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Preface 

This thesis is submitted as partial fulfilment of the requirements for the 

degree of Philosophiae Doctor at the University of Stavanger (UiS), 

Norway.  

The project is initiated and performed in cooperation between the clinical 

research environment at Stavanger University Hospital and the 

Department of Electrical Engineering and Computer Science, Faculty of 

Science and Technology, UiS, both situated in Stavanger, Norway. The 

work on this thesis has been conducted in the period between October 

2019 and March 2024. This project is part of a twin project on computed 

tomography perfusion (CTP) in acute ischemic stroke, consisting of the 

current medical PhD project and a connected technical PhD project. The 

project is placed under the umbrella of Stavanger Medical Imaging 

Laboratory (SMIL) at the Radiology Department at Stavanger University 

Hospital, and of the BMDLab (Biomedical data analysis laboratory) at 

UiS, and Safer Stroke and Safer Healthcare Research Network.  

The thesis is based on two published papers, with one additional 

submitted paper currently under review. The papers are included in the 

thesis.   
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Summary 

Globally, neurological disorders are the leading cause of disability-

adjusted life years (DALYs) and the second leading cause of death1. 

Cerebral stroke is a major contributor to this burden, being the second 

leading cause of death and the third leading cause of death and disability 

combined2. 85 % of acute cerebral strokes are caused by ischemia3. In 

eligible patients with acute ischemic stroke (AIS), treatment with 

intravenous thrombolysis (IVT) alone or in combination with 

mechanical thrombectomy (MT), or MT alone, is indicated4-6. Whether 

treatment is applied depends on individual patient characteristics, but 

also largely on imaging results. Importantly, clinical outcomes of therapy 

are highly time dependent7,8. Therefore, neuroimaging in acute stroke 

patients should provide rapid, necessary, and precise diagnostic 

information. Computed tomography (CT) is the preferred imaging 

modality at many centers3. 

In AIS, ischemic brain tissue is usually divided into two levels of 

ischemia: Ischemic penumbra and ischemic core. Ischemic penumbra is 

hypoperfused but still viable and potentially salvageable ischemic tissue 

if blood flow is restored timely. The ischemic core is irreversibly 

damaged ischemic tissue, which cannot be saved, with inevitable 

development of infarction9. The lack of a perfectly reliable definition for 

ischemic core presents a major challenge in current stroke imaging. 

Imaging plays a central role in treatment decision in patients with a 

suspected AIS4-6. Currently used imaging in AIS, including most 
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commonly used perfusion-based parameters, struggle to accurately 

differentiate between salvageable and non-salvageable tissue10-12. 

Calculation tools exploring the microvascular environment in AIS has 

shown to have the capacity to more accurately describe the ischemic 

brain tissue compared to conventional methods13,14. A better 

understanding of the microvascular environment during an ischemic 

event has the potential to select patients for treatment more precisely and 

to create the possibility for improving recovery after recanalization 

therapies14-17. Given the vital importance of imaging in the management 

of AIS patients, there is a growing need of more studies on tissue 

viability visualization.   

At Stavanger University Hospital, patients with a suspected AIS are 

routinely investigated with a stroke imaging protocol, usually a non-

contrast computed tomography (NCCT) of the head, CT angiography 

(CTA) of precerebral and intracranial arteries, and CT perfusion 

(CTP)7,18. Additionally, magnetic resonance imaging (MRI) including 

diffusion-weighted imaging (DWI) is performed in most patients, 

usually within 24 hours after IVT treatment. All consecutive patients 

with a suspected AIS having received intravenous thrombolysis are 

prospectively included in a local thrombolysis registry.  

Minimizing time from symptom onset to treatment is of great importance 

in AIS, as clinical outcomes of therapy are highly time dependent7,8. It 

has been shown that simulation-based team-training can improve team 

performance19-21. A revised AIS treatment protocol along with weekly 
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simulation-based team-training for the stroke treatment team was 

implemented at our institution, leading to reduced treatment times, 

including a reduction of the median door-to-needle time (for IVT 

treatment) from 27 to 13 minutes7.  

This thesis is based on three papers. The overall objective for paper I 

and II was to assess ischemic brain tissue in patients with acute 

ischemic stroke by utilizing the CTP dataset, MRI and clinical data. 

Segmentation of the ischemic lesion was the primary objective for 

paper I, characterization of the ischemic lesion for paper II. In paper III, 

possible unwanted effects of simulation training were assessed, 

including the proportion of SMs among IVT-treated patients for 

presumed AIS, and the proportion of intracranial hemorrhage (ICH) 

among IVT-treated SMs. The thesis demonstrated the feasibility of 

using CTP as input to segment the ischemic regions in AIS (paper I), 

and the potential for a more accurate delineation of the ischemic core 

using additional parametric calculations (transit time coefficient 

variation, CoV) compared to conventional parametric measures alone 

(paper II). Further, implementation of in situ simulation-based team-

training for the acute stroke treatment team seems to be safe, but was 

associated with a significant increase in the proportion of patients 

treated with IVT who were later diagnosed as SMs, constituted mainly 

of patients with peripheral vertigo (paper III).  
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1 Introduction  

1.1 Definition of acute cerebral stroke  

Acute cerebral stroke is characterized as a sudden loss of neurological 

function due to brain or retinal ischemia (85%) or intracerebral 

hemorrhage (15%)3. Among ischemic strokes, impairment of the arterial 

blood flow is by far the most common etiology, with venous strokes 

accounting for <1% of all strokes3.  

1.2 Etiology of acute ischemic stroke   

Ischemic strokes are caused by focal or systemic hypoperfusion. Focal 

hypoperfusion is usually caused by stenosis or occlusion of one or 

several intracranial arteries or extracranial arteries giving blood supply 

to the brain. This can be caused by different mechanisms, with 

thrombosis, embolism and atherosclerosis being the most common22-24:  

• Thrombosis: A focal thrombotic clot is formed in an intra- or 

extracranial artery causing stenosis or occlusion of the affected 

artery.  

• Embolism: A focal occlusion is caused by an embolic clot from 

a distant location outside the cranium, that is carried to the brain 

via the blood stream and causes occlusion or stenosis of an 

intracranial artery. The most common form is an embolic blood 

clot from the heart, aorta or cervical arteries. Other potential 

sources are also important to be aware of, like septic emboli 

from infective endocarditis and patent foramen ovale.       
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• Occlusive or stenotic vascular disease caused by atherosclerosis 

of intra- or extracranial arteries.  

Small lacunar infarcts due to small vessel disease are also a common 

cause of ischemic stroke.  

Systemic hypoperfusion can lead to impaired blood supply to the brain. 

Cerebral infarctions caused by systemic hypoperfusion will typically 

start in watershed regions between the vascular territories of large 

cerebral arteries and will eventually spread to affect the whole brain if 

brain perfusion is not restored. Brain tissue in the vascular territory of 

stenotic arteries are particularly vulnerable to ischemia if blood pressure 

drops25.    

Acute ischemic stroke (AIS) is often divided into different subtypes by 

The Trial of Org 10172 in Acute Stroke (TOAST) classification, which 

defines five subtypes of ischemic stroke based on the anticipated 

etiology23:  

• Large artery atherosclerosis (embolus/thrombus) 

• Cardioembolism  

• Small vessel occlusion 

• Stroke of other determined etiology 

• Stroke of undetermined etiology  

A more recent publication using more advanced techniques with vessel 

wall imaging, showed the potential to better determine the etiology in 
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acute ischemic stroke, in which stroke etiology was classified with a 

modified TOAST classification26:  

• Cervical atherosclerotic disease  

• Cardioembolism  

• Small vessel occlusion 

• Stroke of other determined etiology 

• Stroke of undetermined etiology  

• Intracranial atherosclerosis 

• Intracranial arterial dissection 

• Vasculitis 

• Reversible cerebral vasoconstriction syndrome  

• Intracranial arteriopathy not otherwise specified 

Patients presenting with AIS are often categorized according to level of 

vessel occlusion: Large vessel occlusion (LVO) and non-large vessel 

occlusion (non-LVO). The definitions used in the literature exhibit 

noticeable variability27. At our institution, the following definitions have 

been adopted:    

• LVO: Occlusion of the internal carotid artery, M1 and proximal 

M2 segment of the middle cerebral artery, A1 segment of the 

anterior cerebral artery, P1 segment of the posterior cerebral 

artery, basilar artery and vertebral artery5,27-29.  

• Non-LVO: Acute ischemic stroke patients with occlusion of 

more distal arteries or with perfusion deficits or cytotoxic 
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edema on diffusion weighted imaging (DWI) without visible 

artery occlusion28. 

Patients presenting with LVO are less common compared to non-LVO. 

The prevalence of LVO is estimated to range between approximately 10-

30% among patients presenting with AIS30-32. Still, patients with LVO 

clearly represent a clinically significant share of patients with AIS, 

considering the tendency to present with large ischemic lesions and the 

grim natural course of this condition33.  

 

1.3 Clinical manifestations of cerebral stroke  

Cerebral strokes manifest as a sudden loss of neurological function and 

have a wide range of clinical manifestations, from transient to permanent 

and from mild to fatal presentation. Clinical presentation depends among 

other factors on size and site of the affected brain tissue. Impairment of 

motor and sensory functions as well as language and visual disturbances 

are common manifestations in acute stroke. Ischemic and hemorrhagic 

strokes share a lot of common clinical manifestations, though acute onset 

of symptoms with headache, increased systolic blood pressure and 

vomiting might indicate hemorrhage34.  
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1.4 Epidemiology  

Globally, neurological disorders are the leading cause of disability-

adjusted life years (DALYs) and the second leading cause of death1. 

Cerebral stroke is a major contributor to this burden, being the second 

leading cause of death and the third leading cause of death and disability 

combined2. The global burden of stroke is increasing2. Despite 

significantly reduced age-standardized rates over the past years, the 

annual number of strokes, DALYS and deaths from stroke has increased 

substantially, with the highest contributor to the global stroke burden 

found in lower-middle income younger age groups with increasing 

rates2.  Globally, there were 12.2 million incident strokes (62.4% 

constituted by AIS), 101 million prevalent strokes, 143 million DALYs 

due to stroke and 6.55 million deaths from stroke in 20192, with 89% of 

stroke-related DALYS and 86% of stroke-related deaths occurring in 

lower-middle income countries. The positive trend of falling age-

adjusted stroke rates is outweighed by an increasing ageing population 

in European countries35. Changes in demography with an increasing 

population of old age groups will result in a predicted increase in stroke 

incidence in the European Union, which is likely to be mirrored in many 

other parts of the world. Different studies have shown some 

discrepancies when it comes to future trajectories of stroke incidence and 

prevalence, probably due to methodological differences. The Stroke 

Alliance for Europe anticipates a 34 % increase in incident stroke events 

between 2015 and 203535, while another study forecasts a modest 

increase of 3 % between 2017 and 2047 and an increase in stroke 
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survivors (prevalence) by 27 % in the same period36. This is largely due 

to an expected increase in the population aged  ≥70 years old in which 

stroke risk is the highest, which is expected to compromise 23 % of the 

population in 2047 compared to 14% in 201736.  

The reduced incidences of stroke over the past years are largely due to 

prevention and better control of risk factors37. Risk factors for 

developing cerebral strokes include both modifiable and nonmodifiable 

factors38. Among nonmodifiable risk factors are age, sex and 

race/ethnicity, among modifiable risk factors are hypertension, high 

body mass index, smoking, unhealthy diet, low physical activity, 

hyperlipidemia, diabetes mellitus (high fasting plasma glucose), alcohol 

consumption and cardiac causes with especially atrial fibrillation being 

a major risk of stroke38. Genetic predisposition is also a well-recognized 

risk factor, often placed in an overlapping position between 

nonmodifiable and modifiable risk factors due to its increasingly 

recognition as potentially modifiable38. In 2019, 87 % of total stroke-

related DALYs were attributable to 19 risk factors, with high systolic 

blood pressure, high body mass index and high fasting plasma glucose 

as top three risk factors2.        

 

1.5 Pathophysiology of acute ischemic stroke 

In acute ischemic stroke, one common differentiation is to divide the 

ischemic brain tissue into two levels of ischemia: Ischemic penumbra 

and ischemic core. It was Astrup et al who first defined the ischemic 
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penumbra as electrically silent functionally impaired tissue with residual 

perfusion sufficient to maintain a close to normal concentration of 

adenosine triphosphate and sustained energy metabolism, with possible 

potential for recovery9. Ischemic penumbra is hypoperfused but still 

viable and potentially salvageable ischemic tissue if blood flow is 

restored timely. If blood flow is not restored, however, the tissue will 

eventually develop into irreversibly damaged ischemic tissue. The 

ischemic core is irreversibly damaged ischemic tissue, which cannot be 

saved, with inevitable development of infarction. The term “benign 

oligemia” in AIS is occasionally encountered in the literature. This refers 

to a phenomenon sometimes found in AIS, with a temporary decrease in 

blood flow in brain tissue surrounding the primary affected regions, 

which typically resolves spontaneously without causing significant or 

permanent damage39. The original notion that in AIS, occlusion of an 

artery causes an ischemic lesion with a centrally located irreversibly 

injured core with surrounding potentially salvageable penumbra40, is 

useful and is also supported by imaging findings with often confluent 

infarcted regions on follow-up imaging. However, recent imaging and 

experimental findings suggest that in the early minutes and hours after 

onset of ischemia, the ischemic lesion actually consists of several “mini-

cores” surrounded by “mini-penumbras” with further coalescence  of the 

mini-cores as time goes by if blood flow is not restored41.     

Research over the last decades has led to an increasing though not yet 

full understanding of the underlying factors such as hemodynamics and 

cellular and molecular pathways involved in ischemic brain injury. 
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Cerebral autoregulation is the mechanism that leads to a relatively 

constant level of cerebral blood flow within moderate changes in 

perfusion pressure, i.e., a perfusion pressure of typically 60-150 mm 

Hg42. Different mechanisms are thought to participate in maintaining a 

relatively constant blood flow, like vasoconstriction and vasodilatation 

in response to increased or decreased perfusion pressure, respectively.  

Hence, under normal conditions, cerebral blood flow is primarily 

determined by the degree of vascular resistance in cerebral blood 

vessels42. If perfusion pressure exceeds the autoregulation limits, the 

ability to maintain constant blood flow through autoregulation is lost. 

This poses a risk of ischemia if perfusion pressure is reduced, and a risk 

of edema if perfusion pressure is increased. Reduced perfusion pressure 

will eventually lead to a decrease in cerebral blood flow. Initially, 

oxygen delivery to the brain is maintained through increased oxygen 

extraction fraction13,42. With further reduced blood flow, other factors 

are involved. Several conditions, including ischemic stroke, are known 

to cause impairment of cerebral autoregulation43. This may lead to 

injured brain tissue being even more vulnerable to changes in perfusion 

pressure. There are some critical levels of cerebral blood flow (CBF), 

with inhibition of protein synthesis by blood flow below 50 mL/100 

g/minute and ceasing completely at 35 mL/100 g/minute. The last value 

corresponds to the same level at which the utilization of glucose and 

energy metabolism is disturbed. Failure of neuronal electrical activity 

occurs at CBF below 16-18 mL/100 g/minute, with further reduction 

below 10-12 mL/100 g/minute leading to failure of membrane ion 
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homeostasis42,44. This level is typically referred to as the threshold for 

development of infarct.           

Despite not performing mechanical work, the human brain is one of the 

most metabolically active organs in the body. It requires about 20 % of 

the cardiac output despite only possessing 2 % of the total body weight42. 

With no own energy storage, the brain depends on preserved blood flow 

for the supply of oxygen and glucose to maintain its metabolic demands. 

This fails during an ischemic stroke. With CBF below 10-12 mL/100 

g/minute, a cascade of cellular events eventually leads to cell death: The 

release of unregulated glutamate, depletion of ATP, impairment of ionic 

pumps leading to changes in concentrations of sodium, potassium and 

calcium, increased lactate, acidosis, accumulation of oxygen free 

radicals, cell swelling due to intracellular water accumulation (cytotoxic 

edema) and activation of proteolytic enzymes45-47. Cerebral ischemia and 

infarction cause loss of structural integrity of the affected brain tissue47. 

Vascular injury causes impairment of the blood-brain-barrier leading to 

brain edema and in some cases hemorrhage in the ischemic region 

(hemorrhagic conversion). With breakdown of the blood-brain-barrier, 

proteins and other macromolecules enter the extracellular space followed 

by increased extracellular fluid volume (vasogenic edema)46,47.             

 

1.6 Neuroimaging in acute stroke patients 

In eligible patients with acute ischemic stroke, intravenous thrombolysis 

(IVT) alone or in combination with mechanical thrombectomy (MT), or 
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MT alone, is indicated4-6. Whether treatment is applied depends on 

individual patient characteristics, but also largely on imaging results. 

Importantly, clinical outcomes of therapy are highly time dependent7,8. 

Therefore, neuroimaging in acute stroke patients should provide rapid, 

necessary, and precise diagnostic information. 

Imaging approach may differ according to patient characteristics and 

local availability of stroke expertise and imaging capabilities. According 

to current guidelines, diagnostic imaging with computed tomography 

(CT) or magnetic resonance imaging (MRI) is recommended in all 

patients with suspected acute cerebral stroke5,48. MRI with DWI is 

superior to CT for detection of acute infarctions and identification of 

some stroke mimics49,50. Still, CT is the preferred imaging modality at 

most centers for acute stroke patients due to its widespread availability, 

rapid scan times, and its high sensitivity for detecting hemorrhage3.  

The goals of imaging in patients with acute cerebral stroke are to confirm 

the diagnosis and provide guidance for treatment decisions by the 

following51:  

• Exclude hemorrhage and stroke mimics 

• Assess the large extracranial and intracranial arteries  

• Identify potentially salvageable brain tissue at risk of 

developing into infarction (ischemic penumbra) and 

irreversibly damaged ischemic tissue (ischemic core)  
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• Uncover possible etiology (e.g., embolic stroke, lacunar 

stroke, dissection, atherosclerosis)   

1.6.1 Computed tomography  

Computed tomography (CT) is a radiological imaging modality that 

involves the rotational projection of a series of x-ray beams onto a 

targeted area of the body, resulting in images through computer 

processing. Currently used CT-scanners typically use spiral/helical scan 

techniques, where the table moves continuously while the x-ray source 

and detectors rotate, allowing for fast scanning times. The resulting 

volumetric tomographic images offer the creation of three-dimensional 

images and contain detailed information. CT images are highly useful in 

various medical scenarios and can provide valuable information in 

detection, therapy planning and monitoring of many different 

diseases52,53.          

 

1.6.1.1 Non-contrast computed tomography  

Non-contrast computed tomography (NCCT) has high sensitivity for 

detecting hemorrhage and early signs of acute ischemic stroke can be 

detected. Common early ischemic changes (EICs) are subtle 

hypoattenuation of the brain tissue, loss of grey-white matter 

differentiation, sulcal effacement and poor delineation of the basal 

ganglia and insular ribbon54. The Alberta Stroke Program Early CT 

Score (ASPECTS) is used to quantify the extent of EICs. Here, 
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segmental estimation of the middle cerebral artery vascular territory is 

performed by subtracting 1 point from the initial score of 10 for each 

predefined region with hypoattenuation involved55. ASPECT score has 

been shown to correlate inversely with the National Institute of Health 

Stroke Scale (NIHSS) score and predict functional outcome and 

symptomatic intracerebral hemorrhage, with a score of 7 or less highly 

associated with poor outcome55. Therefore, it can be used prognostic and 

in treatment decision. Current guidelines advise against performing MT 

in AIS patients with an ASPECTS <65,6.  

A normal NCCT scan does not rule out an AIS. Though hypodensity on 

NCCT is regarded highly specific for irreversibly damaged brain tissue, 

there is limited sensitivity for detecting early ischemic changes and 

interobserver variability is common56-58. Although rare, hypodensity on 

NCCT may in some cases be reversible after recanalization59. Recent 

advancement in scanning techniques have demonstrated capability of 

improved diagnostic accuracy, such as dual energy CT (DECT)60. DECT 

using X-map has shown greater sensitivity in detecting EICs compared 

with simulated 120-kVp mixed-CT and may also provide additional 

information in DWI-negative acute ischemic regions61. NCCT can also 

yield diagnostic information concerning acute intravascular thrombi; a 

blood clot can be seen as a hyperdensity within a blood vessel, the “dense 

artery sign”62.   
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1.6.1.2 Computed tomography angiography   

Computed tomography angiography (CTA) is well suited for assessing 

the status of large cervical and intracranial arteries and is used for 

selecting patients eligible for endovascular treatment, i.e., patients with 

LVO. CTA is performed by injecting iodinated contrast through an 

intravenous line with image acquisition from the aortic arch to skull 

vertex during the arterial peak phase of contrast. Filling defects in both 

intracranial and extracranial arteries are visualized.      

During CTA acquisition, reduced contrast filling in the brain 

microvasculature can be detected in infarcted regions. These regions 

appear hypodense compared to normal brain tissue. This can be depicted 

on the CTA source images, and the sensitivity to detect early ischemia is 

higher compared to NCCT63.  

 

1.6.1.2.1   Collateral circulation imaging   

Collateral circulation (CC) imaging is based on multiphase CTA 

(mCTA) with CTA in three distinct phases through the whole brain; peak 

arterial (from aortic arch to vertex), peak venous and late venous phase64. 

Imaging in different phases of contrast allow time-resolved assessment 

of pial collateral arterial filling in the ischemic region, by which temporal 

delay in the filling of vessels in addition to the extent of contrast filling 

of the vessels can be evaluated. The technique is used for patient 

selection for MT by comparing the pial arterial filling in the ischemic 
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region to the contralateral hemisphere. Good CC has been shown to be 

associated with greater likelihood for successful recanalization and 

better clinical outcomes compared to patients with poor CC64,65. 

Compared to single phase CTA, mCTA provides better sensitivity for 

detection of vessel occlusions66,67, improved evaluation of internal 

carotid artery stenosis68, assessment of thrombus length69, improved 

tolerance for motion and poor hemodynamics, higher interrater 

reliability70, requires only a small increase in radiation dose, no 

additional contrast injection, no need for image post processing and 

provides whole-brain coverage64.      

 

1.6.1.3 Computed tomography perfusion   

Computed tomography perfusion (CTP) provides information about 

tissue viability and has proven useful for outcome prediction and for 

detection of the ischemic lesion71-73. One study yielded a sensitivity of 

80 % and a specificity of 95 % for the detection of acute ischemic lesions, 

with 2/3 of the missed lesions caused by small lacunar infarcts and the 

remainder mainly due to limited coverage of the ischemic region71. In 

addition, visualizing the ischemic lesion helps to detect vessel occlusions 

by targeting were occlusions are located. This is especially useful in 

distal medium vessel occlusions, which can be challenging to detect on 

CTA alone, especially for less experienced radiologists/residents on 

call74,75. The technique is used to aid treatment decisions in acute stroke 

patients, especially those presenting in the extended time window. CTP 
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is also useful in stroke mimics, with the ability to show perfusion 

abnormalities in certain conditions like seizure, migraine and tumors76.      

In CTP, a time series of three-dimensional datasets are acquired with 

repeated scans through the brain during the passage of contrast through 

the brain vasculature. Typically, only a distinct region of the brain is 

included, corresponding to where the ischemic lesion is suspected to be 

located based on the clinical presentation. Color-coded parametric maps 

(PMs) are then generated by analyzing alterations in tissue density over 

time. The different PMs highlight spatio-temporal information from the 

passage of the contrast agent within the brain tissue77-79. Generally, CTP 

PMs are generated in two steps: The first step acquires a time-density 

curve for each pixel based on the track of the contrast agent. The second 

step consists of extracting specific information from the generated time-

density curves. Time-to-peak (TTP), mean transit time (MTT), time-to-

maximum (Tmax), cerebral blood volume (CBV) and cerebral blood 

flow (CBF) are examples of different commonly used parametric maps. 

TTP reflects the time it takes until the contrast bolus reaches maximum 

concentration in the tissue (the apex of the time-density curve) and is 

highly sensitive to ischemia. Increased TTP indicates ischemia, as it 

takes longer time for the contrast medium to reach the ischemic region 

compared to normal brain tissue. MTT represents the time from wash in 

to wash out of the contrast media in the brain tissue, which is also 

increased during ischemia. Time-to-maximum of the flow-scaled residue 

function is obtained by deconvolution of the arterial input function (AIF) 

and is also prolonged during ischemia. This parameter is not fully 
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understood and is influenced by a complex interaction of many factors, 

but it represents the arrival delay between the contrast bolus arriving in 

the proximal large arterial circulation (AIF) and the tissue, and should be 

considered a measure of macrovascular characteristics80,81. Tmax is 

highly sensitive to ischemia, and has been shown to reliably identify 

critically hypoperfused tissue82. TTP, MTT and Tmax are usually 

measured in seconds. CBV is the blood volume present in a distinct 

region of the brain (e.g., as ml blood/100 ml brain tissue) and is 

calculated from the area under the time attenuation curve (figure 1). CBF 

is the blood supply to a distinct region of the brain for a given time (e.g., 

as ml blood/100 ml brain tissue/minute) and is derived from the slope of 

the wash in of the time-density curve (figure 1). Absolute values for these 

two parameters can only be calculated if there is no recirculation of 

contrast and no capillary permeability, of which the second claim is 

difficult to fulfil as permeability can vary a lot. Hence, relative values 

are calculated representing CBV or CBF relative to an internal control 

like contralateral white matter or an AIF. This is referred to as relative 

cerebral blood volume (rCBV) and relative cerebral blood flow (rCBF). 

The relationship between MTT, CBV and CBF is represented by the 

following equation (the central volume theorem): MTT = CBV/CBF83.  
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Figure 177: CTP time-density curve. TTP is defined as the time it takes until the contrast bolus 

reaches maximum concentration in the tissue. MTT represents the time from wash in to wash out 

of the contrast media in the brain tissue. The area under the curve represents CBV, which is the 

blood volume present at a given time in a distinct region of the brain, and CBF is the blood supply 

to a distinct region of the brain and is derived from the slope of the wash in of the time-density 

curve. Figure text is slightly modified.  
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Figure 2: CTP source image and different conventional PMs from a CTP scan in an AIS patient. 

There is an ischemic lesion in the vascular territory of the left middle cerebral artery (arrow).  

To estimate penumbra and core on CTP, different approaches are used, 

both automatic and manual. One method is to presume that areas with 

reduced CBF and increased TTP/Tmax represent penumbra84,85, while 

areas with additionally significantly reduced CBV represent the 

ischemic core86,87. A wide variety of different thresholds are used for 

different PMs to estimate penumbra and core85,88-96. One commonly 

used definition for core is CBF reduced to <30 % compared to the 

contralateral hemisphere, and penumbra as Tmax >6 s4,84,94-96.   

   CTP source image                    Tmax                                         TTP                               

    rCBV                                      rCBF                                        MTT 
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CTP source images can also be used to identify infarcted brain regions, 

which appear hypodense compared to normal brain tissue, and has been 

shown to predict neurological outcome and final infarct volume better 

compared to NCCT97.     

 

1.6.2 Magnetic Resonance Imaging   

Like CT, magnetic resonance imaging (MRI) is also highly sensitive 

for detecting hemorrhage. It is equivalent to NCCT for the detection of 

acute hemorrhage and has higher sensitivity for the detection of chronic 

hemorrhage98. It is also superior to CT for detection of acute infarctions 

and identification of some stroke mimics99-105. In many stroke centers, 

MRI is not as easily accessible as CT for the initial assessment of 

patients with suspected acute stroke, and MRI is often not available fast 

enough on a 24/7 basis. MRI is also limited by other contraindications, 

higher costs and longer scan times leading to potential delayed 

treatment compared to CT106,107. The standard MRI-based stroke 

protocol does not include the aortic arch or the precerebral arteries, and 

anatomical variations and pathology that is relevant for treatment 

decisions might therefore be missed initially. Nevertheless, MRI is 

superior to CT in AIS in several aspects, such as detection of AIS. 

There is a growing number of reports indicating that the use of MRI in 

the acute setting does not cause delays. Initial assessment with MRI has 

proven to be feasible within the time constraints for guidelines-based 

treatment times 108, and outcomes in AIS patients initially evaluated 
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with acute MRI has been shown not to differ from those evaluated with 

CT107. Ultrafast MRI protocols have also been developed with scan 

times below five minutes, with the potential of selecting patients for 

treatment in the acute setting and to provide an alternative diagnostic 

tool in patients who do not tolerate long scan times109. If not performed 

in the acute stage, MRI should be performed in all patients with a 

suspected ischemic stroke as part of the in-hospital diagnostic follow-

up within one to three days to determine exact infarct distribution and 

to evaluate potential differential diagnoses.     

 

1.6.2.1 MRI protocols in patients with suspected cerebral 

stroke  

In patients with a suspected cerebral stroke, a MRI protocol typically 

includes DWI, a T2-weighted turbo spin echo (TSE) sequence, a fluid-

attenuated inversion recovery (FLAIR) sequence, a T2*-weighted 

Turbo Field Echo or susceptibility-weighted imaging (SWI) sequence 

and a 3D arterial MR angiography (MRA). Time-of-flight (TOF) is the 

most widely used technique, though contrast enhanced MRA can also 

be performed. Both a T2-weighted TSE and a FLAIR sequence can be 

included or just one of them. Especially in patients with suspected 

stroke with unknown time of unset, a FLAIR sequence should be 

included.  

DWI is an important sequence in stroke imaging, with high sensitivity 

and specificity for detecting acute ischemia110. DWI reflects the 
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random, Brownian movement of diffusion of water. In an ischemic 

lesion with cytotoxic edema, the intracellular water content increases, 

causing the cells to swell. Enlargement of the cells leads to narrowing 

of the extracellular space, causing restricted diffusion as the free 

movement of extracellular water molecules are impeded. Due to 

anisotropy in the brain, diffusion is measured in three directions, and 

restricted diffusion corresponds to reduced movement in all three 

directions111. This is visualized as a hyperintense signal on the DWI 

images with corresponding low ADC values. DWI has potential for 

detecting ischemic changes within minutes after onset101. Infarcted 

brain tissue continues to demonstrate restricted diffusion until the end 

of the first week, then ADC values start to increase, and at 

approximately 1-4 weeks, normal ADC values are measured in the 

infarct. The time for ADC normalization is dependent on the infarct 

size, among other factors101. During this development, the DWI 

hyperintense signal gradually decreases.  

Vasogenic edema, in which the blood-brain-barrier is disrupted, causes 

extracellular edema. In this setting, the diffusion of extracellular water 

molecules is not restricted as in cytotoxic edema.  

Whereas restricted diffusion is visible almost immediately when an 

ischemic stroke develops, it takes more time for acute ischemic changes 

to be visible on conventional sequences. Vasogenic edema typically 

appears within hours after onset, visualized with hyperintense signal on 

FLAIR and T2-weighted sequences.  
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The DWI-FLAIR mismatch, with early ischemic changes on DWI but 

without visible changes on FLAIR, has been found to identify patients 

within 4.5 hours with high specificity and positive predictive value112, 

corresponding to the 4.5 hours’ time window for which thrombolytic 

treatment has been proven safe and effective4,8,112,113. T2* or SWI are 

highly sensitive to detect intracranial hemorrhage98,114. Moreover, it is 

also useful for the early detection of acute thrombosis in large 

intracranial arteries with hypointense signal from the thrombosed 

vessel, the so-called “susceptibility-sign” corresponding to the “dense-

artery sign” on NCCT115,116. MRA is performed to evaluate intracranial 

vessels with the capability to detect stenosis and occlusions in acute 

ischemic stroke.  

 

1.6.2.2 Perfusion imaging 

Similar to CTP, viability of ischemic brain tissue can also be assessed 

with MRI through perfusion imaging (PI). PI can be performed by 

utilizing the magnetic susceptibility effect from the passage of an 

intravenously administered gadolinium-based contrast agent through 

brain tissue, called dynamic susceptibility contrast (DSC) MR 

perfusion (MRP). DSC MRP has been shown to correlate with severity 

and outcome in AIS117. Similar PMs as those derived from CTP can be 

calculated, like TTP, MTT, Tmax, CBF and CBV. Alternatively, 

arterial spin labeling (ASL), without the use of contrast agent, can be 

used to depict perfusion deficits in ischemic regions of the brain. In 
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ASL, blood is magnetically labeled at the level of the neck before 

entering the brain. To assess the perfusion of labeled blood throughout 

the brain vasculature, subtraction images are generated by subtracting 

labeled images from control images (acquired before labeling). The 

remaining signal in the subtraction images is linear to the perfusion and 

proportional to the cerebral blood flow.    

To support treatment decision in acute ischemic stroke, the PI-DWI 

mismatch is commonly used. PI-DWI mismatch corresponds to a larger 

PI-lesion (i.e., penumbra) than DWI-lesion (i.e., core), representing 

patients with salvageable tissue who might benefit from reperfusion 

therapy96,118-122.   

 

1.6.3 Advanced imaging  

Advanced imaging is used to provide information about tissue viability, 

i.e., information about the irreversibly damaged ischemic core and the 

hypoperfused but still viable and potentially salvageable ischemic 

penumbra. This can be performed with either multimodal CT 

(multiphase CTA or CTP) or multimodal MRI (DWI and PI)4. A 

correlation between imaging and clinical symptoms can also be a part of 

the assessment123. 
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1.6.3.1 The capillary environment in ischemic brain tissue  

The environment on the capillary level is thought to influence the 

spatiotemporal evolution of tissue damage during an ischemic event in 

the brain13,17,124,125. Tissue oxygenation is related to blood flow, but 

also depends on capillary flow patterns126,127. Capillary flow velocities 

are highly heterogeneous in a normal, resting brain128. This can give 

rise to functional shunting, where extraction of substances like oxygen 

and glucose through the brain tissue becomes less efficient as capillary 

flow becomes more heterogenous14,124. It has been shown that capillary 

flow becomes more homogenous when there is hyperemia caused by 

brain activation, which contributes to more sufficient oxygen extraction 

and seemingly ensures sufficient oxygen extraction across a wide range 

of blood flows and metabolic needs in the brain14,124,127. Capillary 

dysfunction relates to the failure of homogenization of capillary flow 

during episodes of increased blood flow14, i.e., a gradual increase in 

resting capillary flow heterogeneity during episodes of increased blood 

flow129. In response to ischemia, capillary vasoconstriction causes 

limited flow and increased capillary dysfunction. To some degree, 

lower velocity of blood through the microvasculature compensates for 

this by maintaining oxygen levels in the tissue through increased 

oxygen extraction, though widespread vasoconstriction may also 

prevent sufficient oxygen levels and cause ischemia. Higher blood flow 

velocities cause impaired oxygen extraction. Capillary dysfunction 

tends to cause increased functional shunting by increased blood flow 

induced by brain activation or hypercapnia, which can lead to so-called 
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luxury-perfusion causing a paradoxical reduction in tissue oxygenation 

after reperfusion in ischemic tissue127,130. The effects of capillary 

dysfunction on tissue oxygenation can be evaluated by capillary flow 

and transit times through the capillary bed124,127. Two calculations have 

been developed to characterize the distribution of capillary transit 

times: The mean of capillary transit times (MTT) and the standard 

deviation of capillary transit times, the capillary transit time 

heterogeneity (CTH)124,127,131.  These parameters have been used to 

calculate the oxygen extraction efficacy for different transit time 

distributions. CTH is an indicator of microvascular distribution of 

blood and changes in proportion to MTT in normal anatomical 

microvascular networks; a passive increase in proportion to MTT is 

expected in response to reduced perfusion pressure during an ischemic 

event13. Additionally, the ratio between these two parameters, the 

transit time coefficient variation (CoV), also called the relative transit 

time heterogeneity (RTH), a measure of capillary dysfunction, has been 

used to distinguish between passive changes due to hypoperfusion and 

deterioration of the autoregulation of the vasculature124,127.  
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Figure 3129: Tissue oxygen tension (PtO2) is influenced by capillary patency. A: During 

increased blood flow, disruption in capillary patency can disturb capillary flow patterns and 

prevent normal homogenization. B: Cumulative disturbances lead to gradual increase in 

capillary transit times (CTH), lowering oxygen uptake, and causes PtO2 to decrease unless 

compensatory changes in blood flow occur. C: Compensatory hyperemia can maintain normal 

PtO2 for mild capillary dysfunction, but for severe dysfunction, this “shunting” of oxygenated 

blood can only be alleviated by increased oxygen extraction, which is achieved by prolonging 

blood transit times through limiting blood flow. These compensatory flow changes can only 

temporarily delay symptoms and tissue damage, as illustrated by the time at which PtO2 starts 

to drop and reaches 50% of normal values (B+C). Figure text is slightly modified.  

 

 

CBF is adjusted in relation to the metabolic needs of the tissue by the 

neurovascular coupling mechanism14,132. As capillary dysfunction 

increases and oxygen extraction drops, the neurovascular coupling 

mechanism would be expected to adjust CBF accordingly124,133. With 



Introduction 

27 

 

only minor capillary dysfunction, a small increase of CBF is thought to 

compensate for minor impaired oxygen extraction. This explains why 

capillary dysfunction is expected to cause hyperemia in some 

preclinical conditions like stroke and certain types of dementia124. As 

capillary dysfunction worsens, sufficient oxygen extraction can only be 

maintained by limiting flow responses, until a certain limit124. This 

limit corresponds to the highest CTH value for which the brain’s 

metabolic needs can be met. Above this, attempts to increase CBF will 

not be sufficient to maintain the tissue’s metabolic needs due to 

excessive functional shunting. The neurovascular coupling mechanism 

explains the low CBF found in capillary dysfunction124. Interestingly, 

this corresponds to CBF <20 mL/100 mL/min, which is commonly 

referred to as an ischemic threshold124,134. It is thought that cerebral 

ischemia causes widespread capillary no-flow, and that transit time 

homogenization represents capillary no-flow13,135. Accordingly, severe 

homogenization of flow, in terms of its corresponding low RTH values, 

is associated with low CBV and CBF and increased risk of infarction13. 

Capillary dysfunction has been explored experimentally. In one 

computational model, different grades of microvascular failure were 

related to changes in PI-based parameters, including CBF, MTT, CTH, 

RTH, oxygen extraction fraction and cerebral metabolic rate of 

oxygen13. Voxel-wise transit times can be derived from perfusion 

imaging using the concentration time curve from voxels within the 

image slices (CTP or MRP)13,124, which further allows calculation of 

oxygen extraction in the tissue127,136. Voxel-wise MTT, CTH and RTH 
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have been used to examine how acute ischemia and subsequent 

recanalization affect tissue outcome on follow-up MRI13.  It has been 

shown that there is high risk of infarction in perfusion-diffusion 

mismatch tissue when perfusion drops below a certain level (MTT >5 s 

and CBF ≤6 mL/100 mL/min), regardless of recanalization status13. 

However, low RTH predicts high risk of infarction if recanalization is 

not achieved, also in tissue with preserved CBF13. Hence, RTH could 

represent a novel biomarker for microvascular failure13.  

One important aspect of the capillary dysfunction phenomenon is the 

gradual accumulation of microvascular changes. It is thought that 

mechanisms leading to an ischemic event in some stroke patients 

evolve over several decades, with capillary dysfunction being central, 

to finally present as an acute event124. Still, many strokes are clearly 

caused by an acute thromboembolic event, wherein capillary 

dysfunction may become important after recanalization with the 

possibility of impaired microvascular reperfusion persisting despite 

successful recanalization17.       

 

1.6.4 Ultrasonography  

Color flow guided duplex ultrasonography of the carotid and vertebral 

arteries is an established noninvasive method for the evaluation of 

cervical atherosclerotic disease. Typically, it is used in patients with 

suspected transient ischemic attack (TIA), or with ischemic stroke with 

possible large artery origin. Transcranial Doppler ultrasonography can 



Introduction 

29 

 

be used to evaluate intracranial vessel stenosis and occlusions, but has 

poorer sensitivity and accuracy and is more operator dependent 

compared to CTA and MRA137.   

 

1.6.5 Nuclear medicine  

Nuclear medicine techniques, especially positron emission tomography 

(PET), has shown to give detailed information and provide better 

understanding of the underlying pathophysiology in ischemic stroke138, 

including mechanisms responsible for neurological and functional 

recovery after stroke139. However, the utilization of PET in the 

management of acute stroke patients has received limited investigation 

due to the long time needed to perform the examination. Regarding rapid 

scan times being of vital importance for neuroimaging in patients with 

suspected acute ischemic stroke, PET is not expected to be part of routine 

clinical practice in the near future140.          

 

1.6.6 Digital subtraction angiography  

Digital subtraction angiography (DSA) is an invasive procedure 

providing excellent visualization of cervical and intracranial arteries. 

The technique uses the acquisition of pre-contrast images followed by 

images acquired after the injection of a contrast agent. Radiopaque 

structures like bone visualized on pre-contrast images are digitally 

subtracted from the following post-contrast images, with resulting 
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subtracted images providing accurate visualization of the contrast-filled 

blood vessels. DSA is the gold standard for detection of cerebrovascular 

stenosis and occlusions141, and provides equal or slightly higher 

resolution, sensitivity and specificity compared to CTA or MRA for 

detecting stenosis and occlusions142. However, as an invasive technique, 

DSA carries the risk of potentially serious complications like stroke and 

even lethal complications. Fortunately, the risk of serious complications 

is low, with the occurrence of deaths being reported as low as 0.06 % 

and stroke with permanent disability 0,14 %143. Due to high sensitivity 

and specificity of CTA and MRA for the detection of cerebrovascular 

stenoses and occlusions, along with their accessibility, non-invasiveness, 

and additional information about the brain parenchyma provided by CT 

and MRI, noninvasive techniques are recommended in the acute 

evaluation of patients with suspected acute cerebral stroke5,48,142. If large 

vessel occlusion is present and there is indication for endovascular 

therapy (EVT), DSA with EVT is performed.       

 

1.7 Artificial intelligence and machine learning methods  

In recent years, machine learning (ML) methods, particularly neural 

network algorithms, have demonstrated promising results in numerous 

medical image analysis applications, including stroke 

applications28,78,144,145.  

Artificial intelligence (AI) is a term used for a wide range of 

technological methods having in common the use of a computer to model 
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intelligent behavior with minimal human interference146. The term is 

frequently applied for systems that hold the intellectual processes 

characteristic of humans, like the ability to reason, discover meaning, 

generalize, or learn from past experience147. ML is a certain application 

of AI that deals with the implementation of computer software that can 

learn autonomously148. By learning from experience, which consists of 

large sets of data, algorithms used in ML are improved. Deep learning 

are methods based on artificial neural networks (ANNs) inspired by 

networks in the human brain149. It is one of the most commonly used 

approaches in ML algorithms148 aiming to perform cognitive functions 

like problem solving by mimicking the brain’s capability of pattern 

recognition149. The algorithms consist of several layers of ANNs. The 

input layer receives input from the external environment, while the 

output layer conveys the ultimate outcome. Between these two layers, 

one or more layers of artificial neurons are found, where most of the 

information processing takes place. Especially Convolutional neural 

networks (CNNs) have been proven useful in medical imaging 

analysis150. CNNs consist of multiple artificial neuronal layers, in which 

all neurons in one layer are connected to all the neurons in the next layer. 

In CNNs, a feature detector (kernel/filter) is used to detect certain 

features in one convolution layer, a process called convolution. 

Convolution of one layer can follow outputs from previous layers, where 

pixels from previous layers can be seen in later layers151.  The high 

connectivity between the layers makes CNNs prone to “overfitting data”, 

i.e., the model corresponds so close to a certain data set that it is unable 
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to fit additional data reliably.  This is limited by different types of 

regulation.    

Several ML methods have been used in stroke applications. In one study, 

a general linear model based on CTP and clinical data was used to 

quantify tissue infarction depending on recanalization152. The resulting 

time-adjusted multivariate prediction of infarction may identify patients 

who could benefit from recanalization therapy in the extended time 

window152. Another study found that the ischemic core could be 

accurately predicted by using ANNs with implementation of clinical and 

CTP data145. Our research group, as part of the current twin project, have 

studied the use of CTP in acute stroke patients. In one study, the entire 

4D CTP dataset was used as input to a neural network to segment both 

penumbra and core78. In another study, color-coded PMs were used to 

automatically segment the penumbra and core using three different ML-

based methods28. It was found that the best random forest-based method 

outperforms classical thresholding approaches28. ML has also been 

applied to other modalities than CTP. In one study, ML was used for 

automated prediction of ischemic brain tissue fate from mCTA-derived 

tissue maps in patients with acute ischemic stroke153. The method 

showed comparable results to CTP in terms of prediction of tissue 

perfusion abnormality and follow-up infarction153.         

 



Introduction 

33 

 

1.8 Challenges in neuroimaging in acute stroke patients 

Rapid recognition of stroke symptoms, patient transfer and acute 

treatment, including immediate thrombolytic treatment (medication 

administered to restore cerebral blood flow) and/or thrombectomy 

(catheter approach to restore cerebral blood flow), are of vital importance 

in the acute setting and significantly improve outcomes in acute stroke 

patients4,5. Whether treatment is applied depends on time from symptom 

onset to hospital admission, but also largely on imaging results with, 

especially in extended time windows, perfusion imaging often being 

fundamental in estimation of the penumbra, ischemic core and outcome 

prediction120. However, current techniques are far from accurate in 

determining hypoperfused but still salvageable tissue and irreversibly 

damaged tissue.  

The lack of a definite gold standard for ischemic core is a challenge in 

current stroke imaging. DWI is often used as gold standard for ischemic 

core in clinical trials, with high sensitivity and specificity to detect 

irreversibly injured tissue (ischemic core)99-101,105. However, DWI is not 

a perfectly reliable measurement for the ischemic core10,56. One study 

showed that DWI might be negative in as many as 8 % of AIS patients, 

while adding PI increased sensitivity to 97.5%110. False-negative DWI 

may be due to very small lacunar deep grey nuclei or brain stem 

infarction100,102, or very early after onset154. Also, changes in the acute 

setting can be potentially reversible155. One meta-analysis found that 

DWI reversal ranged from 0.9-50% and the extent of reversal ranged 

from 1.8-72.7% after thrombolytic treatment, with greater reversibility 
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associated with younger patients156. Hence, caution should be taken in 

recanalized patients, as early DWI changes may not represent the definite 

ischemic core.  

In addition to the lack of a gold standard for ischemic core, the definition 

of ischemic core is up for debate. Although there is broad agreement to 

define ischemic core as irreversibly damaged ischemic tissue, which 

cannot be saved, the definition could refer to both already infarcted tissue 

and tissue not yet infarcted but inevitable destined to develop into 

infarction regardless of treatment10. Perfusion imaging in acute ischemic 

stroke provides only a short time measurement. There is unavoidably a 

time delay between baseline imaging and reperfusion, and reperfusion 

can be complete or incomplete, causing a greater burden of cell death at 

time of reperfusion. Hence, follow-up imaging has certain limitations if 

final infarct on follow-up imaging is used as gold standard for ischemic 

core on baseline imaging. One paper addresses uncertainty with the 

current ischemic core concept due to no uniform definition of ischemic 

core, lack of standardized and validated quantitative measures of 

irreversibly injured tissue (threshold values) and lack of a reliable gold 

standard to validate image parameters, and the ischemic core concept 

being an inadequate measure of the burden of cell death10.                   

Hypodense tissue on NCCT is regarded highly specific for irreversibly 

damaged brain tissue, but there is limited sensitivity for detecting early 

ischemic changes and interobserver variability is common56-58. Although 

rare, hypodense tissue on NCCT could also be potentially reversible after 
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recanalization59. Current guidelines advise against performing MT in 

AIS patient with an ASPECTS <65,6. However, there is growing 

evidence indicating that even patients with ASPECTS <6 can benefit 

from EVT51,157-160.    

In CTP, different approaches and thresholds result in variable 

estimation of penumbra and core, causing a challenge in the acute 

setting 85,88-94. Some studies have found good correlation between CBV 

and final infarct core86,87, while others consider CBF more accurate95.  

CTP may overestimate infarct core on initial imaging, especially in 

patients in the early time window and short time to recanalization12,161. 

This phenomenon is called “ghost infarct core” and has been defined as 

initial core minus final infarct. It is regarded significant by a ghost core 

larger than 10 ml12,161. One study used CTP CBF to define infarct core, 

which resulted in ghost infarct core found in 16 % of patients who 

underwent thrombectomy of the middle cerebral or intracranial internal 

carotid artery 12. CTP CBV based infarct core has resulted in even 

higher frequency of ghost infarcts, found in 38 % of the patients in one 

study161. Hence, CTP should be carefully evaluated in the acute setting 

to prevent withholding treatment in patients who might benefit from it, 

especially in early time windows.  

Current CTP based calculations are far from perfect in diagnostic 

accuracy and further improvement of the methods in use is needed10,162. 

Automated solutions have contributed to reduce heterogeneity in the 

application of different thresholds, but still ischemic core volumes vary 

substantially between different software packages51,85,93,94. RAPID is a 
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fully automated software to segment the ischemic region and has been 

shown to identify patients in whom reperfusion is associated with good 

outcome144. Several recent large clinical trials have used the RAPID 

software to estimate volume of ischemic lesions to select patients for 

treatment4,96,119,120,123.  However, many hospitals do not have access to 

this software, leading to challenges on how to select patients for 

treatment based on selection criteria from clinical trials. With RAPID, 

core is defined as CBF reduced to <30 % compared to the contralateral 

hemisphere, and penumbra is the tissue outside the core with Tmax >6 

s94,96. A study from 2019 compared three commonly used perfusion 

software systems (RAPID, IntelliSpace Portal CT Brain Perfusion and 

syngo.via CT Neuro Perfusion) in patients with acute ischemic stroke94. 

Here, best agreement with RAPID was found with the use of syngo.via 

with default settings and an additional smoothing filter.       

Neural network algorithms and ML methods have shown promising 

results in medical image analysis applications in acute stroke patients, 

with the capacity to accurately predict tissue outcome28,78,144,145,163,164. 

This could help reducing sources of error in the interpretation of CTP. 

By taking these promising results into account, the applications are 

expected to have the capacity to select AIS patients for treatment more 

accurate, and on the other hand, better identify patients who are unlikely 

to benefit from reperfusion therapy in the future. It is also expected that 

patients with stroke mimics will be identified better. The goal is to 

provide automated decision support with recommendations for 

personalized treatment plans28,125,165. 
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During an ischemic event in the brain, current diagnostic approaches to 

assess cerebral hemodynamics in acute stroke, like conventional PMs 

from CTP and MRP, rely on temporal dynamics in changes of image 

density and intensity. Microvascular patency only affects these 

parameters in cases where plasma, and thereby CT and MRI contrast 

media, fails to reach large proportions of the microvasculature within an 

image voxel13. Accordingly, conventional PMs mainly reflect blood 

supply and the vascular volume perfused by plasma, and not the 

microvascular distribution of blood, which might affect the availability 

of oxygen in the tissue13. Clinical evidence indicates that reperfusion 

(restoration of microcirculatory blood flow) is better than recanalization 

(reopening of the occluded artery) in terms of predicting tissue outcome 

after recanalization therapy17,166,167. After recanalization therapy, there 

might be incomplete restoration of the microcirculatory flow in some 

parts of the ischemic tissue despite reopening of the occluded vessel, 

called the no-reflow phenomenon17,168-170. Hence, despite complete 

recanalization, microvascular impairment might prevent 

microcirculatory reperfusion sufficient to meet the tissue’s metabolic 

needs17,171. In the DEFUSE study, where MRI imaging profiles were 

used to predict clinical response to early reperfusion, four of nineteen 

patients had recanalization, but no reperfusion assessed on PI172. In a 

review paper on the no-reflow phenomenon after reperfusion therapy in 

stroke patients, where thirteen studies with a total of 719 patients were 

included, the no-reflow phenomenon was observed in one-third of stroke 

patients with successful macrovascular reperfusion, which in turn was 
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associated with reduced rates of functional independence169. This study 

was limited by a considerable heterogeneity in the definitions used for 

no-reflow and the inclusion of patients with TICI2b reperfusion, with 

some persisting vessel occlusion. Still, the pooled estimates after trying 

to account for this heterogeneity indicates that no-reflow might be quite 

common169. Incomplete reperfusion may be one of the factors 

contributing to limited efficacy of recanalization therapy and has been 

suggested as a potential target for preventive and therapeutic treatment 

to improve outcome after recanalization17,124,173-175. CTH and CoV 

describe the microvascular environment and are promising calculation 

tools having the capacity to more accurately describe the ischemic brain 

tissue compared to conventional methods13,14. A better understanding of 

the microvascular environment during an ischemic event has the 

potential to select patients for treatment more precisely and to create the 

possibility for improving recovery after recanalization therapies14-17.     

 

1.9 Management of acute ischemic stroke patients  

In patients with suspected acute ischemic stroke, current guidelines 

provide recommendations regarding the whole stroke care chain; from 

prehospital systems including emergency medical services to diagnostics 

and treatment at the hospital, with recommendations concerning 

organization and integration of the different stroke care chain 

components3-5,48,176.  
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1.9.1 Prehospital management   

Prehospital educational programs should focus on stroke symptoms and 

highlight the importance of seeking emergency care urgently5. One 

central goal is to decrease the interval between stroke onset to arrival at 

the emergency department and treatment5.     

 

1.9.2 Neuroimaging  

All patients with suspected acute cerebral stroke, who might be 

candidates for recanalization therapy, should receive emergency imaging 

with CT or MRI as quickly as possible before any specific AIS therapy 

is initiated5,48. CT and MRI are both effective to exclude ICH before 

IVT98. If ICH is present, CTA may be performed in certain patients to 

help identify an underlying vascular cause177. Either CTA or MRA is 

recommended for detection of cerebrovascular stenosis and occlusions 

in the acute evaluation of patients with suspected acute ischemic stroke, 

thereby identifying patients with LVO being potential candidates for 

EVT5,48. For patients presenting in the extended time window (i.e., 4.5/6 

hours after symptom onset), CT or MRI core/perfusion mismatch 

evaluation is recommended to determine treatment eligibility4,5. 

However, in many stroke centers, perfusion imaging is also performed 

in early time windows, both from a logistical point of view for 

streamlining and thereby shortening the time needed for the examination, 

as well as for providing additional information for diagnostic 

certainty7,18,51.         
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1.9.3 Treatment of AIS 

Restoring blood flow to prevent further tissue damage is the main 

treatment goal in AIS. For patients presenting with AIS, intravenous 

thrombolysis or mechanical thrombectomy are the two main options for 

recanalization therapy. It is recommended that patients eligible for 

intravenous thrombolysis and/or mechanical thrombectomy receive 

treatment in the fastest achievable onset-to-treatment time5.  

 

1.9.3.1 Intravenous thrombolysis  

IVT was approved for treatment of AIS in 1996178 after the National 

Institute of Neurological Disorders and Stroke (NINDS)-2 trial that 

showed improved clinical outcome at three months after treatment with 

intravenous recombinant tissue plasminogen activator (rtPA) within the 

3 hours-time window179. It was the first possible treatment for the 

occluding thrombus or embolus causing AIS. The findings from the 

NINDS-2 trial have later been confirmed in subsequent trials testing the 

0-6 hours’ time window, demonstrating clear trends in favor of rtPA, 

which was highly significant in the first meta-analysis up to 4.5 hours 

after onset180,181. Later studies have also shown benefit from treatment 

with IVT up to 4.5 hours after onset4,8,182, and for selected patients in the 

extended time window (4,5 hours-9 hours’ time window and for patients 

with wake-up stroke or stroke with unknown onset time)96,113,118,120,121. 
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Wake up stroke refers to patients with AIS upon awakening from sleep, 

creating uncertainty regarding the exact time when the stroke symptoms 

began.  

The use of rtPA, Alteplase, has been the standard thrombolytic agent 

used for treatment of AIS for several years183. It was approved for 

treatment of AIS by the US Food and Drug Administration (FDA) in 

1996 and is the only thrombolytic agent approved for this indication183. 

rtPA is a powerful drug and the benefit from treatment is time dependent 

with higher likelihood of better outcome the sooner treatment is initiated. 

rtPA works by its binding to fibrin, which induces the conversion of 

plasminogen to plasmin, which further acts to dissolve the fibrin-

containing blood clot. Treatment with rtPA entails a certain risk for 

hemorrhage. The rate of hemorrhage in the NINDS-2 trial was found to 

be 6.4 % in the tPA group. However, since this trial was published, the 

definition of hemorrhage after AIS has evolved, with the definition of 

symptomatic intracranial hemorrhage (sICH) being important. 

Following trials have shown variable rates of hemorrhage depending on 

the definition used, with rates of sICH being reported as low as 2,4 %184. 

Due to the risk of hemorrhagic complications after IVT, there are various 

contraindications to this therapy in addition to presenting outside the 

therapeutic time window (like use of oral anticoagulants, intracranial 

hemorrhage (ICH) and a bleeding disorder)5. Alteplase is administered 

as a 10% bolus followed by a 1-hour continuous injection.   
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Tenecteplase is a genetically modified form of Alteplase, with increased 

plasminogen activator inhibitor 1 resistance, greater fibrin specificity 

and a longer half-life, which allows for single bolus administration185,186.  

In 2023, Tenecteplase was also included in the European Stroke 

Organization guidelines as a thrombolytic agent for treatment of AIS186 

after the results from four RCTs that compared the use of Alteplase and 

Tenecteplase in AIS. These guidelines recommend the use of 

Tenecteplase (0.25 mg/kg) over Alteplase for patients with AIS <4.5 

hours duration186. Also, it is suggested that Tenecteplase could be a 

reasonable alternative to Alteplase (0.9 mg/kg) for eligible patients with 

wake-up stroke and for stroke with unknown onset time186.      

 

1.9.3.2 Endovascular therapy  

IVT alone has shown low reperfusion rates in AIS with LVO, with rates 

reported up to around 30 %187-190. Endovascular therapy (EVT) has been 

shown to provide better reperfusion rates in these patients, with 

reperfusion rates above 80 %191-193. Today’s gold standard for EVT is 

MT, and both stent retrievers and catheter aspiration devices can be 

used5,6,194,195. Among available AIS therapies, MT constitutes the most 

effective acute treatment option for patients with acute LVO with very 

low number needed to treat, sometimes as low as 2196. In catheter 

aspiration, catheterization is performed (often femoral artery puncture), 

and a catheter is placed directly proximal to the thrombus. Suction is then 

used to aspirate and remove the thrombus. If reperfusion is not achieved, 
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or as a first choice of method, a stent retriever can be employed to 

perform thrombectomy. For stent retrievers, the catheter containing the 

stent, is guided distal to the site of the thrombus. The stent retriever is 

then inserted through the catheter to reach the clot. The catheter is pulled 

back, and the stent retriever adheres to the clot. With the clot adherent to 

the stent, the stent retriever is pulled back into the catheter, and the clot 

is removed.  

The degree of reperfusion after thrombectomy is often defined by the 

modified treatment in cerebral infarction (mTICI) scale, with grade 2b 

and 3 defining successful reperfusion in terms of antegrade reperfusion 

in more than half, yet incomplete reperfusion, or complete reperfusion, 

in the downstream target arterial territory, respectively5,197.        

As an invasive procedure, MT involves inherent risks that may 

potentially harm the patients. Device-related serious adverse effects are 

uncommon, but can have severe consequences and be potentially lethal. 

Adverse effects include hemorrhage and pseudoaneurysm formation at 

the site of catheterization, arterial perforation with bleeding 

complications, arterial dissection, transient vasospasm, embolism, and 

the induction of new ischemic lesions192. However, the rates of 

intracranial hemorrhage and mortality in patients receiving MT are not 

increased compared to standard medical treatment alone198-201.            

According to current guidelines, MT is recommended in eligible patients 

with anterior circulation LVO AIS6, typically referred to occlusion of the 

intracranial carotid artery and/or the proximal middle cerebral artery 
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(M1/proximal M2 segments)6,119,123, in which clinical trials have shown 

clear benefit from treatment5,6,119,123,198-200,202-204. A clear benefit from 

MT has not been shown after MT in patients with vertebrobasilar 

occlusion205,206. However, this is thought at least partly to be due to 

results being confounded by poor recruitment and implementation of the 

study design205,206. With respect to the grim natural course of basilar 

artery occlusion, it is also recommended that IVT and MT should be 

strongly considered in these patients5,6. According to current guidelines 

from the American Heart and American Stroke Associations for the early 

management of acute ischemic stroke, although uncertainty regarding 

potential benefit, it is recommended that MT may be reasonable for 

selected patients within 6 hours and occlusion of the anterior cerebral 

arteries, vertebral arteries, basilar artery or posterior cerebral arteries5.     

MT can be performed isolated or in combination with IVT (“bridging 

therapy”). Current guidelines recommend MT in LVO AIS within 6 

hours of symptom onset, and for selected patients in the extended time 

window (6-24 hours after symptom onset)5,6.    
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1.9.3.3 Treatment criteria in acute ischemic stroke 

patients  

Early time window:  

• For patients presenting with acute ischemic stroke <4.5 hours, 

intravenous thrombolysis with Tenecteplase is 

recommended4,8,182,186.  

• For patients presenting with acute ischemic stroke with LVO, 

MT is recommended <6 hours5,6,199,200,202,203.   

o Bridging therapy in selected patients†.  

Extended time window*:  

• For patients presenting with acute ischemic stroke in the 4.5-9 

hours’ time window (with known time of onset), and for 

patients with wake-up stroke or stroke with unknown onset 

time, IVT is recommended in selected patients4,5,96,113,118,120,121. 

• For patients presenting with acute ischemic stroke with LVO in 

the 6-24 hours’ time window, MT is recommended in selected 

patients5,6,119,120,123.   

o Bridging therapy (IVT before MT) is recommended in 

selected patients†.   

 *For patients in the extended time window, the following criteria are 

used to determine treatment eligibility: 

• IVT: DWI/FLAIR mismatch or perfusion imaging (CTP/MRP), 

with core/perfusion mismatch defined as follows4,96,113,118,120,121:  
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o Infarct core** volume <70 ml 

o Critically hypoperfused volume***/ Infarct core** 

volume (mismatch ratio) >1.2 

o Mismatch volume (penumbra) >10 ml 

** rCBF <30% (CTP) or ADC<620 µm2/s (DWI)96,207 

***Tmax >6 s (CTP or MRP)4,84,96 

• MT: Perfusion imaging or DWI5,6,119,120,123  

o In two trials, which provided evidence for benefit of 

mechanical thrombectomy up to 24 hours after onset in 

patients with occlusion of the intracranial internal 

carotid artery or the proximal middle cerebral artery, the 

following criteria were used for treatment eligibility:  

- DAWN (6-24 hours’ time window)123:  

• Patients with mismatch between the 

severity of the clinical deficit and infarct 

volume, «clinical-imaging mismatch», 

defined as follows (infarct volume was 

assessed with DWI or CTP):  

o Group A: ≥80 years of age + 

NIHSS score ≥10 + infarct 

volume <21 ml 

o Group B: <80 years of age + 

NIHSS score ≥10 + infarct 

volume <31 ml 
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o Group C: <80 years of age + 

NIHSS score ≥20 + infarct 

volume 31-50 ml 

- DEFUSE-3 (6-16 hours’ time window)119: 

• Infarct core* volume <70 ml 

• Critically hypoperfused volume**/ 

infarct core* volume (mismatch ratio) ≥ 

1,8 

• Mismatch volume (penumbra) ≥15 ml  

*rCBF <30%, **Tmax >6 s (CTP or MRP + 

DWI)  

 

†Bridging therapy (IVT before MT): In the latest European guidelines, 

bridging therapy is recommended over MT alone in patients eligible for 

both treatments with a ≤4.5 hours or wake-up AIS and anterior 

circulation LVO208. Bridging therapy is also recommended for both of 

these patients groups when admitted to a non-thrombectomy capable 

center followed by rapid transfer to a thrombectomy-capable center for 

MT208.  

Current guidelines provide clear recommendations on reperfusion 

treatment to only a proportion of AIS patients. Some guidelines/expert 

opinions provide recommendations regarding reperfusion therapy to 

patients presenting with borderline indications5,6,209, based on experience 

and recent literature, such as performing MT in patients with occlusion 
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more distal in the M2 and M3 segment of the middle cerebral artery210-

212, in the posterior circulation205,206, in patients with large ischemic 

core157-160, pre-existing illness or deficits on mRS213, milder strokes 

(NIHSS<6)214 and in children215,216. Still, a significant number of patients 

presenting with AIS is excluded from reperfusion therapy, and present 

guidelines that include borderline indications often provide weak 

recommendations due to the lack of randomized controlled trials on these 

patients. This is increasingly recognized, and there are many recent and 

ongoing trials focusing on expanding indications for reperfusion 

therapy209. Further development, along with improved imaging 

precision, will likely be required in acute stroke patients.        

 

1.9.4 Clinical scoring tools 

In stroke patients, two clinical scoring tools are commonly used both in 

the clinical setting and in clinical trials: The National Institutes of Health 

Stroke Scale (NIHSS) and the Modified Rankin Scale (mRS). 

 

1.9.4.1 National Institutes of Health Stroke Scale  

The NIHSS is a tool used by healthcare personnel to measure stroke 

severity by measuring the neurological impairment caused by a stroke217. 

It was developed in 1989218 for use in acute stroke therapy trials218, and 

has been used both for clinical evaluation and as an outcome measure in 

clinical trials217, including recent trials dealing with the use of IVT and 
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MT in the extended time windows96,113,119,123. The scale assesses stroke 

severity by including the following domains: Level of consciousness, 

eye movements, integrity of visual fields, facial movements, arm and leg 

muscle strength, sensation, coordination, language, speech and 

neglect217. The original developed scale from 1989 assessed 15 items218, 

but modified versions have been developed later, with the 11-items 

modified NIHSS commonly used in recent years219,220. In this scale, each 

of the 11 items scores a specific grade of impairment, with 0 indicating 

normal function and higher score indicating higher degree of 

impairment221. The individual scores are then summarized, with the 

maximum possible score being 42, and the lowest being 0221. Minor 

stroke is often defined by NIHSS, often as a score <5, though there is no 

unified definition222. In the WAKE-UP trial, a severe stroke was defined 

as NIHSS >25113.       

The NIHSS has been shown to possess high prospective reliability and 

validity218,220,221 and high retrospective reliability223. It provides both 

high interrater reliability and test-retest reliability for a given examiner 

or patient, and high correlation between scoring by a neurologist and 

other examineers218,224. It has a high predictive validity in AIS, with the 

initial score being a robust predictor of in-hospital complications and 

outcome at 3 months179. NIHSS score at 3 months is strongly associated 

with degree of dependency225,226. One important limitation for the stroke 

scale is certain limitations in detecting all stroke-related impairments, 

particularly with posterior circulation227 and in certain nondominant-

hemispheric strokes221,228.  
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The NIHSS score is part of the initial assessment in acute stroke patients 

and, although a unified practice is lacking, aids in determining treatment 

eligibility. In the WAKE-UP trial, patients with severe stroke (NIHSS 

>25) were excluded from the trial113. In the DAWN trial, among the 

eligibility criteria for MT was NIHSS score ≥10123, while the DEFUSE 

3 trial included a NIHSS score ≥6119. In the European Stroke 

Organization and European Society for Minimally Invasive Neurological 

Therapy (ESMINT) Guidelines on Mechanical Thrombectomy in Acute 

Ischaemic Stroke, an upper NIHSS score for decision-making is not 

recommended6. Regarding patients with low NIHSS score, an expert 

opinion states that MT, in addition to IVT in eligible patients, may be 

reasonable in patients with enabling deficits (e.g., aphasia) and in the 

case of clinical worsening despite IVT6.        

    

1.9.4.2 Modified Rankin Scale  

Dr. John Rankin developed the original Rankin scale to describe 

outcome in stroke patients in 1957229,230. A modified Rankin scale (mRS) 

was developed in the 1980s231, and its value in the assessment of 

handicap in stroke patients was confirmed with its reproducibility for the 

first time being examined a few years later232. The mRS measures 

functional independence on a seven-grade scale (score 0-6), with higher 

score indicating more severe disability230,231. How outcome based on the 

mRS score is referred to vary somewhat, though excellent outcome is 

often defined as a mRS score of 0-1 (no symptoms or symptoms without 
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significant disability), good outcome as a score of 0-2 (functional 

independency), and worst outcome as a score of 5-6 (bedridden or 

dead)7,96,113,119,123.       

The scale was in little use during Rankin’s lifetime. It was not until the 

development of multicenter intervention trials that Rankin’s scale was 

rediscovered229. Since then it has become the most widely used 233scale 

for stroke-related disability in trials229,230.The mRS has been shown to be 

a reliable and reproducible measure of outcome in stroke patients233. A 

systemic review from 2009 found just a moderate overall reliability, but 

the reliability was highly variable among the included studies234. The 

scale serves as a global functional health index with high emphasis on 

physical disability233,235. mRS score at 90 days after IVT or MT in acute 

stroke patients is in general accepted as standard for assessing recovery 

from ischemic stroke and has been used in numerous large, randomized 

trials8,96,113,119,123,233.          

 

1.10 Stroke mimics and simulation training  

Patients with stroke mimics (SMs) present with neurological symptoms 

thought to be of cerebrovascular origin, but diagnostic work-up proved 

that the symptoms were not caused by a cerebrovascular event. SMs are 

common and comprise up to 43 % of patients presenting with acute 

neurological symptoms in the acute phase236. The number of SMs are 

more common in stroke centers using CT as a first line diagnostic tool237 

and in centers with a focus on reducing treatment times238. IVT-treatment 
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of SMs poses a potential risk due to the possibility for bleeding 

complications184, and the treatment is associated with an increased 

resource and cost burden to hospitals and society239.          

Minimizing time from symptom onset to treatment is of great importance 

in AIS, as clinical outcomes of therapy are highly time dependent7,8. At 

Stavanger University Hospital, patients with a suspected AIS are met by 

a round-the-clock on-call stroke treatment team. An initial assessment, 

including imaging, usually CT (NCCT of the head, CTA of precerebral 

and intracranial arteries, and CTP) is performed prior to determining the 

treatment tailored to the specific patient7,18. It has been shown that 

simulation-based team-training can improve team performance by 

refining technical skills like communication, teamwork and leadership19. 

Improvement in both simulated, and to some extent clinical performance, 

has been demonstrated for various emergencies, including AIS20,21. 

Recent research points out human factors as a key limit in the 

management of AIS240.  

Translational simulation is used in quality improvement (QI) projects, 

and refers to improving healthcare systems and improving patient care 

with the potential to both diagnose system performance and deliver 

interventions7,241. As part of a QI project in our institution, a revised AIS 

treatment protocol along with weekly simulation-based team-training for 

the stroke treatment team was implemented. Our primary aim was to 

reduce treatment times, to enhance protocol adherence, and to improve 

communication skills. We performed clusters of in situ simulation-based 
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team-training using acute stroke scenarios, including all inn-hospital 

stroke treatment team members and paramedics on-call. This led to 

reduced treatment times, including a reduction of the median door-to-

needle time (for IVT treatment) from 27 to 13 minutes, and reduced 

patient morbidity and mortality7. There is a tradeoff between short door 

to needle time in stroke patients and avoiding IVT treatment of too many 

patients with SMs18,242. It is not desirable to treat patients with SMs with 

IVT from a patient safety179,243 and from a cost of health care 

perspective239. However, if there are only very few SM patients that are 

treated with IVT, there is a higher risk of giving too few patients with 

real AIS IVT, or after too long delay. Quality improvement focusing on 

reducing treatment times in patients with suspected AIS should therefore 

additionally focus on unintended, potentially negative effects of 

speeding up the treatment times18,244. 
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2 Aims of the Studies  

The overall objective for paper I and II was to assess ischemic brain 

tissue in patients with acute ischemic stroke by utilizing the CTP dataset, 

MRI and clinical data. Further, segmentation of the ischemic lesion was 

the primary objective for paper I, characterization of the ischemic lesion 

for paper II.    

  

Paper I:  

The aim of the study was to compare fully-automated methods based on 

ML with thresholding approaches to segment the ischemic regions 

(penumbra + core) in patients with AIS. 

 

Paper II:  

The primary aim of the study was to evaluate if the parametric 

calculation CoV, calculated from CTP, adds value to the conventional 

parametric measures CBF and CBV in the prediction of DWI-based 

tissue outcome in patients with LVO AIS. 

 

 

 



Aims of the Studies 

55 

 

Paper III:  

In situ simulation-based team-training led to significantly reduced 

treatments times in our stroke center. To analyze possible unwanted 

effects of simulation training, the proportion of SMs among IVT-treated 

patients for presumed AIS, and the proportion of intracranial hemorrhage 

(ICH) among IVT-treated SMs, were identified.
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3 Materials and Methods  

3.1 Context 

Stavanger University Hospital serves a population of 369.000. Close to 

450 patients with AIS are annually admitted to the hospital. All 

consecutive patients with a suspected AIS having received intravenous 

thrombolysis are prospectively included in a local thrombolysis registry. 

The registry contains multiple variables, including patient demographics, 

cerebrovascular risk factors, information about neurological impairment 

assessed by the NIHSS on admission and discharge, in-hospital mortality 

and mRS at baseline and 3 months post stroke measuring long-term 

functional outcome7,28. 

 

3.2 Dataset 

Paper I + II:  

An overview of the patients included in paper I + II are shown in figure 

4 and 5. 

The study group was IVT-treated AIS patients with visible perfusion 

deficits on CTP. The dataset comprises CTP scans from patients 

extracted from a population-based cohort between January 2014 and 

August 2020. All patients were examined with NCCT of the head, CTA 

of precerebral and intracranial arteries, and CTP immediately after 

hospital admission. Additionally, MRI including DWI was performed in 
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most patients in paper I and in all patients in paper II, in most cases 

within 24 hours after IVT treatment. The patients were divided into 

different groups based on level of vessel occlusion on CTA. LVO was 

defined as occlusion of any of the following arteries: The internal carotid 

artery, M1 and proximal M2 segment of the middle cerebral artery, A1 

segment of the anterior cerebral artery, P1 segment of the posterior 

cerebral artery, basilar artery and vertebral artery occlusion. Non-LVO 

was defined as patients with perfusion deficits with more distal artery 

occlusion or with perfusion deficits without visible artery occlusion. 

Both groups, and additionally 15 patients without ischemic stroke 

(patients admitted under the suspicion of stroke, but after diagnostic 

work-up were determined not to have suffered from a stroke episode) 

were included in paper I. The latter group served as control group. Only 

LVO AIS patients, with a follow up MRI, were included in paper II.  In 

paper II, recanalization status was also evaluated based on DSA or TOF 

angiography. Patients were grouped according to recanalization status on 

the mTICI scale (mTICI≤2a not recanalized, mTICI >2a recanalized)245.   
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Figure 4: Patients included in paper I. 

 

Figure 5: Patients included in paper II. 
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Paper III:  

The study period was between January 1, 2015, and December 31, 2020. 

All patients with suspected AIS treated with IVT in this period were 

prospectively registered in a local research database. All relevant data-

endpoints including ICH and the final diagnosis were registered in this 

database. On February 1st, 2017, repeated clusters with weekly in situ 

simulation-based team-training involving the stroke treatment team was 

introduced. Patients treated before introduction of the simulation training 

served as control group.  

 

3.3 Methods  

Paper I:  

CTP-based conventional parametric maps (Tmax, TTP, CBF, CBV), 

MIP images and NIHSS score were used as input. In all the experiments, 

the predictions were compared with the ground truth and multi-class 

confusion matrices were generated. Ground truth images were manually 

annotated from CTP-derived parametric maps and MIP in assistance 

with the follow-up MRI examination by using an in-house developed 

software in MATLAB. CTP images from 33 randomly selected patients 

(19 from the LVO, 11 from the non-LVO, and 3 from the WIS subset) 

were manually annotated by two experienced neuroradiologists, and 

images from the remaining patients were manually annotated by one of 

the neuroradiologists. The criteria to select the best method for 
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classification of penumbra and core were based on a study of various 

implemented experiments and their relative statistical results. Our 

proposed multi-classification methods consist of the following steps 

(also illustrated in figure 6):  

1. Brain extraction. 

2. Simple linear iterative clustering (SLIC) algorithm whereby 3D 

superpixel versions of the PMs are obtained.  

3. ML algorithm: Feeding the features (PMs + MIP images + 

superpixel images + NIHSS) to our implemented ML 

algorithms to predict the ischemic regions. The ML methods 

used were support vector machines, decision tree and random 

forest, in a single- or two-step approach. A final post-processing 

step using a 3D mode filter was also implemented.         
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Paper II:  

CTP derived parametric maps and DWI were assessed in acute stroke 

patients. Ground truth ischemic regions were outlined by manual 

annotations by an experienced neuroradiologist, and for some patients by 

two experienced neuroradiologists (as described in Material and 

Methods for paper I). An in-house developed software in MATLAB was 

used28. The CTP conventional parametric maps were used for delineating 

the hypoperfused lesion (penumbra + core), whereas DWI was used for 

core delineation. Co-registration of each DWI-slice and the 

corresponding CTP slice for the parametric maps was performed using 

the first and last slice in the ischemic region as a frame of reference. CTP 

voxel-wise tissue outcome was assessed for the parametric maps CoV, 

CBF and CBV. The primary outcome for our analysis was tissue 

outcome according to infarction on follow-up DWI.  
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Figure 7: General overview of the processing steps involved: Step 1) maps the hypoperfused 

region on the CTP scans with the corresponding region on follow-up DWI scans. In step 2, image 

co-registration was performed slice-by-slice using a similarity transformation, consisting of 

translation, rotation and scaling. In step 3, voxel-wise assessment of CTP was done according to 

DWI-based tissue outcome.  

 

Paper III:  

The proportion of SMs among patients that received IVT for presumed 

AIS, and the extent of intracranial hemorrhage in IVT-treated SM 

patients, were identified by clinical and radiological evaluation. SMs 

were diagnosed during their hospital stay and then retrospectively 

categorized into eight different sub-groups: Psychiatric disorders, 
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peripheral vertigo, epilepsy, migraine, infectious diseases, intoxication, 

peripheral facial palsy, and others. 

 

3.4 Statistics 

Paper I:  

In all the experiments, the predictions were compared with the ground 

truth and multi-class confusion matrices were generated. Our dataset 

comprised three classes (core, penumbra and healthy brain). Multi-class 

confusion matrices were created for the different classes, including 

pixels classified as true positive/negative and false positive/negative. 

From each confusion matrix, the recall, the precision and the Dice 

coefficient were calculated. The range for these values was [0, 1]. We 

also considered the Hausdorff distance between predictions and ground 

truth regions, and the absolute difference in the volume among the 

predictions, both with a range of [0, ∞]. Bland-Altman plots were used 

to illustrate mean differences and limit of agreement between predicted 

volume and volume calculated from ground truth images.     

 

Paper II:  

Patients with LVO were grouped according to recanalization status. 

Statistical analyses were performed using SPSS Statistics version 24 

(IBM Cooperation, Armonk, NY, USA) and MATLAB (R2020a, Update 



Materials and Methods 

65 

 

1, The MathWorks, Inc., Natick, USA). Categorical variables are 

presented as count (percent, %) and continuous variables as median 

(interquartile range, IQR). Changes in ratios were evaluated using 

Fisher’s exact test or Pearson Chi-Square, as appropriate. Changes in 

continuous variables were evaluated using Mann-Whitney test. 

Statistical significance was set at p<0.05 (two-sided).            

 

Paper III:  

All statistical analyses were performed using SPSS Statistics version 24 

(IBM Cooperation, Armonk, NY, USA). Categorical variables are 

presented as count (percent, %) and continuous variables as median 

(interquartile range, IQR). Changes in proportions were evaluated using 

Pearson Chi-square test or Fisher’s exact test, as appropriate. Changes in 

continuous variables were evaluated using Mann-Whitney test.   

 

3.5 Ethical considerations  

Paper I+II:  

The studies are approved by the Regional ethic committee project 

2012/1499, and by Sikt, the Norwegian Agency for Shared Services in 

Education and Research, reference number 953392. 

All procedures involving human participants were performed in 

accordance with the ethical standards of the institutional and/or national 
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research committee and with the 1964 Helsinki Declaration and its later 

amendments or comparable ethical standards, including the ARRIVE 

guidelines.  

 

Paper III:  

All procedures involving human participants were performed in 

accordance with the ethical standards of the institutional and/or national 

research committee and with the 1964 Helsinki Declaration and its later 

amendments or comparable ethical standards. This study was approved 

by the regional ethical committee and the local hospital authorities. 

Informed consent was waived, after approval of the regional ethical 

committee.
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4 Results of Papers  

Paper I:  

The results that showed best alignment with the manually annotated 

delineations of penumbra and infarct core were calculated with random 

forest and single-step approach (called Mdl-5.2), with an average Dice 

coefficient of 0.68 for penumbra and 0.26 for core, for the three groups 

analyzed together. The average in volume difference was 25.1 ml for 

penumbra and 7.8 ml for core, for all groups together. The best result 

was found for penumbra prediction in patients with LVO, with a Dice 

coefficient of 0.69. We found some inter-observer variability in the 

manual annotations for ground truth images between the two 

neuroradiologists, e.g., a Dice coefficient of 0.80 was found for 

interobserver-variability for penumbra in the LVO subset, and of 0.67 

for penumbra in the non-LVO subset. 

 

Paper II:  

The combination of CoV versus CBF and CBV for the ischemic lesion 

on admission according to final outcome on follow-up DWI, is shown in 

the voxel-based 2D and 3D plots in figure 8 and 9. In patients with 

subsequent recanalization, both CBF and CBV showed a clear 

association with infarct risk. Low CBF and CBV were associated with 

high risk of infarction across a broad range of CoV values (figure 8). 

Conversely, in patients without recanalization, infarct risk was largely 
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dependent on CoV. In these patients, there was a tendency towards lower 

CoV values, where a large proportion of tissue with reduced CoV 

developed into infarction, also in regions with higher CBF and CBV 

values (figure 9). In Figure 8 and 9, areas with red color on the 3D curves, 

represent combinations of voxel values associated with a high risk of 

infarction. These voxels were predominantly located beside the peaks for 

both CBF and CBV, most evident in recanalized patients.  
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Figure 8: Recanalized patients 
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Figure 9: Non-recanalized patients 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 and 9: The plots show the CTP parametric measures on admission in the hypoperfused 

region in recanalized (figure 8) and non-recanalized patients (figure 9). The results are presented 

as 3D plots (a+c) and 2D plots (b+d). Values of the parametric measures are defined in the first 

two dimensions of each 2D and 3D plot. The third dimension in the 3D plots indicates the 

distribution of value combinations for the parametric measures analyzed (given as probability, 

values ranging between 0 and 1). Final infarct was defined as the union between the hypoperfused 
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region from a CTP scan and the infarct area visible on a follow-up DWI scan (step 3 in Figure 

7). The color dimension illustrates the likelihood of final infarct (given as probability, with values 

weighted to lie between 0 and 1) across all subjects in the dataset, i.e., the likelihood of having a 

particular combination of values in the CTP hypoperfused region, overlapping the DWI-based 

final infarct area.  

Abbreviations: CBF, cerebral blood flow (ml blood/100 g brain tissue/minute); CBV, cerebral blood volume 

(ml blood/100 g brain tissue); CoV, transit time coefficient variation. 

 

Paper III:  

From 2015 to 2020, 959 patients were treated with IVT for symptoms of 

AIS. After introduction of simulation training the proportion of patients 

treated with IVT that were later diagnosed as SMs increased significantly 

(15.9% before vs. 24.4% after, p=0.003). There were no ICH 

complications in the SM patients treated before, while two SM patients 

suffered from asymptomatic ICH after introduction of simulation 

training (p=1.0). When sub-grouping SMs into pre-specified categories, 

only the group diagnosed with peripheral vertigo increased significantly 

(2.5 vs 8.6%, p<0.001).  
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5 Discussion and Future Perspectives  

Paper I: 

In this study, we propose an automatically ML-based classification of 

penumbra and core. Early treatment is vital in AIS, hence, an automatic 

approach can help medical doctors in rapid recognition of ischemic 

lesions. Fast and precise visualization of ischemic lesions have the 

potential to better guide treatment decisions by improving diagnostic 

accuracy.  

The best results were achieved with random forest and single-step 

approach. Applying superpixel regions to our models improved the 

results. Different numbers of superpixels were applied to our model, and 

increasing the number of superpixel regions slightly improved the 

statistical measures for both groups (LVO and non-LVO). Patients with 

non-LVO tend to have smaller ischemic lesions compared to LVOs, 

making precise classification more challenging in these patients. This 

applies particularly to the core and might be caused by limited number 

of samples for core since patients with non-LVO do not always present 

with a core. Our proposed model performed better for all classes 

compared to threshold-based approaches, especially for LVO and 

penumbra, with the core-class for non-LVO being the only exception 

where our method performed about as poorly as thresholding. This 

indicates a reliable agreement between ML predictions and manual 

annotations created by neuroradiologists. 
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Our study inherits limitations. Our ground truth images rely on CTP upon 

hospital admittance combined with the results of the follow-up MRI 

examination. In many studies, MRI is used as the initial diagnostic 

modality, with cytotoxic edema on DWI used as ground truth for 

ischemic core88-90. However, in many countries, MRI is not performed 

simultaneously with CTP. The CTP examination shows a delineation of 

penumbra and core that is highly dependent on the exact time at which 

the images are acquired. The development of the ischemic lesion in acute 

ischemic stroke is a dynamic process, contingent upon numerous factors, 

such as whether thrombectomy was performed, duration and severeness 

of ischemia and patient-related factors like age, blood pressure and 

comorbidity10. This poses a challenge, as the size of the core might have 

changed between the time of the CTP examination and the subsequent 

MRI scan. Still, follow-up DWI is commonly used as a measure for the 

ground truth of the ischemic core in lack of a more precise measure88-90. 

Our ground truth, however, relying on both CTP and MRI, might provide 

a reasonable alternative.  

Our study is also a single center study, and there might be unintended, 

unknown factors that could constrain its generalizability (like local 

institutional practices, limited size of the study population, population 

characteristics and different confounding variables). Yet, we present data 

gathered over several years from the sole stroke-treating hospital in the 

geographic area for our study, and thus limiting biases related to patient 

selection and transfer. Being a single center study also applies to paper 

II and III.  
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For both paper I and II, manually annotated images constitute a quite 

small portion of the patients included. In paper I, we found some inter-

observer variability between the two neuroradiologists. In general, ML-

based approaches for the segmentation of medical images, including 

ischemic lesions, are supervised learning methods and require large 

amounts of manually annotated data255. This is challenging, as manual 

annotations are scarce since the labeling process is often time-

consuming. Inter-observer variability is common in manual annotations 

in medicine256 and may also be influenced by the frequent lack of a 

universal ground truth, which also applies for ischemic core10. Hence, 

increasing the number of manual annotations by two neuroradiologists 

has the potential to enhance the observer confidence and further increase 

the impact of computer-aided analysis in the assessment of the ischemic 

lesions, with further implications for clinical decision-making processes.    

In summary, our proposed method calculating the penumbra and core 

based on ML algorithms, performed better for all classes compared to 

threshold-based approaches, especially for LVO and penumbra, with the 

only exception being the core-group for non-LVO where our method 

performed about as poorly as thresholding. However, there is still room 

for improvement. Given the central role of imaging in the management 

of AIS patients, and the overwhelming evidence of the benefit from early 

treatment in AIS7,246,247, more studies on fast and precise tissue viability 

visualization is wanted. Rapid and improved diagnostic accuracy in AIS 

holds the potential to enhance treatment decision-making with the goal 

to tailor the acute treatment to each patient165. Better analyses using 
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techniques such as artificial intelligence and deep neural networks, will 

probably and hopefully lead to a better worldwide access to personalized 

treatment for AIS patients in the future78,144,145, including stroke units 

who do not have access to highly qualified radiologists for radiologic 

image interpretation257.              

 

Paper II: 

The lack of a perfectly reliable definition for ischemic core presents a 

major challenge in current stroke imaging. Imaging plays a central role 

in treatment decision in patients with a suspected AIS4-6. Currently used 

imaging in AIS, including most commonly used perfusion-based 

parameters, struggle to accurately differentiate between salvageable and 

non-salvageable tissue10-12. Most previous imaging-based studies, 

exploring microvascular distribution of blood in ischemic brain tissue, 

are MRP based13,15,125,136,248. Given the widespread use of CTP, there is 

a growing need of CTP-based studies on tissue viability visualization.  

We assessed the CTP-based parametric maps CoV, CBF and CBV voxel-

wise according to DWI-based final infarct. In patients with subsequent 

recanalization, a distinct correlation between infarct risk and both CBF 

and CBV was observed. Conversely, in patients without recanalization, 

infarct risk was largely dependent on CoV.  

Our study has inherent limitations. Adding a more quantitative 

assessment of the imaging parameters could further explore our data and 
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strengthen our findings. To further assess the risk of infarction, such as 

employing a logistic model, are in alignment with our intended focus for 

further work on the topic.  

It should also be mentioned that we did not include all patients referred 

to the hospital with AIS in the study period, as the presence of a visible 

and acute ischemic lesion on the CTP dataset, and collecting high-quality 

data on combinations of parameters, was our primary focus and among 

our inclusion criteria. A more unselected group, including all LVO-

patients with an ischemic lesion on CTP, is a planned expansion of the 

study, as soon as the selection of parameters is explored more 

thoroughly. There is also some heterogeneity in our study population 

(e.g., patients in both early and extended time windows), partly because 

the data are acquired over several years, and the selection criteria for 

treatment have changed over time due to results of studies96,113,119,123,199. 

As in clinical daily life, patients with AIS are an inhomogeneous group 

of patients. This does not necessarily need to be a drawback for a study 

exploring the delineation of penumbra and core, on the contrary, the 

results might prove to be more robust.  

As for paper I and III, this is also a single center study, with potential 

unintended, unknown factors that could constrain its generalizability. As 

for paper I, only a relatively small proportion of the ground truth images 

used were manually annotated by two neuroradiologists.   

In summary, our findings suggest the potential for a more accurate 

delineation of the ischemic core using CoV, compared to conventional 
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parameters alone. If the delineation of the ischemic core and penumbra 

is more accurate in the future, it will have a tremendous value for 

treatment decisions in the acute clinical setting. Due to inaccuracies with 

today’s core-penumbra calculations10,12,71,160, patients that probably 

could profit from MT are not selected for treatment157,203,207,208,211,212. On 

the other hand, there are patients that are selected for treatment by 

today’s recommendations, but who do not profit, even by technical 

optimal procedures196. Obviously, there is a need for other or additional 

selection criteria, and parameters exploring the microvascular 

environment might add support in better core and penumbra delineation.  

 

Paper III: 

Introduction of in situ simulation-based team-training in 2017 was 

accompanied by a significant increase in the proportion of patients 

treated with IVT for a presumed AIS that were later diagnosed as SMs 

(15.9% vs 24.4%, p=0.003). The increase was mainly accounted for by 

patients diagnosed with peripheral vertigo. The cause of this increase is 

likely multifactorial and related to a focus on time, the acceptance of 

lower diagnostic specificity, an evolving fear to harm patients by 

withholding IVT in ambiguous cases, by an uncertainty of the residents 

in the clinical evaluation of patients presenting with vertigo, and by the 

recognition that IVT in SMs is rarely associated with 

complications249,250. The overwhelming evidence of the benefit from 

early treatment in AIS7,246,247 clearly contributes to shaping a culture 
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where IVT treatment of SMs is more accepted than avoiding giving IVT 

to true stroke patients that could have been treated. Several large RCTs 

during the study period have further established the safety and efficacy 

of reperfusion treatment in AIS96,113,123,202,251, contributing to change the 

culture of treatment towards fewer restrictions. Simulation training is a 

central tool helping to adapt in this cultural change.  

MRI in the initial management of patients suspected to suffer from AIS 

reduces the proportion of IVT-treated SMs50,237. Patients diagnosed with 

peripheral vertigo was the only subgroup that increased significantly in 

our study. While most patients presenting with vertigo suffer from 

benign disorders, up to 27% can end up with serious diagnoses and 

cerebral stroke is the underlying cause in 4–15%252,253. The clinical 

differentiation between peripheral and central causes of vertigo is 

challenging. In addition, a small but significant percentage of patients 

with AIS initially have negative MRI scans, especially in strokes located 

in the posterior fossa254. No significant increase in bleeding 

complications was found in our study. Only two patients were diagnosed 

with an asymptomatic ICH during the four-year study period, this finding 

is similar to what is found in other studies250.   

To firmly establish a cause-effect relationship, is a general challenge in 

simulation training. During the study period, in a part of medicine where 

research and development evolves so fast, guidelines and 

recommendations change, and influence the treatment decisions even in 

the relatively short time span of this study. Therefore, there are probably 
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also additional factors influencing the stroke mimics rate, that are not 

directly coupled to the simulation training.  

Other limitations in our study, is a relatively small sample size, as well 

as significantly less frequent atrial fibrillation found after introduction of 

simulation training, which could lower the number of true strokes in our 

study group.  

As for paper I and II, this is also a single center study, with potential 

unintended, unknown factors that could constrain its generalizability. 

Yet, we present data gathered over several years from the sole stroke-

treating hospital in the geographic area for the study, which allows us to 

present population-based data and avoid biases related to patient 

selection and transfer.       

In summary, the implementation of in situ simulation-based team-

training for the acute stroke treatment team seems to be safe but was 

associated with a significant increase in the proportion of patients treated 

with IVT that were later diagnosed as SMs. The increase consisted 

mainly of patients with peripheral vertigo. This emphasizes the need of 

implementing patients presenting with dizziness and vertigo in the 

weekly simulation-based team-training. Simulation-based team-training 

has the potential to improve team performance, with improvement 

observed in both simulated, and to some extent clinical performance, 

across various emergencies, including AIS7,19-21. Our quality 

improvement project, aimed at reducing treatment times, led to a 

significant increase in the proportion of IVT-treated patients that were 
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later diagnosed as SMs. Our findings highlight the importance of 

additional focus on unintended, potentially negative effects in quality 

improvement endeavors18,244.   

 

Future perspectives 

The use of computer-based analysis in medicine has increased 

dramatically in recent years and is continuously evolving258. Several of 

these computer-based techniques use AI and combine clinical data, 

patient characteristics, and imaging results. This holds the potential for 

no less than revolutionizing patient care in the future, with advanced 

technology used to tailor treatment to every patient, and the possibility 

for making this technology, with subsequent advanced patient care, more 

easily available also to smaller stroke units in near future. AI certainly 

has drawbacks, like inadequate diversity of data used for training, such 

as limited engagement of resource-poor health institutions in the 

development and validation of AI algorithms, the lack of transparency, 

and the often high costs associated with the implementation of AI-based 

algorithms in clinical practice257. Still, the time where the validity of AI 

in medicine was questioned has passed. Today, the challenge is how to 

use this technology reasonable and safe. AI-based methods already play 

a large role in radiology and is expected to have even larger impact in 

the future, as well as in more clinical disciplines of medicine151,255. It is 

expected that AI has the potential to improve radiology and patients care 

and decrease costs259. Large amount of data used for learning is 
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fundamental for this development, where open access and sharing plays 

a key role. To complement technical and medical expertise combined is 

of vital importance in the development and implementation of good and 

clinically meaningful AI-based technology in medicine, as experienced 

with the work of this thesis as part of a technical and medical twin 

project. It is essential to provide high quality clinical data, including high 

quality imaging for training the models, to produce good and meaningful 

outputs for clinical use. Including additional parameters, such as CoV 

explored in this thesis, with the potential for a more reliable delineation 

of the ischemic lesion in the acute phase, offers significant promise for 

further advancing these techniques.  

In a global perspective, the development of smaller, less fragile, and 

cheaper CT- and MRI scanners, compared to currently commonly used 

scanners, along with making AI-based technology available at lower 

costs257, also holds the potential that this technology can be more 

accessible for patients in lower- and middle-income countries. This 

development will also have the potential to give patients with AIS 

therapy earlier in high income countries even before the patients arrive 

in the hospitals, as it will be more available, easier to use and can be 

placed in remote locations. 

Although CT is the preferred imaging modality in the initial assessment 

of patients with a suspected AIS in many stroke centers, MRI is superior 

to CT in many aspects, and initial assessment with MRI has 

demonstrated feasibility within guideline-based frames for treatment 
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times108 and results comparable to in patients initially assessed with 

CT107. Increasing the use of MRI in the acute setting, along with 

computer-based analysis using AI, will probably provide improved 

diagnostic accuracy.  

 

Especially in recent years, there has been an increased emphasis on the 

importance of open access for scientific publications. Open access 

ensures that research findings are open and freely available to everyone, 

has the potential of increasing its impact as openly accessible research is 

more likely to be read and cited, and facilitates the exchange of both 

findings and ideas among researchers globally, having the potential to 

accelerate the scientific progress260,261. Open access also has drawbacks, 

like the often high open-access charges set by the publisher, and the 

emerging number of medical journals, including journals of lower 

quality, for which high open-access charges has made it easier to 

establish profit for journals with low/lacking peer review standards260. In 

Norway, several institutions and research funders have adopted 

guidelines and requirements to promote open access to research 

publications261. Among these are the University of Stavanger, which 

shall be an open university, with its research output being openly 

available to everyone262. The two published papers in this thesis, paper I 

and II, are both open access papers. For paper II and III, we state that the 

data that support the findings are available from the corresponding author 

upon reasonable request. For paper I, the code used is publicly available 

online in a GitHub repository. Despite its drawbacks, sharing data and 
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ensuring open access publications hold significant potential for 

advancing and speeding up research.  

 

If systems for simulation training, that enable continuous monitoring of 

health care providers, can provide real-time feedback customized for 

each participant, and additionally is coupled to clinical results from the 

patients that every participant is involved with, a more effective real time 

feedback will lead to learning without delay. In the future, we believe 

that automatic analyses and reporting will be an integrated part of every 

patient pathway in the hospital and other institutions, and that learning 

and feedback is a more continuous integrated part of working with 

humans compared to today’s measures. To technically solve these issues 

is probably not a major challenge. Issues on privacy and surveillance, on 

the other hand, will probably pose a bigger challenge.       
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Machine Learning Algorithms Versus
Thresholding to Segment Ischemic Regions in

Patients With Acute Ischemic Stroke
Luca Tomasetti , Liv Jorunn Høllesli, Kjersti Engan , Senior Member, IEEE, Kathinka Dæhli Kurz ,

Martin Wilhelm Kurz, and Mahdieh Khanmohammadi

Abstract—Objective: Computed tomography (CT) scan
is a fast and widely used modality for early assessment in
patients with symptoms of a cerebral ischemic
stroke. CT perfusion (CTP) is often added to the
protocol and is used by radiologists for assess-
ing the severity of the stroke. Standard paramet-
ric maps are calculated from the CTP datasets.
Based on parametric value combinations, ischemic
regions are separated into presumed infarct core (irre-
versibly damaged tissue) and penumbra (tissue-at-risk).
Different thresholding approaches have been suggested
to segment the parametric maps into these areas. The
purpose of this study is to compare fully-automated
methods based on machine learning and thresholding
approaches to segment the hypoperfused regions in
patients with ischemic stroke. Methods: We test two
different architectures with three mainstream machine
learning algorithms. We use parametric maps as input
features, and manual annotations made by two expert
neuroradiologists as ground truth. Results: The best
results are produced with random forest (RF) and
Single-Step approach; we achieve an average Dice
coefficient of 0.68 and 0.26, respectively for penumbra and
core, for the three groups analysed. We also achieve an
average in volume difference of 25.1 ml for penumbra and
7.8 ml for core. Conclusions: Our best RF-based method
outperforms the classical thresholding approaches, to
segment both the ischemic regions in a group of patients
regardless of the severity of vessel occlusion. Significance:
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A correct visualization of the ischemic regions will guide
treatment decisions better.

Index Terms—Computed tomography perfusion,
Ischemic stroke, Machine learning, Thresholding.

NOMENCLATURE

BT Brain Tissue.
CBF Cerebral blood flow.
CBV Cerebral blood volume.
CNN Convolutional Neural Network.
CT Computed Tomography.
CTA Computed Tomography Angiography.
CTP Computed Tomography Perfusion.
DT Decision Tree.
DWI Diffusion-weighted Imaging.
LVO Large Vessel Occlusion
MIP Maximum Intensity Projection.
ML Machine Learning.
MRI Magnetic Resonance Imaging.
MTT Mean transfer time.
NCCT Non-contrast Computed Tomography.
NIHSS National Institutes of Health Stroke Scale.
RF Random Forest.
SLIC Simple Linear Iterative Clustering.
SMOTE Synthetic Minority Over-sampling Technique
SVM Support Vector Machine
Non-LVO Non-Large Vessel Occlusion.
TMax Time-to-maximum
TTP Time-to-peak.
WIS Without Ischemic Stroke.

I. INTRODUCTION

C EREBRAL stroke is the second leading cause of death and
the third leading cause of disability worldwide [1]. Despite

significantly reduced incidence over the past years in the entire
world, the worldwide prevalence of cerebral stroke is estimated
to be 17 million strokes causing 6.5 million deaths per year [1],
[2]. In Norway, acute cerebral stroke is the third leading cause of
death in adults and the leading cause of disability and admission
to nursing homes [3], [4]. Changes in demography will result in
a predicted 34% increase in stroke incidence in Europe between
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2015 and 2035, which is likely to be mirrored in other parts of
the world [2]. Thus, cerebral stroke has a huge socio-economic
impact on society and a tremendous impact on the quality of life
for every single patient [5].

There are two broad categories of cerebral stroke; hemor-
rhagic and ischemic stroke. Approximately 20% of all strokes
are due to hemorrhage, while approximately 80% are due to
ischemia [6]. Both groups can further be divided into different
subtypes. Ischemic stroke may be caused by arteriosclerosis,
thrombi, emboli, dissections, or systemic hypoperfusion, all of
them leading to ischemia due to reduced blood flow in regions
of the brain.

The severity of ischemia usually varies within the area of
reduced blood flow, and for clinical use, the area is divided into
two distinct regions: ischemic core and penumbra. The ischemic
core is defined as irreversibly damaged brain tissue [7]. The
tissue within the penumbra is critically hypoperfused and is
located around and adjacent to the infarct core. If blood flow is
restored timely, this tissue may regain neurological function [7].
If the blood flow remains low, however, the area of penumbra will
transfer into an irreversibly damaged infarct core. The ischemic
penumbra was introduced by Astrup et al. as “a region of
hypoperfused, electrically silent, and functionally impaired but
viable tissue” [8]. Restoring blood flow and thereby preventing
the penumbra from proceeding to irreversibly damaged infarct
core, is the main treatment goal in patients with acute ischemic
stroke (AIS). Penumbra may change into infarct core rapidly in
AIS patients. Therefore, rapid recognition of stroke symptoms
and acute treatment in a stroke center are of vital importance.

According to the European Stroke Organization guidelines,
Computed Tomography (CT) or Magnetic Resonance Imaging
(MRI) are the two modalities recommended for diagnostic imag-
ing in acute stroke patients [9]. MRI with diffusion-weighted
imaging (DWI) is superior to Computed Tomography (CT) scans
for detection of small acute infarctions and identification of some
stroke mimics. Nevertheless, CT is the preferred imaging modal-
ity in many centers for acute stroke patients due to its widespread
availability, rapid scan times, and its high sensitivity for detect-
ing hemorrhage. DWI has been considered the gold standard for
ischemic core estimation [10]–[14]; however, there are very few
hospitals where MRI are used as the first imaging tool in acute
stroke patients, since it is not always timely available on a 24/7
basis, plus, some patients have contraindications for this type of
modality. MRI is usually performed within the first days after
an AIS. Treatment, timing of treatment, and other variables will
affect further development of the penumbra. Hence, any core of
follow-up MRI might have developed after the acute imaging
and might not be comparable with the imaging results in the
acute setting. In the last years, DWI has been contested as the
de-facto gold standard since it cannot accurately differentiate
irreversibly ischemic tissue from salvageable tissue [15], [16],
and it has been shown that the detected ischemic regions can
be partially reverse, especially if DWI is performed in the early
window time [16]–[18].

At Stavanger University Hospital (SUS), patients with sus-
pected acute stroke are routinely investigated with non-contrast
computed tomography (NCCT) of the head, CT angiography

Fig. 1. Parametric maps of a single slide of a patient’s brain. In this
patient there is an ischemic area on the right side in the vascular territory
of the middle cerebral artery (pointed by a red arrow). Time-to-peak
(TTP) = time-to-peak; time-to-maximum (TMax) = time-to-maximum;
Cerebral blood flow (CBF) = relative cerebral blood flow; Cerebral blood
volume (CBV) = relative cerebral blood volume.

(CTA) of the precerebral and cerebral arteries, i.e. arch to vertex
angiogram, and CT Perfusion (CTP) immediately after hospital
admission. In most cases MRI including DWI is performed
during the next days. In patients with suspected stroke with
unknown time of symptom onset, MRI with DWI is used as
a first-line diagnostic tool upon hospital admission.

Whether treatment is applied depends on time from symp-
tom onset to hospital admission, but also largely depends on
imaging results with CT Perfusion being the key-modality for
patient selection. In CTP a time series of three-dimensional
(3D) datasets are acquired during contrast agent injection. Based
on the changes in the tissue density over time, color-coded
parametric maps are calculated. The different parametric maps
highlight spatio-temporal information from the passage of the
contrast agent within the brain tissue. Generally, parametric
maps based on CTP are generated in two steps: the first step
acquires a time-density curve for each pixel based on the track
of the contrast agent. The second step consists of extracting
specific information from the generated time-density curves.
Cerebral blood flow (CBF), cerebral blood volume (CBV), time-
to-peak (TTP), mean transit time (MTT) and time-to-maximum
(TMax) are all examples of parametric maps [7]. Radiologists
use parametric maps for diagnosis and treatment planning and
are indirectly assessing penumbra and core by evaluating such
parametric maps. An example of the parametric maps of a single
brain slice, involved in this study, is given in Fig. 1.

Time is a fundamental factor for patients affected by an
ischemic stroke. Automation of the recognition process for
the ischemic regions, penumbra and core, can be immensely
helpful for medical doctors for treatment decisions. Over the
last decades, different methods and parameters were tested to
find the most suitable approach to segment the ischemic regions
using parametric maps as input.

Region growing is a technique to extract connected areas in
an image based on pixel information; this method is defined as
semi-automatic because the user manually selects a seed for the
growing region algorithm. This technique was used by Matesin
et al. [19] in relation with CT head images of stroke lesions, and
by Dastidar et al. [20], for measuring the volumetric infarction
using 3D T2 Fast Spin Echo MRI in patients affected by stroke.
Their goal was to delineate ischemic areas, and not to distinct the
core from the penumbra. The first delineation of both areas, using
a region growing technique in combination with the parametric
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maps acquired by CTP analyses, was implemented by Contin
et al. [21].

A series of studies have proposed experiments with threshold
values on the derived parametric maps to improve the results
achieved by the region’s growing approaches. Different thresh-
olds have been proposed for different parametric maps, gener-
ated from different vendors, and applied to various datasets [10]–
[12], [22] to estimate both the ischemic regions, or the infarct
core, or penumbra. These studies have used follow-up images
(such as DWI or NCCT), acquired hours later after the stroke
onset, to delineate the ground truth of the infarct regions and
used them as a comparison for their predictions. For this reason,
studies using DWI as follow-up imaging present some limita-
tions: they only included patients who were later identified with
infarct lesions in follow-up images, excluding the ones who
underwent the same routine at the time of hospital admission
but did not show any lesion in the follow-up DWI; they also
excluded patients with contraindication for MRI. Moreover,
since the threshold values were compared with final infarctions,
assessed after the patient’s treatment, they do not present a per-
fect estimation of the infarctions before treatment decision; thus,
they are not the best candidates to help medical doctors during
the treatment making decision. Furthermore, the studies have
proposed quite distinct thresholding values due to the different
vendors used for post-processing evaluation and the distinct
window of time (≤ 1hour to 7 days) used for follow-up images to
evaluate the ground truth for the ischemic regions. Thus, there is
no real consensus to properly define the ischemic regions based
on threshold values on the parametric maps derived from CTP.

In recent years, Machine Learning (ML) and neural network
algorithms have achieved promising results in a large number
of medical image analysis applications, and have also made
their way into the stroke application [23]–[27]. Kemmling et al.
proposed a generalized linear model using the parametric maps
as input and clinical data to quantify changes of tissue in-
farction [23]. Qiu et al. implemented a ML-based algorithm
to detect early infarction in patients with AIS using NCCT
as input and follow-up DWI as ground truth [24]. Kasasbeh
et al. used a semi-automatic approach based on a convolutional
neural network (CNN) with the entire set of parametric maps
as input to classify the infarct core using follow-up DWI as
ground truth [26]. However, these ML and CNN based methods
were only trained to classify the infarct core regions and did
not find the penumbra areas. Differently, Qiu et al. developed
two distinct ML models, using a multiphase CTA as input and
DWI/NCCT follow-up images as ground truth, to predict core
and penumbra [25]. Their primary goal was to demonstrate the
validity of using multiphase CTA in comparison to CTP imaging
for evaluating ischemic regions, but they stated limitations in
their data material. Nevertheless, using follow-up images for
delineating the ischemic regions limits the usability for medical
doctors since they might not be helpful for treatment decisions
but just for comparison with the clinical outcome. Our research
group was, to the best of our knowledge, the first using the
entire 4D CTP data as input to a neural network to segment both
penumbra and core simultaneously. A modified U-Net model
was used in a small pilot study to segment both penumbra and

core regions using the entire 4D CTP volume as input and with
ground truth generated with manual expert assessment directly
from the parametric maps [27]. The results were promising, but
they were based on a very small pilot study and need to be
validated on a larger sample size.

Before continuing to use the entire 4D dataset as input, we
wish to study the utility of automatically segmenting the penum-
bra and core based on the parametric maps that are already cal-
culated in the standard software used in clinical practice. Based
on the ideas and the shortcomings of the published methods, we
propose in this paper a ML-based method using the parametric
maps as input and both core and penumbra regions as output, in
addition to healthy tissue. One can argue that CNN naturally
fits this type of problem; nevertheless, several examples of
classical ML methods with this application can be found in
the literature [23]–[25] using follow-up images as ground truth,
bearing with them the same issues mentioned earlier. Moreover,
learning good CNN models usually require large datasets, and/or
transfer-learning, and we have a limited dataset to work with.
Thus, we aim to properly understand if well-established ML
models, less data-hungry and complex than CNN models, can
help to predict both the ischemic regions and have the potential
to assist medical doctors during treatment decisions. We give a
comparison of the proposed method with different parameters
and with thresholding methods from the literature. This paper
contributes with the following:

� Proposing a fully-automatic ML-based algorithm to seg-
ment both penumbra and infarct core regions in patients
affected by AIS, since a correct visualization of the sal-
vageable tissue will guide treatment decision better,

� Using the parametric maps as input, due to their wide
usage by medical doctors for early assessment of ischemic
strokes,

� Training the models using a dataset with different groups
of patients based on their level of vessel occlusion, gener-
alizing the models and the training data and not restricting
the type of patients that can be tested,

� Adopting as ground truth, images annotated by expert
neuroradiologists directly from the parametric maps based
on CTP,

� And finally, testing different ML algorithms and parame-
ters to find the most suitable approach. Both a single-step
approach, segmenting normal brain, penumbra, and core
in one go; and a two-step approach, segmenting penumbra
and core individually before combining them, were tested.
This was further compared to thresholding approaches.

II. DATA MATERIAL

A. Dataset and Ground Truth

1) Context: Stavanger University Hospital (SUS) serves a
population of 365.000. Close to 450 patients with AIS are
annually admitted to the hospital. All consecutive patients with
suspected AIS having received intravenous thrombolytic therapy
are prospectively listed in a population-based database. Informa-
tion about clinical severity measured by the National Institutes of
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TABLE I
PATIENT CHARACTERISTICS

Health Stroke Scale (NIHSS, scoring scale assessing neurolog-
ical deficit) on admission, and at discharge are available. Long
term functional outcome measured by the modified Rankin scale
(mRS, scoring scale assessing long term functional outcome)
at 90 days are also registered, in addition to mRS on hospital
admission.

2) Dataset: The dataset in this study comprises CTP scans
from 152 patients between January 2014 and August 2020.
137 of these patients had an AIS with visible perfusion deficit.
Patients with AIS were divided into the following groups: 77
patients with large vessel occlusion (LVO), and 60 patients
with non-large vessel occlusion (Non-LVO) Additionally, 15
patients without ischemic stroke (WIS) who were admitted with
suspicion of stroke, but turned out not to have a stroke in the
diagnostic workup, were included in the dataset. Age, gender,
and NIHSS score for the groups are shown in Table I.

LVO was defined using CT angiography; occlusion of the
internal carotid artery, M1 and proximal M2 segment of the
middle cerebral artery, A1 segment of the anterior cerebral
artery, P1 segment of the posterior cerebral artery, basilar artery,
and vertebral artery occlusion were regarded LVO. Non-LVO
was defined as patients with perfusion deficits and affection of
more distal arteries or with perfusion deficits without visible
proximal artery occlusion.

3) Ground Truth: Ground truth images are manually anno-
tated by two expert neuroradiologists. The manual annotations
are done using the entire set of the CT examination including
the parametric maps from the CTP (CBV, CBF, TTP, TMax), the
maximum intensity projection (MIP) images, calculated as the
maximum Hounsfield unit value over the time sequence of the
CTP, providing a 3D volume from the 4D acquisition of CTP.
Furthermore, the MRI examination performed within 1 to 3 days
after the CT examination was used in assistance to generate the
ground truth images. In-house developed software was used for
the annotations.

B. Imaging Protocol and Analysis

The CT scanners used for image acquisition were Siemens
Somatom Definition Flash (installed in 2012) and a Siemens
Somatom Definition Edge (installed in 2014), Erlangen, Ger-
many.

Patients with suspected acute cerebral stroke with symptom
onset within 4,5 hours prior to hospital admission were routinely
investigated by NCCT of the head. If contraindications were ex-
cluded, intravenous thrombolysis bolus-dose was administered

TABLE II
COMPUTED TOMOGRAPHY TECHNICAL PROTOCOL FOR ACUTE

ISCHEMIC STROKE

TABLE III
INFORMATION ABOUT THE DATASET AND THE THRESHOLD VALUE(S) OF THE

VARIOUS RESEARCH METHOD ANALYZED

in the CT lab. Then CTA and CTP were performed. Technical
details about the protocols are shown in Table II. Further, the
CTP images were analyzed using the software “syngo.via”
from Siemens Healthineers with manufacturer default settings to
generate color-coded parametric maps (CBF, CBV, TTP, MTT,
and TMax).

III. ISCHEMIC SEGMENTATION BY THRESHOLDING

Several studies define threshold values on some of the para-
metric calculations or on a combination of them to segment the
ischemic stroke regions. The variability in the chosen thresh-
olding value(s) is mainly due to the various vendors used for
post-processing the parametric maps, the different definitions
of the ground truth for the ischemic regions. It also lies in
the decision of using the entire brain or just the ipsilesional
hemisphere in statistical evaluations. Table III lists some of them
in addition to information about their dataset, the number of
patients, NIHSS score, time of stroke onset, vendor used, and
their defined threshold values on different parametric maps. It
also shows the different optimal thresholds that are proposed in
each of these studies to segment either core, penumbra, or both.

Most of the listed studies evaluated their method by testing the
mismatch between values from parametric maps derived from
CTP images and the corresponding follow-up DWI, as the gold
standard. The only study which did not use DWI as ground truth
for the ischemic regions is Murphy et al. [22]. They defined the
core region 5 to 7 days after the onset of stroke in the NCCT im-
ages, while the penumbra was the difference between the infarct
and ischemic region. Nevertheless, they state that this difference
“could lead to an underestimation of the final infarct size”. All
the approaches displayed in Table III, with differences in their
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chosen parametric maps and the optimal values, demonstrate
the lack of a consensus to define the ischemic regions based on
thresholds.

Only the default setting used by “syngo.via” to define
the ischemic regions after the parametric maps generation
(CBF < 27 ml/100 ml/min to define tissue at risk and
CBV<1.2 ml/100 ml for non-viable tissue) and the thresholds
proposed by Bathla et al. [28] were implemented for comparison
with our best method due to the usage of the same vendor
and software system as our input. We compare with a gold
standard based on expert assessment of the parametric maps and
manual delineation of the regions since these expert assessments
are used normally for treatment decisions and are clinically
relevant.

IV. MACHINE LEARNING APPROACHES

Applying ML algorithms in the field of medical image analy-
sis is rapidly growing [29]. To train state-of-the-art ML models,
patient data sets that have the necessary size and quality of
samples are needed. Given that the patient data is protected by
strict privacy and security rules this can be a challenge, however,
if the necessary training set is available to train appropriate ML
algorithms, good prediction models can be obtained. The ML
models tested in this study include Support Vector Machine,
Decision Tree learning, and Random Forest. Each ML algo-
rithm uses in input a training set T = {(x1, y1), . . . , (xT , yT )},
composed of xi features vectors and the relative yi class label.

Support Vector Machine (SVM) is an algorithm used for
binary classification that creates a line or a hyperplane, which
separates the features from the input data into classes. In 1992,
Boser et al. [30] proposed a supervised classification algorithm
that has evolved into SVM as we know it today.

Decision Tree learning (DT), firstly introduced by Breiman
et al. [31], is an efficient classification technique that creates
a tree-like structure by computing the relationship between
independent features and a target. DT covers both binary and
multi-class classification. The tree splits into branches by using
conditions at each internal node and the end of the branch that
does not split anymore is the decision (leaf).

Random Forest (RF) is a supervised learning algorithm and
the “forest” consists of an ensemble of decision trees. To classify
a new object from an input vector, the input vector is fed to each
tree in the forest and each tree casts a unit vote for the most
popular class at the input vector. Finally, the forest chooses
the classification having the most votes. [32] proposed this
algorithm to minimize a possible overfitting problem generated
by the usage of a single DT [32].

V. PROPOSED METHOD

In this paper, we test a single and a two-step method for
segmenting core and penumbra in patients suspected of AIS
using machine learning based on the parametric maps (CBF,
CBV, TTP, and TMax), derived from CTP datasets acquired
at admission, the MIP map, and the NIHSS score. Various
stages are performed during the proposed methods: (1) Brain
extraction and data imbalance: extracting the brain tissue from

the parametric maps to use only the pixel values inside the brain
as input features, (2) SLIC: obtaining the 3D superpixel version
of the parametric maps (CBF, CBV, TMax, and TTP), (3) Machine
Learning algorithm: Feeding the features from the parametric
maps and their generated superpixel to our implemented ma-
chine learning algorithms to predict the ischemic regions.

Fig. 2 shows the flowchart of our proposed methods. In the
reminder of the paper, we call them Single-Step and Two-Step
approaches. The features used for the proposed methods are
the four parametric maps, the MIP map, and the NIHSS score.
The input to the Single-Step method is all the aforementioned
features (top part of Fig. 2) and it classifies both core and
penumbra simultaneously. The Single-Step approach was tested
with the DT and RF algorithms, but not with the SVM model
since our implemented SVM model performs only binary classi-
fications. In addition to the Single-Step method, we test another
multi-stage classification method, which is simply adapted from
the way neuroradiologists at SUS perform during the treatment
decision process. The Two-Step approach is based on:

Step1: Takes as input the MIP, TTP, and TMax maps, plus the
NIHSS score; it performs a prediction of the penumbra region
and outputs a binary image showing the predicted penumbra.

Step2: CBV and CBF parametric maps are used as input; it
predicts the ischemic core resulting in a binary image.

A. Brain Extraction and Data Imbalance

We introduce a preprocessing step to extract the brain tissue
from the whole image and work with pixels within the brain tis-
sue (BT). In the reminder of the paper, the set of pixels belonging
to the brain tissue for all patients p is called BT =

⋃
BTp, while

the various parametric maps are called CBF p,CBV p,TTP p,
and TMax

p. This step helps to balance the classes inside the
dataset. Moreover, we convert the pixel values into a [0,1]
interval for each input feature based on the color bar on the right
of each corresponding parametric map. Each input feature is
mapped with the corresponding color in the bar and transformed
into a value in the [0,1] interval, where the value 0 corresponds
to the bottom value in the bar, while the value 1 indicates the
top value. This was performed to reduce each input feature into
a single value instead of keeping all three color channels.

B. Superpixel (SLIC)

A modified version of the Simple Linear Iterative Cluster-
ing (SLIC) algorithm [33] is employed to generate superpixel
regions in the parametric maps. The regions are based on the
initial segmentation of the intensity values of the maps. Using
SLIC, we stacked each slice to obtain a 3D superpixel version for
each parametric map and used it as extra features as input to the
model. These new features should help the models to consider
the adjacent pixels along the third dimension (z-axis). In the
reminder of the paper, the superpixel version of the parametric
maps for a patient p are called: CBF p

SLIC,CBV p
SLIC,TTP p

SLIC,
and TMax

p
SLIC. SLIC generates superpixel regions by clustering

pixels utilizing their proximity and similarity in the image
plane. An example of a normalized TTP map from one of the



TOMASETTI et al.: MACHINE LEARNING ALGORITHMS VERSUS THRESHOLDING TO SEGMENT ISCHEMIC REGIONS 665

Fig. 2. Visual description of the proposed multi-classification methods: for the Single-Step approach, all the parametric maps are adopted as input
features for the Machine Learning (ML) algorithm to generate a final prediction image. The Two-Step approach works in a different way: Step1 takes
in input six features for each pixel inside the brain and generates a binary map to classify the penumbra region(s) in a brain slice; Step2 takes in
input 4 features, for each pixel, from different parametric maps and returns as output a binary map containing the predicted core region(s) if any.
The final prediction combines the two binary maps only including the core regions that are inside the penumbra regions. A final post-processing
step using a 3D mode filter is implemented. Simple Linear Iterative Clustering (SLIC) refers to the algorithm to extract superpixel regions.

Fig. 3. Visual comparison of a TTP map in grayscale (left) and the
generated superpixel image (right) after the brain extraction.

patients analyzed and the generated superpixel image is given
in Fig. 3.

C. Machine Learning for Core and Penumbra

We implement three mainstream classical ML methods in-
cluding, support vector machines, decision tree, and random
forest. To the best of our knowledge, there exists no defined
convention on which of the parametric maps should be used to
detect core and which shows penumbra better. Let Lp be the
number of pixels in BTp. In the training phase, the totality of
input features to these ML approaches are defined as a matrix.
For a patient p, let the input features vector for CBV be:

xp
CBV = stack(CBVp(i, j))∀(i,j)∈BTp

where xp
CBV is a vector of size Lp. The stack function concate-

nates all the pixels in an image, row-by-row, into a vector. The

input features totality of the parametric maps for a patient p is
given by the matrix Xp. For simplicity we omit the p in the
following notation where all definition are on a single patient:

X=[xCBV xCBF xTTP xTMax xMIP xNIHSS]

Defining [1] as a all-ones vector of length Lp, xNIHSS is defined
as xNIHSS = NIHSS · [1]. In the same way, the input features
totality for the superpixel version of the parametric maps is given
by the matrix Xp

SLIC, defined as:

XSLIC = [xCBVs
xCBFs

xTTPs
xTMaxs

]

where xCBVs
is represented as a vector:

xCBVs
= stack(CBVp

SLIC(i, j))∀(i,j)∈BTp

The total matrix XT is given by the combination of the two
input features matrices depending on the model trained: XT =
[X XSLIC].

In the prediction phase, as shown in Fig. 2, the input features
matrix Xp used for Step1 has 6 columns since the CBF and
CBV parametric maps are excluded. Then, the model generates
a binary map for the penumbra region over the entire image.
Subsequently, the input feature matrix for the second step is
derived only from CBV and CBF parametric maps plus their
corresponding superpixel versions. This matrix has 4 columns
as illustrated in Fig. 2. The selection of parametric maps is also
in line with proposed methods in the literature [12]–[14] since
TTP and TMax are often used for detecting penumbra, while the
other parametric maps are used for segmenting core regions.
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TABLE IV
DIVISION IN TRAINING, VALIDATION, AND HOLDOUT DATASET

To create the final prediction image, in the Two-Step approach,
the binary predictions of core and penumbra are logically com-
bined so the common white areas in both predictions indicate
ischemic core in the final result. The logical AND combination
simulate the medical constraint, where the ischemic core is
limited to be inside the penumbra since the hypoperfused tissue
always contains the dead tissue. For both the approaches (Single-
Step and Two-Step), the patient’s predictions pass through a 3D
mode filter. This post-processing step helps to reduce unwanted
noise and it also allows the predictions from a ML method to
rely on the adjacent voxels in the z-axis, i.e. between adjacent
slices.

VI. EXPERIMENTS AND RESULTS

A. Dataset Division

In this paper data from 152 patients were used, 137 from AIS
patients divided into two groups (LVO and Non-LVO) and 15
patients WIS but who were admitted with suspicion of stroke.
The dataset was randomly split into a training, validation, and
holdout set, as described in Table IV, carefully dividing the LVO,
Non-LVO, and WIS patients over the sets. The idea behind this
division is to create a model that generalizes the classification
of the ischemic regions working for all.

As many have reported, DWI is a questionable measure to
describe the ischemic core [10], [15]–[18], thus we propose to
use manual annotations made by two expert neuroradiologists
as the golden ground truth to assess both the ischemic regions
during early stages and with different level of severity.

Even with removing the background and only considering
the pixels inside the BT, the core and penumbra classes are
still undersampled, leading to a class imbalance problem in the
dataset. To overcome this problem, during the training phase
we implement the Synthetic Minority Over-sampling Technique
(SMOTE) algorithm [34] to over-sample the classes with a minor
number of occurrences. SMOTE relies on the generation of
synthetic examples on the difference between the feature vector
under construction and its nearest neighbor. We over-sample the
penumbra by a maximum of 5 times its standard amount and the
core by a maximum of 20 times. These maximum values were
chosen for their class importance and amounts. Before applying
the SMOTE algorithm, the core and penumbra classes represent
only 0.5% and 9.4% of the entire set respectively. After the
application of the algorithm, they represent 7.6% and 36.5% of
the dataset respectively.

B. Evaluation Metrics

In all the experiments the predictions are compared with
the ground truth and multi-class confusion matrices are

TABLE V
EXAMPLE OF MULTI-CLASS CONFUSION MATRIX FOR THE CORE CLASS.

TP =TRUE POSITIVE, FP = FALSE POSITIVE, FN = FALSE NEGATIVE, AND
TN = TRUE NEGATIVE

generated. Our dataset is composed of three classes C ∈
{core, penumbra, healthy brain}.

Table V presents a multi-class confusion matrix example for
the core class: TPc (True Positive) indicates the number of pixels
predicted correctly as the core; FPc (False Positive) represents
the number of pixels classified as core class but belonging to
a different class; FNc (False Negative) is the number of pixels
predicted as a different class but labeled as the core in a ground
truth image; TNc (True Negative) displays the number of pixels
that are classified as not core and belonging to one of the other
classes. All the values in each multi-class confusion matrix
are calculated based only on the number of voxels inside the
BT, excluding all non-brain tissue voxels as the binary mask
of brain vs background is found during pre-processing. From
each confusion matrix of class c ∈ C, we calculate the recall
recc =

TPc

TPc+FNc
, the precision precc =

TPc

TPc+FPc
, and the Dice

coefficient (equivalent to the F1-score) Dicec =
2·precc·redc

precc+recc
=

2·TPc

2·TPc+FPc+FNc
. The range for these values is [0,1]. We also

consider the Hausdorff distance between predictions and ground
truth regions [35], and the absolute difference in the volume
among the predictions (Vp [ml]) and the ground truth (Vg [ml]):
ΔV = |Vg − Vp|. The range value for the Hausdorff distance
and ΔV is [0,∞] Bland-Altman plots were used to illustrate
mean differences and limit of agreement between predicted
volume and volume calculated from ground truth images.

C. Hyper-Parameter Optimization of ML Algorithms

Before evaluating our methods, a series of hyper-parameter
optimizations on the ML algorithms were performed using a
Bayesian optimization. The input features for these optimiza-
tions, for a patient p, were solely based on Xp, without the
usage of SLIC nor SMOTE algorithms. For DT and RF models,
the hyper-parameters taken into consideration during the opti-
mization were:

� the minimum number of leaf, with a range [1, Lp/2],
� the maximum number of decision splits, in the range
[1, Lp − 1],

� Gini’s diversity index, Twoing rule, and Cross-entropy for
the split criterion to use,

� the number of decision trees in the model (1 for the DT
algorithm, a range of [1, 500] for the RF).

Differently, for the SVM model, we considered the following:
� Gaussian, Linear, and Polynomial kernel functions,
� the maximum penalty on the observations with a range of
[0.001, 1000],

� standardized vs not standardized features.
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TABLE VI
OPTIMAL HYPER-PARAMETERS FOR THE DECISION TREE (DT) AND

RANDOM FOREST (RF) ALGORITHMS DIVIDED BY SINGLE-STEP AND
TWO-STEP APPROACHES

TABLE VII
OPTIMAL HYPER-PARAMETERS FOR THE SUPPORT VECTOR MACHINE

(SVM) MODEL WITH THE TWO-STEP APPROACH

Fig. 4. Description of the models implemented to test the two ap-
proaches, the input features used (the parametric maps with or
without the superpixel regions), the usage of data augmentation
(SMOTE). Filled circle corresponds to including the corresponding in-
put/augmentation box. Experiments’ names are included in the reminder
of the paper. DT = Decision Tree; RF = Random Forest; SVM =
Support Vector Machine.

The values display in Table VI show the best hyper-parameters
for the DT and RF algorithms divided by Single-Step and
Two-Step approaches, after an exhaustive set of experiments.
Table VII presents the optimal hyper-parameters for the SVM
model. All the experiments described in the next sections use the
same set of hyper-parameters defined in Table VI and Table VII.

D. Experiment 1 - ML Algorithms and Feature
Combination

For both the Two-Step and the Single-Step approaches, a series
of six experiments were conducted to determine whether the
inclusion of superpixels as extra features is beneficial and to see
if using SMOTE to balance the classes during training gives
better models. These six experiments were repeated for the
different ML algorithms except SVM for Single-Step approach,
due to our implementation of the approach which performs only
binary classification.

Fig. 4 illustrates the 30 conducted experiments: (Two-Step×3
ML algorithms)×6 + (Single-Step ×2 ML algorithms)×6. The
number of superpixel regions used for this set of experiments
is 10. Fig. 5 shows the results for all models during the first
experiment set taking into account all the various groups (LVO,
Non-LVO, and WIS) together. The best model was selected
mainly based on the averaging metrics in Fig. 5 for both the

classes. Looking at Fig. 5, Mdl-5.1 shows the best performances
both for core and penumbra regardless of the group. Neverthe-
less, Mdl-5.2 offers comparable results to Mdl-5.1 in the majority
of the metrics. Moreover, Mdl-5.2 uses the superpixel regions as
input features, on the contrary of Mdl-5.1, and the best number
of superpixel regions should be investigated further.

E. Experiment 2 - Number of Superpixels

After the first experiment set, we performed a series of em-
pirical analyses on Mdl-5.2 to choose the most adequate number
of superpixel regions for the SLIC algorithm that produces the
best results. We repeat a series of experiments using the Mdl-5.2
starting with 25 total number of 3D superpixel regions and
continue by increasing the number until 600. The increment
is 25 for each iteration. Fig. 6 presents the results obtained with
different numbers of superpixel regions including 10 and also
the total number of pixels in the image for Mdl-5.2. Fig. 6 shows
the average metrics for the LVO and Non-LVO groups, and the
average for the entire validation set (LVO, Non-LVO, and WIS).
The combination of statistical metrics for both penumbra and
core classes shows a clear difference when superpixel is used
as shown in Fig. 6. As highlighted in the figure, 100 superpixel
regions give slightly better results compared to the others. It is
noticeable that 100 superpixel regions yield the lowest volume
difference for the penumbra class, which highly influenced the
selection decision, the highest Dice coefficient for the core class
on average, and significant results for the other metrics, and as
such we propose to use 100 in further experiments.

F. Experiment 3 - Validate the Superpixel Result

The chosen number of superpixels, 100, was validated by
repeating all the thirty experiments described in Fig. 4 and using
100 superpixel regions instead of 10 regions, which was used
during the first evaluation round. Due to ineffective performance,
SVM has been exempt from this validation step. Results are
depicted in Fig. 7 showing the overall metrics for both the
two ischemic regions. The model Mdl-5.2 still shows the most
promising results even compared with Mdl-5.1. It achieves the
highest Dice coefficient and precision values for both the classes,
and excellent ΔV results.

G. Hyper-Parameter Optimization on the Best Model

The selected Mdl-5.2 model went under a final step of per-
forming optimization of its hyper-parameters with the current
setting (100 superpixel regions) validated in the previous ex-
periment set. We have taken into consideration the same hyper-
parameters defined in Sec. VI-C for RF. The new optimal hyper-
parameters for Mdl-5.2 are 48 number of DT, cross-entropy as
the selected split criterion, 68982 as the maximum number of
decision splits, and 315 as the minimum number of leaves.

H. Final Test of the Best Model

We test the holdout set proposing Mdl-5.2 as the best model,
100 as the most efficient number of superpixel regions, with
the hyper-parameters defined in Sec. VI-G. A visual result of
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Fig. 5. Results generated with the validation set on the 30 experiments described in Fig. 4. The x-axis contains the experiment IDs, while the
y-axis refers to the statistic values. Each value represents the average of the patients in the validation set, including all the different severities. Note
that for the top subplot we want high values, but for the mid and bottom subplots we want low values. All the experiments were tested with a number
of superpixel regions equal to 10. The colored regions in the plot represent the division of the various experiments: blue, green, and red contain
the experiments with the two steps approach using DT, RF, and SVM models respectively; yellow and purple have the experiments for DT and RF
with the Single-Step approach. The colored horizontal lines display the average for the corresponding statistical measures. Solid lines are used
for penumbra and dashed for core average measures, top image in order (solid) recall, Dice, precision; (dashed) recall, Dice, precision. With the
only exception of Mdl-5.1, Mdl-5.2 (inside a red rectangle) is the one that presents the best tradeoff for all the evaluation metrics among the set of
experiments.

two sample predicted images along with ground truth and their
corresponding parametric maps are shown in Fig. 8.

Furthermore, we remove the post-processing step (3D mode
filter) and predict the regions to understand how the results are
influenced by this step. Table VIII presents the results of the pro-
posed best model, i.e. the Single-Step method with RF, Mdl-5.2,
and 100 as the number of superpixels, in comparison with the
same model without any post-processing step, the “syngo.via”
default setting to define the ischemic regions, and the threshold-
ing values proposed by Bathla et al. [28], since it is, to the best of
our knowledge, the only research using “syngo.via” as vendor.
Table VIII also depicts reported results from other thresholding
methods ([11]–[13], [22]) which used other vendors for para-
metric maps acquisition and post-processing steps, thus a direct
comparison with our model is not possible. Bland-Altman plots
are used to visualize the predicted volume in comparison with
the ground truth volume between the four methods compared in
Table VIII, shown in Fig. 9. For all rows, the statistical results are
based solely on our holdout set to establish fair comparability
with the other approaches. The results for two subsets of the
data (LVO, Non-LVO) are presented separately, while for the
WIS subset only ΔV is displayed.

Inter-observer variability

33 randomly selected patients (19 from the LVO subset, 11
from the Non-LVO subset, and 3 from the WIS group) were
manually annotated by two different neuroradiologists, using
the same criteria adopted for the creation of the ground truth
images. The aim is to understand the inter-observer variabil-
ity between two neuroradiologists. We investigate the inter-
observer variability and compare it with the metrics of the au-
tomated method. Table VIII shows the inter-observer variability
in the measurements of the ischemic regions for the two subsets
of the data, LVO and Non-LVO, in comparison with the results
achieved with our best method Mdl-5.2.

VII. DISCUSSION

We have proposed a multi-stage algorithm based on ML that
automatically classifies ischemic core and penumbra regions in
parametric maps generated from CTP images. The CTP scans
were acquired from patients with AIS and WIS. In a real-life
situation, medical doctors need to decide the treatment for a
patient in a small time window; thus, an automatic approach
can be valuable. Expert assessments used as ground truth are
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TABLE VIII
PATIENTS INCLUDED IN THIS TABLE ARE ALL PART OF THE HOLDOUT SET. THE RESULTS ARE PRESENTED FOR PENUMBRA (CORE) REGIONS. COMPARISON

BETWEEN VARIOUS RESEARCHES USING THRESHOLDING VALUES WITH THE SAME VENDOR “SYNGO.VIA” (DEFAULT SETTING AND [28]) AND OUR BEST
MODEL (MDL-5.2). PREDICTIONS FROM [11]–[13], [22] ARE PRESENTED BUT THEY ARE NOT FOR COMPARISON DUE TO THE USAGE OF DIFFERENT

VENDOR AND/OR POST-PROCESSING STEPS FOR GENERATING PARAMETRIC MAPS. ‡ MARKS THE RESULTS FOR THE MDL-5.2 METHOD WITHOUT USING
ANY POST-PROCESSING STEP. INTER-OBSERVER VARIABILITY FOR TWO EXPERT NEURORADIOLOGISTS (NR1, NR2) AND THE SELECTED MODEL MDL-5.2 IS

ALSO PRESENTED. NOTE THAT FOR THE DICE COEFFICIENT HIGHER VALUES ARE BETTER (⇑), WHILE FOR HAUSDORFF
DISTANCE AND ΔV LOWER VALUES ARE PREFERABLE (⇓)

Fig. 6. Various plots (Dice coeff., Hausdorff dist., ΔV ) achieved with
the validation set for selecting the best number of superpixel regions
for Mdl-5.2. The x-axis indicates the number of superpixel regions.
Results achieved by the best-performed model are highlighted with a
red rectangle. Solid lines represent the average of the patients in the
validation set, including all the different severities. Three top lines in all
plots corresponds to penumbra, lower corresponds to core.

commonly implemented in clinical use in many applications. We
consider it to be a good method to interpret the ischemic regions,
due to the lack of consensus on thresholding methods and the
recent oppositions over the de-facto DWI as the gold stan-
dard [15]–[18]. Nevertheless, these assessments present some
variability among the experts (Table VIII), thus an automatic
approach might present some advantages during analysis and
can aid medical doctors in rapid recognition of ischemic regions.
We have trained our method with ground truth images directly
acquired from the CTP parametric maps, MIP, and follow-up
images. This results in better and more precise visualization of
the two ischemic regions in the brain: the salvageable (penum-
bra) and the irreversibly damaged tissue (infarct core). Fast and
correct visualization of the penumbra will guide the treatment
better since it is fundamental to treat patients where relevant
tissue can be saved, and not invest a lot of resources and time
in trying to save tissue that is already irreversibly damaged and

where the treatment might even harm the patient due to the risk
of hemorrhage.

The criteria to select the best method was based on a study
of various implemented experiments and their relative statis-
tical results. First, we performed a set of thirty experiments
described in Sec. VI-D and in Fig. 4, to select the right fea-
tures and model. From the relative outcomes in Fig. 5, the
results provided by Mdl-5.2 (RF with Single-Step approach
using all parametric maps at once) produces considerable sta-
tistical measures in the majority of the metrics, regardless of
the severity group or class. It is interesting to notice that the
Single-Step approach generates better results or all metrics but
the Two-Step approach with RF produces slightly better results
in the Hausdorff distance for the core class. Results for irre-
versibly damaged tissue for SVM models were not taken into
consideration since these models fail to predict the mentioned
class.

Subsequently, we applied a different number of superpixel
regions to Mdl-5.2 to find one that gives the best prediction
results (Sec. VI-E, and in Fig. 6). It is clear that the results are
not the best without applying superpixel, however, there is not
a clear difference between different numbers of superpixel re-
gions; Dice coefficient and Hausdorff distance outcomes do not
present large discrepancies during the increment of superpixel
regions; the metric influencing the final decision was the volume
difference due to its drastic drop for the selected number of
superpixels for the penumbra class and a significantly low value
for the core class. Another important factor that helped to select
the best number of superpixel regions was how the performances
of the models differ with the various stroke severity groups. From
Fig. 6 it is clear to notice that, among all the experiments in this
set, Mdl-5.2 presented the best tradeoff between the difference
in volume and Dice coefficient for both the classes. One can
argue that 125 superpixel regions give more or less similar
results as 100 regions, however, ΔV is higher especially for
penumbra regions, meaning that 125 superpixel regions provide
an overestimation of the tissue at risk, especially for the LVO
group.
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Fig. 7. Statistical measures to select the best input data combination to use. All the methods were tested with the best number of superpixel
regions (100). Solid lines are used for penumbra and dashed for core average measures; top image in order (solid) recall, Dice, precision; (dashed)
recall, Dice, precision. The best model (Mdl-5.2) is highlighted inside a red rectangle.

Finally, we validated the selected superpixel number by apply-
ing it to the other experiments (Sec. VI-F). SVM was excluded
from this step as it performed poorly from the beginning (ref-
erence to Fig. 5). As shown in Fig. 7, increasing the number
of superpixel regions slightly improved the statistical mea-
sures for both classes. Moreover, results achieved by Mdl-5.2
present higher precision and lower ΔV in comparison with the
other models. The proposed method can classify correctly both
penumbra and core in patients affected by a large vessel occlu-
sion. The differences between the healthy and the ischemic tissue
are more noticeable, in contrast with ischemic regions in patients
with Non-LVO; an example is given in Fig. 8 for two brain slices
of two patients affected by LVO (Fig. 8 (a)) and Non-LVO (Fig. 8
(b)). From the examples in Fig. 8 and the results in Table VIII,
our best method is shown to predict penumbra regions more
precisely than core areas. In patients with LVO, the prediction of
core regions achieved promising results. However, the detection
of core regions in patients with Non-LVO is more challenging;
the small core area can be difficult to classify correctly. This
issue might be related to the limited number of samples for that
particular class, since patients in the Non-LVO group does not
always have a core region. We compared the performance of the
proposed RF-based method with approaches based on thresh-
olding suggested in the literature and the results are presented
in Table VIII; comparison is only performed with the default
setting and values from Bathla et al. [28] due to the usage of

the same vendor. Predictions from the other methods [11]–[13],
[22] are just presented for visualization purposes; a comparison
does not apply to the utilization of different vendors to generate
the parametric maps, but it illustrates an important limitation of
thresholding.

The proposed method (Mdl-5.2) performs better than the
thresholding approaches concerning the evaluation metrics. The
use of a post-processing step slightly increment the perfor-
mances of the best method, as it is possible to evince from
Table VIII and Fig. 9. The Mdl-5.2 method (using a 3D mode
filter as a post-processing step) achieved the highest metrics for
all the classes regardless of the stroke severity level. The sole
exception where the model does not perform well is with the
core class for Non-LVO group since, as it is possible to evince
from Table VIII, it is the hardest class to predict correctly due
to its limited number of samples and its narrow size in the BT.

Core predictions are slightly better than the one presented
by the thresholding methods regardless of the group, while
penumbra predictions are superior. This indicates a reliable
understanding and agreement among ML predictions, threshold
values, and neuroradiologists’ annotations for the core regions.
While, at the same time, it presents some uncertainties regarding
the penumbra’s definition. This might be related to the fact that
the infarct core and penumbra are two dynamic regions inside
the brain and highly dependent on the acquisition time of CTP
and DWI. The perfusion examination shows the perfusion at that
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Fig. 8. Visual comparison with four parametric maps (top), ground
truth images (left), and the corresponding predicted image with the best
method (right) of one slice for two patients included in the testset, one
labeled as LVO (a), the other as Non-LVO (b). The dark grey area is
healthy brain tissue, the light gray area represents the penumbra, and
the white region indicates the ischemic core.

specific time, the penumbra and core size may change rapidly.
In many studies, MRI is not performed immediately after CTP.
DWI, often used as the gold standard for defining the ischemic
core, cannot define penumbra. Our method, relying the ground
truth on both CTP generated right after hospital admission
(parametric maps derived from CTP, and MIP) and follow-up
images, seems to provide a reliable method to predict both
penumbra and core. Note that we propose to make predictions
only based on data available right after hospital admission. The
areas defined as ground truth from the DWI sequence can over- or
underestimate the ischemic core in individual patients, making

Fig. 9. Bland-Altman plots of the volume calculated between the pre-
dictions and the ground truth images for model Mdl-5.2 with (b), without
(a) post-processing step, the “syngo.via” default setting (c), and the
values presented by Bathla et al. [28] (d).

it unrealistic to expect perfect concordance between ischemic
core measurements on CTP and DWI [10], [16]–[18]. Other
reasons are: first, they are not taking into consideration any
spatial characteristics of an image; second, the values are very
sensitive to image artifacts. Third, patients with contraindication
to MRI, i.e. heart pacemaker, metal foreign body, might be
excluded from studies where MRI and DWI images are used.
Moreover, it is complicated to find an optimal threshold value
for any group of patients. All the methods rely on selected
thresholds, which might produce good results for a particular
and predefined group, but it might not be the best for a single
case study or the entire dataset studied. Their validation method
relies on the comparison of the thresholding values with the
clinical outcome of the patient; however, this is not perfect as
the patient might have received treatment or the symptoms might
have changed. Nevertheless, the delineation of the core should
not be smaller due to treatment if the model delineates the core
region correctly.

Table VIII shows the inter-observer variability in thirty pa-
tients divided by stroke severity into LVO and the Non-LVO
subsets. There is a discrepancy between the results for the
LVO and the Non-LVO subsets. Results for the LVO group
have some similarities between the manual annotations and the
Mdl-5.2. Nevertheless, manual annotations present better results
in all the statistic measurements in comparison with the Mdl-5.2
method in the Non-LVO subset. However, results in Table VIII
illustrate the difficulties of achieving a consensus even among
neuroradiologists.

VIII. CONCLUSION

We proposed an automatic multi-classification approach for
segmenting both ischemic core and penumbra based on random
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forest using the parametric maps as input features, Mdl-5.2.
We implemented other approaches based on thresholding, pro-
posed in the literature, and compared them with our proposed
method considering manual annotations as the ground truth
generated from parametric maps. The method was trained with
patients, both with AIS and WIS, grouped by different stroke
severities. It shows good results for patients with large vessel
occlusions, but not very good for patients with non-large vessel
occlusions. Our method generates more precise results than the
thresholding approaches for the two regions, but there is still
room for improvement. We achieve an average Dice coefficient
of 0.68 and 0.26, respectively for penumbra and core, for the
three groups analyzed. We also achieve an average in volume
difference of 25.1 ml for penumbra and 7.8 ml for core. Detecting
ischemic core and penumbra regions in patients with non-large
vessel occlusion can be very complicated, as shown in Fig. 8.
Therefore, in the future, we plan to use approaches based on
deep neural networks with 4D Computed Tomography Perfusion
(CTP) volume as input instead of the parametric maps to work
with the original acquired data.
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Abstract 

Introduction: Knowledge of tissue viability is crucial for acute ischemic stroke (AIS) treatment 

strategy. Current perfusion-based imaging struggles to accurately differentiate salvageable from non-

salvageable ischemic tissue. This study evaluated if the parametric calculation transit time coefficient 

variation (CoV) adds value to the conventional parametric measures cerebral blood flow (CBF) and 

cerebral blood volume (CBV) in tissue outcome prediction in large vessel occlusion (LVO) AIS patients.   

Materials and Methods: Perfusion computed tomography (CTP) scans from 61 LVO AIS patients were 

assessed. All had admission CTP and follow up magnetic resonance imaging including diffusion 

weighted imaging (DWI). Patients were grouped by recanalization status. CTP parametric maps 

defined hypoperfused regions, DWI defined final infarct. CoV, CBF and CBV were assessed voxel-wise 

according to DWI-based outcome.     

Results: Infarct risk showed a clear association with CBF and CBV in recanalized patients, and with 

CoV in non-recanalized patients.  

Discussion: Our findings indicate that certain voxel value combinations are destined to become 

infarcted regardless of recanalization and can enhance infarct core delineation in the event of 

treatment failure more precisely compared to conventional parameters. Research exploring 

supplementary parametric calculations consequently pave the path for improved future treatment 

decisions.  

 

Key words: 

Ischemic stroke, perfusion computed tomography, parametric measures, diffusion weighted imaging, 

recanalization 
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Introduction 

Globally, neurological disorders are the leading cause of disability-adjusted life years (DALYs) and the 

second leading cause of death(1). Cerebral stroke is a major contributor to this burden, ranking as 

the second leading cause of death and the third leading cause of death and disability combined(2). 

The global incidence of stroke is increasing(2) and reached 12.2 million cases in 2019, with acute 

ischemic stroke (AIS) constituting 62.4% of the cases(2).  

In AIS, ischemic brain tissue is often divided into ischemic core and penumbra. Ischemic core is 

defined as irreversibly damaged, while the penumbra as critically hypoperfused but still salvageable 

brain tissue(3). Diagnostic imaging in patients with AIS is typically performed using Computed 

Tomography (CT) and Magnetic Resonance Imaging (MRI)(4). CT is widely utilized in many centers 

due to its high sensitivity for detecting hemorrhage, widespread availability, and rapid scan times(5, 

6). The decision to apply treatment depends on factors such as time from symptom onset to hospital 

admission, absence of contraindications for intravenous thrombolytic therapy (IVT) and/or 

endovascular therapy (EVT), and clinical variables. Especially in extended time windows, evaluating 

tissue viability is crucial for selecting treatment strategy(4, 7, 8). Both perfusion CT (CTP) and 

perfusion MRI (MRP) are used for this purpose in the acute setting(9). However, currently utilized 

perfusion-based imaging techniques struggle to accurately differentiate between salvageable and 

non-salvageable ischemic tissue(10). Despite being considered the foremost gold standard 

technique, even cytotoxic edema on DWI is not a perfectly reliable measurement for identifying the 

ischemic core(10-13), potentially being both initial false negative(14) and reversible(15, 16).  

Autoregulation mechanisms maintain stable blood flow to the brain tissue under varying 

cardiovascular conditions. In a severe ischemic event, the autoregulation capacity for stable blood 

flow to the brain tissue is exceeded(17). Two perfusion calculations, the mean of capillary transit 

times (MTT) and the standard deviation of capillary transit times, i.e., the capillary transit time 

heterogeneity (CTH), are used to calculate the oxygen extraction efficacy of the tissue(18-20). CTH is 

an indicator of microvascular distribution of blood and changes in proportion to MTT in healthy 

anatomical microvascular networks. The ratio between CTH and MTT, the transit time coefficient 

variation (CoV), has been utilized to distinguish passive alterations caused by hypoperfusion from 

impairment in vascular autoregulation. In response to reduced cerebral perfusion pressure during an 

ischemic event in the brain, by still intact autoregulation, a passive increase in CTH in proportion to 

MTT is seen, while CoV remains constant(21). Conversely, impaired autoregulation affects both CTH 

and CoV(18, 19). Microvascular patency affects conventional perfusion parameters only in cases 

where plasma, and thereby contrast media, fails to reach large proportions of the microvasculature 
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within an image voxel(21). Accordingly, conventional parametric maps reflect the vascular volume 

perfused by plasma, which holds limited amounts of oxygen, and do not capture the microvascular 

distribution of blood, which can be obtained through the perfusion calculations CTH and CoV(19, 21).  

It has been suggested that cerebral ischemia causes widespread capillary no-flow, that is, the 

complete cessation or significant reduction of blood flow, leading to impeded delivery of oxygen and 

nutrition to the affected area of the brain(21, 22). Transit time homogenization, i.e., regions with 

extreme flow homogenization identified by CoV, is believed to visualize capillary no-flow(21, 23). 

Accordingly, low CoV values are associated with reduced cerebral blood volume (CBV) and are 

considered to represent a biomarker of penumbral microvascular failure(21).  

A more accurate description of penumbra and core in patients with AIS, would significantly enhance 

treatment decisions in the acute phase. Parametric tools based on the microvascular blood 

distribution have demonstrated greater accuracy in determining ischemic brain tissue compared to 

conventional parameters(21, 24). Therefore, we included the parametric calculation CoV in our 

analysis. Most prior imaging-based studies on the microvascular distribution of blood are based on 

MRP(21, 25-28). There are only a few published analyses of CTP datasets so far(29, 30). Considering 

the widespread use of CTP in evaluating AIS patients, there is a pressing need for increased 

understanding of CTP. Our study aimed to evaluate if CoV calculated from CTP adds value to the 

conventional parametric measures cerebral blood flow (CBF) and CBV in the prediction of DWI-based 

tissue outcome in patients with large vessel occlusion (LVO) AIS. 

 

Materials and methods  

 

Patients 

 

Context 

As the only stroke-treating hospital in the region, Stavanger university hospital serves a population of 

369.000, with around 450 patients annually admitted with AIS. All consecutive patients with 

suspected AIS having received intravenous thrombolysis (IVT) are prospectively included in a 

population based local thrombolysis registry. The registry contains multiple variables, including 

patient demographics, cerebrovascular risk factors, clinical severity measured by the National 

Institutes of Health Stroke Scale (NIHSS) on admission and at discharge, in-hospital mortality and 
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modified Rankin Scale (mRS) at baseline and 3 months post stroke measuring long-term functional 

outcome(13, 31).  

 

Dataset 

CTP scans acquired between January 2014 and August 2020 from 109 patients were extracted from 

the thrombolysis registry. Anonymized CTP scans from all adult patients who underwent CTP and 

were diagnosed with AIS during this period were assessed. Patients with visible perfusion 

abnormalities on CTP, meeting satisfactory technical standards, and having follow up MRI available, 

were included in our study. All patients were examined with non-contrast enhanced CT (NCCT) of the 

head, CT angiography (CTA) of precerebral and intracranial arteries, and CTP immediately after 

hospital admission. All patients underwent a follow up MRI scan, typically within 24 hours, including 

DWI. The patients were categorized into two groups based on level of vessel occlusion. Large vessel 

occlusion (LVO) was defined as occlusion of any of the following arteries: Internal carotid artery, M1 

and proximal M2 segment of the middle cerebral artery, A1 segment of the anterior cerebral artery, 

P1 segment of the posterior cerebral artery, basilar artery, and the vertebral artery. Patients with 

perfusion deficits and more distal artery occlusions or without visible artery occlusions (48 patients), 

were defined as non-LVO, and were not included in this study. A total of 61 patients with LVO were 

included. All patients received IVT, and 41 patients were additionally treated with EVT. 

Recanalization status was evaluated based on digital subtraction angiography (DSA) and 3D arterial 

magnetic resonance (MR) angiography in time of flight technique (TOF angiography). Patients were 

grouped according to recanalization status using the modified treatment in cerebral ischemia (mTICI) 

scale (mTICI≤2a not recanalized, mTICI >2a recanalized)(32).          

 

Imaging protocol and analysis 

The CT scanners used for image acquisition were Siemens Somatom Definition Flash and Siemens 

Somatom Definition Edge, Erlangen, Germany. Technical protocol details are given in the appendix. 

Syngo.via (Siemens Healthineers, Erlangen, Germany), with manufacturer default settings, was used 

to generate the CTP deconvolution-based parametric maps Time to maximum (Tmax), time to peak 

(TTP), CBF and CBV. Cercare Medical Neurosuite (Cercare Medical, Aarhus, Denmark) was used to 

generate the CTP deconvolution-based parametric maps CTH, CoV and the singular value 

decomposition (SVD)-based parametric map MTT.   
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The MR scanners used were two 3 Tesla (T) (Siemens Skyra, Siemens Healthineers, Erlangen, 

Germany and Philips Ingenia, Philips Medical Systems International B.V., Best, the Netherlands) and 

two 1,5 T scanners (Philips Ingenia, Philips Medical Systems International B.V., Best, the Netherlands 

and GE Discovery, GE Healthcare, Chicago, Illinois, USA). The stroke protocol comprised transversal 

DWI Echo-Planar Imaging, B-value 1000, a T2-weighted Turbo Spin Echo sequence, a Fluid-

Attenuating Inversion Recovery sequence (FLAIR, in patients with unknown time of onset), T2* Turbo 

Field Echo or Susceptibility-weighted imaging (SWI), and 3D arterial MR angiography in time of flight 

technique (TOF angiography).     

 

Image processing and region of interest  

Two experienced neuroradiologists evaluated ischemic lesions on conventional parametric maps 

derived from the CTP dataset, and the MR examination. The region of interest, i.e., ground truth 

ischemic regions, were outlined manually using an in-house developed software in MATLAB(13); the 

syngo.via-derived CTP conventional parametric maps were used to outline the entire hypoperfused 

region, while cytotoxic edema on DWI was used to define final infarct (i.e., the union between the 

hypoperfused region from a CTP scan and cytotoxic edema on a follow-up DWI scan).  

To ensure that the regions we compared in the parametric maps and the DWI images were 

corresponding anatomical areas in the brain, the parametric maps and the DWI images were aligned 

by image registration.  Several steps were performed, illustrated in Figure 1. Firstly, we ensured that 

only DWI slices matching the CTP hypoperfused region was included for further analyses. This was 

done by providing manual input from an experienced neuroradiologist giving the top (blue) and 

bottom (red) slice, i.e., the region in the z-direction of the DWI volume that corresponds to the 

section of the brain with hypoperfused regions on CTP, see part 1 of the figure.  The possible slight 

skew in the CTP volume relative to the DWI volume was ignored. For most of the patients, the 

number of slices in the corresponding CTP and DWI sections was identical in the z-direction, except 

for approximately 10% exhibiting a small mismatch. In these cases, the DWI slices were linearly 

interpolated to fit the number of CTP slices. Thereafter, illustrated in step 2 in Figure 1, image co-

registration was performed slice-by-slice using a similarity transformation, consisting of translation, 

rotation, and scaling. 

To allow composite voxel-wise analyses of outcome measures across all patients, perfusion variables 

(CoV, CBF and CBV) were normalized to normal appearing white matter (NAWM)(21). NAWM was 

defined by manual delineation of the contralateral centrum semiovale in most patients with a 
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supratentorial ischemic lesion, except in 7 patients where the contralateral corona radiata was used 

for delineation due to alterations such as pronounced hypoattenuation resulting from small vessel 

disease in the centrum semiovale. Further, in patients with an ischemic event in the posterior fossa, 

NAWM was delineated in the cerebellum or pons (8 patients). Voxels with extreme values (CBF>100 

mL/100 mL/min; CBV>6 mL/100 mL; CoV>7) were excluded from the analyses a priori due to 

constraints in the syngo-via software, and these voxels were set to zero. At a slice-by-slice level, the 

pixels corresponding to the voxels without any bolus were assigned CBF or CBV pixel values equal to 

zero.  Any resulting holes were then filled iteratively by starting at the edges and proceeding until 

each hole was filled with the lowest value from the edge, using an 8-neighbourhood approach, based 

on MATLAB predefined functions(33).   

Using the manually defined ischemic regions, CTP was assessed voxel-wise for the parametric maps 

CoV, CBF and CBV according to DWI-based tissue outcome (figure 1, step 3). The parameters’ effect 

on infarct risk was evaluated, including whether CoV adds value to the conventional parameters CBF 

and CBV in the prediction of tissue outcome. This was accomplished by examining the probability, p, 

for a voxel in the hypoperfused region on CTP to match the final infarct region on DWI for different 

combinations of CBF and CoV values, and similarly for different combinations of CBV and CoV values, 

resulting in p(Infarct|CBF,CoV) and p(Infarct|CBV,CoV). The probability values were used to create 

2D plots where the axes represent voxel values (CBF vs. CoV and CBV vs. CoV) and the color 

represents the probability, weighted to lie between 0-1, for such a combination of voxel values from 

the hypoperfused region to end up in the final infarct region on DWI. Some combinations of 

parametric map values are much less frequent than others, thus, 3D plots were made to add a third 

axis showing the probability of a given voxel in the hypoperfused region to have certain combinations 

of CBV (or CBF) and CoV values (figure 1, step 3, and figure 2 + 3)(21). In addition to CBF, CBV and 

CoV, recanalization status was also taken into consideration when assessing infarct risk in the 2D and 

3D plots (figure 1, step 3, and figure 2 + 3)(21).   
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Figure 1: General overview of the processing steps involved: Step 1) maps the hypoperfused region 

on the CTP scans with the corresponding region on follow-up DWI scans. In step 2, image co-

registration was performed slice-by-slice using a similarity transformation, consisting of translation, 

rotation and scaling. In step 3, voxel-wise assessment of CTP was done according to DWI-based tissue 

outcome.  

 

Statistics  

Patients with LVO were grouped according to recanalization status. Statistical analyses were 

performed using SPSS Statistics version 24 (IBM Cooperation, Armonk, NY, USA) and MATLAB 

(R2020a, Update 1, The MathWorks, Inc., Natick, USA). Categorical variables are presented as count 

(percent, %) and continuous variables as median (interquartile range, IQR). Changes in ratios were 

evaluated using Fisher’s exact test or Pearson Chi-Square, as appropriate. Changes in continuous 

variables were evaluated using Mann-Whitney test. Statistical significance was set at p<0.05 (two-

sided).            
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Ethical approval 

The study is approved by the Regional ethic committee project 2012/1499, and by Sikt, the 

Norwegian Agency for Shared Services in Education and Research, reference number 953392. 

All procedures involving human participants were performed in accordance with the ethical 

standards of the institutional and/or national research committee and with the 1964 Helsinki 

Declaration and its later amendments or comparable ethical standards, including the ARRIVE 

guidelines.  

 

Results  

Patient baseline characteristics, cerebrovascular risk factors and clinical outcome are shown in Table 

1. The NIHSS score on admission was significantly lower in patients without recanalization compared 

to patients with recanalization. Additionally, there were significantly more EVT-treated patients 

among those with recanalization compared to non-recanalized patients. Otherwise, there were no 

statistical differences in baseline characteristics, cerebrovascular risk factors or patient outcomes 

between the two groups.   

 

  Recanalization 

(n=48)  

No 

recanalization 

(n=13)  

p-value 

Age, median (IQR)  72 (65, 80) 72 (55, 84) 0.74 

Sex – female  12 (25) 5 (39) 0.49 

NIHSS score 

Median, (IQR) 

 

At admission 15 (7, 21) 3 (2, 17) 0.02 

At dismissal 2 (0, 6) (n=43) 1 (0, 12) (n=10) 0.67 

mRS 

Median, (IQR) 

Baseline 0 (0, 0) 0 (0, 0) 0.57 

At 3 months 2 (1, 4) (n=47) 2 (2, 5) 0.20 

Atrial fibrillation   10 (21) 1 (8) 0.43 

Hypertension    23 (48) 5 (39) 0.54* 

Diabetes mellitus  4 (8) 3 (23) 0.16 

Smoking   9 (19) 2 (15) 1.00 
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Anticoagulants  25 (52) 6 (46) 0.70* 

Onset to CT (minutes) 

Median, (IQR) 

 61 (40, 105) (n=45) 93 (60, 175) 0.10 

EVT   36 (75) 5 (39) 0.02 

 

Table 1: Patient characteristics and clinical outcome in patients with LVO according to recanalization 

status.  

Data presented as count (%) unless otherwise stated. P-values for changes in ratios from Fisher’s 

exact test (except *Pearson Chi-Square), p-values for changes in continuous variables from Mann-

Whitney test. N = number of patients.  

Smoking represents current smokers (non-smokers include non-smokers, previous smokers and 

patients with unknown smoking status).  

Abbreviations: EVT, endovascular treatment; IQR, interquartile range; LVO, large vessel occlusion; 

mRS, modified Rankin Scale; NIHSS, National Institutes of Health Stroke Scale. 

 

The combination of CoV versus CBF and CBV for the ischemic lesion on admission according to final 

outcome on follow-up DWI, is shown in the voxel-based 2D and 3D plots in figure 2 and 3. In patients 

with subsequent recanalization, both CBF and CBV showed a clear association with infarct risk. Low 

CBF and CBV were associated with high risk of infarction across a broad range of CoV values (figure 

2). Conversely, in patients without recanalization, infarct risk was largely dependent on CoV. In these 

patients, there was a tendency towards lower CoV values, where a large proportion of tissue with 

reduced CoV developed into infarction, also in regions with higher CBF and CBV values (figure 3). In 

Figure 2 and 3, areas with red color on the 3D curves, represent combinations of voxel values 

associated with a high risk of infarction. These voxels were predominantly located beside the peaks 

for both CBF and CBV, most evident in recanalized patients.  
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Figure 2: Recanalized patients 
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Figure 3: Non-recanalized patients 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 and 3: The plots show the CTP parametric measures on admission in the hypoperfused 

region in recanalized (figure 2) and non-recanalized patients (figure 3). The results are presented as 

3D plots (a+c) and 2D plots (b+d). Values of the parametric measures are defined in the first two 

dimensions of each 2D and 3D plot. The third dimension in the 3D plots indicates the distribution of 

value combinations for the parametric measures analyzed (given as probability, values ranging 

between 0 and 1). Final infarct was defined as the union between the hypoperfused region from a 

CTP scan and the infarct area visible on a follow-up DWI scan (step 3 in Figure 1). The color 

dimension illustrates the likelihood of final infarct (given as probability, with values weighted to lie 

between 0 and 1) across all subjects in the dataset, i.e., the likelihood of having a particular 

combination of values in the CTP hypoperfused region, overlapping the DWI-based final infarct area.  

Abbreviations: CBF, cerebral blood flow (ml blood/100 g brain tissue/minute); CBV, cerebral blood 

volume (ml blood/100 g brain tissue); CoV, transit time coefficient variation. 

 

a 

d c 
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Discussion 

CTP is a widely used diagnostic modality for AIS worldwide. In this study on AIS patients, different 

CTP-based measures were analyzed, including the non-conventional calculation CoV, which reflects 

the microvascular distribution of blood. Most previous imaging-based studies, exploring 

microvascular distribution of blood in ischemic brain tissue, are MRP based(21, 25-28). We evaluated 

the combination of CoV, CBF and CBV on CTP and compared the findings to final tissue outcome on 

follow-up DWI.  

The lack of a perfectly reliable definition for ischemic core presents a major challenge in current 

stroke imaging. The whole concept of ischemic core was challenged in a recent paper, pointing out 

three fundamental problems(10): Firstly, currently used perfusion imaging cannot accurately 

distinguish between viable and infarcted tissue. Secondly, treatment-decisions in AIS are based on 

multiple factors, reducing the relative importance of single variables like imaging. And thirdly, 

discrepancies between core volume and clinical outcome are often observed(10). The final outcome 

in AIS relies on several factors including time to and degree of recanalization, the tissue type 

affected, collateral circulation, ischemia depth and duration, and multiple, often severe patient 

related factors(10). Most commonly used perfusion-based parameters struggle to accurately 

differentiate between salvageable and non-salvageable tissue(34, 35). Despite being considered the 

foremost gold standard technique, even DWI is not a perfectly reliable measurement for identifying 

the ischemic core(10-13). DWI can yield false negative results in the initial phase in a small but 

significant group of AIS patients, shown in 8% of cases in one study(14). On the other hand, DWI 

changes in the acute setting can also be reversible and represent penumbra in up to 15.5% of EVT-

treated patients(15, 16).  

Multiple studies have demonstrated a clear benefit from both IVT and EVT in extended time 

windows(36-39). Perfusion imaging becomes crucial in extended time windows, as treatment is 

recommended if the estimated infarct core is sufficiently small and there is a substantial 

penumbra(4, 7, 8). A significant number of patients remains ineligible for IVT or EVT within the 

current extended time window recommendations(4, 7, 8). Probably, some of the patients in 

extended time windows, that are excluded from treatment based on current guidelines, would profit 

from treatment, if the selection criteria were more accurate. Conversely, the clinical outcome in 

nearly 50 % of patients undergoing EVT is poor. Probably, there are groups of patients that are 

treated with EVT based on the existing selection criteria, who will not profit from treatment, even 

with technical optimal EVT procedures(40, 41). Research efforts, such as the present study, that 

explore additional parametric calculations, are therefore paving the way for improved treatment 
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decisions in the future. Given the widespread use of CTP, there is a growing need of CTP-based 

studies on tissue viability visualization(34). 

In patients with subsequent recanalization, both low CBF and CBV values showed a clear relationship 

with infarct risk. Conversely, in patients without recanalization, infarct risk was largely dependent on 

CoV; a substantial proportion of tissue with reduced CoV developed into infarction, even in regions 

with preserved CBF and CBV values. These findings suggest that the size and site of the final infarct 

core can be more precisely predicted by using CoV in the acute setting, compared to analyses of 

conventional parameters alone, and has the potential to add valuable information to treatment 

decisions.  

Areas with red color on the 3D curves, representing combinations of voxel values associated with a 

high risk of infarction, were predominantly located beside the peaks for both CBF and CBV, most 

evident in recanalized patients. Along with a clear relationship between both low CBF and CBV and 

infarct risk, this indicates that certain combinations of voxel values are destined to become infarcted 

regardless of recanalization. In a previous MRP-based study, it was shown that tissue with severely 

restricted CBF (≤6 mL/100 mL/min) was likely to infarct regardless of recanalization status, while the 

destiny of tissue with preserved CBF was largely dependent on RTH (=CoV)(21). Our CTP-based 

findings are in alignment with these findings.  

During an ischemic event in the brain, tissue damage occurs when the capacity of the autoregulation 

to maintain stable blood flow is exceeded(17). Impaired neurovascular coupling, characterized by the 

reduced ability of the brain vasculature to increase blood flow in response to increased metabolic 

demands, has been linked to capillary dysfunction and is thought to contribute to futile 

recanalization(42). The collapse of collateral blood flow or poor collateral filling is strongly associated 

with rapid infarct progression and futile recanalization(43, 44). Interestingly, rather than perceiving 

collateral failure as a cause, it has been hypothesized to consider it as an inevitable outcome 

resulting from escalating microvascular resistance during progressive infarction(45).  

Following recanalization therapy, possible incomplete restoration of microcirculatory flow in parts of 

the ischemic tissue, has been referred to as the no-reflow phenomenon(23, 46, 47). This can result in 

the tissue’s metabolic requirements not being fulfilled, despite complete recanalization(47, 48). 

Transit time homogenization is believed to visualize capillary no-flow, i.e., regions with extreme flow 

homogenization, identified by CoV(21, 28). Low CoV values have been found in association with 

penumbral microvascular failure(21). We firmly believe that a better understanding of the 

microvascular environment during an ischemic event will contribute to the goal of selecting patients 

for treatment more precisely.  
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The no-flow and no-reflow phenomenon is debated. Factors beyond microvascular impairment, such 

as distal microvascular embolization, in situ thrombus formation, early re-occlusion, and 

parenchymal hemorrhage, can also contribute to compromised reperfusion after recanalization62. 

The lack of a widespread standard definition for no-reflow also poses a challenge. In a recent review 

encompassing thirteen studies with a total of 719 patients, the no-reflow phenomenon was observed 

in one-third of AIS patients with successful macrovascular reperfusion, which in turn was associated 

with worse clinical outcome(49). Both experimental and radiological data support the notion that no-

flow is an important characteristic of the ischemic penumbra(21). On the other hand, capillary flow 

might recover with recanalization, leading to a partial reversal of the RTH and MTT lesion(21, 23).  

Considering its potential to impede the efficacy of recanalization therapy, there has been hypotheses 

about whether incomplete reperfusion could be a potential target for treatment to improve outcome 

after recanalization(24, 28, 47, 50-52). It is also questioned whether patients ineligible for 

recanalization therapy could benefit from such treatment alone(21). Interestingly, several factors 

that predispose for stroke and dementia, such as aging, hypertension, hypercholesterolemia and 

diabetes, have been shown to alter the autoregulation of CBF to meet the tissue’s metabolic need 

during neuronal activity(24). 

Multiple thresholds are applied to different parametric maps to estimate penumbra and core(12, 53-

56). Artificial neural networks (ANN) and machine learning (ML) methods have demonstrated 

promising results in image analyses in AIS patients, exhibiting the capacity to accurately predict tissue 

outcomes. In one study, a general linear model (GLM) based on CTP and clinical data successfully 

identified patients who could benefit from recanalization therapy in the extended time window(57). 

Another study found that the ischemic core could be predicted with a sensitivity of 0.91 and a 

specificity of 0.65 using ANNs that integrated clinical and CTP data(58). Additionally, the entire 4D 

CTP data has been used as input to neural networks to segment both penumbra and core(59). Color-

coded CTP parametric maps have been used to automatically segment penumbra and core using ML-

based methods, showing that the best method outperforms classical thresholding approaches(13). 

Future studies on implementing supplementary parametric measures and clinical variables into ANN 

and ML methods are of great interest.  

Our study has inherent limitations. Not all AIS patients during the study period were included, as this 

was contingent on the presence of a visible and acute ischemic lesion on CTP, satisfactory technical 

image quality (i.e., absence of motion artifacts, high-quality contrast bolus), and the availability of a 

follow-up MRI scan. Our primary focus was to collect high-quality data on combinations of 

parameters. A more unselected cohort, including all LVO-patients with the ischemic region 
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encompassed in the CTP scan, would also be of interest and is the scope of a planned study. 

Additionally, some of the CTP scans included are relatively old; however, our focus has been on 

obtaining high-quality perfusion images consistently over several years. To further assess the risk of 

infarction, such as employing a logistic model, might yield intriguing findings, aligning with the 

intended focus of an upcoming study. We included patients with both anterior and posterior 

circulation LVO, in both early and extended time windows, regardless of NIHSS score. Consequently, 

there is some heterogeneity in our study population, which may pose challenges in interpreting our 

results and comparing them with other studies. However, it is noteworthy that only 8 patients 

included in our study had a posterior circulation AIS. For normalization, we used the mean of NAWM 

across all patients for the different perfusion parameters, assuming that this represents a fair 

approximation for our study population. We did not rely on literature references for healthy NAWM, 

primarily because previous studies did not assess all the parameters included in our study(60, 61). 

Variables like age and diabetes, known to influence NAWM(61-63), were not taken into 

consideration. Nevertheless, there was no difference in age or diabetes between the two groups in 

our study (table 1). The non-recanalized group was relatively small (13 patients), yet, the voxel count 

in the ischemic lesions for this group is high. Our study period spans nearly 7 years, during which 

several factors have changed, contributing to heterogeneity in our group. Numerous randomized 

controlled trials have established the safety and efficacy of treatment in a larger patient population, 

especially in extended time windows. Nevertheless, our emphasis throughout the whole study period 

has been on obtaining high-quality images, as this was one of the inclusion criteria.  

In summary, we assessed the CTP-based parametric maps CoV, CBF and CBV voxel-wise according to 

DWI-based final infarct. In patients with subsequent recanalization, a distinct correlation between 

infarct risk and both CBF and CBV was observed. Conversely, in patients without recanalization, 

infarct risk was largely dependent on CoV. These findings suggest the potential for a more accurate 

delineation of the ischemic core using CoV. Research initiatives, that explore additional parametric 

calculations, are thus paving the way for improved treatment decisions in the future.  

 

Author contribution statement  

L.J.H., L.T., K.B.M. and K.D.K. designed the experiments. L.J.H. performed data collection, statistical 

analyses and wrote the manuscript. L.J.H. and K.D.K. conducted manual annotations of ischemic 

regions on CTP and DWI images. L.T. performed image processing and created the 2D and 3D plots, 

which were reviewed and interpreted along with L.J.H., K.E., M.K., K.D.K. and K.B.M. K.E., M.K. and 



17 
 

J.S. contributed to statistical analyses. M.W.K. has the clinical responsibility for the patients. All 

authors contributed in conducting the discussion and in the review and editing of the manuscript. 

 

Conflicts of interest 

Kim Mouridsen is CEO and shareholder of Cercare Medical A/S. The other authors declare no 

conflicts of interest. 

 

Data availability statement  

The data that support the findings of this study are available from the corresponding author upon 

reasonable request.  



18 
 

References 

1. World Health Organization (WHO). Optimizing brain health across the life course: WHO 
position paper. 2022. 
2. Collaborators GS. Global, regional, and national burden of stroke and its risk factors, 1990-
2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 
2021;20(10):795-820. 
3. Kurz KD, Ringstad G, Odland A, Advani R, Farbu E, Kurz MW. Radiological imaging in acute 
ischaemic stroke. Eur J Neurol. 2016;23 Suppl 1:8-17. 
4. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to 
the 2018 guidelines for the early management of acute ischemic stroke a guideline for healthcare 
professionals from the American Heart Association/American Stroke Association, (2019). 
5. McDonough R, Ospel J, Goyal M. State of the Art Stroke Imaging: A Current Perspective. Can 
Assoc Radiol J. 2021:8465371211028823. 
6. Young JY, Schaefer PW. Acute ischemic stroke imaging: a practical approach for diagnosis and 
triage. Int J Cardiovasc Imaging. 2016;32(1):19-33. 
7. Berge E, Whiteley W, Audebert H, De Marchis GM, Fonseca AC, Padiglioni C, et al. European 
Stroke Organisation (ESO) guidelines on intravenous thrombolysis for acute ischaemic stroke. Eur 
Stroke J. 2021;6(1):I-lxii. 
8. Turc G, Bhogal P, Fischer U, Khatri P, Lobotesis K, Mazighi M, et al. European Stroke 
Organisation (ESO) - European Society for Minimally Invasive Neurological Therapy (ESMINT) 
Guidelines on Mechanical Thrombectomy in Acute Ischaemic StrokeEndorsed by Stroke Alliance for 
Europe (SAFE). Eur Stroke J. 2019;4(1):6-12. 
9. Thomalla G, Gerloff C. Acute imaging for evidence-based treatment of ischemic stroke. Curr 
Opin Neurol. 2019;32(4):521-9. 
10. Goyal M, Ospel JM, Menon B, Almekhlafi M, Jayaraman M, Fiehler J, et al. Challenging the 
Ischemic Core Concept in Acute Ischemic Stroke Imaging. Stroke. 2020;51(10):3147-55. 
11. von Kummer R, Dzialowski I. Imaging of cerebral ischemic edema and neuronal death. 
Neuroradiology. 2017;59(6):545-53. 
12. Cereda CW, Christensen S, Campbell BCV, Mishra NK, Mlynash M, Levi C, et al. A 
benchmarking tool to evaluate computer tomography perfusion infarct core predictions against a 
DWI standard. J Cereb Blood Flow Metab. 2016;36(10):1780-9. 
13. Tomasetti L, Høllesli LJ, Engan K, Kurz KD, Kurz MW, Khanmohammadi M. Machine learning 
algorithms vs. thresholding to segment ischemic regions in patients with acute ischemic stroke. IEEE J 
Biomed Health Inform. 2021;Pp. 
14. Simonsen CZ, Madsen MH, Schmitz ML, Mikkelsen IK, Fisher M, Andersen G. Sensitivity of 
diffusion- and perfusion-weighted imaging for diagnosing acute ischemic stroke is 97.5%. Stroke. 
2015;46(1):98-101. 
15. Lakomkin N, Pan J, Stein L, Malkani B, Dhamoon M, Mocco J. Diffusion MRI Reversibility in 
Ischemic Stroke Following Thrombolysis: A Meta-Analysis. J Neuroimaging. 2020;30(4):471-6. 
16. Yoo J, Choi JW, Lee SJ, Hong JM, Hong JH, Kim CH, et al. Ischemic Diffusion Lesion Reversal 
After Endovascular Treatment. Stroke. 2019;50(6):1504-9. 
17. Smith CA, Carpenter KL, Hutchinson PJ, Smielewski P, Helmy A. Candidate neuroinflammatory 
markers of cerebral autoregulation dysfunction in human acute brain injury. J Cereb Blood Flow 
Metab. 2023;43(8):1237-53. 
18. Ostergaard L, Jespersen SN, Engedahl T, Gutierrez Jimenez E, Ashkanian M, Hansen MB, et al. 
Capillary dysfunction: its detection and causative role in dementias and stroke. Curr Neurol Neurosci 
Rep. 2015;15(6):37. 
19. Jespersen SN, Ostergaard L. The roles of cerebral blood flow, capillary transit time 
heterogeneity, and oxygen tension in brain oxygenation and metabolism. J Cereb Blood Flow Metab. 
2012;32(2):264-77. 



19 
 

20. Rasmussen PM, Jespersen SN, Østergaard L. The effects of transit time heterogeneity on 
brain oxygenation during rest and functional activation. J Cereb Blood Flow Metab. 2015;35(3):432-
42. 
21. Engedal TS, Hjort N, Hougaard KD, Simonsen CZ, Andersen G, Mikkelsen IK, et al. Transit time 
homogenization in ischemic stroke - A novel biomarker of penumbral microvascular failure? J Cereb 
Blood Flow Metab. 2018;38(11):2006-20. 
22. Pérez-Bárcena J, Goedhart P, Ibáñez J, Brell M, García R, Llinás P, et al. Direct observation of 
human microcirculation during decompressive craniectomy after stroke. Crit Care Med. 
2011;39(5):1126-9. 
23. Lee J, Gursoy-Ozdemir Y, Fu B, Boas DA, Dalkara T. Optical coherence tomography imaging of 
capillary reperfusion after ischemic stroke. Appl Opt. 2016;55(33):9526-31. 
24. Ostergaard L, Jespersen SN, Mouridsen K, Mikkelsen IK, Jonsdottir KY, Tietze A, et al. The role 
of the cerebral capillaries in acute ischemic stroke: the extended penumbra model. J Cereb Blood 
Flow Metab. 2013;33(5):635-48. 
25. Mouridsen K, Hansen MB, Ostergaard L, Jespersen SN. Reliable estimation of capillary transit 
time distributions using DSC-MRI. J Cereb Blood Flow Metab. 2014;34(9):1511-21. 
26. Mundiyanapurath S, Ringleb PA, Diatschuk S, Hansen MB, Mouridsen K, Ostergaard L, et al. 
Capillary Transit Time Heterogeneity Is Associated with Modified Rankin Scale Score at Discharge in 
Patients with Bilateral High Grade Internal Carotid Artery Stenosis. PLoS One. 2016;11(6):e0158148. 
27. Nielsen A, Hansen MB, Tietze A, Mouridsen K. Prediction of Tissue Outcome and Assessment 
of Treatment Effect in Acute Ischemic Stroke Using Deep Learning. Stroke. 2018;49(6):1394-401. 
28. Ostergaard L, Sorensen AG, Chesler DA, Weisskoff RM, Koroshetz WJ, Wu O, et al. Combined 
diffusion-weighted and perfusion-weighted flow heterogeneity magnetic resonance imaging in acute 
stroke. Stroke. 2000;31(5):1097-103. 
29. Brugnara G, Herweh C, Neuberger U, Bo Hansen M, Ulfert C, Mahmutoglu MA, et al. 
Dynamics of cerebral perfusion and oxygenation parameters following endovascular treatment of 
acute ischemic stroke. J Neurointerv Surg. 2022;14(1). 
30. Mikkelsen IK, Jones PS, Ribe LR, Alawneh J, Puig J, Bekke SL, et al. Biased visualization of 
hypoperfused tissue by computed tomography due to short imaging duration: improved classification 
by image down-sampling and vascular models. Eur Radiol. 2015;25(7):2080-8. 
31. Ajmi SC, Advani R, Fjetland L, Kurz KD, Lindner T, Qvindesland SA, et al. Reducing door-to-
needle times in stroke thrombolysis to 13 min through protocol revision and simulation training: A 
quality improvement project in a Norwegian stroke centre. BMJ Quality and Safety: BMJ Publishing 
Group; 2019. p. 939-48. 
32. Zaidat OO, Yoo AJ, Khatri P, Tomsick TA, von Kummer R, Saver JL, et al. Recommendations on 
angiographic revascularization grading standards for acute ischemic stroke: a consensus statement. 
Stroke. 2013;44(9):2650-63. 
33. Soille P. Morphological Image Analysis: Principles and Applications. Springer-Verlag. 1999:pp. 
173–4. 
34. Biesbroek JM, Niesten JM, Dankbaar JW, Biessels GJ, Velthuis BK, Reitsma JB, van der Schaaf 
IC. Diagnostic accuracy of CT perfusion imaging for detecting acute ischemic stroke: a systematic 
review and meta-analysis. Cerebrovasc Dis. 2013;35(6):493-501. 
35. Martins N, Aires A, Mendez B, Boned S, Rubiera M, Tomasello A, et al. Ghost Infarct Core and 
Admission Computed Tomography Perfusion: Redefining the Role of Neuroimaging in Acute Ischemic 
Stroke. Interv Neurol. 2018;7(6):513-21. 
36. Nogueira RG, Jadhav AP, Haussen DC, Bonafe A, Budzik RF, Bhuva P, et al. Thrombectomy 6 
to 24 Hours after Stroke with a Mismatch between Deficit and Infarct. N Engl J Med. 2018;378(1):11-
21. 
37. Albers GW, Marks MP, Kemp S, Christensen S, Tsai JP, Ortega-Gutierrez S, et al. 
Thrombectomy for Stroke at 6 to 16 Hours with Selection by Perfusion Imaging. N Engl J Med. 
2018;378(8):708-18. 



20 
 

38. Thomalla G, Simonsen CZ, Boutitie F, Andersen G, Berthezene Y, Cheng B, et al. MRI-Guided 
Thrombolysis for Stroke with Unknown Time of Onset. N Engl J Med. 2018;379(7):611-22. 
39. Ma H, Campbell BCV, Parsons MW, Churilov L, Levi CR, Hsu C, et al. Thrombolysis Guided by 
Perfusion Imaging up to 9 Hours after Onset of Stroke. N Engl J Med. 2019;380(19):1795-803. 
40. Goyal M, Menon BK, van Zwam WH, Dippel DWJ, Mitchell PJ, Demchuk AM, et al. 
Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient 
data from five randomised trials. The Lancet. 2016;387(10029):1723-31. 
41. Shi ZS, Liebeskind DS, Xiang B, Ge SG, Feng L, Albers GW, et al. Predictors of functional 
dependence despite successful revascularization in large-vessel occlusion strokes. Stroke. 
2014;45(7):1977-84. 
42. Staehr C, Giblin JT, Gutiérrez-Jiménez E, Guldbrandsen H, Tang J, Sandow SL, et al. 
Neurovascular Uncoupling Is Linked to Microcirculatory Dysfunction in Regions Outside the Ischemic 
Core Following Ischemic Stroke. J Am Heart Assoc. 2023;12(11):e029527. 
43. Bang OY, Saver JL, Buck BH, Alger JR, Starkman S, Ovbiagele B, et al. Impact of collateral flow 
on tissue fate in acute ischaemic stroke. J Neurol Neurosurg Psychiatry. 2008;79(6):625-9. 
44. Bang OY, Saver JL, Kim SJ, Kim GM, Chung CS, Ovbiagele B, et al. Collateral flow predicts 
response to endovascular therapy for acute ischemic stroke. Stroke. 2011;42(3):693-9. 
45. Pham M, Bendszus M. Facing Time in Ischemic Stroke: An Alternative Hypothesis for 
Collateral Failure. Clin Neuroradiol. 2016;26(2):141-51. 
46. del Zoppo GJ, Schmid-Schönbein GW, Mori E, Copeland BR, Chang CM. Polymorphonuclear 
leukocytes occlude capillaries following middle cerebral artery occlusion and reperfusion in baboons. 
Stroke. 1991;22(10):1276-83. 
47. Dalkara T, Arsava EM. Can restoring incomplete microcirculatory reperfusion improve stroke 
outcome after thrombolysis? J Cereb Blood Flow Metab. 2012;32(12):2091-9. 
48. Alexandrov AV, Hall CE, Labiche LA, Wojner AW, Grotta JC. Ischemic stunning of the brain: 
early recanalization without immediate clinical improvement in acute ischemic stroke. Stroke. 
2004;35(2):449-52. 
49. Mujanovic A, Ng F, Meinel TR, Dobrocky T, Piechowiak EI, Kurmann CC, et al. No-reflow 
phenomenon in stroke patients: A systematic literature review and meta-analysis of clinical data. Int 
J Stroke. 2023:17474930231180434. 
50. El Amki M, Wegener S. Improving Cerebral Blood Flow after Arterial Recanalization: A Novel 
Therapeutic Strategy in Stroke. Int J Mol Sci. 2017;18(12). 
51. Mollet I, Marto JP, Mendonça M, Baptista MV, Vieira HLA. Remote but not Distant: a Review 
on Experimental Models and Clinical Trials in Remote Ischemic Conditioning as Potential Therapy in 
Ischemic Stroke. Mol Neurobiol. 2021:1-32. 
52. Livne M, Kossen T, Madai VI, Zaro-Weber O, Moeller-Hartmann W, Mouridsen K, et al. 
Multiparametric Model for Penumbral Flow Prediction in Acute Stroke. Stroke. 2017;48(7):1849-54. 
53. Campbell BC, Christensen S, Levi CR, Desmond PM, Donnan GA, Davis SM, Parsons MW. 
Comparison of computed tomography perfusion and magnetic resonance imaging perfusion-diffusion 
mismatch in ischemic stroke. Stroke. 2012;43(10):2648-53. 
54. Lin L, Bivard A, Levi CR, Parsons MW. Comparison of computed tomographic and magnetic 
resonance perfusion measurements in acute ischemic stroke: back-to-back quantitative analysis. 
Stroke. 2014;45(6):1727-32. 
55. Austein F, Riedel C, Kerby T, Meyne J, Binder A, Lindner T, et al. Comparison of Perfusion CT 
Software to Predict the Final Infarct Volume After Thrombectomy. Stroke. 2016;47(9):2311-7. 
56. Dani KA, Thomas RG, Chappell FM, Shuler K, MacLeod MJ, Muir KW, Wardlaw JM. Computed 
tomography and magnetic resonance perfusion imaging in ischemic stroke: definitions and 
thresholds. Ann Neurol. 2011;70(3):384-401. 
57. Kemmling A, Flottmann F, Forkert ND, Minnerup J, Heindel W, Thomalla G, et al. Multivariate 
dynamic prediction of ischemic infarction and tissue salvage as a function of time and degree of 
recanalization. J Cereb Blood Flow Metab. 2015;35(9):1397-405. 



21 
 

58. Kasasbeh AS, Christensen S, Parsons MW, Campbell B, Albers GW, Lansberg MG. Artificial 
Neural Network Computer Tomography Perfusion Prediction of Ischemic Core. Stroke. 
2019;50(6):1578-81. 
59. Tomasetti L, Engan K, Khanmohammadi M, Kurz KD. CNN Based Segmentation of Infarcted 
Regions in Acute Cerebral Stroke Patients From Computed Tomography Perfusion Imaging.  
Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and 
Health Informatics; Virtual Event, USA: Association for Computing Machinery; 2020. p. Article 59. 
60. Ito H, Kanno I, Fukuda H. Human cerebral circulation: positron emission tomography studies. 
Ann Nucl Med. 2005;19(2):65-74. 
61. Leenders KL, Perani D, Lammertsma AA, Heather JD, Buckingham P, Healy MJ, et al. Cerebral 
blood flow, blood volume and oxygen utilization. Normal values and effect of age. Brain. 1990;113 ( 
Pt 1):27-47. 
62. Last D, Alsop DC, Abduljalil AM, Marquis RP, de Bazelaire C, Hu K, et al. Global and regional 
effects of type 2 diabetes on brain tissue volumes and cerebral vasoreactivity. Diabetes Care. 
2007;30(5):1193-9. 
63. Liu J, Yang X, Li Y, Xu H, Ren J, Zhou P. Cerebral Blood Flow Alterations in Type 2 Diabetes 
Mellitus: A Systematic Review and Meta-Analysis of Arterial Spin Labeling Studies. Front Aging 
Neurosci. 2022;14:847218. 

 



 

Appendix 

 

 NCCT of the head CTA of  

precerebral and intracranial  

arteries 

CTP 

kV 120 (CarekV off) 100 (CarekV on) 80 

mAs 280 (CareDose off) 160 (CareDose on) 200 

Rotation time (s) 1 0.28 0.28 

Slice collimation 3 mm c 20 x 0.6 mm 0.6 mm c 128 x 0.6 mm 5 mm c 32 x 1.2 mm 

Pitch 0.55 1.0 - 

X-care Yes No No 

IV contrast No 60 ml Omnipaque 

350 mg I/ml + 40 ml NaCl 

40 ml Omnipaque 

350 mg I/ml + 40 ml NaCl 

Flow rate - 5 ml/s 6 ml/s 

Start delay  - 4 s 4 s, 

≥60 s after CTA 

Scan direction Caudocranial Craniocaudal Caudocranial 

 

Computed Tomography Technical Protocol for Acute Ischemic Stroke. 

Note: Spiral scan technique, head first, supine. CTA, computed tomography angiography; CTP, perfusion 

computed tomography; kV, kilovolt; mAs, milliampere-seconds; ml/s, milliliters per second; NCCT, Non-

contract enhanced computed tomography; s, seconds.    
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Abstract

Background: In acute ischemic stroke (AIS), rapid treatment with intravenous throm-

bolysis (IVT) is crucial for good clinical outcome. Weekly simulation-based team-

training of the stroke treatment team was implemented, resulting in faster treatment

times. The aim of this study was to assess whether this time reduction led to a higher

proportion of strokemimics (SMs) among patientswho received IVT for presumedAIS,

andwhether these SM patients were harmed by intracranial hemorrhage (ICH).

Methods: All suspected AIS patients treated with IVT between January 1, 2015 and

December 31, 2020 were prospectively registered. In 2017, weekly in situ simulation-

based team-training involving the whole stroke treatment team was introduced. To

analyze possible unintended effects of simulation training, the proportion of SMs

amongpatientswho received IVT for presumedAISwere identified by clinical and radi-

ological evaluation. Additionally, we identified the extent of symptomatic ICH (sICH) in

IVT-treated SM patients.

Results: From 2015 to 2020, 959 patients were treated with IVT for symptoms of AIS.

After introduction of simulation training, the proportion of patients treated with IVT

who were later diagnosed as SMs increased significantly (15.9% vs. 24.4%, p = .003).

There were no ICH complications in the SM patients treated before, whereas two

SM patients suffered from asymptomatic ICH after introduction of simulation train-

ing (p = 1.0). When subgrouping SMs into prespecified categories, only the group

diagnosedwith peripheral vertigo increased significantly (2.5% vs. 8.6%, p< .001).

Conclusions: Simulation training of the acute stroke treatment team was associated

with an increase in the proportion of patients treated with IVT for a suspected AIS

who were later diagnosed with peripheral vertigo. The proportion of other SM groups
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among IVT-treated patients did not change significantly. No sICH was detected in

IVT-treated SM patients.

KEYWORDS

intracranial hemorrhages, ischemic stroke, patient safety, simulation training, thrombolytic
therapy

1 INTRODUCTION

Ischemic stroke is a major cause of morbidity and mortality world-

wide (Feigin et al., 2017; Wafa et al., 2020). The global burden of

stroke is increasing, especially in younger age groups in low–moderate-

income countries (Katan & Luft, 2018; Virani et al., 2020). The main

therapeutic target in acute ischemic stroke (AIS) is timely recanaliza-

tion of the occluded vessel. Rapid recognition of stroke symptoms,

patient transfer, diagnostics, and acute treatment, including intra-

venous thrombolysis (IVT) and/or endovascular thrombectomy (EVT),

are of vital importance and significantly improve outcomes in stroke

patients (Powers et al., 2019). The therapy should be given as fast

as possible, as the clinical outcome improves if therapy is given

timely (Advani et al., 2017; Meretoja et al., 2014, 2017). In order to

reduce treatment times in AIS patients, we have introduced weekly in

situ simulation-based team-training sessions for the stroke treatment

team. This led to a reduction of the median door-to-needle time (DNT)

from 27 to 13 minutes and reduced patient morbidity and mortality

(Ajmi et al., 2019).

Stroke mimics (SMs) are common and comprise up to 43% of

patients presenting with acute neurological symptoms in the prehos-

pital phase (McClelland et al., 2019; Tarnutzer et al., 2017). Due to the

possibility of bleeding complications, IVT treatment of SMs poses a

potential risk for the patients (Hacke et al., 2008; National Institute of

Neurological Disorders and Stroke rt-PA Stroke Study Group, 1995);

furthermore, the treatment is associated with an increased resource

and cost burden to hospitals and society (Goyal et al., 2015).

The aim of this study was to evaluate whether simulation train-

ing for the stroke treatment team led to a higher proportion of

SMs among patients who received IVT for presumed AIS, and

whether these patients were harmed by intracranial hemorrhage

(ICH).

2 MATERIALS AND METHODS

2.1 Patients

All patients with suspected AIS treated with IVT between January 1,

2015 and December 31, 2020 were prospectively registered in a local

research database. All relevant data-endpoints, including ICH and the

final diagnosis, were registered in this database. On February 1, 2017,

repeated clusters with weekly in situ simulation-based team-training

involving the stroke treatment teamwere introduced. Patients treated

before the introduction of the simulation training served as control

group.

Vertigo patients were IVT treated if the symptoms were deemed to

be of cerebrovascular origin. The IVT decision was made by the neuro-

logic team on call (resident and senior consultant) and comprised both

clinical findings and results of the radiological investigations.

2.2 Simulation training

We performed clusters of in situ simulation-based team-training using

acute stroke scenarios, simulating both the emergency medical ser-

vices (EMS) and the in-hospital stroke care pathway from calling the

EMS to administration of IVT. The simulated cases presented with

FAST symptoms (face–arm–speech, and aphasia or dysarthria). Vertigo

symptoms were not simulated. All in-hospital stroke treatment team

members and paramedics on-call participated in the simulation train-

ing. Our primary aims were to reduce treatment times, to enhance

protocol adherence, and to improve communication skills. Details of

the simulation training have been described previously (Ajmi et al.,

2019).

2.3 Radiological evaluation

Patients with suspected AISwere routinely investigatedwith a CT pro-

tocol comprising non-contrast CT of the head, CT angiography of the

precerebral and intracranial arteries and CT perfusion immediately

after hospital admission. In most cases, this is followed by magnetic

resonance imaging (MRI), including diffusion-weighted imaging (DWI)

during the first days after hospital admission. Supplementary CT or

MRI examinations were performed in patients with clinical deteriora-

tion. In most patients with suspected wake-up stroke or with unknown

symptom onset time, MRI, including DWI and fluid-attenuated inver-

sion recovery, was routinely used as a first-line diagnostic tool. If the

neurological symptoms were deemed to be of cerebrovascular origin,

patients were IVT treated also in cases of negative initial MRI (Edlow

et al., 2017).

2.4 Clinical evaluation

Neurological impairmentonadmissionwasassessedusing theNational

Institutes of Health Stroke Scale (NIHSS). NIHSS was performed at

 21579032, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/brb3.2814 by U

niversity O
f Stavanger, W

iley O
nline L

ibrary on [23/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



HØLLESLI ET AL. 3 of 8

hospital admission, repeatedly after IVT, and on the day of hospital

discharge. Functional outcome at 3 months was evaluated using modi-

fied Rankin Scale (mRS) assessed by a certified stroke nurse by means

of a telephone interview. Good functional outcome was defined as

mRS score 0–2, and poor functional outcome was defined as mRS

score 3–6.

SMswere defined as patients who presentedwith stroke-like symp-

toms, but after diagnostic work-up were determined not to have

suffered from a stroke episode. Evaluation of the clinical course, exam-

ination by all specialists involved (typically neurologists, ear, nose and

throat specialists, or cardiologists), and evaluation with MRI were all

part of the diagnostic work-up. SMs were diagnosed during their hos-

pital stay and then retrospectively categorized into eight different

subgroups: psychiatric disorders, peripheral vertigo, epilepsy,migraine,

infectious diseases, intoxication, peripheral facial palsy and other.

ICH was classified according to the European Cooperative Acute

Stroke Study II (ECASS II) (Hacke et al., 1998); symptomatic ICH (sICH)

was defined as ICH associated with a NIHSS deterioration of four

points or more.

2.5 Statistics

All statistical analyses were performed using SPSS Statistics version

24 (IBM Cooperation, Armonk, NY, USA). Categorical variables are

presented as count (percent, %) and continuous variables as median

(interquartile range, IQR). Changes in proportions were evaluated

using Pearson Chi-squared test or Fisher’s exact test, as appropriate.

Changes in continuous variables were evaluated using the Mann–

Whitney test.

2.6 Ethical approval

All procedures involving human participants were performed in accor-

dance with the ethical standards of the institutional and/or national

research committee and with the 1964 Helsinki Declaration and its

later amendments or comparable ethical standards. This study was

approved by the regional ethical committee and the local hospi-

tal authorities. Informed consent was waived, after approval of the

regional ethical committee.

3 RESULTS

From 2015 to 2020, 959 patients were treated with IVT under suspi-

cion of AIS (Table 1). The proportion of IVT treatments varied between

22.8% and 30.8%.

In 2015 and 2016, the years before introduction of simulation-

based team-training, the proportion of SMs among IVT-treated

patients was 12.6% and 18.5%, respectively. In 2017, the year simula-

tion training started, the proportion of SMs was 14.8%. Between 2018

and 2020, years with ongoing simulation training, the proportion of

SMswas 27.8% (24.0%–32.1%, Table 1). A significant increasewas reg-

isteredbetween2017and2018 (p= .003). 2018was the first complete

year with simulation training. Treatment times dropped significantly

between 2016 and 2017, after introduction of the simulation training

(p< .001) (Table 1).

Baseline characteristics and cerebrovascular risk factors of patients

treated with IVT are described in Table 2. Before introduction of

simulation-based team-training in February 2017, 320 patients were

treated with IVT, 639 patients thereafter (Table 1). Patients treated

with IVT after introduction of simulation-based team-training had sig-

nificantly less atrial fibrillation (p = .004); otherwise, there were no

statistically significant differences in baseline variables (Table 2).

The clinical outcome of the patients before and after implemen-

tation of simulation-based team-training did not differ in our patient

group (Table 3). The proportion of SMs among IVT-treated patients

rose from 51 (15.9%) before introduction of simulation-based team-

training to 156 (24.4%) thereafter (p = .003). There were no bleed-

ing complications in the SM patients treated before introduction

of simulation-based team-training, whereas two (1.3% of 156) SM

patients suffered from asymptomatic ICH after introduction of simu-

lation training (p= 1.0). The ICH in one patient had a diameter of 5mm

and was located in the right frontal lobe, whereas the other patient

was diagnosed with a small amount of blood in the subarachnoid space

parieto-occipitally on the right side. None of the hemorrhages were

accompanied with neurological deterioration. The two SM patients

with ICH had a DNT of 22 and 49min, respectively.

When subgrouping SMs into prespecified categories, there was

a significantly higher proportion of patients with peripheral vertigo

(8 patients/2.5% vs. 55 patients/8.6%, p < .001) among IVT-treated

patients (Table 4) after implementation of simulation training. There

were no significant changes in the proportion of other SM categories.

4 DISCUSSION

Introduction of simulation-based team-training in 2017 was accompa-

nied by a significant increase in the proportion of patients treated with

IVT for a presumed AIS who were later diagnosed as SMs (15.9% vs.

24.4%, p = .003), consisting mainly of patients with peripheral vertigo.

This increase was not seen during the first year of simulation training

(Ajmi et al., 2019). Possibly, the rise has been supported by an evolv-

ing fear to harm patients by withholding IVT in ambiguous cases, by

some insecurity in the clinical evaluation of vertigo patients, and by

the recognition that IVT in SMs is rarely associated with complications

(Moulin & Leys, 2019).

The overall number of stroke admissions showed a tendency to

increase during the period 2015–2020, with an exception of 2019,

whereas the proportion of IVT treatments fluctuated. The increasing

number of stroke admissions may be explained by a general increased

awareness of stroke symptoms and the importance of rapid treatment.

We do not have a clear explanation for the decrease in the number of

stroke admissions in 2019, nor the fluctuation in the proportion of IVT

treatments.
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TABLE 1 Number of stroke admissions, intravenous thrombolysis (%) and strokemimics (%) between 2015 and 2020

2015 2016 2017 2018 2019 2020

Stroke admissions 438 578 674 614 498 627

IVT treatments (%) 127 (29.0) 178 (30.8) 182 (27.0) 140 (22.8) 140 (28.1) 192 (30.6)

Strokemimics (%) 16 (12.6) 33 (18.5) 27 (14.8) 40 (28.6) 45 (32.1) 46 (24.0)

DNT, median (IQR) 30 (22, 45)

(n= 113)

25 (17, 37)

(n= 175)

15 (9, 29)

(n= 174)

17 (11, 30)

(n= 136)

16 (11, 30)

(n= 137)

20 (13, 35)

(n= 184)

Note: Stroke mimics: Percent is calculated from the number of patients IVT treated for suspected acute ischemic stroke. Simulation-based team-training

started on February 1, 2017.

Abbreviations: DNT, door-to-needle time (all IVT-treated patients, including wake-up and in-house stroke); IQR, interquartile range; IVT, intravenous

thrombolysis.

TABLE 2 Patient baseline characteristics and cerebrovascular risk factors before and after implementation of simulation training

Before simulation training

(n= 320)

After simulation training

(n= 639) p-Value

Age, median (IQR) 71 (59, 81) 69 (55, 80) .076

Sex—female 135 (42.2) 296 (46.3) .23

Hypertension 145 (45.3) 259 (40.5) .16

Diabetes 40 (12.5) 89 (13.9) .54

Atrial fibrillation 47 (14.7) 55 (8.6) .004

Prior stroke 71 (22.2) 132 (20.7) .58

Note: Data presented as count (%) unless otherwise stated.
Abbreviation: IQR, interquartile range.

TABLE 3 Clinical outcome before and after implementation of simulation training

Before simulation training

(n= 320)

After simulation training

(n= 639) p-Value

NIHSS score at

admission.Median,

(IQR)

3 (2, 7) (n= 313) 3 (1, 6) (n= 627) .023

NIHSS score at

dismissal. Median,

(IQR)

0 (0, 1) (n= 279) 0 (0, 1) (n= 579) .50

mRS score 0–2 at 3

months.N (%)

179 (72.8) (n= 246) 321 (75.2) (n= 428) .49

Abbreviations: IQR, interquartile range; mRS, modified Rankin Scale;N= number of patients; NIHSS, National Institutes of Health Stroke Scale.

TABLE 4 Intravenous thrombolysis (IVT)-treated strokemimic patients and final diagnoses before and after implementation of simulation
training

Before simulation training

(n= 320)

After simulation training

(n= 639) p-Value

Strokemimics total 51 (15.9) 156 (24.4) .003

Psychiatric disorders 8 (2.5) 18 (2.3) .88

Peripheral vertigo 8 (2.5) 55 (8.6) <.001

Epilepsy 3 (0.9) 15 (2.3) .13

Migraine 9 (2.8) 23 (3.6) .69

Infectious diseases 3 (0.9) 6 (0.9) 1.00

Intoxication 2 (0.6) 3 (0.5) 1.00*

Peripheral facial palsy 2 (0.6) 3 (0.5) 1.00*

Other 16 (5.0) 33 (5.2) .54

Note: Data presented as count (%). p-Values fromChi-squared test, except * Fisher’s exact test.
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Before the start of simulation-based team-training, SM rates at

our center were in the range of centers with CT-based patient selec-

tion (Kvistad et al., 2019). Although the numbers increase thereafter,

they are still comparable to other centers (Pohl et al., 2021; Sporns

et al., 2021). It is well known that the proportion of SMs among IVT-

treatedpatients under the suspicionofAIS varies considerably andalso

depends on the initial imaging modality used. Centers with initial CT

examination, and centers actively reducing treatment times, in general

have higher SM rates ranging up to 30% (Burton et al., 2017; Liberman

et al., 2015). The increase of SM rates is likely to be multifactorial and

related to a focus on time, the acceptance of lower diagnostic speci-

ficity, and an increased comfort to perform IVT in SMs (Psychogios &

Tsivgoulis, 2021). This comfort is probably a result of the overwhelm-

ing evidence on the benefit from early treatment (Advani et al., 2017;

Ajmi et al., 2019; Liberman et al., 2015; Meretoja et al., 2014) com-

bined with the low bleeding risk in IVT-treated SMs (Kvistad et al.,

2019; Pohl et al., 2021). Probably, this has influenced the increasing

IVT rates in SMs also at our center, shaping a culture where IVT treat-

ment of SMs is more accepted than avoiding to give IVT to true stroke

patients who could have been treated. Yet, as our study period spans

over 6 years, other factors may have contributed to the increase of SM

rates: Randomized controlled trials established the safety and efficacy

of EVT in patients with large vessel occlusions (Berkhemer et al., 2015;

Campbell et al., 2015; Jovin et al., 2015; Saver et al., 2015),MRI-guided

thrombolysis for stroke with unknown time of onset was introduced

(Thomalla et al., 2018), and thrombolysis in the extended time window

was established (Ma et al., 2019; Nogueira et al., 2018). These devel-

opments have surely contributed to change the culture of acute stroke

treatment toward less restrictions for giving IVT treatment. Simulation

training is a tool helping to adapt in this cultural change. It is impor-

tant to underline that the learning effect of simulation is optimized if

directly connected to health service priorities and patient outcomes

(translational simulation) (Nickson et al., 2021).

Introduction ofMRI in the initial stroke diagnosis algorithm reduces

the proportion of SMs treated, increasing the initial diagnostic speci-

ficity (Bhattacharyaet al., 2013;Burtonet al., 2017).Mostdepartments

with both modalities available in the emergency room setting have

adopted a stroke imaging algorithm containing both CT and MRI

modalities (Hetts & Khangura, 2019). This seems unavoidable as imag-

ing of the ischemic penumbra has become increasingly complex, and

advanced imaging protocols have been introduced, not only for the

extended timewindow (Albers et al., 2018; Goyal et al., 2020;Ma et al.,

2019; Nogueira et al., 2018). Yet, a small but significant percentage of

patientswithAIS have initial negativeMRI scans, and thus,wehave IVT

treated some SM patients without DWI lesion on initial MRI (Burton

et al., 2017; Edlow et al., 2017).

The increase of SMs treated with IVT at our center was not associ-

ated with a significant increase in bleeding complications. During the

4-year study period, only 2 of 156 IVT-treated SMs were diagnosed

with ICH after IVT, and both were clinically asymptomatic. The rate of

ICH in SMs is generally low. In the NOR-TEST study, none of the IVT-

treated SMs exhibited a sICH (Kvistad et al., 2019). A current review

concludedwith an overall ICH rate as low as 0.7% (Pohl et al., 2021).

Peripheral vertigo was the most frequent SM thrombolyzed in this

cohort and theonly SMcategorywith a significant increase after imple-

mentation of simulation training. In the literature, peripheral vertigo

accounts for 23.2% of SMs (Pohl et al., 2021). Before the introduc-

tion of simulation-based team-training, peripheral vertigo accounted

for 2.5% of our patients, rising to 8.6% afterwards (p < .001). Periph-

eral vertigo seems to be a main challenge for stroke physicians and is

frequently misinterpreted as stroke in the initial phase. Patients with

acute vertigo account for about 4% of all emergency room visits and

20% of emergency room neurological consultations (Newman-Toker

et al., 2008). Although most of the patients presenting with vertigo

suffer from benign disorders, up to 27% can end up with serious diag-

noses, and cerebral stroke is the underlying cause in 4%–15% of these

patients (Newman-Toker et al., 2008; Royl et al., 2011). The clinical

differentiation between peripheral and central causes of vertigo is pos-

ing a challenge in the acute setting. Usually, vertigo of cerebrovascular

causes is accompanied by other neurological symptoms. Yet, stroke in

the posterior circulation can mimic peripheral vestibular syndromes,

especially infarction in the territory of the anterior inferior cerebel-

lar artery can present clinically with neuro-otological symptoms as

combined loss of auditory and vestibular functions (Lee et al., 2009).

In order to support clinical decision-making, the three-step bed-

side oculomotor examination HiNTS (Head impulse, Nystagmus, Test

of Skew) is a useful tool discriminating central and peripheral causes

of vertigo (Kattah et al., 2009). The study emphasizes that the HiNTS

examination is more sensitive for stroke than early MRI, the latter

potentially being false negative in up to12%of stroke patients present-

ing with acute vestibular syndrome during the first 48 h. Systematic

testing with HiNTS of patients presenting with dizziness and vertigo

has not been part of our clinical routine. We plan to add HiNTS for

this patient group with implementation in the clinical routine through

simulation training.

The proportion of IVT-treated SM patients in the other SM cate-

gories in our study did not change significantly after the introduction

of simulation-based training. Migraine was the second most common

SM, followed by psychiatric disorders and epilepsy (Table 4). Migraine

accounts for about 8% of SMs (Pohl et al., 2021). Accompanying aura

symptoms can easily be interpreted as a possible stroke, especially if

present before or without headache (Otlivanchik & Liberman, 2019).

Basilar migraine can present with symptoms from the posterior cere-

bral artery territory, hemiplegic migraine is rare but poses an obvious

challenge in the initial assessment of the patients (Pohl et al., 2021).

Psychiatric disorders are responsible for about 10% of all SMs (Pohl

et al., 2021). Symptoms are often atypical and fluctuating. Previous

psychiatric history is common, and physical examination often reveals

inconsistent findings with repeated examinations. The prognosis for

full recovery is rather poorwithmore than one third of patients report-

ing the same or worse deficits during follow-up (Gelauff et al., 2014).

Seizures are responsible for 13% of SMs (Pohl et al., 2021). Postictal

paresis and dysphasia can be misinterpreted as an acute stroke, espe-

cially if the seizure was unwitnessed. Early seizures occur in 3.8% of all

ischemic stroke cases and 1.5% present with a seizure at the onset of

stroke symptoms (Feher et al., 2020).Multimodal brain imaging and the
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use ofMRI in the acute phasemay aid in the differentiation of ischemia

versus seizure.

Although IVT in SMs is considered to be safe and the cost of under-

treatment in acute stroke is high, the high number of IVT-treated SMs

poses a potential medical risk (i.e., ICH) and an economical challenge.

Administration of IVT to patients with SM is associated with excess

costs, including costs of unnecessary hospital admission, drug-cost, and

the excess cost of a higher care level. The total cost of IVT-treated SMs

in the US (based on 2013 financial estimates) was approximately 15

million dollars per year with an average hospital direct cost of $3600

per admission (Goyal et al., 2015). Understanding which patients con-

stitute the biggest challenge and implementing adequate measures

might therefore have important implications. Some patients present

with suspected AIS, with symptoms resolving after IVT and with no

DWI lesion on follow-upMRI.MRI can also be false negative in patients

with AIS, especially in the posterior fossa (Edlow et al., 2017). This

might cause a diagnostic challenge, with some patients actually having

suffered froman ischemic event beingdiagnosedas SM, contributing to

some overestimation of SM rates (Edlow et al., 2017). This emphasizes

the critical importance of taking a completemedical history anddoing a

thorough clinical evaluation in the work-up of patients with suspected

SM. An incorrect SM diagnosis may have serious implications for the

patients (acute treatment and secondary prophylactic therapy).

This study has several limitations. It is a single center analysis and

although we have analyzed over several years, the numbers presented

are rather small. Additionally, patients treated with IVT after intro-

duction of simulation-based team-training had significantly less atrial

fibrillation, possibly lowering the number of true strokes in our study

group. Yet, we are presenting consecutive patient treatment result

data spanning over several years in the only stroke-treating hospi-

tal in the study’s geographical area. Thus, we are able to present

population-based numbers and avoid selection and patient transfer

bias. However, a challenge in simulation training in general is to firmly

establish a cause-effect relationship. We found a significant increase

in the proportion of SMs among patients who received IVT for pre-

sumed AIS after implementation of simulation training. However, as

previously discussed, other factors could also have contributed to this

increase.

In summary, implementation of in situ simulation-based team-

training for the acute stroke treatment team seems to be safe, but

was associated with a significant increase in the proportion of patients

treated with IVT who were later diagnosed as SMs, constituted mainly

of patientswith peripheral vertigo. This emphasizes the needof accom-

panying and correcting quality improvement measures tailored to

patients presenting with dizziness and vertigo.
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