
DET TEKNISK-NATURVITENSKAPELIGE FAKULTET

BACHELOROPPGAVE

Studieprogram/spesialisering: Vårsemesteret 2024

Bachelor i Datateknologi Åpen

Forfatter(e): Aaron Skiftun Dalbak, Anders Josef Drønen Tungland

Fagansvarlig: Tom Ryen

Veileder: Leander Nikolaus Jehl

Tittel: Implement an AI course chatbot

Studiepoeng: 20

Emneord: Sidetall: 63

AI, Discord, Petals, Python, Ollama

Stavanger 15. mai 2024

Acknoweldgements

We would like to thank our supervisor Leander Jehl for his many ideas and
help with writing this thesis. We also thank Jostein Hagen Lindhom for
providing useful information and help in regards to the Unix system.

i

Contents

Content i

Summary vi

1 Introduction 1

1.1 Background and motivation 1

1.2 Objectives . 2

1.3 Approach and Contributions 3

1.4 Outline . 3

2 Artificial intelligence 5

2.1 Introduction to AI . 5

2.2 Large language models . 6

2.3 Generative AI . 7

2.4 The language of AI . 8

ii

CONTENTS

3 The Petals system 9

3.1 Motivation behind Petals 9

3.2 The Petals system . 10

3.3 Choice of language model 12

3.4 Generating Tokens . 12

3.5 How we use Petals . 13

3.6 Petals interest drop . 14

3.7 Petals need contributors . 14

3.8 An alternative to public swarm 15

3.9 Training limitations . 15

4 Implement a Discord bot 17

4.1 Discord . 17

4.2 Chatbot walk through . 18

4.2.1 Initiate a conversation 19

4.2.2 Chatbot response . 20

4.3 Implement the bot . 21

4.3.1 Discord developer portal 21

4.3.2 Discord interface . 22

4.3.3 Petals interface . 25

iii

CONTENTS

4.3.4 How we integrate the interfaces 26

4.4 Chatbot prefix . 27

4.5 Ollama . 28

4.5.1 Ollama interface . 30

4.6 Added important features 31

4.6.1 Conversation context 32

4.6.2 Performance tracker 34

4.6.3 Rating logger . 36

4.7 Giving the chatbot context 37

5 Performance results 39

5.1 How we evaluate the chatbot 39

5.2 Token generation results . 40

5.3 Efficiency . 42

5.3.1 Variation for Petals 44

5.4 Running Ollama on the Unix system 45

5.5 Gorina7 impact on Petals and Ollama 46

5.6 Comparing parameters . 47

5.7 Comparing parameters results 47

5.8 Feedback from students . 50

iv

CONTENTS

5.9 Feedback Results . 50

6 Discussion 53

6.1 Petals potential . 53

6.1.1 Petals drawbacks . 54

6.2 Final thoughts . 55

6.2.1 What we cold have done differently 55

6.3 Llama 3 . 56

7 Conclusion 57

Bibliografi 63

Vedlegg 63

v

Summary

In this paper, we look into the potential of using Petals to run large lan-
guage models. Petals is a system for running large language models shared
across several computers in a peer-to-peer fashion. We explore how to inte-
grate Petals with Discord to create an AI course chatbot. We test Petals’s
performance of this task through comparing it with Ollama, a framework
for running large language models on your own hardware. We deploy the
chatbot in the Discord server for web programming students and encourage
everyone to test it and provide feedback on their preferred answer. Feed-
back from students helps us evaluate how suitable the Petals system is for
an interactive chatbot designed for the web programming course at the
University of Stavanger.

We conclude that Petals in its current state is not suited for use as a course
Discord chatbot because of its slow speed, challenging framework, and in-
ability to give it course specific information.

vi

Chapter 1

Introduction

1.1 Background and motivation

In recent years, AI chatbots have become increasingly popular. Some of
these chatbots, such as OpenAI’s ChatGPT and Google’s Gemini, are espe-
cially popular among students and teachers [1]. A recent study shows that
a significant number of students use ChatGPT frequently, and almost 75
percent of students found the chatbot very useful for assignments, projects,
and exam preparations [1].

As previously mentioned, there are many free chatbots that you can find on
the internet. These chatbots are very knowledgeable about information that
can be found online, but lack the ability to answer questions that cannot
be found on the Internet. This is one of the reasons we want to create a
chatbot that we can tailor to answer questions about the web programming
course taught at the University of Stavanger.

Successfully creating such a chatbot offers students a useful tool that can be
used to ask questions about assignment deadlines, exam dates, and various
topics that are taught throughout the course.

We believe that building a chatbot using the system known as Petals is a
decent alternative to proprietary options, as it is free and relatively simple

1

1.2 Objectives

to get started with. More importantly, Petals offers the illusion of running
large language models locally without the need for expensive equipment,
which makes it accessible for both us and the university.

On the other hand, using Petals may prove difficult as there are some limi-
tations in regards to how much we can customize the chatbot. We seek to
create a chatbot that has a feature that popular chatbots do not have. A
chatbot able to respond to questions about the web programming course in
addition to more general questions would make it a unique and valuable al-
ternative. The most important aspect of the chatbot is its ability to gather
all course-relevant information in one place, where students can easily find
the answers they are looking for.

1.2 Objectives

The main focus of this project is to integrate the Petals system with Dicord
in order to create a useful chatbot for future students. We want to further
investigate the following questions:

• How can we combine Petals and Discord to create a chatbot?

• How do we evaluate the usability and performance of the chatbot?

• Can we further evalute the chatbot by implementing it in the web
programming Discord server and receive feedback from students?

• Can we provide the chatbot with course-related information such as
topics taught throughout the course and exam details?

• Does the bot prove useful compared to already existing chatbots?

The desired outcome is a chatbot that can read messages sent from students
in a Discord server and respond to course-related questions in addition to
general questions not necessarily targeted towards the course.

2

1.3 Approach and Contributions

1.3 Approach and Contributions

Our primary focus is on integrating Petals with Discord to create a chatbot.
We put effort into evaluating it by investigating its usability, performance,
and quality.

The evaluation process involves measuring some core performance metrics
for both Petals and Ollama, such as tokens per second and initial time.
We calculate these metrics by logging data from each conversation with the
chatbot to a separate file. This includes the number of tokens generated
and the time taken to do so. Additionally, we use Ollama to determine the
difference between a 7B version and a 70B version of the same language
model. This information is helpful because the 7B version can run on most
high-end consumer laptops while the 70B model requires a system like Petals
to run. If we determine that the 7B model is sufficient, we do not need to
explore a system like Petals to create our chatbot, as we can run the chatbot
locally on a laptop.

Furthermore, we deploy our chatbot in the Discord server for web program-
ming students at the University of Stavanger, where they can test it and
provide feedback. By combining the feedback from students with the met-
rics that we calculate, we can determine if Petals is a suitable option to
integrate with Discord.

Based on our evaluation process, we discovered that while Petals has poten-
tial as a decent alternative, it is currently too slow to be used effectively as
a system for a chatbot intended for students at the University of Stavanger.

1.4 Outline

The remainder of this thesis is structured as follows:

Chapter 2 covers what we consider to be the most significant informa-
tion about artificial intelligence. This chapter serves as motivation behind
why we believe the topics of this paper are highly relevant for the future.
We introduce some fundamental terms that are important, such as tokens,

3

1.4 Outline

language models, and generative AI.

Chapter 3 introduces Petals by explaining the motivation behind why it
was created and how the system works. We discuss how we integrate the
Petals system into our chatbot implementation. Finally, we address a recent
decrease in community intrest and how it affects the performance.

Chapter 4 presents our solution for integrating the Petals system with
Discord to create a chatbot. We provide a step-by-step demonstration of
a typical conversation and highlight the key features we implemented to
enhance the user experience and overall quality. Additionally, we discuss
an alternative system for running large language models called Ollama,
which aids in evaluating the Petals chatbot.

Chapter 5 covers the evaluation of our chatbot. We present the results
obtained from data we have collected and feedback received from students
who tested the chatbot. Moreover, we discuss running our chatbot powered
by Ollama on the Unix system installed at the University of Stavanger.

Chapter 6 reflects the potential we believe Petals has and the impact the
newly released large language model Llama 3 could have on our chatbot. We
discuss some things we would have done differently and highlight changes
we would make if we had more time.

Chapter 7 concludes our thesis by summarizing our work.

4

Chapter 2

Artificial intelligence

The following chapter provides a brief overview of some of the most impor-
tant concepts, including AI, generative AI, and tokens. We introduce some
fundamental information about AI to further illustrate our motivation for
this thesis and why we believe it is relevant for the future. This chapter also
talks about a crucial aspect of AI known as language models and how they
are used in generative AI to create powerful tools. We will also mention
some innovative areas where generative AI has been implemented, such as
in the educational field.

2.1 Introduction to AI

The concept of artificial intelligence (AI) has been a topic of discussion
for several decades but has gained immense popularity in recent years.
Especially in fields such as computer science, medicine, cybernetics, and
engineering [2]. There does not exist one universal definition of AI, but
one understanding is that it’s related to the mimicking of intelligence and
human behavior, largely through computers.

5

2.2 Large language models

2.2 Large language models

Upon deciding to implement a chatbot, it is essential to discuss which large
language model (LLM) the chatbot should use, as it will have a major im-
pact on performance, behavior, and overall quality. Large language models
are deep learning models that have been trained on extraordinarily large
amounts of data. Furthermore, LLMs are essentially very large pre-trained
language models (PLM) where the increase in data size improves its ability
to perform complex tasks. LLMs are typically built using a transformer
architecture that includes self-attention mechanisms that significantly im-
prove the ability to learn by weighing the importance of all parts in a
sequence [3], [4].

Thus far, we have referred to language models as large. This is an indication
as to how much data has been used to train the model, also known as the
model size. The separation of a small, medium, or large language model
is not uniformly set to a specific size, but are typically trained over an
extended period of time [5]. Language models with a larger model size
tend to perform better but quickly become more complex and difficult to
maintain. In addition, large language models demand high-end, expensive
hardware that students and enthusiasts typically do not have, making it
more difficult for interested parties to research topics such as LLMs.

Large language models offer several powerful capabilities, including the abil-
ity to have a conversation, perform language translation, write poems and
motivational speeches, and summarize large documents [6]. Today, the most
advanced language models are capable of locating information about prac-
tically any topic that has publicly available information. Another great
example illustrating the power of AI and large language models is GitHub
Copilot, a useful tool to increase productivity and efficiency in software de-
velopment that was recently developed using a pre-trained language model
created by OpenAI. Recent surveys show that more than fifty thousand
companies have adopted GitHub Copilot as an active tool during develop-
ment of software [7].

How language models are trained may vary, but most of them share the
ability to be fine-tuned to meet specific needs. This is another reason why
we believe AI is incredibly powerful, as it can be trained to be extremely

6

2.3 Generative AI

knowledgeable about any specific topic. Examples include, but are not
limited to, the ability to be particularly knowledgeable about software de-
velopment such as GitHub Copilot. There are also models that are trained
to be exceptional at math, medicine, languages, and much more.

2.3 Generative AI

Generative AI is a subset of artificial intelligence and is particularly relevant
for chatbots that communicate with people. This subset consists of a set
of technologies that are able to generate new content based on already
existing data, such as text, audio, or images. Generative AI is typically
trained using very large amounts of data, and this is the information that
is used to generate new content [8].

This kind of AI is often trained using supervised learning where the model is
fed content created by humans with detailed labels that describe its purpose.
In this way, generative AI learns patterns and human behavior, and this will
improve its ability to generate content similar to what it was fed to begin
with.

A recent example of generative AI includes one of the most known tools for
learning new languages, Duolingo. A popular application used by millions
of people announced in March 2023 the release of Duolingo Max, which
combines generative AI and education to form an even more powerful tool
to help you learn a new language. The Duolingo team believes that it
will make learning easier, as AI offers highly personalized language lessons
that are affordable to everyone. This was achieved using the popular and
powerful model known as GPT-4, developed by OpenAI [9].

Typically, businesses integrate a generative AI chatbot on the company
website to assist customers with various inquiries. The Norwegian postal
company Posten has a chatbot where you can ask questions and receive a
response accordingly [10]. We include examples like Duolingo and Posten
to illustrate the extreme relevancy of generative AI, and the recent growth
will most likely continue to increase and become an even bigger part of the
future.

7

2.4 The language of AI

2.4 The language of AI

Large language models use a tokenization scheme that divides a sequence
of words into smaller pieces, often referred to as tokens [11]. A token is
typically a word or a special character, such as a comma or exclamation
mark. In some cases, if a particular word is long, it is divided into several
tokens.

A language model often has a tokenizer that reads the input and divides
the sequence of text into appropriate-sized tokens. There are several types
of tokenizers that have different methodologies for splitting sentences into
tokens, and the method used may vary depending on the system you use to
run the language model [11].

Tokens also serve as an important metric when measuring performance.
Exactly what performance entails depends on the application. In some
cases, a detailed and accurate response is more important than speed.

In our case, we need a chatbot that uses a language model that can gener-
ate tokens efficiently because Discord is an interactive application and we
believe students have certain expectations in regards to speed. Such appli-
cations are expected to work fast, and the generated output is expected to
be relatively accurate and appropriately long. We strive to strike a balance
between the amount of time spent generating tokens and the quality of the
generated output. By measuring how many tokens our chatbot generates in
addition to the amount of time needed to do so, we evaluate its performance
and make changes accordingly.

Many language models have a limit as to how many tokens can be received as
input and how many tokens can be generated as output. This number may
vary from a few hundred to several thousand, depending on the language
model used. OpenAI is the developer of some of the most popular language
models in the world and has created ChatGPT-3.5 with support for up to
16,000 tokens and ChatGPT-4-turbo with support for 128,000 tokens [12].

8

Chapter 3

The Petals system

The following chapter introduces Petals and provides an overview of the
system. Importantly, how Petals is capable of creating the illusion of run-
ning a large language model locally on any computer. We illustrate how
we use Petals to run LLMs, allowing us to generate tokens. Lastly, we dis-
cuss the current state of Petals, performance and some limitations we have
encountered. The main source of information in this chapter is this Petals
paper [13] published in 2022. We have also gathered various information
from this Google research notebook [14] and the GitHub repository [15]
created by the developers.

3.1 Motivation behind Petals

Petals is a part of an AI project created by the BigScience research work-
shop [14]. BigScience is a collective of more than 1000 researchers from
approximately 60 countries worldwide [14]. The researchers share the pas-
sion to create a large multinational, decentralized platform for language
models and are investigating alternative ways of running large language
models.

During the writing of the Petals paper [13], the creators of Petals noticed
a recent interest in alternative ways to run large language models without

9

3.2 The Petals system

the need for very expensive equipment like hardware components. One im-
portant reason is that such hardware is unavailable for many researchers,
thereby making it difficult for researchers to continue the exploration of lan-
guage models. Secondly, lack of access to such hardware slows the learning
curve related to language models.

The Petals paper discusses two recent alternatives to running large language
models by either using an API or via RAM offloading. The Petals creators
conclude that using an API is not flexible enough as most of the model is
controlled by the developer. This means that using an API might make it
impossible to customize the language model file, change the language model,
tune the model, or add additional information about topics as context.

Furthermore, according to the Petals paper, offloading is inherently slow,
rendering the solution unviable. These are key motivating factors as to
why Petals was created and designed to be an alternative solution to run
large language models by using the computational power of many. Petals
attempts to eliminate the need for expensive hardware allowing researchers
to continue exploring the realm of language models.

3.2 The Petals system

Petals is a system that enables individuals to take advantage of the hardware
components of others to run large language models through a peer-to-peer
(P2P) structure [13]. Peer-to-peer (P2P) is a decentralized communications
model in which each party has the same capabilities and either party can
initiate a communication session [16]. In other words, any individual can
run a large language model on their computer by initiating an inference
session that, in Petals terminology, means generating tokens on the fly as a
response to human input [17].

Petals take advantage of the P2P structure by creating a network of com-
puters where each computer is considered a node [13]. Several nodes make
up a network that, in Petals terminology, is known as a public swarm. Run-
ning a large language model is often referred to as a task and is divided into
smaller parts and distributed amongst the needed number of nodes where
the computations and processing are done remotely, excluding the need

10

3.2 The Petals system

for complex and expensive hardware to run large language models. Petals
takes advantage of the computational power you get when you combine
many nodes in a network of computers. This unique approach is what we
consider the core of the Petals system and is the key feature that separates
this solution from other available options.

Each computer contributing to the Petals system will run as a server, a
client, or both. The servers are responsible for hosting a small portion
of the model layers, known as a transformer block [13]. The servers are
also responsible for handling requests sent by the clients, while the client is
responsible for creating a pipeline of consecutive servers to run the inference,
that combined, makes up the entire model.

Figure 3.1 illustrates a simple example in which multiple clients share several
GPUs from individuals dedicating their hardware to the public swarm. Each
layer is responsible for a portion of the task that together makes up the
entire model.

Figure 3.1: illustrates a group of clients connected to multiple servers that ded-
icate their hardware resources to the public. These clients use several servers to
run any large language model supported by Petals [13].

The illustration shown in Figure 3.1 provides an excellent visual represen-
tation of how the Petals system utilizes the resources of multiple servers
to run large language models supported by Petals without the need for ex-
pensive equipment. Although the example may be somewhat simplified,
it effectively illustrates how a large language model can be run by clients.
The task of running a LLM is divided into multiple layers, which are shared
among multiple servers that use their respective GPUs to run each layer.
In the case of this demonstration, the final layer is run on the third GPU,
which returns the output after processing the last layer. In the case of our

11

3.3 Choice of language model

chatbot, the output that is returned after running the last layer is the set
of tokens that are generated as a response to questions asked by students
in a Discord server.

3.3 Choice of language model

The previous chapter introduced the concept of language models and ex-
plained how different types of AI have different use cases. Many language
models are created and trained to fit a specific application, such as gen-
erating text, knowledge- or fact-based generation, code generation, or all-
purpose. One of the many important objectives of this project is to create
an AI chatbot with the main functionality of having conversations with
students. Therefore, it is important that the chatbot is optimized for in-
teracting with humans. As we are working on this paper, Stable Beluga 2
(70B), a fine-tuned version of the large language model known as Llama 2
(70B) [17] is the only LLM with active contributors in the public swarm [18].
This is likely due to the fact that this language model is well suited for in-
teractive applications. For these reasons, we use the language model Stable
Beluga 2 (70B) through Petals to create our chatbot.

3.4 Generating Tokens

The Petals system provides various options for generating tokens through
different generation methods. The default method for Petals is called greedy [17],
which compared to other algorithms is easy to implement. This algorithm
follows the approach of selecting the best possible option at every given
moment. [19]. In other words, each time a token is generated, the algo-
rithm chooses the best option available at that time, without considering
the long-term consequences. Although it is simple to implement, it has
the drawback of focusing only on the short-term, which may negatively af-
fect the final outcome. This is because it does not take into account the
complete answer it is generating [19], but makes decisions on a per-token
basis.

Other popular generation methods directly supported by the Petals system

12

3.5 How we use Petals

are beam searching, top-p, and top-k sampling [20]. You can choose be-
tween different generation methods by adding the necessary arguments as
illustrated in Code 3.1 below.

1 outputs = model.generate(**inputs, num_beams=5, ...
max_new_tokens=50) # Beam search

2 outputs = model.generate(**inputs, do_sample=True, ...
num_beams=1, max_new_tokens=100) #Multinomial sampling

Code 3.1: Illustrates two examples of token generation methods we can use
known as beam searching and multinomial sampling. Both examples are from the
folowing article [21].

Finally, the Petals system provides the ability to implement custom meth-
ods for generating tokens. This feature is more advanced as it requires
a deeper understanding of how such methods work. However, the ability
to implement your own generation method can be very beneficial. For in-
stance, it is possible to create algorithms that prohibit swear words or other
words that we do not want to be included in the chatbot’s responses [17].

3.5 How we use Petals

We write several scripts in the Python programming language which in-
corporate a combination of skeleton code provided by the developers along
with our own code. These scripts are responsible for the functioning of our
chatbot. Our code is structured in such a way that it consists of one main
file, one file defining the Petals system, and another defining the Ollama
system. All parts of our code can be found in our GitHub repository1 [22].

For the Petals system, we download the required package from the Petals
package website [23]. This package includes all the necessary components
that we import into our script, following the instructions provided by the
Petals developers on the above-mentioned website. This enables us to select
the large language model to use, establish a connection to the P2P network,
and run the model as if it were on our local machines.

1All parts of our code can be found here: https://github.com/AJ-A-dev/
discord-bot-petals

13

https://github.com/AJ-A-dev/discord-bot-petals
https://github.com/AJ-A-dev/discord-bot-petals

3.6 Petals interest drop

3.6 Petals interest drop

As previously mentioned, evaluating Petals is one of the objectives of this
paper. When looking at the performance of the Petals system, we separate
between several factors including speed and communication delay [13]. The
process of establishing the initial connection is the most time-consuming
portion of the entire system. According to the developers, Petals is particu-
larly sensitive to network latency in addition to intercontinental delays [13].

During the writing of the Petals paper [13], the developers concluded based
on testing that the expected token speed was 6 tokens per second. These
tests were performed under slightly unrealistic conditions, as the imple-
mentation consisted of three expensive, non-consumer-grade NVIDIA A100
80GB graphics processing units. Additional tests were performed using
more realistic scenarios, such as running inference using 14 real servers
spread across Europe and North America. The result of a more realistic ap-
proach concluded that the expected performance was cut in half, resulting
in approximately 3 tokens per second [13].

We have been in contact with one of the Petals developers through Discord,
who stated that there has been a significant decrease in performance as
of late. This is mainly due to the fact that there are more people taking
advantage of Petals and using it for their own purposes compared to how
many people are actively contributing their GPU to increase performance
for others. There is a growing imbalance between the supply of hardware
(people dedicating GPUs) and the demand of people using the little avail-
able resources.

3.7 Petals need contributors

Petals is built using a community-run approach and is therefore completely
dependent on the contributions of others. As previously mentioned, there
has been a drop in the number of active contributors, which means less
hardware to distribute various tasks to in addition to a higher load on a
per-server basis. This is becoming an even bigger issue as Petals is growing
in popularity in regards to new people testing it for their own purposes. We

14

3.8 An alternative to public swarm

are experiencing a growing imbalance between active clients and available
servers. The consequence of the above-mentioned problems is that the num-
ber of tokens generated per second is significantly reduced. Furthermore,
the time it takes to find a chain of nodes and establish a connection that
makes up the model to run inference takes a long time, which is not ideal
in an interactive setting like a chatbot.

3.8 An alternative to public swarm

The Petals system offers another feature known as a private swarm, and
this feature allows you to set up your own network of nodes. This is a
great option that eliminates potential security-related risks, such as infected
or malicious nodes that may exist in a public swarm. This also allows
individuals to use Petals in combination with sensitive data, where they do
not need worry about said data being tracked or manipulated [24].

The private swarm essentially functions in the same fashion as a public
swarm, with the obvious difference that all the nodes in the network are
trusted devices. However, this feature is a bit more technical and requires
a greater understanding to set up compared with getting started with the
public swarm.

3.9 Training limitations

In this chapter, we have established that Petals was created with the purpose
of using a P2P network comprised of remote computers for running large
language models. However, there is a drawback to this approach. Since the
public swarm is shared among all users, there are certain limitations when
it comes to customizing the model to meet specific needs. As we are not
running the language model on our own machine, we are unable to modify
a model file or provide it with a lot of information about a particular topic.
This is similar to using a language model with an API, which does not offer
much flexibility as the developer controls most of the configuration.

15

3.9 Training limitations

A large language model without the ability to fine-tune, tailor, or customize
will in many cases not be very useful. Petals offers the option to use several
parameter-efficient fine-tuning methods to make the model suitable for most
tasks [14].

According to the Petals paper [13], fine-tuning in a distributed network
such as Petals allows the client to use custom parameters while the original
parameters used for the servers stay intact. In other words, any individual
can run the model with changed parameters without interfering with other
clients in the public swarm.

16

Chapter 4

Implement a Discord bot

In this chapter, we present our solution to integrate Petals with Discord.
We provide a walk-through of a typical conversation between a student and
the chatbot. Additionally, we present some features we implement, such as
using a prefix to give the chatbot the ability to have previous conversations
as context. We add this feature to increase the usability and user experience
as this will allow students to ask follow-up questions. Lastly, we discuss
Ollama and how we use it to give the chatbot exam details as context.
Providing the chatbot with such information will dramatically increase its
purpose as a tool for web programming students.

4.1 Discord

Discord is an application created by Jason Citron and Stan Vishnevskiy
with the sole purpose of offering an easy way to communicate with friends
while playing video games [25]. The founders released the application in
May 2015, but it first became popular a few years later. Most commonly,
users download Discord locally on their computer, tablet, or smartphone,
but it is also possible to use the application in a web browser.

The platform has become a widely popular tool for communication between
friends, students, and for work-related purposes. Today, there are numerous

17

4.2 Chatbot walk through

servers dedicated to different hobbies and interests where people can join
and talk with each other. Discord is offered in 30 different languages and
has approximately 150 million monthly active users and roughly 19 million
active servers per week [25]. Throughout our studies at the University of
Stavanger, we have used Discord as a tool to communicate with our fellow
students and teachers. For many students, including ourselves, it has been
a helpful platform to find group partners and seek help with assignments.

Using Discord, the course responsible can create a Discord server which
students can join by clicking on a link shared by the creator. This has
become a standard throughout our studies, including courses such as web
programming. Discord provides a platform for students to ask questions
about the course while instructors can share relevant information such as
assignments, deadlines, course details and information about the exams.
In our opinion, Discord has certainly proven to be an effective tool for
communication between lecturers and students.

To enhance the experience, Discord offers the opportunity to make your
own custom applications for the platform. These applications allow us to
customize our chatbot by specifying permissions and roles, giving it a name
and profile image. Typically, bots are implemented in Discord servers to
perform various automated tasks, such as responding to frequently asked
questions and playing music. This unique feature is what we use to create
our very own chatbot.

4.2 Chatbot walk through

This section provides a demonstration of a typical conversation between a
student and our chatbot. We show how we initiate a conversation and how
the chatbot replies by updating the initial response continuously with new
tokens as they are generated.

18

4.2 Chatbot walk through

4.2.1 Initiate a conversation

To start a conversation with the chatbot, we have to begin by writing an
exclamation point followed by a question. We implement this to ensure
that the bot only generates responses to messages that are intended for the
chatbot. Not adding the exclamation point creates chaos as the bot spams
the server by responding to all messages sent in the server.

Alternatively, we can create a dedicated channel within the server for chat-
bot conversations and manually remove the chatbot from all other channels.
However, this is a more tedious and time-consuming task. Figure 4.1 below
illustrates how to initiate a conversation with the chatbot.

Figure 4.1: Shows how we initiate a conversation with the chatbot by using
an exclamation mark followed by a question. The Petals chatbot automatically
responds with an emoji while the connection is established.

Note that the initial response sent by the bot is an emoji of a brain, indicat-
ing that the bot is thinking. We add this simply as a visual representation
that the bot needs some time to read and process the question before it
starts responding by continuously generating tokens. When a question is
asked in the Discord server, the chatbot needs to establish a connection to
the P2P network of servers to find the necessary components to run the
large language model. The script located in our GitHub repository1 reads
and sends the text of any message as input to the language model. The
model then generates output based on the contents of the input message.

1All parts of our code can be found here: https://github.com/AJ-A-dev/
discord-bot-petals

19

https://github.com/AJ-A-dev/discord-bot-petals
https://github.com/AJ-A-dev/discord-bot-petals

4.2 Chatbot walk through

4.2.2 Chatbot response

After a suitable route has been found and the connection has been estab-
lished, the bot will start generating tokens and respond by sending the
first few tokens generated. This is achieved by editing the previously sent
message containing an emoji with the newly generated content. Figure 4.2
shows how the message changes from an emoji to a response when the first
tokens have been generated.

Figure 4.2: Illustrates how the chatbot responds to a question. The chatbot
continuously edits the original message as new tokens are generated. The last line
reports how many tokens were generated per second.

Note that there is only one message sent in response to the question. We
implemented a feature for updating the message continuously as tokens
were generated, but ended up removing it because it was too much of a
bottleneck when it came to speed.

Using Petals, we have not managed to find a good solution to dynamically
control the length of the response that is generated. The number of tokens
the AI bot generates generally depends on how much information it has and
deems relevant. This can be problematic as the chatbot sometimes writes
very long messages and continues to generate tokens. We have made it such
that the petals bot stops generating on special characters such as </s> and
/n. This is the only way we have found to stop petals from generating too
long.

20

4.3 Implement the bot

Furthermore, the bot can be forcefully stopped by entering the /breakall
command, which will terminate the token generation immediately for all
conversations.

It is possible for multiple people to have conversations with the bot, but this
has a significant impact on the user experience as it directly affects other
users. When a new person initiates a conversation, the bot will temporarily
stop all generation until it has started generating tokens related to the latest
conversation, and then continue generating text for all active conversations.
This happens because every conversation using Petals needs to establish
a connection to the nodes in the network. In other words, each time a
new conversation is initiated the chatbot stops generating tokens for all
active conversations until the connection has been established for the latest
conversation.

Finally, each response ends by displaying the number of tokens that par-
ticular response had on a per-second basis. This number is calculated by
logging the time difference from the first token generated to the last token
generated. Furthermore, this logged number is added to a list and divided
by the total number of tokens generated. Chapter 5 provides more infor-
mation on the metrics used to measure performance.

4.3 Implement the bot

In this section, we explain how we integrate Petals and Discord to create
the chatbot. The packages provided by the developers of Petals and Discord
play a crucial role in establishing communication between the two. Impor-
tantly, we explain the Discord and Petals interfaces and how they work
together to form the chatbot.

4.3.1 Discord developer portal

The developers of Discord have created a dedicated web-based developer
portal to build and customize bots. To initiate the bot creation process,
users are required to create an application through the online portal, which

21

4.3 Implement the bot

grants access to a variety of settings. This allows the owner to specify
bot permissions and customize general information such as the bot name,
description, and pictures. Upon the creation of a bot, a unique identifier,
known as a token, is generated. This token is important as it serves as an
exclusive identifier for legitimate Discord bots, facilitating authentication
and interaction with the Discord API. Importantly, this token must never
be disclosed to the public. It would then be necessary to regenerate it [26].

4.3.2 Discord interface

The Discord library (also called an API wrapper) for Python offers great
support for creating your own bot. The library is object-oriented, easy
to use, and based on listening for events [27]. In addition, this package
does make it easier for us to integrate the Petals client with Discord by
eliminating the need to set up custom API endpoints. Moreover, the API
wrapper has several great built-in functions, shown in Code 4.1 below.

1 client.get_channel(channel_id)
2 message.content
3 message.edit(content=new_message)
4 message.channel.send
5 client.run(secret_token)

Code 4.1: A few of the most important built-in functions that we use to
communicate between Discord and Petals. These functions allows us to read,
edit and send messages to the originating Discord channel by fetching the Discord
channel ID.

We use the first built-in function (line 1, Code 4.1) to easily fetch the
channel ID from which the originating message was sent from. We use the
second command (line 2, Code 4.1) to read the contents of any message
sent by a user, which we store in a variable and pass as a parameter to the
Petals client. This parameter contains the question sent by a student and
is the input that the Petals client receives and uses to generate a response.
The third function (line 3, Code 4.1) allows to easily edit a previously sent
message. This is also shown in Figure 4.1 and Figure 4.2 where the chatbot
edits the message by replacing the brain emoji with the generated output.
The forth line (line 4, Code 4.1) shows how we send tokens generated by

22

4.3 Implement the bot

Petals to the Discord server. Lastly, the fifth line (line 5, Code 4.1) shows
how we run the Discord client by passing the secret token as the parameter.

The communication between Discord and the chatbot works by using web-
sockets to know about the events happening in the Discord server. Events
include actions such as when someone writes a message in the Discord server
or reacts to a message using an emoji. This system is called the Gateway
API [28]. Websocket is an API that allows a client to send messages to a
server and receive event-driven responses [29]. Figure 4.3 shows how the
chatbot communicates with the Discord API.

23

4.3 Implement the bot

Figure 4.3: Illustrates how the application (Discord chatbot) interacts with the
Gateway API. The chatbot starts by connecting to the gateway API, which then
responds with a hello event. After this, heartbeats are sent at regular intervals to
maintain the connection. [28].

The chatbot starts by trying to establish a connection to the Discord gate-
way (1). The gateway responds with a hello event (2). Once the initial
connection is established, the chatbot regularly sends heartbeat intervals
(3) to maintain the connection. To validate its legitimacy, the chatbot must
send an identity event (4) with its secret token. When the token is validated
and the chatbot is successfully identified, the gateway API responds with

24

4.3 Implement the bot

a ready event (5). A disconnect may happen (6). If a disconnect occurs
the bot will open a new connection, send a resume event which Discord
responds to by sending the missed events and the resumed event (7) [28].

4.3.3 Petals interface

The Petals library enables us to use input (such as messages sent by students
in Discord), use any supported language model to generate output and
return it. Code 4.2 shows how we run inference and the most important
built-in functions we use from the library. All parts of our code can be
found in our GitHub repository2.

1 with self.model.inference_session(max_length=512) as sess:
2 prefix = f"{context}Human: {prompt}\nFriendly AI:"
3 prefix = self.tokenizer(prefix, ...

return_tensors="pt")["input_ids"]
4 while self.client.generation:
5 outputs = self.model.generate(prefix, ...

max_new_tokens=1, session=sess,
6 do_sample=True, ...

temperature=0.9, ...
top_p=0.6)

7 result += ...
self.tokenizer.decode([self.fake_token, ...
outputs[0, -1].item()])[1:]

Code 4.2: Shows an overview of the built-in functions and how we use them to
generate tokens. Importantly, we have a prefix that contains the input, an output
variable that stores the generated output, and the result variable that stores the
final generated output after decoding.

2All parts of our code can be found here: https://github.com/AJ-A-dev/
discord-bot-petals

25

https://github.com/AJ-A-dev/discord-bot-petals
https://github.com/AJ-A-dev/discord-bot-petals

4.3 Implement the bot

The Petals library, as shown in Code 4.2, enables us to use a prefix to store a
student’s question. This prefix is used as a parameter to generate a response
based on the input. The response is generated by calling the generate
function (Line 5). Petals generate tokens continuously and appends the
output to a result variable (Line 7). When the model is finished generating
the final output is stored in the results variable.

4.3.4 How we integrate the interfaces

In Figure 4.4 below we see an illustration of the data-flow between our
chatbot, Discord and Petals. When a student sends a question our bot
receives an On_message event from Discord which contains the question
asked (1). The bot then sends a placeholder to the channel where the
original message was sent from (2) to illustrate that it have received the
question. After, the bot will extract the content from the message and send
it to Petals (3) where Petals will start looking for a path through servers
containing the whole language model of Llama2-70B. The output will then
be sent back to the bot as Petals is generating (4). Finally it will be sent
back to Discord and replace the placeholder message (5).

26

4.4 Chatbot prefix

Figure 4.4: Demonstrates the flow between the chatbot, Discord, and Petals.
Importantly, how the Discord API listens to events such as when a message is sent
in a server or when a student reacts to an existing message.

4.4 Chatbot prefix

We have experienced through testing that it is important to give the bot a
prefix that describes both the purpose of the bot and its intended behavior.
We achieve this by writing a descriptive prefix such as friendly AI, as shown
in Code 4.3 below.

We can instruct the bot to have a certain behavior that also adds additional
characteristics that may be desired. In this case, by instructing the bot to
be friendly, we experience a kind bot that greets you and asks if there is
anything the bot can help with. Adding this prefix is quite useful, as it
dramatically impacts the behavior of the bot and allows us to tailor the be-

27

4.5 Ollama

1 with model.inference_session(max_length=512) as sess:
2 prefix = f"{context}Human: {inputs_discord}\nFriendly AI:"
3 prefix = tokenizer(prefix, ...

return_tensors="pt")["input_ids"]

Code 4.3: Illustrates how Petals can be used to give a descriptive prefix to a
chatbot, which helps the chatbot understand its behavior. For instance, we can
instruct the chatbot to be a "friendly AI". This is an effective solution that allows
us to customize the chatbot according to our needs.

havior to our needs. We want an AI chatbot that is kind, helpful, and polite
when talking to students, which is why it is important to use a prefix to
further assist the bot by instructing it how to behave. Furthermore, during
testing, we noticed that not using a prefix has a significant impact on the
type of language and overall behavior of the bot. When not giving the bot
a prefix, we experienced some cases where the bot generated inappropriate
content, such as profanity or adult content, that most certainly does not
belong in a chatbot intended for students.

4.5 Ollama

We believe that Petals has promise, and the solution to running large lan-
guage models by using a network of computers is quite clever. However,
we have encountered some issues while working on our chatbot using the
Petals framework.

One of the main problems we faced was the incompatibility of different
Python versions with the Petals client. While the client works with an older
version of Python, updating to a newer version resulted in several issues. We
have spent a considerable amount of time deleting and reinstalling Petals
packages to make it work on the latest version of Python. Additionally,
after installing the necessary packages, running our Petals script on a new
computer was quite challenging. This is problematic when we attempt to
run the chatbot on other computers than our laptops.

Furthermore, the Petals framework has limited documentation and has been

28

4.5 Ollama

challenging to work with. We also found that the speed of Petals was not
up to our expectations, which is a motivation for us to explore alternative
ways of running large language models.

We want to give the bot course-specific information in order to make it more
targeted towards the web programming course and make it more useful in
that aspect compared to already existing chatbots. We think this feature
will add value to our chatbot and make it a valuable resource as this is
a feature other available chatbots do not have. In other words, we want
to give the bot context to questions students have that are closely related
to the course, such as assignment deadlines and exam information. The
petals client does not seem to support this feature and we have not found
a good solution to integrate course information as context. Therefore, we
introduce Ollama as an alternative to running large language models using
the same language model (Llama2), with greater support for this feature to
be implemented.

Ollama is an API server and a centralized hub for running large language
models on your own hardware [30]. It is a system that shares some similar-
ities with Petals in regards to making it easy to run large language models
locally. However, unlike Petals, Ollama runs all parts of the model locally
using the available GPU and memory resources. This is a larger and more
popular system with over 20,000 community members. Ollama offers great
support for a heap of different language models, including Llama2 which
is the model we use with the Petals client. Ollama offers various packages
that can be downloaded in the same fashion as Petals, but you can also
run language models using a terminal like Bash or Windows Powershell.
This is simple and only requires a few commands to get started. By run-
ning a language model using a terminal, it will run on localhost:11434 by
default [31].

Ollama also offers to interact with models using an application programming
interface (API) such as OpenAI, allowing you to efficiently send requests
and receive responses in JSON format [32]. Generally, Ollama offers greater
flexibility compared to Petals.

29

4.5 Ollama

4.5.1 Ollama interface

When we communicate with the Ollama REST API, we create an HTTP
client and send a POST request. The following URL is to Ollama set up at
the University of Stavanger:

1 curl https://canvas.xini.no/api/create -d '{
2 "name": "llama7B_with_context",
3 "modelfile" : "$(<modelfile)"
4 }'

Code 4.4: This is the API-endpoint we use to create a model with a modelfile
where you can have system information.

1 curl https://canvas.xini.no/api/generate -d '{
2 "model": "llama7B_with_context",
3 "prompt": "Why is the sky blue?"
4 }'

Code 4.5: Here is an example on the api-endpoint we use to communicate with the
language model. The generation will return in JSON format for each generation.

1 async with aiohttp.ClientSession() as session:
2 async with ...

session.post(f'{self.api_url}/api/generate', ...
headers=headers, data=data) as response:

3 if response.status == 200:
4 result = ""
5 async for line in response.content:
6 decoded_line = ...

line.decode('utf-8').strip()
7 if decoded_line:
8 message_data = ...

json.loads(decoded_line)
9 result += ...

message_data.get("response", ...
"")

Code 4.6: Here is our async function for creating a http request where we send
the same type of request as in Code 4.5.

30

4.6 Added important features

In Code 4.6 we create a POST request with the aiohttp library. We then
send the input from our question to where we run Ollama. Then we store
the responses we receive as JSONs in a variable called result if the response
status is OK.

4.6 Added important features

We implement a new feature to enhance the functionality and user expe-
rience of the chatbot. This feature allows the chatbot to have context in
conversations, which means it can remember previously exchanged messages
between the bot and the student. We use this feature by clicking the reply
button on a previously sent message to follow up on a question. If the reply
button is not utilized, the chatbot will not take into account previously sent
messages by default. To ask a follow-up question and provide the chatbot
with context it is crucial to use the reply functionality. We refer to this fea-
ture as conversation context and achieve it by using a prefix, similar to the
way chatbot behavior is described in section 4.5. The prefix contains the
previously sent messages between the chatbot and the student. The next
time a question is asked using the reply button in Discord the conversation
history is added as a prefix and sent along with the new question. The prefix
allows the chatbot to consider all previously discussed information before
generating a new response. The prefix is also additive, which means the
prefix grows in size by adding more content as the conversation continues.

31

4.6 Added important features

The following subsection demonstrates how to use this feature in Discord.
Additionally, it shows the difference in responses when using the context
feature versus not using it.

4.6.1 Conversation context

We start the conversation by using an exclamation mark followed by some
information we want the chatbot to remember later in the conversation, as
shown in Figure 4.5.

Figure 4.5: Shows an example where we initiate a conversation by informing the
chatbot about my age.

The chatbot generates a generic, but friendly response, as instructed by
its descriptive prefix. We continue the conversation by asking the chatbot
about my age, as illustrated in Figure 4.6. We use the reply button in
Discord to give the chatbot context about the beginning of the conversation.

Figure 4.6: We test the chatbot’s ability to answer questions related to previously
given information using the reply function in Discord. Note that the chatbot
provides the correct age.

32

4.6 Added important features

The chatbot is able to accurately respond to the question by generation
the same information we provided earlier in the conversation. This works
as expected because the age we provided the chatbot with earlier in the
conversation is stored as a prefix and used in the generation process.

Figure 4.7 demonstrates how we ask the same question without using the
reply button in Discord. This is further indicated by using an exclamation
point, followed by a question. This tells the chatbot that the new message
is about some other topic and is a seperate conversation.

Figure 4.7: We ask the same question as in Figure 4.6, but without using the
reply button in Discord. Here, the chatbot has no idea what the correct answer is
and compensates by making up a number.

As shown in Figure 4.7, the bot suggests that my age is 20, which is incorrect
based on the information we provided the chatbot with previously in the
conversation. The chatbot has no clue what the right answer is and therefore
makes a random guess. The reason the chatbot does not know the answer
is that it did not recieve a prefix with any information about my age as we
did not use the reply button.

33

4.6 Added important features

1 def give_context_to_chatbot(self, message) -> str:
2 obj = self.return_conversation_object(message)
3 if obj: #if it found an object
4 tmp_str = "context:\n"
5 for conversation in obj.conversations:
6 tmp_str += "Friendly AI" if ...

conversation["is_robot"] else "Human"
7 tmp_str += f": {conversation['content']}\n"
8 return tmp_str
9 return "" # returns an empty string if there is no context

Code 4.7: This is the most important function in the message history handler.
It makes up what the bot sees so it knows the context of the conversation. Its
called if you reply to a Discord message.

Code 4.7 returns the string that is added as input sent to Petals, it looks
for previous messages stored in memory and creates a chat log based on the
previous messages for that specific conversation.

We looked into the possibility of using a prefix to provide the chatbot with
context about the course, including details from exercise slides and exam
information. However, there is a limit in regards to the number of input
tokens we can use, which is 4096 tokens, as set by the large language model,
Llama2 [33]. While we could provide some course information, it would not
be possible to include all the details from presentation slides, exercises, and
other sources. The information combined would exceed the limit of the
accepted number of tokens as input.

4.6.2 Performance tracker

In order to evaluate if the Petals system is a viable option for the web
programming course, we implement some logic that logs data to a separate
file. This data includes the date the data was logged, the language model
that was used, the time it took to establish a route, and the number of
tokens generated per second.

34

4.6 Added important features

1 tracker = PerformanceTracker()
2 tracker.get_∆_and_from_initial_time()
3 tracker.get_average_token_speed()
4 performance_logger.info("petals, tokens/s %s, ...

initial time %ss", tracker.average_speed, ...
tracker.pathfinding_time)

Code 4.8: This code snippet shows the essential part of the logging system. We
initialize the tracker by calling the function which starts counting. After the route
has been established by the Petals system the tracker calls the 2nd line to update
the time. This way we know the time spent by the Petals system to establish the
connection.

Code 4.8 above illustrates how we have calculated the results we present in
Chapter 5. We have a performance tracker that we call at the beginning of
the script. This tracker is first updated after the Petals system has found
and established a connection to the other nodes in the network. When this
is achieved, the tracker time is updated. This allows us to calculate what
we refer to as the initial time spent before generating the tokens. The last
line in Code 4.8 shows how we log the data to a separate file.

35

4.6 Added important features

4.6.3 Rating logger

Discord offers the ability to react to messages by using emojis, such as a
thumb’s up or thumb’s down. We take advantage of this feature by creating
a small script that registers these emojis by logging each reaction to a
separate file. Each message has a unique id, a score that is initially set
to zero, and this score will increment by one when a student reacts to a
message by using a thumbs up emoji.

Code 4.9 shows the logic we implement in order to know which answers the
students prefers. The script only checks if the emoji is equal to a thumb’s
up emoji. If students use any other emojis, the script does not register this
as a rating. Upon registering that a student clicked the thumb’s up emoji,
the script finds the question ID and checks if the message originated from
Petals or Ollama. There is a variable that keeps track of the score for both
systems. Each time a student reacts with a thumb’s up emoji the score is
incremented by one.

1 if reaction.emoji == "thumbs-up-emoji":
2 qa = ...

answer_rater.find_question_answer_by_id(reaction.message.id)
3 if qa:
4 # print("found right", reaction, ...

reaction.message.id)
5 # print(qa)
6 if reaction.message.id == qa.ollama_id:
7 qa.ollama_likes += 1
8 else:
9 qa.petals_likes += 1

10 # print(f"likes on ...
({reaction.message.id}): Ollama: ...
{qa.ollama_likes}, Petals ...
{qa.petals_likes}")

11 answer_rater.store(qa)

Code 4.9: Shows how our rating system works. The script starts by checking if
the reaction to a answer is a thumb’s up emoji. If true, it will find which question
the rating belongs to by searching for the message ID. Upon finding the correct
ID, it increments the score by one.

36

4.7 Giving the chatbot context

4.7 Giving the chatbot context

The Ollama framework has great support for customizing the model by
allowing us to create a custom model file. According to the Ollama doc-
umentation, the model file is defined as the blueprint to create and share
models with Ollama [34]. In other words, we can change the model to be
more familiar with the web programming course by giving it course-related
information regarding the exam project.

We believe this feature is essential, as we established earlier in this thesis
that there are several free and popular language models online. Therefore,
we need our chatbot to have certain qualities that ChatGPT or Gemini does
not offer to make it a more attractive option.

Code 4.10 below demonstrates how we create a custom model file that
reads a markdown file that is stored locally on the computer that runs
the program. Essentially, this script reads the contents of any specified
markdown file and adds the content to the global model file for both the
7B and 70B versions of the language model. This way, we have the general
language model with the added knowledge of topics related to what the
markdown file contains.

This script shown in Code 4.10 creates a language model that has knowl-
edge about the exam regarding the web programming course, making it
possible for the chatbot to answer questions students have about the exam
without creating as much false information. Furthermore, this is an impor-
tant feature, as we have noticed through testing that the chatbot tends to
make up information when it does not know the right answer. Without the
markdown file as context, the chatbot will answer questions about the exam
by creating false, misleading, or very generic information that may not be
true or useful. This is another reason why including a custom markdown
file is important.

37

4.7 Giving the chatbot context

1 def read_and_add(f):
2 global modelfile_70B, modelfile_7B
3 text = f.read()
4 modelfile_7B += text
5 modelfile_70B += text
6

7 # they have different header
8 with open("create_context_for_ollama/start_7B_modelfile", ...

"r") as f:
9 modelfile_7B = f.read()

10 with open("create_context_for_ollama/start_70B_modelfile", ...
"r") as f:

11 modelfile_70B = f.read()
12

13 modelfile_7B += data[0].page_content
14 modelfile_70B += data[0].page_content
15

16 # end part of file
17 with open("create_context_for_ollama/base_end", "r") as f:
18 read_and_add(f)
19

20 response = client.create(model='llama7B_with_context', ...
modelfile=modelfile_7B)

21 response = client.create(model='llama70B_with_context', ...
modelfile=modelfile_70B)

Code 4.10: The code snippet shows how we automate the creation of the custom
model file. It reads the markdown file with the information related to the course
and adds the contents to the already existing more general model file for both the
7B and 70B models. Lastly, the script creates the models we have customized to
fit our needs.

This is created for effectivity and make its easy to work with two files when
it comes to changing the content of the modelfile like the info of the exam
and keeping the parts that needs to be different in the two modelfiles.

38

Chapter 5

Performance results

This chapter presents how we evaluate the chatbot and discusses the results
we have gathered. We also introduce running Ollama on the Unix machines
at the University, which consists of high-end equipment that we use to
compare the Llama2 model using 7B and 70B parameters. Finally, we
present the feedback we have received from students who have tested our
chatbot.

5.1 How we evaluate the chatbot

We believe that in order to evaluate the performance of the AI chatbot
we have created, we need to divide the evaluation criteria into two main
categories. First, we evaluate the performance of the chatbot by strictly
looking at the data we have collected by conversing with the chatbot over
time. This includes gathering the data we have logged and calculating some
helpful performance indicators related to token generation speed. Secondly,
we evaluate the overall quality of the chatbot, which includes the length
and correctness of the answers from the chatbot in addition to the overall
user experience.

Measuring the quality of the response from the chatbot is difficult, as this
is subjective and there is not necessarily one right answer. Students most

39

5.2 Token generation results

likely have different opinions of what a satisfactory response looks like.
However, we attempt to evaluate the quality by receiving feedback from
students using our rating system introduced in Chapter 4. In April 2024, we
add the chatbot to the web programming course taught at the University
of Stavanger, along with a description of how the chatbot works. When
students use the chatbot, they are advised to rate their preferred answer.

5.2 Token generation results

As previously mentioned, we have logged data in a separate file containing
information about the initial time it takes Petals to establish a connection,
the number of tokens generated, and the time spent generating tokens.
Using this data, we can calculate an important performance metric, which
is the average tokens generated per second for both Petals and Ollama.
Figure 5.1 presents the results based on the data we have collected. The
red color represents Petals, and the green color represents Ollama.

The average tokens generated per second for both models are calculated
using approximately 40 measurements for Petals and 40 measurements for
Ollama. The logged measurements for Ollama are the results of running the
large language model Llama2-7B on one MacBook Pro (2020) equipped with
an Apple M1 processor and 8GB RAM and one MacBook Air (2022) with
an Apple M2 processor and 8GB RAM. The measurements for Petals are
obtained by running the large language model Stable Beluga 2 (70B) using
the public swarm. Because the process of running the LLM is performed
remotely, we do not have information regarding the hardware used, as that
information is not disclosed publicly because of its peer-to-peer nature.

40

5.2 Token generation results

Figure 5.1: The graph shows the average tokens generated per second calculated
from logged data over a short period of time. The average is calculated based on
approximately 40 measurements for Petals using the LLM Stable Beluga 2 (70B)
and approximately 40 measurements for Ollama using the LLM Llama2-7B. A few
measurements that had very large variation have been removed.

At first glance, we can see from Figure 5.1 that Ollama is significantly better
at generating more tokens per second, making it more efficient and desirable
in an interactive setting such as a chatbot. The average tokens generated
per second for Petals is 1.4, while Ollama generates around 3.4 tokens per
second. In other words, this means that Ollama, on average, generated
2 additional tokens per second compared to Petals. This is significant as
2 tokens per second quickly add up over time and make a big difference
when looking at the length and detail of the response generated by the
two different systems. The response generated by Ollama is faster, includes
more words, and provides a better interactive experience as a result.

41

5.3 Efficiency

5.3 Efficiency

An important quality of a good chatbot is efficiency. We want the chatbot to
be able to respond to students as quickly as possible without sacrificing the
quality of the response. Furthermore, we do not want the student to have
to wait too long before the answer is displayed on the screen. Therefore,
we must investigate the time efficiency for Petals and Ollama. We do this
by comparing the time spent before tokens are generated. Admittedly, this
is a slightly unfair comparison, as the two systems are built differently, and
Petals is at a significant disadvantage. By default, Petals will spend more
time establishing a connection before it can start generating tokens. This
is because Petals needs to find enough servers in the public swarm and
establish a connection.

There is no doubt that comparing Petals and Ollama using what we de-
scribed above as initial time is unfair, but it is necessary to investigate the
initial time the systems need before the token generation starts. After all,
this has a direct impact on the user experience. We do not want students to
sit and wait for a response for too long. Figure 5.2 below shows the average
time spent before token generation calculated using logged data in the same
fashion as in Section 5.1.

42

5.3 Efficiency

Figure 5.2: This figure shows the time (on average) spent for both systems
before the first tokens are sent to the Discord server. For both Petals and Ollama,
the time is calculated by finding the average and removing any extreme values.
The average has been calculated using approximately 40 measurements. Note that
Ollama ran on a MacBook Pro (2020) with an Apple M1 processor and 8GB RAM.

Practically speaking, the above-mentioned initial time refers to the amount
of time it takes for the chatbot to register that a message has been sent in
the Discord server, use the contents as input, generate a few tokens, and
send these tokens. The process consists of the Petals system having to find
several servers in the public swarm that, together, can accomplish the task
of running the large language model. Upon finding enough servers, a route
to these servers must be found, and the connection has to be established.

Figure 5.2 above shows how the Petals system, on average, needs 27 seconds
to fulfill the above-mentioned steps. On the other hand, Ollama, on average,
spends 4 seconds to complete its process. This means that the Petals system,
on average, spends 23 additional seconds before responding to a student.

43

5.3 Efficiency

Ollama has no requirement to find a server to run the language model or
find a suitable route, giving Ollama an advantage when comparing time
efficiency. Ollama runs all parts of the language model locally, thereby
excluding the need to establish any connections to any foreign servers.

5.3.1 Variation for Petals

A problem we encounter with Petals is the large variation in the time needed
to establish a connection with the servers in the public swarm. Figure 5.3
shows a box plot of the data we have collected. We see that we have a very
large gap between the smallest value (4 seconds) and the largest value (55
seconds). Consider that this is after removing additional extreme values
as well. The unpredictable behavior we experience when using Petals is
arguably the biggest issue with the Petals system.

The key factors that impact this time are the number of available servers,
the location of these servers, and the number of active users running their
language model on the servers. These are factors that we have little control
over, and therefore there are no steps we can take to improve efficiency.
This is the unfortunate downside of a system like Petals, as it is completely
dependent on users who contribute their resources. However, we firmly
believe that the Petals system is a solid concept that with more available
resources has great potential.

44

5.4 Running Ollama on the Unix system

Figure 5.3: Box Plot that shows the variations we experience when running the
Petals system. All measurements are related to the initial time the Petals system
uses to establish a connection before generating tokens. A total of approximately
40 measurements have been used, and a few extreme valuables have been removed.

5.4 Running Ollama on the Unix system

The University of Stavanger has a system of computers and servers running
the Linux Ubuntu operating system. We are able to test both Llama2-7B
and Llama2-70B using one of the machines called Gorina7. This machine
has the following hardware: 4x NVIDIA A100 40GB graphics cards, 2x
AMD EPYC 7302 16-core processors, and 512 GB random access memory.
Note that only 1 GPU is utilized during our testing.

We connect to the machine remotely and run the chatbot using more com-
plex and powerful hardware compared to our laptops. From a user perspec-
tive, the chatbot works exactly the same, but with a significant increase in

45

5.5 Gorina7 impact on Petals and Ollama

performance. A POST HTTP request is sent to an API from the Ollama
framework that runs the model on Gorina7, which generates the tokens be-
fore sending a response in JSON format. The motivation behind the desire
to run these models on this machine is because we want to see the difference
in performance with such high-end equipment and compare it to the results
we have from running the same models on consumer laptops.

5.5 Gorina7 impact on Petals and Ollama

As previously established, Gorina7 has expensive hardware that we use to
test both the Petals system and the Ollama system.

Unfortunately, the hardware Gorina7 has to offer has little impact on the
performance of Petals, as the Petals system still relies on remote servers in
the public swarm. An option to potentially increase performance for Petals
could be to dedicate a part of Gorina7 to the public swarm. We do not
necessarily know the extent to which adding a machine like Gorina7 would
impact the performance of Petals. However, we know the Petals system is
in desperate need of more contributors, and the powerful hardware Gorina7
has to offer would increase performance significantly. As of April 2024,
there are only around 4 active contributors, with one individual contributing
significantly more than the rest. With this in mind, we imagine adding a
machine like Gorina7 would help a lot.

In the case of Ollama, this high-end equipment has a major impact on per-
formance. Unlike Petals, Ollama takes advantage of all the available GPU
resources on a machine. Previously, during our testing, we have used lap-
tops where the graphics are integrated into the processor. This is why we
expect a very large increase in performance when running Ollama on Go-
rina7, as this machine has a significantly more powerful dedicated graphics
unit installed.

46

5.6 Comparing parameters

5.6 Comparing parameters

Because running the Petals system on Gorina7 has little impact on perfor-
mance, we have to make some adjustments accordingly. If the University
of Stavanger were to implement our chatbot in the next web programming
course, it would have to be simple to do so.

Running Petals using the current system is not a viable solution, as it is
simply too slow. However, we want to know if running the 70B parameter
language model that Petals allows us to run is significantly better than
running Ollama using 7B parameters. This is because running 7B is a lot
less resource heavy and can be run on a (high end) consumer PC. Running
a simple and less resource-demanding language model like Ollama 7B is
arguably easier for the university as it is simple to set up and requires little
hardware resources. Thereby still making the hardware available to other
students.

With this in mind, we compare the language model by running both Ollama
using Llama2-7B and Ollama using Llama2-70B. We compare the large
language model with two different parameters, 7B and 70B, in two ways.
First, we compare them by performing our own tests where we write multiple
questions and manually read the replies. We look for the most obvious
difference we can spot. Examples include the length of the response we get
in addition to the overall quality of the text. Secondly, we receive feedback
from students by deploying the chatbot in the Discord server for the web
programming course. We present the feedback we received from students
at the end of this chapter.

5.7 Comparing parameters results

This section presents two examples that clearly show the difference in be-
havior we experience when using the same model with different parameters
(7B and 70B). After working with large language models for several months,
we notice that the following factors vary greatly:

• Knowledge: how much information does the chatbot know and give

47

5.7 Comparing parameters results

as output to a question.

• Understanding of language: how well the bot understands other
languages than English, and the ability to reply to questions in dif-
ferent languages.

• Hallucinations: does the chatbot make up information if it does not
know the answer to a question.

Figure 5.4 shows the first example where we test how knowledgeable the
chatbot is. We start by asking in which language the word hei means
hello. The language model with 7B parameters is able to pick up the word
hei but does not recognize that the word is used in any other languages.
Furthermore, the chatbot comes across as quite certain that this is true by
stating that this is not a word or phrase that is commonly used. The same
language model with 70B parameters is able to identify the exact language
where the word hei means hello.

Figure 5.4: The figure shows the difference in behavior we encounter when using
the same large language model with two different parameters. The 7B parameter
model does not know about any languages that use the word hei as a greeting.
The 70B parameter model is able to locate the exact country and language where
the word hei is commonly used as a greeting.

Knowledge and hallucinations are two factors that were previously intro-
duced. By looking at Figure 5.4, we can see how these factors vary depend-
ing on the parameters the language model uses. The 7B parameter model

48

5.7 Comparing parameters results

hallucinates by stating that the word or phrase is not commonly used in any
language. Further proving that this version of the model has no knowledge
about the question and compensates by creating false information.

Figure 5.5 demonstrates another example where a question is written in
Norwegian to test how well the chatbot is able to interpret and write other
languages than English. First, notice how the 7B parameter version is able
to understand the question but is not capable of writing the answer in the
same language. Secondly, the markdown file the chatbot has been provided
with does not specify the year of the exam, only the month and date. The
Llama2-7B states that the exam date is June 9th, 2023, which is not entirely
true. The month and date is correct, but the bot hallucinates by making
up the year of the exam. It is also not able to respond to an inquiry using
the same language as the question.

Figure 5.5: The figure shows how the two large language models respond differ-
ently to a question they do not know the answer to. The markdown file does not
contain information about the year of the exam, only the day and month. The 7B
model includes the current year when asked about the exam date, while the 70B
model only informs about the day and month.

On the other hand, the language model with 70B parameters is not only
able to understand the question asked in Norwegian, but is also capable of

49

5.8 Feedback from students

generating a response using the same language. Importantly, the chatbot
is also able to answer the question by only specifying the month and date.
In this situation, the chatbot is precise, able to interpret and write using a
foreign language, and does not hallucinate by making up potentially false
information. Based on these tests we conclude that the 70B version of
Llama2 is a significantly better option than the 7B version of the language
model.

5.8 Feedback from students

As previously mentioned, evaluating the quality in terms of how well the
chatbot responds is difficult as there are no metrics we can directly com-
pare. We cannot measure how well the chatbot answers, or how detailed
or accurate the contents of the message is. Therefore, we use the Unix sys-
tem to run the model with both 7B and 70B parameters on the Gorina7
machine from April 3, 2024 to April 15, 2024. The chatbot is added to the
web programming Discord server, where students have the opportunity to
try it out.

This gives us useful feedback from the audience the chatbot is intended for
and can help us find areas in which we can improve the chatbot. Impor-
tantly, the feedback helps us evaluate if there is a significant difference in the
quality produced by the language model using the 7B and 70B parameters.

Each time a student sends a message, the bot will reply with one response
from the 7B model and one response from the 70B model. We encourage
all students to try the chatbot by asking a few questions and rating the
preferred response.

5.9 Feedback Results

The chatbot was available for students to try for approximately two weeks.
Unfortunately, the level of interest shown by the students was not very
significant. We expected more students to test the chatbot by asking ques-
tions, asking follow-up questions, and even testing how many questions the

50

5.9 Feedback Results

chatbot is capable of answering simultaneously. In total, 38 questions were
asked by students, of which only 11 received a rating in the form of thumbs-
up emoji. We sent a reminder in the Discord server encouraging students
to rate their preferred answer a week after deploying the chatbot. Even
though we have little data, there does seem to be a clear preference. Figure
5.6 below demonstrates the ratings we have received from the students.

Figure 5.6: Distribution of ratings received from students. Importantly, we only
have a total of 11 questions rated by students. The green pie shows the cases where
the models got the same rating. The orange pie illustrates when the 70B model
was rated 1 while 7B was rated 0. Lastly, the blue pie represents the questions
where the 7B model received a rating of 1 while the 70B model received 0.

The results gathered from figure 5.6 is as follows:

• Llama2-70B preference (54.5%): A total of 38 questions were
asked and answered throughout the two weeks the chatbot was avail-
able in the Discord server for students taking the web programming
course at the University of Stavanger. 11 replies generated by the
chatbot received a rating from students. Each reply consist of one
generated answer from the 7B model and one answer generated from
the 70B model. 6 out of 11 rated answers shows that Llama2-70B had
the most satisfactory reply resulting in 54.5% of the total answers.

51

5.9 Feedback Results

• Llama2-7B preference (9.1%): There was only one instance where
a student preferred the reply generated by the 7B model.

• Equal preference (36.4%): A significant amount of answers were
given the same rating by students expressing the models equally sat-
isfactory.

The small number of ratings we received makes it difficult to conclude that
one model is strictly better than the other. We do not know exactly what
the result would be if for example 50 additional students tested the chatbot
and gave their feedback. Therefore, with such a small dataset, we can only
point out that Llama2-70B seems to be the clear favorite based on the
ratings we received. However, im combination with our own tests where we
compared the language model using both parameter versions we can clearly
define that the 70B version is far superior.

52

Chapter 6

Discussion

6.1 Petals potential

After an extended period of working with Petals, we believe that the peer-to-
peer structure that Petals incorporated is a better alternative than running
a small language locally as it allows us to run large language models with-
out expensive hardware. We think this is the case as we have discovered
through testing that running a large language model with 70B parameters
is significantly better than running a small language model on a laptop.

Allowing students to test the chatbot has in combination with perform-
ing our own tests further illustrated the high value of using a language
model with 70B parameters. The 70B model is significantly better than
the 7B model at interpreting and writing using different languages, and we
have observed that it hallucinates a lot less. The chatbot is intended to
help students in a Discord server by answering questions about the course.
Therefore, it is crucial that the bot only replies to questions when it knows
the answer and does not make up information where it lacks knowledge. In
chapter 5, section 5.8, we concluded that the 7B model hallucinates a lot
more, making it an almost unviable option. This is where Petals becomes
highly relevant, as it allows us to run the 70B model without expensive and
high-end equipment.

53

6.1 Petals potential

Moreover, Petals eliminates the need for the University to use its limited
resources to run a large language model. Earlier in this paper, we presented
Ollama, an alternative option to run large language models using expensive
hardware. While offering better performance results, it also demands that
expensive hardware be available during the entire time the LLM is running.
In other words, Unlike Ollama, Petals does not require the University to
dedicate a portion of the available resources to run Ollama exclusively. In
this way, the hardware can be used by other students.

6.1.1 Petals drawbacks

Providing the chatbot with information on course topics is challenging due
to Petals’ P2P structure. The system is designed in a way that prevents us
from feeding the language model with a lot of data, as this would directly
impact other users in the public swarm. The only option available to us
is to use external systems to add the amount of data we require, as Petals
only offers the opportunity to fine-tune the model, which is not what we are
trying to achieve. This is why we did not use the prefix to give Petals the
context about the course of web programming. It would also have required
that the information would be given every time a message is sent.

One of the main objectives of this paper was to explore the possibility of
integrating course-related information into our chatbot. However, due to
limitations just mentioned, we concluded that it cannot be achieved without
the help of additional systems, which would make it more complex and
redundant. While we came across a few frameworks such as LangChain
that could read files like presentation slides and exercises which could have
been added to the prefix. We decided not to pursue that route as it involved
technical complexities and was a time-consuming task.

Based on our experience, we found the Petals framework quite challenging
to work with. While working on the project, we faced continuous issues due
to working with different versions of the Python programming language,
even though the developers claimed that the Petals system supports those
versions. Additionally, there were problems with a new Petals version not
functioning correctly. We believe that the documentation for getting started
with Petals is somewhat responsible for these issues. An improvement in
the areas mentioned above would significantly improve the user experience

54

6.2 Final thoughts

when using the Petals system.

Furthermore, Petals is pretty slow, so if it were to be used as something else
than a last resort it would need to be faster, i.e. more people sharing their
hardware. Also in our experience, we have found that the client can be quite
hard to work with, and with a steep learning curve, so an improvement here
would also make Petals a lot more viable.

6.2 Final thoughts

Upon reviewing the conversation history between the chatbot and students,
we identified a few areas where we could have improved.

We noticed that some students were seeking more information related to the
course, such as questions about the exam project, previous exam project
examples, and solution guides. We would have liked to provide students
more information regarding previous exam project examples. However, this
is ultimately not something we can control as we do not have access to the
necessary documents.

6.2.1 What we cold have done differently

We observed that some students had difficulty continuing the conversation
with the chatbot. Specifically, they were unsure how to use the reply func-
tion to follow up on questions. To address this, we could perhaps make the
reply functionality more intuitive.

Whenever the chatbot is added to a new Discord server, it is granted permis-
sion to access all active channels like any regular user. To add the chatbot
to a specific channel within a server, we have to manually remove it from all
other channels. This task is time-consuming and tedious, particularly when
deploying the chatbot on larger servers. Although it may not affect the
chatbot’s performance, we believe that automating this process would be
beneficial if the University decides to use the chatbot in future courses. One
possible solution to this issue is to create code that removes the chatbot’s

55

6.3 Llama 3

access to all channels and then creates a new channel with a descriptive
name dedicated to the chatbot. However, because we did not prioritize the
development of this feature, we did not commit to implementing it.

6.3 Llama 3

As a final note, we would like to briefly mention the relase of Llama 3 as
this might impact the performance for both Petals and Ollama.

Llama 3 was released on April 18, 2024. Currently, there is an 8B parameter
version and a 70B version of the model available. The creators of Llama
3, Meta, are also working on a 140B parameter model. According to Meta,
the goal of Llama 3 is to be the best open model, on par with the best
proprietary ones [35]. The creators used a dataset that was seven times
larger than the one used for Llama 2 [36]. This new dataset had four times
more code [36]. Furthermore, doubled the context length, resulting in an
8000-token context length. These numbers look very promising and could
have a significant impact on the performance of both Petals and Ollama.
However, since it’s new, it’s too soon to tell how much of an impact it
will have on these systems. Nevertheless, it might significantly increase the
performance of Petals, and we would certainly investigate this if we had
more time.

56

Chapter 7

Conclusion

In this project, we investigated Petals, introduced how the Petals system
works, and the benefits and drawbacks of Petals. Furthermore, how we
used the system in combination with Discord to create an AI chatbot for
the web programming course at the University of Stavanger. We introduced
Ollama, an alternative solution to run large language models locally. We
illustrated a walk through that shows what a typical conversation looks like
and how to use the most important features the bot has to offer. Moreover,
presented several features we implemented to increase the user experience.

Importantly, we discussed how we evaluated both Petals and Ollama by
investigating token generation speed, efficiency, and overall quality of the
output generated. We also investigated the difference we experience between
the 7B and 70B versions of the large language model Llama2.

We deployed our chatbot (Ollama version) in this semester’s web program-
ming course Discord server and allowed students to test the chatbot for
approximately two weeks and gathered as much data as possible to aid us
in evaluating the performance of the chatbot. We presented the gathered
data and discussed our findings which shows that the majority of students
prefer the 70B parameter version of the large language model Llama 2. This
is likely because the 70B parameter version of the large language model hal-
lucinates significantly less, has a greater understanding of languages, and
generally generates more cohesive and higher-quality output.

57

Conclusion

Finally, we conclude our thesis by briefly looking at the objectives we in-
troduced in the first chapter (1.2) of this paper. We asked the following
questions:

1: How can we combine Petals and Discord to create a chatbot?

A: We combine Petals and Discord by installing the necessary Python
packages. These packages make it possible to utilize the frame-
works for both Petals and Discord. We build on these packages
by writing several scripts that are located in our GitHub reposi-
tory. We take advantage of the Discord interface by using an API
to communicate between the Petals chatbot and Discord server.

2: How do we evaluate the usability and performance of the chatbot?

A: We evaluated the usability and performance of the chatbot by
logging data we used to calculate several important metrics, in-
cluding tokens per second and initial time. We further evaluated
by comparing the results we got from running the chatbot locally
using the Petals framework with the results we got from running
the chatbot on the Unix system using the Ollama framework.

3: Can we further evalute the chatbot by implementing it in the web
programming Discord server and receive feedback from students?

A: Yes, we deployed the chatbot in the web programming Discord
server for roughly two weeks before gathering all the results.
We evaluated which version of the language model the students
preferred by generating one response for the 7B version and one
for the 70B version of the model for each question. Students gave
feedback through a rating system, and the preferred choice was
the 70B parameter language model.

4: Can we provide the chatbot with course-related information such as
topics taught throughout the course and exam details?

A: Using Ollama, we did manage to give course-specific context like
information about the exam project as context. We achieved this
by customizing the model file. This was however not possible
with Petals because the peer-to-peer nature of the system does
not allow us to make such large adjustments. Lastly, we did

58

Conclusion

not find a solution to implement the entire curriculum including
exercises and presentation slides as context for neither system.

5: Does the bot prove useful compared to already existing chatbots?

A: With regards to the information about the exam project the bot
provided something other chatbots can not provide. Other than
that when considering the quality of answers, time it takes to
generate a response with Petals and the ease of using it through
Discord, we would say its less convenient than other available
chatbots.

In conclusion, we have determined that while Petals can have some potential
for a Discord chatbot, it is ultimately not a suitable option for a chatbot
designed to answer questions about a course. The slow speed, challenging
framework, and inability to feed the language model with course information
make it unsuitable for this purpose.

59

Bibliography

[1] N. Forman, J. Udvaros, and M. S. Avornicului, “Chatgpt: A
new study tool shaping the future for high school students,”
International Journal of Advanced Natural Sciences and Engineering
Researches, vol. 7, no. 4, p. 95–102, May 2023. [Online]. Available:
https://as-proceeding.com/index.php/ijanser/article/view/562

[2] J. Liu, X. Kong, F. Xia, X. Bai, L. Wang, Q. Qing, and I. Lee, “Artificial
intelligence in the 21st century,” IEEE Access, vol. 6, pp. 34 403–34 421,
2018.

[3] W. X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou, Y. Min,
B. Zhang, J. Zhang, Z. Dong, Y. Du, C. Yang, Y. Chen, Z. Chen,
J. Jiang, R. Ren, Y. Li, X. Tang, Z. Liu, P. Liu, J.-Y. Nie, and J.-R.
Wen, “A survey of large language models,” 2023.

[4] S. R. Choi and M. Lee, “Transformer architecture and attention
mechanisms in genome data analysis: A comprehensive review,”
Biology, vol. 12, no. 7, 2023. [Online]. Available: https://www.mdpi.
com/2079-7737/12/7/1033

[5] N. Ding, Y. Qin, G. Yang, F. Wei, Z. Yang, Y. Su, S. Hu, C.-M.
Chan, W. Chen, J. Yi, W. Zhao, X. Wang, Z. Liu, J. Chen,
Y. Liu, J. Tang, J. Li, and M. Sun, “Parameter-efficient fine-tuning
of large-scale pre-trained language models,” 2023. [Online]. Available:
https://doi.org/10.1038/s42256-023-00626-4

[6] S. AlZu’bi, A. Mughaid, F. Quiam, and S. Hendawi, “Exploring
the capabilities and limitations of chatgpt and alternative big
language models,” vol. 2, p. 28–37, Apr. 2023. [Online]. Available:
https://ojs.bonviewpress.com/index.php/AIA/article/view/820

60

https://as-proceeding.com/index.php/ijanser/article/view/562
https://www.mdpi.com/2079-7737/12/7/1033
https://www.mdpi.com/2079-7737/12/7/1033
https://doi.org/10.1038/s42256-023-00626-4
https://ojs.bonviewpress.com/index.php/AIA/article/view/820

BIBLIOGRAPHY

[7] GitHub, “The world’s most widely adopted ai developer tool.” 2024.
[Online]. Available: https://github.com/features/copilot

[8] S. Feuerriegel, J. Hartmann, C. Janiesch, and P. Zschech,
“Generative ai,” 2024. [Online]. Available: https://doi.org/10.1007/
s12599-023-00834-7

[9] D. team, “Introducing duolingo max, a learning experience powered
by gpt-4,” 2023. [Online]. Available: https://blog.duolingo.com/
duolingo-max/

[10] “Posten,” 2024. [Online]. Available: https://www.posten.no/

[11] A. Kaushal and K. Mahowald, “What do tokens know about their
characters and how do they know it?” 2022. [Online]. Available:
https://arxiv.org/pdf/2206.02608

[12] OpenAI, “Models,” 2024. [Online]. Available: https://platform.openai.
com/docs/models/gpt-4-and-gpt-4-turbo

[13] A. Borzunov, D. Baranchuk, T. Dettmers, M. Ryabinin,
Y. Belkada, A. Chumachenko, P. Samygin, and C. Raffel,
“Petals: Collaborative inference and fine-tuning of large mod-
els,” arXiv preprint arXiv:2209.01188, 2022. [Online]. Available:
https://arxiv.org/abs/2209.01188

[14] BigScience, “A one-year long research workshop on large multilingual
models and datasets,” 2022, https://bigscience.huggingface.co/ [Ac-
cessed: 07.02.24].

[15] A. Borzunov, D. Baranchuk, T. Dettmers, M. Ryabinin,
Y. Belkada, A. Chumachenko, P. Samygin, and C. Raf-
fel, “bigscience-workshop (github),” 2024. [Online]. Available:
https://github.com/bigscience-workshop/petals

[16] L. Rosencrance, “What is peer-to-peer (p2p)?” 2023. [Online].
Available: https://www.techtarget.com/searchnetworking/definition/
peer-to-peer

[17] A. Borzunov, D. Baranchuk, T. Dettmers, M. Ryabinin,
Y. Belkada, A. Chumachenko, P. Samygin, and C. Raffel,
“Petals - getting started with llama 2 and stable beluga 2 (gpu
colab),” 2022. [Online]. Available: https://colab.research.google.com/

61

https://github.com/features/copilot
https://doi.org/10.1007/s12599-023-00834-7
https://doi.org/10.1007/s12599-023-00834-7
https://blog.duolingo.com/duolingo-max/
https://blog.duolingo.com/duolingo-max/
https://www.posten.no/
https://arxiv.org/pdf/2206.02608
https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
https://arxiv.org/abs/2209.01188
https://bigscience.huggingface.co/
https://github.com/bigscience-workshop/petals
https://www.techtarget.com/searchnetworking/definition/peer-to-peer
https://www.techtarget.com/searchnetworking/definition/peer-to-peer
https://colab.research.google.com/drive/1uCphNY7gfAUkdDrTx21dZZwCOUDCMPw8?usp=sharing#scrollTo=02d0BDEAuUFQ
https://colab.research.google.com/drive/1uCphNY7gfAUkdDrTx21dZZwCOUDCMPw8?usp=sharing#scrollTo=02d0BDEAuUFQ
https://colab.research.google.com/drive/1uCphNY7gfAUkdDrTx21dZZwCOUDCMPw8?usp=sharing#scrollTo=02d0BDEAuUFQ

BIBLIOGRAPHY

drive/1uCphNY7gfAUkdDrTx21dZZwCOUDCMPw8?usp=sharing#
scrollTo=02d0BDEAuUFQ

[18] Petals, “Petals health monitor.” [Online]. Available: https://health.
petals.dev/

[19] “Greedy algorithms,” 2024. [Online]. Available: https://www.
geeksforgeeks.org/greedy-algorithms/

[20] P. V. Platen, “How to generate text: using different decoding methods
for language generation with transformers,” 2020. [Online]. Available:
https://huggingface.co/blog/how-to-generate

[21] “Text generation strategies,” 2024. [Online]. Avail-
able: https://huggingface.co/docs/transformers/generation_
strategies#default-text-generation-configuration

[22] “discord-bot-petals,” 2024. [Online]. Available: https://github.com/
AJ-A-dev/discord-bot-petals

[23] P. Developers, “petals 2.2.0.post1,” 2023,
https://pypi.org/project/petals/.

[24] A. Borzunov, “Security, privacy, and ai safety,” 2024. [Online]. Avail-
able: https://github.com/bigscience-workshop/petals/wiki/Security,
-privacy,-and-AI-safety

[25] Discord, “About discord,” 2024. [Online]. Available: https://discord.
com/company

[26] ——, “Building your first discord app,” 2024. [Online]. Available:
https://discord.com/developers/docs/getting-started

[27] “Discordpy documentation,” 2024. [Online]. Available: https:
//discordpy.readthedocs.io/en/stable/api.html

[28] “Gateway,” 2024. [Online]. Available: https://discord.com/developers/
docs/topics/gateway#gateway

[29] “The websocket api (websockets),” 2024. [Online]. Available: https:
//developer.mozilla.org/en-US/docs/Web/API/WebSockets_API

[30] “Ollama github,” 2024. [Online]. Available: https://github.com/
ollama/ollama/tree/main

62

https://colab.research.google.com/drive/1uCphNY7gfAUkdDrTx21dZZwCOUDCMPw8?usp=sharing#scrollTo=02d0BDEAuUFQ
https://colab.research.google.com/drive/1uCphNY7gfAUkdDrTx21dZZwCOUDCMPw8?usp=sharing#scrollTo=02d0BDEAuUFQ
https://colab.research.google.com/drive/1uCphNY7gfAUkdDrTx21dZZwCOUDCMPw8?usp=sharing#scrollTo=02d0BDEAuUFQ
https://colab.research.google.com/drive/1uCphNY7gfAUkdDrTx21dZZwCOUDCMPw8?usp=sharing#scrollTo=02d0BDEAuUFQ
https://colab.research.google.com/drive/1uCphNY7gfAUkdDrTx21dZZwCOUDCMPw8?usp=sharing#scrollTo=02d0BDEAuUFQ
https://health.petals.dev/
https://health.petals.dev/
https://www.geeksforgeeks.org/greedy-algorithms/
https://www.geeksforgeeks.org/greedy-algorithms/
https://huggingface.co/blog/how-to-generate
https://huggingface.co/docs/transformers/generation_strategies#default-text-generation-configuration
https://huggingface.co/docs/transformers/generation_strategies#default-text-generation-configuration
https://github.com/AJ-A-dev/discord-bot-petals
https://github.com/AJ-A-dev/discord-bot-petals
https://github.com/bigscience-workshop/petals/wiki/Security,-privacy,-and-AI-safety
https://github.com/bigscience-workshop/petals/wiki/Security,-privacy,-and-AI-safety
https://discord.com/company
https://discord.com/company
https://discord.com/developers/docs/getting-started
https://discordpy.readthedocs.io/en/stable/api.html
https://discordpy.readthedocs.io/en/stable/api.html
https://discord.com/developers/docs/topics/gateway#gateway
https://discord.com/developers/docs/topics/gateway#gateway
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://github.com/ollama/ollama/tree/main
https://github.com/ollama/ollama/tree/main

BIBLIOGRAPHY

[31] langChain, “Ollama,” 2024. [Online]. Available: https://python.
langchain.com/docs/integrations/llms/ollama

[32] J. Morgan, “Api,” 2024. [Online]. Available: https://github.com/
ollama/ollama/blob/main/docs/api.md

[33] H. Face, “Llama2.” [Online]. Available: https://huggingface.co/docs/
transformers/main/model_doc/llama2

[34] J. Morgan, “Ollama documentation,” 2024. [Online]. Available:
https://github.com/ollama/ollama/tree/main/docs

[35] “Introducing meta llama 3: The most capable openly available
llm to date,” 2024. [Online]. Available: https://ai.meta.com/blog/
meta-llama-3/

[36] Meta, “Build the future of ai with meta llama 3,” 2024. [Online].
Available: https://llama.meta.com/llama3/

63

https://python.langchain.com/docs/integrations/llms/ollama
https://python.langchain.com/docs/integrations/llms/ollama
https://github.com/ollama/ollama/blob/main/docs/api.md
https://github.com/ollama/ollama/blob/main/docs/api.md
https://huggingface.co/docs/transformers/main/model_doc/llama2
https://huggingface.co/docs/transformers/main/model_doc/llama2
https://github.com/ollama/ollama/tree/main/docs
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://llama.meta.com/llama3/

	Content
	Summary
	Introduction
	Background and motivation
	Objectives
	Approach and Contributions
	Outline

	Artificial intelligence
	Introduction to AI
	Large language models
	Generative AI
	The language of AI

	The Petals system
	Motivation behind Petals
	The Petals system
	Choice of language model
	Generating Tokens
	How we use Petals
	Petals interest drop
	Petals need contributors
	An alternative to public swarm
	Training limitations

	Implement a Discord bot
	Discord
	Chatbot walk through
	Initiate a conversation
	Chatbot response

	Implement the bot
	Discord developer portal
	Discord interface
	Petals interface
	How we integrate the interfaces

	Chatbot prefix
	Ollama
	Ollama interface

	Added important features
	Conversation context
	Performance tracker
	Rating logger

	Giving the chatbot context

	Performance results
	How we evaluate the chatbot
	Token generation results
	Efficiency
	Variation for Petals

	Running Ollama on the Unix system
	Gorina7 impact on Petals and Ollama
	Comparing parameters
	Comparing parameters results
	Feedback from students
	Feedback Results

	Discussion
	Petals potential
	Petals drawbacks

	Final thoughts
	What we cold have done differently

	Llama 3

	Conclusion
	Bibliografi
	Vedlegg

