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A B S T R A C T

We study pore-scale gas bubble ripening in porous media by combining a mass transfer method based on
chemical potential differences with a level-set method for updating the gas/liquid configurations. We examine
the impact of pore geometry and initial gas bubble distribution on the evolution, as well as the effect of mesh
refinement and numerical parameters controlling the adaptive time steps in the model. Our results show that
the pore geometry has a significant impact as it determines the rate of bubble pressure change with volume,
while the area for mass transfer influences the time scale of the evolution. Simulations with different spatial
patterns of bubbles with high and low pressures yield different ripening behaviors, classified as local and
global ripening regimes. Simulations on sandstone with volumetrically similar bubble distributions display
different ripening paths depending on the initial bubble locations, emphasizing the importance of capturing
displacement history before ripening investigations.
1. Introduction

Subsurface storage of CO2 is one of the measures that the UN In-
tergovernmental Panel on Climate Change recommends to keep global
warming within 1.5 ◦C (de Coninck et al., 2018). Although permanent
mineral trapping provides the safest long-term CO2 storage solution,
it has been observed that residual trapping due to strong capillary
forces can also provide a safe and stable way to store large amounts
of CO2 (Huppert and Neufeld, 2014; Pentland et al., 2011). Residual
trapping occurs when brine imbibes into the pore space at the trailing
edge of the migrating CO2 plume and snaps off CO2 ganglia (Krevor
et al., 2015). Over time we could expect CO2 ganglia to either dissolve
in brine or persist if the brine is already saturated with CO2, depending
on the reservoir conditions. In the first scenario, water with dissolved
CO2 sinks below water without CO2 (convective mixing), increasing the
overall geological storage capacity (Zhang and Song, 2014). In both
scenarios, if the trapping lasts a very long time (more than 104 years),
the stored CO2 can transform permanently into carbonate minerals (Xu
et al., 2004). Determining how the population of the formed gas ganglia
evolves is important in estimating the life and volume of subsurface gas
stored through residual trapping.

Ostwald ripening of gas bubbles is an inter-bubble diffusion process
by which low-pressure bubbles consume adjacent high-pressure bub-
bles (de Vries, 1958). In bulk liquid, the process leads to mass transfer
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from smaller to larger bubbles due to pressure differences described
by the Young–Laplace effect (Stevenson, 2010). This type of growth is
referred to as the ripening or coarsening of bubble-size distributions.
In bulk liquid, a bubble distribution coarsens continuously as smaller
bubble sizes disappear sequentially based on size (de Vries, 1958). But
in porous media, the pore geometry creates local energy barriers that
result in the coexistence of multiple bubble sizes at thermodynamic
equilibrium (de Chalendar et al., 2017). In recent years, many studies
have been conducted to assess the impact of Ostwald ripening on
subsurface residually trapped CO2 (de Chalendar et al., 2017; Xu et al.,
2017, 2019; Li et al., 2020, 2021; Singh et al., 2022; Blunt, 2022;
Moghadasi et al., 2023). They show that even though the process is
slow, it can lead to significant mass redistribution on both the pore
scale and field scale. Ripening on the pore scale is much faster than on
the field scale, and the ripening rate depends on the type of gas and
reservoir condition (Singh et al., 2022; Blunt, 2022). Formation of a
gas cap in storage reservoirs (Xu et al., 2019), growth of bubbles in mi-
crofractures (Singh et al., 2022), and capillary instabilities (e.g., Haines
jumps) (de Chalendar et al., 2017) are some of the processes that can
result from coarsening of the presumed trapped bubble distribution at
the different scales. Apart from its effect on subsurface CO2 storage,
the impact of Ostwald ripening on foam coarsening in bulk liquid
and during enhanced oil recovery has also been widely reported and
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studied (Lifshitz and Slyozov, 1961; Lemlich, 1978; Kim, 2007; Attia
et al., 2013; Farajzadeh et al., 2014; Xue et al., 2016).

Ostwald ripening of gas bubbles at the pore scale in porous media
is a complicated phenomenon. The impact of pore geometry on bub-
ble pressures can lead to both coarsening and anti-coarsening of gas
bubble distributions (de Chalendar et al., 2017; Xu et al., 2017; Singh
et al., 2022). Xu et al. (2017) conducted experimental investigations
of Ostwald ripening using a water-wet glass micromodel filled with
trapped air and surfactant aqueous solutions. Their analysis showed
that bubble distributions undergo significant mass redistribution in
hours. The authors also developed a theoretical model based on their
experimental results.

Modeling ripening physics at the pore scale is challenging since
the coarsening behavior depends on both pore geometry and wetting
state (Xu et al., 2017; Mehmani and Xu, 2022a). Generally, a numerical
pore-scale model for gas bubble ripening in a stationary liquid will need
to simulate two processes: interface readjustment and diffusive mass
transfer through the intermediate liquid phase. Here, mass transfer is
the rate-determining process (de Chalendar et al., 2017). Therefore, it
is convenient to model the ripening by capillary displacement and mass
transfer in alternate steps, assuming that mass transfer time represents
the time for the complete ripening process.

A challenge is to model accurately the bubble distribution evolution
in real pore geometries from segmented microtomography images.
Pore-scale modeling of Ostwald ripening typically relies on simplifying
the pore geometry into pore network models (PNM) or homogeneous
systems and limiting the size of a bubble to a single pore (de Chal-
endar et al., 2017; Xu et al., 2017, 2019; Mehmani and Xu, 2022a).
Such models require prior knowledge of capillary pressure–volume
relationships for the gas bubbles in the porous structure. While this is a
tractable modeling approach to ripening on idealized pore geometries,
it is less suitable on real pore geometries where all pores are different.
Bubble growth beyond single pores, for which the pressure–volume re-
lationships become non-monotonic, could trigger capillary instabilities
like snap-off events or Haines jumps and bubble mobilization, hence
contributing significantly to the complexity of ripening modeling of
bubbles spanning multiple pores. Recently, Mehmani and Xu (2022b)
proposed an improved pore network model for coarsening that can
accommodate multi-pore bubbles. Despite the pore geometry idealiza-
tion, these models have been able to predict the bubbles’ coarsening
and anti-coarsening behavior observed in micromodel experiments (Xu
et al., 2017; Mehmani and Xu, 2022a,b).

In a recent work (Singh et al., 2022), we presented a methodology
for simulating the ripening of gas bubbles on arbitrary pore geometries.
This approach uses a ghost bubble (GB) method to perform the mass
transfer and a conservative level set (LS) method (Jettestuen et al.,
2021) to update the stationary states of the gas/liquid configurations
and calculate the gas bubble pressures. The GB method calculates the
chemical potentials of imaginary ghost bubbles located in the liquid
regions and uses them to distribute mass to their gas bubble neighbors
based on chemical potential differences. The results highlighted that a
disconnected liquid phase (which can occur for weakly wet states) also
affects the ripening dynamics (Singh et al., 2022). The results confirmed
that the GB method combined with the conservative LS method obeys
mass conservation with negligible mass loss during evolution. The
model was also used to predict the ripening of multi-pore bubbles in
a pore geometry from sandstone. However, the GB method utilized an
effective permeability coefficient in the mass transfer equation based on
dimensional analysis that restricted the evolution to a non-dimensional
time scale. Consequently, although the nature of evolution is predicted
accurately, its time scale remains unknown.

Such direct simulation methods for ripening will benefit from adap-
tive time steps in the mass transfer to improve computational efficiency.
For digital representations of the pore geometry, the resolution of
the mesh and time step impacts the accuracy in the discretization of
2

continuous mass transfers, which could lead to mass transfer cyclicity.
This cyclicity is a numerical artifact where a discrete amount of mass
transferred from one bubble to another in a time step is reversed in the
next time step (Singh et al., 2022). It is also possible that more than
two bubbles participate in such cyclicity leading to gas bubble pressure
fluctuations in the vicinity of the stable state. So, the time step must
be set heuristically within a user-defined range. Further complexity in
determining this time step is that the bubble pressure after interface
readjustment (which impacts the next mass transfer) is not known a
priori. In such cases, the mass transfer between two bubbles at a time
step could be more than the mass transfer required to reach equilibrium
and thus result in a mass transfer in the reverse direction in the next
time step. A limitation in our previous work (Singh et al., 2022) lies in
handling mass transfer cyclicity, as the time step was calculated based
on a constant, maximal bubble volume change.

In this work, we introduce another chemical-potential based method
for the mass transfer, called the bubble-to-bubble (BB) method, that we
also couple with the LS method for simulation of Ostwald ripening of
trapped gas bubbles in arbitrary pore geometries. The main advantage
of the BB method over the GB method is that it considers all effective
mass transfer paths directly between the gas bubbles, which renders
possible the use of theoretically derived phase permeability coefficients
in the mass transfer equations based on Fick’s first law of diffusion.
Hence, the BB method allows simulations of gas-bubble ripening on a
dimensional time scale. We use the theoretical phase permeability to
derive conditions for which the GB method becomes equivalent to the
BB method.

Our objective is to use the coupled BB and LS methods in simu-
lations to investigate the impact of pore geometry and spatial bubble
distribution on ripening evolution. Although previous studies have
shown that pore geometry can lead to coarsening or anti-coarsening
behavior (de Chalendar et al., 2017; Xu et al., 2017), the importance
of pore throat geometry on the rate of this evolution needs to be studied
numerically. This analysis is critical since numerical modeling of this
phenomenon typically idealizes pore geometry. Similarly, the effect of
initial bubble distribution on evolution in bulk foam due to Ostwald
ripening has been studied by Ranadive and Lemlich (1979), but the
impact of spatial patterns of trapped gas bubbles with different sizes
in porous media is not fully explored (Singh et al., 2022; Mehmani
and Xu, 2022a). The current work is an attempt to fill this gap in
scientific knowledge. Finally, we will also evaluate the significance of
using adaptive mesh in ripening simulations, as well as explore the
sensitivity of numerical control parameters that determines adaptive
time steps and minimum tracked gas bubble size, which is important
to achieve high computational efficiency while maintaining a sufficient
level of detail in the simulations.

The paper is organized as follows: Section 2 describes the method-
ology, including the BB, GB, and LS methods, and provides a brief
outline of the combined Ostwald ripening model. Section 3 compares
the calculated capillary pressure at thermodynamic equilibrium against
analytical values and also substantiates the mass conservation in the
models. Section 4 compares the BB method against the GB method.
Section 5 explores the effects of pore geometry on ripening, using
both pore-throat geometries and micromodel geometries. Section 6
presents simulations with different spatial bubble patterns in micro-
model geometries and in sandstone. For simulations in sandstone, we
also examine the effect of adaptive mesh refinement and numeri-
cal control parameters. Finally, Section 7 contains the summary and
conclusions.

2. Methodology

Ostwald ripening of gas bubbles is a spontaneous, diffusive mass
transfer process governed by the gas concentration gradient in the
liquid surrounding the bubbles (de Vries, 1958; Xu et al., 2017). It

transfers mass from bubbles with high chemical potential to bubbles



Advances in Water Resources 187 (2024) 104688D. Singh et al.

s

𝑖
b
o
c
m
B
s
G
t
L
p
i
g
o
s
d
b
e
t

2

b
p
b
b
a

s

𝑁

T

𝑃
d
T

with low chemical potential to minimize Gibbs free energy. At thermo-
dynamic equilibrium, the fluid system has reached a state in which the
partial pressure of the gas component (and hence its chemical potential)
is constant in time and space. For real gases, the chemical potential at
a particular temperature 𝑇 [K] is calculated as (Castellan, 1983):

𝜇 = 𝜇𝑠𝑡𝑑 + 𝑅𝑇 ln 𝑓 , (1)

where 𝜇𝑠𝑡𝑑 [J mol−1] is the chemical potential of the pure gas at
tandard pressure (typically 𝑃𝑠𝑡𝑑 = 101, 325 Pa), 𝑅 [8.314 J mol−1 K−1]

is the universal gas constant, and 𝑓 is the fugacity. For ideal gases,
fugacity is replaced by the pressure 𝑃 [Pa] made non-dimensional by
𝑃𝑠𝑡𝑑 (Castellan, 1983).

To develop the pore-scale model, we make the following assump-
tions: (i) Interface readjustment occurs instantaneously, and diffusive
mass transfer is the only contributor to the physical time scale for the
ripening (de Chalendar et al., 2017). (ii) A liquid droplet (or region)
in contact with only one gas bubble is in thermodynamic equilibrium
with it. This equilibrium represented by equal chemical potentials is
reached spontaneously (Castellan, 1983). (iii) The mass transfer occurs
due to chemical potential differences in the liquid region between two
or more gas bubbles. Here, we consider mass transfer only through
bulk liquid regions and neglect wetting films. (iv) Two gas bubbles
interact with each other only through the liquid (de Chalendar et al.,
2017). (v) There is no mass accumulation or loss (dissolution) from
gas bubbles to the intermediate liquid during Ostwald ripening. Liquid
regions only act as mass transfer paths between the bubbles. (vi)
Reservoir temperature is constant and above the critical temperature
of the gas. The last assumption simplifies calculations by ensuring that
the chemical species is in one phase, i.e., gas or supercritical fluid,
and phase change calculations are not required. The impact of these
assumptions has been outlined by Singh et al. (2022).

The general equation for mass transfer rate (𝜕𝑛𝑖𝑗∕𝜕𝑡) [mol s−1]
governed by chemical potential differences between two gas bubbles
𝑖 and 𝑗 can be written as:
𝜕𝑛𝑖𝑗
𝜕𝑡

= −𝐽𝐴𝑐𝛥𝜇𝑖𝑗 = −𝐽𝐴𝑐 (𝜇𝑖 − 𝜇𝑗 ) , (2)

where, 𝐽 [mol2 s kg−1 m−4] is the effective phase permeability constant
for the mass transfer, 𝐴𝑐 [m2] is the area through which the mass
transfer occurs, and 𝛥𝜇𝑖𝑗 is the chemical potential difference between
the gas bubbles 𝑖 and 𝑗. The negative sign in Eq. (2) indicates mass
transfer direction from higher to lower potential. As there is no mass
accumulation in the liquid (assumption (v)), 𝜕𝑛𝑖𝑗∕𝜕𝑡 = −𝜕𝑛𝑗𝑖∕𝜕𝑡.

Combining Eqs. (1) and (2) gives
𝜕𝑛𝑖𝑗
𝜕𝑡

= −(𝐽𝐴𝑐 ) × (𝑅𝑇 )
(

ln
𝑓𝑖
𝑓𝑗

)

. (3)

When mass transfer paths in the surrounding liquid connect bubble
to more than one bubble, Eq. (3) describes the mass transfer between
ubble 𝑖 and one of its bubble neighbors 𝑗. However, the calculation
f the entire mass change of bubble 𝑖 will include the mass transfer
ontributions from all its neighbors. In this work, we describe two
ethods to perform these calculations (Sections 2.1 and 2.2). In the
B method, we aggregate the mass transfer through different diffu-
ion paths linking the gas bubble 𝑖 to other bubbles, while in the
B method, we aggregate the mass interaction of bubble 𝑖 through

he different liquid regions adjacent to it. Both methods utilize the
S method to adjust the interface positions and to calculate bubble
ressures and surface areas after each mass transfer step, as described
n Section 2.3. In Eq. (3), we calculate gas bubble fugacities from
as pressure and compressibility factor, using Peng–Robinson equation
f state (PR EoS) (Ahmed, 2010; de Nevers, 2012) as described in
upplementary information S1. In the following two subsections, we
escribe the methodology for determining the mass transfer rate of a
ubble for BB and GB methods. In addition, Section 2.1 derives an
xpression for phase permeability 𝐽 in the BB method that we relate
3

o the phase permeability of the GB method in Section 2.2.
.1. Mass transfer rate for bubble-to-bubble method

As mentioned earlier, a diffusion path linking one bubble to another
ubble passes only through liquid regions (assumption iv). Since the
ore geometry traps these bubbles, there can be many diffusion paths
etween the same bubble pair. A distinct, effective diffusion path 𝑘
etween two bubbles 𝑖 and 𝑗 is defined as the unique path that connects
gas/liquid interface of bubble 𝑖 to a gas/liquid interface of bubble 𝑗.

We begin by deriving a theoretical expression for 𝐽 along one such
path 𝑘 based on the chemical potential differences in Eq. (3). As such,
our derivation differs slightly from the work of Xu et al. (2017), who
developed a permeability coefficient for mass transfer governed by
capillary pressure differences and then validated it against micromodel
experiments.

According to Fick’s law of gas diffusion, the mass flux 𝑁 ′ [kg m−2
−1] is:

′ =
𝜌𝑔
𝐴𝑐

𝜕𝑉𝑔
𝜕𝑡

= −𝐷𝜕𝐶
𝜕𝑥

, (4)

where 𝜌𝑔 [kg m−3] is the density of the gas, 𝜕𝑉𝑔∕𝜕𝑡 [m3 s−1] is the
rate of change of bubble volume, 𝐴𝑐 [m2] is the effective area of mass
transfer, and 𝐷 [m2 s−1] is the diffusion coefficient of the gas in the
liquid. Let 𝑀𝛼 [kg mol−1] and 𝑛𝛼 [mol], 𝛼 = 𝑔, 𝑙, be the molar mass
and number of moles of the gas (𝑔) and liquid (𝑙) phases, respectively.

hen 𝐶 ≈ (𝑛𝑔𝑀𝑔)∕(𝑛𝑙𝑀𝑙∕𝜌𝑙) [kg m−3] is the concentration of gas in the
liquid with density 𝜌𝑙.

Henry’s law provides a relationship between the molar ratio of
dissolved gas in the liquid and the partial gas pressure (or equivalently,
gas bubble pressure) 𝑃𝑔 :

𝑛𝑔
𝑛𝑙

=
𝑃𝑔
𝐾𝑝𝑥 , (5)

where 𝐾𝑝𝑥 [Pa] is Henry’s volatility. If 𝑃𝑙 is the liquid pressure and
𝑃𝑐 is the capillary pressure between the gas bubble and liquid, then
𝑃𝑔 = 𝑃𝑙 + 𝑃𝑐 . Using Eq. (5), we can rewrite Eq. (4) as:

𝜕𝑉𝑔
𝜕𝑡

= −
𝑀𝑔𝜌𝑙
𝑀𝑙𝜌𝑔

𝐷
𝐾𝑝𝑥𝐴𝑐

𝜕𝑃𝑔
𝜕𝑥

. (6)

We consider a diffusion path 𝑘 connecting bubbles 𝑖 and 𝑗 and
make the first-order approximation 𝜕𝑃𝑔∕𝜕𝑥 = 𝛥𝑃𝑔,𝑖𝑗∕𝑙𝑖𝑗,𝑘. Here 𝛥𝑃𝑔,𝑖𝑗 =
𝑔,𝑖 − 𝑃𝑔,𝑗 is the bubble pressure difference, and 𝑙𝑖𝑗,𝑘 is the effective
istance between bubbles 𝑖 and 𝑗 along diffusion path 𝑘 in the liquid.
hen we can write:
𝜕𝑉𝑖𝑗,𝑘
𝜕𝑡

= −
𝑀𝑔𝜌𝑙
𝑀𝑙𝜌𝑔

𝐷
𝐾𝑝𝑥𝐴𝑖𝑗,𝑘

𝛥𝑃𝑔,𝑖𝑗
𝑙𝑖𝑗,𝑘

(7)

where for a diffusion path 𝑘, 𝜕𝑉𝑖𝑗,𝑘∕𝜕𝑡 is the volume change per time
of bubble 𝑖 caused by the mass transfer from bubble 𝑗, and 𝐴𝑖𝑗,𝑘 is the
effective cross-sectional area through which this mass transfer occurs.
We can also express the volume by 𝑉𝑖𝑗,𝑘 = 𝑍𝑉𝑚𝑛𝑖𝑗,𝑘, where 𝑛𝑖𝑗,𝑘 is the
number of moles of gas added to (or lost from) bubble 𝑖 via diffusion
path 𝑘, 𝑉𝑚 is the gas molar volume, and 𝑍 is gas compressibility factor.
Thus,
𝜕𝑉𝑖𝑗,𝑘
𝜕𝑡

= 𝑍𝑉𝑚
𝜕𝑛𝑖𝑗,𝑘
𝜕𝑡

, (8)

where 𝑍 is treated as a constant that is calculated from PR EoS
using a constant reservoir pressure and temperature. This is a reason-
able assumption as bubble pressure variation has negligible impact
on 𝑍 (Singh et al., 2022). For an isothermal mass transfer process,
𝜕𝜇∕𝜕𝑃𝑔 = 𝑉𝑚 (Castellan, 1983). We approximate this differential as:

𝛥𝑃𝑔,𝑖𝑗 =
𝛥𝜇𝑖𝑗
𝑉𝑚

. (9)

From Eqs. (6)–(9), we recover Eq. (3) as
𝜕𝑛𝑖𝑗,𝑘 = −𝐽𝑖𝑗,𝑘𝐴𝑖𝑗,𝑘𝛥𝜇𝑖𝑗 = −𝐽𝑖𝑗,𝑘𝐴𝑖𝑗,𝑘 × 𝑅𝑇 ×

(

ln
𝑓𝑖

)

, (10)

𝜕𝑡 𝑓𝑗
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where

𝐽𝑖𝑗,𝑘 =
𝑀𝑔𝜌𝑙

𝑍𝑉 2
𝑚𝑀𝑙𝜌𝑔

× 𝐷
𝐾𝑝𝑥 × 1

𝑙𝑖𝑗,𝑘
. (11)

In the model, we simplify calculations of the cross-sectional area
or mass transfer, 𝐴𝑖𝑗,𝑘, and the effective diffusion distance, 𝑙𝑖𝑗,𝑘. Unless
tated otherwise, we will assume 𝐴𝑖𝑗,𝑘 = min(𝐴𝑖𝑙,𝑘, 𝐴𝑗𝑙,𝑘), where 𝐴𝑖𝑙,𝑘
nd 𝐴𝑗𝑙,𝑘 are the areas of the relevant gas/liquid interfaces of bubbles
and 𝑗, respectively, for diffusion path 𝑘. If we assume bubble 𝑖 has

𝑁𝑖 neighbor bubbles, where each neighbor bubble 𝑗 has 𝑁𝑗 diffusion
aths to bubble 𝑖, then the total mass transfer rate for bubble 𝑖 in BB
ethod is given by:

𝜕𝑛𝑖
𝜕𝑡

=
𝑁𝑖
∑

𝑗=1

𝑁𝑗
∑

𝑘=1

𝜕𝑛𝑖𝑗,𝑘
𝜕𝑡

= −(𝑅𝑇 ) ×
𝑁𝑖
∑

𝑗=1

𝑁𝑗
∑

𝑘=1
(𝐽𝑖𝑗,𝑘𝐴𝑖𝑗,𝑘) ×

(

ln
𝑓𝑖
𝑓𝑗

)

. (12)

We also typically assume the average mass transfer distance 𝑙𝑖𝑗,𝑘 is
constant and equal to a characteristic pore throat length for the con-
sidered porous medium, i.e., 𝑙𝑖𝑗,𝑘 = 𝑙. This is consistent with previously
developed theories (Xu et al., 2017) that have captured the ripening
evolution in micromodel experiments using an average mass transfer
length, even though the distances between the bubbles in the exper-
iments vary. However, in this work, we will also explore the impact
of replacing the constant mass transfer distance with variable mass
transfer distances 𝑙𝑖𝑗,𝑘 using centroid-to-centroid distances between
bubbles.

2.2. Analogy to ghost bubble method

In the GB method (Singh et al., 2022), an imaginary ghost bubble
represents the liquid in its interaction with the gas bubbles (see Fig. 1).
From a physical perspective, the purpose of a ghost bubble is to provide
a relative measure of net mass transfer through a liquid phase or
interface. It is defined such that it represents the stable state for the
neighborhood bubble cluster at a particular time step. The ghost bubble
is represented by the number of moles 𝑛0, the chemical potential 𝜇0,
nd the fugacity 𝑓0. Here, 𝑓0&𝜇0 represent the equilibrium state for the
as bubbles in contact with the same liquid region. The ghost bubble
ugacity for real gases is given as (Singh et al., 2022):

0,𝑙 =
𝑁𝐺𝐵
𝑙
∏

𝑖=1

⎛

⎜

⎜

⎝

𝑓
𝐴𝑖,𝑙

∑

𝐴𝑖,𝑙
𝑖

⎞

⎟

⎟

⎠𝑡′

, (13)

here, at time 𝑡′, the liquid region 𝑙 is surrounded by 𝑁𝐺𝐵
𝑙 gas bubbles,

nd 𝐴𝑖,𝑙 is the interface area of gas bubble 𝑖 with the liquid region 𝑙.
The mass interaction of a bubble 𝑖 through liquid 𝑙 can be expressed

y modifying Eq. (2) for interaction between a gas bubble and ghost
ubble:
𝜕𝑛𝑖,𝑙
𝜕𝑡

= −𝐽 ′
𝑖,𝑙𝐴𝑖,𝑙(𝜇𝑖 − 𝜇0,𝑙) , (14)

where 𝑛𝑖,𝑙 is the number of moles transferred between bubble 𝑖 and
liquid region 𝑙, and 𝐽 ′

𝑖,𝑙 is the effective phase permeability to mass
transfer in the GB method.

If we assume bubble 𝑖 is adjacent to 𝑁𝐺𝐵
𝑖 liquid regions, then

Eq. (12) can be rewritten for the GB method as:

𝜕𝑛𝑖
𝜕𝑡

=
𝑁𝐺𝐵
𝑖
∑

𝑙=1

𝜕𝑛𝑖,𝑙
𝜕𝑡

= −(𝑅𝑇 ) ×
𝑁𝐺𝐵
𝑖
∑

𝑙=1
(𝐽 ′
𝑖,𝑙𝐴𝑖,𝑙) ×

(

ln
𝑓𝑖
𝑓0,𝑙

)

. (15)

To derive a relationship between the phase permeabilities in the GB
method and BB method, we consider a bubble 𝑖 and its proportion of
bubble neighbors 𝑁∗

𝑖 connected with the same liquid region 𝑙. For this
case, Eqs. (12) and (14) yields

𝜕𝑛𝑖,𝑙
𝜕𝑡

= −𝐽 ′
𝑖,𝑙𝐴𝑖,𝑙

(

𝜇𝑖 − 𝜇0,𝑙
)

= −
𝑁∗
𝑖

∑

𝑁𝑗
∑

𝐽𝑖𝑗,𝑘𝐴𝑖𝑗,𝑘𝛥𝜇𝑖𝑗 . (16)
4

𝑗=1 𝑘=1
Fig. 1. Liquid region surrounded by four gas bubbles. The boundary of the ghost
bubble region, shown by the 𝑏𝑙𝑢𝑒 dotted lines, coincides with the gas/liquid interfaces.
They are shown here separately for clear demarcation. The mass transfer path (or
area) for the gas bubble 𝐺1 with ghost bubble region 𝐺0 in the GB method is shown as

1 −𝐺0. Mass transfer paths (in 𝑜𝑟𝑎𝑛𝑔𝑒) for the same bubble 𝐺1 with different bubbles
n the BB method are shown as 𝐺1 − 𝐺2, 𝐺1 − 𝐺3, and 𝐺1 − 𝐺4.

he expression to the right accounts for the possibility of different
umbers of diffusion paths 𝑁𝑗 between bubble 𝑖 and any of its neighbor
ubbles 𝑗. From Eq. (16), we obtain a phase permeability expression for
he interaction between bubble 𝑖 and liquid region 𝑙 in the GB method:

′
𝑖,𝑙 =

∑𝑁∗
𝑖

𝑗=1
∑𝑁𝑗
𝑘=1 𝐽𝑖𝑗,𝑘𝐴𝑖𝑗,𝑘𝛥𝜇𝑖𝑗

𝐴𝑖,𝑙
(

𝜇𝑖 − 𝜇0,𝑙
) . (17)

In some cases with homogeneous bubble populations and pore
eometries, we may approximate the areas for mass transfer (𝐴𝑖,𝑙 and
𝐴𝑖𝑗,𝑘) by the same constant value in both methods. As mentioned
previously, we also set the effective diffusion path distances equal to a
constant, 𝑙𝑖𝑗,𝑘 = 𝑙. Then 𝐽𝑖𝑗,𝑘 = 𝐽 is also a constant and Eq. (17) reduces
to

𝐽 ′
𝑖,𝑙 =

𝐽
∑𝑁∗

𝑖
𝑗=1𝑁𝑗𝛥𝜇𝑖𝑗
𝜇𝑖 − 𝜇0,𝑙

. (18)

2.3. Level set method

Both the BB method and the GB method have been combined with
the level set (LS) method for modeling the ripening as a series of
quasi-static states. Previously, we explored the ripening of gas bubbles
in the presence of a disconnected liquid by coupling the GB method
with the multiphase level set (MLS) method and applying local volume
conservation to both gas and liquid (Singh et al., 2022). For this
purpose, the MLS method is a convenient tool as its phase-by-phase
description, which uses one LS function per phase, facilitates simula-
tions with volume conservation of more than one fluid phase (Helland
et al., 2019; Jettestuen et al., 2021). In this work, we investigate the
ripening of bubble populations surrounded by a continuous liquid with
constant pressure 𝑃𝑙, which requires volume conservation of only the
gas phase. For this purpose, we use the LS method, which is more
efficient as it uses only one LS function to describe the gas/liquid inter-
faces (Jettestuen et al., 2021, 2013). On the other hand, simulations of
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bubble ripening in three-phase systems will require the MLS method,
as recently explored by Singh et al. (2023b).

Here we briefly describe the LS method (Jettestuen et al., 2021,
2013). The method uses a static LS function to describe pore space
(𝜓 > 0) and solid phase (𝜓 < 0), while another LS function describes
the gas phase (𝜙 < 0) and water phase (𝜙 > 0). These LS functions
represent the signed distance to the interfaces, where 𝜓 = 0 describes
he pore/solid interfaces and 𝜙 = 0 describes the gas/water interfaces.
he level set equation for evolution of 𝜙 is given by (Jettestuen et al.,

2013):
𝜕𝜙
𝜕𝜏

+𝐻(𝜓)
(

𝑃𝑐 − 𝜎𝜅
)

|∇𝜙|

+
𝐻(−𝜓)
𝛥𝑥

𝑆(𝜓)𝜎 (∇𝜙 ⋅ ∇𝜓 − cos 𝜁 |∇𝜙||∇𝜓|) = 0 .
(19)

Here 𝜏 is a fictitious iteration time, 𝐻 is the sharp Heaviside step
function which separates the velocity terms for capillary-controlled
motion in the pore space and the formation of contact angle on the
pore walls, 𝑃𝑐 is the gas bubble capillary pressure, 𝜎 is the gas-liquid
interfacial tension, 𝜅 = ∇ ⋅ (∇𝜙∕|∇𝜙|) is a scalar curvature field that
represents the interface curvature at 𝜙 = 0, 𝑆 is a sign function, and
𝛥𝑥 is the grid spacing. Further, 𝜁 is a solid/fluid intersection angle
measured through the gas between the gas/liquid interface and the
solid surface. It is related to the contact angle 𝜃 (measured through
liquid) by 𝜁 = 180◦ − 𝜃 and defined in terms of the unit normal vectors
f the LS functions at equilibrium by

cos 𝜁 =
∇𝜙
|∇𝜙|

⋅
∇𝜓
|∇𝜓|

. (20)

We make Eq. (19) non-dimensional by normalizing the actual values
with a set of characteristic values for length 𝑙∗, interfacial tension
∗, and capillary pressure 𝑃 ∗

𝑐 = 𝜎∗∕𝑙∗, for the physical problem at
and (Jettestuen et al., 2021).

At equilibrium, the evolution of 𝜙 with Eq. (19) has reached a
tationary state (𝜕𝜙∕𝜕𝜏 = 0) in which 𝜙 satisfies Eq. (20) for the contact
ngle, while the interface curvature in the pore space satisfies 𝜅 = 𝜅0,
here 𝜅0 is given by the Young–Laplace equation:

𝑐 = 𝑃𝑔 − 𝑃𝑙 = 𝜎
(

1
𝑟1

+ 1
𝑟2

)

= 𝜎𝜅0 . (21)

ere, 𝑃𝑔 and 𝑃𝑙 are the gas and liquid pressures, and 𝑟1 and 𝑟2 are the
rincipal radii of curvature.

The gas volume and gas/liquid interface area are:

= ∫𝛺
𝐻𝜖(𝜓)𝐻𝜖(−𝜙)𝑑𝑉 , (22)

nd,

= ∫𝛺
𝐻𝜖(𝜓)𝛿𝜖(𝜙)|∇𝜙|𝑑𝑉 , (23)

espectively. Here, 𝐻𝜖 is a smoothed Heaviside function, 𝛿𝜖 is a
moothed delta function, and 𝜖 = 1.5 × 𝛥𝑥 is the smoothening parame-
er.

While conserving a phase, we divide the area covered by it into
ontinuous and isolated regions such that the volume of isolated regions
s conserved while the volume of the continuous region are allowed
o change. A continuous region is typically in contact with an open
oundary. We create extended regions for each isolated region such
hat these extended regions cover the complete computational grid. The
xtended regions are used to redistribute the original/initial volume of
he isolated regions during merging and splitting such that the total
onserved volume of the phase is maintained until isolated regions
nteract with continuous domains. Refer to Jettestuen et al. (2021)
nd Singh et al. (2023a) for details on local volume conservation.

The capillary pressure of a gas bubble 𝑖 at iteration time 𝜏, subjected
o local volume conservation, is calculated as (Saye and Sethian, 2011):

𝑐,𝑖(𝜏) =
𝑉 (0)
𝑖 − 𝑉 (𝜏)

𝑖
(𝜏)

. (24)
5

𝐴𝑖 𝛥𝜏
ere, 𝑉 (0)
𝑖 is the initial/original gas ganglion volume, while 𝑉 (𝜏)

𝑖 and
(𝜏)
𝑖 are the ganglion volume and surface area at iteration time step 𝜏,
alculated using Eqs. (22) and (23), respectively, with integration over
he domain corresponding to ganglion 𝑖. We link the resulting bubble
apillary pressures to the computational grid which provides in effect a
patially and temporally varying scalar field for 𝑃𝑐 used in the evolution
q. (19) (Jettestuen et al., 2021).

Iterations with the LS Eq. (19) will lead to a deviation of 𝜙 from
ts signed distance nature. Hence, we reinitialize this LS function to
ts signed distance function at periodic intervals, following standard
ethods (Jettestuen et al., 2013; Osher and Fedkiw, 2003). The level

et evolution converges to a steady state when the difference of 𝜙
etween two reinitializations, denoted by 𝑚 and 𝑛, in a small band
defined by 𝑏) around the zero contours of the level set function in pore
pace is less than a specified tolerance value:
∑

𝛺𝐻𝜖(𝜓 + 𝜖)𝐻𝜖(𝜙𝑛 + 𝜆)𝐻𝜖(−𝜙𝑛 + 𝜆)|𝜙𝑛 − 𝜙𝑚|
∑

𝛺𝐻𝜖(𝜓 + 𝜖)𝐻𝜖(𝜙𝑛 + 𝜆)𝐻𝜖(−𝜙𝑛 + 𝜆)
< 𝑐𝛥𝑥 . (25)

Here 𝜆 = 𝑏 × 𝜖 is the width of the convergence band. In this work, we
use 𝑏 = 5, 𝑐 = 0.001, and a reinitialization interval of 10 iterations.

In the LS method, we approximate normal and advective velocity
terms using a weighted essentially non-oscillatory (WENO) scheme
with appropriate upwinding techniques, and the area and curvature
terms with central differences. The iteration-time discretization uses a
third-order Runge–Kutta method with a time step determined from a
standard Courant–Friedrichs–Lewy (CFL) condition (Osher and Fedkiw,
2003). The LS methods are implemented within the SAMRAI frame-
work (Hornung and Kohn, 2002; Hornung et al., 2006; Anderson et al.,
2013) to enable parallel multiphase simulations with adaptive mesh
refinement (AMR) using patch-based data structures (Helland et al.,
2019; Friis et al., 2019). Recently, the LS methods with local volume
conservation (Jettestuen et al., 2021) were also extended to provide
AMR capabilities (Singh et al., 2023a). The current work uses this latter
AMR capability for local volume conservation to assess grid resolution
effects in simulations of ripening.

2.4. Combined method

In the combined method for ripening, an iteration step consists
of simulating the interface motion to a stationary state using the LS
method, followed by a mass transfer between the gas bubbles using
either the GB or BB method (refer Singh et al. (2022) for a detailed
workflow). The physical time in the ripening evolution is determined
solely from the mass transfer step (assumption (i)). In the LS method,
we initialize the system by calculating the signed distance function 𝜙
from a given fluid configuration. Then, we calculate a stationary state
by iteratively solving Eq. (19). At each reinitialization step, we check
for convergence using Eq. (25). In every LS iteration, we calculate the
volume 𝑉𝑖, surface area 𝐴𝑖, and capillary pressures 𝑃𝑐,𝑖, for each gas
bubble 𝑖 and use them to propagate the level sets to the stationary state.
The mass transfer method takes as input 𝑉𝑖, 𝐴𝑖, as well as the gas bubble
pressures 𝑃𝑔,𝑖 = 𝑃𝑐,𝑖 + 𝑃𝑙 from the stationary state.

Once the stationary state is reached, we identify different diffusive
mass transfer paths for the BB method or, alternatively, different ghost
bubble regions for the GB method. In the case of real gases, we calculate
the fugacity of gas bubbles using PR EoS. In the GB method, we also
calculate the fugacity of the ghost bubble. Then, we calculate the mass
loss (or gain) 𝛥𝑛𝑖 for a gas bubble 𝑖 in a particular time step 𝛥𝑡 by
converting Eq. (12) (for BB method), or Eq. (15) (for GB method) to
a finite difference equation. As an example, for Eq. (12) we can write:

𝛥𝑛𝑖 = −𝛥𝑡 × (𝑅𝑇 ) ×
𝑁𝑖
∑

𝑗=1

𝑁𝑗
∑

𝑘=1
(𝐽𝑖𝑗,𝑘𝐴𝑖𝑗,𝑘) ×

(

ln
𝑓𝑖
𝑓𝑗

)

. (26)

Here, we control the physical time step 𝛥𝑡 by setting a threshold for
the maximum gas bubble volume change (for bubbles losing mass)

𝑉𝑡ℎ∕𝑡𝑐𝑓 and fixing the minimum bubble volume 𝑉𝑓𝑙𝑜𝑜𝑟 that is tracked
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in the simulation. The step control factor 𝑡𝑐𝑓 is set to one initially.
Typically, we use 𝑉𝑓𝑙𝑜𝑜𝑟 = 4(𝛥𝑥)2 and 𝑉𝑡ℎ = 4(𝛥𝑥)2 in 2D simulations,
and 𝑉𝑓𝑙𝑜𝑜𝑟 = 32(𝛥𝑥)3 and 𝑉𝑡ℎ = 10(𝛥𝑥)3 in 3D simulations. We explore
the impact of using different 𝑉𝑡ℎ and 𝑉𝑓𝑙𝑜𝑜𝑟 in Section 6.2.2.

The mass transfer from (or to) each bubble is used to update the
mass of each bubble before the next LS evolution. As the chemical
potential of gas is pressure-dependent, we assume in the numerical
scheme that the pressure is constant for small changes in volume.
Hence, after the mass transfer, we update the original bubble volumes
𝑉 (0)
𝑖 and use them in Eq. (24) in the next LS evolution towards a new

stationary state. After each LS and mass transfer step, we check if a ther-
modynamic equilibrium is reached. That is, we declare convergence in
the combined method when the maximum bubble-pressure difference
in the system is within a threshold value (in non-dimensional form):

max
𝑖
{𝑃𝑔,𝑖(𝑡)} − min

𝑖
{𝑃𝑔,𝑖(𝑡)} < 𝜀 , (27)

where 𝜀 is an error threshold. In this work, we use 𝜀 = 0.1 unless stated
otherwise.

A noteworthy point is the handling of potential mass transfer cyclic-
ity within the bubble population, which typically can arise in the late
stages of the evolution close to equilibrium. Since our method works on
arbitrary pore geometry, we cannot have an a priori method to control
cyclic mass transfer. Instead, we continuously monitor the evolution
for changes in mass transfer direction between two bubbles. Once we
detect reversed mass transfer, we reduce the time step by increasing the
control factor 𝑡𝑐𝑓 alternately by a factor of two and three in consecutive
cyclic mass transfer steps. When the cyclicity has disappeared, we
perform three additional time iterations with the reduced time step.
If the cyclicity remains absent, we reset 𝑡𝑐𝑓 to one for the next time
iteration. If the cyclicity reappears, we increase the control factor 𝑡𝑐𝑓
to reduce the time step further. Intuitively, the cyclic mass transfer is
linked to 𝑉𝑡ℎ, and a very high threshold can significantly impact the
cyclicity observed in the results. Using a larger 𝜀 in Eq. (27) can also
prevent cyclicity, but at the cost of accuracy.

3. Model validation

In this section, we validate the BB and GB methods against ana-
lytical solutions. We carry out the validation similar to our three-phase
prediction validation in Singh et al. (2023b). We use a 2D homogeneous
medium (with size 315 × 515 grid cells and grid spacing 𝛥𝑥 = 2 μm)
containing circular solid grains with a diameter of 165 μm. The solid
grains are aligned on a square regular grid such that the distance
between the centers of adjacent solid grains is 200 μm (see Fig. 2). The
volume of each pore is 𝑉𝑝 = 1.86 × 10−8 m2 (volume in 2D is area). In
these pores, the largest radius a circular bubble takes before it starts
interacting with the solid grains is 58.9 μm, which corresponds to the
bubble volume 0.59𝑉𝑝 (that is, the area of the maximal inscribed circle).
The pore throat length (82 μm) is calculated as the distance between the
centers of two maximal inscribed circles in adjacent pores minus their
circle radii. This is the smallest distance between the interfaces of two
neighboring bubbles with the largest possible circular shape. We add
eight bubbles with volumes in the range between 1.26 × 10−8 m2 and
1.50× 10−8 m2 in every other pore (see Fig. 2). The initial LS evolution
forms the contact angle accurately on the grain surfaces and generates
the initial pressure of each bubble.

The gas phase is air, which is assumed to be an ideal gas (𝑍 =
1). The environment pressure and temperature are 101,325 Pa and
298.15 K. Henry’s volatility for air in water is 𝐾𝑝𝑥 = 7 × 109 Pa and
the diffusion coefficient is 𝐷 = 2 × 10−9 m2 s−1 (Xu et al., 2017). The
molar mass 𝑀 , and density 𝜌, of air and water are 𝑀𝑔 = 29 g mol−1,
𝑀𝑙 = 18 g mol−1, 𝜌𝑔 = 1.2 kg m−3, and 𝜌𝑙 = 1000 kg m−3. The solid
grains are considered water-wet with contact angle 𝜃 = 10◦. We use
the distance along the medial axis of the pore space between the arcs
of two maximal inscribed circles placed in the bubble positions as the

̄ −6
6

constant mass transfer length 𝑙𝑖𝑗,𝑘 = 𝑙 = 282×10 m in the simulations.
Fig. 2. Gas bubble configuration in water. (a) Initial, and (b) stable. Gas bubbles are
in yellow, water is in blue, and solid grains are in brown.

Fig. 3. Bubble geometry used in the calculation of analytical capillary pressure. The
angle 𝛼 determines the location of the gas/water/solid contact line. It can vary between
𝜋 and 5𝜋

4
. 𝑉𝑏𝑜𝑑𝑦 is in yellow, 𝑉𝑚𝑖𝑛𝑜𝑟 is in green, water is in blue, and solid grains are in

brown.

The characteristic parameters are set to 𝐿∗ = 2×10−6 m and 𝜎∗ = 10−4 N
m−1, which gives 𝑃 ∗

𝑐 = 50 Pa.
The analytic capillary pressures were calculated based on the equi-

librium bubble volume in the simulations using equations determined
by (Wang et al., 2021):

𝑉𝑡𝑜𝑡𝑎𝑙(𝛼) = 4𝑉𝑚𝑖𝑛𝑜𝑟(𝛼) + 𝑉𝑏𝑜𝑑𝑦(𝛼) ,

𝑉𝑚𝑖𝑛𝑜𝑟(𝛼) =
( 3𝜋

2
− 𝛼 − 𝜃

) (𝑅0 + 𝑅1 cos 𝛼)2

cos2(𝛼 + 𝜃)
, (28)

𝑉𝑏𝑜𝑑𝑦(𝛼) = 4𝑅2
0 + (4𝛼 − 5𝜋)𝑅2

1

+ (2𝑅0 + 𝑅1 cos 𝛼)4𝑅1 sin 𝛼

− 4(𝑅0 + 𝑅1 cos 𝛼)2 tan(𝛼 + 𝜃) .

and,

𝑟(𝛼) = −
𝑅0 + 𝑅1 cos 𝛼
cos(𝛼 + 𝜃)

. (29)

Here, 𝑉𝑡𝑜𝑡𝑎𝑙 is the total bubble volume, 𝑉𝑏𝑜𝑑𝑦 is the body volume of the
bubble in the center, and 𝑉𝑚𝑖𝑛𝑜𝑟 is the volume of the bubble protrusion
in each pore throat (see Fig. 3). The angle 𝛼 measures the area of grain
surface covered by gas, while 𝜃 is the gas-water contact angle. 2𝑅0 is
the center-to-center distance between the grains, and 𝑅 is the radius
1
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Fig. 4. Initial bubble distribution in the 2D homogeneous geometry (solid grains in brown) with 25 pores for (a) simulation 1 (and 5), and (b) simulation 2. In the initial
distribution, larger bubbles are in yellow, and smaller bubbles are in green. The initial bubble distribution in simulation 5 is similar to that of simulation 1 shown in (a), except for
small differences in bubble sizes that create slightly different average bubble sizes and gas saturation (see Table 3). The supporting information (Text S2 and Figure S1) describes
initial bubble distributions for simulations 3 and 4.
of the solid grains. For details, refer to the supplementary information
of Wang et al. (2021).

We carry out three simulations for BB and GB methods at different
interfacial tensions corresponding to those used by Xu et al. (2017) in
their experimental investigations. Tables 1 and 2 show the simulated
and expected values for mass and capillary pressure for these simula-
tions. The initial gas capillary pressure range for the bubble distribution
is 771.2 Pa, 381.3 Pa, and 276 Pa for the interfacial tensions 71 ×
10−3 N m−1, 35.1 × 10−3 N m−1, and 25.4 × 10−3 N m−1, respectively. The
value of 𝛼 at equilibrium is determined to be 210.9◦ using the simulated
equilibrium bubble volume in Eq. (28). This 𝛼 is used in Eq. (29) to
calculate the expected air–water capillary pressure. There is a 0.17%
difference in the equilibrium volume predicted by the BB and GB
methods. Since the level-set method conserves local volume, the initial
total mass of the system decreases with decreasing interfacial tension
(i.e., initial capillary pressure) at a constant environment pressure.
The results highlight that there is negligible mass loss during ripening
evolution in both methods. Mass conservation combined with reason-
able capillary pressure at the stable state validates the thermodynamic
equilibrium predicted by both models.

4. Comparison of bubble-to-bubble method and ghost bubble
method

In this section, we compare the results from the GB and BB methods
and analyze their computational performance. We use a 2D homoge-
neous porous medium (with size 206 × 206 grid cells and grid spacing
𝛥𝑥 = 5 μm) formed by identical, circular solid grains aligned on a
regular network (see Fig. 4). The geometry is similar to the one used in
the previous section, except that it consists of 25 pores. The gas phase
is distributed on this geometry as circles with radii taken from two
different distributions generated using the truncnorm function in Python
programming language. One of the distributions provides larger bubble
radii than the other. All generated bubble radii are in the interval
between 58.9 and 81 μm. As these bubbles will overlap with the solid
grains, the corresponding bubble volume interval is between 0.59𝑉𝑝
and 0.84𝑉𝑝. The initial LS evolution uses this overlap to calculate a
stationary fluid configuration that forms the contact angle accurately
on the grain surfaces. The gas and water properties are the same as in
the previous section. We use a constant mass transfer length 𝑙𝑖𝑗,𝑘 = 𝑙
in the simulations. The characteristic parameters are set to 𝐿∗ = 5 ×
10−6 m and 𝜎∗ = 10−4 N m−1, which gives 𝑃 ∗

𝑐 = 20 Pa.
We perform simulations with five different bubble distributions. In

three of these distributions, nearly all the liquid regions have only
two bubbles surrounding them (see Fig. 4(a)). For these dense bubble
7

Table 1
Comparison of BB method predictions against the expected values for mass and capillary
pressure. The expected capillary pressure [Pa] is analytically calculated for the average
equilibrium volume [1.36 × 10−8 m2] at the predicted thermodynamic equilibrium. The
total mass [×10−7 kg] of bubbles at the initial converged state is used as a reference
for the expected value at the end of the simulation. The pressure range at equilibrium
is given in Pa.

Property Expected Simulated Error (%)

IFT = 71 × 10−3 [N m−1]

Total mass 1.31 1.31 0.02
Capillary pressure 1836.97 1731.06 5.76
Pressure range – 1.62 –

IFT = 35.1 × 10−3 [N m−1]

Total mass 1.30 1.30 0.01
Capillary pressure 908.07 855.71 5.77
Pressure range – 4 –

IFT = 25.4 × 10−3 [N m−1]

Total mass 1.29 1.29 0.01
Capillary pressure 657.10 619.23 5.76
Pressure range – 3.58 –

Table 2
Comparison of GB method predictions against the expected values for mass and
capillary pressure. The expected capillary pressure [Pa] is analytically calculated for
the average equilibrium volume [1.36 × 10−8 m2] at the predicted thermodynamic
equilibrium. The total mass [×10−7 kg] of bubbles at the initial converged state is
used as a reference for the expected value at the end of the simulation. The pressure
range at equilibrium is given in Pa.

Property Expected Simulated Error (%)

IFT = 71 × 10−3 [N m−1]

Total mass 1.31 1.31 0.15
Capillary Pressure 1844.28 1738.29 5.75
Pressure range – 2.82 –

IFT = 35.1 × 10−3 [N m−1]

Total mass 1.30 1.30 0.01
Capillary Pressure 911.67 859.29 5.75
Pressure range – 3.87 –

IFT = 25.4 × 10−3 [N m−1]

Total mass 1.29 1.30 0.16
Capillary Pressure 659.71 621.81 5.75
Pressure range – 2.83 –

populations (simulations 1, 3, and 5), we use the pore throat length as
mass transfer distance, 𝑙 = 82 μm. In the other two distributions, the
liquid region is generally surrounded by more than two gas bubbles
(see Fig. 4(b)). These cases (simulations 2 and 4) use a larger effective
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Fig. 5. Comparison of bubble distribution evolution towards equilibrium using BB method (in blue) and GB method (in red) with variable mass transfer area in (a) simulation 1
and (b) simulation 2, and with constant mass transfer area in (c)simulation 1 and (d) simulation 2. Here, 𝐹 indicates the closeness to equilibrium, with 𝐹 = 0 representing the
initial condition and 𝐹 = 1 representing the equilibrium condition.
Table 3
The interfacial tension 𝜎 [×10−3 N m−1], the number of bubbles in the pore space 𝑁𝑏,
initial bubble volume deviation 𝑈0 and average bubble volume 𝑉𝑎𝑣 normalized by pore
volume 𝑉𝑝, and gas saturation 𝑆𝑔 for simulations comparing BB and GB methods.
Source: The interfacial tension values are adopted from Xu et al. (2017).

Simulation 𝜎 𝑁𝑏 𝑈0∕𝑉𝑝 𝑉𝑎𝑣∕𝑉𝑝 𝑆𝑔
1 35.1 24 1.119 0.743 0.69
2 25.4 14 0.651 0.737 0.40
3 35.1 22 0.730 0.689 0.59
4 25.4 14 0.684 0.712 0.39
5 71.0 24 0.982 0.750 0.71

mass transfer length to account for bubbles separated by a vacant pore,
𝑙 = 282 μm. Hence, the five cases capture different sizes of ghost
bubble regions. In the simulations, the GB method assumes simplified
treatment of the mass transfer areas so that the phase permeability can
be approximated by Eq. (18), while the BB method allows different
mass transfer areas for each diffusion path in Eq. (12) using the phase
permeability from Eq. (11).

We use a statistical indicator, the half of the total volume deviation
𝑈 , to characterize the bubble distribution over time (Xu et al., 2017):

𝑈 = 1
2
∑

|𝑉𝑖 − 𝑉𝑎𝑣| , (30)

where 𝑉𝑖 is the volume of a single bubble, 𝑉𝑎𝑣 is the average volume of
the bubble distribution. This can be used to formulate an equilibrium
indicator variable 𝐹 = 1 − 𝑈

𝑈0
, where 𝑈0 is the initial deviation. 𝐹

describes how close the bubble population is to the equilibrium, with
equilibrium at 𝐹 = 1. Table 3 shows the interfacial tensions and the
properties of the bubble distributions used in the simulations.
8

Fig. 5(a) and (b) highlights the characteristic evolution nature of
𝐹 (Xu et al., 2017), as obtained from simulations 1 and 2. The sup-
porting information (Text S2 and Figure S2) presents similar results for
simulations 3, 4, and 5. The evolutions calculated with the GB method
and BB method are nearly coincident. The data points correspond to
different times in the two methods since the physical time step is
not fixed; instead, it is dynamically calculated during the simulation.
The slight differences in the trendlines are likely caused by the sim-
plifications made for determining the effective phase permeability of
the GB method using Eq. (18), as the mass transfer areas used in the
two methods are slightly different. We repeated the five simulations
by assuming the mass transfer area in both methods is given by the
minimum pore throat area (35 μm). Fig. 5(c) and (d) show the evolution
of 𝐹 for simulations 1 and 2, while the supporting information (Text
S2 and Figure S2) provides similar results for simulations 3, 4, and 5
with constant mass transfer area. These graphs show that the constant
area assumption makes the curves coincident for 𝐹 < 0.95.

Despite the similarity in the bubble evolutions, computationally
the two methods differ in speed and numerical mass-transfer cyclicity.
During the simulations, we recorded the simulation time every 1000
LS iterations. Since the two methods run with dynamic time steps,
we compare the values for the nearest 𝐹 -values in Table 4. The GB
method provides a speed-up of 1.7 to 2.2, which correlates closely with
the ratio of LS iterations required to reach 𝐹 = 0.9. At each quasi-
static state in the simulation, one of the bubbles in the system has the
highest mass loss rate. The maximum volume threshold 𝑉𝑡ℎ restricts
the mass lost from this bubble at that particular state. The time step
required for a fixed amount of mass loss is inversely proportional to
the natural logarithm of the fugacity ratio (see Eq. (26)). In the GB
method, the mass transfer occurs from a ghost bubble representing the



Advances in Water Resources 187 (2024) 104688D. Singh et al.
Table 4
Performance comparison of BB and GB method. Volume deviation 𝐹 and total
simulation time 𝑡 [s] at the iteration (multiple of 1000) prior to LS iteration 𝐼𝐺𝐵 (for
GB method) and 𝐼𝐵𝐵 (for BB method).

Simulation GB method BB method Speed-up 𝐼𝐵𝐵
𝐼𝐺𝐵

𝑡 𝐼𝐺𝐵 𝐹 𝑡 𝐼𝐵𝐵 𝐹

1 850 53 270 0.901 1868 121 670 0.890 2.20 2.28
2 636 47 240 0.894 1216 93 470 0.898 1.91 1.98
3 634 43 220 0.927 1071 77 390 0.908 1.69 1.79
4 579 51 260 0.907 1034 91 460 0.903 1.79 1.78
5 804 49 250 0.917 1771 115 580 0.899 2.20 2.35

local equilibrium. Hence, its fugacity difference with the neighboring
bubbles is smaller than the fugacity difference between bubble pairs
in the BB method. This allows a larger time step for mass transfer in
the GB method than the BB method (see Fig. 5). In our simulations, we
observed that cyclicity near equilibrium was more prominent in the
case of the GB method. For example, in Fig. 5(b), the GB method curve
shows slight oscillation for 𝐹 > 0.95. Ghost bubble fugacity impacts
mass transfer for multiple bubbles. So, in the GB method, each instance
of cyclicity also affects multiple bubbles.

The results show that the GB and BB methods are akin to each other.
The GB method provides faster computation but is prone to cyclicity
issues near equilibrium. Thus, it is more suitable in scenarios with fewer
possibilities for cyclicity, like in idealized porous media with smooth
pore geometry changes. On the other hand, the BB method is suitable
in more complex scenarios where pore geometry changes sharply, and
small changes in bubble volume can cause large pressure differences. As
mentioned earlier, it is possible to control the impact of mass transfer
cyclicity in the GB method by reducing 𝑉𝑡ℎ. Alternatively, one can
improve the BB method’s computational performance by increasing 𝑉𝑡ℎ.

5. Impact of pore geometry on ripening

It has been widely reported that pore geometry affects Ostwald
ripening dynamics (de Chalendar et al., 2017; Xu et al., 2017, 2019;
Singh et al., 2022; Yu et al., 2022). This section uses the BB method
to investigate geometry effects on gas bubble ripening at the scale of a
single pore throat connected by two pores, followed by investigations
on a 3D representation of a typical homogeneous micromodel geometry
with a fixed depth. We comment on important parameters that can
affect the time scale of ripening.

5.1. Ripening in a 2D isolated pore pair connected by different pore throats

Previously, we have investigated different Ostwald ripening scenar-
ios between two gas bubbles in an isolated pore pair connected by a
converging/diverging pore throat Singh et al. (2022). The simulations
confirmed earlier observations of de Chalendar et al. (2017) that in
porous media mass transfer direction depends not only on the bubble
volume but also on the pore geometry. However, a key point that
still requires investigation is the impact of pore throat shape on the
ripening dynamics. The previous investigations used a fixed pore throat
geometry consisting of two truncated triangles (Singh et al., 2022).
Here, we explore three different pore throats (geometry 1, 2, and
3), each formed by a section with different truncated triangles and a
section with two parallel plates separated by 20 μm, see Fig. 6(a).

The three geometries (discretized with 350 × 140 grid cells and
grid spacing 1 μm) consist of two circular pores (with radius 60 μm)
connected by the different asymmetrical pore throats. The triangular
section in the pore throats contains one truncated triangle with differ-
ent slopes in geometry 1 and 2, while geometry 3 forms two truncated
triangles with different slopes in this section, see Fig. 6(a). In all three
geometries, we ensure that the initial pressure difference and distance
between the bubble interfaces are the same in all three geometries. If
9

Fig. 6. Impact of pore throat geometry on ripening. (a) Different geometries, (b)
curvature difference evolution curve with varying mass transfer area, and (c) curvature
difference evolution curve with constant mass transfer area. Geometry 1 is in blue,
geometry 2 in red, and geometry 3 in black. Figure (a) also shows the initial zero
contours 𝜙 = 0 (in green) representing the brine/CO2 interfaces in the pore space. Note
that 𝜙 = 0 extends into the solid phase for accurate formation of the contact angle on
the pore walls.

we use a constant mass transfer distance 𝑙 in all cases, the mass transfer
rate will solely depend on the change in interfacial area and capillary
pressure of the bubbles as they grow or shrink in the pore space. Both
these parameters are functions of the pore throat geometry. To ensure
equal pressure difference initially in the three geometries, the interface
of the left bubble lies in the parallel section of the pore throat, while the
other bubble resides within the circular pore. The initial volume of the
smaller bubble is 1.04 × 10−9 m2. The pressure of the smaller bubble
is lower than the larger bubble, so the bubble to the left loses mass
during the ripening evolution. This corresponds to a situation where the
interface radii of both bubbles increase with time (Singh et al., 2022).

We consider a fluid system with supercritical CO2 as the non-
wetting phase and brine as the wetting phase. The environment pres-
sure and temperature are 15 MPa and 323.15 K. Henry’s volatility for
CO2 in brine is 𝐾𝑝𝑥 = 8.46 × 108 Pa (Sander, 2015) and the diffusion
coefficient is 𝐷 = 7.42 × 10−9 m2 s−1 (Cadogan et al., 2014). The CO2-
brine interfacial tension is 𝜎 = 32.6 × 10−3 N m−1 (de Chalendar et al.,
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2017). The molar mass and density of CO2 and brine are 𝑀𝑔 = 44 g
mol−1, 𝜌𝑔 = 699.75 kg m−3, 𝑀𝑙 = 18 g mol−1, and 𝜌𝑙 = 994.43 kg m−3,
respectively (Lemmon et al., 1997). We use a constant mass transfer
length 𝑙 = 200 μm, and 𝜀 = 0.05. The solid grains are water-wet with
a contact angle of 𝜃 = 10◦. The characteristic parameters are set to
𝐿∗ = 1 × 10−6 m and 𝜎∗ = 10−4 N m−1, which gives 𝑃 ∗

𝑐 = 100 Pa.
Fig. 6(b) shows the evolution of curvature difference between the

bubbles, given as 𝜅𝑑𝑖𝑓𝑓 = 𝛥𝑃𝑔∕𝜎. Since the bubble to the right only
grows radially, the rate of change of 𝜅𝑑𝑖𝑓𝑓 relates directly to pressure
changes of that bubble. This rate of change depends strongly on the
slope of the pore throat. A larger slope (cf. geometry 1) yields a faster
ripening towards equilibrium because the increase of interfacial area
and the decrease of capillary pressure that the left bubble experiences
for a given reduction in bubble volume are more significant. The final
volume of the circular bubbles is different in all the cases: 1.54 × 10−9

2 (geometry 1), 2.97 × 10−9 m2 (geometry 2), and 2.16 × 10−9 m2

geometry 3). So, we can conclude that the volume of the smaller
ubble and the time to reach equilibrium increases with decreasing
ore throat slope. The different equilibrium volumes of the circular
ubble also show that the equilibrium pressures also depend on the
hape of the pore throat.

We repeat the simulations by assuming a constant mass transfer area
qual to the width of the parallel pore throat region (20 μm). Then it is
nly the pressure–volume behavior that could lead to different ripening
volutions in the three geometries. Fig. 6(c) shows that the evolutions
f 𝜅𝑑𝑖𝑓𝑓 are similar to those in Fig. 6(b). However, since the constant
ass transfer area is less than the minimum bubble interfacial area
sed in Fig. 6(b), the bubbles take a longer time to reach equilibrium
his time. Initially, the ratio of mass transfer areas in the two sets of
imulations is 1.3, but it increases to an interval ranging from 2.02
o 2.87 in the three geometries at equilibrium. Meanwhile, the ratio
f equilibrium times for the same geometry in the two simulation
ets ranges from 1.8 to 2.5. The impact of mass transfer area can
e observed in Fig. 6(b) and (c). The curves are nearly proportional
uring initial evolution when the ratio of the two mass transfer areas
s nearly constant, but then the evolutions start to deviate slightly as
he ratio increases. Overall, the results show that the choice of mass
ransfer area in the model is important for the time scale of the ripening
ithout significantly changing the nature of the evolution, whereas the
ressure–volume behavior (which depends on pore geometry) impacts
oth the time scale and how the ripening evolves. This demonstrates
he importance of using a suitable pore throat shape for the idealization
f the pore geometry in studying Ostwald ripening (e.g., de Chalendar
t al., 2017).

.2. Ripening in 3D micromodel geometries

We extend the analysis from the last section to a porous medium
ontaining multiple pores. For this purpose, we utilize the experimental
nvestigations presented by Xu et al. (2017) which were later also
tudied by Mehmani and Xu (2022a) using a pore-network model
PNM). Xu et al. (2017) experimentally studied Ostwald ripening using
ir and surfactant solution in a homogeneous glass micromodel. In
his micromodel, the 2D structure of pores and grains has the same
pecifications as the geometry used in Section 4. However, the micro-
odel has a depth that varies gradually from 26.4 ± 1 μm in the pores

o 14.7 ± 1 μm in the pore throats to provide a 3D effect on the 2D
rray. Mehmani and Xu (2022a) compared PNM results with one of the
xperiments from Xu et al. (2017) using a 3D semi-cubic pore network
ontaining a total of 120 (15 × 8) pores. The varying micromodel depth
akes it difficult to create a precise replica of it. Therefore, we perform

imulations with the BB method using a homogeneous pore geometry
hat is constant with depth and contains 120 pores (see Fig. 7(a)), for
omparison against the PNM results (Mehmani and Xu, 2022a) and the
xperimental results (Xu et al., 2017). This geometry, with cylindrical
10

olid grains, is sandwiched by solid plates at the top and bottom. The
resulting 3D computational domain contains 430 × 430 × 15 grid cells
ith a grid spacing 𝛥𝑥 = 5 μm. The depth of the pore space and each

of the solid plates is 25 μm.
Consistent with the published data (Xu et al., 2017; Mehmani and

Xu, 2022a), we populate the pore space with 73 bubbles. The interface
areas for the larger bubbles in the simplified geometry are typically
1.6 (= 5∕3) times larger compared to the actual micromodel. The
volume of each pore is 𝑉𝑝 = 4.65 × 10−13 m3 in our simulations. We
use 𝑉𝑡ℎ = 12(𝛥𝑥)3 to limit the time step. We carry out two sets of
simulations, one with a constant mass transfer length 𝑙𝑖𝑗,𝑘 = 282 μm, and
another with 𝑙𝑖𝑗,𝑘 approximated by the centroid-to-centroid distance
between bubbles. The mass transfer area for a diffusion path between
two bubbles is the smallest area of the two relevant interfaces of the
bubbles. The gas-liquid interfacial tension is 𝜎 = 25.4×10−3 N m−1 and
the contact angle is 𝜃 = 10◦. The environment pressure and temperature
are 101,325 Pa and 293 K. The other simulation parameters are the
same as in Section 4. Following Mehmani and Xu (2022a), we carry
out ten simulations with slightly different bubble distributions and use
the average value to remove spatial bias from the analysis.

Fig. 7(b) shows the non-linear relation between bubble capillary
pressure (𝑃𝑐) and bubble volume (𝑉𝑏) for bubble growth in a single pore
used in our simulation (blue dots). While the coupled model calculates
such data directly during the ripening simulation, here we have gener-
ated this curve using the LS model alone on the simplified geometry
by calculating capillary equilibrium states for a series of different
bubble volumes (see Appendix A). On the other hand, the different
pore geometries used in the PNM and the experiments allowed accurate
linear approximations of the 𝑃𝑐 (𝑉𝑏) curves for 𝑉𝑏 > 𝑉𝑐𝑖 (Xu et al., 2017;
Mehmani and Xu, 2022a). Here, the critical volume of a bubble, 𝑉𝑐𝑖, is
the volume at which the bubble has the minimum pressure, which in
a case with zero contact angle would correspond to a bubble (in a 2D
section) shaped by the maximal inscribed circle in the pore. Further, 𝑚
is the slope of a line that approximates the 𝑃𝑐 (𝑉𝑏) function for bubble
volumes 𝑉𝑏 > 𝑉𝑐𝑖 (that is, the range at which the bubble interacts
with the grains) (Mehmani and Xu, 2022a). Fig. 7(b) shows the linear
approximation from the micromodel experiment (solid black) as well as
a linear fit to our simulated curve (dashed orange). From the simulated
curve we obtain 𝑉𝑐𝑖−𝐵𝐵 ≈ 0.56×𝑉𝑝 and 𝑚𝐵𝐵 ≈ 1.73×1017 m−4. The values
in the PNM and micromodel experiment were as follows: 𝑉𝑐𝑖−𝑃𝑁𝑀 ≈
0.52 × 𝑉𝑝 and 𝑚𝑃𝑁𝑀 ≈ 3.0307 × 1016 m−4, and 𝑉𝑐𝑖−𝐸𝑥𝑝 ≈ 0.6 × 𝑉𝑝 and
𝑚𝐸𝑥𝑝 ≈ 1.6×1017 m−4, respectively (Mehmani and Xu, 2022a). The value
of these two parameters, 𝑉𝑐𝑖 and 𝑚, depends on the gas-liquid contact
angle and micromodel depth (see Appendix A for a detailed analysis).
Obviously, the difference in the 𝑃𝑐 (𝑉𝑏) curves between our simulations
and the micromodel experiments is due to the uniform depth in the
simplified geometry used in the simulations. Mehmani and Xu (2022a)
attributed the different values of these two parameters to the semi-cubic
nature of the PNM geometry and compensated for the difference by
updating the depth of their geometry.

Fig. 7(c) shows the bubble-size distribution at different times in
our ripening simulations for both the case with constant mass transfer
length and the case with a centroid-to-centroid distance between the
bubbles as mass transfer lengths. The wide initial distribution progres-
sively coarsens such that the average bubble volume is between 0.7𝑉𝑝
and 0.9𝑉𝑝 after 80 h. The homogeneous medium with identical pores
ensures that both the bubble volume distribution and bubble pressure
distribution narrow over time. After 40 h, bubbles with initial volumes
less than 0.45 ×𝑉𝑝 are typically lost from the system. The distribution’s
coarsening rate decreases with evolution. This decreasing rate results
from the decreasing growth rate of bubbles with volume in the range
between 0.7𝑉𝑝 and 0.8𝑉𝑝, and decreasing loss rate of bubbles with
volume in the range between 0.8𝑉𝑝 and 0.9𝑉𝑝. Fig. 7(c) also shows that
the simulations with constant and varying mass transfer lengths have
similar evolutions, with the constant mass transfer length simulations

demonstrating a marginally faster ripening rate.
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Fig. 7. Comparison of simulations with BB method against micromodel experiment and PNM simulation results. (a) Typical initial distribution with 73 bubbles (left), and equilibrium
distribution (right), from BB simulation in 15 × 8 pore space (gas in green, liquid in blue, and solid grains in brown), (b) capillary pressure vs. volume curve for bubble growth
in a single pore of depth 25 μm, (c) bubble-size distribution in our simulation at different times, and (d) comparison of cumulative bubble size distribution in our simulation with
PNM (Mehmani and Xu, 2022a) and micromodel experiment (Xu et al., 2017). On the 𝑥-axis, the volume of bubbles is normalized by the volume of a single pore.
Differences in pore geometry lead to different rates of coarsen-
ing. Fig. 7(d) compares the cumulative bubble-size distribution of our
simulation (for the case with a centroid-to-centroid distance between
bubbles as mass transfer length), the PNM (Mehmani and Xu, 2022a),
and the micromodel experiment (Xu et al., 2017). The comparison
shows that our simulations predict a faster coarsening rate than the
PNM simulations, which in turn predicts a faster rate than the mi-
cromodel experiments. The difference in ripening rates suggests that
the different pore geometries impact the results through different mass
transfer areas and 𝑃𝑐 (𝑉𝑏) behavior (as investigated in Section 5.1).

Mehmani and Xu (2022a) calculated a consistent value for the mass
transfer area based on an equivalence relation between mass transfer
area, mass transfer length, and 𝑃𝑐 (𝑉𝑏)-function in the PNM and the
micromodel. This resulted in a higher mass transfer area in the PNM
(2.716 × 103 μm2) than in the micromodel (35 × 14.7 = 5.145 × 102 μm2).
However, we calculate the gas-liquid interfacial area (including the
effects of curvature) for each bubble corresponding to a uniform depth
of 25 μm. This leads to a mass transfer area in our simulations that
always will be much larger than 35 × 25 = 8.75 × 102 μm2. Compared
to the micromodel experiment, our model predicts larger areas for
the larger bubbles. This larger mass transfer area leads to a higher
coarsening rate in our simulation.

Finally, the 𝑃𝑐 (𝑉𝑏) curve in the PNM model, micromodel experi-
ments, and our simulations differ in 𝑉𝑐𝑖 as well as slope 𝑚. Mehmani
and Xu (2022a) incorporated an almost linear approximation of the
𝑃𝑐 (𝑉𝑏)-function. Still, their model predicts faster coarsening which is
more distinct at 50 h. The authors hypothesize that the ripening rate
is faster than in the experiments due to the use of an almost linear
function with a positive slope to represent the flat region of the 𝑃𝑐 (𝑉𝑏)
function near 𝑉𝑐𝑖 (Mehmani and Xu, 2022a). Our simulations yield a
non-linear 𝑃𝑐 (𝑉𝑏)-curve, with a flat region for 𝑉𝑏 > 𝑉𝑐𝑖 near 𝑉𝑐𝑖, followed
by an increasing slope and then a decreasing slope with higher 𝑉𝑏.
Furthermore, in simulations, it is essential to use 𝑉𝑐𝑖 that conforms
with the experiment. If 𝑉𝑐𝑖 deviates from the experimental value, the
simulation will use a 𝑃𝑐 (𝑉𝑏)-curve with a slope of the opposite sign than
that obtained in the experiment for the bubble volume interval between
11
the experimental and modeled 𝑉𝑐𝑖. This will impact the compliance
of ripening rate and mass transfer direction between simulation and
experiment. As discussed in Section 5.1, the slope of the 𝑃𝑐 (𝑉𝑏) curve
is strongly related to the pore-throat geometry, and it impacts the
coarsening rate in that a higher slope leads to a larger change in bubble
pressure for the same change in bubble volume. Despite the differences
in pore geometry and ripening rate; our simulation, the PNM, and the
micromodel experiment predict that the equilibrium bubble volume is
around 0.7𝑉𝑝.

6. Impact of initial spatial bubble distribution on ripening

In Section 5.2, we used average values from multiple simulations
to remove spatial bias from the results. In this section, we use the BB
method to investigate the impact of spatial bubble distributions on the
ripening evolution in 2D and 3D porous media.

6.1. 2D homogeneous porous medium

The ripening evolution of a bubble population depends on the
spatial distribution of bubbles with different pressures (Mehmani and
Xu, 2022a). Here, we perform simulations to investigate how different
patterns with small and large bubbles in 2D homogeneous media
(similar pore geometries as used in Section 4) create different ripening
evolutions, as quantified by the equilibrium indicator 𝐹 over time. An
objective is to determine spatial bubble-size patterns that conform to
the theoretical model for gas bubble ripening in homogeneous media
proposed by Xu et al. (2017). This model assumes that the area and
length for diffusive mass transfer are given by the minimum throat area
and the pore throat length. A further assumption is that the number of
bubbles in the system remains unchanged during the evolution. If 𝑙0 is
the average mass transfer distance, 𝑡 is the time, and 𝑛𝑎𝑣 is the average
number of neighbors to a given bubble; then the theoretical model
predicts that a plot of 𝐹 on a time frame, 𝜏 = 𝜎𝑡𝑛𝑎𝑣∕𝑙0, will collapse
the curves for different evolutions on a single exponential curve given
by 𝐹 = 1 − exp

(

−𝜏∕𝑏
)

(Xu et al., 2017). Here, 𝑏 is a fluid phase
𝑒𝑞 𝑒𝑞
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Fig. 8. Initial bubble distribution for different simulations: (a) simulation 1 (25 pores, 206 × 206 grid cells), (b) simulation 6 (36 pores, 246 × 246 grid cells), (c) simulation 7
(64 pores, 326 × 326 grid cells), (d) simulation 8 (100 pores, 406 × 406 grid cells), (e) simulation 8 modified with a pore layer of large bubbles at the bottom and small bubbles
at the top, and (f) simulation 8 modified with two pore layers of large bubbles at the bottom and small bubbles at the top. In the distributions, larger bubbles are in yellow, and
smaller bubbles are in green. The grid spacing is 5 μm.
and pore geometry based scaling factor, and 𝑛𝑎𝑣 can be calculated as
𝑛𝑎𝑣 ≈ (𝑉𝑝𝑜𝑟𝑒∕𝑉𝑎𝑣)𝑆𝑔𝑛0, where 𝑆𝑔 is the gas saturation, and 𝑛0 is the
average pore connectivity. In this section, we use 𝐹−𝜏 plots to compare
different spatial distributions.

The parameters used in the different simulations are given in Ta-
ble 5. The other simulation parameters are the same as in Section 4.
We carry out two sets of simulations, one set has 24 bubbles in a 25
pore system (simulations 1–5), and the other set (simulations 6–8) is a
comparison of evolution with 36, 64, and 100 bubbles with one bubble
in each pore. The initial bubble-size distributions of small and large
bubbles in simulations 1–5 are different, resulting in slightly different
average bubble sizes and gas saturation (see Table 5). For simulation
6 (36 pores), we select the set of small bubbles and large bubbles
from the same normal distributions as in simulation 8 (100 pores) to
investigate the effects of sample size on ripening. For simulation 7 (64
pores), we choose two fixed volumes for the large and small bubbles,
1.94 × 10−8 and 1.64 × 10−8 m2 (volume in 2D is area). For simulation
8, we also make two additional modifications to the original bubble
distribution and perform corresponding simulations while maintaining
the specifications in Table 5. In the first case, we place large bubbles
in the entire bottom layer of pores and small bubbles in the entire
top layer, while in the second case, we place large bubbles in the two
bottom layers of pores and small bubbles in the two top layers. Fig. 8
shows the initial bubble patterns used in the simulations.

Fig. 9(a) shows the different 𝐹 − 𝜏 curves for the first set of
simulations. Conforming to the theory, we observe that the values from
different simulations collapse onto a single curve. We fit an exponential
curve and obtain 𝑏𝑒𝑞 = 1.303 × 107 Pa s. The common curve deviates
from the strictly exponential curve for 𝐹 > 0.85. We explore this
behavior through the second set of simulations.

To confirm that the deviation is not a result of sample size, we
compare simulation 6 (36 pores) and simulation 8 (100 pores). As shown
12
Table 5
The number of pores 𝑁𝑝, interfacial tension 𝜎 [×10−3 N m−1], initial bubble volume
deviation 𝑈0 and average bubble volume 𝑉𝑎𝑣 normalized by pore volume 𝑉𝑝, and gas
saturation 𝑆𝑔 for different simulations.

Simulation 𝑁𝑝 𝜎 𝑈0∕𝑉𝑝 𝑉𝑎𝑣∕𝑉𝑝 𝑆𝑔
1 25 35.1 1.119 0.743 0.694
2 25 25.4 0.902 0.726 0.678
3 25 71.0 0.581 0.753 0.700
4 25 25.4 0.674 0.729 0.682
5 25 35.1 0.541 0.699 0.655
6 36 35.1 0.984 0.718 0.711
7 64 71.0 2.064 0.767 0.719
8 100 35.1 2.914 0.722 0.711

in Fig. 8(b) and (d), the initial bubble patterns in these simulations
are similar with alternating pore layers containing smaller and larger
bubbles. Fig. 9(b) shows that the 𝐹−𝜏 plots for these simulations follow
the same trend line, suggesting that the deviation from the exponential
curve does not depend on the sample size. The evolution follows the
same trend for the same spatial distribution of bubbles with higher and
lower pressure, irrespective of sample size.

In simulation 7 (64 pores), the initial, layered bubble pattern dis-
plays a scenario where every small bubble interacts with only one large
neighbor bubble and vice versa, as shown in Fig. 8(c). Fig. 9(b) shows
that the evolution in this case closely follows the exponential curve to
equilibrium.

Fig. 8(d)–(f) shows the initial bubble patterns for simulation 8 (100
pores) and its two modified cases that contain one and two pore layers
with large and small bubbles at the top and bottom of the sample.
Obviously, the increased layering of small and large bubbles reduces
the number of bubbles that have neighbor bubbles of the other size. As
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Fig. 9. Evolution of bubble distribution to equilibrium in the different simulations: (a)
same spatial distribution and different size distributions in 25 pores (simulations 1–5),
and (b) different spatial distributions (simulations 6–8). The figures also show fitted
curves to the simulation results based on the theoretical model (Xu et al., 2017). Here,
𝐹 indicates the closeness to equilibrium, with 𝐹 = 0 representing the initial condition
and 𝐹 = 1 representing the equilibrium condition.

shown in Fig. 9(b), this reduces the mass transfer rate and promotes an
early deviation from the exponential curve.

The spatial location of bubbles with contrasting pressures can ex-
plain the deviation of the simulation results from the theoretical ex-
ponential curve. Figs. 10 and 11 show the bubble capillary pressure
evolution during Ostwald ripening for simulation 7 (Fig. 8(c)) and
simulation 8 with two modified bubble layers at top and bottom
(Fig. 8(f)), respectively. Here, the pressure of a bubble is represented
by a color on a square pore element. For simulation 7, the pressure
change decreases uniformly in the entire pore geometry over time
while the location of the pressure gradient remains unchanged. We
refer to this type of ripening regime as a local regime where local
equilibrium (e.g., equilibrium between bubble neighbors with different
initial pressure) ensures global equilibrium in the distribution.

On the other hand, for simulation 8 with two modified bubble
layers at the top and bottom, the location of the pressure gradient
in the geometry changes as the evolution proceeds. As expected, it
also leads to a situation where the bubbles with minimum and max-
imum pressure reside on the opposite sides of the geometry (Fig. 11).
Such scenarios lead to slower mass transfer since the mass has to
be transferred sequentially through many bubbles before the system
reaches thermodynamic (or global) equilibrium. We refer to this type of
ripening behavior as a global regime. The deviation from the exponential
13
Fig. 10. Bubble capillary pressure evolution during Ostwald ripening in simulation 7
(local equilibrium). The equilibrium indicator, 𝐹 (in %), for the different images are:
(a) 8.3, (b) 58.6, and (c) 91.8.

curve in Fig. 9 highlights the switch from a local ripening regime
dominated mass transfer to a global ripening regime dominated mass
transfer. Comparison of Figs. 10 and 11, and the corresponding 𝐹 − 𝜏
plots in Fig. 9, suggests that ripening in the local regime towards
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Fig. 11. Bubble capillary pressure evolution during Ostwald ripening in simulation
8 with two modified bubble layers at top and bottom (global equilibrium). The
equilibrium indicator, 𝐹 (in %), for the different images are: (a) 8.5, (b) 57.7, and
(c) 91.1.

equilibrium follows the exponential theoretical model (Xu et al., 2017),
characterized by a stagnant, yet uniformly decreasing bubble pressure
gradient, while a dynamically and spatially changing bubble pressure
14
Table 6
Specifications of the mesh (MeshI – during imbibition and MeshR – during ripening)
and control parameters 𝑉𝑓𝑙𝑜𝑜𝑟 and 𝑉𝑡ℎ [given in (𝛥𝑥)3] in the sandstone simulations.

Simulation MeshI MeshR 𝑉𝑓𝑙𝑜𝑜𝑟 𝑉𝑡ℎ
CC_32_10 Uniform Uniform 32 10
AC_32_10 AMR Uniform 32 10
AA_256_10 AMR AMR 256 10
AC_256_10 AMR Uniform 256 10
AC_256_50 AMR Uniform 256 50

gradient characterizes ripening in the global regime. Ripening in the
global regime will occur when different regions in a porous medium
contain bubbles with distinct pressures. Such conditions will typically
occur in heterogeneous porous media and lead to slower ripening
towards equilibrium than in homogeneous media (Mehmani and Xu,
2022a).

6.2. Ripening post-imbibition in Castlegate sandstone

The last section revealed different generic behaviors of ripening
kinetics for different spatial patterns of bubbles with low and high pres-
sures constructed in a 2D homogeneous porous medium. However, the
spatial bubble distribution depends on the prior displacement history of
the fluids. Here we investigate the ripening of gas bubbles in sandstone
using a capillary-trapped bubble configuration after imbibition. We use
a sample of 3D Castlegate sandstone geometry with 200 × 200 × 200
grid cells and porosity 22.7%. The geometry is taken from a pub-
licly available dataset with a voxel length of 5.6 μm (Sheppard and
Prodanović, 2015).

We use the residual fluid configuration from previously published
LS simulations of capillary-controlled primary drainage and imbibi-
tion with contact angle 𝜃 = 20◦ as starting point for the ripening
investigation (Singh et al., 2023a; Helland et al., 2017). In primary
drainage, gas invaded a completely water-filled sample from the bottom
boundary (𝑧 = 0) by increasing the curvature 𝑃𝑐∕𝜎 stepwise, and in
each step, Eq. (19) was solved to determine stationary states assuming
continuous fluids with uniform capillary pressure (Helland et al., 2017).
The subsequent imbibition, initiated from 𝑆𝑤 = 0.13 after primary
drainage, applied local volume conservation to the gas phase to handle
gas bubbles that detached from the continuous phase (Singh et al.,
2023a). In imbibition, the prescribed curvature between the continu-
ous phases, 𝑃𝑐∕𝜎, decreased stepwise. Water entered through the top
boundary, and gas exited the bottom boundary as the side walls were
sealed. The imbibition was terminated when all the remaining gas was
capillary trapped as isolated ganglia. Two simulations of imbibition
were run, one with a uniform coarse grid (Uniform) and the other
with an adaptive grid having one level of refinement (AMR). Both
simulations predicted the same residual gas saturation at the end of
imbibition, 𝑆𝑔𝑟 = 0.27, but the different grid resolutions created slightly
different imbibition paths, leading to slightly different residual gas
configurations, see Fig. 12(a) and (b). In this section, we use the results
from these two simulations as the initial state in ripening simulations
to assess the impact of spatial bubble locations during ripening at
constant gas saturation, as well as to investigate the effects of AMR
and simulation control parameters in the ripening simulations.

The ripening investigations use CO2 as the non-wetting phase, and
the reservoir pressure and temperature are 15 MPa and 323.15 K. The
CO2-water phase properties are the same as in Section 5.1, except for
the contact angle which is 𝜃 = 20◦. We use a constant mass transfer
distance 𝑙 = 81.06 μm, which is a mean pore-channel length reported for
Castlegate sandstone (Jiang et al., 2011). We use 𝜀 = 0.05 in Eq. (27).
The characteristic parameters are set to 𝐿∗ = 5.6 × 10−6 m and 𝜎∗ =
10−4 N m−1, which gives 𝑃 ∗

𝑐 = 17.86 Pa.
We carry out five simulations with different mesh resolutions and

control parameters for volume thresholds, 𝑉 and 𝑉 (see Table 6).
𝑓𝑙𝑜𝑜𝑟 𝑡ℎ
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Fig. 12. Comparison of gas bubble locations from simulations in Castlegate sandstone. (a–b) Initial gas phase distribution for AMR (in blue) and Uniform (in orange) ripening
simulations. (c–d) Comparison of ripening simulations AC_32_10 (in blue) and CC_32_10 (in orange) in Castlegate sandstone after 1.32 h. Images are from two diagonally opposite
views.
Fig. 13. Comparison of the number of gas bubbles during ripening in Castlegate
sandstone. Simulation CC_32_10 in brown, AC_32_10 in purple, AA_256_10 in blue,
AC_256_10 in red, and AC_256_50 in orange. The simulations were run to different total
times.

The simulations were terminated after at least 11 bubbles were lost
from the system, which provided us with sufficient information to
evaluate the impacts of the different parameters. Fig. 13 shows the
initial and final number of gas bubbles during the evolution. Notably,
the time scale of ripening for this CO2-water case is faster than for the
air–water case in Section 4 since for the same mass transfer lengths,
15
the phase permeability of CO2 in water at reservoir condition is nearly
104 times larger than that of air in water at atmospheric conditions. In
the following sections, we discuss the simulation results in more detail
(supporting information (Text S4 and Movie MS01) presents a video of
the evolution from simulation AA_256_10).

6.2.1. Different initial fluid distribution
First, we discuss ripening simulations CC_32_10 and AC_32_10,

which have been run with the same mesh but slightly different initial
bubble configurations caused by the different meshes used in the
preceding imbibitions. Fig. 13 shows that the number of bubbles in
the two simulations is generally different during evolution. Over time,
the bubble numbers decrease in a similar manner, but there is a
time lag between the bubble losses in the two simulations in the first
hour. Fig. 12(c) and (d) shows the location of gas bubbles in the
two simulations after 1.32 h. Among the bubbles with different initial
locations in the two simulations, some remain in their positions while
others have dissolved at 1.32 h. We plot the standard deviation in
pressure, the average volume of bubbles, and the standard deviation
in volumes in Fig. 14.

It is clear from these results that even though the two bubble
configurations have similar gas saturation, their ripening paths are
distinct. The number of bubbles and the average volume is the same
at certain times, but the volume deviation remains different while the
pressure deviation intersects at certain times. However, there are some
common trends between the two simulations. The standard deviation
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Fig. 14. Comparison of the ripening simulations CC_32_10 (in red) and AC_32_10 (in
blue) in Castlegate sandstone. (a) Standard deviation in bubble pressures, and (b)
standard deviation in bubble volumes (top two curves) and average bubble volumes
(bottom two curves).

in pressure rises periodically, but overall the trend moves towards
zero deviation. The pressure deviation rises cyclically since the bubbles
losing mass decrease in size and often attain spherical shapes, which
increases their pressure and leads to a rise in pressure deviation. This
situation leads to the loss of bubbles from the system after some time,
followed by a drop in the standard deviation of pressure since the
bubbles with high pressures dissolved. Note that the pressure for the
bubbles is calculated based on gas-liquid interface curvature in the pore
space using the level-set method. The average volume of bubbles and
the standard deviation in volume rises with noticeable staircase steps;
each such step corresponds to a loss of bubbles from the system.

6.2.2. Effect of mesh refinement and volume control parameters
We perform one simulation of ripening with AMR (AA_256_10) on

the residual bubble configuration from the AMR simulation of imbi-
bition. The ripening simulation uses the same AMR and convergence
specifications as the imbibition simulation (Singh et al., 2023a). We
refine all grid cells in a band around the gas-water interfaces in the pore
space, according to the criteria |𝜙| < 𝛥𝑥 and 𝜓 > 0. The refinement
ratio is two, and regridding occurs every 2000 LS-iteration. Further,
the error coefficient in Eq. (25) is 𝑐 = 5 × 10−4, while reinitialization
of 𝜙 occurs every 40 LS-iteration. We compare simulation AA_256_10
against AC_256_10, which is its counterpart on a uniform coarse grid.
Even though they start from the same initial state, Fig. 13 shows that
the number of bubbles in the two simulations deviates early in the
evolution. The simulation with refined mesh yields a lower number of
bubbles in the system until a bubble splits at about 1.1 h and makes
16
Table 7
Statistical parameters related to bubbles numbers (𝑁), capillary pressure, and bubble
volumes for the Castlegate simulations in Section 6.3 for the initial states and the states
at 5.12 h. Average bubble volume (𝑉𝑎𝑣), standard deviation (𝑉𝑠𝑡𝑑 ), and total deviation 𝑈
of bubble volumes are all in ×10−12 m3. Average capillary pressure (𝑃𝑐,𝑎𝑣) and standard
deviation in pressure (𝑃𝑐,𝑠𝑡𝑑 ) are in kPa.

Parameter Initial After 5.12 h

Sim1 Sim2 Sim1 Sim2

𝑁 71 70 43 35
𝑉𝑎𝑣 0.73 0.74 1.20 1.47
𝑉𝑠𝑡𝑑 1.34 1.26 1.7 1.7
𝑈 29.23 30 25.92 21.49
𝑃𝑐,𝑎𝑣 2.64 2.66 2.06 1.75
𝑃𝑐,𝑠𝑡𝑑 0.91 1.00 0.39 0.33

the number equal (see Figure S6 in Supplementary information). The
average bubble volume also becomes approximately equal after this
time (see Fig. 15(b)). Although the difference in volume is small after
1.1 h, the AMR simulation captures better the gas/liquid interfaces,
which leads to higher accuracy in the calculation of bubble volumes
and interfacial areas.

Figs. 13 and 15(b) suggest that the two simulations become sim-
ilar after 1.1 h. However, Fig. 15(a) shows that the bubble pressure
behaviors are different after this time, indicating that bubble losses
occur at different times in the two simulations. Supplementary infor-
mation (Text S3 and Figure S3) includes a comparison of the bubble
configurations at 1.1 h and 2.25 h from the AA_256_10 and AC_256_10
simulations. In homogeneous media with identical pores, bubble vol-
ume, and pressure complement each other for bubbles limited to a
single pore. But as the three plots highlight, in the complex pore
geometry of porous rock, both pressure curves and volume curves are
necessary to capture the ripening evolution.

In the numerical simulations, we assume different 𝑉𝑓𝑙𝑜𝑜𝑟 and 𝑉𝑡ℎ
to control the physical time steps. Their value impacts the speed
of computation as well as the possibility of numerical mass-transfer
cyclicity in the simulation. Therefore, we compare scenarios where
each of them has been changed individually to assess their impact on
the ripening evolution results. Fig. 15(c) and (d) shows the comparison
between simulations AC_32_10 and AC_256_10. The curves are nearly
overlapping. As expected, a higher 𝑉𝑓𝑙𝑜𝑜𝑟 skips data points for certain
stationary states obtained with a lower 𝑉𝑓𝑙𝑜𝑜𝑟. Supplementary informa-
tion (Text S3 and Figure S4) compares gas bubble configurations from
these simulations at 2.05 h. Fig. 15(e) and (f) shows a comparison
between simulations AC_256_10 and AC_256_50. These curves overlap
completely. Although the time step is determined adaptively to manage
cyclicity, the simulation with higher 𝑉𝑡ℎ allows larger time steps, and
hence it omits certain stationary states observed in the simulation with
a lower 𝑉𝑡ℎ. This difference did not lead to a deviation in the following
evolution. Supplementary information (Text S3 and Figure S5) includes
a comparison of gas bubble configurations from these two simulations
after 2.4 h.

Higher values of 𝑉𝑓𝑙𝑜𝑜𝑟 and 𝑉𝑡ℎ improve the computational speed of
the simulation at the risk of omitting major events from the evolution,
such as a capillary instability that alters the behavior of the subsequent
ripening. Among these two parameters, increasing 𝑉𝑡ℎ seems to give
the least deviation in the results. Simulations with improved mesh
resolution can predict a different ripening path, but AMR simulations
are computationally expensive, so it might be prudent to use a higher
𝑉𝑓𝑙𝑜𝑜𝑟 or 𝑉𝑡ℎ when using adaptive mesh.

6.3. Impact of gas bubble locations on ripening in Castlegate sandstone

Here, we investigate ripening in two vastly different spatial bubble
configurations that deviate much more than the two bubble configu-
rations from the imbibition simulations with AMR and coarse uniform
mesh in Section 6.2. For this purpose, we create two distinct bubble
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Fig. 15. Comparison of standard deviation in bubble pressures and volumes, and average bubble volumes, from different ripening simulations in Castlegate sandstone. (a–b)
Different mesh resolutions, (c–d) different minimum bubble volume threshold, 𝑉𝑓𝑙𝑜𝑜𝑟, and (e–f) different volume threshold for mass transfer, 𝑉𝑡ℎ. On the volume plots (b, d, f), the
top two curves show standard deviation in bubble volumes, and bottom two show the average bubble volumes.
configurations by randomly populating CO2 bubbles with different sizes
on the Castlegate sandstone geometry (see Fig. 16(a) and (b)). We
ensure that the bubble distributions are volumetrically similar, but
the different locations of the bubbles affect the pressure variation in
the distribution, even in the initial configuration before ripening (see
Table 7). The gas saturation in the system is 𝑆𝑔 = 0.16 in both cases.
We run the ripening simulations on the coarse uniform mesh, using the
volume control parameters 𝑉𝑡ℎ = 20(𝛥𝑥)3 and 𝑉𝑓𝑙𝑜𝑜𝑟 = 32(𝛥𝑥)3. All other
parameters are the same as for the simulations on the coarse uniform
mesh in the previous section. Supplementary information (Text S5, and
Movies MS02 and MS03) presents a video of the ripening evolution for
the two distributions.

Fig. 17(a) shows the evolution of gas bubble numbers in the two
simulations (Sim1 and Sim2). Although the two simulations start with
nearly the same number of bubbles (70 and 71, see Table 7), the
17
difference increases as the distributions ripen. In the final states (at
5.12 h), there are 43 bubbles (Sim1) and 35 bubbles (Sim2) left. In
Sim2, there are two instances (at 1.2 h and 2.7 h) of a gas bubble
splitting during the ripening, one due to mass gain and the other
due to mass loss. The pressure deviation and volume deviation curves
highlight the different ripening paths of the bubble configurations (see
Fig. 17(b) and (c)). In the initial stage, the pressure deviation curve
is more discontinuous since the time steps are larger, and each data
point corresponds to the loss of a bubble. Fig. 16(a) and (b) shows that
the fluid configuration in Sim2 contained a larger number of smaller
bubbles which are lost from the system in the first few time steps.

The average bubble volume increases at a faster rate in Sim2 than in
Sim1, and this rate difference is more significant after 1.7 h. Since gas
saturation is constant, the rapid rise in average volume corresponds to
a greater loss of bubbles from the system. An increase in the number
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Fig. 16. Comparison of gas bubble locations from two simulations (Sim1 and Sim2) of ripening in Castlegate sandstone with different initial gas bubble configurations. (a, b) Initial
configurations, and (c, d) configurations after 5.12 h. Gas bubbles from Sim1 are in orange, and gas bubbles from Sim2 are in blue. The images show two diagonally opposite views.
of bubbles due to splitting also leads to a temporary decrease in the
average bubble volume at two instances of time in Sim2. At 5.12 h, the
fluid configuration in Sim2 contains larger bubbles than that of Sim1
(see Fig. 16(c) and (d)). Although the simulations terminated at 5.12 h,
they suggest that at thermodynamic equilibrium, the number, volume,
pressure, and spatial location of the bubbles will be different in the
system (see Table 7).

7. Summary and conclusions

In this work, we have used a level-set based method to study
Ostwald ripening of gas bubbles in arbitrary pore geometries that is
compatible with parallel computations and adaptive mesh refinement.
To model the mass transfer between gas bubbles, we considered both
the ghost-bubble method (Singh et al., 2022) and a bubble-to-bubble
method. We derived how the phase permeability coefficient of the gas
in the liquid in the two methods relates to each other. Under simplified
conditions with constant mass transfer areas and constant diffusive
mass transport distance, we demonstrate that the two methods yield
identical results. Then we used the bubble-to-bubble method in sim-
ulations of bubble ripening on a variety of geometries, including two
pores separated by a pore throat, 2D and 3D homogeneous micromodel
geometries, and a 3D sandstone geometry extracted from a micro-CT
data set. Our aim was to investigate the impact of influential physical
and numerical parameters on the ripening evolution.

We find that the pressure–volume behavior of bubbles (which de-
pends on pore geometry) impacts both the time scale of the evolution
18
and how the ripening evolves. Hence, the ripening behavior of two
bubbles separated by a pore throat depends strongly on the converg-
ing/diverging shape of the pore throat walls as they determine the
rate of change of bubble pressure with volume. On the other hand, the
choice of mass transfer area for a diffusion path in the model (that is,
minimum gas/water interface area or minimum cross-sectional pore-
throat area) is important for determining the time scale of the ripening
without significantly changing the nature of the evolution. Further, a
comparison of experimental results from a micromodel with varying
depth (Xu et al., 2017) against the results from ripening simulations on
a similar geometry with a constant depth indicates that the discrepancy
in evolution is caused by the differences in pressure–volume behavior
and mass transfer area in the model due to the deviation in depths.

The ripening evolution in homogeneous media with identical pores
depends on the spatial pattern of bubbles with high and low pressures
in the initial configuration. Cases where each high-pressure bubble
has a low-pressure bubble neighbor, yield a local ripening regime that
follows an exponential curve as described by a theoretical model (Xu
et al., 2017). However, ripening on bubble patterns with an increased
spatial accumulation of bubbles with similar pressures will instead
follow a slower, global ripening regime with sequential mass transfer
through many bubbles. This behavior is not captured by the theoretical
model. We find that a characteristic feature of the local regime is a
stagnant bubble pressure gradient that decreases uniformly over time,
while for the global regime, the pressure gradient changes dynamically
with time and space.
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Fig. 17. Comparison of ripening from simulations with different spatial bubble distri-
butions in Castlegate sandstone. (a) Number of gas bubbles, (b) standard deviation in
bubble pressures, and (c) standard deviation in bubble volumes (top two curves) and
average bubble volumes (bottom two curves).

Finally, simulations of bubble ripening on Castlegate sandstone
show that increasing the mesh resolution on the imaged pore geometry
can lead to slightly different evolutions over time in terms of bubble
numbers, as well as pressure and volume behavior. We observed ex-
amples of bubbles that split due to both mass losses and mass gains,
which demonstrates the complexity of the ripening behavior in these
19
simulations. Different spatial bubble configurations in the sandstone
with the same gas saturation ripen differently over time, and they
do not end in similar states; instead, they develop different bubble
numbers and different average bubble pressures and volumes.

At the field scale, both gravity and the capillary pressure gradient
with depth impact the evolution of trapped gas bubble distributions.
It has been predicted that ripening can lead to gas cap formation in
around 105 years (Xu et al., 2019) or 106 years (Blunt, 2022). Singh
et al. (2022) showed that the ripening of isolated bubbles in microfrac-
tured media leads to the enlargement of bubbles in microfractures,
which can eventually mobilize trapped gas, reducing residual gas satu-
ration. Consistent with other works (Xu et al., 2017; Moghadasi et al.,
2023; Mehmani and Xu, 2022a), our results show that significant
changes in capillary trapped gas-bubble configurations on the pore
scale occur early in the ripening process. However, CO2 storage projects
where the lifetime of trapped CO2 is a critical factor will benefit from
conditions that lead to slower ripening times. Our results indicate that
bedded or laminated subsurface reservoirs with different pore sizes
in different layers could create such conditions in which the ripening
occurs within the slow, global regime. A natural extension of this work
is to explore three-phase (gas-oil-brine) ripening dynamics at different
reservoir conditions, which can bring additional complexity and time
scales to pore-scale bubble distribution evolution, which is relevant for
CO2 storage in depleted oil reservoirs.
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Fig. 18. Curvature vs. volume curve for the growth of a single bubble in a 3D micromodel pore with uniform depth. The graphs correspond to different depths and gas-liquid
contact angles. (a) 15 μm depth, (b) 25 μm depth, (c) 35 μm depth, and (d) different depths for 10◦ gas-liquid contact angle. On the 𝑥-axis, the bubble volume is normalized by
the volume of a single pore.
Appendix A. Interface curvature — bubble volume curve for dif-
ferent micromodel depths and contact angle

A key parameter in determining the rate of ripening is the volume
rate of change in the capillary pressure as a bubble expands or shrinks
in the pore space. In a micromodel geometry, the interface curvature
at any location is a function of the contact angle and the depth of the
micromodel.

Here, we use the LS model on a single pore of the micromodel
geometry in Section 5.2 to simulate the relation between interface
curvature 𝜅0 = 𝑃𝑐∕𝜎 and bubble volume 𝑉𝑏 for a series of increasing
bubble sizes. For each specified gas bubble volume, we calculate the
capillary pressure from Eq. (24) and solve Eq. (19) to a stationary
state. We perform simulations for different micromodel depths and
contact angles. The solid grains are cylindrical posts with a circular
cross-section in the X–Y plane and depth along the 𝑍-axis. In a 2D
representation of this geometry, the largest inscribed circle will have
a radius of 58.92 μm, and a volume fraction for minimum curvature,
𝑉𝑐𝑖 =

(

𝑉𝑏∕𝑉𝑝
)

𝜅𝑚𝑖𝑛
= 0.59.

Fig. 18(a) shows the 𝜅0(𝑉𝑏)-curve for different contact angles in
the 3D geometry with 15 μm depth. The bubble grows to a minimum
curvature until it contacts the solid phase (at 𝑉𝑐𝑖 ≈ 0.58 − 0.59), and
the curvature starts increasing again. The plots show several interesting
features. As expected, the interface curvature decreases parabolically
before the bubble contacts the solid grains, but these curves differ for
different contact angles. This difference is due to the contact between
the gas/liquid interface and the top/bottom solid surfaces. For smaller
contact angles (5◦ and 10◦), the contact with solid grains at 𝑉𝑐𝑖 leads
to zero or negligible change in curvature, but with the increasing angle
the curvature reduces progressively with the most noticeable change at
40◦ angle. This drop in curvature is due to a change in bubble shape
in the circular cross-section in the X–Y plane once the bubble contacts
the solid grains. In the case of smaller contact angles, the slope of the
𝜅 (𝑉 )-curve increases as the bubble moves farther into the pore throat,
20

0 𝑏
but after the bubble volume exceeds the pore volume, the slope of
the curve decreases. In the case of larger contact angles, the curvature
continues to increase beyond one pore volume while the slope of the
curve remains relatively steep.

Fig. 18(b) and (c) show similar plots for 25 μm and 35 μm micro-
model depth, for which the volume fraction 𝑉𝑐𝑖 is in the range 0.55−0.57
and 0.54−0.55, respectively. The plots highlight that both 𝑉𝑐𝑖 and 𝜅0 for
different contact angles are functions of micromodel depth. Fig. 18(d)
shows that the effect of depth on curvature reduces with increasing
depth. Overall, Fig. 18 shows that the influence of contact angle on the
interface curvature is less prominent with increased micromodel depth.

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.advwatres.2024.104688.
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