
BJØRN OLAV FRØYTLOG BJØRNSEN AND SINDRE VATNALAND

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Cloud Telemetry of Aquatic Robots

Bachelor's Thesis - Computer Science - May 2024

We, Bjørn Olav Frøytlog Bjørnsen and Sindre Vatnaland, de-

clare that this thesis titled, “Cloud Telemetry of Aquatic Robots” and the work

presented in it is our own. We confirm that:

� This work was done wholly or mainly while in candidature for a Bache-

lor’s degree at the University of Stavanger.

� Where we have consulted the published work of others, this is always

clearly attributed.

� Where we have quoted from the work of others, the source is always

given. With the exception of such quotations, this thesis is entirely our

own work.

� We have acknowledged all main sources of help.

“It just works”

– Todd Howards

Abstract

Establishing a solid foundation is crucial when developing a scalable solution.

This thesis will explore how to build a lightweight and scalable Internet of

Things (IoT) infrastructure for moving robots from an existing infrastructure

to the cloud.

We begin by analyzing the existing solution, identifying its weaknesses,

and determining the necessary steps to integrate it with an Internet of Things

(IoT) solution. The solution considers a high level of flexibility and scalability

when installing, deploying, and expanding on features and infrastructure.

To build a flexible and scalable solution, we will explore a variety of tech-

nologies and designs. We will explore how event-driven design has allowed us

to build an easily expandable solution and how IoT helps us build a lightweight

and responsive solution.

iii

Acknowledgements

First and foremost, we would like to thank Remora for giving us the opportu-

nity to write such a thesis. They have given us free reign over how we want

to accomplish a solution and trusted us to complete it. Giving us this free-

dom has allowed us to explore cloud architecture, resulting in a product we

proudly present.

Secondly, we wish to express our gratitude to Professor Hein Meling,

whose insights have been invaluable. His guidance has influenced both the

execution of our work and how we present it in this paper. We would also like

to thank Eivind Sørbø for his patience and technical expertise, as well as an

easy onboarding at Remora that made the initial step into Remora’s internal

systems a lot easier.

Lastly, we would like to acknowledge our families and friends for their

endless patience, understanding, and love. Their constant support and belief

in our abilities have been a source of strength and motivation.

This thesis would not have been possible without the collective support

and encouragement of all mentioned, and for that, we are eternally grateful.

iv

Contents

Abstract iii

Acknowledgements iv

1 Introduction 1

1.1 Background . 1

1.2 Problem Statement . 2

1.2.1 Scalability . 2

1.2.2 Flexibility . 3

1.2.3 Cost Considerations . 3

1.2.4 Efficiency . 4

1.2.5 Telemetry . 4

1.3 System Overview . 4

1.4 Structure . 5

2 Foundation 7

2.1 Hosting Technologies . 7

2.2 Hosting Platforms . 8

2.2.1 On-Premise vs Cloud . 9

2.3 Cloud Platforms . 11

2.3.1 Comparison . 11

v

2.4 Continuous Integration and Deployment 12

2.4.1 Infrastructure as Code . 13

2.5 External Device . 14

2.5.1 Hardware . 14

2.5.2 Software and Language . 15

3 Architecture 17

3.1 Service Architecture for Cloud and IoT Devices 17

3.1.1 IoT-Bridge . 18

3.1.2 IoT Hub . 19

3.1.3 Event Hub . 19

3.1.4 Function Apps . 20

3.1.5 Event Forwarder . 21

3.1.6 Event Grid . 21

3.1.7 MessageHandler . 21

3.1.8 HTTP Endpoint . 21

3.1.9 Database . 22

3.2 Overview . 23

3.3 File Storage . 24

4 Implementation 25

4.1 Infrastructure as Code . 25

4.2 Github . 28

4.2.1 Separation of Concern . 29

4.2.2 Documentation . 29

4.2.3 Workflows . 29

4.2.4 Continuous Integration and Deployment 30

4.3 IoT-Bridge . 31

4.3.1 Establishing Connections: IoT-bridge and Robot 31

4.3.2 Establishing Connections: IoT-bridge and Cloud 32

4.4 Key Vault . 34

4.5 Azure Function Apps . 34

4.5.1 Access . 34

4.5.2 Message Handler . 35

4.6 Telemetry . 37

4.6.1 Packet Optimization . 38

4.7 Update . 39

4.7.1 Persistent Software . 39

4.7.2 Publishing new firmware . 39

4.8 Cloud Monitoring . 40

4.8.1 Grafana . 40

4.9 Frontend . 42

4.10Challenges and Solutions . 43

5 Results and Discussion 45

5.1 Scalability . 45

5.2 Flexibility . 45

5.3 Cost . 46

5.4 Efficiency . 47

5.5 Telemetry . 48

5.6 Discussion . 48

6 Future Work and Conclusion 50

6.1 Future Work . 50

6.1.1 Video Feed and Control . 50

6.1.2 Controlling the Robots . 51

6.1.3 Reducing Telemetry . 51

6.1.4 Image Recognition . 51

6.1.5 Relational Database . 51

6.1.6 Improved User Experience 51

6.1.7 Robot Firmware Update . 52

6.2 Conclusion . 52

A Associated code 53

OS Operating System

RTC Real Time Connection

IP Internet Protocol

VPN Virtual Private Network

IPv4 Internet Protocol v4

IoT Internet of Things

TCP Transmission Control Protocol

IaC Infrastructure as Code

DB Database

SAS Shared Access Signature

HTTP Hyper Text Transfer Protocol

DPS Device Provisioning Service

TTL Time To Live

GPS Global Positioning System

MQTT Message Queuing Telemetry Transport

VCS Version Control System

GCP Google Cloud Provider

AWS Amazon Web Services

GDPR General Data Protection Regulation

CI/CD Continuous Integration/Continuous Deployment

AI Artificial Intelligence

DLQ Dead Letter Queue

SDK Software Development Kit

API Application Programming Interface

BLOB Binary large object

UI User Interface

Chapter 1

Introduction

This thesis builds upon the foundation established by Remora’s work. Remora

is a company that focuses on innovating how we clean fish farms.

1.1 Background

Remora’s current solution introduces something similar to a robotic vacuum

cleaner. These robots attach to the net and clean the surplus pill feed and fish

waste on the net. Previously, the fish farms were cleaned with high-pressure

washers. This requires manpower and downtime and can never compete with

the frequency with which the robot could clean the net.

The primary source of this surplus waste introduced to the ocean is agri-

culture on land [1]. In northern Norway, land agriculture is minimal com-

pared to areas such as the Baltic Sea, and we can see how much organic

matter the fish farms have introduced to the environment. Since 1990, the

nitrogen levels along the coast have doubled, and the amount of phosphorus

has quadrupled [1]. As a result, these increased values adversely affect the

overall health of fish.

Remora’s current approach to this problem is to build robots that are au-

1

tonomous cleaners with the option to override the control of their movement

manually. Remora has installed a Virtual Private Network (VPN) endpoint for

each robot to communicate and override the robots, enabling them to connect

directly from their office, using the robot’s exposed endpoints. Using these

endpoints, they can monitor the robot’s sensor data and take control of their

movement.

1.2 Problem Statement

Remora’s current system faces scalability, flexibility, cost, and efficiency chal-

lenges. This section outlines these issues and highlights the need for a cen-

tralized platform to address them.

1.2.1 Scalability

Remora’s current communication protocol operates on a constrained model

with limited robots functioning simultaneously. This restriction is imposed by

the current VPN setup. As each robot is assigned a specific Internet Proto-

col (IP)-address in a VPN subnet range, this limitation is quantified by the

available Internet Protocol v4 (IPv4) range of 253 addresses. This limits the

number of installed robots to 253 at a given time.

The current VPN solution proves to cause issues, as each robot acts as a

local server that is only accessible from Remora’s office by using an assigned

local IP-address. To alter the configuration of the installed robots, Remora

has to cycle through each of their assigned IP-addresses, to apply the change.

To configure a specific robot, one must first identify its local IP-address be-

fore applying the configuration. This also applies when updating the device’s

firmware.

With only a few active robots, the current VPN solution does not impose

10.94.1.2

10.94.2.2

10.94.3.2

10.94.4.2

10.94.5.2

Remora's Office

Figure 1.1: Illustration of the current VPN solution.

major problems. However, when scaled up beyond 100 units in a short period

of time, this solution has limitations. Remora already plans on doing this in

2024.

1.2.2 Flexibility

The primary structural change Remora has to undertake needs to be done

seamlessly. This requires the new solution to integrate well with the existing

one and create a seamless and easy transition to the new system.

1.2.3 Cost Considerations

One of Remora’s main concerns is costs. Building a solution where the cost

per robot is fairly low is important to build a sustainable business model. The

new solution must consider the costs of development, maintenance, security,

data storage, and uptime of the potential services at scale.

1.2.4 Efficiency

Automating the process of provisioning new devices and decreasing the amount

of configuration reduces time spent on tedious tasks. Remora is a small com-

pany, and spending time on menial repetitive tasks and maintenance wastes

many resources. For the firm to be cost-efficient, this needs to be avoided.

The issue of updating the robots with the limitation of the VPN solution,

as discussed in section 1.2.1, is a tedious and manual process. Remora is in

its early production stage with frequent updates, developing a quick and easy

way to automate this process will reduce the required resources.

1.2.5 Telemetry

Data telemetry is the process of automatically storing data collected/provided

by various sources. These sources can be anything capable of collecting data,

such as a simple temperature sensor or a device like a coffee machine [2], of-

ten referred to as IoT-devices. By gathering and analyzing telemetry, Remora

can measure a robot’s performance and notify operators of anomalies.

1.3 System Overview

Remora wants to move all their robots to a centralized system that allows

them to build a platform that gives an overview of each unit. The platform

should allow them to analyze and measure the robot’s performance and pro-

vide a way to take control of their movement.

Client

Robot - 4

Robot - 3

Robot - 2

Robot - 1

Centralized
System

Figure 1.2: Proposed solution.

1.4 Structure

This section explains the structure of the project from start to finish. Each

chapter builds upon the last, detailing the development process.

Chapter 2: Foundation

The framework chapter sets the foundation of our work and the reasons for

our decisions. We explore different technologies that allow us to build the

previously mentioned centralized system and different hosting platforms. We

will eventually land on the hardware needed to accompany the robot and how

to develop its software.

Chapter 3: Architecture

In the architecture chapter, we look at the bigger picture of the infrastruc-

ture. The main challenges of the thesis come from understanding the project’s

scope and every component we need to use to implement a cloud infrastruc-

ture. It is important to go through every service to understand why it is

needed and how to use these services to produce an effective infrastructure

that can be implemented by Remora. The main focus of the chapter follows

the data flow.

Chapter 4: Implementation

This chapter provides an intricate overview of infrastructure deployment, IoT

device setup, and cloud services that manage data flow and device updates

within Remora’s system. This chapter effectively outlines the process of de-

vice provisioning, data handling, and firmware updating, all critical for ensur-

ing efficient and secure operations as Remora scales up its fleet of robots.

Chapter 5: Results and Discussions

This chapter discusses the results of our endeavors going through the prob-

lem statements and discusses further implications of these findings.

Chapter 6: Future Work & Conclusion

We discuss any potential future works, as this is a solution that builds an

infrastructure for a company, there are many features that can be added to

the work.

Chapter 2

Foundation

This chapter introduces the fundamentals of Remora’s solution and explores

various hosting platforms and technologies. The pros and cons of each option

will be evaluated.

2.1 Hosting Technologies

As one of the goals for Remora is to store telemetry from the robots and

communicate messages back remotely, it is important to develop the solution

with technologies that excel in this.

HTTP server

One approach to achieve this is by hosting the solution on a basic Hyper

Text Transfer Protocol (HTTP) server. With this setup, all robots can send

data to the server’s HTTP endpoints, where each endpoint can handle specific

logic. Sending messages back to the robots could be achieved by utilizing

webhooks [3].

Such a solution offers the necessary features within a compact and easily

7

maintainable architecture, whether hosted locally or in the cloud. However,

due to the frequency of messages sent from each robot, using the HTTP proto-

col increases payload size since each HTTP request includes redundant data

in the header [4].

Internet of Things

A desirable option is to convert the robots to IoT devices. As IoT devices usu-

ally communicate using the Message Queuing Telemetry Transport (MQTT)

WebSocket protocol, excluding the unnecessary header in each message and

reducing latency [5].

This solution requires a large infrastructure to route data around. MQTT is

lightweight and commonly used to build event-driven architectures, providing

an easy and scalable way to connect and expand upon different services.

2.2 Hosting Platforms

Choosing the appropriate hosting solution is important, as it establishes the

foundation for how Remora will continue to operate and evolve the platform.

On-Premise

Hosting a service on-premises provides greater control over the system. Host-

ing the platform in a local, private environment reduces server costs to a

one-time payment, excluding power and internet consumption. However, this

approach incurs maintenance costs including securing, configuring, handling

backups, and ensuring uptime.

Cloud Platform

When looking for a suitable cloud platform that provides the features we need

at scale, there are three main companies to consider: Microsoft Azure, Ama-

zon Web Services, and Google Cloud. These platforms provide a multitude of

scalable services that integrate well together.

These providers have data centers installed worldwide, where they are

responsible for maintaining and securing the servers. This allows Remora’s

solution to scale worldwide with just small configuration changes.

2.2.1 On-Premise vs Cloud

Since both on-premises and cloud solutions offer valuable options for Remora,

selecting the option that aligns with Remora’s long-term preference is impor-

tant.

As shown in Table 2.2.1, there are many reasons to choose either option.

Opting for the on-premises solution provides a higher level of privacy and

predictable costs, but requires more manual work for configuration and setup,

delaying development.

The cloud, on the other hand, offers several benefits. The provider han-

dles maintenance and security, services scale based on demand, and configu-

rations are quick and easy.

As a startup company, Remora needs an option that facilitates rapid de-

velopment. With expected growth over the coming years and the potential to

scale across countries, adopting a cloud platform using flexible IoT technol-

ogy is a suitable solution.

On-Premise Cloud

Maintenance Requires full maintenance of
security, backups, and up-
time.

Handled by provider

Configuration Manual configuration of new
services and deployment.

Option to use Infrastructure
as Code (IaC) to deploy in-
frastructure across environ-
ments.

Deployment Time Requires time to set up po-
tential services before de-
veloping the solution.

Can set up services and fea-
tures in a few clicks, before
starting on development

Cost One-time payment of equip-
ment. Predictable monthly
costs.

Pay for demanded re-
sources. Fluctuating prices.

Scalability Requires additional equip-
ment and configuration to
scale. Difficult to expand to
new locations.

Scales instant- and auto-
matically by demand across
countries and continents.

Privacy Full control of user data
and complies strongly with
General Data Protection
Regulation (GDPR) [6]

Good control of user data,
but is stored on a 3rd party
server.

Table 2.1: The considerations done on the debate of on-premise vs. cloud

2.3 Cloud Platforms

When deciding which cloud platform to use, we will look at the big three

providers: Azure, Amazon Web Services (AWS), and Google Cloud Provider

(GCP). Google announced in 2023 that their IoT Core platform is being retired

by the end of the year [7]. This makes GCP less viable and shifts the focus on

Azure and AWS.

Azure

Azure is Microsoft’s cloud platform. It provides a range of services, that auto-

matically scales and binds them together utilizing event-driven architecture.

By providing serverless solutions, the client only needs to pay for used re-

sources, as there is no need to allocate resources. Serverless solutions are

stateless and automatically scale horizontally on demand [8].

Amazon Web Services

AWS is a strong alternative to Azure and provides many of the same services

as mentioned in 2.3. AWS was launched a few years prior to competing alter-

natives and has had a head start advantage in the market [9]. As Amazon has

been developing a lot of IoT devices in-house, such as their Alexa, they have

a competing advantage within the field.

2.3.1 Comparison

After examining both providers, there is little difference in price and perfor-

mance to justify choosing one over the other. The decision largely hinges on

external factors. Azure and AWS offer the ability to build scalable IoT archi-

tectures at comparable prices.

Coverage

Regarding global coverage, Azure offers the best solution for building IoT ar-

chitecture in Norway and is currently the only platform providing this service

in the country [10]. AWS’s nearest server is located in Stockholm [11], while

Azure provides services from Eastern Norway.

Price

In isolation, comparing the platforms makes AWS a more compelling choice

when looking at its IoT prices. AWS provides a "pay-as-you-go" model for

their IoT service and conserve resources [12]. Azure allocates resources for

400,000 messages daily on its cheapest tier [13], but there is a waste of un-

tapped resources.

Preferred Cloud Provider

In the arguments provided it is compelling to see AWS as the better solu-

tion for an IoT architecture. However, Azure provides better coverage in the

region where Remora operates and has a higher market share of develop-

ers [14]. This means there are more potential talent for new hires in the

future. The price of hiring and getting new talent onboard is a bigger cost

saving than the marginal saving using the AWS platform. With this in mind,

the decision lands on Azure as the Cloud provider for this solution.

2.4 Continuous Integration and Deployment

Setting up Continuous Integration/Continuous Deployment (CI/CD) is crucial

for a structured and consistent workflow across multiple environments.

Github Workflows

Using Github as the Version Control System (VCS) platform, a workflow on

various triggers is configured. These triggers can execute processes manu-

ally or automatically, which can build and deploy a solution to desired desti-

nations.

2.4.1 Infrastructure as Code

When deploying infrastructure, it is important to keep consistency between

environments. Introducing IaC allows for building infrastructure using con-

figuration files. Integrating IaC with GitHub allows the configuration files to

be reviewed before deployment. It can be integrated with GitHub workflows,

allowing the solution to be continuously deployed across multiple environ-

ments when merging pull requests. A configuration can be altered between

environments, and services can be applied to different tiers.

Platform

There are a variety of different IaC platforms to choose between. Microsoft

has its own platform, Bicep [15], which offers great support for Azure. One

of the most popular platforms is HashiCorp’s Terraform [16]. This platform

supports IaC on all popular cloud providers thus making it a more desirable

choice.

Pulumi

Pulumi is an IaC Software Development Kit (SDK) built on Terraform. They

make building and deploying infrastructure possible using familiar program-

ming languages such as Typescript [17]. This improves the productivity in

developing the solution and is why it is being used for this project.

2.5 External Device

An external device that acts as a mediator for the robot is beneficial for sev-

eral reasons: It keeps robots in an isolated network, reduces their exposure

to the public internet, and centralizes access control using the mediator. The

mediator can be replaced or upgraded with no additional changes to the robot

or the cloud architecture. As explained in 1.1 every robot acts as a server with

exposed endpoints over the local network. Installing a device on the same

local network as the robot will enable the device to communicate with the

robot. This device is the mediator between the robot and the Cloud, turning

the robots into something resembling a client rather than a server 2.5. This

device is named the IoT-bridge.

IoT- BridgeRemora Robot Cloud

Figure 2.1: The IoT-bridge and the robot are on the same local network; the
idea is to decouple the robot from the cloud as much as possible.

2.5.1 Hardware

When deciding on what hardware to choose for the IoT-Bridge, it is important

to consider the following: Ease of provisioning, development, and price of the

device.

Custom Hardware

Choosing to design and manufacture custom hardware is a tempting choice.

The device itself is quite cheap when scaling up to hundreds of thousands of

units. The caveat is that you are limited to low-level languages and interfaces,

which increases the development time.

Microcontroller Board

There are options such as the Raspberry Pi Pico [18] and Zero [19] to save

time on designing and manufacturing custom devices. These are small, cheap,

and versatile microcontroller boards and allow the development of familiar

languages. Its drawbacks are the lack of physical inputs and computing

power, making it harder to install on the network without configurations or

ethernet dongles.

Single Board Computer

Single-board computers like the Raspberry Pi 5 [20] are small, powerful com-

puters that can handle fairly demanding tasks. It can run Linux and every

language supported on this Operating System (OS). It is a great choice for

building a prototype of the solution. It supports a lot of inputs on the board,

which allows the device to be installed on a robot by only plugging in power

and ethernet. It is quite powerful, making it future-proof for potential addi-

tional demanding tasks. Making the Raspberry Pi 5 a perfect solution for this

project.

2.5.2 Software and Language

Using a powerful device like the Raspberry Pi 5, the supported languages

are limitless. Developing on a familiar platform like Linux and using a well-

supported language for Azure increases the efficiency when developing a so-

lution. C#/Dotnet is Microsoft’s flagship programming language and is long-

time supported [21]. Using dotnet as the programming language for the IoT-

Bridge device ensures good integration against the Azure cloud, future sup-

port, and security updates.

Chapter 3

Architecture

Azure cloud platforms provide hundreds of services for building complex ap-

plications. A cloud architecture needs to be established to build a flexible and

scalable solution to fit Remora’s needs for storing and communicating with

their robots.

3.1 Service Architecture for Cloud and IoT Devices

Services take care of all the tasks being run on the cloud. It manages re-

sources, such as storage, data processing, monitoring, security, and connec-

tion to the cloud. Services have a wide range of applications and use cases.

As shown in Figure 3, the first step of this architecture is to enable each

robot to connect to the cloud endpoint individually. This endpoint allows the

robots to communicate with the cloud. To understand how this architecture

works and why each service is important, we will go through each service and

explain their contribution to the solution.

17

Client

Devices Cloud

Event Hub

Event Forwarder

Event Grid

Message Handler

IoT Hub

Robot - 1 IoT Bridge

Telemetry

Http Endpoint

Robot - 2 IoT Bridge

Robot - 3 IoT Bridge

Robot - 4 IoT Bridge

Figure 3.1: Dataflow binding the robot to the cloud and processing telemetry

3.1.1 IoT-Bridge

The figure 3 shows the first link in the architecture is to enable communica-

tion between the robot and IoT-Bridge. Using the robot’s exposed endpoints,

the IoT-Bridge can connect to the robot over a local network and allow them

to exchange data. Establishing a connection between the devices allows them

to work together and will turn the robot from a local server to a client capable

of communicating with the cloud. This configuration makes it appear to the

cloud like the robot, and the IoT-bridge is a single device.

3.1.2 IoT Hub

To establish a connection between the IoT-bridge and the cloud, we need

an IoT Hub. An IoT hub is a connection point for registered IoT devices.

It facilitates communication between a device and the cloud and supports

a million active connections per hub [22]. The IoT hub allows the option

to send messages back to the device, allowing bi-directional communication.

This service allows every IoT-bridge to send messages to the cloud, where the

service is configured to route the message to the Event Hub.

Device Twin

The IoT Hub introduces a Device Twin for each device. The Device Twin is a

device state stored in the cloud that allows for changing the state regardless

of the robot’s connectivity. The robot will either receive an updated state as

soon as it updates or, next time, regain connection. This property of the IoT

hub will be further explored in 4.7

3.1.3 Event Hub

The event hub ensures that no telemetry is lost due to unforeseen circum-

stances. It receives messages from the IoT Hub and stores all new messages

in a buffer capable of holding hundreds of gigabytes with a retention span of

90 days [23]. This buffer enables the architecture to manage bursts of data

that would otherwise be lost due to the temporary unavailability of processing

resources. Failed messages are placed in a Dead Letter Queue (DLQ), where

they are scheduled for retry after a predetermined period.

Realistically, Remora is unlikely to exceed the data capacity required to

expand the Event Hub, as data traffic does not typically peak at any point dur-

ing the day or week. Thus, the Event Hub primarily serves as a precautionary

measure to safeguard the data stream and provides a robust foundation for

future-proofing solutions.

Event Forwarder

Event Hub

Figure 3.2: The metaphor of picturing a funnel where the Azure Function

pulls out the data works well.

3.1.4 Function Apps

Function Apps are the architecture’s core as they enable the event-driven de-

sign [24]. It is a serverless service, meaning there is no initial server hosting

the application, but rather small partitions that get spun up as requests are

made. Function apps scale horizontally and automatically based on demand,

and their functions are configurable to trigger a variety of Azure services.

This means it can listen to changes in storage accounts, databases, event

hubs, and many different services and receive events. This event triggers a

function and can be handled like any other function property.

3.1.5 Event Forwarder

As seen in the figure 3.1.3, there is set up a Function App called an Event-

Forwarder. It includes a singular function responsible for listening to new

messages sent to the Event Hub 3.1.3. When a message is pushed to the

Event Hub, a trigger will execute the Event Forwarder, pulling and process-

ing the message, before forwarding it to the Event Grid 3.1.6. The nature

of the buffer allows the function to pull messages whenever resources are

available.

3.1.6 Event Grid

Event Grid makes the solution highly expandable. It is a Pub Sub message

distribution service [25] and means a client can push a message to a given

Topic, where every client subscribing to this Topic will receive the message.

Subscriptions can be configured to filter the incoming events and only trigger

functions that comply with the configurations, as seen in 4.7.2.

3.1.7 MessageHandler

Multiple functions are responsible for handling messages pushed to a topic.

By utilizing a filter, the functions are only executed when explicitly requested.

This structure allows for easily expandable functionality, as newly introduced

features just need to subscribe to the topic. One of the many tasks the Mes-

sagehandler functions have to do is to listen for telemetry events and store

them in a database.

3.1.8 HTTP Endpoint

The HTTP endpoint concerns the frontend. The functions in this function app

trigger requests over a HTTP endpoint and are responsible for querying data

{
  message: ...,
  type: ...
}

payload

Filter
{
  type: Type1
}

Filter
{
  type: Type2
}

Filter
{
  type: Type3
}

Figure 3.3: A client sends a message to an Event Grid Topic, which broadcasts
the message to subscribing clients. The clients have applied filters on the
event type.

from the database and returning it to the frontend. These endpoints include

fetching IoT-bridge’s and its associated telemetry.

3.1.9 Database

The telemetry database needs to be a time-series database as it supports a

large amount of data, fast insertion times, and quick and efficient retrieval.

The database also needs to support multiple indexing to query not only times-

tamps but also a preferred device ID. Indexing in the database would allow

for faster lookups, saving valuable time, resources, and money. To select a

certain Azure infrastructure database, we must recognize and compare our

requirements to available databases.

Cosmos

Cosmos Database (DB) is the choice for several reasons. It is a DB that offers

a schema-agnostic solution [26]. In the starting phases for Remora, this DB

offers the most flexibility without migrating the database between changes.

It also provides a schema where one can easily query the structure. One of

Cosmos DB’s biggest strengths is its ability to handle large amounts of data

quickly. This means it can capture detailed information from devices without

missing anything or slowing down. This is one of Cosmos DB ’s greatest

strengths.

3.2 Overview

As each of the services has now been described let us follow the path of the

telemetry

1. Robots send telemetry data to the IoT-bridge device using the exposed

protocols over the local network.

2. The IoT-bridge, forwards this data to the Azure IoT Hub.

3. IoT Hub sends the data to the Event Hub, where it is temporarily stored

and partitioned. This is where an Azure function (Event Forwarder)

retrieves data from the Event Hub and pushes it further into the event

grid.

4. Processed data triggers events in the Event Grid, which then routes

these events to specific Azure functions for further actions or logging,

based on predefined topics.

5. Among other things, these functions store the data in the DB

3.3 File Storage

In addition to a DB, we needed to introduce some file storage. Storing files

in Azure uses a Storage Account with a Blob Container, a directory to store

Binary large object (BLOB) files [27].

Function Apps

The first container is responsible for storing Function Apps. Function Apps

can be deployed by referencing a compiled zip file in a container. Updating

the function app is as simple as replacing the associated zip file in this con-

tainer.

Firmware

The second container is the Firmware container. It is responsible for stor-

ing firmware for the IoT devices and is how the IoT-bridge devices receive

updates.

Chapter 4

Implementation

This solution is a candidate for Remora’s infrastructure, which means the

project needs proper implementation from the first commit to its follow-through.

As in the previous chapter, we will review the technologies and services used

and explain why and how they work.

4.1 Infrastructure as Code

Deploying infrastructure through configuration files has been essential in en-

abling consistent architecture between environments.

Pulumi

Pulumi uses environment configuration files, tailoring the services in each

environment, such as pricing tiers and features. This allows for consistent

architecture deployment across environments while applying necessary re-

sources for the use case. When using Pulumi to configure infrastructure, the

architecture can be set up in Typescript. Initializing classes associated with

different services, Pulumi can deploy them when the program runs.

25

As seen in the code snipped below 4.1 there are included a couple of vari-

ables for the main production branch. Each environment may include its own

configuration file that can override the properties of the main file.

1 IotCloud:iotHubServiceName: IotHub

2 IotCloud:iotEventHubName: IotEventHub

3 IotCloud:iotEventHubNamespaceName: IotEventHubNamespace

4 IotCloud:iotRouteName: IotEvenHubRoute

5

6 IotCloud:iotDpsName: IotHubProvisioningService

7 IotCloud:iotDpsTier: S1

8 IotCloud:iotDpsCapacity: 1

Listing 4.1: Pulumi Env Config File

When the Pulumi code runs, it will start by executing its main file, as seen

in the snippet below 4.1. It loads the configurations automatically selected

based on the environment to deploy to. Pulumi continues by creating a re-

source group and its following services, using the values from the config file.

1 const config = new pulumi.Config();

2 const resource = config.require("resource");

3 const cloudLocation = config.require("cloudLocation");

4

5 export const resourceGroup = new azureNative.resources.ResourceGroup(

6 resource,

7 {

8 location: cloudLocation,

9 }

10);

11

12 const iotEventHubNamespaceName = config.require("iotEventHubNamespaceName");

13 const eventHubNamespacePlan = config.require("iotEventHubNamespacePlan");

14 const eventHubNamespace = createEventHubNamespace(

15 iotEventHubNamespaceName,

16 eventHubNamespacePlan

17);

18

19 const iotEventHubName = config.require("iotEventHubName");

20 const eventHub = createEventHub(iotEventHubName,

21 eventHubNamespace

22);

23

24 const iotHubServiceName = config.require("iotHubServiceName");

25 const iotPlan = config.require("iotPlan");

26 const iotHub = createIotHub(

27 iotHubServiceName,

28 iotPlanIotHubSku,

29 1,

30 eventHub

31);

32

33 const iotDpsName = config.require("iotDpsName");

34 const iotDpsTier = config.require("iotDpsTier");

35 const iotDpsCapacity = config.require("iotDpsCapacity");

36 const iotDps = createIotDps(

37 iotDpsName,

38 iotHub,

39 iotDpsTier,

40 iotDpsCapacity

41);

Listing 4.2: Main Pulumi file, creating Resource Group, Event Hub, IoT Hub,

and DPS

When the main file is being executed it runs functions to create the various

services from different files. This is to ensure reusability and maintain struc-

ture. How Pulumi is creating services can be seen in the snippet below 4.1

1 export const createIotDps = (iotDpsName: string, iotHub: IotHub, skuName:

IotDpsSku, capacity: number): IotDpsResource => {

2 return new azureNative.devices.IotDpsResource(iotDpsName, {

3 location: resourceGroup.location,

4 resourceGroupName: resourceGroup.name,

5 sku: {

6 name: skuName,

7 capacity: capacity,

8 },

9 properties: {

10 iotHubs: [

11 {

12 connectionString: pulumi.interpolate‘\${iotHub.connectionString}‘,

13 location: resourceGroup.location,

14 allocationWeight: 10,

15 applyAllocationPolicy: true,

16 },

17],

18 },

19 })

20 }

Listing 4.3: Pulumi DPS Service Creation

When a service class is initialized like this, Pulumi will pick up on it and

put it in a dependency tree. This tree is responsible for building the services

according to their dependencies.

4.2 Github

GitHub has been the core tool for developing this solution. It has improved

collaboration, documentation, continuous integrations, and deployment.

4.2.1 Separation of Concern

The project is built with multiple pieces that do not directly interact with each

other. The IoT-bridge repository contains the source code for the firmware on

the IoT-bridge, while the Cloud repository includes everything in Azure. It

has been important to separate these applications into different repositories,

as it helps by getting a better overview of the applications. The separation

in repositories improves the structure, where the commit history and pull

requests are easier to follow.

4.2.2 Documentation

GitHub is a VCS and allows tracking changes in the codebase over time, as

code pieces are being committed. Writing descriptive messages when com-

mitting code has provided a clear, documented history of every feature and

bug fix. This will make it easier for developers to trace back changes and

better understand the reasoning of the code.

4.2.3 Workflows

Configuring GitHub workflows has provided many benefits for this project by

automating tedious and repetitive tasks.

Consistent Testing

This project’s workflow is configured to automatically build and test the solu-

tion when committing and merging code and has helped catch potential issues

early in development.

4.2.4 Continuous Integration and Deployment

Integrating IaC with the workflow has provided a consistent deployment be-

tween environments.

Architecture

When completing a merge to the development or production branches in the

Cloud repository, a workflow is configured to trigger and automatically deploy

the infrastructure in the respective environment, using Pulumi4.1.

However, before deploying the infrastructure, the workflow will build and

test the application before compiling, compressing, and zipping the individual

function apps.

Pulumi is configured to include these compressed applications in the in-

frastructure and deploys them along with the infrastructure.

IoT-bridge

Like with the Cloud repository, a workflow is configured to build and test

the code in the IoT-bridge repository. If the test is successful, it continues

by compressing the compiled application in a zip file and uploading it with

a given version number into a BLOB container responsible for storing the

device’s firmware. This is part of the update solution that will be explored 4.7.

Security

As a workflow allows for setting up secret variables, we can use these secret

variables and give Pulumi access to deploy our infrastructure on Azure. By

solely providing Pulumi the permission to deploy infrastructure and, by na-

ture, being able to configure secrets and connection strings with no human

interaction, the sensitive information is more secure and less prone to leak-

age.

4.3 IoT-Bridge

The IoT-bridge’s main responsibility is establishing a bi-directional connec-

tion to a robot. Using this connection, it can forward data from the robot to

the cloud and send commands back to the robot.

VPN - Router

Cloud
Client

IoT- bridge

Fish farm

Robot

Figure 4.1: IoT-bridge device connected to the robot using the existing archi-
tecture

4.3.1 Establishing Connections: IoT-bridge and Robot

When the IoT-bridge is activated, its initial task is to establish a connec-

tion with the robot and retrieve its ID. This setup process is straightforward

since the robot and the IoT-bridge are on the same local network on a fish

farm. Each robot is configured with a static local IP address and has exposed

Transmission Control Protocol (TCP) ports. The IoT-bridge device utilizes

these ports to establish a connection.

4.3.2 Establishing Connections: IoT-bridge and Cloud

When a connection between the robot and IoT-bridge has been established, it

fetches the unique robot ID over a HTTP request. It continues by initializing

the IoT client using this ID and connecting to the cloud. This way of connect-

ing to the cloud allows the IoT-bridge to be entirely independent of the robot

it connects to as the ID is being fetched from the connected robot. It makes

it easy to provision, install, and replace an IoT-bridge as the firmware can be

duplicated to multiple devices and connected to a new robot over ethernet.

Device Provisioning Service

While an IoT Hub efficiently handles device connectivity and communication,

the initial setup and registration of devices in an IoT system can present chal-

lenges, especially when scaling at the pace of Remora. The Device Provision-

ing Service (DPS) solves this issue by automating the process.

To establish a connection with the IoT Hub, the IoT-bridge must first be

authorized. This is achieved through Azure DPS. By providing two symmet-

ric keys stored on the IoT device, These keys combined with the specified

endpoint enable the device to be authorized with the DPS in the respective

environment.

When a device has been authenticated through the DPS, the device will

be registered to a suitable IoT Hub. The IoT Hub returns credentials back to

the IoT-bridge, through the DPS and allows it to establish a connection. The

code for this logic can be seen here A.

Step by step DPS

1. When the IoT-Bridge first powers on, it connects to the robot, receives

its ID, and initializes the IoT device client.

DPS

IoT Bridge

IoT Hub

1

2

3 4 5

Figure 4.2: As explained per Microsoft‘s documentation [28].

2. The client makes an authorized request to the DPS endpoint with the

derived authorization keys.

3. The DPS instance checks the identity of the IoT-bridge against its en-

rollment list. Once the IoT-Bridge identity is verified, the DPS assigns

the device to an IoT-hub and registers it.

4. The DPS instance receives the IoT-Bridge ID and registration informa-

tion from the assigned hub and passes that information back to the de-

vice.

5. The IoT-bridge uses its registration information to connect directly to its

assigned IoT Hub and maintains a connection using an MQTT websocket

connection.

6. Once authenticated, the IoT-bridge and IoT Hub communicates directly.

The DPS instance has no further role as an intermediary. Only if the

connection between the 2 units is deleted.

When the request to the DPS succeeds the IoT-bridge will receive creden-

tials that allow the device to connect to the IoT hub. When this connection has

been established, a listener is initialized for changes in connection states. It

handles reconnect attempts on disconnected events and initializes a listener

for incoming cloud messages on connected events.

4.4 Key Vault

Azure Key Vault is a service that provides secure storage of secrets and

keys [29]. Azure Functions requires access to sensitive information such as

connection strings, API keys, and credentials to access other services. En-

abling the service identity setting in the Key Vault configuration authenti-

cates the services within the same resource group to access the Key Vault.

This eliminates the need to provide sensitive authentication information and

allows services to access Key Vault securely.

4.5 Azure Function Apps

Function Apps are used to expand on the architecture. When an event gets

published to the Event Grid 3.1.6 topic, it will broadcast to every subscribed

function.

4.5.1 Access

Many of the Function Apps must be authorized to access other services, such

as Cosmos, Event Hub, or Event Grid. To grant this access they are all con-

figured with the Key Vault 4.4 endpoint. This endpoint allows the functions to

access sensitive information internally and is automatically set up when the

function app is initialized. This process can be done dynamically during the

function’s runtime, ensuring that the latest version of the secret(s) is always

applied.

Every function has similar building blocks for its constructor;

1. A Key Vault endpoint is loaded from the Azure configurations, applied

by Pulumi

2. Key Vault secrets are accessed where keys and values are being written

to the app configurations

Functions

There are 5 Function Apps dispersed over the architecture. These are:

• HttpEndpoint is the function to bind the architecture to a frontend solu-

tion using HTTP triggers.

• EventForwarder, which has been explored in 3.1.5.

• TimerTrigger, which continuously refreshes the Blob Container Shared

Access Signature (SAS)-tokens for the IoT Device Twins.

• BlobTrigger, which will be further explored in 4.7

• MessageHandler, which is being explained below 4.34

4.5.2 Message Handler

The Message Handler App has 5 functions in its context. This is the biggest

context and deals with IoT-bridge messages, such as device states and teleme-

try.

New Device Handler

This function automates updating the IoT-bridge firmware version info upon a

new device registration event as seen in the figure below 4.4. It ensures that

TelemetryHandler DeviceStateHandlerDeletedDeviceHandler NewDeviceHandlerIotMessageLogger

DeviceDeleted* DeviceTelemetry

DeviceTwinUpdate

DeviceConnected
DeviceDisconnected

DeviceCreated DeviceCreated

IoT Message Topic

Figure 4.3: All the functions subscribed to one topic: MessageHandler

each new device registered with the cloud is immediately configured with

the latest firmware[4.7] version and has the necessary secrets to access the

Firmware Blob Container 3.3 securely. This automation is vital for maintain-

ing the integrity and security of the IoT-bridge in a scalable manner.

NewDeviceHandlerIoT Message Topic IoT Hub IoT- Bridge

IotBridgeFirmware

Figure 4.4: All the functions subscribed to one topic: MessageHandler

Device State Handler

This function receives device state events from IoT Hub and forwards them

to the Cosmos DB. This is to maintain the current state of each device in a

common database as multiple IoT Hubs may occur in a single environment.

Device Telemetry Handler

The device telemetry handler receives telemetry data via the Event Grid. It

parses the data, retrieves the telemetry array, and stores it in the Cosmos DB.

Deleted Device Handler

The DeletedDeviceHandler function automates the cleanup of device-related

data in a Cosmos DB upon receiving device deletion events originating from

the IoT Hub. It ensures that data remains consistent and up-to-date across

multiple IoT Hubs. Cleanup of old data is important to help maintain perfor-

mance and accuracy in the database.

IoT Message Log

This is a logger. It logs everything that passes through the event grid. Its

main functionality is to help developers debug, and it does not play a crucial

role in the solution’s execution.

4.6 Telemetry

Telemetry has been the first feature to be implemented, demonstrating how

data flows throughout the infrastructure.

4.6.1 Packet Optimization

Several considerations have been made when building the data flow from the

IoT-bridge.

• Hundreds of TCP packets are received every second.

• The TCP packet contains a lot of unnecessary data, for instance, BAT-

TERY_LIFE. Our robot is connected to a power source; it does not use a

battery.

• The size of the packets sent to the IoT Hub has a max message size of

4Kb [30].

• Identifying the packets when they have arrived at the cloud.

When the connection has been established between the IoT-bridge and

robot, the IoT-bridge will begin receiving messages from the robot over a

TCP connection. The messages are filtered based on the desired payload

types, temporarily stored in an array, and sent to the cloud at intervals. To

maintain the order and time data that is being stored, every data point is con-

structed with a timestamp of its recording. When redundant data is delivered,

it is detected and will override the previous message of the given type. This

ensures the payload sent to the cloud is as small as possible without losing

important information.

To conserve the most amount of messages and not spend up the IoT Hub

message quota, messages maximize the amount of data of 4KB [30]. Sending

a message past 4KB will count as two messages.

4.7 Update

Developing the software further for the IoT-bridge devices is desirable for

introducing new features and optimizations.

4.7.1 Persistent Software

There are 2 programs running on the IoT-bridge device; the StartupHandler

and the IoT software. The StartupHandler is responsible for running the IoT

software, downloads and installs updates. StartupHandler is built only to do

these simple tasks. It allows the software to run on a sturdy foundation that

handles device updates independently.

4.7.2 Publishing new firmware

IotBridgeFirmware IoT HubNewFirmwareHandlerIotBridge IotBridge

Figure 4.5: Github builds and releases a new version to the firmware blob
container where it gets picked up by the NewFirmwareHandler and notifies
the IoT-bridge devices

When pushing an update of the device firmware in the IoT-bridge repos-

itory to a production branch, a workflow is triggered, which compiles and

publishes the new firmware to the firmware blob container.

NewFirmwareHandler

A function app is created to trigger when new entries in the firmware con-

tainer are added. The event following the function includes the entry’s name

and the firmware version. Using regex, it verifies the version number and

then updates every IoT-bridge Device Twin with this desired version.

Startup Handler

The StartupHandler continuously checks for new updates, using the local De-

vice Twin 3.1.2. Suppose the desired version is newer than the current one,

the new version will be downloaded. Upon successful download, the IoT-

bridge software will be shut down, and the update will be extracted and re-

place the existing IoT-bridge program. When this is completed, the program

will start up again.

Recovery Mechnism

Suppose the IoT software were to fail. In that case, the local Device Twin

will no longer be updated and will break the device. A fallback mechanism is

implemented that checks for an update directly in the Blob Container. This

happens every 15 minutes and ensures that a device can still be updated

remotely, even if the IoT-software were to fail.

4.8 Cloud Monitoring

When scaling up a project, it is important to overview the cloud resources. It

helps analyze each service and measure its performance, catch anomalies in

data traffic, and optimize the infrastructure.

4.8.1 Grafana

Grafana is a powerful open-source analytics and monitoring solution widely

used for visualizing data sources. Connecting Grafana to Azure allows for

building custom dashboards with various platform metrics, providing clarity

over system performance.

Service Overview

As seen in 4.6, an overview of all the necessary services for the solution is

built. It is a simple overview of how many robots are online, how many mes-

sages they send, and how each of the mentioned function apps are perform-

ing.

Currently, the solution only includes a singular robot that produces a

higher load by introducing short intervals between messages.

Figure 4.6: Part of the Grafana dashboard displaying connected devices, daily

message consumption, message throughputs, and EventForwarder resources.

4.9 Frontend

The frontend is a simple dashboard; it provides a list of all IoT-bridges con-

nected to the Cosmos DB where the telemetry from our robot is stored. The

frontend was developed to present the solution to Remora visually. It lists the

name and ID of the robot, its online status, and its current running software

version.

Figure 4.7: Shows one device with its associated data.

By interacting with an IoT-bridge on the dashboard, we get a display with

more detailed information about that IoT-bridge as shown in figure 4.7. This

data was specified by Remora.

4.10 Challenges and Solutions

Cloud computing is a new endeavor from our perspective. Understanding the

field, researching it properly, and seeing the thesis’s scope were challenging.

We put a lot of effort into the choices made in Chapter 2 and continuously

discussed with Remora how they would build and iterate on any potential

changes in our solution going forward.

Architecture

Building a working architecture that scales requires much research before

building. Not only have we built an entire architecture, but we accompanied

it by developing 5 Function Apps, built a frontend, set up cloud monitoring,

and built the software for the IoT device (IoT-bridge). This has been possible

by spending time creating a step-by-step plan. Using tools such as GitHub

Boards, Workflows, and their VCS has improved productivity immensely and

has been the uppermost important step to build a continuously deploying and

scalable solution.

Infrastructure as Code

The project’s infrastructure allowed us to use Azure User Interface (UI) con-

struct to build our platform. With the intent of being able to deploy this

solution to multiple environments, this was not an option, thus the reason to

build introduce IaC. IaC has enabled us to continuously integrate and deploy

the solution, allow testing in one environment, and publish it to another in

no time. It did improve our productivity and increased consistent deployment

between the environments.

Circular Dependencies

Setting up IaC for the first time was a challenge as the way you structure

code differs vastly from normal code. This resulted in a messy, unstructured

code and a circular dependency between the Key Vault and Function Apps.

The two services depend on data from each other, causing the solution to be

unable to be built. To solve this, we refactored the entire code base from the

ground up. This made it clearer to read and write and allowed us to split up

the services into smaller steps, allowing both services to be created before

applying data from each other.

Device Updating

Updating the device was more difficult than anticipated. The device was sup-

posed to be easily provisional for scaling to multiple robots. Giving the IoT-

bridge permission to access the private firmware container wasn’t easy. Being

creative, we figured we could generate a SAS-token that provides read access

to the container. Creating a function that listens to new devices triggered a

function that generated this token programmatically and updated the device

Device Twin 3.1.2, giving access to the container.

Chapter 5

Results and Discussion

The thesis results explain how each solution we have provided Remora solves

its current issue.

5.1 Scalability

All services have been chosen with regard to scalability, from the IoT Hub to

the Event Grid. This automatically allows all services to scale on demand,

increasing resources as Remora grows. Installing new robots and connecting

them to the cloud requires no additional configuration and allows Remora to

deliver a seamless solution.

5.2 Flexibility

The cloud-based solution has increased the flexibility of the system. Remora

can now deploy updates, modify configurations, and scale operations without

previously imposed limitations. The use of Azure IoT Hub and DPS allows

for the dynamic management of thousands of IoT-bridge devices. This system

supports real-time data handling and device management across geographi-

45

cal locations, without the need for significant system overhauls or downtime.

The initial system used by Remora, which was based on a VPN setup, pre-

sented many challenges regarding remote access. Each robot required indi-

vidual updates and configurations, which was time-consuming and limited to

on-site maintenance. Remora can now access any IoT-bridge from anywhere

globally, provided the user has the proper credentials. This is done through

Azure accounts linked to Remora, allowing updates and monitoring of all IoT-

bridges without the need to be physically present. This transition supports

Remoras remote work capabilities, aligning with contemporary work trends

and enabling a more flexible working situation for the company. Using event-

driven architecture allows us to easily expand on additional features for future

work.

5.3 Cost

By migrating to Azure, Remora utilizes a "pay-as-you-go" model that scales

with usage. This model removes upfront costs and allows Remora to adjust

resources based on current needs, avoiding unnecessary investment in infras-

tructure. This is particularly cost-effective for Remora as it grows and needs

to scale operations.

The figure 5.1 shows the entire monthly cost of the solution. These costs

have been calculated with 100 robots in mind [31] to ensure that Remora can

expand without considering any eventual scaling. Each service tier has been

considered heavily, which has proved that a cost-effective cloud solution is

possible. Suppose Remora expands its fleet beyond our solution. In that case,

Azure’s automatic scaling will increase the price, and the configuration must

be reconciled regarding the new pricing. The IoT Hub uses a higher tier as

it provides the much-needed bi-directional communication. In addition to the

Azure IoT Hub

Storage Account

Azure Cosmos DB

Event Hub

Event Grid

Azure Functions

Standard Tier, S1, Unlimited Devices,
 400 000 messages

Blob Storage, Hierarchical Naming

Azure Cosmos DB for NoSQL, serverless

Basic Tier, 1 Throughput unit x 24 hour, 24 million
messages

12,000,000 operations per month

Consumtion tier, "Pay as you go", 128MB memory

 25$

1.56$

10.99$

1.03$

7.14$

4.60$

Total Cost: 50.32$

Services: Description: Monthly Cost

Figure 5.1: Services are configured to handle the expected load of 100 robots
and 400 thousand messages every day.

Azure cost, Remora will also have to consider the Raspberry Pi’s (IoT-bridge)

cost.

5.4 Efficiency

With the help of the DPS, the automation reduces the time spent on manual

tasks. The dashboard allows for immediate access to the IoT-bridges, with

their status and other measurements. This gives quicker response time since

the data is readily available on each IoT-bridge and a better foundation for

a more informed decision. This provides more proactive maintenance, re-

ducing downtime and boosting the overall reliability and performance of the

operation.

5.5 Telemetry

Through time-stamping any telemetry, we have been able to time the packets

being transferred from the IoT-bridge all the way to the DB. Though the time

to save the data as fast as possible after the IoT-bridge receives the packet

from the robot is not crucial, it is a good estimate for how solid, and reliable

our solution will prove to Remora. In A we have two timestamps we have

highlighted. The first refers to the package creation in the IoT-bridge, and

the second is when the packet has been stored in the database. This process

takes two seconds.

5.6 Discussion

The newly developed solution allows Remora to scale its production with

seamless integration to the cloud. It allows them to install new devices on

existing infrastructure and move their focus from maintenance to develop-

ment. The event-driven architecture allows for flexible development and new

features are easily implemented. When Remora decides to expand outside

the country, the cloud infrastructure expands easily.

However, developing and maintaining this solution requires experienced

developers, as the cloud is large and complex.

Using an Azure Cloud solution with a high market share in the region

introduces talented developers to acquire from within the region, reducing

the cost of scouting for new hires.

Remora must decide whether to invest in maintaining control of its prod-

uct or delegate that responsibility to someone else. While this option comes

with its own costs and risks, we believe it would be detrimental to the com-

pany. In our opinion, most companies aiming to impact the future must build

a foundation that allows them to remain as flexible as possible.

Chapter 6

Future Work and Conclusion

As this is development for a company that wishes to expand, much additional

work must be done. Potential future problems have emerged throughout the

thesis, and so these problems have been discussed thoroughly.

6.1 Future Work

This new solution has a lot of potential, with features to expand upon that

greatly improve the Remora product.

6.1.1 Video Feed and Control

Remora has already installed a camera on the robot, and providing a video

feed would be the ideal next step in the solution. However, streaming video

through the cloud comes with a large cost, as video requires a lot of data

throughput. Implementing a peer-to-peer Real Time Connection (RTC) con-

nection between client and robot would be the correct solution.

50

6.1.2 Controlling the Robots

When an RTC connection has been established between the robot and client,

a low latency connection is already implemented. Using this same technology,

controlling the robot would be as responsive as possible.

6.1.3 Reducing Telemetry

A lot of the telemetry the robot shares is used to monitor its actions tem-

porarily. Moving this data over to the same RTC connection would reduce the

amount of data going through the cloud. This reduction in load from each

robot increases the number of devices on a single IoT Hub.

6.1.4 Image Recognition

Currently, the IoT-bridge is only used as a mediator between the robot and the

cloud. Using the powerful capabilities of the Raspberry Pi, image recognition

software could be applied using its cameras to locate the robot’s position

more easily or detect and report anomalies.

6.1.5 Relational Database

As the robot is still developing, new features will be added to replace the old

ones. The need to continuously update the system accordingly is necessary

for the data to be accepted into our filter in the IoT-bridge program. When

the robot has a stable physical solution, a Relational DB would be preferable

over a schema-agnostic DB

6.1.6 Improved User Experience

Currently, the client’s frontend solution is only designed to display minor de-

tails about the robot. It should be further developed to monitor the robots

properly, provide a video feed, and allow users to control them.

6.1.7 Robot Firmware Update

Currently, the robots are updated manually by connecting to them using the

VPN solution. As the IoT-bridge has direct connection to the robot, the bridge

can be responsible for downloading its update and forwarding it to the robot

automatically.

6.2 Conclusion

The prospect of producing an entire cloud architecture for a company that

wants a working product is daunting but extremely rewarding. We have

proved that a cloud solution would improve Remora‘s flexibility in their work-

ing condition, and through config files with IaC, the operational capabilities

are unrivaled. The flexibility is again proved by considering geographical

obstacles, where everything can be managed through the IaC. All cloud ser-

vices consider scaling and price, and we have created a product that Remora

is happy with. The new infrastructure has made it easy to install and update

each IoT-bridge. Integrating advanced Azure services, like IoT Hub, DPS, and

Azure Functions, has automated many of the once manual processes, reduc-

ing error rates and operational delays.

Appendix A

Associated code

1 var context = builder.GetContext();

2

3 var configuration = builder.ConfigurationBuilder

4 .AddJsonFile(Path.Combine(context.ApplicationRootPath,

5 "appsettings.json"), optional: true,

6 reloadOnChange: false)

7 .AddJsonFile(Path.Combine

8 (context.ApplicationRootPath,

9 $"appsettings.{context.EnvironmentName}.json"),

10 optional: true, reloadOnChange: false)

11 .AddEnvironmentVariables().Build();

12

13 var keyVaultEndpoint = configuration["KeyVaultEndpoint"];

14 if (!string.IsNullOrEmpty(keyVaultEndpoint) &&

15 context.EnvironmentName != "Development")

16 {

17 builder.ConfigurationBuilder.AddAzureKeyVault(

18 new Uri($"{keyVaultEndpoint}"),

19 new DefaultAzureCredential());

20 }

Function App Startup

53

10 public class Startup : FunctionsStartup

11 {

12 public override void ConfigureAppConfiguration(

IFunctionsConfigurationBuilder builder)

13 {

14 var context = builder.GetContext();

15

16 var configuration = builder.ConfigurationBuilder

17 .AddJsonFile(Path.Combine(context.ApplicationRootPath, "appsettings

.json"), optional: true,

18 reloadOnChange: false)

19 .AddJsonFile(Path.Combine(context.ApplicationRootPath, $"

appsettings.{context.EnvironmentName}.json"),

20 optional: true, reloadOnChange: false)

21 .AddEnvironmentVariables()

22 .Build();

23

24 var keyVaultEndpoint = configuration["KeyVaultEndpoint"];

25 if (!string.IsNullOrEmpty(keyVaultEndpoint) && context.EnvironmentName

!= "Development")

26 {

27 builder.ConfigurationBuilder.AddAzureKeyVault(

28 new Uri($"{keyVaultEndpoint}"),

29 new DefaultAzureCredential());

30 }

31 }

32 }

Listing A.1: Initializing Key Vault in function app startup

Initializing IoT Hub Connection

1

2 var derivePrimaryKey = ComputeDerivedKeySample.

3 ComputeDerivedSymmetricKey(PrimaryKey, _registrationId);

4 var deriveSecondaryKey = ComputeDerivedKeySample.ComputeDerivedSymmetricKey

5 (SecondaryKey, _registrationId)

6

7 using var security = new SecurityProviderSymmetricKey(

8 _registrationId,

9 derivePrimaryKey,

10 deriveSecondaryKey);

11

12 var transportHandler = new ProvisioningTransportHandlerHttp();

13

14 var provisioningClient = ProvisioningDeviceClient.Create(

15 GlobalProvisioningEndpoint,

16 DpsIdScope,

17 security,

18 transportHandler);

19

20 var result = await provisioningClient.RegisterAsync()

21

22 _deviceClient = DeviceClient.Create(

23 result.AssignedHub,

24 new DeviceAuthenticationWithRegistrySymmetricKey(

25 result.DeviceId,

26 security.GetPrimaryKey()),

27 TransportType.Mqtt)

Listing A.2: Initializing cloud connection to the IoT Hub using DPS

Pulumi Github Workflow

1 - name: Setup Node

2 uses: actions/setup-node@v4

3 with:

4 node-version: "18.x"

5

6 - name: Install dependencies

7 working-directory: ${{ env.WORKING_DIR }}

8 run: npm install

9

10 - name: Pulumi preview and deploy

11 uses: pulumi/actions@v5

12 with:

13 command: "up"

14 stack-name: ${{ env.PULUMI_STACK_NAME }}

15 work-dir: ${{ env.WORKING_DIR }}

16 env:

17 PULUMI_ACCESS_TOKEN: ${{ secrets.PULUMI_ACCESS_TOKEN }}

18 ARM_CLIENT_ID: ${{ secrets.AZURE_CLIENT_ID }}

19 ARM_CLIENT_SECRET: ${{ secrets.AZURE_CLIENT_SECRET }}

20 ARM_SUBSCRIPTION_ID: ${{ secrets.AZURE_SUBSCRIPTION_ID }}

21 ARM_TENANT_ID: ${{ secrets.AZURE_TENANT_ID }

Listing A.3: Github workflow yaml file

Telemtry logs in Azure

1 2024-05-13T14:45:59Z [Information] Executing ’DeviceTelemetryHandler’ (

Reason=’EventGrid trigger fired at 2024-05-13T14:45:57.8884690+00:00’, Id=

fc736ccd-57dd-413a-af1e-6439778cc4d9)

2 2024-05-13T14:45:59Z [Information] {

3

4 "id": "625a3870-b6a1-4a5a-9f7f-850ab29e2846",

5 "subject": "Iot Message",

6 "data": {

7 "id": "e5a670ef-f1a9-4e61-a3b6-db94346ff640",

8 "eventTime": 2024-05-13T14:45:57.203585Z,

9 "deviceId": "device-31",

10 "subject": "Iot Message",

11 "eventType": "IotBridgeTelemetry",

12 "data":

13 ...

14 WRITING TO DATABASE:

15 2024-05-13T14:45:59Z

16 [Information] Saving to Cosmos: {

17 "deviceId": "device-31",

18 "payload": {

19 "time_boot_ms": 882535494,

20 "lat": 71270,

21 "lon": 157057,

22 "alt": -5843,

23 "relative_alt": -5843,

24 "vx": -26,

25 "vy": -249,

26 "vz": -278,

27 "hdg": 0

28 },

29 "id": "667dcf6c-820b-4695-bf5f-007951d795b7",

30 "timestamp": 1715611556914,

31 "type": "global_position_int"

32 }

Listing A.4: Timestamps for received telemetry

Bibliography

[1] Per Fauchald Marina Espinasse, Eirik Mikkelsen. Forurensing fra

lakseoppdrett. https://kystbarometeret.no/indikatorer/matproduksjon-

akvakultur/artikkel/forurensing-fra-lakseoppdrett. Accessed

2024.01.28.

[2] Datatilsynet. What is telemetry data? https://logit.io/blog/post/what-is-

telemetry-data/, . Accessed 2024.01.04.

[3] Redhat. Whas-is-a-webhook. https://www.red-

hat.com/en/topics/automation/what-is-a-webhook. Accessed 2024.01.6.

[4] Mozilla. An overview of http. https://developer.mozilla.org/en-

US/docs/Web/HTTP/Overview. Accessed 2024.02.15.

[5] MQTT. https://mqtt.org/. Accessed 2024.01.21.

[6] Datatilsynet. Virksomhetenes plikter. https://www.datatil-

synet.no/rettigheter-og-plikter/virksomhetenes-plikter/, . Accessed

2024.03.22.

[7] Google Cloud. Migrate environments from iot core. https://-

cloud.google.com/architecture/connected-devices/iot-core-migration.

Accessed 2024.02.2.

58

[8] Microsoft. Azure serverless. https://azure.microsoft.com/en-

us/solutions/serverless, . Accessed 2024.01.29.

[9] AWS. Aws launch. https://aws.amazon.com/about-aws/, . Accessed

2024.01.28.

[10] Microsoft. Azure global coverage. https://datacenters.microsoft.com/, .

Accessed 2024.01.29.

[11] AWS. Aws global coverage. https://aws.amazon.com/about-aws/global-

infrastructure/, . Accessed 2024.01.29.

[12] AWS. Aws iot core pricing. https://aws.amazon.com/iot-core/pricing/, .

Accessed 2024.01.29.

[13] Microsoft. Azure iot hub pricing. https://azure.microsoft.com/en-

us/pricing/details/iot-hub/, . Accessed 2024.02.5.

[14] Ole Petter Baugerød Stokke. Nå er det flere som vil at du skal kunne

azure enn aws. https://www.kode24.no/artikkel/na-er-det-flere-som-vil-

at-du-skal-kunne-azure-enn-aws/76113836. Accessed 2024.05.3.

[15] Microsoft. Bicep. https://learn.microsoft.com/en-us/azure/azure-

resource-manager/bicep/overview?tabs=bicep, . Accessed 2024.01.14.

[16] HashiCorp. Terraform. https://www.terraform.io/. Accessed 2024.02.9.

[17] Pulumi. Pulumi. https://www.pulumi.com/. Accessed 2024.02.9.

[18] RaspberryPi. Raspberry pi pico. https://www.raspber-

rypi.com/products/raspberry-pi-pico/, . Accessed 2024.01.15.

[19] RaspberryPi. Raspberry pi zero. https://www.raspber-

rypi.com/products/raspberry-pi-zero/, . Accessed 2024.01.15.

[20] RaspberryPi. Raspberry pi 5. https://www.raspber-

rypi.com/products/raspberry-pi-5/, . Accessed 2024.01.15.

[21] Microsoft. .net and .net core support policy. https://dotnet.mi-

crosoft.com/en-us/platform/support/policy/dotnet-core, . Accessed

2024.02.3.

[22] Microsoft. Iot hub quotas and throttling. https://learn.microsoft.com/en-

us/azure/iot-hub/iot-hub-devguide-quotas-throttling, . Accessed

2024.02.5.

[23] Microsoft. https://azure.microsoft.com/en-us/pricing/details/event-

hubs/, . Accessed 2024.05.09.

[24] Microsoft. Azure functions overview. https://learn.microsoft.com/en-

us/azure/azure-functions/functions-overview?pivots=programming-

language-csharp, . Accessed 2024.01.12.

[25] Microsoft. What is azure event grid? https://learn.microsoft.com/en-

us/azure/event-grid/overview, . Accessed 2024.01.10.

[26] Microsoft. What is azure cosmos db analytical store? https://learn.mi-

crosoft.com/en-us/azure/cosmos-db/analytical-store-introduction, . Ac-

cessed 2024.02.12.

[27] Microsoft. Introduction to azure blob storage. https://learn.mi-

crosoft.com/en-us/azure/storage/blobs/storage-blobs-introduction, . Ac-

cessed 2024.02.12.

[28] Microsoft. What is azure iot hub device provisioning service?

https://learn.microsoft.com/en-us/azure/iot-dps/about-iot-dps, Updated:

2024.

[29] Microsoft. Key vault. https://azure.microsoft.com/en-us/products/key-

vault, . Accessed 2024.02.12.

[30] Microsoft. https://azure.microsoft.com/en-us/pricing/details/iot-hub, .

Accessed 2024.02.15.

[31] Microsoft. Azure pricing calculator. https://azure.com/e/207f332caf0d49fc850136b12c51e3dc,

. Accessed 2024.04.15.

4036 Stavanger

Tel: +47 51 83 10 00

E-mail: post@uis.no

www.uis.no

Cover Photo: Remora

© 2024 Bjørn Olav Frøytlog Bjørnsen and Sindre Vatnaland

	Abstract
	Acknowledgements
	Introduction
	Background
	Problem Statement
	Scalability
	Flexibility
	Cost Considerations
	Efficiency
	Telemetry

	System Overview
	Structure

	Foundation
	Hosting Technologies
	Hosting Platforms
	On-Premise vs Cloud

	Cloud Platforms
	Comparison

	Continuous Integration and Deployment
	Infrastructure as Code

	External Device
	Hardware
	Software and Language

	Architecture
	Service Architecture for Cloud and IoT Devices
	IoT-Bridge
	IoT Hub
	Event Hub
	Function Apps
	Event Forwarder
	Event Grid
	MessageHandler
	HTTP Endpoint
	Database

	Overview
	File Storage

	Implementation
	Infrastructure as Code
	Github
	Separation of Concern
	Documentation
	Workflows
	Continuous Integration and Deployment

	IoT-Bridge
	Establishing Connections: IoT-bridge and Robot
	Establishing Connections: IoT-bridge and Cloud

	Key Vault
	Azure Function Apps
	Access
	Message Handler

	Telemetry
	Packet Optimization

	Update
	Persistent Software
	Publishing new firmware

	Cloud Monitoring
	Grafana

	Frontend
	Challenges and Solutions

	Results and Discussion
	Scalability
	Flexibility
	Cost
	Efficiency
	Telemetry
	Discussion

	Future Work and Conclusion
	Future Work
	Video Feed and Control
	Controlling the Robots
	Reducing Telemetry
	Image Recognition
	Relational Database
	Improved User Experience
	Robot Firmware Update

	Conclusion

	Associated code

