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Abstract

Parkinson’s Disease (PD) is the fastest-growing neurological condition, with
over 10 million cases worldwide. The most common way of diagnosing
PD has been based on the observation of symptoms of the subject. Elec-
troencephalography (EEG) is a non-invasive technique that allows clinicians
to analyse brain patterns and has the potential to detect PD. Manually
analysing EEG signals requires a skilled and trained expert to interpret the
results accurately. For this reason, Deep Learning (DL) has the potential
to bypass this step and detect PD automatically based on the EEG sig-
nals. Such models have been developed, with most reaching very promising
results. However, some of these models do not practice a strict division
of subjects on the subject level, resulting in potential cross-contamination
of data between the testing and training set, not representing a real test
scenario.

In our work, we aim to compare the performance of DL models in detecting
PD using EEG signals represented as time-frequency series and spectro-
grams as inputs. Additionally, we aim to assess the difference in model
performance between 2D and 3D DL architectures. Two implementations
were tested for the 3D models: subject and segment level. For that pur-
pose, we used the datasets from Turku, California, and New Mexico, which
contained in total 50 PD and 60 non-PD subjects.

Our results show that incorporating the splitting on the subject level re-
duces the model’s performance compared to other approaches that do not
perform that splitting, with the best Area Under the Receiver Operating
Characteristic Curve (AUC) and subject level accuracy, respectively, being
0.69± 0.07 and 60.00%± 4.97% achieved by EEGNet run on 320x320 spec-
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CONTENTS

trograms. In addition, combining the 244x244 spectrograms on a subject
level using the ResNet18 3D model showed a better result compared to the
standard 2D ResNet18 model without ImageNet, with an AUC score of
0.68 ± 0.09 vs. 0.64 ± 0.09, respectively. These results indicate that EEG
has the potential for detection and the performance benefits of representing
EEG signals as spectrograms.
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Chapter 1

Introduction

1.1 Motivation

Parkinson’s Disease (PD) is a condition that gradually reduces the motor
functions of the body, with 10 million cases worldwide and is the fastest-
growing neurological condition in the world.[1] PD is a condition mainly
affecting subjects above 60 years. The condition is mainly based on motor
symptoms, and the most common classification is observing symptoms only
after it take hold.[2] The average life expectancy after getting a diagnosis is
10-20 years[3], with no known cure.

The motivation for this project comes from the fact that there is no cur-
rent definitive test for PD. Electroencephalography (EEG) is a non-invasive
technique to analyse brain patterns, which could help differentiate PD and
non-PD subjects. To analyse Electroencephalogram (EEG) series, a skilled
and trained expert is required to analyse the recordings, making it prone
to subjectivity and human errors. This is where Deep Learning (DL) has
the potential to help in the automatic analysis to make EEG analysis more
accessible, thus improving the accessibility of results.

1



1.2 Objectives

1.2 Objectives

• To compare two different data input types for DL for both EEG as
time-frequency series and EEG represented as spectrograms in terms
of Area Under the Receiver Operating Characteristic Curve (AUC)
scores.

• To compare different DL models and the benefit of using a pre-trained
model on ImageNet concerning AUC scores for spectrograms and
time-frequency series.

• To compare representations of the data in 2D and 3D regarding AUC
model performance.

1.3 Related Work

There have been several articles covering DL approaches to classify PD and
non-PD subjects from EEG recordings. The work of Shu Lih Oh and Co. [4]
looks at using a 13-layer Convolutional Neural Network (CNN) model on a
Malaysian dataset of PD and non-PD subjects. They achieved an accuracy
of 88.26%, sensitivity of 84.71% and specificity of 91.77%.

The work of Majid Aljalal and Co. [5] based on the datasets from both Cal-
ifornia and New Mexico use Discrete Wavelet Transform (DWT) and get an
accuracy of 99.89% on classifying non-PD and 94.21% for PD, with speci-
ficity and sensitivity being around the same numbers. They also achieve
AUC scores of 0.98. Other studies using time-frequency series as input
[6][7][8][9] have demonstrated high levels of accuracy, specificity, and sen-
sitivity, ranging from the mid to high 90%, along with AUC scores in the
high 0.9 range for those that reported them.

Marwa Obayya’s work [10] includes spectrograms, the only related work
included using this data representation. In this work, they use a Densely
Linked Bidirectional Long Short-Term Memory (DLBLSTM), first repre-
senting each layer as the sum of its hidden state plus the hidden states of
all the layers above for it to be represented to all layers above using recur-
sion. It uses a six-fold Cross-Validation (CV) to classify PD and non-PD
with an accuracy of 99.6% and an AUC score of 1.00.
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1.3 Related Work

These articles have in common that they divide train/test sets on the epoch
level, while the work by Sugden and Co.[11] divides on the subject level.
This method does not cross-contaminate the test and train sets with epochs
of the same subjects. The results are lower than the other works, reaching
an accuracy of 83% and an AUC score of 0.88.

Kurbatskaya’s work [12] is based on a split on the subject level, using lo-
gistic regression (LR), with datasets from multiple centres, including Iowa,
Medellin, California and Turku. They tested accuracy and AUC for each
specific dataset and combined them. The combined dataset reached an ac-
curacy of 72% and an AUC score of 0.72, while the best dataset, Turku,
reached an accuracy of 81.3% and an AUC score of 0.82.

Reference Classifier Splitting level Dataset Subjects Accuracy (%) AUC
[4] 2018 CNN Epoch Malaysia 20 non-PD, 20 PD 88.25 -
[5] 2022 CNN Epoch California and New Mexico 43 non-PD, 42 PD 99.44 0.98
[6] 2021 CNN and LSTM Epoch TS and HOS 21 non-PD, 20 PD 99.2 0.99
[8] 2021 2D-CNN Epoch California 16 non-PD, 15 PD 99.90 1.00
[7] 2020 DGHNet Epoch New Mexico 28 PD 99.2 -
[9] 2021 PDCNNet Epoch California and Malaysia 36 non-PD, 35 PD (100 and 99.7) -
[10] 2023 Spectro. DLBLSTM Epoch California 16 non-PDnon-PD, 15 PD 99.6 1.00
[11] 2023 CNN Subject Iowa, New Mexico 41 non-PD, 41 PD 83 0.88
[12] 2023 LR Subject Iowa, Medellin, 85 non-PD and 84 PD 72.2 (60.6, 68.7, 77.7, 82.2) 0.72

California, Turku

Table 1.1: List of earlier works’ datasets and achieved accuracy. (Unless in
parenthesis, the result is combined for those with multiple datasets.)

This work differs from the previous works by testing different DL archi-
tectures and by comparing both EEG as time-frequency series and EEG
represented as spectrograms. Methods like 3D-stacking are also used on
both the segment and subject levels, and pre-trained models are used based
on ImageNet while focusing on splitting the dataset into training and test-
ing data at the subject level using k-fold CV. The dataset also included 50
PD and 60 non-PD subjects from three different centres, making it more
robust and varied.
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Chapter 2

Background

2.1 Clinical

2.1.1 Parkinson’s Disease

PD is a condition where the subject’s motor functionality is reduced. This
happens as the brain’s neurons start breaking down over time.[2] This de-
cline is associated with a decrease in neuron production of dopamine, re-
sulting in irregular brain activity, which reduces movement functionality.
The symptoms may include rhythmic shaking (Tremor), loss of automated
functions, writing and speech changes, impaired posture and balance, and
slowed movements (Bradykinesia).

The direct causes of PD are currently unknown, but factors that appear to
play a role are specific genes and environmental triggers.[2] However small,
exposure to certain toxins might also increase the likelihood of developing
PD. Some groups are more at risk than others, with risk factors including
age, heredity, and sex. People over 60 years, males, and people with a family
history of the disease are more likely to develop PD.

4



2.1 Clinical

2.1.2 EEG

EEG involves placing electrodes on a subject’s scalp to record the brain’s
activity. That enables the recording of neurons in the brain while com-
municating by generating microvoltages between them.[13] Analyzing EEG
allows researchers to better understand epilepsy, sleep problems, and other
brain-related states.[14] While skilled neurophysiologists can understand un-
derlying medical states, other neurological disorders with more subtle shifts
are harder to detect. This is where DL has the potential to assist neuro-
physiologists with assessing and classifying different medical states.[10]

EEG is a standard neuroimaging procedure that benefits from its non-
invasiveness and affordability.[10] The placement and the number of elec-
trodes in the neuroimaging procedure vary. The most common international
layouts are 10-20 and 10-10, where the 10-20 layout is shown in Figure 2.1.
The ’10’ and ’20’ signify the approximate distance between the electrode po-
sitions, and the systems are meant to standardize the electrode placements
across different individuals and facilities.[15] These electrodes convert into
channels, each representing a specific location on the scalp, allowing for the
capture of electrical activity from different brain regions.

Figure 2.1: EEG layout depicted on a scalp using the international 10-20 layout.
Image is obtained from [16] on the 9. April 2024.
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2.2 EEG Pre-processing

2.2 EEG Pre-processing

Pre-processing is a time-frequency method that filters out noise, removes
epochs containing artefacts, and enhances relevant features.[17] The time-
frequency method establishes a link between the time and frequency do-
mains. It analyses and processes the signals in both domains to extract the
relevant features.

When measuring the voltage of the neurons in the brain, the signal is subject
to noise interference. Line noises from the power grid must be filtered out
to make the data usable. There is also a need to filter out noise from
other movements, like winking, heart activity, eye movement, and muscle
movements, which are known to be presented in EEG signals.[17][18] To
address this, EEG data is divided into time intervals called epochs. These
epochs allow for targeted noise reduction and analysis of specific parts of
the EEG signal, allowing a more accurate interpretation of the EEG data.
An epoch contains data for a single channel within a fixed or variable length
time interval, making it better for analysis and allowing the possibility of
dropping bad epochs.[19] Figure 2.2 illustrates the concept with the circle
"A" representing a two-second epoch.

Figure 2.2: Pre-processed EGG signal of a PD subject divided into two-second
length epochs represented by the dotted lines, where circle "A" represents an
epoch.
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2.2 EEG Pre-processing

2.2.1 Data Filtering

Using PREP by pyPREP[20] is a way of pre-processing data to standardize
it into a useful medium while preserving as much of the original data as pos-
sible. One goal of PREP is to quickly determine if signal artefacts, noise, or
inconsistencies are present in a given dataset, and it provides dataset sum-
maries that allow pinpointing of given issues. High-pass filtering, commonly
used to remove low-frequency drifts and artefacts, can also ruin the EEG
signals.[21] By using PREP in the pre-processing, the EEG signals can be
high-pass filtered while accounting for the line noise from the power volt-
age, a common source of interference. PREP achieves this by computing
an estimated line noise signal to remove it.[22]

The goals of the PREP pipeline, as stated in their study[22], are as follows:

• Remove line noise without committing to a filtering strategy.

• Robustly reference the signal relative to an estimate of the “true”
average reference.

• Detect and interpolate bad channels relative to this reference.

• Retain sufficient information to allow users to re-reference using an-
other method or to undo interpolation of a particular channel.

MNE-ICALabel is a tool designed to automatically identify, label and re-
move independent components derived from EEG signals. It should be per-
formed after removing bad segments to achieve the optimal result.[23][24]
Each component is categorised as either brain-related or non-neural, where
non-neural can be artefacts stemming from eye blinks or muscle movements.
MNE-ICALabel enhances the reliability and reproducibility of the EEG sig-
nals by removing the need for manually labelling each component, improv-
ing signal analysis.

Autoreject is used for EEG data pre-processing to identify and handle bad
epochs, complementing the functionality of PREP.[25][26] It targets the
detection of bad epochs with potential abnormalities, including but not
limited to artefacts. Autoreject utilises a peak-to-peak signal amplitude
threshold to identify the bad epochs. It looks at the signal from multiple

7



2.3 Deep Learning

sensors and marks the epoch as bad if most sensors show high-amplitude
artefacts. This is similar to how an expert in the field would mark a bad
trial based on observation.

2.2.2 Continuous Wavelet Transformation

Continuous Wavelet Transformation (CWT) is a signal processing tech-
nique similar to Fourier Transform (FT) in extracting frequency informa-
tion from a time series.[27][28] However, a Fourier series represents signals
using infinite-length cosine and sine functions, which lose temporal informa-
tion. In contrast, the CWT preserves the time domain by decomposing the
signal into smaller wavelets. Wavelets are dynamic components that focus
on specific signal aspects, allowing them to hold more detailed information.
This makes CWT good for analysing signals with varying properties over
time. The computations in CWT are done using a Fast Fourier Transform
(FFT).

Figure 2.3: Illustration of a CWT, with the mother wavelet on the left, with
the wavelets being constructed on the right. Image obtained from [29] where the
original gif was converted to a picture, on the 9. April 2024.

2.3 Deep Learning

DL is a subset of Machine Learning (ML).[30] It involves using Deep Neu-
ral Networks (DNNs), also known as Artificial Neural Networks (ANNs), to
learn complex patterns and relationships within data. ANNs are inspired
by the human brain and contain one input and output layer with one or
more hidden layers of nodes that transform and process data. DNNs can
automatically improve and learn from experiences with the help of DL al-

8



2.3 Deep Learning

gorithms. There are three different techniques that a DNN can use to learn:
supervised, unsupervised, and reinforced learning.

2.3.1 Supervised Learning

Supervised learning is a technique that makes the model learn and predict
based on labelled datasets. It can be categorised into regression and classifi-
cation. Regression predicts continuous values, such as the stock market and
housing prices.[31] Classification predicts categorical values like whether a
subject has PD or not, and the predicted output will be a probability dis-
tribution between the two.[31] When the model trains, it tries to replicate
the correct output from the labelled data using back-propagation. Back-
propagation is an algorithm that calculates the gradient of the loss function
and uses it to update the weights, aiming to minimize the loss function.[32]

Loss Function

The loss function is a mathematical visualization of the loss between the
true labels and the model’s predicted outputs.[33] If the loss function value
is low, the model’s prediction is good. During training, weights are updated
to minimize the loss function and improve the accuracy of the predictions.
There are many different loss functions available suitable for different tasks
where binary and categorical cross-entropy are commonly used for classifi-
cation tasks.

The Softmax Function

Softmax is a function often used in classification tasks for converting raw
scores into a probability distribution.[34] It does this by exponentiating
each raw score using Euler’s number and dividing it by the sum of all
exponentiated raw values. If one raw score is small compared to the others
it will get a low probability and if it is large it will get a high probability,
as shown in Figure 2.4 together with the softmax function.

9



2.3 Deep Learning

Figure 2.4: The softmax function is applied on the output array, producing a
probability distribution of the output classes. Image obtained from [35] on the 9.
April 2024.

2.3.2 Convolutional Neural Network

CNNs are a type of DNNs often used for image and video recognition and
classification. In an DNN, each node in one layer is connected to every
other node in the previous layer, resulting in many parameters. As the
number of parameters increases, the model becomes computationally heavy
and prone to overfitting. In a CNN, however, each node in one layer is only
connected to a few in the previous layer, making it solve the limitations of
DNN.[18] A CNN contains three types of layers: convolutional, pooling and
fully connected layer, as shown in Figure 2.5.[36]

Figure 2.5: An illustration of what a CNN architecture looks like. Image obtained
from [37] on the 15. March 2024.

10



2.3 Deep Learning

2.3.2.1 Components

Convolutional Layer

In a CNN, the convolutional layer is a core component responsible for feature
extraction, and a model usually contains many convolution layers.[36] It
works by applying a filter to an area of the image and calculating the dot
product between the filter and the area’s pixels. The filter is called a kernel
with trainable weights. The filter shifts by a stride value until it has gone
through the whole image. The output is a series of dot products known
as a feature map. Typically, a convolution layer contains multiple kernels,
resulting in equally many feature maps. Applying the kernel to the raw
input reduces its output dimension, as shown in Figure 2.6.

Figure 2.6: A kernel of size 2x2 is applied on a 3x3 matrix producing a 2x2
output. Image obtained from [38] on the 8. April 2024.

With a technique called zero-padding, it is possible to produce equal or
larger output dimensions, as illustrated in Figure 2.7.[36]

Figure 2.7: A kernel of size 2x2 is applied on a 3x3 matrix with one layer of zero
padding added, producing a 4x4 output. Image obtained from [38] on the 8. April
2024.

11



2.3 Deep Learning

Pooling Layer

The pooling layer, also known as the down-sampling layer, reduces the
model’s complexity.[36] It decreases the computation time by reducing the
number of parameters in the input. Similar to the convolution layer, a filter
sweeps across the image, but instead of calculating the dot product with
the kernel parameters, the max or average value of the area is sent to the
output array. Max pooling is shown in Figure 2.8 where a pooling window
of 2x2 and a stride value of one is applied on a 3x3 matrix, reducing the
input by 56%.

Figure 2.8: Max pooling is applied on a 3x3 matrix with a pooling window of
2x2 and a stride value of one, reducing the input by 56%. Image obtained from
[38] on the 8. April 2024.

Fully Connected Layer

The fully connected layer connects every node in the previous layer to every
node in the current layer.[39] It typically comes after the convolution and
pooling layer, producing the model’s final output prediction. Therefore, the
final fully connected layer contains the same number of nodes as the output
classes in a classification problem.

12



2.3 Deep Learning

2.3.2.2 Convolutional Neural Network Architectures

ResNet

Residual Network (ResNet) is a CNN architecture supporting a dynamic
range of convolution layers. Therefore, many different ResNet architectures
exist, like ResNet18 and ResNet50, which have 18 and 50 layers, respec-
tively. ResNet offers a solution to the "vanishing gradient" problem, which
occurs when more layers are added, resulting in a loss in performance.[40]
ResNet does this by adding the input to a set of convolution layers to the
output of the same layers. This technique is called skip connections and is
shown in Figure 2.9.[41]

Figure 2.9: Visualization of skip connections. Image obtained from [42] on the
8. April 2024.

EEGNet

EEGNet is a compact 2D CNN designed for EEG signals.[43] It contains
three convolutional layers, two pooling layers and one fully connected layer
and is designed for an input format of [channels, signal length, 1]. A visual
representation of the EEGNet architecture is shown in Figure 2.10.

13



2.3 Deep Learning

Figure 2.10: A visual representation of the EEGNet architecture. Image ob-
tained from [42] on the 11. March 2024.

3D Models

A 3D CNN is designed to input a 3D volume or a sequence of 2D images,
allowing it to learn spatial relationships within the data.[44][45] Therefore,
it suits medical images such as Computerized Tomography (CT), Magnetic
Resonance Imaging (MRI), and EEG signals.

2.3.3 Transfer Learning

Transfer learning is a DL technique that uses a pre-trained model trained
on a large dataset, potentially increasing performance and efficiency, which
makes it popular to use when limited data is available.[46] ImageNet is a
dataset with over 14 million images and over 20,000 different categories,
and many popular CNNs, such as VGG and ResNet, have been pre-trained
using it.[47][48]

2.3.4 Checkpoints

In DL, checkpoints are used to save the model state throughout the training
process.[49] This enables the model to be restored and resumed from where

14



2.3 Deep Learning

it left off and called back to a previous state. This is important because
overfitting can occur as the number of epochs increases during training. To
prevent this and ensure that the best model is used for evaluation, check-
points are used to save the model state, typically when the validation loss
improves.

2.3.5 Evaluation Metrics

Calculating different metrics to evaluate a DL model’s performance is im-
portant. Accuracy, sensitivity, specificity, F1 score and AUC are often calcu-
lated for supervised learning models that predict categorical values. These
metrics are calculated from the components of the confusion matrix, which
is a table that provides counts of True Positives (TP), True Negatives (TN),
False Positives (FP) and False Negatives (FN).[50]

• Accuracy: Accuracy measures the proportion of correctly classified
predictions done by the model.[51] It is calculated by dividing the sum
of TP and TN by the total number of predictions.

• Sensitivity (True Positive Rate, Recall): Sensitivity measures the ac-
curacy of actual positive cases that the model correctly identified.[52]
For example, if the model tries to predict whether a person is sick, the
sensitivity is the probability that the model can detect the disease if
the person is sick. Sensitivity is calculated by dividing the TP by the
sum of TP and FN.

• Specificity (True Negative Rate): Specificity measures the accuracy
of actual negative cases that the model correctly identified.[52] For
example, if the model tries to predict whether a person is sick, the
specificity is the probability that the model can detect a healthy per-
son if the person is healthy. Specificity is calculated by dividing the
TN by the sum of TN and FP.

• F1 Score: The F1 score is the harmonic mean of precision and sensi-
tivity.[53] Precision measures how accurately the model predicts pos-
itive instances and is computed by dividing the TP by the sum of TP
and FP. The F1 score is a useful performance metric when the dataset
is uneven or the values for precision and sensitivity are very different.
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2.3 Deep Learning

• Area Under the ROC Curve (AUC): AUC measures the Area
Under the Receiver Operating Characteristic (ROC) Curve.[54] The
ROC curve plots the true positive rate against the false positive rate at
different threshold settings. Therefore, the AUC provides more infor-
mation on the model’s performance regardless of the chosen threshold.

K-Fold Cross-Validation

To evaluate and train a DL model, it is important to split the dataset into
training and validation.[55] K-fold CV is used to split the dataset into k
equal-size folds. One fold is used for the validation set and the rest for the
training set. The model gets evaluated and trained k times with a different
validation fold each time, as shown in Figure 2.11. By calculating the
average of the performance metrics, a more robust and unbiased estimate
of the model’s true performance can be obtained.

Figure 2.11: Visualization of 5-fold CV.

Stratified Splitting

Stratified splitting is often used in DL to ensure that the proportion of
subgroups is equally represented in splitted training and validation data.[56]
Typically, the dataset is stratified on the label but can also be stratified on
other subgroups. For example, if a DL model tries to predict whether an
image shows a dog or a cat, it is most important to have equal proportions
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2.3 Deep Learning

of dogs and cats in the training and validation data. However, dogs and
cats can look very different, so it may be essential to stratify further based
on colour, gender and race to ensure equal proportions of these subgroups.

Threshold Setting

A threshold value is used as the minimum probability required for a positive
prediction for models that predict a probability distribution between the
output categories.[57] For example, if a model predicts whether a person
is sick, a threshold value of 0.5 will give a positive prediction for every
instance where the model’s output probability is 0.5 or higher. This can
be problematic in real-life scenarios as it may lead to many false positives.
Therefore, a threshold value should be chosen carefully based on the cost
of false negatives and false positives.
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Chapter 3

Data and Methods

3.1 Datasets

This thesis used three distinct EEG datasets from Turku, California, and
New Mexico. Combining different datasets potentially enabled diversity in
EEG patterns from different cultural and demographic environments, mak-
ing the combined dataset more robust and varied. The datasets included
information about each subject, including medication condition, whether
eyes were open or closed during recording and Movement Disorder Society
Unified PD Rating Scale (MDS-UPDRS) scores. With the use of medica-
tion, the subject’s PD symptoms get reduced, resulting in a different EEG
recording.[5] Therefore, this thesis only used EEG signals where subjects
were off medication. Additionally, EEG data extracted from individuals
whose eyes were open or closed yields different results.[58] Given that the
combined number of subjects with eyes open was higher, this subset was
selected.

The MDS-UPDRS can be subscaled into mild, moderate and severe, where
a score of 32 and below is mild and 59 and above is severe.[59] Subjects with
severe MDS-UPDRS stage were excluded, as there were only three subjects
at this severity level. The flow of data extraction steps is illustrated in
Figure 3.1. Each dataset contained a different amount of channels, from 41
to 67, with 32 channels in common, and the signal length varied for every
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location.[60]

Figure 3.1: A visualization of the data extraction steps.

Turku Dataset

The dataset from Turku was collected in 2018 from the University of Turku
and the Turku University Hospital.[60] It contained 20 PD and 20 non-
PD subjects. Every EEG signal contained 66 channels and had an average
length of 156 seconds. Extracting the subjects that were off medication,
had eyes open, and had MDS-UPDRS stage mild and moderate resulted in
10 mild, one moderate and 19 non-PD subjects.

After pre-processing, two non-EEG channels were removed, and one of the
non-PD subjects had to be dropped because the EEG signal had too many
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3.1 Datasets

noisy channels. As a result, 11 PD and 19 non-PD subjects with a signal
containing 64 channels and an average signal length of 146 seconds was
included from the Turku dataset.

California Dataset

The dataset from California was collected in 2013 and contained 15 PD and
16 non-PD subjects. The PD subjects were recruited from Scripps Clinic
in La Jolla, and the non-PD subjects were recruited from the PD subjects
spouses and the local community. Every EEG signal contained 41 channels
with an average length of 195 seconds.[60] The MDS-UPDRS stage was
not collected by a board-certified neurologist but by personnel who had
completed online training.[61]

After extracting the relevant subjects, there were four mild, 10 moder-
ate and 16 non-PD subjects. None of the subjects got dropped after pre-
processing, but nine non-EEG channels were removed. This resulted in
14 PD and 16 non-PD subjects with a signal containing 32 channels and
an average signal length of 176 second was included from the California
dataset.

New Mexico Dataset

The dataset from New Mexico contained 25 PD and 25 non-PD subjects.[62]
It was collected at the Cognitive Rhythms and Computation Lab at the
University of New Mexico in 2015. The EEG signal contained 67 channels
and had a fixed length of 60 seconds.

All the subjects correspond to the requirements, and none got dropped after
pre-processing, but four non-EEG channels were removed. This resulted in
11 moderate, 14 mild and 25 non-PD subjects with an EEG signal contain-
ing 63 channels and an average signal length of 54 seconds were included
from the New Mexico dataset.
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3.2 Signal Pre-processing

Summary

Combining the subjects that fitted the requirements and passed the pre-
processing from Turku, California and New Mexico, the final dataset con-
tained 50 PD and 60 non-PD subjects. The 50 PD subjects can be further
categorised into 28 mild and 22 moderate based on MDS-UPDRS stage.
There were 32 common channels for the centre locations, the average signal
length was 112 and the average amount of channels was 53. The subject
level 3D model required a signal length of 54 seconds, excluding 10 subjects.
Among these were two mild, three moderate and four non-PD subjects from
New Mexico and one non-PD from California.

Table 3.1: Combined dataset information. The PD-Duration (Y) represents the
duration of PD in years, and the symbol ♀ represents the number of females.

Location PD Non-PD Mild Moderate PD-Duration (Y) Age ♀(%) Signal Length (sec) Channels

Turku 11 19 10 1 5.1 67.2 18 (60.0) 146 64
California 14 16 4 10 4.7 63.4 17 (56.7) 176 32
New Mexico 25 25 14 11 5.4 69.5 18 (36.0) 54 63

3.2 Signal Pre-processing

3.2.1 Epoch and Segments

In this thesis, a segment is defined as a collection of epochs from all channels
within a two-second time interval. In an EEG signal divided into fixed epoch
lengths, where each epoch contains data from a single channel for a time
period, a segment contains the data from all channels over that same time
interval. This concept is illustrated in Figure 2.2, where circle ’B’ represents
a two-second segment and circle ’A’ represents a two-second epoch.
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3.2 Signal Pre-processing

Figure 3.2: Pre-processed EEG signal of a PD subject divided into two-second
length epochs represented by the dotted lines, with circle "A" representing an
epoch and circle "B" representing a segment. A segment is defined as a collection
of epochs from all channels within a two-second time interval.

3.2.2 Signal Preparation

The raw EEG signal contained noise and artefacts, as shown in Figure 3.4
and 3.6. Therefore, the data was subjected to PREP, mne-ICALabel, and
Autoreject, which removed several channels and segments. PREP stan-
dardized the signal and filtered out the line noise specified by each centre’s
power-line voltage. After PREP was applied, the EEG data was split into
segments of two seconds with size [channels, 1000], where 1000 is the num-
ber of data points. Where data points are the µV collected 500 times
a second, resulting in 1000 samples for 2 seconds. Autoreject was then
applied to identify and remove artefacts and bad segments as explained
in paragraph 2.2.1, and mne-ICALabel was applied to remove non-neural
artefacts. Lastly, autoreject was applied again to handle any remaining
artefacts and bad segments. This resulted in a pre-processed EEG signal as
shown in Figure 3.5 and 3.7. The segments were then split by every channel,
resulting in separate epochs containing data from one channel with a size
of [1000] data points.
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3.2 Signal Pre-processing

Figure 3.3: The EEG signals presented were selected randomly from the Cali-
fornia dataset. Figures 3.4 and 3.5 depict data from the same PD subject, while
Figures 3.6 and 3.7 represent data from a non-PD subject.

Figure 3.4: A 10-second EEG
signal from a PD subject that
contains 20 channels.

Figure 3.5: Pre-processed EGG signal from
a PD subject that contains 20 segments and
20 channels.

Figure 3.6: A 10-second EEG
signal from a non-PD subject
that contains 20 channels.

Figure 3.7: Pre-processed EGG signal from
a non-PD subject that contains 20 segments
and 20 channels.

3.2.3 Time-frequency Transformation

For a time-frequency transformation, the epochs are normalized to convert
to a target range between 0 and 1 and saved separately as a .npy file. Figure
3.5 and Figure 3.7 show the transformed EEG signal of a PD and non-PD
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subject, respectively.

3.2.4 Continuous Wavelet Transformation

Each epoch is transformed into a spectrogram using a CWT.[63] The trans-
formation produces a spectrogram of size [1000, 238, 3] as seen in the top
spectrogram in Figure 3.8. It is resized to an RGB format of [244, 244, 3]
as shown in the left spectrogram in Figure 3.8 and to [320, 320, 3] as shown
in the right spectrogram in Figure 3.8. The motivation behind converting
it to RGB is that pre-trained CNNs are primarily trained on RGB im-
ages, and since we use ImageNet, it may improve performance. Resizing to
244x244 represents a standard image format commonly used in CNNs and
typically performs better with square-shaped data, avoiding potential chal-
lenges with irregular sizes, with the added benefit of lowering the picture’s
overall size and avoiding problems with GPU capacity. Upsampling the
image to 320x320 provides more data points that may improve the model’s
learning ability.

24



3.3 Methods

Figure 3.8: The top spectrogram illustrates the original spectrogram image with
size [1000, 238, 3]. The left spectrogram illustrates the image with size [244, 244,
3], and the right spectrogram illustrates the image with size [320, 320, 3].

3.3 Methods

3.3.1 Data Splitting

The dataset was split at the subject level into training, testing, and vali-
dation sets using 5-fold CV while utilizing stratification. The stratification
parameters included the centre of origin, gender, PD and non-PD label, with
signal length further dividing subjects based on a threshold of 110 seconds.
However, stratifying on the signal length was unnecessary for the subject-
level 3D model because it used a fixed number of segments and channels per
subject. Table 3.2 illustrates the subject statistics across training, testing,
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and validation sets for each fold for the 2D models.

Table 3.2: Subject statistics across training, testing and validation sets for each
fold for the 2D models. The symbol ♀ represents the number of females.

PD Non-PD Turku California New Mexico ♀(%) Epochs

Fold 1
Training Set 31 39 19 20 31 35 (50.0) 197622
Validation Set 9 9 5 4 9 8 (44.4) 50060
Test Set 10 12 6 6 10 10 (45.5) 63338
Fold 2
Training Set 31 39 19 20 31 34 (48.6) 196084
Validation Set 9 9 5 4 9 8 (44.4) 50123
Test Set 10 12 6 6 10 11 (50.0) 64813
Fold 3
Training Set 32 38 19 20 31 33 (47.1) 199245
Validation Set 8 10 5 4 9 8 (44.4) 50002
Test Set 10 12 6 6 10 12 (54.5) 61773
Fold 4
Training Set 32 38 18 21 31 34 (48.6) 199280
Validation Set 8 10 5 4 9 8 (44.4) 49285
Test Set 10 12 7 5 10 11 (50.0) 62455
Fold 5
Training Set 32 38 19 20 31 33 (47.1) 196780
Validation Set 8 10 5 4 9 8 (44.4) 49398
Test Set 10 12 6 6 10 12 (54.5) 64842

The 5-fold CV technique split the dataset into five equal-sized boxes where
20% was used for the test set. The remaining 80% of the data were split into
train and validation sets with an 80/20 split, respectively, while utilizing
stratification. That way, the model was trained on the training set and was
validated on the validation set. After completing all epochs, the model state
was called back to the lowest validation loss. That model was evaluated
against the test set, and performance metrics were calculated. For the next
fold, the model was reset, and the test set was shifted by one box, ensuring a
different test, training, and validation set for each fold. Figure 3.9 illustrates
this with the number of subjects for the 2D and segment level 3D models.

26



3.3 Methods

Figure 3.9: A visualization of how the dataset is split into train, test and vali-
dation sets.

3.3.2 Training of the Models

Python was the programming language selected for this project, and the
open-source libraries Tensorflow [64] and Keras [65] were the building blocks
for the models. TensorFlow is a framework by Google for building and train-
ing ML models and offers the baseline to build DL applications. Whereas
Keras is a high-level neural network API that works on top of TensorFlow
and provides the interface for designing, training and testing the DL mod-
els. The training was performed on the UiS Unix Server on NVIDIA Tesla
V100-PCIE-32GB [66] GPUs.
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3.3.3 Hyper-parameters and Checkpoints

For every model, the batch size was 32 and the learning rate was 0.0001[67].
The number of epochs used per fold varied based on the model and was
selected by running each model by a large number of epochs on a single
fold to determine the optimal amount. For ResNet18 2D with and without
ImageNet, the epoch amount was 40. EEGNet was set to 100 epochs,
and both of the 3D models used 50 epochs. A threshold value of 0.5 and
categorical cross-entropy was used for all models. The softmax function was
included in the output layer for every architecture for converting raw scores
into a probability distribution between PD and non-PD. Checkpoints were
used to save the model weights for the best validation loss.

3.3.4 2D Models

The 2D CNNs used in this thesis were ResNet18 with and without Ima-
geNet and EEGNet. ResNet18 was used because it is a popular lightweight
architecture that supports ImageNet. EEGNet was used due to its designed
architecture and previous positive results for EEG.[43] Every epoch of the
EEG signal were input separately, producing one prediction for each epoch.
ResNet18 required input of [height, width, colour channels], making it com-
patible with the spectrograms of size [244, 244, 3] and [320, 320, 3] and was
used for all 2D models. The time-frequency series needed to be converted
from [1000] to [1000, 1, 1]. ResNet18 with ImageNet required RGB format,
and the time-frequency series was expanded to [1000, 1, 3] by repeating
the data for the three axes. EEGNet was designed for an input shape of
[channels, signal length, 1], making it suitable to convert the time-frequency
series to [1, 1000, 1].

3.3.5 3D Models

The 3D CNN used in this thesis was a 3D variant of ResNet18.[68] ResNet18
3D expects an input of the format [height, width, depth, colour channels],
making it possible to input a sequence of spectrograms and time-frequency
series for a subject. The motivation for 3D is that it enables the model to
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potentially identify which channels hold greater value for detecting PD. The
spectrograms of size [244, 244, 3] and [320, 320, 3] and the time-frequency
series converted to [1000, 1, 1] were stacked along the third axis to fit the
input format. This thesis combined the epochs for an EEG signal in two
ways: subject and segment level.

Subject Level 3D

For the subject level 3D model, the epochs from the 32 common channels
for 27 segments were stacked together in order of channels as illustrated in
Figure 3.10. This produces a sequence of 32× 27 = 864 2D time-frequency
series and spectrograms per subject. The reason for using a fixed segment
length was to ensure a fixed input size for the model. Using a length of
27 segments offered a reasonable signal length without excluding too many
subjects.

Segment Level 3D

For the segment level 3D model, the epochs from the 32 common channels
for one segment were stacked in order as illustrated in Figure 3.10. This
produces a sequence of 32 time-frequency series and spectrograms for one
segment. This resulted in multiple sequences per subject equal to the num-
ber of segments in the EEG signal. The motivation behind stacking the
epochs for one segment was to get more trainable data compared to the
subject level 3D model while still offering the potential for the model to
determine which channels hold greater relevance for detecting PD.

29



3.3 Methods

Figure 3.10: A visualization of the different ways to input and stack spectrograms
and time-frequency series.

3.3.6 Evaluation Metrics

The metrics used to evaluate the model’s performance were accuracy, sen-
sitivity, specificity, F1 score and AUC, as well as a plot of the confusion
matrix. For this thesis, given the nearly equal distribution of PD and non-
PD subjects, we prioritized AUC as the most relevant metric. AUC was
chosen because it measures the model’s performance at different threshold
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settings, providing a robust estimate of its effectiveness in distinguishing
between PD and non-PD. This thesis used a 5-fold CV, resulting in a set of
performance metrics for each fold. By calculating the average of these met-
rics, a more robust and unbiased estimate of the model’s true performance
can be obtained. Since every epoch of the EEG signal was input to the
2D models separately, there were equally many predictions. Similarly, for
the segment level 3D model, every input segment gave a prediction. Both
resulted in multiple predictions for a single subject. By applying a hard
threshold of 0.5 to every prediction and taking the average of these to find
the subject level prediction, as shown in equation (3.1).

Subject Level Prediction =
1

N

N∑
i=1

{
1, if Pi ≥ 0.5

0, otherwise
(3.1)

As a result, it was possible to calculate metrics for the subject level. To
gather information about the model’s ability to predict for PD for different
severity levels, separate metrics were calculated for mild PD subjects com-
pared to non-PD subjects, as well as for moderate PD subjects compared
to non-PD subjects.
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Chapter 4

Results

4.1 ResNet18 2D ImageNet

The ResNet18 2D model, pre-trained on ImageNet, predicted on epoch level,
and the subject level metrics were calculated with a hard threshold of 0.5.

4.1.1 Time-Frequency Series

Table 4.1 shows a subject level accuracy of 56.36%± 13.09% and a subject
level AUC at 0.61 ± 0.17. Figure 4.1 shows that the model, on average,
accurately predicts 9.6 out of the 12 non-PD subjects correctly and 2.8 out
of the 10 PD subjects.
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Figure 4.1: Average confusion metric across the five folds for the ResNet18 2D
model with ImageNet using time-frequency series.

Metric Value and Standard Deviation
Epoch Level Subjects Level

Accuracy 55.27%± 5.04% 56.36%± 13.09%
F1 Score 0.33± 0.20 0.25± 0.34

Sensitivity 0.33± 0.29 0.28± 0.41
Specificity 0.71± 0.28 0.80± 0.45

AUC 0.54± 0.07 0.61± 0.17

Subjects Level for:
PD Mild and Non-PD PD Moderate and Non-PD

Accuracy 60.54%± 8.35% 56.56%± 12.69%
F1 Score 0.26± 0.35 0.25± 0.34

Sensitivity 0.27± 0.40 0.30± 0.45
Specificity 0.80± 0.45 0.80± 0.45

AUC 0.65± 0.19 0.62± 0.21

Table 4.1: Average values and standard deviations for the ResNet18 2D model
with ImageNet using time-frequency series.
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4.1.2 Spectrogram of Size 244x244

Table 4.2 shows a subject level accuracy of 51.82% ± 4.07% and an AUC
score of 0.64±0.10. Figure 4.2 shows that the model, on average, accurately
predicts 6.8 out of the 12 non-PD subjects correctly and 4.6 out of 10 PD
subjects.

Figure 4.2: Average confusion metric across the five folds for the ResNet18 2D
model with ImageNet using spectrograms of size 244x244.

34



4.1 ResNet18 2D ImageNet

Metric Value and Standard Deviation
Epoch Level Subjects Level

Accuracy 56.10%± 4.96% 51.82%± 4.07%
F1 Score 0.46± 0.05 0.42± 0.17

Sensitivity 0.46± 0.15 0.46± 0.29
Specificity 0.64± 0.19 0.57± 0.30

AUC 0.58± 0.05 0.64± 0.10

Subjects Level for:
PD Mild and Non-PD PD Moderate and Non-PD

Accuracy 54.33%± 11.10% 52.75%± 15.82%
F1 Score 0.41± 0.09 0.20± 0.20

Sensitivity 0.50± 0.22 0.40± 0.45
Specificity 0.57± 0.30 0.57± 0.30

AUC 0.67± 0.10 0.58± 0.17

Table 4.2: Average values and standard deviations for the ResNet18 2D model
with ImageNet using spectrograms of size 244x244.

4.1.3 Spectrogram of Size 320x320

Table 4.3 shows a subject level accuracy of 60.91% ± 2.49% and an AUC
score of 0.61±0.08. Figure 4.3 shows that the model, on average, accurately
predicts 9.4 out of the 12 non-PD subjects correctly and 4 out of 10 PD
subjects.
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Figure 4.3: Average confusion metric across the five folds for the ResNet18 2D
model with ImageNet using spectrograms of size 320x320.

Metric Value and Standard Deviation
Epoch Level Subjects Level

Accuracy 56.51%± 5.49% 60.91%± 2.49%
F1 Score 0.40± 0.13 0.45± 0.17

Sensitivity 0.38± 0.19 0.40± 0.21
Specificity 0.70± 0.18 0.78± 0.17

AUC 0.57± 0.08 0.61± 0.08

Subjects Level for:
PD Mild and Non-PD PD Moderate and Non-PD

Accuracy 64.09%± 3.32% 70.83%± 12.46%
F1 Score 0.37± 0.23 0.42± 0.05

Sensitivity 0.39± 0.28 0.43± 0.09
Specificity 0.78± 0.17 0.78± 0.17

AUC 0.63± 0.10 0.60± 0.14

Table 4.3: Average values and standard deviations for the ResNet18 2D model
with ImageNet using spectrograms of size 320x320.

36



4.2 ResNet18 2D No-ImageNet

4.2 ResNet18 2D No-ImageNet

The ResNet18 model without ImageNet was predicted on the epoch level,
and the subject level metrics were calculated with a hard threshold of 0.5.

4.2.1 Time-Frequency Series

Table 4.4 has a subject level accuracy reaching 60.91% ± 10.46%. With
subject level AUC at 0.65 ± 0.06. Figure 4.4 shows that the model, on
average, accurately predicts 9.2 out of the 12 non-PD subjects correctly
and 4.2 out of 10 PD subjects.

Figure 4.4: Average confusion metric across the five folds for the ResNet18 2D
model without ImageNet using time-frequency series.
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Metric Value and Standard Deviation
Epoch Level Subjects Level

Accuracy 56.68%± 3.61% 60.91%± 10.46%
F1 Score 0.41± 0.14 0.43± 0.28

Sensitivity 0.39± 0.20 0.42± 0.30
Specificity 0.70± 0.18 0.77± 0.29

AUC 0.58± 0.03 0.65± 0.06

Subjects Level for:
PD Mild and Non-PD PD Moderate and Non-PD

Accuracy 62.92%± 10.29% 70.92%± 20.28%
F1 Score 0.36± 0.22 0.41± 0.31

Sensitivity 0.39± 0.30 0.43± 0.09
Specificity 0.77± 0.29 0.77± 0.29

AUC 0.69± 0.04 0.57± 0.24

Table 4.4: Average values and standard deviations for the ResNet18 2D model
without ImageNet using time-frequency series.

4.2.2 Spectrogram of Size 244x244

Table 4.5 shows a subject level accuracy of 60.00% ± 11.77% and an AUC
score of 0.64±0.09. Figure 4.5 shows that the model, on average, accurately
predicts 8.2 out of the 12 non-PD subjects correctly and 5 out of 10 PD
subjects.
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Figure 4.5: Average confusion metric across the five folds for the ResNet18 2D
model without ImageNet using spectrograms of size 244x244.

Metric Value and Standard Deviation
Epoch Level Subjects Level

Accuracy 57.15%± 4.71% 60.00%± 11.77%
F1 Score 0.41± 0.13 0.48± 0.27

Sensitivity 0.38± 0.18 0.50± 0.33
Specificity 0.71± 0.18 0.68± 0.40

AUC 0.58± 0.04 0.64± 0.09

Subjects Level for:
PD Mild and Non-PD PD Moderate and Non-PD

Accuracy 60.94%± 16.63% 65.42%± 25.23%
F1 Score 0.40± 0.23 0.43± 0.29

Sensitivity 0.47± 0.33 0.58± 0.37
Specificity 0.68± 0.40 0.68± 0.40

AUC 0.65± 0.06 0.63± 0.20

Table 4.5: Average values and standard deviations for the ResNet18 2D model
without ImageNet using spectrograms of size 244x244.
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4.2.3 Spectrogram of Size 320x320

Table 4.6 shows a subject level accuracy of 59.09% ± 6.43% and an AUC
score of 0.63±0.10. Figure 4.6 shows that the model, on average, accurately
predicts 7.4 out of the 12 non-PD subjects correctly and 5.6 out of 10 PD
subjects.

Figure 4.6: Average confusion metric across the five folds for the ResNet18 2D
model without ImageNet using spectrograms of size 320x320.
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Metric Value and Standard Deviation
Epoch Level Subjects Level

Accuracy 56.36%± 4.56% 59.09%± 6.43%
F1 Score 0.47± 0.06 0.54± 0.10

Sensitivity 0.47± 0.14 0.56± 0.24
Specificity 0.64± 0.16 0.62± 0.26

AUC 0.57± 0.05 0.63± 0.10

Subjects Level for:
PD Mild and Non-PD PD Moderate and Non-PD

Accuracy 62.92%± 11.23% 58.24%± 11.21%
F1 Score 0.59± 0.15 0.51± 0.15

Sensitivity 0.63± 0.25 0.55± 0.30
Specificity 0.61± 0.33 0.63± 0.30

AUC 0.68± 0.17 0.63± 0.13

Table 4.6: Average values and standard deviations for the ResNet18 2D model
without ImageNet using spectrograms of size 320x320.
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4.3 Subject Level ResNet18 3D

For the subject level ResNet18 3D model, the epochs from the 32 common
channels for 27 segments were stacked together in order of channels, produc-
ing a sequence of 32× 27 = 864 2D time-frequency series and spectrograms
per subject. Therefore, the prediction was on the subject level.

4.3.1 Time-Frequency Series

Table 4.7 shows a subject level accuracy of 55.00% ± 3.54% and an AUC
score of 0.41±0.15. Figure 4.7 shows that the model, on average, accurately
predicts 10.4 out of the 11 non-PD subjects correctly and 0.6 out of 9 PD
subjects.

Figure 4.7: Average confusion metric across the five folds for the subject level
ResNet18 3D model using time-frequency series.
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Metric Value and Standard Deviation
Subject Level

Accuracy 55.00%± 3.54%
F1 Score 0.09± 0.19

Sensitivity 0.07± 0.15
Specificity 0.95± 0.08

AUC 0.41± 0.15

Subjects Level for PD Mild and Non-PD
Accuracy 65.15%± 4.07%
F1 Score 0.08± 0.18

Sensitivity 0.07± 0.15
Specificity 0.95± 0.08

AUC 0.43± 0.16

Subjects Level for PD Moderate and Non-PD
Accuracy 73.62%± 2.93%
F1 Score 0.07± 0.15

Sensitivity 0.07± 0.15
Specificity 0.95± 0.08

AUC 0.37± 0.15

Table 4.7: Average values and standard deviations for the subject level ResNet18
3D model using time-frequency series.

4.3.2 Spectrogram of Size 244x244

Table 4.8 shows a subject level accuracy of 67.00% ± 7.58% and an AUC
score of 0.68±0.09. Figure 4.8 shows that the model, on average, accurately
predicts 9.2 out of the 11 non-PD subjects and 4.2 out of 9 PD subjects.
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Figure 4.8: Average confusion metric across the five folds for the subject level
ResNet18 3D model using spectrograms of size 244x244.

Metric Value and Standard Deviation
Subjects Level

Accuracy 67.00%± 7.58%
F1 Score 0.55± 0.11

Sensitivity 0.47± 0.14
Specificity 0.84± 0.13

AUC 0.68± 0.09

Subjects Level for PD Mild and Non-PD
Accuracy 72.43%± 11.90%
F1 Score 0.56± 0.14

Sensitivity 0.51± 0.11
Specificity 0.84± 0.13

AUC 0.69± 0.12

Subjects Level for PD Moderate and Non-PD
Accuracy 73.71%± 8.75%
F1 Score 0.34± 0.33

Sensitivity 0.43± 0.43
Specificity 0.84± 0.13

AUC 0.68± 0.19

Table 4.8: Average values and standard deviations for the subject level ResNet18
3D model using spectrograms of size 244x244.
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4.3 Subject Level ResNet18 3D

4.3.3 Spectrogram of Size 320x320

Table 4.9 shows a subject level Accuracy of 57.00%± 10.36% and an AUC
score of 0.57±0.09. Figure 4.9 shows that the model, on average, accurately
predicts 9 out of the 11 non-PD subjects correctly and 2.4 out of 9 PD
subjects.

Figure 4.9: Average confusion metric across the five folds for the subject level
ResNet18 3D model using spectrograms of size 320x320.
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4.3 Subject Level ResNet18 3D

Metric Value and Standard Deviation
Subjects Level

Accuracy 57.00%± 10.36%
F1 Score 0.30± 0.28

Sensitivity 0.27± 0.31
Specificity 0.82± 0.14

AUC 0.57± 0.09

Subjects Level for PD Mild and Non-PD
Accuracy 64.93%± 6.03%
F1 Score 0.32± 0.25

Sensitivity 0.31± 0.31
Specificity 0.82± 0.14

AUC 0.56± 0.13

Subjects Level for PD Moderate and Non-PD
Accuracy 66.95%± 11.30%
F1 Score 0.17± 0.23

Sensitivity 0.20± 0.30
Specificity 0.82± 0.14

AUC 0.62± 0.17

Table 4.9: Average values and standard deviations for the subject level ResNet18
3D model using spectrograms of size 320x320.
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4.4 Segment Level ResNet18 3D

4.4 Segment Level ResNet18 3D

The segment level ResNet18 3D model predicted on the segment level with
32 common channels, and therefore, the subject level metrics were calcu-
lated with a hard threshold of 0.5.

4.4.1 Time-Frequency Series

Table 4.10 shows a subject level accuracy of 54.55% ± 8.51% and an AUC
score of 0.60±0.13. Figure 4.10 shows that the model, on average, accurately
predicts 6.6 out of the 12 non-PD subjects correctly and 5.4 out of 10 PD
subjects.

Figure 4.10: Average confusion metric across the five folds for the segment level
ResNet18 3D model using time-frequency series.
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4.4 Segment Level ResNet18 3D

Metric Value and Standard Deviation
Segment Level Subjects Level

Accuracy 53.29%± 4.21% 54.55%± 8.51%
F1 Score 0.48± 0.11 0.47± 0.23

Sensitivity 0.53± 0.24 0.54± 0.39
Specificity 0.54± 0.19 0.55± 0.28

AUC 0.55± 0.07 0.60± 0.13

Subjects Level for:
PD Mild and Non-PD PD Moderate and Non-PD

Accuracy 54.14%± 6.09% 51.53%± 11.41%
F1 Score 0.42± 0.28 0.45± 0.23

Sensitivity 0.50± 0.43 0.55± 0.42
Specificity 0.54± 0.33 0.50± 0.23

AUC 0.59± 0.10 0.55± 0.16

Table 4.10: Average values and standard deviations for the segment level
ResNet18 3D model using time-frequency series.

4.4.2 Spectrogram of Size 244x244

Table 4.11 shows a subject level accuracy of 51.82%± 10.46% and an AUC
score of 0.57±0.10. Figure 4.11 shows that the model, on average, accurately
predicts 5.6 out of the 12 non-PD subjects correctly and 5.8 out of 10 PD
subjects.
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4.4 Segment Level ResNet18 3D

Figure 4.11: Average confusion metric across the five folds for the segment level
ResNet18 3D model using spectrograms of size 244x244.

Metric Value and Standard Deviation
Segment Level Subjects Level

Accuracy 53.20%± 5.95% 51.82%± 10.46%
F1 Score 0.47± 0.11 0.52± 0.10

Sensitivity 0.50± 0.21 0.58± 0.19
Specificity 0.56± 0.18 0.47± 0.20

AUC 0.56± 0.09 0.57± 0.10

Subjects Level for:
PD Mild and Non-PD PD Moderate and Non-PD

Accuracy 58.71%± 10.73% 45.67%± 11.46%
F1 Score 0.58± 0.10 0.43± 0.18

Sensitivity 0.63± 0.17 0.50± 0.26
Specificity 0.55± 0.19 0.43± 0.18

AUC 0.62± 0.10 0.49± 0.12

Table 4.11: Average values and standard deviations for the segment level
ResNet18 3D model using spectrograms of size 244x244.
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4.4 Segment Level ResNet18 3D

4.4.3 Spectrogram of Size 320x320

Table 4.12 shows a subject level accuracy of 52.73% ± 6.89% and an AUC
score of 0.53±0.04. Figure 4.12 shows that the model, on average, accurately
predicts 8.2 out of the 12 non-PD subjects correctly and 3.4 out of 10 PD
subjects.

Figure 4.12: Average confusion metric across the five folds for the segment level
ResNet18 3D model using spectrograms of size 320x320.
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4.4 Segment Level ResNet18 3D

Metric Value and Standard Deviation
Segment Level Subjects Level

Accuracy 51.49%± 2.57% 52.73%± 6.89%
F1 Score 0.32± 0.18 0.31± 0.29

Sensitivity 0.31± 0.22 0.34± 0.32
Specificity 0.68± 0.20 0.68± 0.30

AUC 0.53± 0.03 0.53± 0.04

Subjects Level for:
PD Mild and Non-PD PD Moderate and Non-PD

Accuracy 55.38%± 8.25% 53.02%± 10.81%
F1 Score 0.33± 0.31 0.33± 0.31

Sensitivity 0.35± 0.34 0.39± 0.36
Specificity 0.69± 0.28 0.65± 0.31

AUC 0.56± 0.06 0.54± 0.11

Table 4.12: Average values and standard deviations for the segment level
ResNet18 3D model using spectrograms of size 320x320.
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4.5 EEGNet 2D

4.5 EEGNet 2D

The EEGNet 2D model made predictions on the epoch level and the subject
level metrics were calculated with a hard threshold of 0.5.

4.5.1 Time-Frequency Series

Table 4.13 shows subject level accuracy at 64.55% ± 8.74% and an AUC
score at 0.67±0.08, meaning it is the best-performing time-frequency model
tested. Figure 4.13 shows that the model, on average, accurately predicts
9.8 out of the 12 non-PD subjects correctly and 4.4 out of 10 PD subjects.

Figure 4.13: Average confusion metric across the five folds for the EEGNet 2D
model using time-frequency series.
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4.5 EEGNet 2D

Metric Value and Standard Deviation
Epoch Level Subjects Level

Accuracy 58.70%± 4.66% 64.55%± 8.74%
F1 Score 0.46± 0.07 0.51± 0.13

Sensitivity 0.43± 0.13 0.44± 0.19
Specificity 0.71± 0.15 0.82± 0.27

AUC 0.59± 0.05 0.67± 0.08

Subjects Level for:
PD Mild and Non-PD PD Moderate and Non-PD

Accuracy 65.96%± 10.34% 67.31%± 11.68%
F1 Score 0.52± 0.20 0.56± 0.12

Sensitivity 0.47± 0.27 0.46± 0.13
Specificity 0.85± 0.24 0.83± 0.24

AUC 0.69± 0.12 0.69± 0.11

Table 4.13: Average values and standard deviations for the EEGNet 2D model
using time-frequency series.

4.5.2 Spectrogram of Size 244x244

Table 4.14 shows a subject level accuracy of 60.00% ± 7.47% and an AUC
score of 0.67±0.06. Figure 4.14 shows that the model, on average, accurately
predicts 10.4 out of the 12 non-PD subjects and 2.8 out of 10 PD subjects.
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4.5 EEGNet 2D

Figure 4.14: Average confusion metric across the five folds for the EEGNet 2D
model using spectrograms of size 244x244.

Metric Value and Standard Deviation
Epoch Level Subjects Level

Accuracy 57.52%± 2.90% 60.00%± 7.47%
F1 Score 0.36± 0.10 0.32± 0.28

Sensitivity 0.30± 0.14 0.28± 0.29
Specificity 0.77± 0.14 0.87± 0.22

AUC 0.57± 0.03 0.67± 0.06

Subjects Level for:
PD Mild and Non-PD PD Moderate and Non-PD

Accuracy 63.99%± 11.21% 59.13%± 9.17%
F1 Score 0.34± 0.36 0.28± 0.30

Sensitivity 0.32± 0.37 0.25± 0.29
Specificity 0.88± 0.19 0.88± 0.22

AUC 0.73± 0.08 0.67± 0.07

Table 4.14: Average values and standard deviations for the EEGNet 2D model
using spectrograms of size 244x244.
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4.5 EEGNet 2D

4.5.3 Spectrogram of Size 320x320

Table 4.15 shows a subject level accuracy of 60.00% ± 4.97% and an AUC
score of 0.69±0.07, meaning it is the best spectrogram model tested. Figure
4.15 shows that the model, on average, accurately predicts 11 out of the 12
non-PD subjects and 2.2 out of 10 PD subjects.

Figure 4.15: Average confusion metric across the five folds for the EEGNet 2D
model using spectrograms of size 320x320.
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4.6 Best Results

Metric Value and Standard Deviation
Epoch Level Subjects Level

Accuracy 58.27%± 2.88% 60.00%± 4.97%
F1 Score 0.38± 0.08 0.30± 0.21

Sensitivity 0.32± 0.11 0.22± 0.19
Specificity 0.78± 0.10 0.92± 0.14

AUC 0.57± 0.04 0.69± 0.07

Subjects Level for:
PD Mild and Non-PD PD Moderate and Non-PD

Accuracy 62.66%± 9.61% 61.57%± 5.19%
F1 Score 0.34± 0.22 0.33± 0.21

Sensitivity 0.24± 0.18 0.24± 0.19
Specificity 0.93± 0.10 0.91± 0.14

AUC 0.76± 0.11 0.68± 0.06

Table 4.15: Average values and standard deviations for the EEGNet 2D model
using spectrograms of size 320x320.

4.6 Best Results

Table 4.16 shows a comparison of the best performing time-frequency and
spectrogram model. Both resulting from the EEGNet 2D model using time-
frequency series and spectrograms of size 320x320. The accuracy’s achieved
was 64.55% ± 8.74% and 60.00% ± 4.97%, respectively. The AUC was
0.67 ± 0.08 compared to 0.69 ± 0.07, respectively. Figures 4.16 and 4.17
show that the model, on average, accurately predicts 9.8 and 11 out of 12,
respectively, for non-PD and 4.4 and 2.2 out of 10 for PD.
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4.6 Best Results

Figure 4.16: Average confusion metric for the EEGNet
2D model using time-frequency series

Figure 4.17: Average confusion metricfor for the EEG-
Net 2D model using spectrograms of size 320x320.
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4.6 Best Results

Metric Best Run For:
Epoch Level Time-Frequency Spectrograms

Accuracy 58.70%± 4.66% 58.27%± 2.88%
F1 Score 0.46± 0.07 0.38± 0.08

Sensitivity 0.43± 0.13 0.32± 0.11
Specificity 0.71± 0.15 0.78± 0.10

AUC 0.59± 0.05 0.57± 0.04

Subjects Level
Accuracy 64.55%± 8.74% 60.00%± 4.97%
F1 Score 0.51± 0.13 0.30± 0.21

Sensitivity 0.44± 0.19 0.22± 0.19
Specificity 0.82± 0.27 0.92± 0.14

AUC 0.67± 0.08 0.69± 0.07

PD Mild and Non-PD
Accuracy 65.96%± 10.34% 62.66%± 9.61%
F1 Score 0.52± 0.20 0.34± 0.22

Sensitivity 0.47± 0.27 0.24± 0.18
Specificity 0.85± 0.24 0.93± 0.10

AUC 0.69± 0.12 0.76± 0.11

PD Moderate and Non-PD
Accuracy 67.31%± 11.68% 61.57%± 5.19%
F1 Score 0.56± 0.12 0.33± 0.21

Sensitivity 0.46± 0.13 0.24± 0.19
Specificity 0.83± 0.24 0.91± 0.14

AUC 0.69± 0.11 0.68± 0.06

Table 4.16: Average values and standard deviations for the best performing
models. Both resulting from the EEGNet 2D model using time-frequency series
and spectrograms of size 320x320.
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Chapter 5

Discussion

Our analysis revealed that EEGNet had the best 2D model performance.
The AUC scores for time-frequency series and spectrograms of sizes 244x244
and 320x320 were 0.67± 0.08, 0.67± 0.06, and 0.69± 0.07, respectively, in-
dicating that EEG has the potential for detecting PD. The AUC scores
for mild PD subjects compared to non-PD subjects and for moderate PD
subjects compared to non-PD subjects were close for both time-frequency
series and spectrograms of size 244x244 and 320x320, with AUC scores of
0.69± 0.12, 0.73± 0.08 and 0.76± 0.11, respectively, for the mild PD com-
parison, and AUC scores of 0.69± 0.11, 0.67± 0.07 and 0.68± 0.06, for the
moderate PD comparison. This suggests that the model’s predictive per-
formance across different PD severity levels remained consistent, indicating
robustness in distinguishing between PD and non-PD subjects regardless of
disease severity.

The ResNet18 2D model performed better for both time-frequency series
and spectrograms of size 244x244 and 320x320 with AUC scores of 0.65 ±
0.06, 0.64 ± 0.09 and 0.63 ± 0.10, respectively, compared to ResNet18 2D
model pre-trained on ImageNet with AUC score of 0.61± 0.17, 0.64± 0.10
and 0.61 ± 0.08. The reason could be that ImageNet does not include
relevant images of EEG signals and spectrograms. However, it did not
perform as well as EEGNet, possibly due to EEGNet’s design for EEG
signals. EEGNet is a more compact model with fewer layers, reducing
overfitting, which is better for a smaller dataset.
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Discussion

Our results show that time-frequency series as input to subject and seg-
ment level ResNet18 3D models got drastically different results with AUC
scores of 0.41 ± 0.15 and 0.60 ± 0.13, respectively. This indicates that the
smaller training set in the subject level ResNet18 3D negatively affects per-
formance. However, the performance for the spectrograms as input to the
3D models contradicts this, with the best performing 3D models with the
use of 244x244 spectrograms achieving an AUC score of 0.68 ± 0.09 and
0.57±0.10 for subject level and segment level Resnet 18 3D models, respec-
tively.

EEGNet was the best-performing model when comparing the 2D and 3D
models for the time-frequency series and the spectrograms. The spectro-
grams of size 320x320 performed the best, with an AUC score of 0.69±0.07.
Notably, the subject level ResNet18 3D model utilizing spectrograms of size
244x244 performed nearly as well as EEGNet, with an AUC of 0.68± 0.09.
While the results do not show an advantage in utilizing 3D models over 2D
models, it is worth noting that the potential performance increase with 3D
models could be bigger with a larger dataset. This is because combining
epochs in 3D models reduces the amount of training data compared to the
individual epoch input in the 2D models.

While EEGNet with spectrograms of size 320x320 achieved the highest AUC
score of 0.69 ± 0.07 among all models. For the other models, including
ResNet18 2D and 3D models, spectrograms of size 244x244 consistently
yielded higher AUC scores compared to size 320x320. This indicates that
despite the overall higher AUC score achieved by EEGNet with spectro-
grams of size 320x320, the spectrograms of size 244x244 were more effective
for other model architectures in capturing relevant features for PD detec-
tion.

Comparing our best-performing model to Kurbatskaya’s work[12], our AUC
score was marginally lower, at 0.69±0.07 compared to their 0.72. However,
our score fell short compared to the work of Sugden [11], which achieved
an AUC score of 0.88. Our model was trained on a larger dataset of 110
subjects across three centres, compared to Sugden’s model, which utilized
data from two centres with 82 subjects. However, compared to their work,
our larger dataset size and increased number of centres potentially make
our results more robust and generalizable.
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Chapter 6

Conclusion

DL has demonstrated promising capabilities in classifying PD from EEG
signals and the performance benefits of representing EEG signals as spec-
trograms for the input to DL models, underlain by the results from this the-
sis. Using EEGNet, both time-frequency series and spectrograms achieved
respectable AUC scores of 0.67± 0.08 and 0.69± 0.07, with corresponding
accuracies of 64.55% ± 8.74% and 60.00% ± 4.97%. Using ResNet18, both
with and without preset weights from ImageNet, led to AUC scores in the
low to mid 0.6. Additionally, exploration of various 3D versions of ResNet18
yielded promising results at the subject level for spectrograms, but was less
promising for the time-frequency inputs, with the best 3D model achieving
an accuracy of 67.00%±7.58% and an AUC score of 0.68±0.09. While our
comparison highlights strengths, it is important to note certain limitations.
The dataset contains few subjects, especially for the subject level ResNet18
3D model. The subjects from the California dataset, the MDS-UPDRS
score were not collected by a board-certified neurologist but by personnel
who had completed online training.[61]

6.1 Future Work

This study has shown promising results for testing different input types
against multiple different CNN models. However, there is a need for im-
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6.1 Future Work

provement, where some potential directions are as follows:

• Acquire a larger dataset.

• Experiment with different spectrogram transformation algorithms.

• Implement variable sampling of epochs to increase trainable data.

• Experiment with generating synthetic EEG data using different gen-
erative adversarial networks.

• Experiment with different augmentation methods
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