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Abstract

Parkinson’s disease (PD) is one of the most common neurodegenerative
disorders worldwide. An electroencephalogram (EEG) has the potential to
detect PD. PD is diagnosed by clinically examining the patient’s symptoms.
As the need for automatic and more reliable procedures in detecting PD
increases, different Machine Learning (ML) models have been developed for
this purpose. These models have been trained indistinctively with subjects
ON and OFF medication, in spite of the known effect that medications such
as levodopa can have on the EEG signal.

In this thesis, we aim to explore whether there is a difference when using
subjects’ ON or OFF medication when training and testing the model in
order to assess whether the subjects’ medication status affects the model’s
performance. We also aim to try to improve an already trained ML model by
applying a conformal prediction algorithm, making the model more "con-
fident" in the answer it gives. We also evaluated the effect of conformal
predictions for different sub-populations based on genders, severity stage
and different centres.

The results of the tests, which are used to determine whether there is a dif-
ference between using subjects’ ON or OFF medication when training and
testing the model, show that training on ON medication recordings increases
the model’s performance compared to training the model on subjects OFF
medication. In addition, we also observed that severe subjects ON medica-
tion have a big influence in the learning of the algorithm. Another test we
used to analyse the effect of medication was to try and predict whether a
subject was either ON or OFF medication. The results of the tests indicate
that the EEG signals do not contain enough information about the medi-
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cation status to distinguish between ON/OFF medication. By applying a
conformal prediction we were able to improve the performance of our over-
all model, with an increase in balanced accuracy from 75.92% ± 6.024 to
79.29% ± 9.601. We also saw different increases within each specified sub-
population, concluding that the use of a conformal prediction can enhance
a model’s performance.
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Chapter 1

Introduction

1.1 Motivation

Currently, there is no definitive test for Parkinson’s Disease (PD). Elec-
troencephalography (EEG) is a non-invasive technique that could be of use
to the detection of PD. Despite its relevance, analyzing EEG recordings
requires an expert [1]. Even in the event of a skilful professional reading
EEG, the lecture is prone to errors and subjectivity. Machine Learning
(ML) could help in the automatic analysis.

1.2 Objectives

Objective 1 - Effect of medication

Several Artificial Intelligence (AI) methods have currently been developed
for the detection of PD using EEG, but there is no standardized approach
for dealing with medication. It is unclear if the medication can affect the
performance of the AIs methods. We know that medication can affect the
brain waves represented in the EEG [2], potentially affecting the patterns
the algorithm is picking up. We want to verify the effect of the medication
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1.2 Objectives

and assess if there is a difference when using data from subjects who have
taken medication and from those without medication.

Objective 2 - Predict PD/non-PD using Conformal Prediction

The current developed tools for detecting PD do not have a notion of "con-
fidence". This means that the algorithm will give an output even though it
is uncertain in the answer. We want to avoid that and indicate that if the
confidence is low, we want to skip that prediction.
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1.3 Related Works

1.3 Related Works

Several articles have covered how EEG can be used to detect PD. The works
of Kurbatskaya et al. [3] focus on how sub-group populations stemming from
different genders almost never are taken into consideration. In their work,
they have performed an analysis of the detection ability for the genders
using a trained ML model based on Power Spectral Density (PSD) features
of EEG. They have found significant differences in detecting ability between
males (80.5% accuracy) vs. females (63.7% accuracy) and points towards
higher activity for some parietal and frontal EEG channels for males which
can explain the difference in detecting ability between the genders.

Kurbatskaya et al. [4] look at using ML models to predict PD/non-PD while
also evaluating the effect of harmonization, given the multi-center nature
of the datasets. Their validation results show, on average, an improvement
in PD detection ability (69.6% vs. 75.5% accuracy) when harmonizing
the features and performing feature selection. The final results showed an
average global accuracy of 72.2%

The mentioned works are similar to our work for the preprocessing and fea-
ture extraction parts, but none of them have the same problems/objectives
as our project.
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Chapter 2

Background

2.1 Clinical

2.1.1 Parkinson’s Disease

PD is a brain disorder that affects the nervous system and the parts of the
body controlled by the nerves and worsens over time and is one of the most
common degenerative disorders [5]. When nerve cells weaken or die, people
can begin to notice problems with movement, tremors, stiffness in limbs
or impaired balance. As the disease progresses, these symptoms get more
prominent, and the person may find it difficult to walk, sleep or do other
simple tasks [6].

Symptomps

Four primary symptoms are characteristic of PD.
Tremor is a shaking that often starts in the hands or feet of the patient [7].
It is most noticeable when the patient is resting and disappears or improves
during sleep [6].
Rigidity is muscle stiffness, affecting nearly all patients with PD.The mus-
cles are constantly tense and contracted [8]. If another person tries to move
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2.1 Clinical

the limbs, the limbs can move only in certain short and jerky ways.
Bradykinesia is the slowing of automatic movements [9], thus making
simple routines, such as getting dressed in the morning, more difficult and
tedious.
Postural instability is impaired balance and a change in posturing that
can increase the risk of falling [10].
Other, less prominent symptoms of PD is among other things depression,
sleep problems, muscles cramps and emotional changes [6].

Diagnostics

There is currently no specific test available to diagnose patients with PD.
The diagnosis is made via different methods. A clinical examination where
the medical and neurological history of the patient is assessed. Blood tests,
Computer Tomography (CT) and Magnetic Resonance Imaging (MRI) scans
are taken to try to rule out other types of diseases [11] in combination with
a physical examination to look at potential symptoms, such as tremors and
rigidity [6].

Medication

Although a cure for PD has not yet been developed, there are numerous
different medications that can help manage the symptoms and improve
quality of life. Dopamine, a neurotransmitter produced in the brain, plays
a crucial role in neural communication. When dopamine levels become too
low, symptoms of PD appear [12], [13]. This happens because many of the
brain cells that produce dopamine have died or are dying. Dopamine as a
medication does not work because dopamine can not cross the blood-brain
barrier. Doctors prescribe other medications that can act in a similar way.
The majority of drug treatments work by doing either one or more of the
following:

• Elavating the dopamine levels within the brain.[13]

• Functioning as a surrogate for dopamine by activating the regions of
the brain where dopamine operates.[13]

5



2.1 Clinical

• Preventing the breakdown of dopamine by blocking the action of en-
zymes or other factors.[13]

Levodopa is one of the most common drugs used by PD patients. Levodopa
is a chemical building block that exists naturally in your body, which the
body transforms into dopamine in the brain [12], [13]. By taking Levodopa,
you are essentially enhancing the supply, which means the nerve cells can
produce more dopamine.

2.1.2 Electroencephalography (EEG)

EEG is a non-invasive procedure to record electrical impulses from the brain.
An EEG can be taken both when a subject is awake and sleeping. In the
awake state, the subject can have an EEG with eyes closed and eyes open.
During an EEG, the electrodes are placed on the scalp with some conduc-
tive gel to ensure good conductivity between the scalp and electrode. The
electrodes are placed with 10-20 standards and given names corresponding
to their position on the scalp.[14] One node, called Reference electrode, is
placed on the neck of the subject. This electrode acts as the 0-value node to
ensure that the activity recorded in the EEG is only brain activity and not
electrical impulses from other parts of the body [6]. The objective of the
reference node is to subtract its signals from all other electrodes. This en-
sures that the signal that is recorded is only from brain activity. An EEG
can be used to help diagnose a number of different diseases and monitor
different conditions affecting the brain [15]. A showcasing the overview of
how EEG are performed in Figure 2.1
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2.2 EEG in PD

Figure 2.1: Overview of an EEG recording. [16]

2.2 EEG in PD

As mentioned in section 2.1.1, there is no specific test to diagnose a patient
with PD. A diagnosis is made by a neurologist, a doctor trained in nervous
system conditions, based on the patient’s symptoms, medical history, and
a neurological and physical exam. The need for automated procedures to
enhance the accuracy of PD diagnosis is increasing, and EEG is beginning to
be recognized as one of the key diagnostic tools for PD[17]. EEG provides a
unique opportunity to non-invasive explore and study the temporal patterns
of brain activity and cognitive functions.[18]

2.2.1 Preprocessing Techniques

Preprocessing is the process of transforming raw EEG data into a more
suitable format for further analysis. The signals detected from the scalp
may not accurately mirror those originating directly from the brain. Raw
EEG data is susceptible to various forms of noise, which can obscure weaker
EEG signals, known as the true signal [19]. Additionally, artefacts like eye
blinking or muscle movement can further contaminate the data, distorting
the overall picture. The primary aim is to separate the relevant neural
signals from random activity commonly encountered during the recording
of EEG, thereby isolating the true signal.
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2.2 EEG in PD

The PREP Pipeline

The goal of the PREP pipeline is to execute preprocessing procedures aimed
at standardizing the data into a format suitable for various applications
while retaining the maximum amount of the signal possible.

[20]The first thing the PREP pipeline does is line-noise removal. Since high-
pass filtering destroys EEG recordings in some contexts, PREP performs
high-pass filtering, calculates a line-noise signal, and subtracts it from the
unfiltered signal, returning the non-filtered signal.
Then PREP does robust referencing of the signal relative to an estimate
of the average reference. The concept of robust referencing is computing
bad channels after data has been referenced to a reference signal that is as
similar as possible to the true average of the signal, assuming that none of
the channels were bad. The algorithm progresses through two phases: first,
estimating the true signal mean, and then utilizing the signal referenced by
this mean to identify the real bad channels and interpolate.

ICLabel

[19]EEG data commonly have numerous artefacts due to various signal
sources such as eye blinks, heartbeats, line noise, channel noise, and muscle
artefacts. Independent Component Analysis (ICA) is a signal processing
technique used to aid in separating true brain signals from noise sources.
ICA performs blind-source separation by decomposing the observed noisy
EEG signals into sources that are maximally independent, and is done man-
ually and requires a human to label each component that comes out from
an ICA decomposition. This process is prone to human error and becomes
challenging to scale up when handling high-dimensional EEG recordings.
ICLabel introduces a statistical model that uses neural networks and a
crowdsourced training dataset that automatically labels the ICA compo-
nents.
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2.2 EEG in PD

Autoreject

PREP only offers the detection and interpolation of bad channels, while
we still need something for the detection of bad segments. To achieve this,
an algorithm called Autoreject comes into play. Autorecject uses Cross-
Validation (CV) and an evaluation metric that can determine the most
appropriate peak-to-peak threshold, which identifies bad EEG segments.
This is done together with Bayesian optimization, setting a threshold for
each sensor and marking segments as bad if a majority of the sensors have a
high amplitude artefact, thus mimicking how a human expert would mark
bad segments during a visual examination of a subject. [18]

2.2.2 Feature Extraction

After preprocessing, the next step is feature extraction which is a crucial
phase of biomedical signal analysis, especially with EEG signals, where deal-
ing with large datasets spanning multiple hours and channels has become
common. A fundamental objective of feature extraction is dimensional re-
duction and data compaction. In essence, this would result in the data being
represented in a smaller subset of features [21], which reduces hardware and
software resources needed and minimizes computational time.

Frequency Spectrum

EEG waveforms can be characterized based on various attributes, including
amplitude, location, frequency, morphology, synchrony, etc. [22] However,
frequency-based classification is the most common approach, where EEG
waves are named according to their frequency range using Greek numerals
[22]. The most frequently studied waveforms include δ spanning from 0.5-4
Hz, θ spanning from 4-8 Hz, α spanning from 8-13 Hz, β spanning from
14-30 Hz, and γ spanning from 30-80 Hz [23]. An example of the different
frequency bands in Figure 2.2.
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2.2 EEG in PD

Figure 2.2: Raw EEG signal and corresponding frequency bands.[24]

Power Spectral Density (PSD)

PSD represents the spectral power of the signal at different frequencies
and is used under spectral analysis, which is a powerful tool for analysing
EEG signals [25]. The PSD can be calculated using the multitaper method,
which is a technique known for generating precise, high-resolution spectral
estimates without the need for averaging across frequency or time. The
way that the multitaper method works is by averaging together multiple
independent spectra estimated from a single segment of data [25].
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2.3 Machine Learning

2.3 Machine Learning

2.3.1 Machine Learning Fundamentals

ML has often been defined as the quote from Tom M. Mitchell: "A computer
program is said to learn from experience E with respect to some class of tasks
T and performance measure P, if its performance at tasks in T, as measured
by P, improves with experience E." [26]

ML is a subsection of AI and uses computer algorithms that improve through
experience and by the use of data. ML enables computers to learn from in-
put data and then make predictions on new data [27].

ML is imitating the way humans learn to process information, i.e. the
input, in order to accomplish a goal, i.e. the output [28]. This could be, for
example, pattern recognition, where a learner might want to differentiate
between dogs and cats. While it is easy for humans to tell the difference
between dogs and cats, it is not straightforward for computers. Instead of
hard coding the differences into the model, it is instead programmed to find
these differences through experience [27].

2.3.2 Supervised Learning

Supervised learning is a learning approach that uses labelled datasets[29].
Training data is paired with its known classification labels[27]. This makes
a model understand the similarities and differences within the objects, while
still maintaining the ground differences between them. Supervised learning
can be separated into two types of problems:

Classification problems

Classification algorithms try to accurately assign test data into the correct
categories [28]. A category can, for example, be "spam" or "not spam" for
an algorithm prediction of whether an incoming mail is spam or not.
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2.3 Machine Learning

Regression problems

Regression uses algorithms to try to find the relationship between depen-
dent and independent variables. Regression models are useful for predicting
numerical values from different data points. [28]

2.3.3 Machine learning Classifiers

In this subsection, we describe the different ML classifiers we have used:

Logistic Regression (LR) is a classifier that models the probability of
discrete outputs given the input variables. This type of algorithm is mostly
used for classification problems, and useful for predictive analytics. Since
the outcome is a probability, the dependent variable is between 0 and 1. A
logit transformation is applied to that odds, i.e. the probability of success
divided by the probability of failure. [30]

k-Nearest Neighbor (KNN) algorithm uses "distance" or proximity to
make classifications about the groupings of individual data points. KNN
algorithms are usually used in classification problems. A class label is as-
signed on the basis of a majority vote, meaning the label that is most often
represented around a given data point. For multiple classes, a plurality vote
is used.[31]

Support Vector Machine (SVM) is useful for both classification and
regression problems and is known to optimize the expected solution. The
main objective of SVM is to separate the classes in the training set with a
surface that maximises the distance between them, creating a line, called
decision boundary, called a hyperplane. SVM aims to optimize the gener-
alization ability of a model.[32]

Decision Tree (DTree) is a non-parametric supervised learning algorithm
that is useful for both classification and regression problems. DTree has,
as the name suggests, a tree structure consisting of root nodes, branches,
internal nodes and leaf nodes. A DTree starts at the top with the root node.
The branches feed into internal nodes, called decision nodes. These nodes
evaluate the information, which, in the end, is denoted by the leaf nodes.
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2.3 Machine Learning

The leaf nodes show all the possible outcomes of the dataset.[33]

2.3.4 k-fold Cross-validation

k -fold CV is a technique used to evaluate the performance of a model on
unseen data. The purpose of CV is to prevent overfitting, which occurs
when a model is performing well on trained data and poor on new data. If
a model’s performance is only evaluated once, there is no way to know if
the results are good or just a lucky run. With CV, the samples are split
and evaluated many times. The dataset is split into k subsets, called folds,
and the model trains on k-1 folds, as the last fold is used as the validation
fold. After k iterations each fold has been used as the validation set exactly
once, and the final result is the average metrics for all the folds [34]. An
example of a CV with k = 5 is shown in the Figure 2.3

Figure 2.3: Illustration of CV with k=5

2.3.5 Confusion Matrix

Confusion Matrix is a way to measure the performance of a ML classifica-
tion. As the figure en Figure 2.4 shows, a confusion matrix is a table of four

13



2.3 Machine Learning

different combinations of predicted and actual values. It is a useful metric
as it shows the predictions of the model in a more human-readable [35].

• True Negative (TN) is a correctly predicted negative result.

• True Positive (TP) is a correctly predicted positive result.

• False Negative (FN) is an incorrectly predicted negative result.

• False Positive (FP) is an incorrectly predicted positive result.

Figure 2.4: Example of a Confusion Matrix
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2.3 Machine Learning

2.3.6 Evaluation Matrices

To understand how the models are performing, it is necessary to have dif-
ferent evaluation metrics. Accuracy is used to calculate the accuracy i.e.
how often the model is predicting the right outcome. The downside of using
accuracy as the main evaluation metric is that it treats all classes equally,
and if the dataset used is imbalanced, the accuracy might be misleading.
Balanced Accuracy counter this imbalance and is more useful when the
dataset is imbalanced. Precision is a metric showing how many of the
total positive predictions are true, while Recall measures how often the
model is identifying TP from actual true positives. Area under the ROC
curve (AUC) shows the model’s ability to distinguish between classes.
Efficiency is used to calculate how many sure predictions it has from the
total test set. Validity is used as a metric to show how many correct
predictions it has from the total test set.
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2.3 Machine Learning

2.3.7 Bootstrapping

Bootstrapping is a method used in ML to estimate how a machine performs
when making predictions on data not included in the training[36]. This is
done by resampling the data with replacement repeatedly, and calculating
the metrics for each sample [37].

Using bootstrapping to estimate the skill of an ML model can be summa-
rized as follows: first, choose the sample size n and the number of repetitions
r. Then pick n samples with repetition from the dataset from which the
model has not been trained, and make predictions on those samples and
compute the metrics. Repeat the sampling and prediction r times. Finally,
calculate the average of all the metrics. A visual of this can be seen in
Figure 2.5

Figure 2.5: Illustration of bootstrapping
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2.3 Machine Learning

2.3.8 Conformal Predictions

Conformal prediction frameworks are used to assess uncertainty in predic-
tions made by prediction algorithms. They convert the predictions made
by the chosen algorithm into a prediction set with finite-sample coverage
properties. [38] The sets carry explicit, non-asymptotic guarantees without
having to make any assumptions about the distribution or the model. Con-
formal predictions can be used with the trained model to produce sets that
contain the ground truth with a specified probability. [39]
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Chapter 3

Data and methods

Figure 3.1: Technical approach to the project.

3.1 Datasets

In this project, we use EEG recordings from four cross-sectional studies.
The recordings were provided by four different centres from two different
countries: San Diego, New Mexico, and Iowa in the United States of Amer-
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3.1 Datasets

ica, and Turku in Finland. In total, that amounts to 155 subjects, 78
non-PD subjects and 77 PD subjects. Some more relevant details for each
given dataset are depicted Table 3.1. Having datasets from multiple dif-
ferent locations results in a more diverse dataset in terms of demographics
such as age, gender and ethnicity. This diversity can help ensure that find-
ings are more generalised across populations.

Table 3.1: Detailes for each included datasets.

Center Subjects Diognostic Criterion Characteristics included

San Diego 16 Non-PD
15 PD not stated

age, gender, UPDRS,
medication status,

PD Duration

New Mexico 25 Non-PD
25 PD not stated

age, gender, UPDRS,
medication status,

PD Duration

Iowa 14 Non-PD
14 PD UK Brain Bank

age, gender, UPDRS,
medication status,

PD Duration

Turku 20 Non-PD
20 PD

UK Brain Bank
and MDS

age, gender, UPDRS,
medication status,

PD Duration

The EEG recordings were acquired with both Eyes Open (EO) and Eyes
Closed (EC). The EO recordings have an increase in arousal, compared to
EC [40]. In this project, only EO is used. Together with the datasets, a file
with clinical info about the subjects was included. In this file, data about
their gender, age, and severity was stated.

San Diego Dataset

The San Diego dataset was collected in 2013 from the Scripps Clinic in La
Jolla, California. The PD subjects were enlisted from the Scripps Clinic,
and the non-PD subjects were drawn from either the local community or
spouses of the PD subjects. The study was approved by the University of
California, San Diego. The clinical diagnosis of PD was made by a specialist
in movement disorders at the PD and movement disorders department of
the institution mentioned above. There were collected in total 31 subjects,
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3.1 Datasets

16 non-PD and 15 PD subjects. The EEG recordings for the PD group were
collected both during the ON and OFF phases of levodopa treatment [41].

New Mexico Dataset

The New Mexico dataset was collected circa 2015 in the Cognitive Rhythms
and Computation Lab at the University of New Mexico. There were in total
50 subjects, 25 non-PD and 25 PD. The EEG recordings were collected
during both the ON and OFF phases of levodopa treatment [42].

Iowa Dataset

The Iowa dataset was collected from 2017 to 2019. The PD and non-PD
subjects were recruited at the University of Iowa, Narayanan Lab. The
clinical diagnosis of PD was conducted following the United Kingdom Brain
Bank criteria, but information about cognitive diagnosis status was not
available. There were, in total, 28 subjects, 14 non-PD and 14 PD. The
PD group were examined clinically, and the EEG recordings were collected
during the ON phase of levodopa treatment [42].

Turku Dataset

The Turku dataset was collected in 2018. All subjects were recruited at
the University of Turku, and Turku University Hospital, Turku, Finland.
The PD group was diagnosed either using the United Kingdom Brain Bank
criteria or the Movement Disorder’s Society (MDS) criteria. There were in
total 40 subjects, 20 non-PD and 20 PD. 13 PD subjects were assessed in
the OFF phase of levodopa treatment, and the remaining subjects of the
PD group were in the ON phase [41].
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3.1 Datasets

All the different splits in the experiments are done with the same random
seed to ensure a consistent split when performing the different experiments.

3.1.1 Predict ON/OFF medication

For this objective, the subjects from San Diego, New Mexico, Iowa, and
Turku were selected. Specifically, only PD subjects were included. In total,
there 108 subjects were used from the various centres.

3.1.2 Predict PD/non-PD

For this objective, subjects from San Diego and New Mexico were selected.
PD subjects, both the ON and OFF phases of levodopa treatment and non-
PD subjects were included. In total, 120 subjects were used from the two
centres.

3.1.3 Conformal Predictions - Predict PD/Non-PD

For this objective, subjects from San Diego, New Mexico, and Turku were
selected. Specifically, non-PD and PD subjects were only subjects in the
OFF phase of levodopa treatment were included. This is to simulate an
early detection scenario where the subjects are not under medication. In
total, there 114 subjects were used from the various centres.
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3.2 Data

3.2.1 Preprocessing

In the preprocessing stage, we have transformed the raw EEG data into
a more suitable format via various stages, including filtering, line-noise re-
moval, referencing, separating true brain signals from noise sources, and
detection of bad EEG segments. Firstly, the PREP pipeline was used on
the EEG recordings where high-pass filtering, line-noise removal and refer-
encing were done [20]. Then Autoreject was used, where bad EEG segments
were detected [18]. Then ICLabel was used for separating true brain signals
from the noise signals [19]. Each stage explained more in subsection 2.2.1

Below there are two examples of the EEG recordings before and after prepro-
cessing was used. Figure 3.2 is a PD subject from New Mexico. Figure 3.3
is a non-PD subject from San Diego. Each of the figures is a six-second
section of the EEG signal; the recordings after preprocessing are measured
in epochs, where three epochs equals six seconds.

Figure 3.2: PD subject from New Mexico dataset.

Before preprocessing After preprocessing
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Figure 3.3: Non-PD subject from San Diego dataset.

Before preprocessing After preprocessing

3.2.2 Feature Extraction

In the feature extraction stage, we process EEG data and extract spectral
features from different epochs. First, we apply a bandpass filter on the data,
limiting the frequency range to between 1-30 Hz and then downsampling
the data to 500 Hz. This helps to reduce the computational power needed
and to only focus on the bands that we are using.
The frequency spectrum was divided into four bands recommended for clin-
ical research: δ spanning from 1-4 Hz, θ spanning from 4-8 Hz, α spanning
from 8-13 Hz, and β spanning from 14-30 Hz [23] [4]. The θ band is divided
into two sub-bands, slow-θ spanning from 4-5.5 Hz and pre-α spanning from
5.5-8 Hz [43]. The PSD values for each epoch are computed using the multi-
taper method [25]. After obtaining the PSD for the specified channel, the
median PSD vector across epochs per channel is calculated. Finally, the
bandpower is calculated within specific frequency bands with the median
PSD vector.

In total, it produced 145 features (5 features × 29 channels) per subject.
We utilise two epoch parameters in the feature extraction process: ’all’ and
’min’. The key difference between these parameters lies in the selection of
epochs. When the epoch parameter ’all’ is used, it uses all the available
epochs for the feature extraction. When the epoch parameter ’min’ is used,
it uses only the first 7 epochs for the feature extraction.
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3.2.3 Training, testing and validation

The datasets were split differently for each task. The next section explains
the different splits in more detail. For the experiment Effect of Medication -
Predict ON/OFF (3.3.1), each subject used had 145 features for each of the
epoch parameters ’all’ and ’min’. For the experiments Effect of Medication
- Predict PD/non-PD (3.3.2) and Conformal prediction - Predict PD/non-
PD (3.3.3), each subject used had 145 features for only the epoch parameter
’all’. We used a training set size of 70% and a test set size of 30%. The
training set is later used in a k-fold cross-validation system with k = 5,
where 80% of the set is used for training and the remaining 20% is used
for validation, which is done for each fold. The test set is then used for
bootstrap testing on the model that has the best performance in training
and validation results.
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3.3 Methods

Python was used as the programming language. The open-source library
scikit-learn [44] was used to build and train the models. To run the con-
formal predictions crepes [45] was used. Preprocessing, feature extraction,
training and testing were all done using our Macbook Pro’s.

3.3.1 Effect of Medication - Predict ON/OFF

Data Splitting

Figure 3.4: Overview of how the splitting is done. The example shown is the
dataset split with severe subjects included. Bootstrap is used with the size of the
test set and with 100 repetitions.

With Severe Subjects
After preprocessing and feature extraction, there were a total of 100 sub-
jects. Each subject had 145 features for each of the epoch parameters ’all’
and ’min’ from the feature extraction. The subjects were split into training
and testing sets on the subject level to avoid cross-contamination. Subjects
that had data for both ON medication and OFF medication were included
in the same train, validation or test set to avoid cross-contamination. The
training set consists of 70% of the data, resulting in a total of 65 subjects.
The testing set consists of the remaining 30% of the data, resulting in a
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total of 35 subjects. An overview of the split in Figure 3.4. More detailed
information about the split in Table 3.2.

Table 3.2: Detailed information about the training/testing sets

Set Total ON Medication OFF Medication Mild Moderate Severe
Training 65 34 31 38 23 4
Testing 35 17 18 17 18 0

Without Severe Subjects
The splitting was carried in the same manner as above, just without the
severe subjects. After preprocessing and feature extraction, there were, in
total, 96 subjects without severe subjects. Each subject had 145 features for
each of the epoch parameters ’all’ and ’min’ from the feature extraction. The
training set consists of 70% of the data, resulting in a total of 64 subjects.
The testing set consists of the remaining 30% of the data, resulting in a
total of 32 subjects. More detailed information about the split in Table 3.3.

Table 3.3: Detailed information about the training/testing sets

Set Total ON Medication OFF Medication Mild Moderate
Training 64 34 30 40 24
Testing 32 17 15 15 17

3.3.2 Effect of Medication - Predict PD/non-PD

Data Splitting

26



3.3 Methods

Figure 3.5: Overview of how the splitting is done. The example shown is the
dataset split where training is done with subjects ON medication, with severe
subjects included. Bootstrap is used with the size of the test set and with 100
repetitions.

With Severe Subjects
After preprocessing and feature extraction, there were in total 106 record-
ings. Each subject had 145 features for the epoch parameter ’all’ from the
feature extraction. To avoid cross-contamination, the subjects were split
into training and testing sets on the subject level. There were two different
types of splits. One where we trained on PD subjects ON medication and
non-PD subjects and one where we trained on PD subjects OFF medication
and non-PD subjects. On each of the different splits, we did two differ-
ent test sets. One test set with PD subjects ON medication and non-PD
subjects, and one test set with PD subjects OFF medication and non-PD
subjects. In the different test sets, the non-PD subjects are the same in
both sets. The PD subjects are also the same subjects, just the opposite
medication status. Overall, we use the same training and testing sets in
both experiments, just with the opposite medication status. An overview
of the split in Figure 3.5. The dataset with 81 subjects in the figure, are
PD subjects ON medication and non-PD subjects, in a total of 81 subjects
out of the total 106 recordings.

The dataset that was split into training and testing sets consists of PD
subjects with one medication status and non-PD subjects, in a total of 81
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subjects. The training set consists of 70% of the dataset, resulting in a total
of 56 subjects. The testing set consists of the remaining 30%, resulting in
a total of 25 subjects. Then the non-PD subjects from the original test
set and the same PD subjects with opposite medication status are added
to an additional test set. More details about the split when training on
subjects ON medication in Table 3.4, and when training on subjects OFF
medication in Table 3.5.

Table 3.4: Training/testing split when training ON medication

Set Total Non-PD PD Mild Moderate Severe
Train: ON+non-PD 56 28 28 13 14 1
Test: ON+non-PD 25 13 12 5 7 0
Test: OFF+non-PD 25 13 12 5 7 0

Table 3.5: Training/testing split when training OFF medication

Set Total Non-PD PD Mild Moderate Severe
Train: OFF+non-PD 56 28 28 13 14 1
Test: OFF+non-PD 25 13 12 5 7 0
Test: ON+non-PD 25 13 12 5 7 0

Without Severe Subjects
The splitting was carried in the same manner as above, just without the
severe subjects. There were a total of 106 subjects after preprocessing and
feature extraction. Each subject had 145 features for the epoch parameter
’all’ from the feature extraction. The dataset that was split into training
test sets consists of PD subjects with one medication status and non-PD
subjects, in a total of 80 subjects. The training set consists of 70% of
the dataset, resulting in a total of 56 subjects. The testing set consists of
the remaining 30%, resulting in a total of 24 subjects. Then the non-PD
subjects from the original test set and the same PD subjects with opposite
medication status are added to an additional test set. More details about
the split when training on subjects ON medication in Table 3.6, and when
training on subjects OFF medication in Table 3.7.
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Table 3.6: Training/testing split when training ON medication

Set Total Non-PD PD Mild Moderate
Train: ON+non-PD 56 28 28 14 14
Test: ON+non-PD 24 13 11 4 7
Test: OFF+non-PD 24 13 11 4 7

Table 3.7: Training/testing split when training OFF medication

Set Total Non-PD PD Mild Moderate
Train: OFF+non-PD 56 28 28 14 14
Test: OFF+non-PD 24 13 11 4 7
Test: ON+non-PD 24 13 11 4 7

3.3.3 Conformal prediction - Predict PD/non-PD

Conformal Prediction

An α value is set to indicate how sure the model’s prediction has to be to
give a result; if not, the result is not reported since it is assumed that the
classifier is unsure. Hence, the clinician can not rely on the result. We used
two different α values: α = 0.65 and α = 0.85.
The α values were chosen to have around the same confidence as the con-
sensus for doctors when diagnosis PD. The consensus between doctors when
diagnosing PD seems to be from 63% on the low end up towards 83% on
the high end [46]. The α values try to catch both the "best" and "worst"
consensus.

Data Splitting

There were a total of 113 subjects after preprocessing and feature extraction.
To avoid cross-contamination between training and testing, the data gets
split at the subject level. The data was split 70% train and 30% test,
amounting to 79 subjects in training and 34 subjects in testing. An overview
of this splitting can be seen in Figure 3.6. More detailed information about
the split in Table 3.8.
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Figure 3.6: Overview of how the splitting is done. Bootstrap is used with the
size of the test set and with 100 repetitions.

Table 3.8: Detailed information about the Training and Testing sets for the
baseline

Set Total Non-PD PD Mild Moderate Severe
Training 79 42 37 20 14 3
Testing 34 18 16 8 8 0

To make the conformal prediction set, the original training set was split 85%,
amounting to 67 subjects for the training of the model and the remaining
15%, totalling 12 subjects, was used as a calibration set. More detailed
information about the training, calibration and testing sets are presented
in Table 3.9

Table 3.9: Detailed information about the training, calibration and Testing sets.

Set Total Non-PD PD Mild Moderate Severe
PropTraining 67 36 31 18 11 2
Calibration 12 6 6 2 3 1

Testing 34 18 16 8 8 0

30



3.3 Methods

Training, testing and validation using conformal prediction

After the model is trained, a conformal prediction is done on the test set.
The conformal prediction gives each subject in the test set a value of either
[0 1], [1 0], [0 0] or [1 1]. The values [0 1] and [1 0] mean that it is sure that
it is prediction is correct. These subjects are then added to the final test
set. Bootstrapping is then done on this final test set.

3.3.4 Evaluation

Lastly, bootstrapping was used on the classifier that performed the best in
training and validation results. To get an accurate estimate of the distri-
bution we used the testing set size as the sample size, with 100 iterations
with repetition when choosing the samples.

3.3.5 Evaluation Metrics

We used different types of evaluation metrics, but we considered AUC and
balanced accuracy as the most important metrics to perform the com-
parisons and discuss. We want to capture the accuracy of our models, and
since the datasets we have are imbalanced, the balanced accuracy accounts
for that imbalance, and the AUC measures the accuracy of the diagnostics
tests. To evaluate how the conformal prediction performs, we have used
Efficiency and Validity.
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Chapter 4

Results

4.1 Experimental Results

For the confusion matrices shown, the label 0.0 equals non-PD and label
1.0 equals PD. This counts for every experiment except Section 4.1.1, where
label 0.0 equals OFF medication and 1.0 equals ON medication. The test
results are reported as Mean ± Standard Deviation. All the experiments
are done with the same random seed to ensure a consistent split when
performing the different experiments.

4.1.1 Effect of Medication - Predict ON/OFF Medication

In table Table 4.1, we can see the test results from predicting if a subject is
either ON or OFF medication. To the left in the table are the test results
when including severe-stage subjects. The best model from the training and
validation results was DTree for epochs ’all’ where 107 features were chosen,
which was used on the test set. To the right in the table are the test results
when not including severe-stage subjects. From the training and validation
results, the model that performed best was KNN for epochs ’min’ where 8
features were chosen, which was used on the test set.
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From Table 4.1, we can see that, including the severe-stage subjects, the
model performed the best when looking at the balanced accuracy (51.76%
± 5.244) compared to the balanced accuracy (47.95% ± 7.749) when not
including the severe-stage subjects. The AUC (0.52 ± 0.052) when using
the severe-stage subjects was also higher than the AUC (0.48 ± 0.077) when
not using the severe-stage subjects. In Figure 4.1, we can see the confusion
matrices for the results of the two tests. To the left are the results for when
we included the severe-stage subjects, and to the right is when we did not
include the severe-stage subjects.

Evaluation Metric Result
Accuracy 50.46% ± 5.162
Balanced Accuracy 51.76% ± 5.244
Macro Recall 51.76% ± 5.244
Micro Recall 50.46% ± 5.162
Macro Specificity 51.76% ± 5.244
Micro Specificity 50.46% ± 5.162
Macro Precision 52.01% ± 5.800
Micro Precision 50.46% ± 5.162
Macro F1 49.76% ± 5.221
Micro F1 50.46% ± 5.162
AUC 0.52 ± 0.052

Evaluation Metric Result
Accuracy 47.25% ± 7.734
Balanced Accuracy 47.95% ± 7.749
Macro Recall 47.95% ± 7.749
Micro Recall 47.25% ± 7.734
Macro Specificity 47.95% ± 7.749
Micro Specificity 47.25% ± 7.734
Macro Precision 47.75% ± 8.649
Micro Precision 47.25% ± 7.734
Macro F1 46.50% ± 7.964
Micro F1 47.25% ± 7.734
AUC 0.48 ± 0.077

Table 4.1: Test results for predicting ON/OFF medication. On the left, we have
a table for the test results with severe subjects, for the model DTree. On the right,
we have a table for the test results without severe subjects, for the model KNN.
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Figure 4.1: Confusion Matrices for predicting ON/OFF medication. On the left,
we have a matrix for the test with severe subjects, for the model DTree. On the
right, we have a matrix for the test without the severe subjects, for the model
KNN.

4.1.2 Effect of Medication - Predict PD/non-PD

With Severe Subjects - Test for ON Medication

In Table 4.2, we can see the test results for when predicting PD or non-
PD, with the test set including PD subjects ON medication and non-PD
subjects. To the left in the table are the test results for when training the
model with subjects ON medication, and to the right are the test results for
when training the model with subjects OFF medication. From the training
and validation results, the model that performed the best was SVM for
epochs ’all’ for both of the training runs, which was then used on the test set.
The number of features chosen for SVM ’all’ when training ON medication
was 52 features; when training OFF medication, the number of features
chosen was 8 features.

From Table 4.2, we can see that training the model with subjects ON med-
ication performs the best with a balanced accuracy of 80.63%±6.803 com-
pared to training with subjects OFF medication that had a balanced accu-
racy of 56.34%±8.275. The AUC (0.81±0.068) for training ON medication
also performed better than the AUC (0.56±0.083) when training OFF med-
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ication. In Figure 4.2, we can see the test results of the predictions of the
model. To the left is when training ON medication and to the left is when
training OFF medication.

Evaluation Metric Result
Accuracy 81.12% ± 6.647
Balanced Accuracy 80.63% ± 6.803
Macro Recall 80.63% ± 6.803
Micro Recall 81.12% ± 6.647
Macro Specificity 80.63% ± 6.803
Micro Specificity 81.12% ± 6.647
Macro Precision 83.60% ± 6.384
Micro Precision 81.12% ± 6.647
Macro F1 80.47% ± 7.075
Micro F1 81.12% ± 6.647
AUC 0.81 ± 0.068

Evaluation Metric Result
Accuracy 56.60% ± 8.263
Balanced Accuracy 56.34% ± 8.275
Macro Recall 56.34% ± 8.275
Micro Recall 56.60% ± 8.263
Macro Specificity 56.34% ± 8.275
Micro Specificity 56.60% ± 8.263
Macro Precision 56.74% ± 8.786
Micro Precision 56.60% ± 8.263
Macro F1 55.88% ± 8.403
Micro F1 56.60% ± 8.263
AUC 0.56 ± 0.083

Table 4.2: Test results for ON medication predicting PD/non-PD with severe
stage subjects included. On the left, we have a table for the test results where the
model was trained on subjects ON medication, for the model SVM. On the right,
we have a table for the test results where the model was trained on subjects OFF
medication, for the model SVM.

Figure 4.2: Confusion Matrices for ON medication predicting PD/non-PD with
severe stage subjects included. On the left, we have a confusion matrix for the test
where the model was trained on subjects ON medication, for the model SVM. On
the right, we have a confusion matrix for the test where the model was trained on
subjects OFF medication, for the model SVM.
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With Severe Subjects - Test for OFF Medication

Table 4.3 shows the test results of predicting PD/non-PD, with the test set
including PD subjects OFF medication and non-PD subjects. To the left in
the table are the test results for when training the model with subjects ON
medication, and to the right are the test results for when training the model
with subjects OFF medication. From training and validation results, the
best model was SVM for epochs ’all’ for both of the scenarios, which then
was used on the test sets. The number of features chosen for SVM ’all’ when
training ON medication was 52 features; when training OFF medication,
the number of features chosen was 8 features.

From Table 4.3, we can see that training the model with subjects ON med-
ication performs better with a balanced accuracy of 75.12% ± 7.343 and
an AUC of 0.75 ± 0.073 in contrast to when training with subjects OFF
medication which had a balanced accuracy of 56.19% ± 9.658 and an AUC
of 0.56 ± 0.097. Figure 4.3 shows confusion matrices of the model’s predic-
tions on the test set. To the left in the figure are the test results for when
training the model with subjects ON medication and to the right in the
figure are the test results for when training the model with subjects OFF
medication.

Evaluation Metric Result
Accuracy 75.80% ± 7.141
Balanced Accuracy 75.12% ± 7.343
Macro Recall 75.12% ± 7.343
Micro Recall 75.80% ± 7.141
Macro Specificity 75.12% ± 7.343
Micro Specificity 75.80% ± 7.141
Macro Precision 79.47% ± 6.981
Micro Precision 75.80% ± 7.141
Macro F1 74.46% ± 7.994
Micro F1 75.80% ± 7.141
AUC 0.75 ± 0.073

Evaluation Metric Result
Accuracy 56.40% ± 9.724
Balanced Accuracy 56.19% ± 9.658
Macro Recall 56.19% ± 9.658
Micro Recall 56.40% ± 9.724
Macro Specificity 56.19% ± 9.658
Micro Specificity 56.40% ± 9.724
Macro Precision 56.47% ± 10.072
Micro Precision 56.40% ± 9.724
Macro F1 55.87% ± 9.784
Micro F1 56.40% ± 9.724
AUC 0.56 ± 0.097

Table 4.3: Test results for OFF medication predicting PD/non-PD with severe
stage subjects included. On the left, we have a table for the test results where the
model was trained on subjects ON medication, for the model SVM. On the right,
we have a table for the test results where the model was trained on subjects OFF
medication, for the model SVM.
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Figure 4.3: Confusion Matrices for OFF medication predicting PD/non-PD with
severe stage subjects included. On the left, we have a confusion matrix for the test
where the model was trained on subjects ON medication, for the model SVM. On
the right, we have a confusion matrix for the test where the model was trained on
subjects OFF medication, for the model SVM.
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Without Severe Subjects - Test for ON Medication

Table 4.4 shows the test results for predicting PD/non-PD without severe-
stage subjects, and with the test set including PD subjects ON medication
and non-PD subjects. To the left in the table are the test results for training
ON medication and to the right are the test results for training OFF med-
ication. The model that performed the best in the training and validation
results was KNN for epochs ’all’ for both scenarios. The number of features
chosen for KNN ’all’ when training ON medication was 5 features; when
training OFF medication, the number of features chosen was 48 features.

From Table 4.3 we see that training the model with subjects ON medication
performs best with a balanced accuracy of 67.19% ± 8.059 and an AUC of
0.67 ± 0.081 while training the model on subjects OFF medication has a
balanced accuracy of 51.10% ± 7.221 and an AUC of 0.51 ± 0.072. In
Figure 4.4, we can see the confusion matrices of the predictions the model
made on the test set. The left figure shows the predictions of when the
model was trained on subjects ON medication, and the right figure shows
the predictions of when the model was trained on subjects OFF medication.

Evaluation Metric Result
Accuracy 66.79% ± 7.959
Balanced Accuracy 67.19% ± 8.059
Macro Recall 67.19% ± 8.059
Micro Recall 66.79% ± 7.959
Macro Specificity 67.19% ± 8.059
Micro Specificity 66.79% ± 7.959
Macro Precision 67.69% ± 8.301
Micro Precision 66.79% ± 7.959
Macro F1 66.56% ± 8.012
Micro F1 66.79% ± 7.959
AUC 0.67 ± 0.081

Evaluation Metric Result
Accuracy 50.08% ± 7.120
Balanced Accuracy 51.10% ± 7.221
Macro Recall 51.10% ± 7.221
Micro Recall 50.08% ± 7.120
Macro Specificity 51.10% ± 7.221
Micro Specificity 50.08% ± 7.120
Macro Precision 51.31% ± 7.860
Micro Precision 50.08% ± 7.120
Macro F1 49.44% ± 7.213
Micro F1 50.08% ± 7.120
AUC 0.51 ± 0.072

Table 4.4: Test results for ON medication predicting PD/non-PD without severe
stage subjects included. On the left, we have a table for the test results where the
model was trained on subjects ON medication, for the model KNN. On the right,
we have a table for the test results where the model was trained on subjects OFF
medication, for the model KNN.
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Figure 4.4: Confusion Matrices for ON medication predicting PD/non-PD with-
out severe stage subjects included. On the left, we have a confusion matrix for
the test where the model was trained on subjects ON medication, for the model
KNN. On the right, we have a confusion matrix for the test where the model was
trained on subjects OFF medication, for the model KNN.

Without Severe Subjects - Test for OFF Medication

In Table 4.5, we can see the test results for predicting PD/non-PD with-
out the severe-stage subjects, and with the test set including PD subjects
OFF medication and non-PD subjects. The left table shows the test re-
sults for training the model on subjects ON medication, and the right table
shows the test results for training the model on subjects OFF medication.
The model that performed best in the training and validation results was
KNN for epochs ’all’ for both scenarios. The number of features chosen for
KNN ’all’ when training ON medication was 5 features; when training OFF
medication, the number of features chosen was 48 features.

Table 4.5 shows that training the model with subjects ON medication per-
forms the best with a balanced accuracy of 68.29% ± 8.347 and an AUC
of 0.68 ± 0.083. When training with subjects OFF medication, the model
got a balanced accuracy of 54.83% ± 6.781 and an AUC of 0.55 ± 0.068.
Figure 4.5 shows a confusion matrix of the predictions the model made on
the test set.
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Evaluation Metric Result
Accuracy 67.79% ± 8.309
Balanced Accuracy 68.29% ± 8.347
Macro Recall 68.29% ± 8.347
Micro Recall 67.79% ± 8.309
Macro Specificity 68.29% ± 8.347
Micro Specificity 67.79% ± 8.309
Macro Precision 68.84% ± 6.683
Micro Precision 67.79% ± 8.309
Macro F1 67.59% ± 8.349
Micro F1 67.79% ± 8.309
AUC 0.68 ± 0.083

Evaluation Metric Result
Accuracy 53.42% ± 6.492
Balanced Accuracy 54.83% ± 6.781
Macro Recall 54.83% ± 6.781
Micro Recall 53.42% ± 6.492
Macro Specificity 54.83% ± 7.781
Micro Specificity 53.42% ± 6.492
Macro Precision 55.97% ± 8.250
Micro Precision 53.42% ± 6.492
Macro F1 52.41% ± 6.428
Micro F1 53.42% ± 6.492
AUC 0.55 ± 0.068

Table 4.5: Test results for OFF medication predicting PD/non-PD without severe
stage subjects included. On the left, we have a table for the test results where the
model was trained on subjects ON medication, for the model KNN. On the right,
we have a table for the test results where the model was trained on subjects OFF
medication, for the model KNN

Figure 4.5: Confusion Matrices for OFF medication predicting PD/non-PD with-
out severe stage subjects included. On the left, we have a confusion matrix for
the test where the model was trained on subjects ON medication, for the model
KNN. On the right, we have a confusion matrix for the test where the model was
trained on subjects OFF medication, for the model KNN.
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4.1.3 Effect of Severe Stage - Predict PD/non-PD

Train ON Test ON - With and Without Severe Subjects

Table 4.6 shows the results for predicting PD/non-PD when using subjects
ON medication for training and testing, and to see if there is any differ-
ence between including severe-stage subjects and not including severe-stage
subjects. The left table shows the test results when including severe-stage
subjects. The best model from the training and validation results was SVM
for epochs ’all’ where 52 features were chosen, which is used for the test.
The right table shows the test results when the severe-stage subjects are not
included. The best model from training and validation results was KNN for
epochs ’all’ where 5 features were chosen, which was used for the test.

In Table 4.6, we can see that the test results when including the severe-stage
subjects perform the best, with a balanced accuracy of 80.63% ± 6.803 and
an AUC of 0.81 ± 0.068, compared to when the severe-stage subjects were
not included which had a balanced accuracy of 67.19% ± 8.059 and AUC of
0.67 ± 0.081. Figure 4.6 shows the confusion matrix for the predictions of
the model in the test. The left figure is for when we include the severe-stage
subjects, and the right figure is for when we did not include the severe-stage
subjects.

Evaluation Metric Result
Accuracy 81.12% ± 6.647
Balanced Accuracy 80.63% ± 6.803
Macro Recall 80.63% ± 6.803
Micro Recall 81.12% ± 6.647
Macro Specificity 80.63% ± 6.803
Micro Specificity 81.12% ± 6.647
Macro Precision 83.60% ± 6.384
Micro Precision 81.12% ± 6.647
Macro F1 80.47% ± 7.075
Micro F1 81.12% ± 6.647
AUC 0.81 ± 0.068

Evaluation Metric Result
Accuracy 66.79% ± 7.959
Balanced Accuracy 67.19% ± 8.059
Macro Recall 67.19% ± 8.059
Micro Recall 66.79% ± 7.959
Macro Specificity 67.19% ± 8.059
Micro Specificity 66.79% ± 7.959
Macro Precision 67.69% ± 8.301
Micro Precision 66.79% ± 7.959
Macro F1 66.56% ± 8.012
Micro F1 66.79% ± 7.959
AUC 0.67 ± 0.081

Table 4.6: Test results for predicting PD/non-PD. On the left, we have the test
results with severe-stage subjects included, for the model SVM. On the right, we
have the test results without severe-stage subjects included, for the model KNN.
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Figure 4.6: Confusion matrices for predicting PD/non-PD. On the left, we have
the test results with severe-stage subjects included, for the model SVM. On the
right, we have the test results without severe-stage subjects included, for the model
KNN.

Train OFF Test OFF - With and Without Severe Subjects

Table 4.7 shows the test results for predicting PD/non-PD when using sub-
jects OFF medication for training and testing, and to see if there is any
difference between including severe-stage subjects and not including severe-
stage subjects. The left table shows the test results when including the
severe-stage subjects, The best model from training and validation results
was SVM for epochs ’all’ where 8 features were chosen, which was used
for testing. The right table shows the test results when the severe-stage
subjects were not included. The best model from training and validation
results was KNN for epochs ’all’ where 48 features were chosen, which was
used for testing.

In Table 4.7, we can see that the test result, when including the severe-stage
subjects, performs the best, with a balanced accuracy of 56.19% ± 9.658
and an AUC of 0.56 ± 0.097. When not including the severe-stage subjects,
the model gets a balanced accuracy of 54.83% ± 6.781 and an AUC of 0.55
± 0.068. In Figure 4.7, we can see the confusion matrices displaying the
predictions the model made on the test set.
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4.1 Experimental Results

Evaluation Metric Result
Accuracy 56.40% ± 9.724
Balanced Accuracy 56.19% ± 9.658
Macro Recall 56.19% ± 9.658
Micro Recall 56.40% ± 9.724
Macro Specificity 56.19% ± 9.658
Micro Specificity 56.40% ± 9.724
Macro Precision 56.47% ± 10.072
Micro Precision 56.40% ± 9.724
Macro F1 55.87% ± 9.784
Micro F1 56.40% ± 9.724
AUC 0.56 ± 0.097

Evaluation Metric Result
Accuracy 53.42% ± 6.492
Balanced Accuracy 54.83% ± 6.781
Macro Recall 54.83% ± 6.781
Micro Recall 53.42% ± 6.492
Macro Specificity 54.83% ± 7.781
Micro Specificity 53.42% ± 6.492
Macro Precision 55.97% ± 8.250
Micro Precision 53.42% ± 6.492
Macro F1 52.41% ± 6.428
Micro F1 53.42% ± 6.492
AUC 0.55 ± 0.068

Table 4.7: Test results for predicting PD/non-PD. On the left, we have the test
results with severe-stage subjects included, for the model SVM. On the right, we
have the test results without severe-stage subjects included, for the model KNN.

Figure 4.7: Confusion matrices for predicting PD/non-PD. On the left, we have
the confusion matrix where severe-stage subjects are included, for the model SVM.
On the right, we have the confusion matrix where severe-stage subjects were not
included, for the model KNN.

4.1.4 Conformal Predictions - Predict PD/Non-PD

In addition to having used two different α-values, we have also run the model
without making any conformal predictions. This has given us a baseline
from which to evaluate the conformal predictions. The best classifier is LR
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and the number of chosen features is 113.

The Table 4.8 shows the baseline together with conformal predictions for
both different α-values. The baseline run is overall very good, with balanced
accuracy (75.92% ± 6.024) and AUC (0.76 ± 0.060) being better than α =
0.65.
We got the highest balanced accuracy for α = 0.85 (79.29% ± 9.601). α =
0.65 has both higher efficiency (64.71%) and validity (50%) then α = 0.85
(29.41%) and (23.53%).

Figure 4.8 shows the confusion matrices for the baseline, as well as both the
different α-values. The matrix in the top left represents the baseline model.
The matrix for the model with α=0.65 is in the top right, and the matrix
on the last row represents the model with α=0.85.

Evaluation Metric Baseline α=0.65 α=0.85
Accuracy 76.32% ± 6.062 77.23% ± 7.315 80.10% ±7.680
Balanced Accuracy 75.92% ± 6.024 73.77% ± 8.141 79.29% ± 9.601
Macro Recall 75.92% ± 6.024 73.77% ± 8.141 79.29% ± 9.601
Micro Recall 76.32% ± 6.062 77.23% ± 7.315 80.10% ± 7.680
Macro Specificity 75.92% ± 6.024 73.77% ± 8.141 79.23% ± 9.601
Micro Specificity 76.32% ± 6.062 77.23% ± 7.315 80.10% ± 7.680
Macro Precision 77.01% ± 6.440 79.69% ± 8.991 79.41% ± 8.176
Micro Precision 76.32% ± 6.062 77.23% ±7.315 80.10% ± 7.680
Macro F1 75.95% ± 6.102 74.24% ± 8.833 78.85% ± 8.964
Micro F1 76.32% ± 6.062 77.23% ± 7.315 80.10% ± 7.680
AUC 0.76 ± 0.060 0.74 ± 0.080 0.79 ± 0.096
Efficiency - 64.71% 29.41%
Validity - 50% 23.53%

Table 4.8: Test results for Predicting PD/Non-PD. On the left, we have the
baseline run; in the middle, we have α = 0.65 and on the right we haveα = 0.85.
LR has been used, with 113 features.

44
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Figure 4.8: Confusion matrices for prediction of PD/Non-PD. In the top left we
have the matrix for the baseline. In the top right, we have the matrix for α = 0.65
and on the bottom, it is the matrix for α = 0.85

4.1.5 Conformal Predictions - Predict PD/Non-PD for dif-
ferent sub-groups

Gender Differences

Table 4.9 shows how the models have performed on males. We can see
that the best performance is for α = 0.85 (82.67% ± 12.893). The highest
AUC score is also highest for α = 0.85 (0.83 ± 0.13). The best efficiency
and validity we got was from α = 0.65, with efficiency being 72.22% and
validity being 55.56%

Table 4.10 shows the performance for females. Here the highest balanced
accuracy was for α = 0.85 (83.33%). The lowest score was 66.36% ± 18.696,
coming from α = 0.65.
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Evaluation Metric Baseline α = 0.65 α = 0.85
Accuracy 71.94% ± 8.366 77.23% ± 8.491 82.67% ± 12.893
Balanced Accuracy 71.94% ± 8.366 78.86% ± 7.884 82.67% ± 12.893
Macro Recall 71.94% ± 8.366 78.86% ± 7.884 82.67% ± 12.893
Micro Recall 71.94% ± 8.366 77.23% ± 8.491 82.67% ± 12.893
Macro Specificity 71.94% ± 8.366 78.86% ± 7.884 82.67% ± 12.893
Micro Specificity 71.94% ± 8.366 77.23% ± 8.491 82.67% ± 12.893
Macro Precision - 83.99% ± 4.201 87.03% ± 12.999
Micro Precision - 77.23% ± 8.491 82.67% ± 12.893
Macro F1 70.86% ± 9.108 76.25% ± 9.654 80.97% ± 15.454
Micro F1 71.94% ± 8.366 77.23% ± 8.491 82.67% ± 12.893
AUC 0.72 ± 0.084 0.79 ± 0.079 0.83 ± 0.13
Efficiency - 72.22% 33.33%
Validity - 55.56% 27.78%

Table 4.9: Test results for Predicting PD/Non-PD for males. On the left, we
have the baseline run; in the middle, we have α= = 0.65, and on the right, we
have α = 0.85. LR has been used, with 113 features.

In Figure 4.9 we can see all confusion matrices for both male and female.
The confusion matrices for males are on the left, and on the right, it is for
females. The first row represents the baseline models. In the second row are
the models with α= 0.65, and the last row has the matrices for the models
with α= 0.85.
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Evaluation Metric Baseline α = 0.65 α = 0.85
Accuracy 81.38% ± 8.794 77.67% ± 12.018 75.00% ± 0.000
Balanced Accuracy 81.87% ± 8.652 66.36% ± 18.696 83.33% ± 0.000
Macro Recall 81.87% ± 8.652 66.36% ± 18.696 83.33% ± 0.000
Micro Recall 81.38% ± 8.794 77.67% ± 12.018 75.00% ± 0.000
Macro Specificity 81.87% ± 8.652 66.36% ± 18.696 83.33% ± 0.000
Micro Specificity 81.38% ± 8.794 77.67% ± 12.018 75.00% ± 0.000
Macro Precision 82.61% ± 8.676 65.96% ± 22.047 75.00% ± 0.000
Micro Precision 81.38% ± 8.794 77.67% ± 12.018 75.00% ± 0.000
Macro F1 81.14% ± 8.887 64.86% ± 19.263 73.33% ± 0.000
Micro F1 81.38% ± 8.794 77.67% ± 12.018 75.00% ± 0.000
AUC 0.82 ± 0.087 0.66 ± 0.19 0.83 ± 0.000
Efficiency - 56.25% 25%
Validity - 43.75% 18.75%

Table 4.10: Test results for Predicting PD/Non-PD for females. On the left, we
have the baseline run; in the middle, we have α= 0.65 and on the right we have
α= 0.85. The classifier used is LR for all runs
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4.1 Experimental Results

Figure 4.9: Confusion Matrices for predicting PD/Non-PD without conformal.
On the left, we have a matrix for the test with only males. On the right, we have
a matrix for the test for only females. The matrices in the top row are from the
baseline. The matrices in the middle are run with α = 0.65 and the two matrices
in the last row it is with α = 0.85.
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Severity Difference

The Table 4.11 shows the test results for subjects with mild PD. Here we
can see that balanced accuracy for the baseline is (79.81% ± 6.444). for
α = 0.65 the balanced accuracy is 80.74$ ± 11.223 and for α = 0.85, the
balanced accuracy is 91.67%. We can also see that the AUC for the baseline
is (0.80 ± 0.064), for α = 0.65, the AUC is 0.80 ± 0.11 and for α = 0.85,
the AUC is 0.92.

Evaluation Metric Baseline α = 0.65 α = 0.85
Accuracy 81.27% ± 5.925 88.50% ± 6.418 89.50% ± 0.000
Balanced Accuracy 79.81% ± 6.444 80.74% ± 11.334 91.67% ± 0.000
Macro Recall 79.81% ± 6.444 80.74% ± 11.334 91.67% ± 0.000
Micro Recall 81.27% ± 5.925 88.50% ± 6.418 87.50% ± 0.000
Macro Specificity 79.81% ± 6.444 80.74% ± 11.334 91.67% ± 0.000
Micro Specificity 81.27% ± 5.925 88.50% ± 6.418 87.50% ± 0.000
Macro Precision 78.56% ± 6.647 83.29% ± 11.865 83.33% ± 0.000
Micro Precision 81.27% ± 5.925 88.50% ± 6.418 87.50% ± 0.000
Macro F1 78.73% ± 6.533 80.73% ± 10.602 85.45% ± 0.000
Micro F1 81.27% ± 5.925 88.50% ± 6.418 87.50% ± 0.000
AUC 0.80 ± 0.064 0.80 ± 0.11 0.92 ± 0.000
Efficiency - 61.54% 30.77%
Validity - 53.85% 26.92%

Table 4.11: Test results for Predicting PD/Non-PD for subjects with either
"severity" = mild or non-PD. On the left, we have the baseline run; in the middle,
we have α= 0.65 and on the right we have α= 0.85. LR has been used, with 113
features.

The Table 4.12 shows the test results for subjects with moderate PD and
non-PD. We can see that the AUC for the baseline run is 0.73 ± 0.081. The
efficiency for α = 0.65 is 73.08%. For α = 0.85, the balanced accuracy is
70.92% ± 16.604.

Figure 4.10 shows the confusion matrices for both mild+non-PD and moderate+non-
PD. In the top row, the confusion matrices from the baseline run are shown.
In the middle row, it is the models with α= 0.65 and the last row shows
the confusion matrices when α= 0.85
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Evaluation Metric Baseline α = 0.65 α = 0.85
Accuracy 77.54% ± 6.588 78.11% ± 7.282 77.12% ± 8.302
Balanced Accuracy 73.22% ± 8.074 70.09% ± 9.558 70.92% ± 16.604
Macro Recall 73.22% ± 8.074 70.09% ± 9.558 70.92% ± 16.604
Micro Recall 77.54% ± 6.588 78.11% ± 7.282 77.12% ± 8.302
Macro Specificity 73.22% ± 8.074 70.09% ± 9.558 70.92% ± 16.604
Micro Specificity 77.54% ± 6.544 78.11% ± 7.282 77.12% ± 8.302
Macro Precision 74.00% ± 7.816 77.39% ± 12.238 67.36% ± 15.235
Micro Precision 77.54% ± 6.588 78.11% ± 7.282 77.12% ± 8.302
Macro F1 73.21% ± 7.966 71.03% ± 10.594 68.45% ± 15.136
Micro F1 77.54% ± 6.588 78.11% ± 7.282 77.12% ± 8.302
AUC 0.73 ± 0.081 0.70 ± 0.096 0.71 ± 0.166
Efficiency - 73.08% 30.77%
Validity - 57.69% 23.08%

Table 4.12: Test results for Predicting PD/Non-PD for subjects with either
"severity" = moderate or non-PD. On the left, we have the baseline run; in the
middle, we have α= 0.65 and on the right we have α= 0.85. The classifier used is
LR for all runs
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Figure 4.10: Confusion Matrices for predicting PD/Non-PD for "severity"= mild
and "severity"= moderate together with non-PD. On the left it is the matrices for
mild/non-PD, and on the right are the matrices for moderate/non-PD. The top
matrices are for the baseline. The matrices in the middle have α-values of 0.65
and the two on the bottom have α-values of 0.85.
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Centre Differences

and Table 4.15 shows the results from each of the different centres. We
can see that the balanced accuracy is highest for New Mexico and α=0.85
(88.12% ± 9.417), with the lowest being Turku (50%).

In Table 4.13 we can see that the balanced accuracy for the baseline is 65.00
± 7.616 and 50.00% for α = 0.65. The AUC is 0.65 ± 0.076 in the baseline,
and for α = 0.65 it is 50.00.

Evaluation Metric Baseline α = 0.65 α = 0.85
Accuracy 66.67% ± 8.462 75.00% ± 0.000 -
Balanced Accuracy 65.00% ± 7.616 50.00% ± 0.000 -
Macro Recall 65.00% ± 7.616 50.00% ± 0.000 -
Micro Recall 66.67% ± 8.462 75.00% ± 0.000 -
Macro Specificity 65.00% ± 7.616 50.00% ± 0.000 -
Micro Specificity 66.67% ± 8.462 75.00% ± 0.000 -
Macro Precision 68.64% ± 11.479 37.50% ± 0.000 -
Micro Precision 66.67% ± 8.462 75.00% ± 0.000 -
Macro F1 64.95% ± 7.660 42.86% ± 0.000 -
Micro F1 66.67% ± 8.462 75.00% ± 0.000 -
AUC 0.65 ± 0.076 50.00 ± 0.000 -
Efficiency - 44.44% 0.11%
Validity - 33.33% 0%

Table 4.13: Test results for Predicting PD/Non-PD for subjects from Turku. On
the left, we have the baseline run; in the middle, we have α= 0.65 and on the right
we have α= 0.85. LR has been used, with 113 features.

The Table 4.14 shows the test results for all subjects from New Mexico.
The balanced accuracy for the baseline was 88.00% ± 7.109. The model
performs best when α=0.85 (88.12% ± 9.417), and performs the poorest
for α=0.65 (83.41% ± 8.858). The same pattern can be seen for the AUC,
with the best performance from α=0.85 (0.88 ± 0.942) and the lowest score
from α=0.65 (0.81 ± 0.886)

The Figure 4.11 shows the baseline confusion matrices for each centre. The
matrix in the top right shows results from Turku, and the matrix on the
right shows results from New Mexico. The matrix at the bottom shows
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Evaluation Metric Baseline α = 0.65 α = 0.85
Accuracy 88.00% ± 7.109 84.69% ± 8.177 86.43% ± 10.762
Balanced Accuracy 88.00% ± 7.109 83.42% ± 8.858 88.12% ± 9.417
Macro Recall 88.00% ± 7.109 83.42% ± 8.858 88.12% ± 9.417
Micro Recall 88.00% ± 7.109 84.69% ± 8.177 86.43% ± 10.762
Macro Specificity 88.00% ± 7.109 83.42% ± 8.858 88.12% ± 9.417
Micro Specificity 88.00% ± 7.109 84.69% ± 8.177 86.43% ± 10.762
Macro Precision 90.83% ± 4.514 89.47% ± 4.613 89.35% ± 7.388
Micro Precision 88.00% ± 7.109 84.69% ± 8.177 86.43% ± 10.762
Macro F1 87.60% ± 7.724 83.30% ± 9.739 86.21% ± 11.225
Micro F1 88.00% ± 7.109 84.69% ± 8.177 86.43% ± 10.762
AUC 0.88 ± 0.071 0.81 ± 0.886 0.88 ± 0.942
Efficiency - 81.25% 43.75%
Validity - 68.75% 37.50%

Table 4.14: Test results for Predicting PD/Non-PD for subjects from New Mex-
ico. On the left, we have the baseline run; in the middle, we have α= 0.65 and on
the right we have α= 0.85. LR has been used, with 113 features.

results from San Diego.

The Figure 4.12 shows the confusion matrices for each centre with α=0.65.
The matrix in the top right shows results from Turku, and the matrix on
the right shows results from New Mexico. The matrix at the bottom shows
results from San Diego.
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Evaluation Metric Baseline α = 0.65 α = 0.85
Accuracy 68.00% ± 12.793 57.80% ± 21.706 -
Balanced Accuracy 68.75% ± 12.701 56.67% ± 22.174 -
Macro Recall 68.75% ± 12.701 56.67% ± 22.174 -
Micro Recall 68.00% ± 12.793 57.80% ± 21.706 -
Macro Specificity 68.75% ± 12.701 56.67% ± 22.174 -
Micro Specificity 68.00% ± 12.793 57.80% ± 21.706 -
Macro Precision 70.18% ± 13.520 55.46% ± 27.311 -
Micro Precision 68.00% ± 12.793 57.80% ± 21.706 -
Macro F1 67.38% ± 13.045 - -
Micro F1 68.00% ± 12.793 57.80% ± 21.706 -
AUC 0.69% ± 0.127 0.567 ± 0.221 -
Efficiency - 55.56% -
Validity - 33.33% -

Table 4.15: Test results for Predicting PD/Non-PD for subjects from San Diego.
On the left, we have the baseline run; in the middle, we have α= 0.65 and on the
right we have α= 0.85. LR has been used, with 113 features.
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Figure 4.11: Confusion matrixes for predicting PD/non-PD without using con-
formal predictions sorted by the different centres. Results for Turku are in the top
left, with the results for New Mexico in the top right. Results for San Diego are
in the bottom centre. LR has been used, with 113 features..
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Figure 4.12: Confusion matrixes for predicting PD/non-PD with conformal pre-
dictions (α = 0.65)sorted by the different centres. Results for Turku are in the
top left, with the results for New Mexico in the top right. Results for San Diego
are in the bottom centre. LR has been used, with 113 features.LR has been used,
with 113 features..
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Chapter 5

Discussion and limitations

5.1 Discussion

5.1.1 Effect of Medication

When predicting whether a subject is ON or OFF the medication phase of
levodopa without severe-stage subjects, the results indicate that the EEG
signals do not contain enough information about their medication status in
the mild and moderate subjects. However, when including severe-stage sub-
jects, we saw a slight improvement in the results, improving the balanced
accuracy to above 50%, indicating that there might be some information
about the medication status in the severe subjects compared to mild/mod-
erate subjects. Overall, the test results indicate that the EEG signals don’t
contain enough information about the medication status for the model to
distinguish between ON/OFF medication, but it seems that severe sub-
jects have some little "traces" of hidden information in the EEG about the
medication status.

When predicting whether a subject is PD or non-PD while using a test
set of subjects ON medication and non-PD, the results when training with
subjects ON medication perform the best. When looking at the results when
training with subjects OFF medication, we can see a significant decrease
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in the performance of the model. After including the severe-stage subjects,
we saw an improvement in the results for both training with subjects ON
medication and training with subjects OFF medication. While using a test
set of subjects OFF medication and non-PD subjects, the results had a
similar outcome. The model performed the best when it was trained on
subjects ON medication compared to when it was trained on subjects OFF
medication. We can also see an increase in performance when including
severe-stage subjects for both training with subjects ON medication and
training with subjects OFF medication.
Altogether, the model performs the best when it is trained on subjects
ON medication, and including severe subjects in the training also increases
performance compared to when not. In addition, the model seems more
robust when being trained on subjects ON medication, in that the model
is still performing quite well when being used to test on subjects OFF
medication.

5.1.2 Effect of Severe Stage

We also made some comparisons to determine the effect of training with or
without the severe stage subjects. Most notably, when using subjects ON
medication and non-PD subjects for both training and testing, the model
achieved far better test results when including the severe stage subjects in
the training set. When using subjects OFF medication and non-PD subjects
for both training and testing, we observed a performance increase when
including severe stage subjects in the training set, though not as significant
as the other comparison. In essence, including severe stage subjects in the
training set would improve the model and results. And also, the fact that
results increase more when using subjects ON medication, shows that the
medication status is indeed playing a role in the classification, particularly
in the severe subjects.

5.1.3 Conformal Predictions for PD detection

When using a conformal prediction set with α = 0.85 we saw an overall
improvement of our model. Every metric improved overall, with balanced
accuracy improving with 3.4%pt and AUC improved with 0.03.
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Using a conformal prediction set with α = 0.65 we can see a decrease in
the overall performance. However, let’s look at the confusion matrix. We
can see that the model is performing well in predicting non-PD, with most
of the wrong predictions coming from predicting PD, indicating the model
is picking up some patterns for the non-PD subjects easier than for PD
subjects.

In evaluating the baseline gender models, we saw significant differences in
PD detection in males (71.94% ± 8.366) vs females (81.87% ± 8.652 ). We
also see a big difference when applying a conformal prediction set with α
= 0.65, however, males (78.86% ± 7.884) have much higher accuracy than
females (66.36% ± 18.696).
This is similar to the results of Kurbatskaya et al. [3]. Their results got an
accuracy of 80.5% for males and 63.7% for females, and they point towards
a higher activity for some parietal and frontal EEG channels and frequency
sub-bands for male subjects to explain these differences in PD detection
ability between the two gender subgroups.
In our work, using a conformal prediction set with α=0.85, these differences
become negligible, with the differences becoming less than 1%pt. This in-
dicates that the difference between the genders does not necessarily come
from the EEG being unfair, but rather that the classifier was unsure about
its prediction.

We did not receive any evaluation metrics for Turku and San Diego when
α was set to 0.85. The reason for this is that only a few subjects received
a prediction from the conformal prediction set, which is insufficient for cal-
culating any metrics. This also affected the confusion matrices, and that is
why they are not displayed.
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Chapter 6

Conclusions and future work

6.1 Conclusion

This bachelor’s thesis explored how a subject’s medication status affected
the performance of the model. We also explored if we could improve the
models by using conformal prediction, which would give them a notion of
"confidence" in their predictions. The results of this thesis can aid in further
improvements in detecting PD using EEG signals.

The results show that the goals we set for this thesis were met. We have
explored how a subject’s medication status can affect the performance of the
models, where the results show that the model performs best when it has
been trained on subjects ON medication. We have also explored whether
a PD subject’s EEG signals contain information about their medication
status. The test results indicate that the EEG signals don’t contain enough
information about the medication status to differentiate between ON/OFF
medication. We have also explored the effect of training with or without
severe stage subjects, where the results show that including severe stage
subjects in the training set increases the performance of the model. When
implementing a conformal prediction set with a high alpha value, we found
the performance of the model increased at the expense of dropping a lot of
predictions, especially for PD
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6.2 Future Works

6.2 Future Works

This thesis has achieved optimistic results in using EEG signals in detecting
PD, but there is still room for improvement. Some directions for future work
can be:

• Using a bigger dataset when using conformal predictions.

• Looking more into fairness vs. uncertainty for the different genders.

• Explore deeper how the "severe" and other stages affect the model.
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