated pipeline for WSI prognosis
that combines region of interest (ROI) extraction, contrastive learning
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for feature representation and multiple instance learning (MIL) for pre-
dicting the concluding prognostic outcome, as depicted in Fig 8.1. This
approach enables us to optimize the model by leveraging the benefits of
these techniques. It ensures the inclusion of important instances for predict-
ing clinical outcome from WSI visual cues, while maintaining computational
feasibility. Ultimately, the proposed steps for prognostic predictions in
histopathological imaging are the following:

A Define and extract ROIs based on clinical domain knowledge using a
tissue segmentation algorithm for tile extraction strategies.

B Train a feature extractor Gθ to generate an intermediate dataset H
using contrastive learning.

C Use image feature embeddings H for prognostic classification using
MIL.

We explored the significance of various ROI configurations, guided by
clinical domain knowledge, as the localization of the tissue of interest is
unknown. We employed tissue segmentation algorithms, from Paper 2, for
extracting tissue masks and define a ROI D. Ultimately, results indicate
that the union of areas of urothelium and lamina propria are the most
informative. We also explored the relevance of multi-scale models, however,
utilizing a fixed magnification consistently yields highest performance.

We investigated the importance of various feature extraction strategies,
by comparing CNN architectures and contrastive learning methods. We
found that DenseNet121, with ImageNet pre-trained weights, coupled with
self-supervised contrastive learning produces the best results.

We conducted a comparison between different aggregation techniques in
weakly supervised learning, including the architecture proposed in Paper 1,
NMIA. The utilization of attention-based models leads to a notable perfor-
mance improvement. Moreover, when examining the scattered tissue regions
across the WSI using NMIA, we observe the most significant performance
enhancement across all techniques. An example of attention score heatmap
is visualized in Fig. 8.2. Pathologists often use tissue punching to select
clinically relevant regions for subsequent analysis in tissue microarrays. The
model tends to allocate its highest attention to punched areas, and it is
crucial to acknowledge that diagnostically relevant information may extend
beyond the punched areas. The alignment between the model’s attention
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focus and the clinical practice of region selection through punching is an
encouraging and promising finding.

At the inference stage, a fully-independent system cannot be conditioned
by manually annotated regions. Even at the training stage, we have
observed the challenges in obtaining annotations for all WSI due to the
labor-intensive nature of the process. For a prognostic task, the relevance of
manual annotations remains uncertain. To explore this aspect, we conducted
an experiment where the model was trained on annotated regions, but tested
on automatically segmented regions, and vice versa. This was compared
to a fully automated system for both training and inference. Generally,
we observed that the models perform better after using auto-generated
ROIs in the training and annotations for testing, which we interpret as the
models benefiting from the larger dataset that is available when we can
include non-annotated data.

Summary of Contributions

This paper proposes a three-step automated pipeline for the challenging task
of prognostic prediction, eliminating the need for manual annotations. We
explore the relation between ROIs and patient outcomes. The utilization of
deep learning for BCG response prediction using WSI is pioneer, although
achieving fully automated prognostics based solely on WSI remains a
challenging task.
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Figure 8.1: Deep learning pipeline for prognostic outcome prediction. 1) A tissue
segmentation is employed for delineating a ROI of choice D. Then,tiles are extracted
from WSI regions for training an algorithm. 2) Contrastive learning is employed to learn
representations of the tiles. 3) The representations are then used to train an AbMIL
model that predicts the prognostic outcome.
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Figure 8.2: Heatmap illustrating attention scores over a WSI. The heatmap provides
insights into the ROIs where the attention is concentrated within the WSI, facilitating a
better understanding of prediction dynamics and highlighting areas of significance for
clinical interpretation.
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Chapter 9

Discussion and Conclusion

This chapter summarizes how the contributions of this thesis lead to the
achievement of the established objectives, discusses the encountered limita-
tions, and, consequently outlines avenues for future work.

9.1 Discussion

In the contemporary landscape of ML the demand for adaptable method-
ologies that transcend disciplinary boundaries is paramount. This study
explores the development of versatile methods, poised to extend beyond
CPATH and find application across diverse domains. By addressing broader
challenges in learning from data, we aim to drive innovation in resource-
efficient learning techniques.

In the context of NMIBC application, the stratification of patients into
risk groups according to EAU guidelines is crucial for predicting clinical
outcomes [13, 96]. Quantifying risk factors is highly relevant as it allows
for objective assessment and comparison of patient data. This quantitative
approach provides clinicians with precise information to stratify patients into
appropriate risk groups, aiding in treatment planning and prognostication
[8, 14–17, 45, 123]. Therefore, algorithms capable of providing quantitative
results for these factors are essential. Additionally, since annotating WSIs
is a laborious and time-consuming task, we explore methodologies aimed
at reducing reliance on extensively annotated data and expert pathologist
opinions [46–49]. This allows for more efficient and scalable analysis of
WSIs, ultimately improving patient risk stratification and clinical decision-
making. Thus, the thesis explored the development of fully automated
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pipelines for analyzing NMIBC WSI to offer quantitative and clinically
relevant disease assessment.

9.1.1 Label-efficient Algorithms

This section is directly related to the thesis sub-objective SO1: “Explore
the utilization of non-supervised learning approaches to address the absence
of annotations”.

Given the limited availability of annotated data in the medical field,
meeting the substantial requirements for annotated regions in supervised
learning networks can be challenging. In light of the promising avenues
observed with various approaches [84, 134, 166–174], we investigate alterna-
tive learning strategies. Moreover, we inquire in the development of tailored
application algorithms.

In Paper 1, a novel ML architecture was presented, referred to as NMIA.
The proposed algorithm incorporates the capability to adapt to nuanced
data structures for categorized data processing. The model is trained using
solely a weak label in a MIL fashion. Coupling attention mechanisms
proved to be beneficial, both for enhancing interpretability and information
integration, as well as for improving model performance. NMIA was
also adopted in Paper 4 and Paper 5, wherein the architecture exhibits
superior predictive capabilities in comparison with related weakly supervised
architectures.

Paper 2 presents an active learning framework for efficient domain adap-
tation of DL algorithms in the CPATH domain. The prototypical task
presented is that of tissue segmentation of NMIBC WSIs. The frame-
work provides an intuitive description of the model learning process, and
consequently iteratively adapts based on the current predictive faults on
the validation set. Tracking the evolution of the model needs permits the
user to tailor economic annotation strategies. Results have shown that
the proposed method is more label-efficient than a supervised learning
approach, in conjunction with overall major accuracy.

9.1.2 Automated Histopathological Analysis

The following section is connected to the thesis sub-objective SO2: “Create
automated deep learning systems for classifying risk factors based on
histological features”.
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Due to the vast size of WSIs and the presence of undesired tissue and
artifacts, histopathological image analysis has historically relied on carefully
selected ROIs, often requiring manual input from pathologists to delimit
the area of interest [34, 38]. Efforts toward fully-automated pipelines for
WSIs analysis have been made, emphasizing on lesion segmentation as
a preliminary step [31, 33, 161, 175]. However, clinical applications on
NMIBC remain largely unexplored, particularly concerning pathologist-
independent algorithms.

Regarding the evaluation of clinical risk factors for NMIBC, we identified
challenges in the visual interpretation of histopathological features in WSIs
[176, 177]. The analysis of pathological phenomena can be subject to
inter- and intra-observer variability, leading to discrepancies in diagnosis
and treatment outcomes [123, 178, 179]. Thus, the implementation of DL
algorithms can aid in establishing a common framework of robust and
reliable disease assessment.

In Paper 3, our aim is to explore the development of a model for the
automatic staging of papillary NMIBC tumors. Staging, as explained in
Section 7.2, is based on the detection of cancerous invasive areas in the
lamina propria. We adopt a multi-magnification CNN input for capturing
local and global information, which proved superior to single-scale models.
Although the model is trained in a supervised manner, we incorporated
classes for non-diagnostically relevant tissue to enable the independent
differentiation of ROIs from artifacts, among other factors. For a minor
trade-off in performance, we achieved a pathologist-free model, that is, a
fully automated system without the need for ROI extraction at the inference
stage. Nevertheless, this research sets a foundation toward automatic
staging of NMIBC.

Another significant clinical risk factor is overall patient grading, explored
in Paper 4. We introduce an automated pipeline, NMGrad, that leverages
a tissue segmentation algorithm for ROI delineation of NMIBC WSIs,
followed by NMIA from Paper 1 for predicting the ultimate WSI grade.
Tile extraction was suited to NMIA, as the lesion was partitioned into
scattered regions. Result predictions suggest that utilizing a greater number
of magnifications as input leads to improved accuracy. In comparison to
a state-of-the-art model [31], we obtained a slightly less biased model.
Moreover, NMGrad better conforms to clinical expectations, identifying
indicative HG regions rather than scattered patches.

We further investigated the significance of attention scores and grade
predictions generated at inference. Heatmaps were consulted with patholo-
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gists for qualitative analysis. Results on the annotated regions from the
test set, showed NMGrad’s ability to discern LG and HG regions. Higher
attention scores correlated with HG areas in HG WSIs, but not for LG
WSIs, where attention was spread widely. Furthermore, a strong correspon-
dence was observed between the label of annotated ROIs and the output
region predictions.

Also, in Paper 5, we explored the relevance of manual annotations by
training on annotated regions but testing on automatically segmented ones,
and vice versa, compared to a fully automated system. It was found that
models performed better when trained on automatically generated ROIs
and tested on annotated ones, suggesting benefits from the larger dataset
including non-annotated data.

9.1.3 Predicting Clinical Outcomes in NMIBC Patients

This section is associated with the thesis sub-objective SO3: “Propose a
deep learning method for predicting clinical outcome from histological slides
of NMIBC patient”.

Research in CPATH predominantly focuses on diagnostic prediction,
deliberately selecting ROIs during both model training and inference stages.
However, when it comes to prognostics, weakly labeled data is commonly
used, with patient-based labels defining treatment outcomes, recurrence,
or disease progression [118, 180, 181]. Consequently, there is uncertainty
regarding whether a specific region contains the requisite information, or if
the essential information is genuinely present in the WSI [182, 183]. This
underscores the challenge of accurately predicting prognostic outcomes
solely based on weak labels and without comprehensive annotations of
specific regions within the WSI.

Paper 5 encapsulates the entirety of prognostic applications in this thesis.
We introduce a novel study focusing on predicting treatment outcomes using
histopathological features, with a secondary investigation into recurrence
prediction. We proposed a fully-automated pipeline that incorporates the
tissue segmentation algorithm developed in Paper 2, a contrastive learning
block for feature extraction, and the NMIA architecture from Paper 1.
Then, we conducted a systematic evaluation for unearthing the optimal
avenues for tackling prognostic prediction. The results demonstrate that
among the various loss functions tested, the unsupervised contrastive loss
yielded the best performance. Additionally, the analysis revealed that
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models trained with mono-scale data tended to perform better compared
to those trained with multi-scale data. Moreover, it was observed that
features extracted from both the urothelium and lamina propria regions
had the most positive impact in the predictive performance of the models.
Leveraging domain expert knowledge played a pivotal role in enhancing
our pipeline’ succes, as our models capitalized on nuanced insights that
might otherwise have been overlooked. Finally, we explored the integration
of clinicopathological information into the analysis; however, this approach
yielded unfavorable results.

Another prognostic investigation centered on NMGrad from Paper 4,
where we correlated the informativeness of grading predictions to clinical
outcome. We found that NMGrad’s grading predictions exhibited a stronger
correlation with disease progression compared to the manual grading per-
formed by an expert uropathologist, which was utilized as the reference
for weak patient-based labels during the NMGrad model training process.
This suggests that NMGrad’s grade prediction may be more predictive of
NMIBC progression likelihood.

9.1.4 Limitations

A common constraint observed in the proposed methods is the absence of
substantial pre-processing steps prior to data ingestion. Stain variability
poses a challenge for deep learning models, which can be susceptible to lab-
oratory biases. As a result, models trained on a single cohort may struggle
to generalize to images showcasing diverse histological characteristics. An
additional constraint noted was the development and evaluation of models
solely on in-house cohorts, raising questions about their generalizability for
wider adoption.

The study from Paper 3 was showcased as a proof-of-concept for au-
tomated NMIBC staging. However, the analysis omits flat lesions, and
focuses solely on papillary lesions. Furthermore, the method hinges on indi-
vidual patch predictions and lacks an aggregation mechanism to formulate
a definitive WSI-level prediction.

The evaluation of NMGrad’s grade as a clinical risk factor was conducted,
revealing its potential significance in risk assessment. However, this assess-
ment does not extend to staging. Additionally, there is a notable absence
of an integrated framework that effectively leverages insights derived from
various diagnostic models to develop prognostic models. Immunohistochem-
istry has not been explored as a viable option, despite its demonstrated
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benefits in identifying pertinent prognostic markers. When considering
prognostics in Paper 5, histopathological features were prioritized, although
in routine practice, pathologists also integrate other data modalities, such
as sequencing. Regarding the integration of clinicopathological informa-
tion into our analysis, various multi-modal architectures could potentially
optimize its utilization.

9.2 Conclusions and Future Work

This research has set the foundation for advancements in CPATH, offering
enhanced diagnostic and prognostic capabilities. It has pioneered automated
techniques for segmenting ROIs, streamlining analysis processes. Addition-
ally, the study has elucidated the correlation between image features and
clinicopathological concepts, providing valuable insights for further research
and clinical applications in pathology. By uncovering how specific image
features correspond to clinicopathological findings such as tumor grade or
stage, our research offers a deeper understanding of the underlying disease
processes. Through the exploration of various methods and applications
across three sub-objectives (SO1-SO3), the primary goal of developing DL
algorithms that provide clinic-relevant risk factors assessment of NMIBC
patients has been achieved (O1).

Beyond the realm of CPATH, our methods offer versatility for adoption
in various domains. The nested attention-based architecture we propose
is particularly suited for methods relying on weakly supervised learning,
enabling nuanced feature extraction without the need for annotations.
Additionally, our active learning strategy provides an efficient solution
for endeavors seeking label-efficient methodologies, facilitating meaningful
insights from datasets with limited labeled samples. These attributes
permits our methods to be adaptable and applicable across disciplines,
offering promising avenues for advancement in resource-efficient learning
techniques.

Concerning future work, the proposed methods require validation using
external cohorts to confirm their applicability. Furthermore, pre-processing
of the color spectrum and different augmentation strategies might be benefi-
cial for the widespread adoption of these methods. Regarding diagnostics, a
prospective algorithm for staging should encompass all tumor stages and ar-
rive at a definitive patient grade. Moreover, assessing the significance of the
predictions as a statistically valid factor for risk stratification is imperative.

78



9. Discussion and Conclusion

Regarding prognostics, exploring the integration of insights from individual
diagnostic models aimed to enhance the quantitative analysis of disease
risk. Additionally, incorporating omics and immunohistochemistry into
prognostic models would better align with the comprehensive information
accessible to pathologists for disease management decisions.
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Paper 1

Abstract:
Strongly supervised learning requires detailed knowledge of truth
labels at instance levels, and in many machine learning applications,
this is a major drawback. Multiple instance learning (MIL) is
a popular weakly supervised learning method where truth labels
are not available at instance level, but only at bag-of-instances
level. However, sometimes the nature of the problem requires a
more composite description, where a nested architecture of bag-of-
bags at different levels can capture underlying relationships, like
similar instances grouped together. Predicting the latent labels of
instances or inner-bags might be as important as predicting the final
bag-of-bags label, but is lost in a straightforward nested setting.
We propose a Nested Multiple Instance with Attention (NMIA)
model architecture combining the concept of nesting with attention
mechanisms. We show that NMIA performs as conventional MIL
in simple scenarios and can grasp a complex scenario providing
insights to the latent labels at different levels.
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10.1 Introduction

Multiple instance learning (MIL) is a weakly supervised learning method
where several elements, called instances, are grouped as a single sample,
often referred to as a bag [184]. Instances within the bag are individually
unlabelled and unknown to the training algorithm. There is, however, a
label representing the contents of the bag. Usually, in MIL, a bag label is
defined as positive if at least one of the instances is positive, and negative
if all instances are negative. We will refer to this as the MIL assumption.
In MIL, feature representation of the instances are aggregated into a single
representation, which is later used in a supervised learning setup with the
weak label as ground truth.

Weakly supervised learning is suited for medical applications where
patient-based, clinical labels are known, whereas detailed localized annota-
tions in recorded biosignals or images often are unavailable. An example
is in digital pathology, where histopathological whole slide images (WSI)
are high-resolution digital files of scanned microscopic tissue sections from
biopsies. WSI are of enormous dimensions; hence they are typically referred
to as gigapixel images, and processing them at once is infeasible, thus the
images are divided in patches. Furthermore, annotating such a large image
in detail is very cumbersome and time-consuming due to the size of the
image, and tumours being a heterogeneous disease challenging to diagnose
[16]. Therefore, the number of annotations is limited and often pathology
datasets rely exclusively on clinicopathological information, where each
image patch can be considered an instance. If a tissue section is cancerous,
the positive (i.e. cancerous) instances would typically be localized in one
or several regions that share similar cellular features. There would typi-
cally not be single positive instances surrounded by negative ones, as this
mostly would correspond to missclassified patches. A conventional weakly
supervised model as MIL would not perceive this sense of location since all
instances are grouped in a single bag, and features will be aggregated under
one bag representation [185]. One way to overcome this is to introduce
Nested MIL (NMIL), allowing to group the extracted patches from regions
separately while training the model on a weak label.

Even if such a nested system can perform well, the knowledge of which
individual instances or inner-bags are the most impactful will be lost with
a straightforward setup of MIL. Weakly supervised methods overcome
the problem of lacking individual labels overshooting the problem from
instances to bag prediction. This results in a low degree of explainability

87



Paper 1

and applicability for interpreting a particular prediction, which has been
one of the major focus in deep learning recently [186, 187]. Attention
mechanisms can be integrated in a weakly supervised model architecture to
provide a degree of explainability at instance level. Attention scores reveal
how input features are weighted and can be visualized as a magnitude value
of the instance significance [188–191]. Retrieving attention scores would
lessen the opacity of a nested architecture, which inherently broadens the
distance between instances and bag label. Besides, attention-based models
are showing comparable or improved performance on their bag predictions
[192].

Our proposed model architecture, Nested Multiple Instance with Atten-
tion (NMIA), overcomes the intricate relationship between instance and
bag labels with nesting, while offering a high degree of interpretability
using attention mechanisms. To validate the idea of finding bags with
multiple positive instances, simulating a region of intestest (ROI), the
MNIST dataset is used, a classical image dataset consisting of handwritten
digits [162]. Moreover, to prove that nesting can perform in other domains,
we make use of PCAM, an image dataset consisting of patches extracted
from WSI of lymph node sections [163, 164].

10.2 Related work

Several applications have been developed that use MIL for overcoming the
lack of annotated ROIs in an image [193, 194]. Chen et al. [195] train
end-to-end feeding an entire WSI in a strong supervision manner, adopting
a variant of MIL. To provide further intuition into the composition of the
bags and the relevance that individual instances carry in the classification,
Chikontwe et al. [196] propose a center loss that characterizes intra-class
variations by minimizing the distance among instances from the same class.
Li et al. [75] propose a dual-stream architecture to learn instance and bag
classifiers at once, where the first instance would be an instance classifier
and the second stream aggregates the instances into a bag embedding to
feed to a bag classifier. Also, He et al. [197] use a clustering-based strategy
to obtain hidden structure information in the feature space to discover
positive instances. These methods work well under the MIL assumption
but would not necessarily understand more complex scenarios, such as
region-based analysis of WSI, detection of sequential events in a time-series
signal, natural language processing of blocks of text, among others[174].
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The concept of bag-of-bags is first seen in an application for prostate
cancer detection using magnetic resonance images [198]. It is, however,
Tibo et al. [173, 174], who formulate the idea of a bag within a bag. In their
work, they present the multi-multi learning framework for MIL consisting of
top and sub-bags; therefore, a nested implementation limited to two levels
of nesting. In order to aggregate instance-level representation into a bag-
level representation, they use dense layers. This implementation, however,
remains opaque since its architecture does not offer interpretability for
which instances or inner-bags contributed the most to the final prediction.
Adding nesting exacerbates this issue, since the gap between the instances
and the final weak label is even more prominent.

Attention-based MIL frameworks were first introduced by Ilse et al. [84].
Attention mechanisms give insight into the model’s decision making and
ability to pick out instances of interest. A trainable attention mechanism
identifies the instances that have a more significant influence in making a
positive prediction. This is self-enforcing by using the attention scores to
strengthen the instance representation before aggregation. The final predic-
tion is made using the aggregated representation. Attention mechanisms
have proven to be an efficient method to improve the model performance
and provide relevant insight into the model decision-making and meaningful
data points, as many works have followed this trend since the original
publication [199–203].

In this work, we propose Nested Multiple Instance with Attention
(NMIA), a novel model architecture for weakly supervised learning methods
on structured data. Our proposed architecture defines any number of levels;
hence, a general implementation for nested MIL is presented. Further-
more, our experiments demonstrate the applicability of deeper nesting
with a 3-level architecture and combining it with attention mechanisms for
interpretability.

10.3 Methodology

10.3.1 Nested Multiple Instance Learning

Multiple instance learning (MIL) is a weakly supervised method trained
in a supervised manner considering outermost bags and their correspond-
ing labels. For the conventional MIL binary setting, a dataset X ,Y =
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{
(Xi, yi),∀i = 1, ..., N

}
is formed of pairs of sample sets X and their cor-

responding labels y, where i denotes the current sample for a total of N
samples. A sample X consists of a bag of instances xl:

X = {xl, ∀l = 1, ..., L} (10.1)

where L is the number of instances in the bag. In order to obtain an
instance representation or embedding from input data, for example an image
patch, we make use of a feature extractor. An image feature extractor
Gf : x̄ → x is typically a convolutional neural network which maps an
image patch x̄ into a feature embedding vector x. Instance representations
x from a bag X are aggregated to form a bag representation using an
aggregation function Ξ, which can, for example, be replaced by either the
mean or max operators.

A label y ∈ {0, 1} is associated with the bag X. Although each instance
might be associated with a label yl, they are generally unknown; hence
only bag labels are used during training. At the inference stage, a test
set might be associated with labels both at the bag and instance level to
provide performance metrics. Under the conventional binary classification
MIL assumption, a bag label is positive with the single presence of a
positive instance. Then, the model learns comparing y with the prediction
ŷ, computed by the bag classifier Θc.

y = max
l
{yl} (10.2)

ŷ = Θc(Ξ(X)) (10.3)

In contrast with conventional MIL, NMIL setting consists of levels of
bags within bags where only the innermost bags contain instances. In
Figure 10.1, the idea of grouping instances in inner-bags, inner-bags in
larger bags, and finally in one outermost bag is illustrated.

Let J denote the number of nested levels, Kj number of bags at level
j and Lj,k denote the number of instances or bags in a bag k. A set Xj

contains a set of inner-bags Xj,k:

Xj = {Xj,k, ∀k = 1, ..., Kj} (10.4)

for j defining the current nesting level up to J levels of nesting. For
J = 1, NMIL with one level of nesting, the NMIL notation corresponds
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Figure 10.1: Nested bag-of-bags. Instances from two different classes (crosses and
circles) are drawn into the innermost bags to form sets which are recursively grouped
finally forming the outermost bag.

to the ordinary MIL notation described in Eq. (14.4). The number of
inner-bags Kj can vary from level to level. For a given inner-bag k at level
j, where l defines the instance number up to Lj,k, a bag of instances Xj,k

is expressed as:
Xj,k = {xj,k,l,∀l = 1, ..., Lj,k} (10.5)

By latent labels, we refer to the actual, but in general unknown, labels
of an instance or inner-bag. At the training stage, however, these are
necessary to determine the final bag-of-bags weak label y. For simplicity in
the experiments section, we will refer to an instance latent label yj,k,l as yj

l

to describe the latent label of an instance l in a level j, omitting bag index
k.

10.3.2 Attention Mechanism

According to Ilse et al [84], a multiple instance attention block is constructed
using an embedding-level approach to obtain a bag-level representation from
the instances within, as depicted in Figure 10.2. The proposed attention
module’s input corresponds to low-dimensional embeddings. These are
generated by a feature extractor or by bag embedding representations of
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Figure 10.2: MIA block. Input embeddings are fed into the attention module to compute
attention scores. Green instances represent a positive class, while a red represents a
negative class. Those scores are used to compute weighted representations of instance
embeddings. Then, these weighted embeddings are aggregated to create a final bag
embedding.

previous levels. This module observes those embeddings and computes
attention scores that leverage the meaningfulness of the features extracted
for the given task. Finally, the attention scores are aggregated to obtain
the bag representation.

For ease of exposition, we define indexes δ = (j, k, l), δ′ = (j + 1, k′, l′),
γ = (j, k). We omit the use of training sample index i. An attention score
aδ for a given input embedding xδ is calculated as:

aδ = exp{w⊤(tanh(Vx⊤
δ )⊙ sigm(Ux⊤

δ ))} (10.6)

where w ∈ RL×1, V ∈ RL×M and U ∈ RL×M are trainable parameters
and ⊙ is an element-wise multiplication. Furthermore, the hyperbolic
tangent tanh(·) and sigmoid sigm(·) are included to introduce non-linearity
for learning complex applications. Then, attention scores aδ are normalized
into ãδ to ensure that the sum of the components of the attention scores
vector is 1, as this makes it possible to have variable bag sizes. Note that
the unnormalized aδ would better reflect the attention score directly, and
we use that for visualization in the experiments.

ãδ = aδ∑Lγ

l=1 aδ

(10.7)

Finally, the aggregation function Ξ transforms a leveraged bag of embed-
dings X̃γ to obtain a bag representation xδ′ as:

xδ′ = Ξ(X̃γ) = Ξ({ãδ · xδ,∀l = 1, ..., Lγ}) (10.8)
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Figure 10.3: NMIA model architecture. The feature extractor Gf projects all instances
into low-dimensional embeddings. Consecutive MIA blocks aggregate deeper levels into
more superficial representations. Finally, a bag-of-bags embedding is fed to the classifier
Θc for obtaining a bag prediction ŷ.

10.3.3 Model Architecture

The proposed neural network architecture NMIA combines a recursive bag
processing of low-dimensional embeddings and attention mechanisms. The
multiple instance with attention (MIA) block computes attention scores for
each input embedding and aggregates them to create an embedding that
represents the bag’s contents, see Figure 10.2. Instances are transformed
into embeddings, weighted and aggregated into a bag-of-bags embedding
after passing through the MIA blocks, see Figure 10.3. As a result, a bag-of-
bags embedding xJ+1,1,1 is formed. Finally, a classifier Θc predicts the label
ŷ for the sample X. The model’s forward propagation is summarized in
Algorithm 3. Although the example given corresponds to features extracted
from images, this problem can be extrapolated to other signal types that
can be represented as feature embeddings.

10.4 Experimental Setup

Several experiments were carried out to show the usefulness of NMIA
compared to multiple instance (MI) architectures under different types of
data and tasks. Also, we show the importance of attention-based models to
obtain further interpretability from meaningful instances and compare the
performance to traditional aggregation techniques. Two image datasets were
used: MNIST [162] and PCAM [163, 164]. MNIST consists of a training
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Algorithm 3 NMIA Forward Propagation
Input: image bag-of-bags sample X̄ = {x̄l,∀l = 1, ..., L}
Output: classifier prediction ŷ

/*Transform input image instances into feature embeddings*/
for l = 1 to L do

x̄l = Gf (xl)
end for
for j = 1 to J do

for k = 1 to Kj do
for l = 1 to Lk,j do

/*Define indexes δ = (j, k, l), δ′ = (j + 1, k′, l′)*/
aδ = exp{w⊤(tanh(Vx⊤

δ )⊙ sigm(Ux⊤
δ ))}

end for
ãδ = aδ∑Lk,j

l=1 aδ

xδ′ =
∑Lk,j

l=1 x̃δ =
∑Lk,j

l=1 xδãδ

end for
end for
/*Resulting bag-of-bags embedding is fed into the classifier*/
ŷ = Θc(xJ+1,1,1)
return ŷ

and test set of 60,000 and 10,000 examples, respectively. PCAM consists
of 327,680 patches, where each patch is annotated in a binary manner to
indicate the presence of metastatic tissue. All models were trained using
stochastic gradient descent (SGD) optimizer and early stopping. Binary
cross-entropy loss function is applied over the resulting prediction from the
classifier and the given weak label, while the attention mechanisms remains
unconstrained. The attention scores are used for interpretability proof.

A custom convolutional neural network and VGG16 were used as feature
extractors Gf for MNIST and PCAM, respectively. The models were trained
and tested with 20,000 and 5,000 bag-of-bags, respectively, constructed by
randomly extracting instances within the class of desired instance labels. All
models are implemented in Python 3.6 using Tensorflow machine learning
library [204]1.

We have conducted three experiments as follows. In the first two, we
have considered the positive instance class y1

l+ as the digit 9 for MNIST
1github.com/Biomedical-Data-Analysis-Laboratory/NMIL_Attention
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and tiles with metastatic tissue for PCAM. Dataset samples were arranged
to form a 2-level setting. The third experiment was carried out exclusively
for MNIST in a 3-level setting. Latent labels yj

l introduced in intermediate
levels are formulated only to obtain the resulting bag-of-bags labels, and to
be compared with attention scores to evaluate if we find the correct latent
labels. All models are trained entirely on weak bag-of-bags labels y.

Exp1: A dataset is constructed following the MIL assumption described
in Eq. (10.2). In this assumption, there is nothing to gain in using NMIA,
but we want to show that the NMIA architecture is flexible and the model
will perform comparably to MI models. A conventional MI model both with
and without attention is compared to 2-level NMI models with random
grouping of the bags at the first level.

Exp2: A dataset is constructed such that at least two instances from
the same inner-bag have to be positive for the weak bag-of-bags label to be
positive, as described in Eq. (10.9). This is motivated from region-based
analysis of medical images, where typically an object belonging to a positive
class is located in a specific region and not scattered across the entire image.
Therefore, this particular positive region of the image will contain several
positive instances. Regions containing few positives are regarded as noise
or misclassified instances, and they should not be reflected in the overall
prediction.

1st 2nd

y2
l =

{
0, #y1

l+ ≤ 1
1, #y1

l+ > 1
y =

{
0, y2

l /∈ 1
1, y2

l ∈ 1
(10.9)

Figure 10.4: From left to right, 1, 2 and 3-level partitioning. Red dotted lines separate
bags-of-instances at a second level, while greens at a third level. The task of Exp3 is to
find out if a second-level bags contains at least one first-level bag with odd numbers but
no first-level bags containing only even numbers.

Exp3: Here, we want to find a ROI that contains a bag of odd numbers
and not one of even numbers and a 2-level solution is not enough to overcome
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this task; hence three levels of nesting are required. A region in the image
is considered 0 if all instances are even numbers, 1 if they are odd numbers
and 2 if there is a mix. In Figure 10.4, an example is shown where the
entire image is one region, the image partitioned in regions and regions with
sub-regions, respectively. A 3-level partitioning can be used to construct a
dataset reflecting a complex scenario as described in Eq. (10.10). To get
a final bag label to 1, there has to be second level region that contains a
bag of only odd numbers but not any bags of only even numbers. Such
outline is impossible to learn using MI models, as proven in Exp2 ; thus,
corresponding MI and MIA tests were never carried out.

1st 2nd

y2
l =


0, y1

l ∈ {0, 2, 4, 6, 8}
1, y1

l ∈ {1, 3, 5, 7, 9}
2, otherwise

y3
l =


0, y2

l ∈ {0 ∩ 1̄}
1, y2

l ∈ {0̄ ∩ 1}
2, otherwise

3rd

y =
{

0, y3
l /∈ 1

1, y3
l ∈ 1

(10.10)

10.5 Results & Discussion

F1 scores for the experiments are listed in Table 10.1. MI architecture is
compared to MI with attention (MIA), nested MI architecture (NMI) and
nested multiple instance architecture with attention, the proposed NMIA
architecture. Note the absolute value of the F1 score is dependent on the
chosen feature extractor which is not the focus of this paper, rather the
relative values between the MI, MIA, NMI an NMIA in simple scenarios
(Exp1 ) and more complex scenarios (Exp2, Exp3 ) is what we seek to
demonstrate.

Exp1 presents a setup where individual instance latent labels are directly
responsible for the resulting bag weak label. Here, we can see that a
conventional MI model can perform highly and the choice of architecture
does not affect the predictive power of the classifier. Nesting becomes
irrelevant when only the individual labels of the instances are meaningful,
but not their arrangement across inner-bags.

However, for Exp2, we show that a conventional MI architecture breaks
down because it cannot perform or even understand the nature of the task.
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From the MI model perspective, all instances are at the same level and
belong to the same set. Exp2 and Exp3 were designed to demonstrate
the strength of nesting when the relationship among instances and inner-
bags is fundamental for obtaining the final weak label. NMIA can process
these subsets independently, hence understanding the relationship among
instances.

(a) MNIST

(b) PCAM
Figure 10.5: Examples of attention scores aδ in test samples from Exp2 with 2-level
NMIA for (a) MNIST and (b) PCAM. A single positive instance in the inner-bag is
considered noise whereas two or more should give a positive inner-bag, resulting in
a positive bag-of-bags bag. Instances are categorized by colors indicating inner-bag
belonging, while digits represent the true label of the instance. Bar plots on the left
column show the attention at level 1, while on the right, at level 2. Positive instances
obtain the highest attention scores.
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Table 10.1: F1 scores for experiments on MNIST and PCAM datasets.

MNIST PCAM
Exp1 Exp2 Exp3 Exp1 Exp2

MI 0.929 0.345 N/A 0.957 0.290
MIA 0.957 0.472 N/A 0.973 0.286
NMI 0.923 0.855 0.556 0.964 0.700

NMIA 0.959 0.921 0.836 0.978 0.734

Furthermore, implementing a model with an attention mechanism pro-
vides an edge over the model that does not, both on performance and
interpretability, as shown in Figure 10.5. We can observe that the attention
mechanism can correctly identify the positive instances at the instance
level and recognise the positive inner-bags, distinguishing them from those
containing noisy instances. A conventional weakly supervised model would
not perceive this sense of location since all instances are encapsulated under
the same bag. This results in more interpretable predictions on account of
which instances and inner-bags the model weighs more.

Exp3 further demonstrates NMIAs strengths in a 3-level setup. As
mentioned in the definition of the experiment, MI and MIA were not tested
out due to findings explored in the previous Exp2. As for the nested
architectures, we prove that a nested implementation efficiently handles
complex scenarios, being able to achieve remarkable performance. Moreover,
we notice a significant improvement in predictive power of NMIA over NMI.
NMIA model architecture reaches a F1 score of 0.836, thus incorporating
attention mechanisms provides a substantial boost in predictive power, as
well as intelligible predictions.

10.6 Conclusions

In this paper, we have proposed the NMIA architecture for solving ap-
plications that simpler MI architectures cannot, for when dependencies
among sets of bags are to be considered. We have formulated a notation
for a generalized implementation of nesting for any number of levels. We
have presented experiments processing interdependent subsets from images
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demonstrating the flexibility and improved performance relative to MI.
Moreover, NMIA can be used in a wide range of applications due to its
flexibility. Finally, implementing an attention mechanism helps identify key
instances and inner-bags contained in a set of bags, giving insight into the
practical relationship between latent labels and the attention given among
different levels. Future research will consider the potential effects of NMIA
with attention on a full-scale medical imaging dataset more carefully.
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Abstract:
Accurate segmentation of tissue in histopathological images can be
very beneficial for defining regions of interest (ROI) for streamline
of diagnostic and prognostic tasks. Still, adapting to different do-
mains is essential for histopathology image analysis, as the visual
characteristics of tissues can vary significantly across datasets. Yet,
acquiring sufficient annotated data in the medical domain is cumber-
some and time-consuming. The labeling effort can be significantly
reduced by leveraging active learning, which enables the selective
annotation of the most informative samples. Our proposed method
allows for fine-tuning a pre-trained deep neural network using a
small set of labeled data from the target domain, while also actively
selecting the most informative samples to label next. We demon-
strate that our approach performs with significantly fewer labeled
samples compared to traditional supervised learning approaches for
similar F1-scores, using barely a 59% of the training set. We also
investigate the distribution of class balance to establish annotation
guidelines.
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12.1 Introduction

Computer-aided diagnosis (CAD) systems that utilize machine learning
techniques for medical imaging analysis have been shown to be an effective
way to reduce subjectivity and speed up the diagnostic process [123]. Digi-
tal microscopy scanners are capable of generating high-resolution digital
images from scanned tissue sections, also known as Whole Slide Images
(WSI). These images can are pre-stored at various magnification levels,
allowing pathologists to adjust the zoom level like they would with physical
microscopes. Lower magnification is typically used to view tissue-level
morphology, while higher magnification is useful for examining cell-level
features.

Bladder cancer is among the most commonly diagnosed cancer types.
According to the World Health Organization, over 573,000 new cases
and 213,000 deaths were registered in 2020 [205]. WSIs from bladder
cancer are highly disorganized scanned tissue sections for several reasons.
Urothelial carcinomas often present papillary structures, elongated finger-
like bundles of tissue, that alter the normal appearance of the urothelial
lining. Also, transurethral resection of a bladder tumour (TURBT) is
a complicated operation that difficults a clean tumour extraction as the
cauterization process leaves damaged tissue areas. As a result, a significant
amount of artifacts and other non-diagnostically-relevant tissue is present
within the slides. Using all the regions of a WSI for model training or
inference as input would often add unnecessary noise. Manual annotations
of potential regions of interests (ROIs) is an arduous, time-consuming and
labor-intensive task. Hence automatic methods have emerged to reduce
this time constraint. Tissue segmentation in computational pathology
(CPATH) enables the analysis of specific ROIs within a WSI and can
also improve the performance of the model by actively selecting the most
informative tissue types [206, 207]. A Multiscale Approach for Whole-Slide
Image Segmentation of five Tissue Classes in Urothelial Carcinoma Slides
[26] proposes a multiscale convolutional neural network (CNN) that can
effectively segment five different tissue classes in non-muscle invasive bladder
urothelial carcinoma slides. The model classifies all input areas into blood,
damaged, muscle, stroma and urothelium tissue. They demonstrate that
their approach outperforms existing methods and is able to handle the large
size and variability of WSIs within their private cohort. The presence of a
domain shift between images obtained from different laboratories impedes
the performance of deep learning models on out-of-distribution samples
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[208]. Thus, implementing the algorithm on a new dataset may require of
an adaptation. However, the cost of labeling resources is critical, especially
in the clinic.

When dealing with limited data, it is frequently necessary to resort to the
implementation of deep learning methodologies that are more cost-efficient,
such as active learning (AL). AL is a variant of supervised learning (SL)
involving human interaction during training, also referred to as having a
human in the loop during training [209]. The goal of an AL setup is to
actively interfere during the training procedure, extract new data points
from the classes the model struggles to comprehend and append them to
the training set [210]. Therefore, an human in the loop is expected to spend
time resources for labeling data points from the class the model demands.
Recent works within the field of CPATH have demonstrated implementing
AL techniques results in similar performances to SL, with constrained data
settings [166–172]. Analogously, AL can enhance the tissue segmentation
model from [26] by selecting informative samples from an undetermined
dataset with limited annotations. Despite the publication of protocols for
critical bias assessment of clinical models, no official guidelines have been
established regarding the required numbers of annotations, images, and
laboratories to capture the variation present in real-world data [211, 212].
The need for more well-defined class sampling strategies within the field of
histopathology arises. Due to privacy concerns, medical data cohorts often
cannot be made publicly available. This leads to limited model predictive
generalization as medical applications are developed for a target dataset.
Consequently, domain adaptation of deep learning models into unexplored
data domains is needed.

In this work, we propose a domain adaptation framework for deep learning
models within the field of histopathology. We choose to adapt an algorithm
that segments bladder cancer WSIs into different tissue types. The model
architecture uses a multiscale CNN backbone that incorporates information
from different magnification levels, which has been developed using another
dataset from a different hospital. In order to adapt the model to a new
unseen domain, we adopt an AL strategy for a more efficient labeling effort.
We proactively select samples to be included into the training data based
on preemptive results on the validation set. We show that the proposed AL
approach is more profitable and can be integrated to reduce labeling costs.
On top of that, we also aim to guide pathologists in which annotations to
provide deep learning models before investing substantial amounts of effort.
We estimate a balance between class distribution and model performance,
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validated using a small initial subset of annotations. By assessing the
model’s initial performance, pathologists can then proceed with further
annotations guided by this intuition.

12.2 Material and Methods

12.2.1 Dataset

We have collected a set of high-risk non-muscle invasive bladder cancer (HR-
NMIBC) WSI from the first TURBT from a multi-centre cohort provided
by Erasmus MC, Rotterdam, The Netherlands. WSIs were stained with
Haematoxylin and Eosin (H&E) and scanned using a 3DHistech P1000
scanner at 80x magnification stored as MRXS files. The total number of
slides is 155, for which a pathologist has annotated the slides with tissue
types. Data heterogeneity produces more generalizing models than using
higher amounts of data from the same slides [169]. Thus, a pathologist was
asked to annotate areas in a rough, imprecise manner in order to obtain
several annotated regions per WSI, within a time limit. The time usage
was limited to a maximum of one hour per WSI, including diagnostic labels
not used in this work. As a result, some regions were annotated in every
WSI, but not the entirety of present tissue was annotated. The aim of
this annotation protocol was to collect diverse scenarios, hence capture
the tissue heterogeneity characteristic from bladder cancer. Moreover, to
avoid incorporating a human in the loop during training, we preemptively
collected available tissue type annotations and defined pools of data to draw
from. In total, 127, 16, and 12 WSIs were annotated and used for training,
validation and test, respectively, where the split is done on WSI level to
avoid cross-contamination. Tiles from annotated regions of urothelium,
stroma, muscle, blood and damaged tissue were extracted from the EMC
cohort, using the strategy proposed in [26] where more details can be found.
In short; tiles were extracted at 2.5x, 10x and 40x magnifications, thus
forming a triplet, and a maximum of 500 triplets were extracted per WSI. A
tile size of 128×128 was used, and all three tiles in a triplet share a common
physical point as the center pixel. Therefore, tiles at a lower magnification
cover a larger physical area. The total number of tiles across sets is stated
in Table 12.1.
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Train Val Test
WSI 127 16 12
Blood 35105 2500 4106
Damaged 65920 2500 57296
Muscle 67007 2500 50347
Stroma 86978 2500 79338
Urothelium 91006 2500 38813
Total 346016 12500 229900

Table 12.1: Number of WSI and tiles per tissue type (class) in train/val/test split of
the available dataset of high-risk non-muscle invasive bladder cancer.

12.2.2 Model Architecture

The tissue segmentation model TRI-CNN proposed in [26] is adopted into
our pipeline. This model was trained using WSIs of NMIBC patients
from Stavanger University Hospital (SUS), Stavanger, Norway. The model
architecture consists of a multiscale CNN setup that aggregates local and
global information. Triplets are fed through three weight-independent
VGG16 backbones trained for each of the magnifications, concatenating
each output feature vectors before classification. Then, the formed feature
vector is fed through the classifier to predict a tissue class, using softmax
activation. A representation of the model architecture is presented in Fig.
11.2.

12.2.3 Active Learning Procedure

Active learning (AL) can be a powerful tool for improving the performance
of deep learning models when labeled data is limited [210]. In AL, the
model is initially trained on a small labeled dataset. Thereafter, based
on intermediate performance metrics and a query strategy for requesting
additional samples of the most informative class, a human annotator is asked
to label a small number of additional samples. The model then uses this
newly labeled data to update its parameters and improve its performance.
This process is repeated until either the model reaches a satisfactory level
of performance, the resources are exhausted or a set number of iterations
has been conducted. One of the main advantages of AL is that it can
significantly reduce the amount of labeled data required to train a deep
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Figure 12.1: Active learning framework TRI-AL. Pathologists annotate ROIs, from
which tile triples are extracted at different magnifications levels (2.5x, 10x, 40x) to form
a triplet. During the training stage, an starting training set is defined for training a
multiscale model. The model performance is evaluated on the validation set. Then,
stopping criteria decides to resume with another training iteration or conclude the
learning. In case that the criteria is not met, new samples from the pools of data are
drawn and appended to the current version of the train set.

learning model to achieve acceptable performance. Additionally, active
learning can also improve the model’s performance by allowing it to adapt
to changing conditions or concepts over time. However, AL also has some
limitations. It requires human intervention, which can be time-consuming
or cumbersome to organize, and it may introduce bias into the training
process. Overall, the choice between SL and AL will depend on the specific
needs of the application and the availability of labeled data.

AL strategies, or query strategies, involve analyzing the information
value of unlabeled instances. The most commonly used query strategy
is uncertainty sampling [209, 213]. This framework revolves around the
model uncertainty in labeling certain instances, revolving in probabilis-
tic methods, such as entropy and prediction confidence. Predictions on
unlabeled instances presenting a high degree of entropy are selected for
inclusion to the training data. These are later transferred to a domain
expert for labeling. Inspired by these methodologies, but with the goal
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of domain adaptation, our sampling strategy falls under the uncertainty
query strategies. For the AL procedure, we further divided the training
set, X , into initial training subset X0 and pools of training data P. The
algorithm selects new samples based on model performance. Considering
the false negative ratio (FNR) on the validation set V and total sample size
S, N i

j samples from the pools P are appended into the current training
set, for every class i on iteration j. Furthermore, we define a relative class
balance size δj

i to represent the percentage of data points for class i on the
current training set Xj . These steps are iteratively repeated until P cannot
provide more samples of the requested class or J iterations have passed,
see Algorithm 4 for more details.

Algorithm 4 Active Learning Train Procedure
procedure ALtrain(X ,V, J, S)

1: X0,P ← X ▷ Split train set into initial subset and pools
2: while j < J or len(Pi) > N i

j do
3: for j ← 1 to J do
4: MODELT RAIN (Xj)
5: MODELEV AL(V)
6: for i← 1 to I do
7: N i

j = F NRi
j−1·S∑

i
F NRi

j−1
▷ Per class new data points

8: X i
j

+← sample(P, N i
j)

9: end for
10: end for
11: end while
12: return ŷ

12.3 Experiments

All experiments are done using transfer learning from TRI-CNN, using the
same hyperparameters as in the original algorithm [26]. All models were
trained using unfrozen VGG16s, a multi-class cross entropy loss function,
learning rate of 1.5e-4 and SGD optimizer. Early stopping was enabled for
interrupting the training if there was no improvement in the validation loss
for five consecutive epochs. The models were trained five times in order to
determine the mean and standard deviation of the results.
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We evaluate the performance of TRI-CNN on our test set; then, we
compare it to the proposed SL and AL strategies using data from Erasmus
MC, Rotterdam, The Netherlands. For our experiments, we compare
the performance of standard supervised learning (TRI-SL) on different
sampling of the training set, in order to leverage the performance at various
thresholds of dataset sizes. Based on the entire available training set, we
trained models using a fraction of the data, namely from 20 to 100%, in
intervals of 20%. As for the AL methods, we define a stopping criteria
based on resource exhaustion and a fixed number of iterations. The initial
training set X0 is made of 25000 triplets per class. Every iteration i, 20000
new samples S are added to training data Xj . We defined a maximum of 5
iterations for training the model TRI-ALITER, while the model TRI-ALOOD
refers to the model trained until a class pool runs out of data points. For
comparison matters, we trained an algorithm TRI-ALENT based on entropy
uncertainty. In this case, 30000 triplets from the pools P are sampled based
on class distribution δ of the entire training set X . From these, the top
20000 triplets with the highest entropy are selected. The code can be found
at GitHub1.

12.4 Results & Discussion

Results in terms of F1 scores are presented in Table 12.2. First, we observe
that TRI-CNN, although achieves a respectable performance, falls short in
comparison to the models trained on the new cohort, thus showing that
domain adaptation is needed. TRI-CNN achieved a micro F1 score of 73.06.
Regarding TRI-SL models, the performance improved along with the size
of the dataset, considering that the best SL model is that using the entire
training set. Nevertheless, AL strategies achieve higher performance using
data more efficiently. The query strategy in TRI-ALITER reaches a micro
average F1 score of 90.34, compared to 90.23 for SL using 100% of the
training samples. The AL data accounts for 59% of the available training
samples. It is also worth mentioning the disparity in terms of performance
for the blood tissue class in regards to other tissue types. One of the reasons
refers to regular missclassifications. Most of the blood annotations are
those of vessels present within the stroma, so its only natural that blood
can be misinterpreted as stroma. However, the main reason is that the
number of blood samples in the test set for blood is heavily limited in

1http://bit.ly/3J5XRiz
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comparison to the other classes. Naturally, a minor number of blood false
positives results in a significant downgrade in terms of metrics. Focusing
on the TRI-ALITER model performance results, blood has a recall of 86.31
while for stroma is 86.77, barely a 0.66 difference.

The development of the training set class distribution for TRI-ALITER
in comparison to the ones used for TRI-SL can be seen as described in
Fig 12.2. Looking at the relative data balance per class, we identify a
tendency over the iterations where damaged, muscle and urothelium class
distribution δ reach an asymptote. Also, we observe that the algorithm
deems to suggest that stroma is significantly harder to learn and requires a
more extensive number of data points in comparison to other classes. Even
then, the margin for δ progressively slows down and we would expect it to
become stagnant.
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Figure 12.2: Class relative size per class δi over the iterations for TRI-ALITER model.
We observe that the algorithm prioritizes harder classes over simpler ones as the iterations
pass. As Xj increases, δi reaches an asymptote for damaged, muscle and urothelium
tissue classes, while penalizing blood in favor of stroma. Class distribution does not
match that annotated from a pathologist, as per the TRI-SL section.
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Regarding the comparison of the iteration TRI-ALITER and data exhaus-
tion TRI-ALOOD query strategies, we noticed that allowing the algorithm
to add samples until a class pool Pi is exhausted does not translate into
overall better performance, although that might be different in case that
the pool was larger. To further evaluate the performance of our model TRI-
ALITER, we compare it to entropy-based class instance selection strategies
TRI-ALENT. Our results indicate that, on average, TRI-ALITER outper-
forms the entropy-based approach TRI-ALENT, both in terms of per-class
and total aggregated metrics, indicating that it is better at distinguishing
between different tissue types. However, it should be noted that we also
observed lower variation in the performance of the entropy-based models
between runs, as indicated by the standard deviation metrics. This sug-
gests that the entropy-based approach may be more consistent and less
susceptible to fluctuations in performance across different training itera-
tions. Nevertheless, it is important to note that the entropy-based query
strategy is more computationally expensive, as it requires the calculation
of sampled data points. In contrast, our proposed method does not require
any additional computation beyond the training of the model.

Pathologists also visually inspected the model’s segmentation results by
overlaying the predicted masks over the raw WSIs. Illustrative examples of
the model’s segmentation results for a representative WSI of the test set are
shown in Fig. 12.3 for a ROI and the entire WSI, respectively. Upon visual
inspection of the results by experts, according to TRI-CNN segmentation,
we have identified four main observations: staining effects leading to false
positives of blood in regions with high levels of eosin stain, non-cauterized
damaged areas such as blur or folding, the risk of misinterpreting infiltrative
immune cells as urothelial cells, and the potential for the model to predict
urothelium with significant cytoplasm as stroma. As per the models trained
in the new cohort (TRI-SL, TRI-AL), it was confirmed that these models
accurately segmented and classified different tissue types.

12.5 Conclusion & Future Work

In this work, we proposed a active learning framework with a multiscale
CNN for domain adaptation of a tissue segmentation model of bladder
cancer histopathological images. Our proposed method achieved a F1 score
of 90.34 using 59% of the training data, and outperformed supervised
learning strategies that used all available samples. Our results suggest
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that active learning can be an effective strategy for reducing the labeling
effort in histopathological image analysis. Regarding domain adaptation,
we observed that we were able to customize the model to the new domain
using a small labeled set. Moreover, we also presented a suggested data
annotation per class burden for tissue segmentation of bladder cancer WSI.
Furthermore, this model can be introduced as a pre-processing step for
other applications that require tissue segmentation for ROI extraction.
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Abstract:
Bladder cancer patients’ stratification into risk groups relies on grade,
stage and clinical factors. For non-muscle invasive bladder cancer,
T1 tumours that invade the subepithelial tissue are high-risk lesions
with a high probability to progress into an aggressive muscle-invasive
disease. Detecting invasive cancerous areas is the main factor for
dictating the treatment strategy for the patient. However, defining
invasion is often subject to intra/interobserver variability among
pathologists, thus leading to over or undertreatment. Computer-
aided diagnosis systems can help pathologists reduce overheads
and erratic reproducibility. We propose a multi-scale model that
detects invasive cancerous areas patterns across the whole slide
image. The model extracts tiles of different tissue types at multiple
magnification levels and processes them to predict invasive patterns
based on local and regional information for accurate T1 staging. Our
proposed method yields an F1 score of 71.9, in controlled settings
74.9, and without infiltration 90.0.
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11.1 Introduction

Bladder cancer is one of the most commonly diagnosed cancer worldwide,
with over 573,000 new cases and 213,000 deaths estimated in 2020 [205].
Approximately 90% of newly diagnosed cases are urothelial carcinomas that
arise from the urothelial lining, from these 75% are non-muscle invasive
bladder cancers (NMIBC) and 25% are muscle-invasive bladder cancer
(MIBC) [109]. NMIBC can be divided into non-invasive papillary tumours
Ta, T1 with invasion into the lamina propria and carcinoma in situ Tis,
which is a superficial lesion. The three aforementioned groups account for
70, 20, and 10% of NMIBC, respectively [214]. Ta tumours typically are
non-aggressive low-risk lesions that can be treated cautiously. However, T1
tumours are considered high-risk lesions with a higher chance of progressing
into muscle-invasive tumours, resulting in higher mortality rates [215].
NMIBC accurate staging of the tumour is important to categorize patients
into risk groups, and guides which treatment strategy the patient will
receive, and, thus, patient outcome [216].

Invasive patterns can be problematic to identify correctly, see Fig 11.1.
Morphological features indicating lamina propria (LP) invasion include
irregular nests, refraction artifacts, stromal reaction, among others [217].
External factors such as fragmented material and tangential sectioning are
often present, providing a false sense of invasion. Also, benign structures
like von Brunn nests might mimic invasion [218]. Complex evaluation of
multi-variate scenarios leads to high inter-and intraobserver variability,
resulting in down- or upstaging [176]. Variability in diagnosing T1 tu-
mours has significant clinical consequences; thus, the necessity for higher
reproducibility in assessing staging categories arises.

Computer-aided diagnosis (CAD) systems relying on machine learning
methods for medical imaging analysis have proven to be an efficient manner
to reduce subjectivity and accelerate the diagnostic procedure [178, 179].
Digital microscopy scanners generate high-resolution digital images from
the scanned tissue sections, also named Whole Slide Images (WSI), in a fully
automatic way. WSI are stored at multiple magnifications views, allowing
the observer to adjust the zoom level, replicating physical microscopes.
Pathologists use lower magnification levels to overview the regions of interest
and analyse tissue-level morphology, while higher magnification is desirable
for observing cell-level morphology.

Convolutional neural networks (CNN) are the gold standard for feature
extraction from histological images [118]. CNNs have been used for appli-
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Figure 11.1: Tiles of invasive (T1) and non-invasive (Ta) areas at different magnification
levels. The lining contour of the basement membrane of the urothelial layer is interfered
with the infiltrating tumour cells. Atypical clusters of tumour cells invade the lamina
propria, resulting in irregularly shaped nests.

cations related to pattern detection of cellular features in breast, prostate,
among other cancer types [219–222]. There are some examples in the
literature where features are extracted at multiple magnification levels
to incorporate contextual information of surrounding areas together with
detailed information at the cellular level. Both Harmon et al. [76] and Li et
al. [75] define tiles at different magnification levels independently from one
another. However, Wetteland et al. [223] define one magnification to extract
the tiles from and projects the centre of the pixel to other magnifications.

Bladder cancer staging should first and foremost distinguish NMIBC
from MIBC. Image modalities such as CT, MRI or PET have proven
to be effective, non-invasive methods to identify muscle invasion [224–
226]. However, a detailed examination of NMIBC substaging requires
histopathological analysis. Automatic applications that help to identify a
possible invasion into the lamina propria include tissue segmentation to
delineate the boundaries of urothelium, lamina propria and muscle tissue
[223, 227]. Yin et al. [34] propose a method to classify tumour regions of
H&E stained slides as stage Ta or T1 tumours using machine learning. The
method was developed and evaluated in a control set containing patches of
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already segmented and verified Ta and T1 tumour tissue, disregarding the
remaining tissue in WSIs. Analysing the entirety of the tissue in the slides
is important to define the extent of invasion. Identifying focal points of
invasion would provide important information to clinicians as an outcome
predictor [228].

We propose an algorithm that finds invasive cancerous areas (ICA)
associated with T1 stage across the WSI without the need of previous
region of interest (ROI) or tumour segmentation. In ICA, the tumour has
spread into the lamina propria that separates the urothelium layer from
the bladder muscle beneath, whereas non-invasive areas are the regions of
urothelium and lamina propria where no invasion is present. The proposed
algorithm takes tissue tiles from all tissue types present in the WSI and
discerns invasive from non-invasive patterns using both local and regional
information extracted at different magnification levels.

11.2 Methods

11.2.1 Datasets

51 WSI of NMIBC patients were collected from two independent cohorts
from Erasmus MC (EMC), Rotterdam, The Netherlands and Stavanger
University Hospital (SUH), Stavanger, Norway. The EMC dataset is a
multi-center cohort containing 37 H&E stained WSI of high-risk NMIBC.
WSI were scanned using a 3DHistech P1000 scanner at 800x magnification
stored as MRXS files. The SUH dataset contains 14 WSI of NMIBC
that were digitized using a Leica SCN400 scanner at 400x magnification
stored in the SCN file format, 8 H&E and 6 HES stained. The combined
dataset included 23 non-invasive and 28 invasive tumours. All slides were
partially annotated and revised by pathologists, with the annotations
serving as ground truth. Only representative regions were annotated from
each WSI; thus, no slide was fully annotated. Annotated regions from EMC
included mainly tissue types (urothelium, lamina propria, blood, muscle
and artifacts), while SUH annotations contain primarily urothelium grading.
In some cases, these tissue annotations might come with a subclass, such as
grading of urothelium, presence of tumour infiltrating lymphocytes (TILs)
in both urothelium and lamina propria, ICA, artifact type, among others.
A dataset consisting of tiles was extracted from the annotated areas. Tiles
were categorized into four main classes: invasive cancerous areas (ICA);
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"non-invasive urothelium" (Uro); "lamina propria with no invasion" (LP);
and the rest of the tissue types, which we will refer as Others. We define
non-invasive areas as the regions of Uro and LP where no invasion is present.
Others includes blood, muscle and damaged tissue. Further details on the
number of tiles extracted from our datasets can be found in Table 11.1.

Table 11.1: Number of WSI and tiles from EMC and SUH datasets.

WSI Tiles

ICA Urothelium Lamina Propria Others
Ta / T1 with / without TILs with / without TILs

EMC 16 / 21 14253 603 / 8859 2816 / 22154 34666
SUH 6 / 8 1333 0 / 60378 1858 / 1054 2726

From the extracted tiles, we defined two subsets; i) a control set, and
ii) an inclusion set. A control set is sampled from the original dataset,
containing ICA and selected non-invasive areas (Uro, LP). Extracting
carefully selected tiles, we remove the surrounding tissue present in the
slides while maintaining tiles related to the ROI. An inclusion set is defined
including Others tissue types in addition to ICA, Uro and LP from the
control set. The sets were split into training and test patients, ensuring no
data leakage.

11.2.2 Multi-scale Model

We propose a CNN-based deep learning algorithm that can process all
available tissue areas in a WSI and produces a segmentation map to
detect ICA. Fig. 11.2 depicts the pipeline of the proposed method. The
algorithm consists of a combination of feature extractors with input tiles
at different magnification levels to obtain detailed as well as contextual
information. Then, feature maps are downsampled using Global Average
Pooling (GAP) to form a low-dimensional embedding. This information is
later concatenated to embeddings from other magnification views and fed
into the dense layers which will give the final prediction, as shown in Fig.
14.2. Our proposed algorithm is a TRI-scale model which analyses tiles at
three magnification levels (400x, 100x, 25x), inspired by [223].
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11.3 Experiments

Multiple models using different combinations of magnification levels were
trained and tested. The following combinations of magnification views
were used: MONO (400x), DI (400x, 100x), and TRI-scale (400x, 100x,
25x). Tiles of size 256 × 256 were extracted from annotated regions at
400x magnification. Tiles at different magnifications were extracted so
that the center of the tile remains the same for all views, as described
in [120]. An example of this can be seen in Fig. 11.1. Extracted tiles
at 400x are required to be covered by at least 70% of a tissue mask in
order to be assigned such label. Background tiles were excluded using a
thresholding technique. The number of annotated regions of ICA were
significantly less than others. To address the data imbalance problem,
we used undersampling of overrepresented classes. Tiles were converted
to grayscale as datasets come from different laboratories, with different
scanners and stain compositions, and the dataset was not large enough
to support color variation. VGG16 was used as a feature extractor. To
avoid overfitting, frozen weights were used due to the limited amount of
training samples. Early stopping and learning rate decay were enabled.
Cross entropy was defined as loss function. Models were trained for a
maximum of 50 epochs. All models are implemented in Python 3.6 using
Tensorflow machine learning library [229].

The experiments carried out are described as follows: i) for the first
set of experiments, denoted Emag, MONO, DI and TRI-scale models are
evaluated to determine the relevance of contextual tissue morphology for
discerning invasion; ii) for the second set of experiments, denoted Eds, one
of the original subsets was used, either control or inclusion, to ascertain
the performance variation for adding non-ROI tissue; iii) for the third set
of experiments, denoted Etils, we excluded all tiles which included "tumour
infiltrating lymphocytes" (TILs). TILs are small immune cells that can
be found either in the urothelium or the lamina propria. TILs may lead
to confusion for discerning them from invasion; iv) finally, for the fourth
set of experiments, denoted Eemc, we used tiles from one of the hospitals
exclusively. We chose EMC over SUH since the number of available data
from EMC is far greater, especially regarding the number of ICA tiles.
Eemc will show how impactful data balance among classes and domain shift
are toward detecting invasive cancerous patterns. Also, the experiments
were run in a binary and multi-class manner to assess whether grouping of
non-invasive tissue improves ICA detection performance.
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11.4 Results & Discussion

Results of all experiments are collected in Tables 11.2 and 11.3 for space
efficiency. For experiment Emag, TRI-scale models provide the best results
for ICA detection, inferring that regional context derived from tissue
morphology is beneficial in the task of discerning invasive patterns over
non-invasive ones. Hence, models that incorporate lower magnification
views provide better performance than those who focus on local patterns
solely.

With respect to experiment Eds, results on the control set demonstrate
that discerning invasive from non-invasive patterns is possible, carefully
selecting ROIs containing urothelium and lamina propria, with and without
invasion. We observe that trained models with all sorts of tissue provide
comparable results, using the inclusion set. It is, however, with models
trained on the inclusion set that we can directly deploy the algorithm for
WSI analysis. Models trained with the control set require a pre-processing
step to sample carefully selected patches from the slides. Moreover, we
further evaluate the discriminatory competence of our models for both
sets representing a scatterplot of a two-component feature embedding
visualization using t-SNE [230], see Fig. 11.4. Sample embeddings are
clustered into separate locations of the feature space based on the class
label; hence there is a clear separation of the classes. With regard to the
number of classes, binary classification has proven to be more efficient than
multi-class for ICA predictions in the inclusion set, but not for the control
set. The best performing binary model of the inclusion set, TRIincl binary
model, was used to produce probability heatmaps over WSIs from the test
set, as shown in Fig. 11.5. Tile predictions were overlaid on the WSI,
ranging from blue to red for ICA likelihood. A pathologist could later use
the generated heatmaps as a tool for guidance in detecting potential ICA.

Regarding experiment Etils, we noticed that the presence of TILs dampers
the predictive performance, as models struggle to differentiate such areas
from ICA. Tiles where TILs are present are often missclassified for ICA.
Excluding areas with abundant TILs results in a significant F1 score
improvement. The positive effect of TILs exclusion is relevant for both
sets and all combinations of magnification views, although it is higher
when using TRI-scale models. For the TRIincl binary model, the F1 score
difference reaches over 13%. Based on the results obtained, a future pipeline
should include a posterior classifier to discriminate ICA false positives with
infiltration from genuine ICA.
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Figure 11.4: tSNE scatterplot of test samples embeddings on the control and inclusion
sets, respectively. Embeddings were extracted as the output of the feature extractor and
reduced to two components.

Figure 11.5: Heatmaps showing the probability of a patch to belong to the ICA class,
based on the TRIincl binary model. Two test WSI samples with stage Ta (left) and
T1 (right) are shown. An annotated ICA region is highlighted by a white border in
the T1 WSI. Inclusion set models support the analysis of the entire WSI, not limited
to pre-defined ROIs. A thumbnail of the original WSI is displayed at the bottom right
corner.

Finally, for experiment Eemc, despite reducing scanning and staining
variability, we lit upon poor performance in comparison to the other exper-
iments. This can be due to the lack of a substantial number of urothelium
tiles, which are present mostly in the excluded cohort, see Table 11.1.
Even though most of the ICA tiles remained in the dataset, discarding the
majority of the Uro class proved unfavourable. Precision results infer a
bias towards ICA. Distinguishing ICA patterns for non-invasive patterns
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relies mainly on telling Ta from T1 regions apart. As the tumour grows
from the urothelial layer into the lamina propria, it is essential to have a
significant representation of Uro over LP.

11.5 Conclusion & Future Work

A multi-scale model was developed for detecting invasive patterns in ICA
across the WSI. A control set shows that CNNs distinguish invasive areas
from other tumour regions, while including non-diagnostically relevant
regions barely decreases the model capability of discerning invasion. Multi-
scale models give best performance indicating that using contextual informa-
tion combined with local patterns is highly beneficial. Predicted heatmaps
for the invaded areas can be represented for user-friendly interpretation.
Automatic ICA detection can also can be a first step for automated staging
of T1 tumours. This can be useful for treatment planning, both alone and
in combination with automated grading. The results are promising but
due to the lack of large scale manual annotated regions, it is conducted
over a small dataset. Future developments should be conducted over larger
cohorts and with implemented color normalization schemes to alleviate
scanning and staining variability. Likewise, a post-processing step for TILs
exclusion should be adopted to alleviate infiltration misclassifications.
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Abstract:
The most prevalent form of bladder cancer is urothelial carcinoma,
characterized by a high recurrence rate and substantial lifetime
treatment costs for patients. Grading is a prime factor for patient
risk stratification, although it suffers from inconsistencies and vari-
ations among pathologists. Moreover, absence of annotations in
medical imaging difficults training deep learning models. To address
these challenges, we introduce a pipeline designed for bladder cancer
grading using histological slides. First, it extracts urothelium tissue
tiles at different magnification levels, employing a convolutional neu-
ral network for processing for feature extraction. Then, it engages
in the slide-level prediction process. It employs a nested multiple
instance learning approach with attention to predict the grade. To
distinguish different levels of malignancy within specific regions of
the slide, we include the origins of the tiles in our analysis. The
attention scores at region level is shown to correlate with verified
high-grade regions, giving some explainability to the model. Clinical
evaluations demonstrate that our model consistently outperforms
previous state-of-the-art methods.
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13.1 Introduction

Bladder cancer, a prevalent urological malignancy, poses significant clinical
challenges in terms of both diagnosis and prognosis [231]. Non-muscle-
invasive bladder cancer (NMIBC) accounts for approximately 75% of the
newly diagnosed cases of urothelial carcinoma. NMIBC is particularly
known for its variable outcomes, necessitating accurate and consistent
grading for optimal patient management [109]. The 2022 edition of the
European Association of Urology guidelines on NMIBC recommends a
stratification of patients into risk groups based on the risk of progression
to muscle-invasive disease [10]. Grade, stage, and various other factors
contribute to the risk. Precise risk assessment is vital in the management of
NMIBC, since treatment strategies not only rely on the presence of muscle
invasion.

Grading is based on assessment of the cellular morphology abnormalities
of urothelial tissue. In 2004, the WHO introduced a grading classification
system (WHO04) for NMIBC based on histological features. WHO04 en-
compasses three categories: papillary urothelial neoplasm of low malignant
potential (PUNLMP), non-invasive papillary carcinoma low grade (LG),
and high grade (HG), ranging from lower to higher malignancy respectively
[232]. HG is related to lower differentiation, loss of polarity, and pleomorphic
nuclei, among others. The intricate evaluation of heterogeneous scenarios
contributes to significant inter- and intraobserver variability. Disparities
potentially lead to misclassification, and consequently, to inappropriate
treatment decisions [176]. WHO04 grading system was subsequently re-
tained in the updated 2016/2022 WHO classifications [233]. However,
according to several multi-institutional analyses of individual patient data,
the proportion of tumors classified as PUNLMP (WHO 2004/2016) has
markedly decreased to very low levels in the last decade. This trend resulted
in suggestions to reassess PUNLMP tumors as LG [234, 235]. Therefore,
the upcoming grading system will reasonably undergo a modification, shift-
ing towards the inclusion of only LG and HG categories. In recent years,
the integration of deep learning techniques within the field of computa-
tional pathology (CPATH) has offered promising avenues for enhancing
the precision of computer-aided diagnosis (CAD) systems and elucidating
discrepancies among pathologists [123, 207]. Consequently, the synergy
between histological expertise and CAD technologies is vital for accurate
grading assessments.

CPATH is the field of pathology that leverages the potential of CAD
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systems to thoroughly analyze high-resolution digital images known as
Whole Slide Images (WSIs) for diverse diagnostic and prognostic purposes
[118]. WSIs are produced by slide scanners and pre-stored at different
magnification levels, emulating the functionality of physical microscopes.
Lower magnification is suited for tissue-level morphology examination, while
higher magnification for cell-level scrutiny [236]. WSIs are characterized by
their substantial size, which can introduce adversarial noise. Bladder cancer
WSIs present unique challenges due to their disorganized nature and the
presence of diagnostically non-relevant tissue. These slides often include
artifacts, such as cauterized or stretched tissue [126]. Moreover, tissue
such as blood, muscle and stroma are less informative for grading a tumor.
Therefore, the absence of annotations presents a significant challenge for
identifying regions of interest (ROIs) [123]. It is crucial to distinguish
between region-based labels (e.g., tissue type, grade) and WSI-based labels,
including follow-up information and overall patient grade. Grade exemplifies
a label that encompasses both perspectives [237, 238]. While clinical reports
assign the worst grade observed to a patient, a WSI may exhibit diverse
urothelium regions with normal, LG, and HG. This dual nature underscores
the complexity of label interpretation when considering both the medical,
WSI-focused perspective and the more technical perspective involving
regional data analysis and processing.

CPATH is amid a transformative era, aiming to reshape the landscape
of digital pathology as we know it [239]. Among the diverse practices
in the field, imaging methodologies rooted in convolutional neural net-
works (CNNs) have emerged as the foundation of feature extraction from
histological images [118]. These deep learning networks possess a remark-
able capacity to automatically discern morphological and cellular patterns
within WSIs [45, 240–244]. Ultimately, CNNs contribute to more precise
and timely clinical decisions. However, training deep learning models in
CPATH presents challenges when only WSI-level labels are available, lack-
ing region-based annotations [123, 245–247]. To address these, weakly
supervised learning techniques, like attention-based methods and multiple
instance learning (MIL), are employed. However, MIL methods can be
susceptible to individual instances dominating the weighted aggregation of
the WSI representation [184, 194, 248]. In the context of WSIs, the tissue
is distributed across the slide, for which regions typically present similar
features within and pathologists pinpoint ROIs with crucial information
[249]. Specifically while grading, situations may arise where multiple in-
stances in close proximity exhibit HG characteristics, while other regions
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may concurrently display LG attributes. As a result, constraining instances
to specific regions enhances our understanding of the diverse features within
WSIs. Consequently, a conventional MIL architecture approach might not
be appropriate, because there is a susceptibility to information leakage
between regions. A model accommodating for the nested structure of
WSIs, wherein tissues are part of a region, and regions, in turn, belong to
a WSI, may more effectively capture the clinical WSI-level grading label
[173, 174, 250].

In this study, we introduce a novel pipeline for grading NMIBC using
histological slides, referred to as nested multiple grading (NMGrad). The
proposed solution starts by tissue segmentation of the WSI, separating
urothelium from other tissue types. The next step categorizes extracted
tiles of urothelium areas into location-dependent regions for predicting the
patient’s WHO04 grade. We implemented a weakly supervised learning
framework using attention mechanisms, and a nested aggregation architec-
ture for ROI differentiation. Our method offers an innovative approach for
generating diagnostic suggestions, with generated heatmaps for highlighting
tiles and ROIs independently.

13.2 Related Work

Numerous studies in the domain of computational pathology for bladder
cancer diagnostics have emerged in recent years [23]. In Wetteland et al. [31],
a pipeline for grading NMIBC is introduced. This pipeline identifies relevant
areas in the WSIs and predicts cancer grade by considering individual tile
predictions and applying a decision threshold to determine the overall
patient prediction. Their results demonstrate promising performance, with
potential benefits for patient care. In Zheng et al. [181], the authors focus on
the development of deep learning-based models for bladder cancer diagnosis
and predicting overall survival in muscle-invasive bladder cancer patients.
They introduce two deep learning models for diagnosis and prognosis
respectively. They show that their presented algorithm outperformed junior
pathologists. In Jansen et al. [175], the authors propose a fully automated
detection and grading network based on deep learning to enhance NMIBC
grading reproducibility. The study employs a U-Net-based segmentation
network to automatically detect urothelium, followed by a VGG16 CNN
network for classification. Their findings demonstrate that the automated
classification achieves moderate agreement with consensus and individual

139



Paper 4

2. Urothelium mask

ො𝑦

ℎ𝑖+1
𝑎

ℎ𝑖
𝑎

CNN 
400x

CNN 
100x

CNN 
25x

Region 2

Region 1

Multiscale CNN

Att.
Module

Classifier
Ψ𝜌0

1

0

1

ℎ𝑖 𝑎𝑖

ℎ𝑖−1
𝑎

..…

..…

ℎ𝑖
′

Attention-based aggregation

Patient classification

ℎ𝑊𝑆𝐼

Multiscale
CNN

Attention-
based 

aggregation

Multiscale
CNN

Attention-
based 

aggregation

Att.
Module 0

1

Att.
Module 0

1

1. Tissue segmentation algorithm

3. Region split

4. Deep learning model

…
Region 

Definition 
Algorithm

Tissue
Multiscale

CNN

Tissue 
Classifier

Urothelium

Stroma

Muscle

Blood

Cauterized

Figure 13.1: NMGrad pipeline. Initially, we apply a tissue segmentation algorithm
for ROI extraction Then, we pinpoint diagnostically significant urothelium areas within
WSIs. Subsequently, we split the urothelium mask into regions, based on proximity
and size, and extract tile triplets. In a hierarchical fashion, we further transform these
triplets within their corresponding regions into region feature embeddings using an
attention-based aggregation method. All the region representations are then consolidated
into a comprehensive WSI-level representation through a weight-independent attention
module. Finally, this WSI feature embedding is input into the WHO04 grading classifier
in order to produce accurate WSI grade predictions.

grading from a group of three senior uropathologists. Spyridonos et al. [251]
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investigate the effectiveness of support vector machines and probabilistic
neural networks for urinary bladder tumor grading. The results indicate that
both SVM and PNN models achieve a relatively high overall accuracy, with
nuclear size and chromatin cluster patterns playing key roles in optimizing
classification performance.

Zhang et al. [252] address a common limitation of interpretability in
CAD methods. To tackle this, they introduce MDNet, a novel approach
that establishes a direct multimodal mapping between medical images
and diagnostic reports. This framework consists of an image model and
a language model. Through experiments on pathology bladder cancer
images and diagnostic reports, MDNet demonstrates superior performance
compared to comparative baselines. Zhang et al. [33] propose a method
that leverages deep learning to automate the diagnostic reasoning process
through interpretable predictions. Using a dataset of NMIBC WSIs, the
study demonstrates that their method achieves diagnostic performance
comparable to that of 17 uropathologists.

Two critical challenges we identified include summarizing information
from local image features into a WSI representation, and the scarcity
of annotated datasets. Effectively translating detailed local information
to the WSI level is complex, particularly in tasks like grading NMIBC.
Moreover, the limited availability of well-annotated datasets hinders the
development and evaluation of robust models. To tackle these issues,
weakly supervised methods have emerged as a standout tool in CPATH
[123]. While weakly supervised methods are widespread, some studies
still rely on annotations and supervised learning. However, there is a
growing consensus for the future of CPATH to predominantly embrace
weakly supervised approaches. This shift is driven by the impracticality of
obtaining detailed annotations for large datasets covering various cancers
and tasks. Among the various weakly supervised methods, attention-based
MIL (AbMIL), a popular instance aggregation method, exploits attention
mechanisms in order to mitigate the uncertainty from individual instances
and enhance interpretability [84, 253]. AbMIL bridges the gap between
limited supervision and the spatial details necessary for accurate analysis
and explainability. An evolution of MIL model architectures relies on the
arrangement of the data within bags, where instances are further subdivided
into finer groups. This concept is referred to as nesting [173, 174]. Nested
architectures preserve a sense of localization or categorization by selectively
processing data instances within individual subgroups. Subsequently, they
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aggregate summarized information from the subgroups into a final bag
representation.

In our work, we aim to bridge the gap between non-annotated datasets,
weakly supervised methods and the intrinsic categorization of WSI data.
Therefore, we leverage the nested MIL with attention mechanisms (NMIA)
model architecture we proposed in Fuster et. al. [250], for accurate and
interpretable NMIBC grading. Finally, in order to overcome the lack of
annotations for defining the tissue of interest, a tissue segmentation algo-
rithm TRI-25x-100x-400x was proposed by our research group in [26]. More
recent works from our research group on tissue segmentation have found
adoption within the scientific literature [27, 254]. The utilization of this
segmentation algorithm offers the opportunity to extract tiles specifically
from the urothelium, contributing to a refined and targeted extraction
process.

13.3 Data Material

The dataset comprises a total of 300 digital whole-slide images (WSIs)
derived from 300 patients diagnosed with NMIBC, from the Department
of Pathology, Stavanger University Hospital (SUH) [237, 255]. The glass
slides were digitized using a Leica SCN400 slide scanner, saved in the
vendor-specific SCN file format. Collected over the period spanning 2002 to
2011, this dataset encompasses all risk group cases of non-muscle invasive
bladder cancers. The biopsies were processed through formalin-fixation and
paraffin-embedding, and subsequently, 4µm thick sections were prepared
and stained using Hematoxylin, Eosin, and Saffron (HES). Furthermore, all
WSIs underwent meticulous manual quality checks, ensuring the inclusion
of only high-quality slides with minimal or no blur. Due to the cauterization
process used in the removal of NMIBC, some slides may exhibit areas with
burned and damaged tissues. All WSIs originate from the same laboratory,
resulting in relatively consistent staining color across the dataset.

All WSIs were graded by an expert uropathologist in accordance with
the WHO04 classification system, as either LG or HG, thus providing
slide-level diagnostic information. However, the dataset lacks region-based
annotations pinpointing the precise areas of LG or HG regions within the
WSI. Consequently, the dataset is considered weakly labeled. For WSIs
labeled as LG, at least one LG region is expected, with the possibility of
presenting non-cancerous tissue in other regions. As for HG slides, at least
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one region should display HG tissue, while other regions may exhibit a LG
appearance or non-cancerous tissue. Given the absence of alternative gold
standards, we are compelled to continue utilizing a grading assessment that
may have limitations for training and evaluating our algorithms. The dataset
employed in this study was divided into three subsets: 220 WSI/patients for
training, 30 for validation, and 50 for test. The split employed ensures that
each subset maintains the same proportional representation of diagnostic
outcomes. This stratification encompassed factors such as WHO04 grading,
cancer stage, recurrence, and disease progression to best mirror the diversity
of the original data material. The distribution of LG and HG WSIs within
each dataset is detailed in Table 1 for reference.

Within a subset of the test set, denoted as TestANNO ∈ Test, 14 WSIs
contain either one or two annotated regions of confirmed LG or HG tissue,
verified by an expert uropathologist. It is noteworthy that not all regions
were annotated. The labels of these regions correspond to the associated
weak label of the WSI.

Low-grade High-grade
Train 124 (0) 96 (0)
Validation 17 (0) 13 (0)
Test 28 (7) 22 (7)

Table 13.1: Number of slides and corresponding grade per subset. The number between
parenthesis corresponds to slides containing some annotations giving region-based labels.

13.4 Methods

We propose NMGrad, a pipeline that begins with a tissue segmentation
algorithm for extracting urothelium tissue. Subsequently, the urothelium is
divided into localized regions. Thereafter we employ a weakly supervised
learning method to predict tumor grade from the segmented urothelium
regions. We exploit the sense of region locations by adopting a nested
architecture with attention, NMIA [250]. The rationale behind employing
this structured data arrangement analysis is to identify relevant instances
and regions within the WSI. The attention mechanism and the nested
bags/regions also contributes to a more precise and insightful analysis of
the data. An overview of NMGrad can be visualized in Fig. 1.
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Figure 13.2: We obtain comprising sets of three tiles at different magnification levels
named triplets T , enabling detailed examination. Tile triplets demonstrate regions
associated with low- and high-grade features.

13.4.1 Automatic Tissue Segmentation & Region Definition

We utilize the tissue segmentation algorithm introduced by Wetteland
et al. [26] to automatically generate tissue type masks, facilitating the
subsequent extraction of tiles. We define triplets T of tissue, which consist
of a set of three tiles at various magnifications levels, namely 25x, 100x
and 400x. An example is shown in Fig. 2. We used a tile size of 128× 128
for all magnification levels. Triplets are formed to maintain consistency,
ensuring that the center pixel in every tile accurately represents the same
physical point. The tissue segmentation algorithm works at tile level, and
classifies all triplets T in the WSI as y ∈ Y = {urothelium, lamina propria,
muscle, blood, damage, background}. As grading relies on urothelium alone,
we utilize the urothelium mask for defining valid areas for tile extraction,
as described in [120]. In this work, various magnifications are explored
for defining the model’s input, either using mono-scale MONO (400x),
di-scale DI (400x, 100x) or tri-scale TRI (400x, 100x, 25x). We employed
400x magnification to establish a tight grid of tiles for data extraction
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Figure 13.3: Region Definition. Urothelial tissue within a WSI is eligible for tile
extraction. Blobs of tiles are formed, and blobs smaller than a threshold TLOWER are
discarded. From the remaining blobs, any smaller than TUPPER are kept and defined as
a region. For blobs bigger than TUPPER, the blobs is subdivided into smaller pieces using
the location of individual tiles within and KMeans clustering. The obtained clusters are
designated as regions.

purposes. These sets of tiles are later fed to the grading models, where
each magnification tile is processed by its respective weight-independent
CNN. To preserve the sense of location within the image, we define regions.
This results in the following stratified division of data: all urothelium in
the WSI, scattered regions of urothelium, and finally, individual tiles of
urothelium.

Region Definition

For defining regions out of the extracted urothelium tiles, we define blobs
of tiles UROBLOB ⊆ URO. UROBLOB is formed when tiles are 8-connected,
and this joint set of tiles is the representation of a region UROBLOB =
{T1, T2....}. A region is eligible for inclusion if the number of tiles NB is
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higher than a threshold number TLOWER. Any blob with NB < TLOWER
tiles is discarded, along with the tiles within. As NMIBC WSI can contain
large tissue bundles, resulting in sizable blobs, we also define an upper limit
threshold TUPPER. For blobs where NB ≥ TUPPER, we split the region into
several sub regions for more detailed analysis. We apply KMeans clustering
over the coordinates of the tiles x, y within the blob for location sense,
defining the number of clusters as NC = ⌈NB/TUPPER⌉. This results in
joint regions within a bundle of tissue of consistent size, as observed in
regions 5-8 in Fig. 3.

13.4.2 Multiple Instance Learning in a WSI context

Multiple instance learning (MIL) is a weakly supervised learning method
where unlabeled instances are grouped into bags with known labels [184,
248]. A dataset X ,Y =

{
(Xi, yi),∀i = 1, ..., N

}
is formed of pairs of sample

sets X and their corresponding labels y, where i denotes a bag index. In
the context of WSI, the bag can be one patient or one WSI or one region.
In a conventional MIL data arrangement, we consider the bag X to be one
WSI consisting of instances xl:

X = {xl, ∀l = 1, ..., L} (13.1)

where L is the number of instances in the bag. In our study, x refers to
individual tiles in a set of extracted tiles from a patient slide X. A feature
extractor Gθ : X → H transforms image tiles, xl, into low-dimensional
feature embeddings, hl. At this point, the bag structure previously formed
remains intact, as instances have been simply transformed. Given a label
y for a WSI, the training objective of the model is to predict the grade
observed in the WSI. However, to deduce the specific region(s) within a
WSI that leads to the patient’s diagnosis of either LG or HG is of utmost
importance. This entails the model’s capability to discern and highlight the
critical areas within the WSI that play a pivotal role in the diagnosis. In
order to accomplish this goal, we adopted attention-based multiple instance
learning (AbMIL) as our MIL framework, using attention-based aggregation
as shown in Fig. 1. An attention score ai for a feature embedding hi can
be calculated as:

ai = exp{w⊤(tanh(Vh⊤
i )⊙ sigm(Uh⊤

i ))}∑L
l=1 exp{w⊤(tanh(Vh⊤

l )⊙ sigm(Uh⊤
l ))}

(13.2)
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where w ∈ RL×1, V ∈ RL×M and U ∈ RL×M are trainable parameters
and ⊙ is an element-wise multiplication. Furthermore, the hyperbolic
tangent tanh(·) and sigmoid sigm(·) are included to introduce non-linearity
for learning complex applications. The benefit of attention modules extends
beyond interpretability for understanding the model’s decision-making
process, as it also grants enhanced predictive capabilities by prioritizing
salient features. This is because attention scores directly influence the
forward propagation of the model, allowing it to focus on the most relevant
and informative regions within the data. Once the attention scores A are
obtained, we obtain the patient prediction ŷ using a patient classifier Ψρ

as:

ŷ = Ψρ(Ha) = Ψρ(A ·H) = Ψρ(A ·Gθ(X)) (13.3)

Nested Multiple Instance Architecture

An evolution of the conventional AbMIL architecture defines levels of bags
within bags where only the innermost bags contain instances. This is
referred to as nested multiple instance with attention (NMIA) [250]. A
bag-of-bags for a WSI HWSI contains a set of inner-bags, or regions, HREG,k:

HWSI = {HREG,k,∀k = 1, ..., K} (13.4)

where the number of inner-bags K varies between different WSI. Ul-
timately, HREG,k contains instance-level representations hTILE,l of tiles
located within the physical region. This serves to further stratify into clus-
ters or regions, and accurately represent the arrangement of the scattered
data, where tiles belong to particular tissue areas and these themselves to
the WSI.

hREG = ATILE ·HTILE = ATILE ·Gθ(X) (13.5)

Finally, the ultimate WSI representation hWSI is fed to the classifier for
obtaining the grade prediction leveraging the region representations HREG
and the attention scores AREG obtained from those same representations:

ŷ = Ψρ(hWSI) = Ψρ(AREG ·HREG) (13.6)
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13.5 Experiments

Within the scope of our experimental investigation, we systematically
assessed and compared the impact of diverse magnification levels and
combinations of them, namely MONO, DI and TRI-scale models. We further
investigate the impact of several weakly supervised aggregation techniques in
the performance of our deep learning model. These aggregation techniques
vary in their ability to distill valuable diagnostic insights from the data,
namely mean, max and attention-based. We put special emphasis in the
comparison between a standard AbMIL architecture and the nested model
proposed in NMGrad. Finally, we compare our solution to current state-of-
the-art methods. The code is available at https://github.com/Biomedical-
Data-Analysis-Laboratory/GradeMIL.

We list the details of design choice of the models during training. VGG16
is used as CNN backbone, with ImageNet pretrained weights [256]. In
preliminary experiments, we explored various architectures and found that
VGG16 exhibited favorable performance across multiple tasks on NMIBC
WSIs. Stochastic gradient descent (SGD) was set as optimizer with a
learning rate of 1e-4, a batch size of 128, and a total of 200 epochs, with
30 epoch for early stopping based on the AUC score on the validation
set. A total number of 5000 tiles per WSIs were preemptively randomly
sampled to be further sub-sampled during training. Focal Tversky loss
(FTL) is employed [257]. The Tversky index (TI) leverages false predictions,
emphasizing on recall in case of large class imbalance tuning parameters α
and β. TI is defined as:

TIc(ŷ, y) = 1+
∑N

i=1 ŷi,cyi,c+ϵ

1+
∑N

i=1 ŷi,cyi,c+α
∑N

i=1 ŷi,ĉyi,c+β
∑N

i=1 ŷi,cyi,ĉ+ϵ

(13.7)

where ŷi,ĉ = 1− ŷi,c and yi,ĉ = 1−yi,c are the probability that sample i is
not of class c ∈ C. ϵ is used for numerical stability, preventing zero division
operations. FTL employs another parameter γ for leveraging training
examples hardship:

FTLc(ŷ, y) =
∑

(1− TIc(ŷ, y))1/γ (13.8)
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13.6 Results & Discussion

The utilization of our proposed pipeline NMGrad using TRI-scale input
emerged as a standout performer, as of Table 13.2. TRI-scale models show-
cased the ability to capture relevant patterns across different magnifications,
substantially enhancing the overall grading accuracy. Comparing the effects
of scales on the model performance shows a larger gap in performance
between MONO and TRI models than structuring the processing of data
using NMGrad or a standard AbMIL architecture. Furthermore, our explo-
ration of aggregation techniques extended to mean and max aggregation
methods, which do not include in-built attention mechanisms, yielded less
promising outcomes. The absence of attention mechanisms rendered these
techniques less effective in capturing nuanced features, underscoring the
significance of attention mechanisms.

NMIA architecture embedded in NMGrad, which employs attention
mechanisms for both tile and region aggregation, marked a substantial leap
in performance in comparison to mean and max aggregation. This strategy
provided the strengths of attention-based aggregation and ROI localization
via a nested architecture. The incorporation of attention mechanisms
allowed the model to pinpoint and emphasize critical visual cues within WSIs
related to urothelial cell differentiation, ultimately resulting in a notable
enhancement in predictive accuracy for bladder cancer grading. Finally, in
a direct comparison to the previous best performing model proposed by
Wetteland [31], they implemented weakly supervised learning in a naive
manner, where all patches were assigned a weak label. Predictions are made
at the patch level, and the determination of WSI-level prediction relies
somewhat arbitrarily on the summation of patch predictions, neglecting
consideration of localized regions. Using our proposed solution NMGradTRI,
the solution aligns more closely with clinical expectations, such as the
presence of one or more regions indicative of HG if the WSI is classified
as HG, rather than scattered patches. Furthermore, NMGradTRI capacity
to learn attention scores offers interpretability, as opposed to relying on
ad-hoc rules for post-processing patches into a final prediction. Ultimately,
we obtained slightly better F1 score, with a trade-off on accuracy. We have
also adhered the works of Jansen [175] and Zhang [33] for comparing the
performance of state-of-the-art grading algorithms, although the results
correspond to their in-house cohorts, different from ours. The development
of our deep learning model NMGradTRI for predicting the grading of bladder
cancer represents a significant advancement in the realm of accurate grading
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Figure 13.4: Plot displaying the WSI predictions of the test set, with green shading
representing the LG confidence interval, red for HG, and gray denoting the uncertainty
interval. Additionally, a blue line depicts the regression line fitting the predictions.

of bladder tumors.
In order to enhance the fidelity of binary decisions, we opted to introduce

an uncertainty spectrum, thereby introducing a third class. Given the
output predictions of test set WSIs, we define the uncertainty spectrum
as [µŷ(y=LG) + σŷ(y=LG), µŷ(y=HG) − σŷ(y=HG)]. A plot illustrating the con-
cept and WSI predictions is shown in Fig. 4. It was observed that by
excluding predictions falling within the uncertainty spectrum, the overall
F1 score increased to 0.89. This underscores the potential utility of con-
sidering skepticism regarding non-confident predictions for robust clinical
interpretation.

Due to the attention scores generated at the inference stage, we are able

Accuracy Precision Recall F1 Score
Attention 0.76 0.81 0.69 0.75
Prediction 0.89 0.83 0.91 0.87

Table 13.3: Region-level prediction and attention correspondence on annotated areas,
using NMGradTRI. We individually compare the degree of consensus of annotations with
both the highest attributed attention within the WSI and the output region prediction
of the classifier Ψρ.
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Figure 13.5: Region-level attention score heatmaps. Example regions of annotations of
low- and high-grade ROIs annotated by an uropathologist are compared to the output
attention provided by the proposed model NMGrad, left to right respectively. The choice
of annotated ROIs correspond to highest attention scores, for red and blue correspond to
low and high attention correspondingly. We have included the WSI-level prediction score
for reference.

to visualize a heatmap, as in Fig. 5. NMGradTRI demonstrated effectiveness
in correctly assessing individual tiles and ROIs, despite being trained solely
on patient-level weak labels. We consulted the generated heatmaps with
experienced pathologists for qualitative analysis. Results on the annotated
set of regions, TestANNO, exhibited competence to discern LG and HG
regions, as of Table 13.3. Region attention scores were considered for direct
comparison to region prediction scores utilizing the classifier Ψρ, as values
for both scores are restrained between 0 and 1. These two scores were
evaluated individually against the annotated areas. It was corroborated
that higher attention scores are associated with HG areas in high-grade
WSIs. However, the same does not apply for low-grade. For low-grade
WSIs, we observed a wide range of possibilities, where high-attention is
spread across regions. Ideally, one would anticipate a direct correlation
between HG and elevated attention, and conversely, a correlation between
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LG

HG

TN

TP

FP

FN

Figure 13.6: Correlation between region attention scores and output prediction of
region embeddings on the test set of WSIs. Regions from accurately predicted WSIs
(TN, TP) are denoted by squares, while those from incorrectly predicted WSIs (FN,
FP) are marked with crosses. A discernible pattern emerges, where low attention scores
align with diminished predictions, and conversely, higher attention scores correlate with
elevated predictions. Additionally, an observable trend indicates that mispredictions tend
to manifest on the opposite end of the spectrum, with low-grade instances concentrating
high attention and prediction scores, and vice versa. The trend is represented with a
polynomial regression line (RL).

LG and reduced attention. However, this correlation is primarily observable
in the positive class (HG), aligning with the inherent design of MIL, which
is tailored for identifying positive instances. In contrast to attention, we
observed a high degree of correspondence between the label of annotated
ROIs and the output region predictions.

We further investigated the correlation between region attention scores
and the output region predictions, as displayed in Fig. 6. We observe a
generalized reciprocity between low-grade having smaller attention scores
and prediction outputs, and vice versa. Moreover, the high-grade range of
values is more limited to a lower range compared to the low-grade. For
instance, low-grade areas with predictions rounding zero show the broadest
range of values. This observation aligns with the earlier statement, wherein
the positive class typically exhibits a more focused distribution of attention
scores, predominantly linked with positive HG instances. In contrast, the
negative class disperses attention across various regions within the WSI
despite all presenting similar LG features. In regards to missclassified WSIs,
we noted that LG WSIs manifest both high attention and prediction scores,
whereas HG slides display a broad range of values. When examining the
regression lines of TP and FP, they exhibit similar trends, as do TN and
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FN respectively. Essentially, misspredicted WSIs exhibit characteristics
contrary to their assigned class.

To augment the evaluation process, we integrate correlation calculations
with follow-up information, thereby ensuring a more thorough assessment of
our model’s performance. We employed Cramér’s V correlation coefficient
φc for calculating the intercorrelation between grading and the event of
recurrence and progression, for the test set [258]. We observed a lack
of correlation between grading and recurrence for either the manual or
automatic grading, aligning with expectations. However, for progression,
NMGrad exhibited a higher correlation than the uropathologist (0.32 vs.
0.26, respectively). In accordance with [259], a strong correlation between
grading and progression is observed. Notably, these correlations suggest
that NMGrad’s grade may hold greater predictive value for assessing the
likelihood of progression in the context of NMIBC.

13.7 Conclusion

Accurate grading of NMIBC is paramount for patient risk stratification, but
it has long suffered from inconsistencies and variations among pathologists.
Furthermore, the pathological workload is increasing, as well as its expenses.
In response to this challenge, we introduced the NMGrad pipeline, a
pioneering approach in bladder cancer grading using WSIs. NMGrad starts
by using a tissue segmentation algorithm, finding areas of urothelium in
the slides. Thereafter, it leverages a nested AbMIL model architecture to
precisely identify diagnostically relevant regions within WSIs and collectively
predict tumor grade. Moreover, through a multiscale CNN model, NMGrad
processes urothelium tissue tiles at multiple magnification levels. We
observed that in high-grade patients, attention scores pinpoint specific ROIs,
while in low-grade patients, attention is more dispersed, deviating from the
expected MIL pattern. Our clinical evaluations demonstrate that NMGrad
consistently outperforms previous state-of-the-art methods, achieving 0.94
AUC score. This achievement represents a significant advancement in the
field of bladder cancer diagnosis, with the potential to improve patient
outcomes, reduce economic burdens, and enhance the quality of care in the
management of this challenging disease.
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Abstract:
We present a pioneering investigation into the application of deep
learning techniques to analyze histopathological images for address-
ing the substantial challenge of automated prognostic prediction.
Prognostic prediction poses a unique challenge as the ground truth
labels are inherently weak, and the model must anticipate future
events that are not directly observable in the image. To address
this challenge, we propose a novel three-part framework comprising
of a convolutional network based tissue segmentation algorithm
for region of interest delineation, a contrastive learning module for
feature extraction, and a nested multiple instance learning classifica-
tion module. Our study explores the significance of various regions
of interest within the histopathological slides and exploits diverse
learning scenarios. The pipeline is initially validated on artificially
generated data and a simpler diagnostic task. Transitioning to
prognostic prediction, tasks become more challenging. Employing
bladder cancer as use case, our best models yield an AUC of 0.721
and 0.678 for recurrence and treatment outcome prediction respec-
tively.
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14.1 Introduction

The introduction of digital pathology, characterized by the digitization of
tissue sections into whole slide images (WSI) through microscopy scanners,
has opened up numerous possibilities. A prevailing trend in computational
pathology (CPATH) research involves utilizing image processing and ma-
chine learning to develop tools that assist pathologists in visualization,
region of interest (ROI) extraction, and diagnostic tasks [123].

Prognostic prediction is generally acknowledged as more challenging than
diagnostic prediction as it involves forecasting future events and outcomes.
Prognosis is arduous due to histological diversity, observer variability,
and tumor heterogeneity [177]. Additionally, diverse treatment responses
and recurrence patterns must be considered. Urinary bladder prognostic
prediction exemplifies this complexity as a result of diverse treatment
responses, recurrence patterns, and the absence of distinct markers and
varied clinical factors [10].

Plenty of research in CPATH is dedicated to diagnostic prediction, often
relying on manually selected ROIs during both model learning and inference
stages. For prognostics, weakly labeled data is commonly employed, with
patient-based labels defining treatment outcomes, recurrence, or disease
progression. Consequently, there is no guarantee that a particular region
contains the necessary information, or that the essential information is
genuinely present in the WSI.

In this study, we present an automated deep learning pipeline for prog-
nostic predictions from WSI, trained and tested on weakly labeled data.
A nested multiple instance learning method with attention mechanisms
(NMIA), recently proposed by our research group, is used for the first time
in an end-to-end problem [250]. The pipeline utilizes extensive unannotated
regions to enhance feature representations and explores the impact of selec-
tively choosing informative areas within the slides. This work represents a
pioneering investigation into the application of prognostic predictions in uri-
nary bladder cancer. The main contributions of this paper are summarized
as:

(i) Introduction of an automated deep learning pipeline for prognostic
predictions from WSI, leveraging weakly labeled data. The pipeline
incorporates NMIA, a novel approach applied for the first time in an
end-to-end problem.
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(ii) Utilization of extensive unannotated regions to enrich feature repre-
sentations and investigation into the impact of selectively choosing
informative areas within the slides guided by domain knowledge,
marking a pioneering exploration into the application of prognostic
predictions in urinary bladder cancer.

14.2 Background & Related Work

14.2.1 Urinary Bladder Cancer

Non-muscle invasive bladder cancer (NMIBC) conform approximately 75%
of bladder cancer diagnoses [109]. The 2022 version of the European As-
sociation of Urology (EAU) guidelines on NMIBC suggests that patients
are stratified into risk groups based on the hazard to progress to a muscle-
invasive disease [10]. The hazard score depends on significant clinical and
pathological factors, which are themselves time-consuming to determine
and frequently result in variations among uropathologists. Currently, in-
travesical Bacillus Calmette–Guérin (BCG) is the gold standard adjuvant
therapy for high-risk non-muscle invasive bladder cancer (HR-NMIBC).
Unfortunately, BCG treatment causes many severe adverse reactions, and
up to 50% of the patients will develop BCG resistance, thus resulting
in recurrence or progression [11]. Identifying these patients at the first
stage would significantly reduce the recurrence rate and treatment cost,
hence contributing to more adequate patient-based treatment strategies.
Nonetheless, bladder WSI are sizable and often contain disorganized, frag-
mented tissue sections, with a significant number of artifacts and other
non-diagnostically-relevant tissue [109]. The unique challenges of urinary
bladder cancer WSI have served as inspiration for the three-step pipeline
presented in this study.

14.2.2 Data Modalities

Computer-aided diagnosis (CAD) systems that utilize machine learning
techniques for medical imaging analysis of WSI have shown effective ways
to reduce subjectivity and speed up the diagnostic process [123]. WSI are
pre-stored at various magnification levels, allowing pathologists to quickly
adjust the zoom level, analogous to physical microscopes. Lower mag-
nification is typically used to view tissue-level morphology, while higher
magnification is useful for examining cell-level features. In CPATH, imaging
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techniques that rely on convolutional neural networks (CNNs) are consid-
ered the best option for extracting features from histological images [118].
However, prognostic applications have primarily relied on clinicopathologi-
cal information more than on image data [180]. Both clinicopathological
information and image features are derived from the visual characteristics
of tumor tissue. Image features are extracted directly from the image,
while clinicopathological information depends on external observations.
Nonetheless, recent deep learning prognostic applications employ image
features, while providing reasonably accurate prognostic predictions. Al-
though there are methods based on clinicopathological or image data alone,
hybrid solutions have also been proposed with state-of-the-art performance
[37, 181]. Another promising type of data is that of genomics, specifically
next-generation sequencing, which has altered the understanding and assess-
ment of cancer[260]. However, next-generation sequencing is an expensive
technology, still in its early implementation phase, making it an inaccessible
solution for many pathology laboratories at present. In contrast to this,
hematoxylin and eosin-stained (H&E) WSI provide an affordable solution
and practical choice for routine diagnostic and research purposes. Therefore,
we explore H&E WSI both with and without clinical information in this
study.

14.2.3 Non-Supervised Learning Methods

One challenge in CPATH is the lack of WSI with detailed or region of interest
(ROI) annotations, which is often expensive and time-consuming to acquire.
To address this, weakly supervised methods have been proposed for training
deep learning models on WSI [123, 245, 261–263]. Weakly supervised
methods emerge as an advantageous approach for prognostic applications
as they accommodate the uncertainty and heterogeneity of medical data.
Among the diverse weakly supervised methods, attention-based multiple
instance learning (AbMIL) is a popular approach [84, 199, 264, 265]. The
method uses an attention mechanism to selectively focus on regions of
interest within an image, allowing the model to learn from weakly labeled
data. One diagnostic application using weakly supervised deep learning on
WSI is that of predicting the pathological grade of the patient [31, 33, 253].
Such approach was able to achieve performance on par with supervised
methods, while reducing the amount of annotated data required. Cancer
survival prediction using WSI was performed with AbMIL, as demonstrated
in [266–270]. It is highlighted that the attention-based approach improved
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the performance of the model. However, WSI present scattered tissue, with
countless instances. Hence, a straightforward MIL approach may not be
suitable, as WSI could be densely populated with noisy instances. This led
us to propose NMIA, which restricts cross-contamination among regions
within the images [250].

The relationship between image features and patient outcomes can be
complex and difficult to discern. To address this lack of correlation, self-
supervised methods can overcome the disparity. In recent years, contrastive
learning has emerged as a promising technique for learning feature repre-
sentation from large unlabeled datasets. Contrastive learning is a type of
learning with the aim of training a feature extractor, using a contrastive loss
function [271]. This learning approach has the capacity to utilize extensive
unannotated regions for enhancing feature representation. Typically, a
contrastive module serves as a preliminary step before classification, fa-
cilitating the extraction of feature representations [272, 273]. Moreover,
the acquisition of transformation-independent features has proven effective
in mitigating stain variation [274, 275]. It has also been employed for
maximizing feature similarity between areas from the same WSI [75, 276].
Contrastive learning in WSI prognostics is mostly unexplored [277]. We
adopt SimCLR and variations for exploiting underlying prognostic patterns
in WSI [271].

14.3 Dataset

In this study, we have gathered NMIBC WSI from two distinct cohorts.
The total number of patients per application is displayed in Table 14.1.

Set SEMC SSUH

BCG-R BCG-NR Rec NoRec
Train 272 (72) 81 (42) 113 (0) 107 (0)

Validation 25 (24) 25 (22) 18 (0) 12 (0)
Test 25 (25) 25 (25) 27 (0) 23 (0)

Table 14.1: Description of the patient sets, SEMC and SSUH, and how many patients in
each group divided in train/val/test splits. The number between parenthesis indicates
the number of patients with annotated WSI.

We have available HR-NMIBC WSI from a multi-centre cohort provided
by Erasmus Medical Center (EMC), Rotterdam, The Netherlands. We
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Figure 14.1: Overview of ROI generation. The process of extracting ROIs from raw WSI
involved either a tissue segmentation algorithm and/or pathologist’s annotations. The
annotations highlighted areas that were deemed prognostically significant for predicting
outcome, while the algorithm provided masks that highlighted different tissue types.
Subsets of tissue were extracted using urothelium and lamina propria. For magnification
levels, the study explored two mono-scale approaches using 10x and 20x, as well as a
multi-scale method using three magnifications (2.5x, 10x, 40x).

denote this dataset SEMC, and use it for BCG response prediction. Let
BCG-R and BCG-NR denote BCG responder and non-responder tumor,
correspondingly. BCG-NR corresponds to BCG failure according to EAU
guidelines, excluding BCG intolerance. A total of 453 patients and 503 WSI
formed the dataset. Since the treatment outcome is related to the patient
as a whole and not to a specific region of the tumor, patches from various
WSI that belong to the same patient were merged as a single entity. Not all
slides contained annotations, and among those that were annotated, none of
the WSI were fully annotated due to time and database storage constraints.
Annotations contain tissue types, artifacts, grading and staging. Moreover,
a detailed report of clinicopathological information per patient was disclosed
with information about BCG treatment guidelines, pathological diagnoses,
and patient demographics. We utilized clinical variables of gender, age,
smoking status, grade, stage, concomitant carcinoma in situ, size and
focality of the tumor.

We also included a total of 300 WSI corresponding to 300 different
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NMIBC patients from Stavanger University Hospital (SUH), Stavanger,
Norway. We denote this dataset SSUH, and use it for recurrence prediction.
Let NoRec and Rec denote no recurrence and recurrence, respectively.
Rec was defined as recurrent tumors in the bladder only, iwth a median
follow-up of 82 months. No WSI were annotated with ROI, but weak labels
regarding recurrence outcome were available.

With regards to ROI definition, two main strategies were employed: using
annotated areas or areas defined from an automatic tissue segmentation
algorithm. Fig. 14.1 highlights the various ROIs explored in this study.
The automatic definition of ROIs is later described in 14.4.1. Concerning
annotations, an engineer with specific training in bladder pathology (F. K.)
partially annotated 217 of the total 503 EMC patient slides from SEMC,
under the supervision of an experienced uropathologist (G. vL.). This subset
of data is referred as DANNO. The annotation process consisted of general
tissue type annotations, and in some cases, sub classes indicating grading,
presence of tumor infiltrating lymphocytes, flat lesions, and invasive areas.
First, a coarse annotation of the WSI was done, identifying and labeling the
main regions of interest within the images. Then, a quality control process
was implemented to ensure the annotation’s quality and consistency by
getting external revision from expert uropathologists.

14.4 Methods

In the upcoming subsections, we introduce a three-step fully-automated
pipeline for WSI prognosis that combines region of interest (ROI) extraction,
contrastive learning for feature representation and multiple instance learning
(MIL) for predicting the concluding prognostic outcome, as depicted in Fig
14.2. This approach enables us to optimize the model by leveraging the
benefits of these techniques. It ensures the inclusion of important instances
for predicting clinical outcome from WSI visual cues, while maintaining
computational feasibility. Ultimately, the proposed steps for prognostic
predictions in histopathological imaging are the following:

A Define and extract ROIs using a tissue segmentation algorithm for
tile extraction strategies.

B Train a feature extractor Gθ to generate an intermediate dataset H
using contrastive learning.
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Figure 14.2: Deep learning pipeline for prognostic outcome prediction. 1) A tissue
segmentation is employed for delineating a ROI of choice D. Then,tiles are extracted
from WSI regions for training an algorithm. 2) Contrastive learning is employed to learn
representations of the tiles. 3) The representations are then used to train an AbMIL
model that predicts the prognostic outcome. This approach compresses an end-to-end
pipeline where the raw input image data is broken down and processed for predicting
clinical outcome.

C Use image feature embeddings H for prognostic classification using
MIL.

14.4.1 Automatic Region of Interest Segmentation

The current study will explore various ROI configurations as the localization
of the tissue of interest is unknown. While annotations can be expensive
and inflexible, automatic tissue segmentation algorithms provide the flexi-
bility to redefine ROIs based on different clinical considerations. A tissue
segmentation algorithm was proposed in [26] for SSUH, while an active
learning-based approach for tissue segmentation was developed in [254] for
SEMC. Both models share the same architecture, utilizing a tri-scale CNN
backbone that leverages different magnifications for each input CNN. The
tissue segmentation algorithms work at patch level, and classify all patches
x in the WSI as y ∈ Y = {urothelium, lamina propria, muscle, blood,
damage, background}. The dataset resulting from extracting patches with
label y is denoted Dy. For example, urothelium tissue is the most prominent
source of information in urothelial bladder carcinoma, and the dataset of
patches extracted from these regions are denoted DURO. In conjunction
with urothelium, lamina propria may serve an important role for influencing
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the growth of the tumor [182]. The dataset of patches extracted from lam-
ina propria is denoted DLP, and the union urothelium and lamina propria
DUROLP = DURO ∪DLP. However, these Dy are solely defined based on
tissue types, and to meticulously analyze and concentrate on the pertinent
area of interest for comprehending the disease’s status, it is imperative to
define tailored ROIs. Consequently, exploiting domain knowledge through
segmentation maps is a pivotal aspect of this work. Notably, not all lamina
propria might be interacting with the tumor. Therefore, we defined a depth
of 800µm based on medical knowledge for defining possible tumor and
immune response interactions based on medical knowledge. The union of
the boundary between urothelium and lamina propria defines the dataset
DBORDER ⊂ DUROLP. This is accomplished by applying a disk dilation
operation on the urothelium and lamina propria masks, where the disk
radius is determined by pixel size, and subsequently segment the overlap-
ping area to extract the bordering region. Fig. 14.3 displays an schematic
representation of the self-defined ROI DBORDER. Furthermore, the invasive
front of the tumor, which represents the most aggressive part of the tumor,
could potentially provide the most significant features for comprehending
the current state of the tumor in relation to the patient’s immune system
[183]. Therefore, we refine DBORDER using a region-growing algorithm
along these borders to exclude areas lacking muscle tissue within a tissue
section, thus defining DFRONT ⊂ DBORDER. To exclude distant muscle
areas from consideration, we apply the same distance threshold of 800µm,
thus ensuring the focus remains on the invasive front regions.

Regarding tile extraction strategies, various magnification levels and tile
sizes are used. In the case of mono-scale models, we used a tile size of
256× 256 for 10x magnification and 512× 512 for 20x magnification. This
decision was made to ensure that the patches covered the same physical
area, i.e. field of view. In the case of multi-scale models TRI, we used a
tile size of 128× 128 for all three magnification levels (40x, 10x, and 2.5x),
extracted following the approach described in [120].

14.4.2 Feature Extraction via Contrastive Learning

Contrastive learning is a specific approach within metric learning that
focuses on comparing similar and dissimilar pairs of examples, based on a
siamese structure, by attracting and repelling representations accordingly
[271]. A contrastive model is trained as follows: given a batch of N
random samples from a training set of X images, a set of two image
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Figure 14.3: Schematic representation of self-defined ROI generation. Guided
by the segmentation mask of various tissue types, we apply diverse image processing
morphological operations to define ROIs Dy based on domain knowledge from expert
pathologists. In the example displayed, we enlarge the urothelium and lamina propria
masks applying dilation, limited by a distance parameter determined on clinical expertise.
The resulting overlapping areas represent DBORDER. We further delineate a subset of
DBORDER by extracting only those areas where muscle is present within the same tissue
section, aiming to represent the potential invasive front in DFRONT.

transformations are applied to all images in the batch in order to obtain
2N augmentations. These transformed images are forwarded though a
feature extractor Gθ : X → H and projected into a low-dimensional feature
space through a multi-layer perceptron (MLP) Fϕ : H → Z, to be later
l2 normalized. Let sim(zi, zj) = z⊤

i zj/ ∥zi∥ ∥zj∥ be the cosine similarity
between l2 normalized vectors zi and zj , then the loss function for a positive
pair is defined as:

Lc = − 1
2N

∑
i∈I

log exp(sim(zi, zi
′)/τ)∑2N

j=1 1[j ̸=i]exp(sim(zi, zj)/τ)
(14.1)

where zi
′ is the augmented representation of zi, 1[j ̸=i] is a binary indicator

to indicate all other instances than i, and τ is a temperature coefficient to
control the strenght of penalties on hard negative samples. The contrastive
loss has the objective of ensuring the model learns strong feature representa-
tions regardless of the augmentation applied, thus increasing the robustness
to variability in the input image. The contrastive loss rewards the model
for creating similar features for both augmentations from the same image,
while increasing feature dissimilarity between other augmentations from
images in the batch. Lc corresponds to the unsupervised version, although
the supervised contrastive learning loss Lsc does exist [278]. The super-
vised loss Lsc considers images from the same class in the batch, using the
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corresponding image label y, and does not punish the model for generating
similar representations among images from the same class:

Lsc =
∑
i∈I

−1
|P(i)|

∑
p∈P(i)

log exp(sim(zi, zi
′)/τ)∑2N

j=1 1[j ̸=i]exp(sim(zi, zj)/τ)
(14.2)

where P(i) ≡ p : yp = yi , while |P(i)| represents its cardinality. Lsc is
preferred when labeled data is available, allowing for explicit learning of
relevant representations and improved model performance. However, when
labeled data is scarce or difficult to obtain, Lc can be a practical option.

We further explore the implementation of contrastive learning defining a
multi-task learning loss. For multi-task learning, two separate projection
heads for both Lc and cross entropy loss Lce are simultaneously trained. Lce

is calculated using the output predictions of a classifier module Cη : H → Ŷ .
As labels are a requirement for calculating Lce, DANNO is employed. For
computing the loss for multi-task contrastive learning, we combine the loss
from two separate projections:

Lmulti = αcLc + αceLce (14.3)

where αc and αce are the scaling factors for the unsupervised contrastive
and supervised cross entropy losses, respectively.

14.4.3 Prognostic Outcome Classification via Multiple In-
stance Learning

Multiple instance learning (MIL) is a suitable approach for prognostic
classification due to its ability to handle inherent uncertainties, diver-
sity and intricacies present in medical data [248]. A dataset H,Y ={
(Hi, yi),∀i = 1, ..., N

}
is formed of pairs of bag instances H and their

corresponding labels y, where i denotes the current sample for a total of N
samples. A bag H consists of instances hl:

H = {hl, ∀l = 1, ..., L} (14.4)

where L is the number of instances in the bag. Among MIL model
architecture variants, we adopted attention-based multiple instance learning
(AbMIL). Given a label for a patient, a model should infer which ROIs
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visual features lead to predicting the patient’s prognostic outcome. An
attention score ai for a feature embedding hi can be calculated as:

ai = exp{w⊤(tanh(Vh⊤
i )⊙ sigm(Uh⊤

i ))}∑L
l=1 exp{w⊤(tanh(Vh⊤

l )⊙ sigm(Uh⊤
l ))}

(14.5)

where w ∈ RL×1, V ∈ RL×M and U ∈ RL×M are trainable parameters
and ⊙ is an element-wise multiplication. Furthermore, the hyperbolic
tangent tanh(·) and sigmoid sigm(·) are included to introduce non-linearity
for learning complex applications. The strength of the attention modules
is not only in terms of interpretability, but also in predictive power, as
attention scores are directly influencing the forward propagation of the
model. Once the attention scores are obtained, we obtain the patient
prediction ŷ as:

ŷ = Ψρ(A ·H) (14.6)

where Ψρ is a MLP acting as a patient classifier. Additionally, we propose
using NMIA [250]. NMIA defines a bag can consisting of multiple sub-bags,
which contain the instances themselves. This serves to further stratify
into clusters or regions, and accurately represent the arrangement of the
scattered data, where tiles belong to particular tissue areas and these
themselves to the WSI. A bag-of-bags for a WSI HWSI contains a set of
inner-bags, or regions, HREG,k:

HWSI = {HREG,k,∀k = 1, ..., K} (14.7)

where the number of inner-bags K varies between different WSI. Ulti-
mately, HREG,k contain instance-level representations hTILE,l of tiles located
within the physical region.

For this project, we explored three configurations: using image data,
using clinicopathological data and fusing both. For image data, we applied
a weakly supervised architecture. For clinical data, we sorted it into a
1-dimensional vector hvar and fed it directly to the patient classifier Ψρ.
As for the combination of both, we used a weakly supervised architecture
for generating the patient embedding representation and concatenated the
clinical features to said embedding as hcli = [A ·H, hvar].
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14.5 Experimental Setup

In this section, we present the carefully designed experiments. First, to
evaluate the proposed pipeline structure, we present experiments on arti-
ficial data as well as an application with region based labels. From there
on, we consider two prognostic applications: BCG response prediction
and recurrence prediction. Hyperparameters, like the choice of optimizer,
loss, and others are identical in all experiments. The code is available at
https://github.com/Biomedical-Data-Analysis-Laboratory/HistoPrognostics.

ROI Extraction

The fully automatic tissue segmentation was performed according to [26]
for recurrence SSUH and [254] for BCG treatment SEMC. Different regions
were extracted as explained in Section 14.4.1.

Contrastive Feature Representations

We define a temperature parameter to 0.07 for the calculation of the loss
for contrastive learning, as explained in Section 14.4.2. We experiment
with different CNN backbones; VGG16, DenseNet121 and ResNet18, with
initial weights θI , from pretraining on ImageNet [256]. For the supervised
approaches, labels of grading and presence of TILs were used as diagnostic
factors. In order to weigh the impact of the training size, we also run
experiments of the unsupervised variant with larger, but limited, training
samples. With respect to multi-task learning of unsupervised contrastive
and cross entropy classification, we set the parameters αc and αce to 1.0
and 0.5, respectively. Adam was set as optimizer with a learning rate of
1e-4, a batch size of 128, and a total of fixed 10 epochs. The augmentations
applied consisted of flip, flop, rotation, affine transformations, and color
jittering.

Prognosis Classification

Bladder cancer recurrence is indeed regarded as a manifestation of treatment
failure, as it indicates that the initial treatment did not effectively eradicate
all cancer cells. Building upon this rationale, we will employ the data
set SEMC, see Table 14.1, in our decision-making process regarding the
selection of feature extractors, contrastive loss functions, ROI selection,

170

https://github.com/Biomedical-Data-Analysis-Laboratory/HistoPrognostics


Paper 5

and magnification levels for both prognostic applications. This choice
derives from the larger number of patients in the dataset, being a more
representative sample of the population under study. Focal Tversky loss
(FTL) is employed [257]. FTL employs two parameters, denoted as αl and
γl, which allow for adjusting the focus on different classes and handling
the difficulty of training examples, respectfully. We also set an early
stopping criteria of 30 epochs based on the AUC score on the validation set.
We also implement a 5-runs Montecarlo with a 5% dropout for sampling
purposes. A grid hyperparameter search is done to find the optimal values
for the given task. The search includes bag sampling nb, learning rate lr,
optimizer opt, dropout rate dr, number of neurons in the classifier nΘρ and
attention mechanism natt, loss functions parameters αl and γl. The list of
hyperparameters with their corresponding possible values and the resulting
choice can be seen in Table 14.2:

Hyperparameter List of values
lr 10−1, 10−2, 10−3, 10−4

opt SGD, Adam
nb 4, 16, 64, 256, L

dr 0.1, 0.2, 0.3, 0.4, 0.5
αl 0.0, 0.3, 0.6, 0.9
γl 0.5, 1, 2

nΘρ 128, 512, 1024, 4096
natt 128, 512, 1024, 4096

Hyperparameter
choice

lr = 10−2, opt =SGD, nb = 64
dr = 0.2, αl = 0.9, γl = 2.0,

nΘρ = {4096, 2048} , natt = 4096

Table 14.2: Results of hyperparameter search for optimizing predictive performance.

14.6 Preliminary Experimentation

The three-step pipeline is convoluted, and prognostic labels are weak,
typically involving one label per patient. To evaluate the pipeline, we
conduct experiments in more controlled settings. Firstly, we aim to assess
the pipeline using synthetic data generated from distributions with varying
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degrees of overlap. Thereafter, we evaluate the pipeline on actual WSI data,
focusing on a diagnostic task with strong region-based labels, specifically
the detection of regions containing lymphocytes.

14.6.1 Effects of Different Data Distributions

We define three different matching distributions pairs, which can be de-
scribed as distributions with minor, partial overlap, or significant overlap.
The degree of overlap is tuned using the mean µ and standard deviation
σ parameters. For all experiments, we define P3,2.5 as our class 0. For
the matching distribution of class 1, we use P−3,1, P0,2 and P2,1.5 for mi-
nor, partial and significant overlap, respectively. A total of 150 bags are
created, balanced among two classes, with a 90, 30, 30 split for train, vali-
dation and test, respectively. The number of instances per bag is variable
N ∈ [3000, 7000], without replacement. The number of positive instances
is limited to be less than half.

Results indicate that it is uncomplicated to discern between P−3,1 and
P0,2 distributions, as shown in Table 14.3. However, we observe that for an
overlapping distribution P2,1.5 the learning breaks down. We wanted to go
further into finding the breaking point for the partial overlap distribution
P0,2, and as such, we tried different parameters regarding the bag label
balance in the train set and the representation of positive samples in bags.
We look into a percentage of positive bags of 25 and 40%, as well as
the number of positive samples in the range of 0 to 50%, and 0 to 75%.
Results reveal the significance of class imbalance in bag classification, and
the representation of positive and negative samples within the bags. The

Class 1 AUC
P−3,1 1.000
P0,2 1.000
P2,1.5 0.500

Table 14.3: Prediction probabilities for
discerning P3,2.5.

MIL Weights θ AUC

MIL1+

θI 0.833
θCE 0.938
θSC 0.909
θC 0.940

θMULTI 0.938
MILt+ θC 1.000

Table 14.4: TIL detection comparison for
different feature extractors.
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classification of highly imbalanced bag datasets can be challenging. While
augmenting the number of positive instances can enhance the instance
classification performance, it is insufficient to achieve satisfactory bag
classification results. The performance naturally improves as the bag
distribution becomes more balanced, but it is not enough unless the positive
class is over-represented.

14.6.2 Detection of Lymphocytes

We evaluated the performance of our proposed solution in a diagnostic
task using the same WSI as those used in SEMC. Specifically, we defined a
problem of detecting the presence of tumor-infiltrating lymphocytes (TILs),
immune cells which have been associated with improved patient outcomes
[11]. Tiles of size 256 × 256 were extracted from annotated lamina propria
areas, with and without TILs, at 40x magnification. As a pre-processing
step, tiles were normalized and resized to 224 × 224. Augmentations
performed consisted of rotation and jittering operations. We define two
experiments for different percentages of tiles with stromal TILs. The first
one, MIL1+, follows the standard MIL convention of detecting at least one
tile with TILs. As for the second one, MILt+, we define a threshold t for
which more than 50% of the tiles must contain TILs.

We employed MIL1+ to determine the optimal configuration for feature
extraction. The results are presented in Table 14.4. Pre-trained features
from natural images indeed capture relevant features for histopathological
classification. However, the unsupervised approach θC exhibits superior
performance in bag-level classification. MILt+ is therefore only tested with
GθC

, and this provides the best result with an AUC of 1.0. This might be
due to the fact that labels are noisy, as many of the tiles annotated TIL-free
actually contain some, even if the count is low. Using MILt+ makes it
easier for the model to find a threshold t than an absolute presence or
absence given the noisy weak labels. Consistent with the observations on
synthetic data, bags containing a substantial number of positive instances
exhibit superior performance. This implies that accurate predictions rely on
the existence of several positive instances within a bag, with less emphasis
on the presence of positive instance outliers.
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14.7 Prognostic Experiments

In this section, we utilize the proposed three-step pipeline for two prognostic
applications: BCG response prediction on the SEMC dataset, and recurrence
prediction on the SSUH dataset. Given the numerous choices for contrastive
learning loss, backbone, ROI, and magnification levels, coupled with the
computational intensity of learning and inference on gigapixel images, we
adopt a systematic experiment approach. Therefore, we focus on testing
one factor at a time and restrict further testing to the most promising
results. In order to identify the optimal choices, we couple an AbMIL
classification module to assess the resulting classification performance,
using the validation subset. In subsections 14.7.1-14.7.6, we use BCG
response prediction with SEMC as the reference task, while recurrence
prediction with SSUH is discussed in subsection 14.7.6. Finally, subsection
14.7.8 discusses the interpretability of trained models.

14.7.1 Feature Extraction and Contrastive Learning

We aim to select a CNN backbone of preference for the feature extractor
Gθ, referring to the second step in the pipeline. The most commonly
used backbones in CPATH literature are DenseNet, ResNet and VGG
[118]. To ensure a fair performance comparison in a contrastive learning
approach, we will incorporate the use of different labels, which will either
be unsupervised, supervised contrastive or multi-task learning. In this
experiment, we constrict the ROI to be D20x

URO, with patches extracted at
20x. The urothelium tissue type is widely recognized as highly informative,
and the choice of 20x magnification strikes a balance between capturing
morphological structure context and preserving cellular details.

Weights θ DenseNet121 ResNet18 VGG16
θI 0.576(0.029) 0.474(0.009) 0.549(0.005)
θC 0.672(0.032) 0.628(0.017) 0.506(0.022)
θSC 0.521(0.054) 0.568(0.009) 0.480(0.036)

θMULTI 0.515(0.031) 0.506(0.042) 0.434(0.048)

Table 14.5: Validation AUC scores for D20x
URO BCG. We compare various CNN ar-

chitectures and feature extraction strategies. The results show the mean and standard
deviation over 5 runs.
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Figure 14.4: Box plot illustrating AUC performance variation across validation sets with
different ROIs for 20x magnification. Notably, D20x

UROLP emerges as the top performer
amongst the ROIs. White dots represent the average value µ, and black diamonds
represent outliers. The results show the mean µ and standard deviation σ over 5 runs.

Results for classification can be found in Table 14.5. DenseNet121 offers
promising results in terms of AUC performance for classification, without
compromising computational efficiency. Therefore, we will use DenseNet121
as the backbone for the remaining experiments. The best performing
contrastive learning strategy is unsupervised Lc. Hence, we will proceed to

Magnification UROLP FRONT ANNO*
10x 0.621(0.021) 0.647(0.033) 0.790(0.113)
20x 0.728(0.067) 0.679(0.027) 0.685(0.059)
TRI 0.649(0.014) 0.621(0.038) 0.615(0.029)

Table 14.6: Validation AUC scores for BCG at different ROIs and magnification levels.
The results show the mean and standard deviation over 5 runs.
* Not all train and validation WSI were annotated.
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use the frozen weights from the unsupervised method θC.

14.7.2 Region of Interest Selection

After determining the CNN backbone and contrastive learning strategy,
the next step involves identifying the ROI with the best discriminative
capability for the prognostic task. As highlighted in Fig. 14.1, the ROIs are
found from either manual annotations or from the output of the automated
tissue segmentation model. From the automatically segmented regions,
we obtain D20x

URO, D20x
LP , D20x

UROLP, D20x
BORDER, D20x

FRONT, while D20x
ANNO is

generated from the annotated set.
A comparison is shown in Fig 14.4. The comparison underscores D20x

UROLP’s
advantage, showcasing its consistent and balanced classification performance
with an average AUC score of 0.728. That said, D20x

FRONT has the lowest
variance across runs, reaching the most consistent results. D20x

ANNO demon-
strates the second-highest average AUC score, but the highest variance.
This implies a promising characteristic for future development of diagnostic
models. Emulating a pathologist sense of expertise, a model could automat-
ically identify diagnostically relevant areas and generate annotations. Then,
these generated annotations could be used for further enhancing feature
discrimination for subsequent prognostic models. That said, in our investi-
gation, only a limited set of tiles is annotated. This results in a mismatch
in training size between datasets automatically generated and annotations.
Moreover, an independent system cannot rely on expert input during the
inference stage. Moving forward, we take all three aforementioned ROIs
for determining the optimal magnification input choice.

14.7.3 Magnification Level Choice

We aim to assess the influence of varying magnification levels on the
performance, testing mono-scale magnification levels of 10x, 20x and multi-
scale TRI (2.5x, 10x, 40x). The results are shown in Table 14.6, and allows
us to assess the model’s accuracy in capturing both broader tissue context
and finer cellular details, as well as contextual neighbouring regions as per
the multi-scale input.

Utilizing a fixed magnification level throughout the image consistently
yields AUC levels that hover around 0.7 at 20x magnification, the highest for
the automatic ROI D20x

UROLP. However, it’s worth noting that the predictive
performance for 10x is worse. For comparison, D10x

ANNO obtained on average
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higher AUC values, yet, constrained to expert input and lack of a complete
set of annotations. Despite of its capacity to capture structural intricacies,
the multi-scale model TRI stands with lower performance. TRI performs
worse possibly because the larger input requires more training data for
generalization.

14.7.4 Weakly Supervised Aggregation for Treatment Out-
come Prediction

We conduct a comparison between five aggregation techniques in weakly
supervised learning. These include majority voting, max, mean, AbMIL
and NMIA. These techniques are evaluated to determine their effectiveness
in combining and summarizing information from multiple instances.

In Table 14.7, we present the obtained results. Among these techniques,
those involving majority voting, mean and max aggregation, which do not
include in-built attention mechanisms, demonstrate less promising outcomes.
In contrast, the utilization of AbMIL leads to a notable performance
improvement. Moreover, when examining the scattered tissue regions
across the WSI using the nested multiple instance method, NMIA, we
observe the most significant performance enhancement across all techniques
with an AUC of 0.678.

14.7.5 Fusing Image and Clinicopathological Data

By fusing clinicopathological and image data with the aim of complementing
each other, as explained in subsection 14.4.3, deep learning models should
gain a comprehensive understanding of patient conditions. However, it is
imperative to acknowledge the potential limitations and challenges inherent
in each form of data. While images offer visual cues that might be ambiguous
without clinical context, reports may lack the granularity and specificity
present in visual data. Clinicopathological data is often compiled from
various sources, including physician notes, laboratory test results, and
imaging, potentially introducing noise and variability. Conversely, WSI may
also contain inherent variability due to factors such as staining variations
or tissue preparation techniques.

In our experiments, unexpectedly, the findings displayed in Table 14.7
indicate that histological features may offer more pertinent information for
predicting patient outcomes compared to either clinical data alone or their
fusion. This finding raises questions about the traditional reliance on clinical
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Attention Scores

Invasive cancerous area

Papillary structures Urothelium with immune 
cell infiltration

Variant histology

Region Instance

Figure 14.5: Heatmap illustrating attention scores over a BCG-NR WSI from SEMC.
The heatmap provides insights into the ROIs where the attention is concentrated within
the WSI, facilitating a better understanding of prediction dynamics and highlighting
areas of significance for clinical interpretation.

data and highlights the potential of histopathological images as a standalone
predictor for improved prognostic accuracy. Moving forward, exploring
different fusion methods for integrating clinicopathological and image data
could yield insights into the optimal approach for maximizing predictive
performance. Moreover, incorporating additional clinical parameters may
provide a more comprehensive understanding of the status of the disease.

14.7.6 On the Importance of Manual Annotations

At the inference stage, a fully-independent system cannot be conditioned by
manually annotated regions. Even at the training stage, we have observed
the challenges in obtaining annotations for all WSI due to the labor-intensive
nature of the process. For a prognostic task, the relevance of manual
annotations remains uncertain. To explore this aspect, we conducted an
experiment where the model was trained on annotated regions ANNO, but
tested on automatically segmented regions AUTO, and vice versa. This
was compared to a fully automated system for both training and inference.
Table 14.8 shows the results, where the ROI-column indicates which ROI
definition was used for the AUTO set. For comparison, using ANNO
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for both train and test gives a performance of 0.441(0.031). With one
exception, the models perform better after using AUTO-generated ROIs
in the training and ANNO for testing, which we interpret as the models
benefiting from the larger dataset that is available when we can include
non-annotated data.

14.7.7 Recurrence Prediction

Following the predefined settings for ROI, magnification, and feature ex-
traction used in the BCG application, we apply the same configuration for
recurrence prediction. The results are presented in Table 14.7. We observe
that the utilization of mean aggregation demonstrated the highest average
predictive performance. Nevertheless, NMIA exhibited the most substan-
tial performance enhancement among all the techniques studied, with an
AUC of 0.721. This underscores the effectiveness of incorporating nested
attention mechanisms for the accurate identification of crucial patterns
within tissue regions.

14.7.8 Attention-guided Interpretability

The attention scores obtained at the inference stage can be useful for inter-
pretability reasons and can give knowledge on what the model considers
relevant for a given prediction. Instances with higher attention scores often
correspond to pivotal regions pertinent to the predicted label, aiding in
both model validation and reasoning. Attention scores aid pathologists in
understanding model’s rationale, highlighting areas of interest. This inter-
pretability is valuable for either positive or negative predictions, facilitating
validation and refinement of the model’s decisions.

An example of attention score heatmap is visualized in Fig. 14.5. Pathol-
ogists often use tissue punching to select clinically relevant regions for
subsequent analysis in tissue microarrays. While the model consistently
allocates its highest attention to punched areas, it is crucial to acknowledge
that diagnostically relevant information may extend beyond the punched
areas. Nevertheless, the alignment between the model’s attention focus and
the clinical practice of region selection through punching is an encouraging
and promising finding.
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14.8 Conclusion

We propose a three-step automated pipeline for the challenging task of
prognostic prediction, eliminating the need for manual annotations. This
is crucial given the multitude of potential tasks and the limited availability
of annotation resources, a trend expected to persist in the future of AI in
computational pathology.

The process begins with automated ROI segmentation, where task-
specific knowledge can be combined with an automatic tissue classifier
to extract relevant ROI. Since prognostic labels are weak in nature, the
second step employs contrastive learning to train the feature extractor.
Finally, an attention-based nested multiple instance learning classifier,
providing predictions and insights into the crucial regions of the image.
The pipeline demonstrates exceptional performance on a simpler diagnostic
task, achieving a perfect score with an AUC of 1.0 for detecting areas with
tumor-infiltrating lymphocytes. Additionally, experiments on synthetic
data confirm that the pipeline works perfectly when input distributions are
distinct. However, performance drops when they become highly overlapping.
In our study, we conducted a thorough pioneering investigation into the
use of deep learning and histopathological images for prognostic prediction.
We employ response to Bacillus Calmette-Guérin (BCG) treatment in
patients with high-risk non-muscle invasive bladder cancer (HR-NMIBC)
and recurrence in NMIBC patients as uses cases. The most promising
outcomes reveal AUC values of 0.678 for BCG outcome prediction and
0.721 for recurrence prediction. While there is room for improvement,
achieving fully automated prognostics based solely on WSI remains a
challenging task.
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