
Faculty of Science and Technology

BACHELOR’S THESIS

Study program/Specialization: Spring Semester, 2024

Bachelor’s degree in engineering / Open or Restricted Access

Data Science

Writer(s): Martin Sævareid Lauritsen, Alexander Kruke Bjugan

Faculty supervisor: Naeem Khademi

External supervisor(s):

Thesis title:

Using Deep Learning for Improved Automatic Incident Detection (AID) in Road

Tunnels

Credits: 20

Keywords: Pagenumber: 76

deep learning, deep neural networks + appendix: 79

Stavanger 15.05.2024

Abstract

Automatic Incident Detection (AID) systems in road tunnels is something
that has gotten a large amount of focus because of high response times and
the . This means that AID systems in road tunnels should be implemented
in every tunnel, and should work without the need for humans to manually
detect them. For this to be the case, existing incident detection systems
need to be updated or upgraded. This is usually done with additional im-
plementation of computer vision and/or radar. The use of radar technology
is still in its very early stages, so this thesis will focus on the computer
vision part.
Our thesis is a continuation of a previous thesis with closely the same goal,
to improve and test different image enhancement methods, object detection
methods and object tracking methods. It will take a different standpoint
than to the previous one with different statistical evaluations and other
methods. This will also have a greater implementation and look at queue
detection. And it will conclude with a overview of the models and methods
with statistics and limitations.

i

Contents

1 Introduction 1

1.1 Background . 1

1.2 Automatic Incident Detection (AID) 1

1.2.1 Comparative . 2

1.2.2 Statistical . 2

1.2.3 Traffic-model-based 3

1.2.4 Artificial-model-based 3

1.2.5 Mixed models . 4

1.3 Challenges . 4

1.4 Objectives . 5

2 Related Work 6

3 Theory 8

3.1 Image enhancement methods 8

ii

CONTENTS

3.1.1 Gray level transformation 8

3.1.2 Histogram equalization 9

3.1.3 Retinex . 10

3.1.4 Mask . 12

3.2 Artificial Neural Networks 12

3.2.1 Inner workings of an Artificial Neural Network . . . 13

3.3 Convolutional Neural Networks 14

3.3.1 Layers . 15

3.3.2 Hyperparameters and filter 16

3.4 Deep Neural Network . 18

3.5 Object Detection . 19

3.6 YOLO . 19

3.6.1 YOLOv5 . 19

3.6.2 YOLOv7 . 19

3.6.3 YOLOv8 . 19

3.7 Object Tracking . 21

3.8 Deep SORT . 21

3.9 DBScan . 23

4 Approach 27

iii

CONTENTS

4.1 Tools . 27

4.1.1 Roboflow . 27

4.1.2 OpenCV . 27

4.1.3 StreamCapture . 28

4.2 Limitations . 29

4.2.1 Dataset . 29

4.2.2 Available Source code 29

4.2.3 GPU resources . 30

4.3 Datasets . 30

4.3.1 Dataset distribution 30

4.3.2 Preparation of self annotated dataset 31

4.4 Image Enhancements . 31

4.5 Object Detection . 31

4.5.1 YOLOv5 . 32

4.5.2 YOLOv7 . 32

4.5.3 YOLOv8 . 33

4.6 Tracking with DeepSORT 34

4.7 Queue tracking . 34

4.7.1 Queue Definition . 34

4.7.2 Lane Separation . 36

iv

CONTENTS

4.7.3 Approaches . 38

4.7.4 Development Challenges 39

4.7.5 Possible improvements 40

4.8 Improvements . 41

4.8.1 Session Configurations 41

4.8.2 JSON formatting . 43

4.9 Performance evaluation . 43

4.9.1 Evaluating the model 43

4.9.2 Statistics Analysis 46

4.9.3 Graphing evaluations 47

5 Discussions and Results 50

5.1 Image Enhancements methods 50

5.2 Object Detection . 51

5.3 Object Tracking . 51

5.4 Queues . 51

5.4.1 Camera Placement 52

5.5 Graph Analysis . 52

5.5.1 Confusion matrix . 52

5.5.2 Incident analysis graph 54

v

CONTENTS

5.5.3 Time analysis . 55

5.5.4 System load analysis 55

5.5.5 Heatmap . 56

5.6 Model Improvements . 56

5.7 Further work . 56

6 Conclusion 70

Vedlegg 81

A GitHub repository 81

B Code excerpts 82

vi

Chapter 1

Introduction

1.1 Background

In 2017 the Norwegian road authority presented their project for 0-goal of
incidents in road tunnels [1].The consequences of incidents in road tunnels
can often be more severe then normal accidents as they take place in con-
fined spaces where they easily can escalate to larger accidents. For this
reason it is important that we utilize strong and highly capable technology
systems in tunnels, so that the "0-goal" can be achieved.

1.2 Automatic Incident Detection (AID)

Automatic Incident Detection (AID) systems are systems that automati-
cally detect when incidents occur and immediately alerts the operator of
traffic incidents. Several AID systems rely on congestion, vehicle speed,
traffic data, such as flow, and so forth, to decide if an incident has occurred.
This data is gathered by use of technologies such as inductive loops, CCTV,
radar, Bluetooth, etc.
A AID system that has good performance should be able to detect most
incidents that may occur in road tunnels. Incidents that appear in tunnels
can be grouped in these categories:

1

1.2 Automatic Incident Detection (AID)

• Stopped vehicles

• Wrong way drivers

• Pedestrians

• Objects on road

• Fire and smoke

• Queue

Moreover, AID systems are in general divided into five categories: compara-
tive, statistical, traffic-model-based, artificial-intelligence-based, and mixed
models. [2, p.1]

1.2.1 Comparative

Comparative systems use multiple thresholds depending on traffic to detect
incidents. These thresholds are often based on an increase in a upstream
loop detector and a decrease in a downstream loop detector following an
incident. [3, p.1] California algorithms and filtering algorithms are some of
the more popular ones. Take the California algorithm which tests for an
incident using 3 tests or thresholds using occupancy on 2 loop detectors ad-
jacent one another. [4, p.10] If upstream occupancy grows and downstream
occupancy shrinks it could imply that a incident has taken place. [5, p.1-2]

1.2.2 Statistical

A statistical algorithm is an algorithm that aims to predict the flow of traffic
in two steps. Firstly it uses historical data to predict traffic-flow parameters.
It then takes the predicted traffic-flow parameters based on the historical
data, and compares it to current gathered traffic-flow parameters. [5, p.
1-2] If the first value diverges to much from the currently measure value,
an incident alarm is proclaimed. One of the earliest of these algorithms
is the standard normal deviate model. It takes the mean and standard
deviation to calculate standardized values for the traffic. When the traffic

2

1.2 Automatic Incident Detection (AID)

values diverge to much from the predicted values, then an incident alarm
is proclaimed.[2, p. 1] Other big algorithms in this category include time
series and filtering. [5, p. 1-2]

Standard Normal Deviate Algorithm
The Standard Normal Deviate Algorithm has proven to be a most effective
AID system, and was used and tested in study done in Hong Kong[6]. This
can be credited to it being easy to calibrate and having good transferability.
The underlying principle being that a sudden change in a particular traffic
parameter will be an indication of an incident. [6, p. 841]

1.2.3 Traffic-model-based

Traffic-model-based algorithms use advanced traffic-flow theories such as
relationship between occupancy and volume to determine incidents. It uses
the measurements from upstream and downstream loop detectors to deter-
mine traffic states like congested, uncongested and incident [5, p.] [3, p.
]. An algorithm of this kind is the McMaster algorithm, and is based on
the catastrophic theory. Because of traffic flow is an infinite dimension,
nonlinear, stochastic, time variant and complicated dynamic system, it is
difficult to specify. Hence it a traffic-model-based algorithm is rarely used
to detect incidents.[5, p. 2]

1.2.4 Artificial-model-based

Artificial-model-based algorithms use historical data from both conditions
with an incident and with no incident to classify traffic patterns. The
increase in computational video image processing has made video-based
accident detection a more and more viable option to standard loop detectors.
[3, p. 1]

Fuzzy algorithms
Fuzzy algorithms are effective and helpful when data is difficult to collect
or when there is not enough data. They use fuzzy logic, the concept of
fuzzy boundary, and change in the occupancy or speed-density relations of
two adjacent loop detectors. They are as effective as they are because of

3

1.3 Challenges

their high robustness and their ability to overcome the boundary condition
problem that normal threshold-based methods have inherited.[5, p. 2]

Neural Network Algorithms
Neural Network algorithms use historical data for training to recognize
traffic patterns with incident and incident-free states. These algorithms
are generally easier to use and better for real-time detection compared to
model-based algorithms. They do however have downsides such as hav-
ing a slow state of convergence, having difficult to understand operation
meanings, caused by it being a black-box approach and them needing large
historical datasets to be able to function sufficiently. Without large and
wide datasets it will be no better than traditional algorithms.[5, p. 2]

Image-Based Processing Algorithms
Image-Based Processing algorithms extract information of traffic parame-
ters from video sequence taken by video cameras by using computer vision
and image-based processing technology, then verify and detect when traffic
incident occur.[5, p. 2]

1.2.5 Mixed models

Mixed models use multiple different algorithms combined for detecting in-
cidents. One of the most well known in this category is the Minnesota
algorithm which combines statistical and comparative algorithms. [2, p. 1]

1.3 Challenges

There are is a lot of challenges to AID systems in road tunnels. How much
light there is can affect the accuracy of detections a significant amount. It
can introduce shadows and noise which in turn affects the calibration which
can give false detections. The video camera lens can get dirty which af-
fects contrast and loss in image quality, that also can give false detections.
Outside interference is not the only factor either. If the video camera has
low frame rate or resolution, then detection accuracy is further lowered.[7]
Other factors that heavily implicates AID systems also include environmen-

4

1.4 Objectives

tal factors. These environmental factors include snow, rain, shadows and
glare. Because of these factors the system needs to be able to detect them
and adjust for them.[8]

1.4 Objectives

The main objectives of automatic incident detection systems is to prevent
incidents from happening, or if mentioned incident occurs, prevent them
from escalating further. Because of the fast development of machine learning
and computer vision, these systems have become easier to implement and
can usually be installed in already existing infrastructure. Infrastructure
that as an example has been using for basic information collecting with
traffic monitoring purposes.[9]
Most of already existing systems primarily use simpler detection techniques
such as inductive loops, while vision-based automatic incident detection
still has great unexplored potential. The amount of AID systems being
developed today is growing steadily with most of its focus being on highway
roads and intersections, while focus on AID systems for use in tunnels is still
lacking. Being based on a previous thesis, this thesis aims to further explore
and improve current systems in a similar way to the previous one. That
is, giving further recommendations for improving detection rate, decreasing
false positives and general performance, with more statistics as base.

5

Chapter 2

Related Work

Approaches and methods to incident detection comes in many different fla-
vors. AID systems today collect data from traffic cameras, dynamic sensors
and static sensors. Dynamic sensors are commonly fitted to probe vehi-
cles to generate a continuous source of data, while static sensors typically
include inductive loops.[10] Traffic camera data can be used with machine
learning and computer vision to further increase performance of current
AID systems and reduce the amount of false alarms. Research has been
done that show how a reduction in reaction time for incidents significantly
reduce mortality rate and also reduces risk of further secondary incidents.
It can also reduce the amounts of delay caused by incidents. [2, p. 1]
With the expanse of video surveillance, newer and better AID systems can
be implemented. These new AID systems can better gather more informa-
tion with the use of video, and can with that data figure out what counts
as normal behavior. This normal behavior helps the system learn or detect
anomalies. Anomalies usually rooted in the interactions between entities
such as vehicles, pedestrians and environment. [11, p. 1] These anomalies
come in three classes, point anomalies, contextual anomalies and collective
anomalies. Point anomalies is usually a data point that strays far from the
usual data distribution. An example of this type is a car that is stopped in
a usually busy road. Contextual anomalies are related to data that could
be normal in some context, but not in the current one. An example for
this type of anomaly is a biker that is driving faster than the surrounding
traffic. Collective anomalies are when a collection of data instances cause

6

Related Work

an anomaly. This can for example be a group of people suddenly chang-
ing their behavior in short period of time. One of the biggest issues with
detecting anomalies lies with how wide the boundary between normal and
anomalous is, and where the line between them lies. The availability of
collect training data and validation also greatly affects the performance of
the anomaly detection. [11, p. 4]
Some studies in this field include the use of a crash detection framework
that is based on three main components. Firstly the use of the Retinex
image enhancement algorithm being used to enhance image quality. Then
they use YOLOv3, which is a object detection algorithm know for its real-
time performance, and that can detect vehicles, pedestrians and bicyclists.
And lastly use a decision tree-based algorithm to determine various crash
scenarios in mixed traffic flow environments. [12, p. 2]

A study on real-time wrong direction detection [13] has tested multiple de-
tection methods and tracking methods with validation. In the study, meth-
ods such as Background Subtraction, optical flow, convolutional neural net-
work (CNN)-based and different tracking methods was tested. Background
Subtraction a technique that applies a foreground mask for static cameras.
Background subtraction have already been implemented in computer vi-
sion libraries such as OpenCV, where they have 2 methods implemented.
The k-nearest neighbour (KNN) algorithm and the Gaussian mixture-based
background/foreground segmentation algorithm (MOG2). This method is
very sensitive to changes in the lighting conditions, and would not be suited
for the requirements of the study.
There is also the method of optical flow, which is the pattern learning of
a moving object. Optical flow is a machine learning method with the idea
being to presume that the color or brightness of a pixel remains consis-
tent despite being shifted from one frame to another. It also assumes that
the distance from frame-to-frame shifting is local or small. The most widely
uses version of optical flow is called Lucas-Kanade method. The optical flow
method suffers when brightness intensity happens or with object occlusion.
The study ended up using a combination of YOLOv3 and a linear quadratic
equation to detect and track vehicles, which showed excellent performance
of 91% accuracy of wrong way driving. [13]

7

Chapter 3

Theory

3.1 Image enhancement methods

Image enhancement methods in computer vision are often functions or for-
mulas created to manipulate pixel values such that detection become easier
and more reliable.

3.1.1 Gray level transformation

Gray level image transformation is a image enhancement technique that
transforms the gray value of pixels into other gray values by the use of a
mathematical function. There are two distinct types of this method. These
are gray linear transformations and gray non-linear transformations. Linear
stretching is one of the fundamental methods in gray linear transformations
and has the following function:

g(x, y) = C · f(x, y) +R (3.1)

where f(x, y) and g(x, y) represent the input and output images, respec-
tively, and C and R are the coefficients of the linear transformation. This
transforms the dynamic range of the image to enhance brightness and con-
trast.

8

3.1 Image enhancement methods

For non-linear transformations the main purpose is to enhance the image
by the use of non-linear mathematical functions. A logarithmic transfor-
mation, for example, implies that the input image values and output image
values have a logarithmic relationship for each pixel. This is quite useful in
a case where the image is extremely dark as it can stretch the lower gray val-
ues pixels while compressing the dynamic range of higher gray value pixels.
A classic formula of this kind is:

g(x, y) = log(1 + c× f(x, y)) (3.2)

where c is a control parameter. Some other functions of the non-linear kind
include gamma functions. [14, p. 3-4]

3.1.2 Histogram equalization

A histogram is a graphical representation that offers a comprehensive view
of an image’s intensity distribution. It depicts pixel values, typically ranging
from 0 to 255 on the X-axis, against the number of pixels on the Y-axis. An-
alyzing an image’s histogram gives insight into its contrast, brightness and
intensity distribution.[15] Histogram equalization is a image enhancement
method that uses the cumulative distribution function (CDF) to adjust
output gray levels to have a probability density function that resemble a
uniform distribution. This can effectively make details that are hidden, be-
cause of high contrast and high dynamic range, reappear, and thus improve
the visual effect of the input image. [14, p. 5]

Figure 3.1: Histogram examples [14, p. 5]

9

3.1 Image enhancement methods

3.1.3 Retinex

Retinex is a image enhancement technique that is designed to reduce the
influence of illumination to enhance sharpness, color consistency, large dy-
namic range compression and high color fidelity of images. Based on figure
3.2 an image can be expressed as the product of a reflection component and
an illumination component:

I(x, y) = R(x, y)× L(x, y) (3.3)

where R(x, y) is the reflection component, and L(x, y) is the reflective char-
acteristics of the object surface. I(x, y) is the received image. In figure 3.3
the general process of the Retinex algorithm is shown.

Figure 3.2: Light reflection model [14, p. 8]

Figure 3.3: General process of the Retinex algorithm [14, p. 8]

10

3.1 Image enhancement methods

Retinex_SSR

Retinex_SSR stands for single-scale Retinex, and is essentially an algorithm
that obtains a reflection image by estimating the ambient brightness by this
formula:

logRi(x, j) = logIi(x, y)− log[G(x, y) ∗ Ii(x.y)] (3.4)

In the formula I(x,y) represents the input image, R(x,y) represents the
reflection image, i represents the various color channels, (x,y) represents the
position of the pixel in the image, G(x,y) represents the Gaussian surround
function, and * represents the convolution operator. The formula for the
Gaussian surround function is:

G(x, y) = Ke

(
−x2+y2

σ2

)
(3.5)

where σ is a scale parameter. [14, pp. 8–9]

Retinex_MSR

Retinex MSR, also called multiscale Retinex, is a method that extends the
single-scale algorithm for maintaining balance between the dynamic range
compression and color consistency. It is expressed like this:

MSR = logRi(x, y) =
k=1∑
N

ωklogIi(x, y)− log[Gk(x, y) ∗ Ii(x, y)] (3.6)

N∑
k=1

ωk = 1 (3.7)

where i represents the three color channels; k represents the Gaussian sur-
round scales; N is the number of scales, generally 3; and the ω parameters
are the scale weights. The biggest benefit of multiscale compared to single-
scale is that it can take advantage of multiple scales. This gives the output
enhanced details and contrast, and also gives better color consistency and
improved visual effect. [14, p. 9]

11

3.2 Artificial Neural Networks

3.1.4 Mask

Masking is an image enhancement method used to restrict object detections
to a predetermined desired area of the input image. The this thesis masks
were created in-part using the image alteration software called Krita [16] to
draw black and white areas. White areas represents road while black areas
represents tunnel walls and any other part where vehicle detection would
not make sense.
The pseudo-code for masking would look something like this:

1 if image_enhancement == "mask":
2 frame = frame - mask

3.2 Artificial Neural Networks

Neural networks know more generally as Artificial Neural Networks (ANN)
or Simulated Neural Networks (SNN) is key to deep learning algorithms.
Taking inspiration from the functionality provided by biological neurons
and how they signal each other, ANN’s uses neurons to compute a output
value based on the input value and the specific algorithm defined for that
neuron. The accuracy of an Artificial neural network is dependent on the
training conducted prior to its deployment. [17]

A Neural Network works by comprising neurons into layers and combin-
ing layers to form models which are known as Neural Networks. The layers
used are what defines what type of neural network you are creating. An
Artificial Neural Network is often compared with regular neural networks
as they are built up by the same layer structure. These types of neural
networks will contain the following layers:

1. One Input Layer

2. One or multiple hidden layers

3. One Output Layer

12

3.2 Artificial Neural Networks

Each of these layers can contain multiple neurons where each neuron’s out-
put can connect to multiple other neurons in layers ahead of it[17].

3.2.1 Inner workings of an Artificial Neural Network

At the heart of each neuron is its own linear regression model. Comprised
of input data, bias / thresholds, weights and output each neuron has its
own formula that can be generalized like what we see in the equation (3.8):∑

wixi+ bias = w1x1 + w2x2 + w3x3 + bias (3.8)

The general output would follow the same pattern shown in (3.9):

f(x) = 1if
∑

w1x1 + b >= 0; 0if
∑

w1x1 + b < 0 (3.9)

After the initial input layers are constructed, individual weights are applied.
Weights are an important concept in Neural Networks as they are the defin-
ing factor to how large or small of an impact each neuron has. Weights are
applied to raise or lower the importance of a variable.
The output of each neuron are multiplied with their individual weights and
summed to determine the output of a node.

Small Cost Function:
CF =

1

2
m× (y − ŷ) (3.10)

Expanded Cost Function:

CostFunction =
1

2
m

∑
129m(i=1) × (yi − ŷi)2 (3.11)

When building and training a neural network it is important to constantly
get feedback on the accuracy and effectiveness of the algorithm. This is
where the Cost function (3.10) and the expanded function (3.11) comes
into play. The Cost Function can also be referred to as the "Mean Squared

13

3.3 Convolutional Neural Networks

Error". These functions use the following defined values to calculate the
accuracy of the neural network model:

• i represents the sample index

• ŷ is the model predicted value

• y real value

• m number of total samples

There are several ways one can train a neural network, one of the most
common ways to do so is called "feedforward". In a feedforward neural
network all values flow in one direction from input towards output. An-
other approach is "backpropagation". During backpropagation the flow of
information is reversed flowing from output to input. This allows us and by
extension the neural network itself to locate which neurons had the most ef-
fect on a wrong prediction and subsequently alter its weights and threshold.
An its among other factors that this loop of feedforward followed by back-
propagation that enables the neural networks to learn from its mistakes.
This is also where dataset bias can play a huge factor and why a diverse
dataset is necessary to develop a capable neural network[17].

3.3 Convolutional Neural Networks

CNN’s use a similar approach to ANN’s where the feedforward approach is
at the core. CNN’s are however usually used for advanced image recogni-
tion, pattern recognition and computer vision. Therefor CNN’s are highly
optimized and perform inherently superior with image, speech and audio
inputs compared to other neural networks.
The reason for CNN’s superiority is the layer composition:

• Convolutional Layer

• Pooling Layer

• Fully-Connected (FC) Layer

14

3.3 Convolutional Neural Networks

While Convolutional layers and pooling layers can alter as needed the fully-
connected layer is always the last one and therefore it is also known as the
output layer[18].

[19]

3.3.1 Layers

Convolutional layer The convolutional layer works by having a feature
detector commonly also referred to as a kernel or filter move across the
field of the input checking if specific features are present in a process called
convolution. During the runtime the weights set in the feature detector.
Each weight is fixed while the filter is moving across the dataframe (input
data) and may only be changed in between analyzing the dataframe. In
CNN’s backpropagation is typically utilized to adjust weights along with
other methods like gradient descent.

To introduce nonlinearity to the model Rectified Linear Unit (ReLU) trans-
formation is applied to the feature map after each convolution[18].

Pooling layer The pooling layer much like the convolution layer works
by having a filter move across the dataframe. However also known as down-
sampling the pooling layer’s primary objective is to reduce the amount of
parameters. The filter differs from the convolutional layer by not having
weights assigned, rather applying an aggregation function. Pooling have
two main types:

• Max Pooling

• Average Pooling

Max Pooling works by selecting the maximum value within a field and send
it to the output array. Similarly average pooling works by taking the average
of each field and send that value to the output array.

While the main objective of the pooling layer is to remove information from

15

3.3 Convolutional Neural Networks

the dataframe and therefore valuable information can be lost, the CNN
benefits from the reduced complexity, improved efficiency and the reduced
risk associated with overfitting[18].

Fully-connected layer In partially-connected layers as the convolutional
layer and the pooling layer each node does not necessarily connect to a node
in the previous layer, however in the fully-connected layer each output node
connects directly to a node in the previous layer.
The fully-connected layer takes the output of the previous layers and lever-
age a softmax activation function in order to appropriately classify inputs.
The probability produced by the fully-connected layer usually range from 0
to 1[18].

3.3.2 Hyperparameters and filter

While parameters like weights and thresholds may be adjusted during the
training process, 3 parameters called "Hyperparameter" have to be set
before running the training scenario, these hyperparameters affect all layers
in the convolutional network.

1. Number of filters

2. Stride

3. Zero-padding

Where Number of filters influences the depth of the output, Stride
defines the distance that the filter moves for each increment, and Zero-
padding which alters the filter to fit the input image and is usually only
used when the two don’t align.

Figure3.4 displays how a 2x2 filter (B) would move over a 3x3 input matrix
(A). The filter works by moving across the input matrix and evaluating the
dot products of each subsection, which produces in this case a smaller 2x2
matrix referred to as a "feature_map"[19, p. 959].

16

3.3 Convolutional Neural Networks

Figure 3.4: Visualization of a convolution on a 3x3 input matrix (A) with a 2x2
filter matrix(B)[19, p. 957]

During the convolution process border pixels contribute less then pixels
that are more centralized. To counter this effect we can use Zero-padding
to effectively add 0 values around the matrix producing a buffer zone and
allowing all pixels to contribute an equal amount. In the figure3.5 [19, p.
962]

Figure 3.5: Zero-padding visualized on a 5x5 matrix[19, p. 962]

Pooling works by either selecting the max value inside the filter or by taking
an average of the filtered area. Figure 3.6 shows how a filter of size 2x2 would
move across an input of size 6x6 (A) producing the output of 3x3 (B)[19,
p. 964].

17

3.4 Deep Neural Network

Figure 3.6: Pooling example showing a filter of size 2x2 moving across a matrix
of 6x6 (A) producing the output matrix 3x3 (B)[19, p. 964]

3.4 Deep Neural Network

Figure 3.7: Typical size difference between ANN and DNN [20]

Deep Neural Networks or DNN’s works by combining factors from both
ANN’s and CNN’s where it usually have more hidden layers than an ANN
as shown in figure 3.7 and also having the possibility of using convolutional
and pooling layers in its hidden layer section. It also differs from CNN’s by
being able to utilize dense and other specialized layers that a conventional
CNN does not have access to. Among other large models the powerful
YOLO object detection algorithm is based on the usage of deep neural
networks[21].

18

3.5 Object Detection

3.5 Object Detection

3.6 YOLO

3.6.1 YOLOv5

YOLOv5 is one of the most well known vision-based object detection mod-
els, and is known for its speed and accuracy. The "YOLO" in YOLOv5
stands for "You only look once", and is indicative of its real-time detection
ability. YOLO is a single stage deep learning algorithm that uses a convo-
lutional neural network for object detection. Because of this YOLO only
needs a single forward propagation in its neural network to do the object
detection. This gives it its very good real-time performance. The biggest
change from the earlier versions of YOLO and YOLOv5 is the addition of
the focus layer. Figure 3.8 shows the architecture of YOLOv5.[22]

3.6.2 YOLOv7

YOLOv7 is the successor of the YOLOv6 algorithm and improves upon its
predecessor in both detection accuracy and detection speed. The model
underwent training exclusively on the MS COCO dataset, starting from
scratch without using any other datasets or pre-trained weights.
It is said to be better than every other object detectors before it, with
an accuracy of 56.8% average precision (AP) within 30 FPS or higher on
Graphics Proccessing Unit (GPU) V100. [24, p. 4-5] This Figure 3.9 shows
the architecture of YOLOv7. [23, p. 21]

3.6.3 YOLOv8

YOLOv8 is the newest installment in the YOLO family. This newer version
of YOLO supports multiple vision tasks such ass object detection, segmen-
tation, pose estimation, tracking and classification. Because YOLOv8 uses
a anchor-free model with decoupled head, it can independently process ob-

19

3.6 YOLO

Figure 3.8: YOLOv5 Architecture. [23, p. 17]

20

3.7 Object Tracking

Figure 3.9: YOLOv7 Architecture

jectness, classification, and regression tasks. This allows each branch to
focus on each designated task which thereby improves its overall accuracy.
[23, p. 21-22] This Figure 3.10 shows the architecture of YOLOv8.

3.7 Object Tracking

[25]

3.8 Deep SORT

SORT stands for Simple Online Realtime Tracker, and Deep SORT is a
extension of SORT. SORT is an algorithm for object tracking in videos,
and uses 3 methods for tracking. Firstly it uses spatial data association
for tracking, the baseline for the tracking-by-detection approach, where it
takes the output of detector and uses it as input for the tracker. The
IOU tracker, or intersection-over-union tracker, associates detection results
from consecutive frames as a track using a greedy algorithm when their
intersection-over-union surpasses a specific threshold. The Kalman filter is

21

3.8 Deep SORT

Figure 3.10: Architecture of YOLOv8

22

3.9 DBScan

Figure 3.11: Architecture of Deep SORT[26]

used to estimate the location of the tracked object from last frame. The al-
gorithm takes the measurements from detections and previous track states
with uncertainty to determine the current states. New detection results are
then assigned to the determined tracks using the Hungarian algorithm.[26]
Deep SORT also uses the Kalman filter for object tracking, but it addition-
ally integrates a deep association metric derived from appearance features
learned by a deep convolutional neural network. To be able to track in-
dividual objects over multiple frames it also incorporates ID assignment.
It adopts a two-stage approach, initially generating object detections, and
subsequently linking these detections to existing tracks. [26] In Figure 3.11
we see the architecture of DeepSORT.

3.9 DBScan

DBScan (distance between nearest points) is a clustering algorithm used
to cluster datapoints together in neighborhoods. The key to DBScan is
that for any given point its neighborhood with a given radius has to con-
tain a minimum number of points[27]. The figure3.12 shows datapoints of
database 1 and 2 plotted forming clusters and noise.

DBScan provide an excellent performance and accuracy advantage when it

23

3.9 DBScan

Figure 3.12: This figure displays datapoint clusters and noise for a given database
1 and 2 [27]

comes to clustering for arbitrary shapes and potential noisy data. DBScan
requires two provided hyperparameters:

1. eps: The eps value defines the neighborhood of any given datapoint,
meaning that the distance between datapoint 1 and datapoint 2 has
to be less then the value of eps

2. MinPts: Minimal amount of points in a neighborhood to be consid-
ered a cluster

The figure3.13 shows how a DBScan would analyze a small dataset

geeksforgeeks [27] Steps used in DBScan Algorithm:

1. Find all the neighbor points within eps and identify the core points
or visited with more than MinPts neighbors.

2. For each core point if it is not already assigned to a cluster, create a
new cluster.

3. Find recursively all its density-connected points and assign them to
the same cluster as the core point. A point a and b are said to
be density connected if there exists a point c which has a sufficient
number of points in its neighbors and both points a and b are within

24

3.9 DBScan

Figure 3.13: Visualizing the DBScan algorithm on a small dataset with hyper-
parameters eps = 1 unit and MinPts = 4[27]

the eps distance. This is a chaining process. So, if b is a neighbor
of c, c is a neighbor of d, and d is a neighbor of e, which in turn is
neighbor of a implying that b is a neighbor of a.

4. Iterate through the remaining unvisited points in the dataset. Those
points that do not belong to any cluster are noise.

Pseudocode for the DBScan Clustering Algorithm3.1

Kode 3.1: Pseudocode for the DBScan Clustering Algorithm[27]
1 DBSCAN(dataset, eps, MinPts){
2 # cluster index
3 C = 1
4 for each unvisited point p in dataset {
5 mark p as visited
6 # find neighbors
7 Neighbors N = find the neighboring points ...

of p
8

9 if |N|≥MinPts:
10 N = N U N'
11 if p' is not a member of any cluster:
12 add p' to cluster C
13 }

25

3.9 DBScan

14 }

26

Chapter 4

Approach

4.1 Tools

Several different tools were used during the development and research con-
ducted during this thesis. Some like Roboflow and StreamCapture were
used for the datasets while OpenCV were vital in processing and altering
the visual inputs.

4.1.1 Roboflow

Roboflow is a multipupose tool for creating, training and deploying com-
puter vision models. For our usage we only used the data annotation feature
of the tool, as well as its simplification of turning videos into frames/images.
As for which format was used when exporting the datasets, the Tensorflow
CSV format was used.

4.1.2 OpenCV

OpenCV is the largest computer vision library in the world. [28] OpenCV
was created to define a common infrastructure for all computer vision ap-

27

4.1 Tools

plication. With over 2500 optimized algorithms OpenCV is a powerful tool
in manipulating and analyzing images [29]. In this thesis OpenCV was used
to manipulate images with different image enhancements and also display
a preview during the runtime of the analysis. OpenCV was also utilized to
draw annotation boxes over the image frame and save it to an output video
file.

4.1.3 StreamCapture

StreamCapture was developed as a support software to this bachelor thesis
[30]. The purpose of StreamCapture was to capture frames from a live feed
from traffic cameras.
StreamCapture consists of two modules: LiveCapture and ImageCapture.
LiveCapture utilizes OpenCV to access a live feed and extract frames at
certain intervals. ImageCapture utilizes http requests to extract a contin-
ually updating photo on a website. The software creates a new directory
where it stores the video file and every image frame captured. The deci-
sion to save every image frame was made to be able to adjust framerate
of the finished video at a later point in time. The application only works
correctly for macOS, Linux and any Unix based systems because of the flag
"-pattern_type glob" inside the ffmpeg command which is only recognized
by Unix systems:

1 ffmpeg_command = f"ffmpeg -framerate {args.fps} ...
-pattern_type glob -i '{img_folder_name}/image_*.jpg' ...
-c:v libx264 -pix_fmt yuv420p ...
{video_folder_name}/timelapse.mp4"

To run the software use the command:

1 py run.py -s "source of the livefeed" --spf "Interval ...
between captured frames" --fps "framerate of the ...
final video" -r "Runtime for the software in ...
seconds" --output "root directory for output files"

StreamCapture was used to create a video from a live image feed from an
Australian tunnel [31]. During the work on this thesis only the module Im-

28

4.2 Limitations

ageCapture required and there for the only module that was fully developed.

StreamCapture was ran on a raspberry pi over the course of 24 hours to
extract video footage from the Australian tunnel4.1.

Technical Specification: Raspberry Pi 4 Model B
CPU Core count 4
CPU core clock speed 1.5GHz
RAM 8GB
Architecture 64-bit

Table 4.1: Technical Specifications for a Raspberry Pi 4B 8GB[32]

4.2 Limitations

4.2.1 Dataset

The datasets being used in this thesis were sourced from the internet with
most being found on YouTube. Full comprehensive list of videos sourced
can be found at the associated google drive[33]. These videos were used to
train and enhance the object detection models.
The dataset annotated and used in the thesis by Aleksander Vedvik[34]
containing videos labeled "Video1" through 12 were used for analytic work.

4.2.2 Available Source code

As stated in the bachelor thesis written by Aleksander Vedvik[35] general
source code has not been publicly published.

29

4.3 Datasets

4.2.3 GPU resources

GPU resources used in this thesis was divided between UiS hosted GPU
farms and a 2070RTX card from NVIDIA with the Technical specifications
shown in table4.2 Having to rely on the 2070 limited some aspects of the

Technical Specification: 2070 RTX
NVIDIA CUDA-cores 2304
Boost-clock 1,71
Base-clock 1,41
Memory configuration 8 GB GDDR6
Memory Interface Width 256-bit

Table 4.2: Technical Specifications for a 2070RTX from NVIDIA[36]

training model where resolution of the dataset would be lowered to speed up
training process. Reducing the resolution subsequently reduces the accuracy
of the trained model. Limited GPU resources also affected the ability to
perform retinex_msr and retinex_ssr as the processing time was closer to
10 seconds a frame instead of multiple frames per second. Even though this
is a limitation for the thesis this would not have been practical for an in
field solution as it would require high-end architecture to be in place.

4.3 Datasets

4.3.1 Dataset distribution

The dataset comprised of videos sourced through the internet and the
dataset used by Aleksander Vedvik in his original thesis [35].
A full list of videos sourced through the internet considered for this thesis
visit the excel spreadsheet "VideoCrashDataSet.xlsx" in the google drive
containing the whole dataset used in this thesis [33].

30

4.4 Image Enhancements

4.3.2 Preparation of self annotated dataset

The standards set by Vedvik in his initial thesis [35] proved hard to replicate
with the use of normal annotation tools without the specific theory as to
what standard to follow when annotating.

4.4 Image Enhancements

In this thesis there were 6 image enhancement methods implemented to
increase performance of the object detection and consequently the object
tracking and queue detection models as well. These are the same methods
that can be found in the bachelor thesis written by Aleksander Vedvik[35].
The 6 methods implemented were:

• Linear Gray Scale Transformation

• Non-Linear Gray Scale Transformation

• Histogram equalization (HE)

• Retinex_ssr

• Retinex_msr

• Masking

gray level transformation, both linear and non-linear, Histogram equaliza-
tion (HE), Retinex_ssr, Retinex_msr and Masking.

4.5 Object Detection

In this thesis we focused on the Yolo family of object detections as their
feedforward capabilities is some of the strongest among object detection
algorithms. The reason for the exclusion of YOLOv6 is because it is not an
official YOLO model[37] as it was independently developed by a Chinese
company called meituan[38].

31

4.5 Object Detection

4.5.1 YOLOv5

The YOLOv5 model developed and published by Ultralytics[39] is an ob-
ject detection model trained on the 2017 dataset COCO[40]. The weight
used was YOLOv5x.pt which is the most accurate YOLOv5 model sacri-
ficing a little speed to increase performance and accuracy. The figure 4.1
visualizes the performance of YOLOv5x compared to the other weights and
EfficientDet.

Figure 4.1: Showing the performance of different YOLO weights. With
YOLOv5x represented in purple and EfficientDet represented in gray[39]

The YOLOv5 model trained on data sourced for this thesis was trained on
this configuration:

• Batch size: [FILL IN THIS]

• Resolution 640x640px

4.5.2 YOLOv7

YOLOv7 Similar to YOLOv5, YOLOv7 also benefits from using the COCO
dataset[41]. As visualized in the figure 4.2 YOLOv7 provides significant

32

4.5 Object Detection

Figure 4.2: YOLOv7 displayed in purple and YOLOv5 displayed in gray[42]

improvement in terms of both speed and performance with YOLOv7 having
over a 120% decrease in inference time.

4.5.3 YOLOv8

Continuing the trend YOLOv8 has also been trained on the famous COCO
dataset[43]. Looking at the graphs figure 4.3 its a little unclear whether
YOLOv8 or YOLOv7 provides the best experience here as v8 sacrifices a
little speed for performance compared to v7 and v5. Introduced first with
the YOLOv8 distribution is the ability to have built-in tracking[38], however
due to time constraint this was not properly implemented.

33

4.6 Tracking with DeepSORT

Figure 4.3: YOLOv8 represented in blue, v7 represented in yellow and v5 rep-
resented in red[43]

4.6 Tracking with DeepSORT

DeepSORT is a stateoftheart tracking algorithm using the SORT algorithm
as a base and applying a Deep Neural Network on top[44]. The specific
version used in this thesis is an unofficial version built to fit the YOLOv4
model [45].

The version was altered to also properly handle YOLOv5, v7 and v8.

4.7 Queue tracking

In traffic AID systems a large cause of false positive detections is falsely
detecting queued vehicles as an incident. Queues can form at any time
during the day and a large percentage of traffic queues are not caused by a
traffic incident. Therefore accurately detecting queues can be very helpful
in filtering out queued vehicles being classified as "incidents".

4.7.1 Queue Definition

“A vehicle is considered as queued when it approaches within one car length
of a stopped vehicle and is itself about to stop.” (DoT [46])

34

4.7 Queue tracking

The U.S Department of Transportation defines a queue as a collection of
vehicles stopped within one car length of each other. For this thesis we
defined a queue as a collection of at least 2 cars standing still or traveling
at a slow speed.

Speed calculation Calculating the speed of every vehicle is done by tak-
ing its current point and its previous point and measuring the distance
between those two points every frame 4.1. This gives us the speed metric:
pixels/frame.

d =
√

((x2 − x1)2 + (y2 − y1)2) (4.1)

Equation used to calculate the distance between two points in 2-Dimensional
space [47]. The full implementation can be seen in the code 4.1

Kode 4.1: Full implementation of the simple speed calculation
1 def simple_speed(self, track_id):
2 if track_id not in self.objects:
3 print("Track id not in self.objects")
4 return -1
5 track = self.objects[track_id]
6 n = len(track["center_points"])
7 if n ≤ self.min_number_of_frames:
8 print("min number of frames not met")
9 return -1

10

11 current_point = ...
(int(track["center_points"][-1][0]), ...
int(track["center_points"][-1][1]))

12 previous_point = track["center_points"][-self.PF]
13

14 speed = math.sqrt((current_point[0] - ...
previous_point[0])**2 + (current_point[1] - ...
previous_point[1])**2)

15

16 # self.objects[track_id]["speed"] = distance
17 return speed

35

4.7 Queue tracking

Limitations and problem Some limitations apply to this definition of
queues:

• Camera Angle: The camera angle of the video will affect the al-
gorithms ability to measure the speed of each vehicle. A solution to
this would be to define an equation to calculate both normal speed
and angular speed of any given vehicle. This could help negate the
perceived deceleration of the vehicle as it moves away from the cam-
era, and likewise the perceived acceleration as a vehicle approaches
the camera.

• Video Quality: The quality of the analyzed video could affect the
performance of the queue detection as inconsistent tracking would
cause confusion for the analyzed speed.

• Duplicate ID’s: Duplicate detections where the detection model
detects a car twice could interfere with this definition of a queue as
it only requires two cars to form a queue. This has been combated
by creating a deadzone around the centerpoint of each car see the
pseudo-code 4.2

Kode 4.2: Psuedo code for deadzone analysis of centerpoints
1 centerpoint1, centerpoint2 = car1.centerpoint, ...

car2.centerpoint
2 if centerpoint2 - centerpoint1 < deadzone:
3 continue
4 else:
5 queue.append(car1, car2)

4.7.2 Lane Separation

Separating cars driving in different lanes is a crucial part in being able to
detect queues accurately. The implementation of lane separation is based on
vectors drawn between two cars. The theory is that when a vector is drawn
between the centerpoints of two vehicles it will create a vector describing
the angle between the cars that can be measured against a universal driving
direction vector. If the difference in angle between two centerpoints relative

36

4.7 Queue tracking

to the horizontal line and the angle of the universal driving direction and
the horizontal line differs with more than a certain margin the two repre-
sented cars cannot be in the same lane. The mathematical equation can
be formulated with the two equations 4.2 and 4.3. Due to lane separation
handling the logic by using a static vector it has a hard time handling turns
and road irregularities that causes the road to deviate of off a straight line.

θ = arctan(
x

y
) (4.2)

Angle_difference = |θ1 − θ2| (4.3)

The pseudo code for an implementation can be formulated like 4.3.

Kode 4.3: Psuedo code for same-lane drivng algorithm
1 vehicle_vector = ((car2.x - car1.x), (car2.y - car1.y))
2 vehicle_angle = angle(vehicle_vector, horizontal_line)
3

4 angle_difference = abs(vehicle_angle - ...
universal_driving_direction)

5

6

7 if angle_difference > margin:
8 same_lane_driving = false
9 else:

10 same_lane_driving = true

The full implementation of the same-lane driving function can be found in
the Code 4.4

Kode 4.4: The full implementation of same-lane driving
1 def same_lane_driving(self, center_point1, center_point2):
2 lane_vector = [center_point2[0] - ...

center_point1[0], center_point2[1] - ...
center_point1[1]]

3

4 angle_radians = math.atan2(lane_vector[1], ...
lane_vector[0])

5 angle_degrees = math.degrees(angle_radians)
6

7 # print(self.common_driving_direction)
8 driving_direction_angle = ...

math.degrees(math.atan2(self.common_driving_direction[0], ...
self.common_driving_direction[1]))

37

4.7 Queue tracking

9 angle_difference = abs(angle_degrees - ...
driving_direction_angle)

10

11 angle_difference = min(angle_difference, 360 - ...
angle_difference)

12 print("Angle difference: ", angle_difference)
13

14 return angle_difference ≤ ...
self.driving_direction_margin or 180 - ...
angle_difference ≤ self.driving_direction_margin

4.7.3 Approaches

Two approaches were developed, one using a simple designed algorithm to
sort out clustered objects and the machine learning model known as DBScan
discussed in 3.9

Simple Queue Detection Algorithm

The simple queue detection algorithm would loop through every centerpoint
for any given frame and look for centerpoints within a predefined radius.
For every vehicle that qualifies inside the radius would be ran through the
lane separation algorithm 4.4.

Kode 4.5: The code example shows the active deciding part of the queue anlysis
code
1 distance = np.sqrt((x - cx1)**2 + (y - cy1)**2)
2

3 if distance > self.queue_detection_radius or distance ...
< 10:

4 continue
5 if not self.common_driving_direction:
6 continue
7

8 if self.same_lane_driving((cx1, cy1), (x, y)):

38

4.7 Queue tracking

DBScan Queue Detection

DBScan works by setting the two hyperparameters radius known as eps or
epsilon and a number representing the minimum required nodes. Then it is
given a dataset containing the x, y and speed values of all detections present
in the given frame. Using these values the algorithm will through the process
described in 3.9 return clusters of datapoints. As DBScan have no inherent
way to separate between cars of different lanes the output clusters have to
be ran through the lane separation algorithm 4.4.

Problems Due to time constraints and over-complication of the DBScan
method a full working implementation could not be achieved within the
timeframe of this thesis.

4.7.4 Development Challenges

Early problems with the simple queue detection method was that the bound-
ing boxes would presumable expand and grow without any apparent reason
as to why. Figure 4.4 shows a failed queue detection.

In the figure 4.4 the queue 1. can be observed stretching outside the bound-
aries of frame, while queue 2 is stretching high above the car that it is de-
tecting. Throughout the video several of these queues would expand and
follow the trend set by queue 1.

Due to the structure of detected objects in the incident_evaluator class
inside the incident_evaluator.py there was a conflict in the initial imple-
mentation of the queue detection model. Detected objects are stored with
a last_frame_number and an array of all detected centerpoints. In the ini-
tial implementation the queue detection algorithm would use the last center-
point of every stored track. This essentially means that any track that has
been detected throughout the runtime would be evaluated whether or not it

39

4.7 Queue tracking

Figure 4.4: The figure is showing a failed queue detection with the queues labeled
1 and 2 being the main focus.

was being actively detected in the current frame. The simplest solution was
to check if last_frame_number is equal to the current frame_number. This
would ensure that only currently detected centerpoints are being evaluated.
The queues are being evaluated along with the first detection of each frame.
This meant that when checking for last_frame_number only the first de-
tection would have an appropriate value while every other value would lay
behind. Due to time constraints the fix implemented for this problem was
to include centerpoints that were detected last frame as well. Given more
time a better solution would be preferred as allowing frames detected during
the last frame could potentially include centerpoints that is not detected in
the current frame and therefore yield an incorrect value.

4.7.5 Possible improvements

A lot of improvements could be made to increase the performance queue
detection model.

• Fully implemented DBScan: A fully implemented DBScan algo-
rithm could provide significant performance boost as its model is tai-

40

4.8 Improvements

lored specifically to analyzing and clustering points with similar val-
ues.

• Further statistical gathering: Further statistical gathering could
provide with a wider specter of analytics to help optimize the overall
model of the simple and DBScan queue detection algorithms.

4.8 Improvements

With this thesis building on the work conducted in the bachelor thesis writ-
ten by Aleksander Vedvik [35], most of the development work with this
bachelor thesis was improvements of the model and algorithm already pro-
duced and publicly available at the GitHub repository [48]. The following
are some of the most impactful improvements made.

• Queues as discussed in section 4.7

• Session Configurations

• JSON formatting

4.8.1 Session Configurations

Session Configurations is an improvement made increase the amount of tests
and model configurations that can be tested during one runtime. There are
two configuration types that can be configured.

1. RunConfig

2. SessionConfig

RunConfig A RunConfig contains the same values as those that can be
used in the run command. Which means that each RunConfig effectively
acts as its own run command. The config file also contains a list of dataset

41

4.8 Improvements

directories to run the configuration on. With the GitHub repository for this
bachelor thesis [49] comes a boiler plate for the RunConfig and an example
config file that would running a gray scale configuration can be seen in the
code example 4.6.

Kode 4.6: Showing a RunConfig.json file initializing a run a gray scale configu-
ration
1 {
2 "type": "RunConfig",
3 "name": "GrayLinearAnalytics",
4 "dir": "GrayLinearAnalytics",
5 "data": [
6 "Video1",
7 "Video2"
8],
9 "configurations": {

10 "argOverride": true,
11 "args": {
12 "CommentValue": "This is a comment value ...

and should be removed. Args are used ...
in the case that argOverride is true ...
for default values leave these unchanged",

13 "model": "",
14 "checkpoint": "",
15 "pretrained": "",
16 "skip_frames": 0,
17 "resize": 1.0,
18 "noise": "",
19 "tracking": "",
20 "file": "GrayLinearAnalytics",
21 "img_enh": "gray_linear",
22 "mode": "",
23 "show": 1,
24 "statistics": "statistics",
25 "queue": "",
26 "datamode": "json",
27 "filetype": "jpg"
28 }
29 }
30 }

SessionConfig The SessionConfig contains an output directory to export
all gathered data and a list of RunConfig.json files to run. A boiler plate

42

4.9 Performance evaluation

for the SessionConfig is also provided in the GitHub repository [49]. A
SessionConfig.json example can be seen in the code example 4.7.

Kode 4.7: Showing a Session.json file initializing 3 RunConfig.json files
1 {
2 "type": "SessionConfig",
3 "dir": "StandardAnalysis",
4 "runConfig": [
5 "GrayLinearAnalytics.json",
6 "GrayNonLinearAnalytics.json",
7 "NoAlterations.json"
8]
9 }

4.8.2 JSON formatting

In the original thesis output data were restricted to a .txt file with mini-
mal standardized layout. The output was very user friendly providing full
descriptions for each value. This provides a great user friendly experience,
but will be hard to utilize by an automated algorithm. Therefore a second
output file was developed with a more standardized layout ordering every
value in a dictionary with their description as a key. This was vital to be
able to conduct a full array of analysis on the output data.

4.9 Performance evaluation

4.9.1 Evaluating the model

As the main thesis is built on top of the earlier thesis of Aleksander Ved-
vik [35] the theory and practice behind evaluating detections and tracking
stays mainly same in this thesis. This is a introduction to every evaluation
argument and its associated mathematical concept.

43

4.9 Performance evaluation

Detection Accuracy Each track were assigned a real_track and id based
on an intersect of union IoU4.5 value between the track bounding box and
the annotated bounding box in the dataset greater than 0.4 and less than
the current highest IoU value.

Figure 4.5: IoU formula [50]

Kode 4.8: Pseudo code implementation, found in the Vedvik bachelor [35]
1 for track in tracks:
2 for real_object in real_objects:
3 IoU = calculate_IoU(track, real_object) if IoU ...

> 0.4 and IoU > max_IoU:
4 max_IoU = IoU
5 track['id'] = real_object['id']

The detection accuracy denoted as DA is the calculated like shown in the
equation4.4 [35]

DA =
avg(IoU)

len(valid detections)
(4.4)

An adjusted version of DA can be calculated called detection accuracy ad-

44

4.9 Performance evaluation

justed where occluded objects are removed excluded from the valid detec-
tions resulting in the equation 4.5 [35].

DAA =
avg(IoU)

valid detections− occluded objects
(4.5)

Tracking Accuracy Tracking accuracy is calculated in the same mea-
sure as detection accuracy, however a track is considered correct when it
corresponds with the id of the last detection of the detected vehicle.

TA =
correct tracks

number of tracks
(4.6)

Time analytics Several time analytics were collected to provide a more
complete picture of data and its relation to efficiency. The time measure-
ments taken were as follows:

• Mean Tracking Time (MTT)

• Mean Time

• Mean Total Time to Detection (MTTD

Missed detections

False alarm rates were calculated by dividing the false alarms with the
number of detections to generate the FAR value shown in the equation 4.7

FAR =
number of false alarms

total number of detections
(4.7)

Missed Detections is calculated by dividing the difference between real ob-
jects and detected objects by the amount of real objects shown in the equa-
tion 4.8

MD =
real objects− detections

real objects
(4.8)

45

4.9 Performance evaluation

False Positive detections are detected as objects not correlating with a real
object and the rate of false positives are shown in the equation 4.9.

FP =
false positive detections

number of detections
(4.9)

System analysis

System analysis were also conducted to try and better gain an understand-
ing of the performance of model frame by frame4.9.

Kode 4.9: Implementation of system data gathering and perparation for further
analysis
1 current_time = time.time() - timeStart
2 gpu = GPUtil.getGPUs()
3 gpu = gpu[0]
4 cpu_usage = psutil.cpu_percent(interval=None)
5 computational_data = {'time': current_time, ...

'gpu_load_percent': gpu.load*100, ...
'gpu_memory_used': gpu.memoryUsed, ...
'gpu_memory_usage': gpu.memoryUtil*100, ...
'cpu_usage': cpu_usage}

4.9.2 Statistics Analysis

StatisticAnalyser.py is the analysis tool built to analyze the output data
generated by a SessionConfig.json file. It uses the data provided to generate
multiple analytical graphics.

Generated for every RunConfig:

• Confusion Matrix

• Detection Accuracy Bar plot

• Tracking Analysis Bar plot

46

4.9 Performance evaluation

Generated for every Video in the RunConfig:

• Detection Heatmap

• Incident analysis graph frame by frame

• Over time performance

• System load analysis

4.9.3 Graphing evaluations

As introduced in section 4.9.2 there were several type of graphs and graphi-
cal outputs generated to gain an understanding of the data output and how
it might correlate with each other.

Confusion Matrix

A confusion matrix is a 2x2 grid showing the relation between the 4 possible
detection states.

• True Positive (TP): True positives is known as the detections cor-
relating with a real vehicle

• True Negative (TN): True negatives is the model detecting the
negative class

• False Positive (FP): False positives is when the model predicts a
positive class incorrectly.

• False Negative (FN): False negatives is when the model does not
detect an object

An example of a confusion matrix can be seen in the figure4.6

47

4.9 Performance evaluation

Figure 4.6: Showing the layout of a confusion matrix[51]

Detection Heatmap

Heatmaps visualize the detection densities from the video its calculated on.
Through these heatmaps we will be able to gain a better understanding
of how the model detects vehicles in specific frames. This could also be
beneficial for a possible deployment analysis as it would highlight areas with
an abnormally large amount of detections happening with a timeframe. An
example of a heatmap can be seen in the figure 4.7 which has been generated
from the StatisticAnalyzer.py discussed in the section 4.9.2.

Incident analysis graph frame by frame

Incident analysis graphs were generated to tell us something about the
correlation between false positive detections and wrong class detections.

48

4.9 Performance evaluation

Figure 4.7: Example of a heatmap generated from the data of one of the initial
test runs, with this specific one representing the heatmap of video 10

Over time performance

The time based graph is being analyzed to gain an understanding of how
the detection times vary throughout the video it was recorded for.

System load analysis

The system load was considered an important part of the analysis as it
could tell us something about the required performance for each yolo model
and image enhancement. This could help draw a conclusion as to which
model would be most suited for in-field implementation.

49

Chapter 5

Discussions and Results

5.1 Image Enhancements methods

Image enhancing is an important tool that could lead to improved accuracy
and efficiency in the object detection phase. With infrastructure related to
road tunnels being of varying quality one cannot assume high-end solutions
like state of the art cameras or radar technology to be installed. By applying
image enhancements different aspects that could prove confusing for the
object detections can be removed. Different aspects inside a tunnel that
could be removed with the help of image enhancements are:

• Glare, Reflections, and wet surfaces. These are problems that could
be inside a tunnel where possibly the use of gray scale enhancement
could remove these as a distraction for the model.

• The efficiency of the model could be improved by limiting its view to
only the road cutting out information about its surroundings using
a mask. This could lead to improved detection time and therefore
tracking time. Some problems that could arise with the use of masks
is that vehicles especially larger vehicles could end up having its top
cut of as it would enter into the mask if the mask is drawn poorly.

50

5.2 Object Detection

5.2 Object Detection

How good an AID system performs often depends on the object detection
being used. Object detection are very dependent on quality of input frames,
which means that videos with bad quality needs image enhancements before
moving in to the object detection model. If the image quality is good,
then image enhancement are not necessarily needed, but can still help.
We tested the object detection models YOLOv5, YOLOv7 and YOLOv8
because we wanted to see the performance in the YOLO family. Because
of time limitations these were the only ones we managed to include in this
thesis. We initially wanted to include other models such as TensorFlow,
SSD MobileNet, EfficientDet and Faster-RCNN, but could not due to the
time limitations.

5.3 Object Tracking

Object tracking is a essential part of detecting wrong way drivers. We
decided to try and test two trackers, DeepSORT and DBScan. We did
not have enough time to implement and test both, so we chose to focus
on DeepSORT. Because of limited time we could not go a step further to
gather statistics for performance of DeepSORT, but it is being used in all
other statistics we have gathered.

5.4 Queues

A large reason for false positive rates in the current AID systems imple-
mented in tunnels is caused by queues forming inside the tunnels. Although
some queues can form as the result of an incident throughout the course of
one day there will be many queues formed and dissolved that was not the
result of an incident but rather inefficient driving. Implementing a system
for automatic queue detection could help alleviate some of the manual labor
required to evaluate an incident of stopped vehicle as a queue by possibly
applying a tag of queued to every vehicle currently detected in a queue.

51

5.5 Graph Analysis

5.4.1 Camera Placement

Where cameras are placed in tunnels is essential for a multiple of factors. For
cameras placed closer to the entrance/exit of the tunnel the environment is
heavily effected by weather. The camera will have more exposure to outside
elements, and will need to be able to adjust to these factors.
If a camera is further into the tunnel the lighting will usually be weaker
than closer to the outside.
Camera placement is also crucial for the detection model as camera placed
on an angle close to 0o would mean that the further a vehicle gets from
the camera the smaller the box becomes, while a camera placed on a 90o

angle facing downwards toward the road bounding boxes would most likely
remain the same size throughout its appearance in the dataset.

5.5 Graph Analysis

While confusion matrices are based on data collected from all 12 video the
rest of the graphs and heatmaps are based on data collected from video 11.
The reason video 11 was chosen because it is the longest video while also
showing a tunnel gradually getting filled up with smoke as can be seen in
a frame in the figures analyzing the heatmaps 5.15. While only one video
was chosen to analyze the meaning of, the rest of the graphs can be found
in the google drive [33]. All graphs are based on video 11.

5.5.1 Confusion matrix

When analysing the confusion matrices we look at the the different squares
to compare them. We want the top left (True positive) and bottom right
(True negative) to be high compared to top right (false negative) and bottom
left (false positive). The bigger the difference in ratio the better it performs.
In each figure the matrices are from left to right, YOLOv5, YOLOv7 and
YOLOv8.

Looking at the confusion matrices in figure 5.5, 5.1, 5.2, and 5.3 we can

52

5.5 Graph Analysis

see that yolov7 compared to yolov5 and yolov8 is able to maintain a higher
amount of true positives and true negatives while also maintaining a low
false positive and false negative rate. Analyzing the figures actually reveals
that when it comes to pure true detections versus false detections yolov8
has the lowest ratio while in theory being the potential strongest model.
Interestingly masks as shown in 5.4 when compared to the other figures 5.5,
5.1, 5.2, and 5.3 have a much lower true positive rate cutting out almost
800 positive detections.
Just looking at the confusion matrices it becomes apparent that yolov7
outperforms yolov5 and yolov8.

Figure 5.1: Linear gray

Figure 5.2: Non linear

Figure 5.3: Histogram Equalization

53

5.5 Graph Analysis

Figure 5.4: Mask

Figure 5.5: None

5.5.2 Incident analysis graph

The incident analysis graph is plotting the Number of wrong classes
and False positive detections on the y-axis over frame numbers on the
x-axis. The decision was made to use frame numbers over the x-axis as
opposed to seconds as both would essentially show the same graph but a
time based graph would have more decimals and could therefore be harder
to read.

When looking at the graphs depicting different image enhancement methods
in the different yolo models v5 5.6, v7 5.7 and v8 5.8 it starts providing a
potential explanation to the interesting discoveries made with yolov8 in
the subsection 5.5.1. Yolov5 5.6 and v7 5.7 show a somewhat consistent
performance between the two. Featuring spikes in false positives with wrong
class detections roughly following the same trend, these two also mostly
follow the same distribution in time periods where v7 and v5 will react
roughly the same with v7 being a little more aggressive generally giving a
higher value of false positives and wrong class detections compared to v5,
which holds true to the confidence matrices5.5. Looking at the same set
of graphs for yolov8 5.8 you can immediately spot the increase of wrong

54

5.5 Graph Analysis

class detections. These detections also does not follow the same trend as
seen in both yolov5 5.6 and v7 5.7. With yolov8 being the newer model
of the three this could point to the fact that v8 is classifying vehicles into
more sub classes than what is annotated for. To confirm this it would be
interesting to log the total detections over time in the same graph to see if
the wrong class detections follow the same trend as the total detections.

5.5.3 Time analysis

The time was initially analyzed for the three models yolov5 5.9, v7 5.10
and v8 5.11. These graphs were produced from max time, mean time and
min time as they developed over the course of the model runtime. It would
have been interesting to analyze these graphs more cleaned up by excluding
the initial time value since in almost exclusively the initial time value is the
highest. In the graphs for yolov8 5.11 this also damages the perspective
as the max value was calculated as upwards of 600 while the v5 5.9 and
v7 5.10 usually keeps in the sub 100 region. The cause of this could be as
simple as yolov8 having a slower initialization and therefore delaying the
first detection. This data could have been analyzed to possibly support
yolov8 as it is on paper supposed to be faster than the other two model 4.3.

5.5.4 System load analysis

Looking at the system load data for yolov5 5.12, v7 5.13 and v8 5.14 we
actually see that v7 5.13 performs significantly better over all than both
v5 5.12 and v8 5.14 having a much lower memory usage and gpu load.
With the memory of the v7 5.13 at times actually being close to half of
that of v5 5.12 and v8 5.14 and roughly maintaining 10% lower gpu load
through out the image enhancements. It is also interesting to see that for
the v5 5.12 and v8 5.14 gray linear scaling seems to have a much bigger
impact on performance than on v7 5.13.

55

5.6 Model Improvements

5.5.5 Heatmap

By looking at the heatmaps we can determine where in the image the most
amount of detections are observed. Generally between the three models
yolov5 5.15, v7 5.16 and the v8 5.17 and their respective image enhance-
ments not to much can be said. They all follow the same pattern with the
most amount of detections located around the stopped vehicle and subse-
quent people surrounding it. This makes sense as the vehicle and people are
perfectly located to be obsereved by the model in most frames throughout
the video. A line can also be seen at the left side which would indicate the
left driving lane.

5.6 Model Improvements

Because of a severe lack of data in datasets of tunnel footage, the model
training and testing is limited to a small output for statistics. With more
data models will be able to give more statistics and give a better perfor-
mance overview.

5.7 Further work

More diversity in object detection models should be considered for the fu-
ture. Improved annotation of sourced dataset so that it can be utilized in
statistical evaluations and not only as part of the training method would
could yield higher quality data that could help improve the evaluation of
the detection model.
Queues have a lot of potential for further work both by finishing the DB-
Scan implementation, but also fine tuning the simple model and get a real
comparison between the two. Proper annotations supporting queues would
enable the verification of any given queue. Expanding on the lane separa-
tion theory to index each lane and to be able to recognize any given lane and
keep track of its corresponding cars could prove beneficial to the currently
utilized method. Enabling queues to handle turns and other irregularities
where the roads are not straight.

56

5.7 Further work

Yolov8 has also a built in tracker. It could be interesting comparing the dif-
ferences between the Yolov8 native tracker and the more specialized Deep-
SORT algorithm. Further systemic analytics possibly with multiple diverse
systems could help gaining an understanding of the recommended system
requirements, the models efficiency and its deployability. Further research
could be conducted towards how this system would be implemented and de-
ployed, and the possible difference between a on-site analysis infrastructure
or via a cloud solution.
With the rapid development within technology and road tunnel infrastruc-
ture it could be interesting to look into radar technology and look at its pos-
sible advantage or disadvantages towards the traditional live feed camera
solutions already implemented in a lot of tunnels. Specific problems cur-
rently facing a traditional camera solution is the impacts of certain problems
such as glare, darkness, snow and heavy rain could be mitigated or maybe
even completely terminated. Analyzing the impacts of these problems and
the potential sacrifice of using radar instead of camera would be an inter-
esting comparison.
Deeper analysis of graphs and their impact, rooting out outlier values could
see some graphs like the once for over time performance 5.11 could result
in a better graph explaining the correlations between longer runtimes and
detection time.

57

5.7 Further work

Gray linear Gray non-linear

Histogram Equalization Mask

None

Figure 5.6: YOLOv5 Incident analysis

58

5.7 Further work

Gray linear Gray non-linear

Histogram Equalization Mask

None

Figure 5.7: YOLOv7 Incident analysis

59

5.7 Further work

Gray linear Gray non-linear

Histogram Equalization Mask

None

Figure 5.8: YOLOv8 Incident analysis

60

5.7 Further work

Gray linear Gray non-linear

Histogram Equalization Mask

None

Figure 5.9: YOLOv5 time per fram analysis

61

5.7 Further work

Gray linear Gray non-linear

Histogram Equalization Mask

None

Figure 5.10: YOLOv7 time per fram analysis

62

5.7 Further work

Gray linear Gray non-linear

Histogram Equalization Mask

None

Figure 5.11: YOLOv8 time per frame analysis

63

5.7 Further work

Gray linear Gray non-linear

Histogram Equalization Mask

None

Figure 5.12: YOLOv5 System load

64

5.7 Further work

Gray linear Gray non-linear

Histogram Equalization Mask

None

Figure 5.13: YOLOv7 System load

65

5.7 Further work

Gray linear Gray non-linear

Histogram Equalization Mask

None

Figure 5.14: YOLOv8 System load

66

5.7 Further work

Gray linear Gray non-linear

Histogram Equalization Mask

None Reference image

Figure 5.15: YOLOv5 Heatmaps

67

5.7 Further work

Gray linear Gray non-linear

Histogram Equalization Mask

None Reference image

Figure 5.16: YOLOv7 Heatmaps

68

5.7 Further work

Gray linear Gray non-linear

Histogram Equalization Mask

None Reference image

Figure 5.17: YOLOv8 Heatmaps

69

Chapter 6

Conclusion

Automatic Incident Detection in road tunnels is going to be a research sub-
ject for many more years to come. In our thesis we tried to further explore
or test methods for AID systems in road tunnels with the background of
the previous bachelor by Aleksander Vedvik. Still to this day most tunnels
perform incident detection through loop detectors, which is still dependent
on human interaction.
With the help of more advanced and more efficient incident detection meth-
ods that use video surveillance footage, the need for human intervention is
severely lowered. This moving towards the goal of removing the need for
human help. Because of the limited time period of the bachelor only certain
methods were considered or used. We took comparisons of confusion ma-
trices between image enhancement methods and object detection methods.
For a method to be relatively viable it needs to be efficient and fast, and it
needs to have low false positives with high detection rate.
From the confusion matrices in 5.5.1, we can see that YOLOv7 maintains a
higher amount of true positives and true negatives while also maintaining
a low false positive and false negative rate. It outperforms YOLOv8 even
though YOLOv8 has the potential to be the best performing.
From the incident analysis in 5.5.2, we can see that YOLOv8 has a high
wrong class detection that does not follow the same trend as both YOLOv5
and YOLOv7. This brings us to a conclusion that YOLOv8 most likely
classifies vehicles into more sub classes than what is annotated for.
From the time analysis in 5.5.3, we don’t see much because of the initial

70

Conclusion

time value, that is way higher than all other values. This is probably caused
by the initialization time being included in the graph. This is taken to the
extreme with YOLOv8 where it shots way ahead of the others. This could
probably be cleaned up pretty easily by excluding the initial data.
From the system load analysis in 5.5.4, we can see that v7 outperforms both
v5 and v8. This is by using a lower amount of memory and a lower load
on the GPU. Specifically in gray linear scaling the performance impact is
much larger on v5 and v8 compare to v7.
Heatmaps provided us with little data where any conclusion as to the per-
formance could be drawn 5.5.5. It does however provide some information
about where detections most commonly occur. The conclusion was that
most detections were made to the right of the frame while a small lane with
a smaller density could be seen on the left indicating the left driving lane.

To conclude this thesis we have looked at three of the object detection meth-
ods in the YOLO family. We have tested 4 image enhancement techniques,
and used the DeepSORT algorithm for tracking. We have created a queue
detection algorithm, but did not get time to gather statistics with it. Our
testing with the image enhancements methods did not create a big enough
impact from one another to conclude with anything for that. We have seen
that YOLOv8 has the greatest potential while YOLOv7 still has the best
overall performance with gray linear scaling being the most impactful image
enhancement. For an in-field application in the near future yolov7 should
be considered as a strong contender.

71

Bibliography

[1] Statens Vegvesen. “Etterlyser nye ideer om tunnel-redning”. In: Statens
Vegvesen 21.02 (2018).

[2] Yong-Kul Ki et al. “An Algorithm for Incident Detection Using Ar-
tificial Neural Networks”. In: 2019 25th Conference of Open Inno-
vations Association (FRUCT). 2019, pp. 162–167. doi: 10.23919/
FRUCT48121.2019.8981509.

[3] Roger Browne et al. “Comparison and analysis tool for automatic
incident detection”. In: Transportation research record 1925.1 (2005),
pp. 58–65.

[4] Peter T Martin et al. Incident detection algorithm evaluation. Tech.
rep. Upper Great Plains Transportation Institute, 2001.

[5] Shuming Tang and Haijun Gao. “Traffic-incident detection-algorithm
based on nonparametric regression”. In: IEEE Transactions on Intel-
ligent Transportation Systems 6.1 (2005), pp. 38–42. doi: 10.1109/
TITS.2004.843112.

[6] Mei Lam Tam and William HK Lam. “Validation of instantaneous
journey time estimates: a journey time indication system in Hong
Kong”. In: Proceedings of the Eastern Asia Society for Transporta-
tion Studies Vol. 8 (The 9th International Conference of Eastern
Asia Society for Transportation Studies, 2011). Eastern Asia Society
for Transportation Studies. 2011, pp. 336–336. url: https://www.
jstage.jst.go.jp/article/eastpro/2011/0/2011_0_336/_pdf.

[7] Statens veivesen. “AID i tunnel Teknologisammenligning”. In: Statens
veivesen (2013). url: https://docplayer.me/17583116-Aid-i-
tunnel-teknologisammenligning.html.

72

https://doi.org/10.23919/FRUCT48121.2019.8981509
https://doi.org/10.23919/FRUCT48121.2019.8981509
https://doi.org/10.1109/TITS.2004.843112
https://doi.org/10.1109/TITS.2004.843112
https://www.jstage.jst.go.jp/article/eastpro/2011/0/2011_0_336/_pdf
https://www.jstage.jst.go.jp/article/eastpro/2011/0/2011_0_336/_pdf
https://docplayer.me/17583116-Aid-i-tunnel-teknologisammenligning.html
https://docplayer.me/17583116-Aid-i-tunnel-teknologisammenligning.html

BIBLIOGRAPHY

[8] Mohamed S Shehata et al. “Video-based automatic incident detection
for smart roads: The outdoor environmental challenges regarding false
alarms”. In: IEEE Transactions on Intelligent Transportation Systems
9.2 (2008), pp. 349–360.

[9] Dinesh Singh and Chalavadi Krishna Mohan. “Deep Spatio-Temporal
Representation for Detection of Road Accidents Using Stacked Au-
toencoder”. In: IEEE Transactions on Intelligent Transportation Sys-
tems 20.3 (2019), pp. 879–887. doi: 10.1109/TITS.2018.2835308.

[10] Jiawei Wang et al. “A Hybrid Approach for Automatic Incident De-
tection”. In: IEEE Transactions on Intelligent Transportation Systems
14.3 (2013), pp. 1176–1185. doi: 10.1109/TITS.2013.2255594.

[11] Kelathodi Kumaran Santhosh, Debi Prosad Dogra, and Partha Pra-
tim Roy. “Anomaly detection in road traffic using visual surveillance:
A survey”. In: ACM Computing Surveys (CSUR) 53.6 (2020), pp. 1–
26.

[12] Chen Wang et al. “A vision-based video crash detection framework
for mixed traffic flow environment considering low-visibility condi-
tion”. In: Journal of advanced transportation 2020 (2020). url: https:
//www.hindawi.com/journals/jat/2020/9194028/ (visited on
05/11/2024).

[13] Saidasul Usmankhujaev, Shokhrukh Baydadaev, and Kwon Jang Woo.
“Real-time, deep learning based wrong direction detection”. In: Ap-
plied Sciences 10.7 (2020), p. 2453.

[14] Wencheng Wang et al. “An experiment-based review of low-light im-
age enhancement methods”. In: Ieee Access 8 (2020), pp. 87884–87917.

[15] OpenCV. “Histograms - 1 : Find, plot, analyze”. In: (2024). url:
https://docs.opencv.org/4.x/d1/db7/tutorial_py_histogram_
begins.html (visited on 05/13/2024).

[16] krita. “home”. In: (2024). url: https://krita.org/en/ (visited on
05/12/2024).

[17] IBM. “What is a neural network?” In: (2024). url: https://www.
ibm.com/topics/neural-networks (visited on 05/12/2024).

[18] IBM. “What are convolutional neural networks?” In: (2024). url:
https://www.ibm.com/topics/convolutional-neural-networks
(visited on 05/13/2024).

73

https://doi.org/10.1109/TITS.2018.2835308
https://doi.org/10.1109/TITS.2013.2255594
https://www.hindawi.com/journals/jat/2020/9194028/
https://www.hindawi.com/journals/jat/2020/9194028/
https://docs.opencv.org/4.x/d1/db7/tutorial_py_histogram_begins.html
https://docs.opencv.org/4.x/d1/db7/tutorial_py_histogram_begins.html
https://krita.org/en/
https://www.ibm.com/topics/neural-networks
https://www.ibm.com/topics/neural-networks
https://www.ibm.com/topics/convolutional-neural-networks

BIBLIOGRAPHY

[19] Sergios Theodoridis. “Chapter 18 - Neural Networks and Deep Learn-
ing”. In: Machine Learning (Second Edition). Ed. by Sergios Theodor-
idis. Second Edition. Academic Press, 2020, pp. 901–1038. isbn: 978-0-
12-818803-3. doi: https://doi.org/10.1016/B978-0-12-818803-
3.00030- 1. url: https: //www.sciencedirect.com/science/
article/pii/B9780128188033000301.

[20] Bossy Mostafa et al. “Machine and Deep Learning Approaches in
Genome: Review Article”. In: Alfarama Journal of Basic & Applied
Sciences (Aug. 2020). doi: 10.21608/ajbas.2020.34160.1023.

[21] Bharath K. “Introduction to Deep Neural Networks”. In: (July 2023).
url: https://www.datacamp.com/tutorial/introduction-to-
deep-neural-networks (visited on 05/13/2024).

[22] Upesh Nepal and Hossein Eslamiat. “Comparing YOLOv3, YOLOv4
and YOLOv5 for autonomous landing spot detection in faulty UAVs”.
In: Sensors 22.2 (2022), p. 464.

[23] Juan Terven and Diana Cordova-Esparza. “A comprehensive review of
YOLO: From YOLOv1 to YOLOv8 and beyond”. In: arXiv preprint
arXiv:2304.00501 (2023).

[24] Oluwaseyi Ezekiel Olorunshola, Martins Ekata Irhebhude, and Abra-
ham Eseoghene Evwiekpaefe. “A comparative study of YOLOv5 and
YOLOv7 object detection algorithms”. In: Journal of Computing and
Social Informatics 2.1 (2023), pp. 1–12. url: https://publisher.
unimas.my/ojs/index.php/jcsi/article/view/5070 (visited on
05/13/2024).

[25] S. R. Maiya. “DeepSORT: Deep Learning to Track Custom Objects in
a Video”. In: Nanonets (2019). url: https://nanonets.com/blog/
object-tracking-deepsort/ (visited on 05/14/2024).

[26] Xinyu Hou, Yi Wang, and Lap-Pui Chau. “Vehicle tracking using deep
sort with low confidence track filtering”. In: 2019 16th IEEE Interna-
tional Conference on Advanced Video and Signal Based Surveillance
(AVSS). IEEE. 2019, pp. 1–6. url: https://ieeexplore.ieee.org/
document/8909903 (visited on 05/14/2024).

[27] geeksforgeeks. “DBSCAN Clustering in ML | Density based cluster-
ing”. In: (May 2023). url: https : / / www . geeksforgeeks . org /
dbscan-clustering-in-ml-density-based-clustering/ (visited
on 05/14/2024).

74

https://doi.org/https://doi.org/10.1016/B978-0-12-818803-3.00030-1
https://doi.org/https://doi.org/10.1016/B978-0-12-818803-3.00030-1
https://www.sciencedirect.com/science/article/pii/B9780128188033000301
https://www.sciencedirect.com/science/article/pii/B9780128188033000301
https://doi.org/10.21608/ajbas.2020.34160.1023
https://www.datacamp.com/tutorial/introduction-to-deep-neural-networks
https://www.datacamp.com/tutorial/introduction-to-deep-neural-networks
https://publisher.unimas.my/ojs/index.php/jcsi/article/view/5070
https://publisher.unimas.my/ojs/index.php/jcsi/article/view/5070
https://nanonets.com/blog/object-tracking-deepsort/
https://nanonets.com/blog/object-tracking-deepsort/
https://ieeexplore.ieee.org/document/8909903
https://ieeexplore.ieee.org/document/8909903
https://www.geeksforgeeks.org/dbscan-clustering-in-ml-density-based-clustering/
https://www.geeksforgeeks.org/dbscan-clustering-in-ml-density-based-clustering/

BIBLIOGRAPHY

[28] OpenCV. “Home”. In: (2024). [Online]. url: https://opencv.org/
(visited on 05/10/2024).

[29] OpenCV. “About”. In: (2024). [Online]. url: https://opencv.org/
about/ (visited on 05/10/2024).

[30] Martin Sævareid Lauritsen. “StreamCapture”. In: (2024). url: https:
//github.com/MslRobo/StreamCapture.

[31] straya.io. “Burnley Tunnel”. In: (2024). url: https://straya.io/
webcams/burnley-tunnel-east/ (visited on 05/10/2024).

[32] Komplett. “Raspberry Pi 4 Model B, 8GB RAM”. In: (2024). url:
https://www.komplett.no/product/1160872/datautstyr/pc-
komponenter/hovedkort/integrert-cpu/raspberry-pi-4-model-
b-8gb-ram# (visited on 05/15/2024).

[33] Martin Sævareid Lauritsen. “Bachelor Dataset”. In: (2024). url: https:
//drive.google.com/drive/folders/1GZkpp6you43HBV1QzOdCh-
wQYwQwcgvV?usp=drive_link.

[34] Aleksander Vedvik. “Datasets”. In: (2022). url: https://drive.
google.com/drive/folders/1hNMBL2MNyz5dWZdi1BR1o1X-3yypdCkJ?
usp=sharing (visited on 05/14/2024).

[35] Aleksander Vedvik. “For-studie av automatiske hendelsesdeteksjon
systemer i veitunneler basert på dype nevrale nettverk og videoovervåkn-
ings kameraer”. In: (2022). url: https://hdl.handle.net/11250/
3003555.

[36] NVIDIA. “Sammenligning av spesifikasjoner for 20-serien”. In: (2022).
url: https://www.nvidia.com/nb-no/geforce/graphics-cards/
compare/?section=compare-20.

[37] Revca. “YOLOv6 : Explanation, Features and Implementation”. In:
(June 2022). url: https://revca- technologies.medium.com/
yolov6- explained- in- simple- terms- c46a0248bddc (visited on
05/14/2024).

[38] meituan. “YOLOv6”. In: (Sept. 2023). url: https://github.com/
meituan/YOLOv6 (visited on 05/14/2024).

[39] Glenn Jocher. YOLOv5 by Ultralytics. Version 7.0. 2020. doi: 10.
5281/zenodo.3908559. url: https://github.com/ultralytics/
yolov5 (visited on 05/14/2024).

[40] COCO. ““COCO - common objects in context”. In: (2022). url: https:
//cocodataset.org/#home (visited on 05/14/2024).

75

https://opencv.org/
https://opencv.org/about/
https://opencv.org/about/
https://github.com/MslRobo/StreamCapture
https://github.com/MslRobo/StreamCapture
https://straya.io/webcams/burnley-tunnel-east/
https://straya.io/webcams/burnley-tunnel-east/
https://www.komplett.no/product/1160872/datautstyr/pc-komponenter/hovedkort/integrert-cpu/raspberry-pi-4-model-b-8gb-ram#
https://www.komplett.no/product/1160872/datautstyr/pc-komponenter/hovedkort/integrert-cpu/raspberry-pi-4-model-b-8gb-ram#
https://www.komplett.no/product/1160872/datautstyr/pc-komponenter/hovedkort/integrert-cpu/raspberry-pi-4-model-b-8gb-ram#
https://drive.google.com/drive/folders/1GZkpp6you43HBV1QzOdCh-wQYwQwcgvV?usp=drive_link
https://drive.google.com/drive/folders/1GZkpp6you43HBV1QzOdCh-wQYwQwcgvV?usp=drive_link
https://drive.google.com/drive/folders/1GZkpp6you43HBV1QzOdCh-wQYwQwcgvV?usp=drive_link
https://drive.google.com/drive/folders/1hNMBL2MNyz5dWZdi1BR1o1X-3yypdCkJ?usp=sharing
https://drive.google.com/drive/folders/1hNMBL2MNyz5dWZdi1BR1o1X-3yypdCkJ?usp=sharing
https://drive.google.com/drive/folders/1hNMBL2MNyz5dWZdi1BR1o1X-3yypdCkJ?usp=sharing
https://hdl.handle.net/11250/3003555
https://hdl.handle.net/11250/3003555
https://www.nvidia.com/nb-no/geforce/graphics-cards/compare/?section=compare-20
https://www.nvidia.com/nb-no/geforce/graphics-cards/compare/?section=compare-20
https://revca-technologies.medium.com/yolov6-explained-in-simple-terms-c46a0248bddc
https://revca-technologies.medium.com/yolov6-explained-in-simple-terms-c46a0248bddc
https://github.com/meituan/YOLOv6
https://github.com/meituan/YOLOv6
https://doi.org/10.5281/zenodo.3908559
https://doi.org/10.5281/zenodo.3908559
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://cocodataset.org/#home
https://cocodataset.org/#home

[41] Gaudenz Beosch. “YOLOv7: A Powerful Object Detection Algorithm
(2024 Guide)”. In: (2024). url: https://viso.ai/deep-learning/
yolov7-guide (visited on 05/14/2024).

[42] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao.
“YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-
time object detectors”. In: arXiv preprint arXiv:2207.02696 (2022).

[43] Ultralytics. “ultralytics”. In: (2024). url: https : / / github . com /
ultralytics/ultralytics (visited on 05/14/2024).

[44] Allan Kouidri. “Mastering Deep Sort: The Future of Object Tracking
Explained”. In: (Nov. 2024). url: https://www.ikomia.ai/blog/
deep-sort-object-tracking-guide (visited on 05/14/2024).

[45] theAIGuysCode. “yolov4_deepsort”. In: (Aug. 2021). url: https://
github.com/theAIGuysCode/yolov4-deepsort (visited on 05/14/2024).

[46] Federal Highway Administration. Traffic Analysis Toolbox Volume VI:
Definition, Interpretation, and Calculation of Traffic Analysis Tools
Measures of Effectiveness. https://ops.fhwa.dot.gov/publications/
fhwahop08054/sect3.htm. 2021. (Visited on 05/14/2024).

[47] BYJUS. Distance Between Two Points Formula. url: https : / /
byjus.com/maths/distance-between-two-points-formula (vis-
ited on 05/14/2024).

[48] Aleksander Vedvik. “Bachelor”. In: (2022). url: https://github.
com/aleksander-vedvik/Bachelor (visited on 05/14/2024).

[49] Alexander Kruke Bjugan Martin Sævareid Lauritsen. “Bachelor Deep
Learning For AID”. In: (2024). url: https://github.com/MslRobo/
Bachelor_Deep_Learning_For_AID.

[50] Adrian Rosebrock. “Intersection over Union (IoU) for object detec-
tion”. In: (2022). url: https://pyimagesearch.com/2016/11/07/
intersection-over-union-iou-for-object-detection/ (visited
on 05/15/2024).

[51] Nisha Arya Ahmed. “What is A Confusion Matrix in Machine Learn-
ing? The Model Evaluation Tool Explained”. In: (Nov. 2023). url:
https://www.datacamp.com/tutorial/what-is-a-confusion-
matrix-in-machine-learning (visited on 05/15/2024).

https://viso.ai/deep-learning/yolov7-guide
https://viso.ai/deep-learning/yolov7-guide
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics
https://www.ikomia.ai/blog/deep-sort-object-tracking-guide
https://www.ikomia.ai/blog/deep-sort-object-tracking-guide
https://github.com/theAIGuysCode/yolov4-deepsort
https://github.com/theAIGuysCode/yolov4-deepsort
https://ops.fhwa.dot.gov/publications/fhwahop08054/sect3.htm
https://ops.fhwa.dot.gov/publications/fhwahop08054/sect3.htm
https://byjus.com/maths/distance-between-two-points-formula
https://byjus.com/maths/distance-between-two-points-formula
https://github.com/aleksander-vedvik/Bachelor
https://github.com/aleksander-vedvik/Bachelor
https://github.com/MslRobo/Bachelor_Deep_Learning_For_AID
https://github.com/MslRobo/Bachelor_Deep_Learning_For_AID
https://pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
https://pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
https://www.datacamp.com/tutorial/what-is-a-confusion-matrix-in-machine-learning
https://www.datacamp.com/tutorial/what-is-a-confusion-matrix-in-machine-learning

List of Figures

3.1 Histogram examples [14, p. 5] 9

3.2 Light reflection model [14, p. 8] 10

3.3 General process of the Retinex algorithm [14, p. 8] 10

3.4 Visualization of a convolution on a 3x3 input matrix (A) with
a 2x2 filter matrix(B)[19, p. 957] 17

3.5 Zero-padding visualized on a 5x5 matrix[19, p. 962] 17

3.6 Pooling example showing a filter of size 2x2 moving across a
matrix of 6x6 (A) producing the output matrix 3x3 (B)[19,
p. 964] . 18

3.7 Typical size difference between ANN and DNN [20] 18

3.8 YOLOv5 Architecture. [23, p. 17] 20

3.9 YOLOv7 Architecture . 21

3.10 Architecture of YOLOv8 . 22

3.11 Architecture of Deep SORT[26] 23

77

LIST OF FIGURES

3.12 This figure displays datapoint clusters and noise for a given
database 1 and 2 [27] . 24

3.13 Visualizing the DBScan algorithm on a small dataset with
hyperparameters eps = 1 unit and MinPts = 4[27] 25

4.1 Showing the performance of different YOLO weights. With
YOLOv5x represented in purple and EfficientDet represented
in gray[39] . 32

4.2 YOLOv7 displayed in purple and YOLOv5 displayed in gray[42] 33

4.3 YOLOv8 represented in blue, v7 represented in yellow and
v5 represented in red[43] . 34

4.4 The figure is showing a failed queue detection with the queues
labeled 1 and 2 being the main focus. 40

4.5 IoU formula [50] . 44

4.6 Showing the layout of a confusion matrix[51] 48

4.7 Example of a heatmap generated from the data of one of
the initial test runs, with this specific one representing the
heatmap of video 10 . 49

5.1 Linear gray . 53

5.2 Non linear . 53

5.3 Histogram Equalization . 53

5.4 Mask . 54

5.5 None . 54

5.6 YOLOv5 Incident analysis 58

78

LIST OF FIGURES

5.7 YOLOv7 Incident analysis 59

5.8 YOLOv8 Incident analysis 60

5.9 YOLOv5 time per fram analysis 61

5.10 YOLOv7 time per fram analysis 62

5.11 YOLOv8 time per frame analysis 63

5.12 YOLOv5 System load . 64

5.13 YOLOv7 System load . 65

5.14 YOLOv8 System load . 66

5.15 YOLOv5 Heatmaps . 67

5.16 YOLOv7 Heatmaps . 68

5.17 YOLOv8 Heatmaps . 69

79

List of Tables

4.1 Technical Specifications for a Raspberry Pi 4B 8GB[32] . . . 29

4.2 Technical Specifications for a 2070RTX from NVIDIA[36] . 30

80

Appendix A

GitHub repository

All code used is stored on GitHub, and datasets used stored on Google
Drive:

• GitHub: https://github.com/MslRobo/Bachelor_Deep_Learning_
For_AID

• Datasets

81

https://github.com/MslRobo/Bachelor_Deep_Learning_For_AID
https://github.com/MslRobo/Bachelor_Deep_Learning_For_AID
https://drive.google.com/drive/folders/1GZkpp6you43HBV1QzOdCh-wQYwQwcgvV?usp=sharing

Appendix B

Code excerpts

As the thesis was built on top of the bachelor thesis of Aleksander Vedvik a
lot of the source code present is from his initial thesis and proper separation
of code was not possible due to having to alter source code in order to
conduct the work for this thesis. His thesis can be found at [35]

1 import os
2 import sys
3 import glob
4 import time
5 import GPUtil
6 import psutil
7

8 PATH_TO_THIS_FILE = os.path.dirname(os.path.abspath(...
__file__))

9 sys.path.insert(0, PATH_TO_THIS_FILE + '\\tools \\')
10 sys.path.insert(0, PATH_TO_THIS_FILE + '\\tools \\...

deep_sort ')
11 sys.path.insert(0, PATH_TO_THIS_FILE + '\\')
12 sys.path.insert(0, PATH_TO_THIS_FILE + '\\ training \\')
13 sys.path.insert(0, PATH_TO_THIS_FILE + '\\ training \\...

tensorflowapi \\')
14 sys.path.insert(0, PATH_TO_THIS_FILE + '\\ training \\...

tensorflowapi \\ research \\')
15 sys.path.insert(0, PATH_TO_THIS_FILE + '\\ training \\...

tensorflowapi \\ research \\ object_detection ')
16

17 import cv2

82

Code excerpts

18 import json
19 import numpy as np
20 from tools.detection_model import Detection_Model
21 from tools.tracking_model import Tracking_Model
22 from tools.incident_evaluator import Evaluate_Incidents
23 from tools.performance_evaluator import ...

Evaluate_Performance
24 import argparse
25 from tools.visualize_objects import draw_rectangle , ...

draw_text , draw_line , draw_parallelogram
26 from tools.tunnel_manager import Tunnel_Manager
27

28

29 """
30 Parser setup has been influenced by the implementation ...

used by Alexander Vedvik in his bachelor thesis that
31 layed the ground work for this thesis.
32 """
33 parser = argparse.ArgumentParser(
34 description="Realtime object detection and tracking"
35)
36 parser.add_argument("-m",
37 "--model",
38 help="Choose perferred detection ...

model to be utilized",
39 type=str)
40 parser.add_argument("-c",
41 "--checkpoint",
42 help="Choose checkpoint number to be...

used , 3 will be used as default",
43 type=str)
44 parser.add_argument("-p",
45 "--pretrained",
46 help="Choose whether or not to use a...

pre -trained model or not. 1 = Ture , 0 = False (0 is ...
defautt)",

47 type=str)
48 parser.add_argument("--skip_frames",
49 help="Choose number of frames to ...

skip",
50 type=int)
51 parser.add_argument("-r",
52 "--resize",
53 help="Define a scale factor to ...

resize the input video",
54 type=float)
55 parser.add_argument("--resolution",
56 help="Set the resolution wanted for ...

the input expecting height , width will be ...

83

Code excerpts

automatically calculated",
57 type=int)
58 parser.add_argument("-b",
59 "--brightness",
60 help="Set the brightness level for ...

the input in percentage expected integer in range ...
-100 to 100",

61 type=int)
62 parser.add_argument("-n",
63 "--noise",
64 help="Set the noise level to ...

simulate a bad quality feed accepted noise types are:...
gauss , salt , speckle",

65 type=str)
66 parser.add_argument("-t",
67 "--tracking",
68 help="Choose tracking model to ...

utilize , DeepSort will be used as default")
69 parser.add_argument("-q",
70 "--queue",
71 help="Choose queueing algorithm , ...

DBScan or Simple")
72 parser.add_argument("-f",
73 "--file",
74 help="Define the name of the saved ...

file",
75 type=str)
76 parser.add_argument("-i",
77 "--img_enh",
78 help="Specify how the image should ...

be enhanced. By default no enhancements will be ...
applied",

79 type=str)
80 parser.add_argument("-s",
81 "--source",
82 help="Specify the source of the ...

video to be analyzed",
83 type=str)
84 parser.add_argument("--mode",
85 help="Specify the mode of the ...

application , by default live tracking will be used , ...
other modes include analysis and training",

86 type=str)
87 parser.add_argument("--show",
88 help="Show a live feed of the ...

tracking process , values are 1 = true , 0 = false , by ...
default live feed will be disabled.",

89 type=int)
90 parser.add_argument("--datamode",

84

Code excerpts

91 help="Specify how the source should ...
be handled. json expects a json file with session ...
configurations , and mp4 expects a single mp4 file. ...
Default is mp4",

92 default="mp4",
93 type=str)
94 parser.add_argument("--filetype",
95 default="mp4",
96 help="Specify what file type the ...

feed is should be jpg or mp4")
97 parser.add_argument("--iterations",
98 help="Specify how many iterations ...

should be done , each iteration changes the value of ...
brightness or noise depending on which is active",

99 type=int)
100 parser.add_argument("-a",
101 "--analysis",
102 help="Should statistics analysis be ...

ran after completion (0 (default) or 1) (Should not ...
be used in its current state)",

103 type=int ,
104 default =0)
105 parser.add_argument("--downscale",
106 help="1 if downscaling should be ...

performed , downscaling from max resolution down to ...
360p at the lowest iteration",

107 default=0,
108 type=int)
109

110 args = parser.parse_args ()
111

112 """
113 Commands used in testing:
114 python liveTrack.py -s StandardAnalysis.json --file ...

StatisticsTest00 --datamode json --filetype jpg --...
show 1

115 python liveTrack.py -s StandardAnalysis.json --file ...
StatisticsTest00 --datamode json --filetype jpg --...
iterations 21 --show 1

116 """
117

118 def argReplacement(file):
119 if not args.model:
120 args.model = file['model']
121 if not args.checkpoint:
122 args.checkpoint = file['checkpoint ']
123 if not args.pretrained:
124 args.pretrained = file['pretrained ']
125 if not args.tracking:

85

Code excerpts

126 args.tracking = file['tracking ']
127 args.skip_frames = file['skip_frames ']
128 args.resize = file['resize ']
129 args.noise = file['noise']
130 args.file = file['file']
131 args.img_enh = file['img_enh ']
132 args.mode = file['mode']
133 args.show = file['show']
134 args.queue = file['queue']
135 args.filetype = file['filetype ']
136 args.datamode = file['datamode ']
137

138 # Extracts the json data
139 def extractJSONFile(jsonFile):
140 dataCollectionDir = r'.\\ SessionConfigurations '
141 dataCollectionFile = os.path.join(dataCollectionDir ,...

jsonFile)
142

143 with open(dataCollectionFile , 'r') as f:
144 config = json.load(f)
145

146 return config
147

148 def main(video , dirNames , iterationOptions=None , ...
new_resolution=False):

149 datasets = []
150 percentDone = 0
151 sourceDir = r'.\\ data\\ rawData '
152 sourceFile = os.path.join(sourceDir , video)
153 datasetDir = r'.\\ data\\ incidents '
154 baseOutputDir = r'.\\ data\\ output '
155 maskDir = r'.\\ data\\ tunnel_data \\ masks '
156

157 if args.datamode == "json":
158 if dirNames['sessionDir ']:
159 baseOutputDir = os.path.join(baseOutputDir , ...

dirNames['sessionDir '])
160 baseOutputDir = os.path.join(baseOutputDir , ...

dirNames['runDir '])
161 else:
162 baseOutputDir = os.path.join(baseOutputDir , ...

dirNames['runDir '])
163

164 if not os.path.exists(baseOutputDir):
165 os.makedirs(baseOutputDir)
166

167 if args.filetype == "mp4" or not args.filetype:
168 datasets.append ({"dataset": "selectedVideo", "...

video": sourceFile })

86

Code excerpts

169 maskPath = os.path.join(maskDir , video.split("."...
)[0] + ".png")

170 mask = maskPath
171 else:
172 datasetTunnelDir = os.path.join(datasetDir , ...

video)
173 # print(" Dataset: ", datasetTunnelDir , " Exists:...

", os.path.exists(datasetTunnelDir))
174 image_dir = os.path.join(datasetTunnelDir , "...

images")
175 anno_dir = os.path.join(datasetTunnelDir , "...

annotations.json")
176 datasets.append ({"dataset": video + "...

self_annotated", "images": image_dir , "annotations": ...
anno_dir })

177 # print(" Dataset: ", datasets)
178 mask = os.path.join(maskDir , video + ".png")
179

180 # print("Mask: ", mask)
181

182 model_filename = os.path.join(PATH_TO_THIS_FILE , '...
tools/model_data/mars -small128.pb')

183

184 paths = {
185 "CHECKPOINT_PATH": "./ training/models/ssd_mobnet...

/",
186 "PIPELINE_CONFIG": "./ training/models/ssd_mobnet...

/pipeline.config",
187 "LABELMAP": "./ training/annotations/label_map....

pbtxt",
188 "DEEPSORT_MODEL": model_filename
189 }
190

191 image_enhancement_methods = ["gray_linear", "...
gray_nonlinear", "he", "retinex_ssr", "retinex_msr", ...
"mask"]

192 models = ["yolov5", "yolov5_trained", "yolov8", "...
yolov7"]

193 tracking_models = ["DeepSort"]
194 noise_types = ["gauss", "salt", "speckle"]
195 classes = {"car": "1", "truck": "2", "bus": "3", "...

bike": "4", "person": "5", "motorbike": "6"}
196

197 model_name = "yolov5"
198 if args.model in models:
199 paths["CHECKPOINT_PATH"] = "./ training/models/" ...

+ args.model + "/"
200 paths["PIPELINE_CONFIG"] = "./ training/models/" ...

+ args.model + "/pipeline.config"

87

Code excerpts

201 model_name = args.model
202

203 tracking_model_name = "DeepSort"
204 if args.tracking and args.tracking in ...

tracking_models:
205 tracking_model_name = args.tracking
206

207 ckpt_number = "3"
208 if args.checkpoint is not None:
209 ckpt_number = args.checkpoint
210

211 filename = ""
212 if args.file is not None:
213 filename = args.file
214

215 image_enhancement = "None"
216 # print("Args Img_enh: ", args.img_enh)
217 if args.img_enh is not None and args.img_enh in ...

image_enhancement_methods:
218 image_enhancement = args.img_enh
219

220 brightness = None
221 if args.brightness is not None:
222 brightness = args.brightness
223 brightness -= 10* iterationOptions['...

current_iteration_index ']
224

225 if args.queue == "":
226 args.queue = "simple"
227

228 resolution = None
229 if args.resolution is not None:
230 resolution = args.resolution
231

232 noise_type = None
233 if args.noise is not None and args.noise in ...

noise_types:
234 noise_type = args.noise
235

236 if args.pretrained == "1":
237 paths["CHECKPOINT_PATH"] = "./ training/pre -...

trained -models/" + args.model + "/checkpoint/"
238 paths["PIPELINE_CONFIG"] = "./ training/pre -...

trained -models/" + args.model + "/pipeline.config"
239 paths["LABELMAP"] = "./ training/annotations/...

mscoco_label_map.pbtxt"
240 model_name = "Pretrained"
241 ckpt_number = "0"
242 classes = {"car": "3", "truck": "8", "bus": "6",...

88

Code excerpts

"bike": "2", "person": "1", "motorbike": "4"}
243

244 skip_frames = 1
245 if args.skip_frames:
246 skip_frames = int(args.skip_frames)
247

248 resize = 1
249 if args.resize:
250 resize = float(args.resize)
251

252 tunnel_manager = Tunnel_Manager ()
253 tunnel_data = tunnel_manager.get_tunnel_data(video....

split(".")[0])
254 driving_direction = None
255 if tunnel_data:
256 driving_direction = tunnel_data["...

driving_direction"]
257

258 model = Detection_Model(model_name , classes , paths , ...
ckpt_number)

259 tracker_model = Tracking_Model(paths["DEEPSORT_MODEL...
"], tracker_type=tracking_model_name)

260 evaluater = Evaluate_Incidents(classes , ...
driving_direction=driving_direction)

261 if args.filetype == "mp4":
262 pe = Evaluate_Performance("Video", datasets , ...

classes , model , tracker_model , mask=mask , noise_type=...
noise_type)

263 else:
264 pe = Evaluate_Performance("Images", datasets , ...

classes , model , tracker_model , mask=mask , noise_type=...
noise_type)

265

266 # if args.file != None or args.mode == "analysis ":
267 if args.mode == "analysis":
268 if args.filetype == "mp4":
269 cap = cv2.VideoCapture(sourceFile)
270 else:
271 ret , frame , new_video , mask = pe.read(resize...

)
272 cap = frame
273 length = 0
274 if cap and not cap.isOpened () and args.filetype ...

== "mp4":
275 print("Error: Could not open video")
276 elif args.filetype == "mp4":
277 width = cap.get(cv2.CAP_PROP_FRAME_WIDTH)
278 height = cap.get(cv2.CAP_PROP_FRAME_HEIGHT)
279 length = int(cap.get(cv2....

89

Code excerpts

CAP_PROP_FRAME_COUNT))
280 # print("Width: %d, Height: %d" % (width , ...

height))
281 elif cap is not None:
282 height , width = cap.shape [:2]
283

284 fourcc = cv2.VideoWriter_fourcc (*'MP4V')
285 # if args.mode == "analysis ":
286 output_video_path = os.path.join(baseOutputDir , ...

f'{video}_{new_resolution }.mp4')
287 # else:
288 # output_video_path = os.path.join(...

baseOutputDir , (args.file + ".mp4"))
289 frame_rate = 20
290 if width is not None and height is not None:
291 frame_size = (int(width), int(height))
292 # print(frame_size)
293

294 out = cv2.VideoWriter(output_video_path , fourcc ,...
frame_rate , frame_size)

295 else:
296 if os.path.exists(datasets [0]["images"]):
297 # print("In the right place ")
298 path = datasets [0]["images"]
299 png_files = glob.glob(f"{path }/*. png")
300 jpg_files = glob.glob(f"{path }/*. jpg")
301 length = len(png_files) + len(jpg_files)
302 else:
303 print("In the else")
304 length = 0
305

306 resolutions = {
307 '720': {'width': 1280, 'height ': 720},
308 '648': {'width': 1152, 'height ': 648},
309 '576': {'width': 1024, 'height ': 576},
310 '360': {'width': 640, 'height ': 360}
311 }
312 if not new_resolution:
313 res = {'width': 1280, 'height ': 720}
314 else:
315 res = resolutions[new_resolution]
316 frame_size = (int(res['width']), int(res['height ']))
317 output_video_path = f'{baseOutputDir }/{ video}_{res["...

height "]}. mp4'
318 fourcc = cv2.VideoWriter_fourcc (*'MP4V')
319 frame_rate = 20
320 print(output_video_path)
321 # raise ValueError
322 # out = cv2.VideoWriter (" loloutput.mp4", fourcc , ...

90

Code excerpts

frame_rate , frame_size)
323 out = cv2.VideoWriter(output_video_path , fourcc , ...

frame_rate , frame_size)
324 # print(" Length: ", length)
325

326

327 frame_number = 0
328 # print(f"Running Video {video} in the {dirNames['...

runDir ']} configuration ")
329 while True:
330 ret , frame , new_video , mask = pe.read(resize , ...

new_resolution)
331

332 if frame is None:
333 break
334

335 # print("Frame: ", frame)
336 # print("Frame type: ", type(frame))
337 if isinstance(frame , tuple):
338 # print("This is a tuple ")
339 frame = frame [1]
340 # print("Frame [1] type: ", type(frame))
341 if args.filetype != "mp4":
342 height , width = frame.shape [:2]
343 frame_number += 1
344 if frame_number % skip_frames != 0:
345 continue
346

347 if ret:
348 frame = pe.image_enhancement(frame , ...

image_enhancement , mask=mask , brightness=brightness)
349 else:
350 print('Video has ended!')
351 break
352

353 if new_video:
354 new_tracking_model = Tracking_Model(paths["...

DEEPSORT_MODEL"], tracker_type=tracking_model_name)
355 pe.tracking_model = new_tracking_model
356

357 pe.detect_and_track(frame)
358

359 evaluater.purge(frame_number)
360

361 counter = 0
362 queue_details = None
363 tracks = pe.get_tracks ()
364 # queue_map = {1: [car1 , car2 , car3], 2: [car1 , ...

car2 , car3]} where 1, 2, etc is the queue index and ...

91

Code excerpts

car1 , car2 is the id of the car track
365 queue_map = {}
366 queue_colors = {1: (255, 0, 0), 2: (0, 255, 0), ...

3: (0, 0, 255), 4: (255, 255, 0)}
367 for track in pe.get_tracks ():
368 if not track.is_confirmed () or track....

time_since_update > 1:
369 continue
370

371 # print("Track: \n", track)
372 # print(" Tracks: \n", pe.get_tracks ())
373

374 if counter == 0:
375 color , text , current_point , next_point , ...

driving_dir , queue_details = evaluater.evaluate(track...
, frame_number , True)

376 queue_stats = queue_details [1][0]
377 queue_time = queue_details [1][1]
378 queue_details = queue_details [0]
379 if queue_details:
380 for lane in queue_details:
381 queue_map[lane] = queue_details[...

lane]["tracks"]
382

383 if queue_stats != {}:
384 pe.queue_performance(queue_stats , ...

queue_time)
385 else:
386 color , text , current_point , next_point , ...

driving_dir = evaluater.evaluate(track , frame_number)
387

388 if args.filetype == 'jpg':
389 pe.performance(track , text)
390 draw_rectangle(frame , track , color)
391

392 if queue_details:
393 found = False
394 for lane , track_list in queue_map.items...

():
395 # print(f"Track_list: {track_list }")
396 for _, trackInfo in track_list.items...

():
397 trackId = trackInfo [0]
398 # print(f"track_info: {trackInfo...

}")
399 # print(f"track_id: {track....

track_id }")
400 # print(f"trackId = {trackId }")
401 if track.track_id == trackId:

92

Code excerpts

402 found = True
403 if lane in queue_colors:
404 color = queue_colors[...

lane]
405 else:
406 color = (255, 255, 255)
407 break
408 print(f"found: {found}")
409 if found:
410 print(":)")
411 # draw_rectangle(frame , track , color...

)
412

413

414 # draw_text(frame , track , text)
415 if current_point and next_point:
416 draw_line(frame , current_point , ...

next_point)
417 if driving_dir:
418 draw_line(frame , (int(width /2), int(...

height /2)), (int((width /2)+driving_dir [0]), int((...
height /2)+driving_dir [1])))

419

420 if counter == 0:
421 if queue_details:
422 # lanes = queue_details ["...

furthest_apart "]
423 for lane in queue_details:
424 lane_details = queue_details[...

lane]["furthest_apart"]
425 for track in tracks:
426 if track.track_id == ...

lane_details [0]:
427 car1 = track
428 if track.track_id == ...

lane_details [1]:
429 car2 = track
430 try:
431 car1 = car1.to_tlwh ()
432 car2 = car2.to_tlwh ()
433 except AttributeError as e:
434 print("EXEPTION")
435 continue
436

437 if car1 [1] > car2 [1]:
438 draw_parallelogram(frame , (...

car2[0], car2 [1]), (car2 [0] + car2[2], car2 [1]), (...
car1[0], car1 [1] + car1 [3]), (car1 [0] + car1[2], car1...
[1] + car1 [3]))

93

Code excerpts

439 else:
440 draw_parallelogram(frame , (...

car1[0], car1 [1]), (car1 [0] + car1[2], car1 [1]), (...
car2[0], car2 [1] + car2 [3]), (car2 [0] + car2[2], car2...
[1] + car2 [3]))

441

442

443 counter += 1
444

445 current_time = time.time() - timeStart
446 gpu = GPUtil.getGPUs ()
447 gpu = gpu[0]
448 cpu_usage = psutil.cpu_percent(interval=None)
449 computational_data = {'time': current_time , '...

gpu_load_percent ': gpu.load *100, 'gpu_memory_used ': ...
gpu.memoryUsed , 'gpu_memory_usage ': gpu.memoryUtil...
*100, 'cpu_usage ': cpu_usage}

450 frameData = {'frame': frame , 'frame_number ': ...
frame_number , 'current_time ': current_time , '...
computational_data ': computational_data}

451

452 if args.filetype != 'mp4':
453 pe.status(frameData)
454

455 result = np.asarray(frame)
456 result = cv2.cvtColor(frame , cv2.COLOR_RGB2BGR)
457 out.write(result)
458 try:
459

460 # if args.file != None or args.mode == "...
analysis ":

461 # if args.mode == "analysis ":
462

463 if args.show == 1:
464 cv2.imshow("Output Video", result)
465

466 if cv2.waitKey (1) & 0xFF == ord('q'):
467 break
468 except:
469 print("BREAKING OUT")
470 break
471

472 # result = np.asarray(frame)
473 # result = cv2.cvtColor(frame , cv2.COLOR_RGB2BGR...

)
474

475 # if args.file != None or args.mode == "analysis...
":

476 # out.write(result)

94

Code excerpts

477

478 # if args.show == 1:
479 # cv2.imshow (" Output Video", result)
480

481 # if cv2.waitKey (1) & 0xFF == ord('q'):
482 # break
483 #...

###...

484 percentStorage = percentDone
485 if (frame_number / length) * 100 - ...

percentStorage > 1:
486 percentDone = np.floor((frame_number / ...

length) * 100)
487 print(f"Percent completed {percentDone }%")
488 cv2.destroyAllWindows ()
489

490 summary , jsonFormat = pe.summary ()
491 print(summary)
492 if filename != '':
493 if iterationOptions != None:
494 output_file = baseOutputDir + "/" + video....

split(".")[0] + "_" + str(iterationOptions["...
current_iteration_index"]) + ".txt"

495 output_json = baseOutputDir + "/" + video....
split(".")[0] + "_" + str(iterationOptions["...
current_iteration_index"]) + ".json"

496 print(":)")
497 elif new_resolution:
498 output_file = baseOutputDir + "/" + video....

split(".")[0] + "_" + new_resolution + ".txt"
499 output_json = baseOutputDir + "/" + video....

split(".")[0] + "_" + new_resolution + ".json"
500 else:
501 output_file = baseOutputDir + "/" + video....

split(".")[0] + ".txt"
502 output_json = baseOutputDir + "/" + video....

split(".")[0] + ".json"
503 with open(output_file , "w") as file:
504 output = f"Image enhancement: {...

image_enhancement }\n"
505 output += f"Detection: {model_name }\n"
506 output += f"Tracking: {tracking_model_name }\...

n"
507 output += f"noise_type: {noise_type }\n"
508 output += f"brightness: {brightness }\n"
509 output += summary
510 file.write(output)
511

95

Code excerpts

512 with open(output_json , "w") as file:
513 versionInfo = {
514 'image_enhancement ': image_enhancement ,
515 'detection ': model_name ,
516 'tracking ': tracking_model_name ,
517 'noise_type ': noise_type ,
518 'brightness_level ': brightness
519 }
520 outputJson = {** versionInfo , ** jsonFormat}
521 json.dump(outputJson , file)
522

523 if __name__ == '__main__ ':
524

525 if args.datamode == 'json':
526

527 # videoList = extractVideoFile(args.source)
528 config = extractJSONFile(args.source)
529

530 # print(videoList)
531

532 argsStorage = args
533 runConfig = []
534 if config['type'] == 'SessionConfig ':
535 dirName = config['dir']
536

537 i = 1
538 while os.path.exists(os.path.join(r'.\\ data...

\\ output ', dirName)):
539 dirName = config['dir'] + str(i)
540 i += 1
541 os.mkdir(os.path.join(r'.\\ data\\ output ', ...

dirName))
542

543 for object in config['runConfig ']:
544 runConfig.append(extractJSONFile(object)...

)
545 else:
546 # runConfig = [extractJSONFile(config)]
547 runConfig = config
548 dirName = runConfig['dir']
549

550 i = 1
551 while os.path.exists(os.path.join(r'.\\ data...

\\ output ', dirName)):
552 dirName = runConfig['dir'] + str(i)
553 i += 1
554 os.mkdir(os.path.join(r'.\\ data\\ output ', ...

dirName))
555 runConfig = [config]

96

Code excerpts

556

557 print(runConfig)
558

559 # Runs the main program for each video listed in...
the json file

560 # for video in videoList:
561 timeStart = time.time()
562 for file in runConfig:
563 # print(file)
564 for video in file['data']:
565

566 if file['configurations ']['argOverride '...
]:

567 argReplacement(file['configurations '...
]['args'])

568 else:
569 args = argsStorage
570

571 if video != None or '':
572 #try:
573 # if True: # Just a testing line
574 # print(video)
575 dirNames = {"sessionDir": None if ...

config['type'] == 'RunConfig ' else dirName , "runDir":...
file['dir'] if config['type'] == 'SessionConfig ' ...

else dirName}
576 if args.iterations and args....

iterations > 0:
577 iterations = args.iterations
578 iterationOptions = {"...

max_iterations": int(args.iterations), "...
current_iteration_index": 0}

579

580 else:
581 iterations = 1
582 iterationOptions = None
583

584 downscale = False
585 if args.downscale != 0:
586 downscale = True
587

588 if iterationOptions:
589 for i in range(iterations):
590 iterationOptions['...

current_iteration_index '] = i
591 main(video , dirNames , ...

iterationOptions , downscale)
592 continue
593

97

Code excerpts

594 if downscale:
595 resolutions = ['720', '648', '...

576', '360']
596 for resolution in resolutions:
597 main(video , dirNames , ...

iterationOptions , resolution)
598 continue
599

600 main(video , dirNames , ...
iterationOptions , downscale)

601

602 #except Exception as e:
603 #print("This is the error: "+ ...

str(e))
604 # print(e.message)
605 #continue
606 # print (";)")
607 else:
608 print("Video was None or ''")
609 timeEnd = time.time()
610 totalTime = timeEnd - timeStart
611 print("Total time: "+ str(totalTime))
612

613 else:
614 main(args.source , args.source.split(".")[0] if ...

args.mode == "analysis" else args.file)

Kode B.1: liveTrack.py was altered for this thesis and its original source code was
part of the thesis written by Aleksander Vedvik and can be found under run.py in
the GitHub repository [48]

1 import os
2 import tensorflow as tf
3 import torch
4 from ultralytics import YOLO
5

6 import numpy as np
7 # from object_detection.utils import label_map_util
8 # #from object_detection.utils import ...

visualization_utils as viz_utils
9 # from object_detection.builders import model_builder

10 # from object_detection.utils import config_util
11

12

13 """
14 **...

98

Code excerpts

15 The function "detect_fn" below is taken from the source ...
below:

16

17 Title: TFODCourse
18 File: 2. Training and Detection.ipynb
19 Author: Nicholas Renotte
20 Date: 03.04.2021
21 Code version: 1.0
22 Availability: https :// github.com/nicknochnack/TFODCourse
23

24 **...

25 """
26 @tf.function
27 def detect_fn(image , detection_model):
28 image , shapes = detection_model.preprocess(image)
29 prediction_dict = detection_model.predict(image , ...

shapes)
30 detections = detection_model.postprocess(...

prediction_dict , shapes)
31 return detections
32

33

34 class Detection_Model:
35 def __init__(self , model_type , classes , paths ={}, ...

ckpt_number =3):
36 self.model_type = model_type
37 self.classes = classes
38 self.class_ids = classes
39 self.paths = paths
40 self.ckpt_no = 'ckpt -' + str(ckpt_number)
41 self.configs = None
42 self.ckpt = None
43 self.category_index = None
44 self.CONFIDENCE_LEVEL = 0.6 # Confidence level ...

for the TensorFlowAPI models
45

46 self.model = None
47 self.init_model ()
48

49 @property
50 def class_ids(self):
51 return self._class_ids
52

53 @class_ids.setter
54 def class_ids(self , classes):
55 class_ids = {}
56 for class_name in classes:
57 id = classes[class_name]

99

Code excerpts

58 class_ids[id] = class_name
59 self._class_ids = class_ids
60

61 def init_model(self):
62 if self.model_type == "yolov5":
63 model = torch.hub.load('ultralytics/yolov5 ',...

'yolov5x ')
64 # YOLOv5 stores and use cache by default. ...

Use the line below instead if there are any problems ...
with cache.

65 # model = torch.hub.load('ultralytics/yolov5...
', 'yolov5x ', force_reload=True)

66 self.model = model
67 elif self.model_type == "yolov5_trained":
68 model = torch.hub.load('ultralytics/yolov5 ',...

'custom ', path='training/yolov5/yolov5/runs/train/...
yolov5x_trained/weights/best.pt')

69 self.model = model
70 elif self.model_type == "yolov7":
71 model = torch.hub.load('WongKinYiu/yolov7 ', ...

'custom ', 'yolov7x.pt')
72 self.model = model
73 elif self.model_type == "yolov8":
74 model = YOLO("yolov8x.pt")
75 self.model = model
76 else:
77 """
78 ...

**...

79 The code below until the END statement is ...
taken from the source below:

80

81 Title: TFODCourse
82 File: 2. Training and Detection.ipynb
83 Author: Nicholas Renotte
84 Date: 03.04.2021
85 Code version: 1.0
86 Availability: https :// github.com/...

nicknochnack/TFODCourse
87

88 ...
**...

89 """
90 # gpus = tf.config.experimental....

list_physical_devices('GPU ')
91 # for gpu in gpus:
92 # tf.config.experimental....

100

Code excerpts

set_memory_growth(gpu , True)
93

94 # self.configs = config_util....
get_configs_from_pipeline_file(self.paths['...
PIPELINE_CONFIG '])

95 # self.model = model_builder.build(...
model_config=self.configs['model '], is_training=False...
)

96

97 # self.ckpt = tf.compat.v2.train.Checkpoint(...
model=self.model)

98 # self.ckpt.restore(os.path.join(self.paths...
['CHECKPOINT_PATH '], self.ckpt_no)).expect_partial ()

99 # self.category_index = label_map_util....
create_category_index_from_labelmap(self.paths['...
LABELMAP '])

100 """
101 END
102 """
103

104 def detect(self , frame , w=0, h=0):
105 return_object = {"frame": frame , "boxes": [], "...

scores": [], "object_classes": []}
106

107 if self.model_type == "yolov5" or self....
model_type == "yolov5_trained" or self.model_type == ...
"yolov7":

108 results = self.model(frame)
109 # print ("\ nYOLOV5 !!!!!!!!!!!!:" , results , "\...

n", type(results), "\n...
===============================")

110 df = results.pandas ().xyxy [0]
111 # print ("\ nYOLOV5 DF !!!!!!!!!!!!:" , df , "\n...

", type(df), "\n===============================")
112 for row in df.itertuples ():
113 obj_class = str(row [7]).lower ()
114 if obj_class not in self.classes:
115 # NOTE: This continue was removed to...

allow for the model to classify anything it found as...
a road anomaly. This is a lackluster approach to ...

introduce Road anomaly detections.
116 # No real statistics can be drawn ...

from this as no road anomaly was annotated in the ...
dataset and therefore we have no way of verifying the...
accuracy of the detection

117 # continue
118 obj_class = "Road anomaly"
119 return_object["boxes"]. append ([float(row...

[1]), float(row [2]), (float(row [3])-float(row [1])), (...

101

Code excerpts

float(row [4])-float(row [2]))])
120 return_object["scores"]. append(float(row...

[5]))
121 return_object["object_classes"]. append(...

obj_class)
122 elif self.model_type == "yolov8":
123 results = self.model.predict(source =[frame])
124 result = results [0]. cuda().cpu().to("cpu")....

numpy()
125 for index in range(len(result.boxes.xyxy)):
126 box = result.boxes.xyxy[index]
127 obj_class = result.boxes.cls[index]
128 return_object["boxes"]. append ([float(box...

[0]), float(box [1]), (float(box [2])-float(box [0])), (...
float(box [3])-float(box [1]))])

129 return_object["scores"]. append(float(...
result.boxes.conf[index]))

130 return_object["object_classes"]. append(...
obj_class)

131 else:
132 image_np = np.array(frame)
133 input_tensor = tf.convert_to_tensor(np....

expand_dims(image_np , 0), dtype=tf.float32)
134 detections = detect_fn(input_tensor , self....

model)
135

136 num_detections = int(detections.pop('...
num_detections '))

137 detections = {key: value[0, :num_detections...
].numpy ()

138 for key , value in detections....
items()}

139 detections['num_detections '] = ...
num_detections

140

141 detections['detection_classes '] = detections...
['detection_classes ']. astype(np.int64)

142

143 for i, score in enumerate(detections["...
detection_scores"]):

144 if float(score) ≥ self.CONFIDENCE_LEVEL:
145 x1 = float(detections['...

detection_boxes '][i][1]) * float(w)
146 x2 = float(detections['...

detection_boxes '][i][3]) * float(w)
147 y1 = float(detections['...

detection_boxes '][i][0]) * float(h)
148 y2 = float(detections['...

detection_boxes '][i][2]) * float(h)

102

Code excerpts

149 class_id = str(int(detections['...
detection_classes '][i]) + 1)

150 obj_class = self.class_ids.get(...
class_id)

151

152 return_object["boxes"]. append ([x1, ...
y1 , (x2 -x1), (y2-y1)])

153 return_object["scores"]. append(float...
(score))

154 return_object["object_classes"]....
append(obj_class)

155

156 return return_object

Kode B.2: detection_model.py was altered for this thesis and its original source
code was a part of the thesis written by Aleksander Vedvik for which the source
code can be found at [48]

1 import math
2 import numpy as np
3 import networkx as nx
4 from sklearn.cluster import DBSCAN
5 import time
6 from scipy.spatial.distance import pdist , squareform
7

8 class Evaluate_Incidents:
9 def __init__(self , classes , colors=None , ...

driving_direction=None):
10 self.classes = classes
11 self.colors = colors
12 self.objects = {}
13 self.driving_direction = driving_direction
14 self.TTL = 240 # Number of frames before a ...

track is removed
15 self.PF = 2#7 # PF = Previous Frame: Number of ...

frames used to determine direction
16 self.STOPPED_DISTANCE = 3 # Distance in number ...

of pixels from current to previous frame to determine...
stopped vehicle

17 self.DIRECTION_THRESHOLD = 10 # Amount the x ...
and y vectors can deviate when determining if vehicle...
is wrong -way driving

18 self.min_number_of_frames = 2 # 24 # How many ...
frames must there be to evaluate stopped vehicle

19 self.update_number_of_frames = 2#12 # How often...
stopped vehicle should be evaluated

20 self.min_number_of_driving_directions = 5 # How ...

103

Code excerpts

many driving directions needed to create a general ...
vector for driving directions

21

22 #Queue detections:
23 self.queue_detection_radius = 100 # Radius value...

used in simple queue detection
24 self.dbscan_eps = 1 # Epsilon value used for the...

DBSCAN clustering algorithm
25 self.min_queue_size = 3 # Minimum number of ...

vehicles in proximity to a core point to be ...
considered a queue

26 self.common_driving_direction = (93, -130) #...
(133, -100) #(93, -130) # This is the mathematical ...
vector definition for direction of traffic flow (x, y...
)

27 self.secondary_driving_direction = (133, -100) #...
NOTE: Static value that have no actual function ...

currently due to not being implemented
28 self.driving_direction_margin = 10 # Tolerance ...

zone for being considered driving in the same lane
29 self.queues = {}
30 # self.queue_map = {}
31

32 @property
33 def colors(self):
34 return self._colors
35

36 @colors.setter
37 def colors(self , colors):
38 colors_default = {"alarm": (255 ,128 ,128), "ok": ...

(128 ,128 ,255), "queue": (15 ,255 ,80)}
39 if colors and colors.get("alarm") and colors.get...

("ok"):
40 colors_default = colors
41 self._colors = colors_default
42

43 @property
44 def driving_direction(self):
45 return self._driving_direction
46

47 @driving_direction.setter
48 def driving_direction(self , driving_direction):
49 # Driving direction should be defined with an ...

upstream and downstream direction
50 # Each direction should be defined as a vector: ...

[x, y]
51 if driving_direction is None:
52 driving_direction = {"Upstream": [], "...

Downstream": []}

104

Code excerpts

53 if driving_direction.get("Upstream") is None:
54 driving_direction["Upstream"] = []
55 if driving_direction.get("Downstream") is None:
56 driving_direction["Downstream"] = []
57 self._driving_direction = driving_direction
58

59 def purge(self , frame_number):
60 if frame_number % 24 != 0:
61 return
62 dict_of_objects = self.objects.copy()
63 for object in dict_of_objects:
64 if dict_of_objects[object]["last_frame"] < ...

frame_number - self.TTL:
65 del self.objects[object]
66

67 # Can be used to calculate direction based on center...
points from several frames

68 def simple_linear_regression(self , track_id , ...
frame_number):

69 track = self.objects[track_id]
70 n = len(track["center_points"])
71 if n ≤ 5:
72 return None , None
73

74 current_point = (int(track["center_points"...
][-1][0]), int(track["center_points"][-1][1]))

75 if frame_number % 12 != 0:
76 direction = self.objects[track_id].get("...

direction")
77 if direction:
78 next_point_x = current_point [0] + ...

direction["distance"]
79 next_point_y = direction["alpha"] + ...

direction["beta"] * next_point_x
80 next_point = (int(next_point_x), int(...

next_point_y))
81

82 return current_point , next_point
83

84 if n > 10:
85 n = 10
86 center_points = track["center_points"][-n:]
87

88 x_sum = 0
89 y_sum = 0
90 for center_point in center_points:
91 x_sum += center_point [0]
92 y_sum += center_point [1]
93

105

Code excerpts

94 x_mean = x_sum / n
95 y_mean = y_sum / n
96

97 numerator = 0
98 denominator = 0
99 for center_point in center_points:

100 x = center_point [0]
101 y = center_point [1]
102 numerator = (x - x_mean) * (y - y_mean)
103 denominator = (x - x_mean) ** 2
104

105 try:
106 beta = numerator / denominator
107 except Exception as e:
108 print(e)
109 beta = 0
110

111 alpha = y_mean - beta * x_mean
112

113 d = 1
114 if (center_points [-1][0] - center_points [-2][0])...

< 0:
115 d = -1
116 distance = d * math.sqrt((center_points [-1][0] -...

center_points [-2][0]) **2 + (center_points [-1][1] - ...
center_points [-2][1]) **2)

117 next_point_x = center_points [-1][0] + distance
118 next_point_y = alpha + beta * next_point_x
119 next_point = (int(next_point_x), int(...

next_point_y))
120

121 self.objects[track_id]["direction"] = {"alpha": ...
alpha , "beta": beta , "distance": distance}

122 return current_point , next_point
123

124 # Can be used to calculate direction based on center...
points from current and previous frame

125 def simple_direction(self , track_id , frame_number):
126 track = self.objects[track_id]
127 n = len(track["center_points"])
128 if n ≤ 8:
129 return None , None
130

131 current_point = (int(track["center_points"...
][-1][0]), int(track["center_points"][-1][1]))

132 if frame_number % 12 != 0:
133 direction = self.objects[track_id].get("...

direction")
134 if direction:

106

Code excerpts

135 x_vector = direction["x_vector"]
136 y_vector = direction["y_vector"]
137 length = direction["length"]
138 next_point = (int(current_point [0] + ...

x_vector * length), int(current_point [1] + y_vector *...
length))

139

140 return current_point , next_point
141

142 previous_point = track["center_points"][-self.PF...
]

143

144 x_vector = current_point [0] - previous_point [0]
145 y_vector = current_point [1] - previous_point [1]
146 length_vector = math.sqrt(x_vector **2 + y_vector...

**2)
147 try:
148 x_vector /= length_vector
149 y_vector /= length_vector
150 except Exception as e:
151 print(e)
152 return None , None
153

154 length= 50
155

156 next_point = (int(current_point [0] + x_vector * ...
length), int(current_point [1] + y_vector * length))

157

158 self.objects[track_id]["direction"] = {"length":...
length , "x_vector": x_vector , "y_vector": y_vector}

159 return current_point , next_point
160

161 # TODO: Implement angular speed (Current ...
implementation only contains a simple solution for ...
distance from last center point to current point)

162 def simple_speed(self , track_id):
163 if track_id not in self.objects:
164 print("Track id not in self.objects")
165 return -1
166 track = self.objects[track_id]
167 n = len(track["center_points"])
168 if n ≤ self.min_number_of_frames:
169 print("min number of frames not met")
170 return -1
171

172 current_point = (int(track["center_points"...
][-1][0]), int(track["center_points"][-1][1]))

173 previous_point = track["center_points"][-self.PF...
]

107

Code excerpts

174

175 speed = math.sqrt((current_point [0] - ...
previous_point [0]) **2 + (current_point [1] - ...
previous_point [1]) **2)

176

177 # self.objects[track_id][" speed "] = distance
178 return speed
179

180 def pedestrian(self , class_name):
181 if class_name == "person":
182 return True
183 return False
184

185 def stopped_vehicle(self , track_id , frame_number):
186 track = self.objects[track_id]
187 n = len(track["center_points"])
188 if n ≤ self.min_number_of_frames:
189 return False
190

191 if frame_number % self.update_number_of_frames ...
!= 0:

192 stopped = self.objects[track_id].get("...
stopped")

193 if stopped:
194 return True
195 return False
196

197 current_point = (int(track["center_points"...
][-1][0]), int(track["center_points"][-1][1]))

198 previous_point = track["center_points"][-self.PF...
]

199

200 distance = math.sqrt((current_point [0] - ...
previous_point [0]) **2 + (current_point [1] - ...
previous_point [1]) **2)

201

202 if distance ≤ self.STOPPED_DISTANCE:
203 self.objects[track_id]["stopped"] = True
204 return True
205 self.objects[track_id]["stopped"] = False
206 return False
207

208 def wrong_way_driving(self , track_id , frame_number , ...
current_point , next_point , lane="Upstream"):

209 if len(self.driving_direction.get(lane)) ≤ 0:
210 return False
211

212 track = self.objects[track_id]
213 n = len(track["center_points"])

108

Code excerpts

214 if n ≤ self.min_number_of_frames:
215 return False
216

217 if frame_number % self.update_number_of_frames ...
!= 0:

218 wrong_way = self.objects[track_id].get("...
wrong_way")

219 if wrong_way:
220 return True
221 return False
222

223 if not current_point or not next_point:
224 return False
225

226 # print("Next point: ", next_point)
227 # print(" Current point: ", current_point)
228

229 vehicle_direction = [next_point [0] - ...
current_point [0], next_point [1] - current_point [1]]

230 lane_direction = self.driving_direction.get(lane...
)

231

232 if abs(lane_direction [0] - vehicle_direction [0])...
< self.DIRECTION_THRESHOLD and abs(lane_direction [1]...
- vehicle_direction [1]) < self.DIRECTION_THRESHOLD:

233 self.objects[track_id]["wrong_way"] = False
234 return False
235 self.objects[track_id]["wrong_way"] = True
236 return True
237 # TODO: Claim Credit
238 def same_lane_driving(self , center_point1 , ...

center_point2):
239 lane_vector = [center_point2 [0] - center_point1...

[0], center_point2 [1] - center_point1 [1]]
240

241 angle_radians = math.atan2(lane_vector [1], ...
lane_vector [0])

242 angle_degrees = math.degrees(angle_radians)
243

244 # print(self.common_driving_direction)
245 driving_direction_angle = math.degrees(math....

atan2(self.common_driving_direction [0], self....
common_driving_direction [1]))

246 angle_difference = abs(angle_degrees - ...
driving_direction_angle)

247

248 angle_difference = min(angle_difference , 360 - ...
angle_difference)

249 print("Angle difference: ", angle_difference)

109

Code excerpts

250

251 return angle_difference ≤ self....
driving_direction_margin or 180 - angle_difference ≤ ...
self.driving_direction_margin

252

253 def cars_furthest_apart(coordinates , cluster_indices...
):

254 pairwise_distance = squareform(pdist(coordinates...
[cluster_indices]))

255

256 furthest_pair_indices = np.unravel_index(np....
argmax(pairwise_distance , axis=None), ...
pairwise_distance.shape)

257

258 return cluster_indices[furthest_pair_indices...
[0]], cluster_indices[furthest_pair_indices [1]]

259

260 def cars_furthest_apart_simple(self , cars):
261 max_distance = 0
262 car_pair = None
263

264 for i in range(len(cars)):
265 for j in range(len(cars)):
266 if i == j:
267 continue
268 distance = np.sqrt((cars[i][0] - cars[j...

][0]) **2 + (cars[i][1] - cars[j][1]) **2)
269

270 if distance > max_distance:
271 max_distance = distance
272 car_pair = [cars[i][2], cars[j][2]]
273

274 return car_pair
275

276 # TODO: Implement / Claim Credit
277 def queue(self , frame_number):
278 start_time = time.time()
279 queue_map = {} # Map of all detected queues
280 track_to_queue_map = {} # Simple map for ...

tracking the lane a track belongs to {trackId: laneId...
}

281 furthest_apart = {} # Map of the cars furthest ...
apart in each lane {laneId: [CarId1 , CarId2]}

282 amount_of_queues = 0
283 filtered_tracks = {key: val for key , val in self...

.objects.items () if frame_number - val.get('...
last_frame ') ≤ 1}

284

285 for track_id in self.objects:

110

Code excerpts

286 track = self.objects[track_id]
287 class_to_id = {0: 'None' ,1: 'car', 2: '...

person ', 3: 'truck', 4: 'bus', 5: 'bike', 6: '...
motorbike ', 10: 'Road anomaly '}

288

289 print(track["class"])
290 if track["class"] in class_to_id:
291 track["class"] = class_to_id[track["...

class"]]
292 try:
293 track["class"].upper ()
294 except AttributeError as e:
295 track["class"] = "NONE"
296

297 for track_id in filtered_tracks:
298 track = self.objects[track_id]
299

300 dif = frame_number - track['last_frame ']
301 if dif > 1:
302 continue
303

304 if track["speed"] == -1 or len(track["...
center_points"]) < 1:

305 continue
306

307 if track["speed"] > 10:
308 continue
309

310 vehicles = ["CAR", "BUS", "TRUCK", "STOPPED ...
VEHICLE"]

311 if track["class"].upper () not in vehicles:
312 continue
313

314 cx1 , cy1 = track["center_points"][-1] # ...
Center point

315 if track_id in track_to_queue_map:
316 lane = track_to_queue_map[track_id]
317 else:
318 if track_to_queue_map == {}:
319 lane = 1
320 else:
321 lane = len(track_to_queue_map) + 1
322

323 for track_id2 in filtered_tracks:
324 track2 = self.objects[track_id2]
325 if track_id == track_id2:
326 continue
327 if track2["speed"] == -1 or len(track2["...

center_points"]) < 2:

111

Code excerpts

328 continue
329

330 if track2["class"].upper () not in ...
vehicles:

331 continue
332

333 dif2 = frame_number - track2['last_frame...
']

334 if dif2 > 1:
335 continue
336

337 x, y = track2["center_points"][-1]
338 distance = np.sqrt((x - cx1)**2 + (y - ...

cy1)**2)
339

340 if distance > self....
queue_detection_radius or distance < 10:

341 continue
342 if not self.common_driving_direction:
343 continue
344

345 if self.same_lane_driving ((cx1 , cy1), (x...
, y)):

346 trackInfo = {"center_point": (cx1 , ...
cy1), "speed": track["speed"], "track": track}

347 trackInfo2 = {"center_point": (y, x)...
, "speed": track2["speed"], "track": track2}

348 print(f"These cars are same lane ...
driving {track_id} and {track_id2 }.")

349 if track_id not in ...
track_to_queue_map:

350 if lane not in queue_map:
351 queue_map[lane] = {}
352 queue_map[lane][track_id] = ...

trackInfo
353 queue_map[lane][track_id2] = ...

trackInfo2
354 track_to_queue_map[track_id] = ...

lane
355 track_to_queue_map[track_id2] = ...

lane
356 else:
357 if lane not in queue_map:
358 queue_map[lane] = {}
359 queue_map[lane][track_id2] = ...

trackInfo2
360 track_to_queue_map[track_id2] = ...

lane
361

112

Code excerpts

362

363 for lane in queue_map:
364 cars = []
365 lane_id = lane
366 lane = queue_map[lane]
367 for car in lane:
368 cars.append ((lane[car]["center_point"...

][0], lane[car]["center_point"][1], car))
369

370 found_in_lane = None
371 for l in self.queues:
372 counter = 0
373 for car in lane:
374 if car in self.queues[l]:
375 counter += 1
376 if counter ≥ self.min_queue_size:
377 found_in_lane = l
378 break
379

380 if not found_in_lane:
381 n = len(self.queues) + 1
382 self.queues[n] = [c[2] for c in cars]
383

384

385 print(f"Cars lenght: {len(cars)}")
386 if len(cars) < self.min_queue_size:
387 # continue
388 print(":)")
389 furthest_apart[lane_id] = self....

cars_furthest_apart_simple(cars)
390

391 # lanes = []
392 # print("Track to queue map: ", ...

track_to_queue_map)
393 # for lane in furthest_apart:
394 # lanes.append(furthest_apart[lane])
395 laneDetails = {}
396 # print("Track to queue map: ", ...

track_to_queue_map)
397 for lane in furthest_apart:
398 queue_lane = queue_map[lane]
399 # print(f"Queue_lane: {queue_lane }")
400 car_ids = furthest_apart[lane]
401 if not self.same_lane_driving(self.objects[...

car_ids [0]]["center_points"][-1], self.objects[...
car_ids [1]]["center_points"][-1]):

402 continue
403 tracks = {lane: [car , car_info["track"]] for...

car , car_info in queue_lane.items()}

113

Code excerpts

404 laneDetails[lane] = {"furthest_apart": ...
furthest_apart[lane], "tracks": tracks}

405

406 end_time = time.time()
407 total_time = end_time - start_time
408

409 return laneDetails , (self.queues , total_time)
410

411

412

413

414 # TODO: Implement / Claim Credit
415 def queue_dbscan(self):
416 # features = np.array ([])
417 features = [] # features is a 2D array ...

containing the centerpoint and speed of a vehicle
418 track_map = [] # Track_map maps the track with ...

the key feature_id to the track and track_id since ...
not all tracks make it to the feature array

419 feature_counter = 0 # Serves as the current ...
index of the feature array

420 for track_id in self.objects:
421 track = self.objects[track_id]
422 # print("Track: ", track)
423 if track["speed"] and len(track["...

center_points"]) > 2:
424 x1 , y1 = track["center_points"][-1]
425 # x2 , y2 = track[" center_points "][-1]
426 # features.append ([x1 , y1 , x2, y2, track...

["speed "]])
427 features.append ([x1, y1 , track["speed"...

]])
428 track_map.append ({"track_id": track_id , ...

"track": track })
429 feature_counter += 1
430

431 # print(" Features: \n", features)
432 if len(features) > 4:
433 features = np.array(features)
434 dbscan = DBSCAN(eps=self.dbscan_eps , ...

min_samples=self.min_queue_size)
435 clusters = dbscan.fit_predict(features)
436

437 unique_clusters = set(clusters) - {-1}
438

439 refined_clusters = []
440

441 for cluster_id in unique_clusters:
442 indices = np.where(clusters == ...

114

Code excerpts

cluster_id)[0]
443 cluster_features = features[indices]
444 cluster_tracks = track_map[indices]
445

446 G = nx.Graph ()
447

448 for index in indices:
449 G.add_node(index)
450

451 for i in range(len(indices)):
452 for j in range(i + 1, len(indices)):
453 if self.same_lane_driving(...

cluster_tracks[i]["track"]["center_points"][-1], ...
cluster_tracks[j]["track"]["center_points"][-1]):

454 G.add_edge(indices[i], ...
indices[j])

455

456 for component in nx.connected_components...
(G):

457 refined_clusters_indices = list(...
component)

458 refined_clusters.append(...
refined_clusters_indices)

459

460 # refined_clusters_track_ids is a list of ...
all clustered vehicles with their original track id

461 refined_clusters_track_ids = []
462 for cluster in refined_clusters:
463 track_ids = [track_map[i] for i in ...

cluster]
464 refined_clusters_track_ids.append(...

track_ids)
465

466 coordinates = np.array ([...])
467 cluster_assignments = [...]
468 for cluster_id in refined_clusters:
469 cluster_inices = [i for i, x in ...

enumerate(cluster)]
470

471 # print(" Refined clusters: \n", ...
refined_clusters)

472

473

474 # print(" Clusters: \n", clusters)
475

476 def evaluate(self , track , frame_number , eval_queue=...
False):

477 class_name = track.get_class ()
478 text = f"{class_name} - {track.track_id}"

115

Code excerpts

479 color = self.colors["ok"]
480 bbox = track.to_tlbr ()
481 center_point = ((int(bbox [0]) + (int(bbox [2]) - ...

int(bbox [0])) / 2), int(bbox [1]) + (int(bbox [3]) - ...
int(bbox [1])) / 2)

482 speed = self.simple_speed(track.track_id)
483 # print(f"Speed: {speed }")
484 if track.track_id in self.objects:
485 self.objects[track.track_id]["center_points"...

]. append(center_point)
486 self.objects[track.track_id]["last_frame"] =...

frame_number
487 self.objects[track.track_id]["speed"] = ...

speed
488 self.objects[track.track_id]["class"] = ...

class_name
489 else:
490 self.objects[track.track_id] = {"...

center_points": [center_point], "last_frame": ...
frame_number , "speed": speed , "class": class_name}

491

492 # Used to determine vehicle direction:
493 # Current_point is the current center location...

of the vehicle
494 # Next point is calculated by creating a ...

vector from the current center point and the previous...
center point , and then multiplying it with a length....
(Used to draw an arrow in the vehicle direction)

495 current_point , next_point = self....
simple_direction(track.track_id , frame_number)

496

497 # if len(self.driving_direction) ≥ self....
min_number_of_driving_directions:

498 # if current_point:
499 # self.common_driving_direction = (...

next_point [0] - current_point [0], next_point [1] - ...
current_point [1])

500

501

502

503

504 if self.pedestrian(class_name):
505 color = self.colors["alarm"]
506 text = "INCIDENT: Pedestrian"
507 current_point , next_point = None , None
508 elif self.stopped_vehicle(track.track_id , ...

frame_number):
509 color = self.colors["alarm"]
510 text = "INCIDENT: Stopped vehicle"

116

Code excerpts

511 current_point , next_point = None , None
512 elif self.wrong_way_driving(track.track_id , ...

frame_number , current_point , next_point):
513 print("WRONG WAY DRIVER !!!")
514 color = self.colors["alarm"]
515 text = "INCIDENT: Wrong -way driver"
516 # TODO: Introduce a queue state to this if ...

statement
517

518 # print(self.driving_direction [" Upstream "])
519 # TODO: Finish implementation
520 if eval_queue:
521 # print(" eval_queue frame_number :", ...

frame_number)
522 queue_details , queue_stats = self.queue(...

frame_number)
523 # print("Queue details: ", queue_details)
524 # return color , text , current_point , ...

next_point , self.common_driving_direction , ...
queue_details

525 if self.driving_direction["Upstream"]:
526 return color , text , current_point , ...

next_point , (self.driving_direction["Upstream"][0], ...
self.driving_direction["Upstream"][1]), [...
queue_details , queue_stats]

527 else:
528 return color , text , current_point , ...

next_point , ([]), [queue_details , queue_stats]
529

530 # return color , text , current_point , next_point ,...
self.common_driving_direction

531 if self.driving_direction["Upstream"]:
532 return color , text , current_point , ...

next_point , (self.driving_direction["Upstream"][0], ...
self.driving_direction["Upstream"][1])

533 else:
534 return color , text , current_point , ...

next_point , ([])

Kode B.3: incident_evaluator.py was altered for this thesis and its original source
code was a part of the thesis written by Aleksander Vedvik for which the source
code can be found at [48]

1 import json
2 import cv2
3 import os
4 import time

117

Code excerpts

5 import numpy as np
6 from helpers.retinex import SSR
7 from helpers.retinex import MSR
8 from noise_manager import Noise_Manager
9

10 class Evaluate_Performance:
11 def __init__(self , type , dataset_path , classes , ...

detection_model , tracking_model , mask="", noise_type=...
None):

12 self.vid = None
13 self.width = 0
14 self.height = 0
15 self.scale = 1
16 self.entries = []
17 self.next_entry_index = 0
18 self.type = type
19 self.detected_objects = []
20 self.detected_objects_previous = {}
21 self.dataset_paths = dataset_path
22 self.datasets = {}
23 self.classes = classes
24 self.detection_model = detection_model
25 self.tracking_model = tracking_model
26 self.current_video = ""
27 self.mask = mask
28 self.queue = {}
29 self.prepare ()
30

31 self.detection_time_current = 0
32 self.tracking_time_current = 0
33 self.total_time_current = 0
34 self.fps_current = 0
35

36 self.image_enhancement_current = 0
37 self.mean_image_enhancement_time = 0
38

39 self.mean_detection_time = 0
40 self.min_detection_time = -1
41 self.max_detection_time = 0
42

43 self.mean_tracking_time = 0
44 self.min_tracking_time = -1
45 self.max_tracking_time = 0
46

47 self.mean_total_time = 0
48 self.min_total_time = -1
49 self.max_total_time = 0
50

51 self.missed_detections = 0

118

Code excerpts

52 self.total_number_of_real_detections = 0
53 self.total_number_of_valid_detections = 0
54 self.total_number_of_valid_detections_adjusted =...

0
55 self.false_positives_detections = 0
56 self.false_positives_detections_previous = 0
57

58 self.missed_tracks = 0
59

60 self.detection_accuracy = 0
61 self.detection_accuracy_adjusted = 0
62 self.tracking_accuracy = 0
63 self.tracking_id_switches = 0
64 self.tracking_id_duplicates = 0
65 self.incident_accuracy = 0
66 self.missed_incidents = 0
67 self.false_alarms = 0
68

69 self.mean_fps = 0
70 self.min_fps = -1
71 self.max_fps = 0
72

73 self.number_of_frames = 0
74

75 self.cars_outside_mask = 0
76 self.objects_inside_mask = 0
77

78 self.queues_detected = 0
79 self.queue_changes = 0
80 self.mean_queue_changes = 0
81 self.max_queue_length = 0
82 self.min_queue_length = -1
83 self.avg_queue_length = 0
84 self.min_queue_detection_time = -1
85 self.max_queue_detection_time = 0
86 self.mean_queue_detection_time = 0
87 self.queue_detection_time = []
88

89 self.track_values = {}
90 self.frame_queues = {}
91 self.frameData = []
92

93 self.noise_manager = Noise_Manager(noise_type)
94

95 @property
96 def dataset_paths(self):
97 return self._dataset_paths
98

99 @dataset_paths.setter

119

Code excerpts

100 def dataset_paths(self , datasets):
101 dataset_paths = {}
102 for dataset in datasets:
103 images = dataset.get("images")
104 annotations = dataset.get("annotations")
105 dataset_name = dataset.get("dataset")
106

107 video = dataset.get("video")
108 if video:
109 dataset_paths["video"] = video
110 elif images is None or annotations is None ...

or dataset_name is None:
111 continue
112 else:
113 dataset_paths[dataset_name] = {"images":...

images , "annotations": annotations}
114

115 self._dataset_paths = dataset_paths
116

117 def prepare(self):
118 if self.type == "Video":
119 self.vid = cv2.VideoCapture(self....

dataset_paths.get("video"))
120 self.width = int(self.vid.get(cv2....

CAP_PROP_FRAME_WIDTH))
121 self.height = int(self.vid.get(cv2....

CAP_PROP_FRAME_HEIGHT))
122 elif self.type == "Images":
123 print("Doing this dataset thing")
124 for dataset_name in self.dataset_paths:
125 try:
126 if "self_annotated" in dataset_name:
127 self.prepare_self_annotated(...

dataset_name)
128 except Exception as e:
129 print(e)
130 self.datasets[dataset_name] = {"...

entries": []}
131 self.prepare_all_entries ()
132

133 mask = cv2.imread(self.mask , cv2....
IMREAD_GRAYSCALE)

134 _, self.mask = cv2.threshold(mask , 127, 255, cv2...
.THRESH_BINARY_INV)

135

136 def prepare_self_annotated(self , dataset_name="...
self_annotated"):

137 dataset = self.dataset_paths.get(dataset_name)
138 # print(" Dataset value: ", dataset)

120

Code excerpts

139 if dataset is None:
140 return
141 anno_path = dataset.get("annotations")
142 img_path = dataset.get("images")
143 mask_path = anno_path.replace("annotations.json"...

, "mask.png")
144

145 if anno_path is None:
146 return
147

148 with open(anno_path , "r") as annotations:
149 data = json.load(annotations)
150

151 annotation_classes_path = anno_path.replace("...
annotations", "classes")

152 with open(annotation_classes_path , "r") as ...
annotation_classes:

153 annotation_classes = json.load(...
annotation_classes)

154

155 images_list = {"entries": []}
156 for i, img in enumerate(data):
157 if i ≤ 0:
158 continue
159 filename = img
160 row = {"images_path": img_path , "filename": ...

filename , "objects": [], "mask_path": mask_path }
161

162 for object in data[img]['instances ']:
163

164 info = {}
165 for class_ in annotation_classes:
166 if class_["id"] == object["classId"...

]:
167 class_name = class_["name"]
168

169 for object_attribute in object["...
attributes"]:

170 for attribute_group in ...
class_["attribute_groups"]:

171 if object_attribute["...
groupId"] == attribute_group["id"]:

172 for attribute_ in ...
attribute_group["attributes"]:

173 if attribute_["...
id"] == object_attribute["id"]:

174 info[...
attribute_group["name"]] = attribute_["name"]

175

121

Code excerpts

176 if class_name == "people":
177 class_name = "person"
178

179 if class_name not in self.classes:
180 continue
181

182 x1 = float(object["points"]["x1"])
183 y1 = float(object["points"]["y1"])
184 x2 = float(object["points"]["x2"])
185 y2 = float(object["points"]["y2"])
186

187 row["objects"]. append ({"class": ...
class_name , "class_id": self.classes.get(class_name),...

"x1": x1 , "y1": y1 , "x2": x2, "y2": y2, "info": ...
info})

188

189 images_list["entries"]. append(row)
190

191 images_list['entries '] = sorted(images_list['...
entries '], key = lambda i: i['filename '])

192 self.datasets[dataset_name] = images_list
193

194 def prepare_all_entries(self):
195 if self.type != "Images":
196 return
197

198 print("\nEntries:")
199 classes = {}
200 number_of_objects = 0
201 entries = []
202 for dataset in self.datasets:
203 for entry in self.datasets[dataset]["entries...

"]:
204 entries.append(entry)
205 number_of_objects += len(entry["objects"...

])
206 for obj in entry["objects"]:
207 if obj["class"] in classes:
208 classes[obj["class"]] += 1
209 else:
210 classes[obj["class"]] = 1
211

212 print(f"Number of files: {len(entries)}")
213 print(f"Number of objects: {number_of_objects}")
214 for obj_class in classes:
215 print(f" - {obj_class }: {classes[obj_class]}...

")
216 self.entries = entries
217

122

Code excerpts

218 def performance(self , track , text):
219 bbox = track.to_tlbr ()
220 object_class = track.get_class ()
221 track_id = track.track_id
222

223 x1 = bbox [0]
224 y1 = bbox [1]
225 x2 = bbox [2]
226 y2 = bbox [3]
227

228 incident = False
229 best_IoU = {"score": 0, "object": None , "...

real_object": None}
230 for real_object in self.entries[self....

next_entry_index -1]["objects"]:
231 real_object["x1"] *= self.scale
232 real_object["y1"] *= self.scale
233 real_object["x2"] *= self.scale
234 real_object["y2"] *= self.scale
235 if x1 > real_object["x1"]:
236 x_min = x1
237 else:
238 x_min = real_object["x1"]
239 if y1 > real_object["y1"]:
240 y_min = y1
241 else:
242 y_min = real_object["y1"]
243 if x2 < real_object["x2"]:
244 x_max = x2
245 else:
246 x_max = real_object["x2"]
247 if y2 < real_object["y2"]:
248 y_max = y2
249 else:
250 y_max = real_object["y2"]
251

252 intersection_area = (x_max - x_min) * (y_max...
- y_min)

253 if intersection_area < 0 or (x_max - x_min) ...
< 0 or (y_max - y_min) < 0:

254 continue
255

256 union_area = ((real_object["x2"] - ...
real_object["x1"]) * (real_object["y2"] - real_object...
["y1"])) + ((x2 - x1) * (y2 - y1)) - ...
intersection_area

257 if union_area < 0:
258 print(f"IA: {intersection_area}")
259 print(f"UA: {union_area}")

123

Code excerpts

260 print(f"RO: x1 = {real_object['x1 ']}, y1...
= {real_object['y1 ']}, x2 = {real_object['x2 ']}, y2 ...

= {real_object['y2 ']}")
261 print(f"DO: x1 = {x1}, y1 = {y1}, x2 = {...

x2}, y2 = {y2}")
262 raise ValueError
263

264 IoU = intersection_area / union_area
265

266 if (IoU - 1)**2 < (best_IoU["score"] - 1)...
**2:

267 best_IoU["object"] = {"bbox": bbox , "...
class": object_class , "ID": track_id}

268 best_IoU["real_object"] = real_object
269 best_IoU["score"] = IoU
270

271 if best_IoU["object"] is not None and best_IoU["...
score"] > 0.4:

272 if best_IoU["real_object"]['info']['status ']...
== "Incident":

273 incident = True
274 self.detected_objects.append(best_IoU)
275 else:
276 self.false_positives_detections += 1
277

278 if incident and ("Stopped vehicle" in text or "...
Pedestrian" in text):

279 self.incident_accuracy += 1
280 elif incident:
281 self.missed_incidents += 1
282 elif "Stopped vehicle" in text or "Pedestrian" ...

in text:
283 self.false_alarms += 1
284

285 if self.track_values == {}:
286 self.track_values = {
287 'centerpoint ': {
288 'x': [(x_min + x_max) / 2],
289 'y': [(y_min + y_max) / 2]
290 },
291 'true_labels ': [],
292 'predicted_labels ': []
293 }
294 else:
295 self.track_values['centerpoint ']['x']. append...

((x_min + x_max) / 2)
296 self.track_values['centerpoint ']['y']. append...

((y_min + y_max) / 2)
297

124

Code excerpts

298

299

300

301 def frame_analytics(self , frameData):
302 print(":I")
303

304 def image_enhancement(self , frame , image_enhancement...
="", mask=None , brightness=None):

305 img_enh_start = time.time()
306 # frame = frame [1]
307 # print(frame)
308 # print("Image Enhancement: ", image_enhancement...

)
309 if image_enhancement == "gray_linear":
310 frame = cv2.cvtColor(frame , cv2....

COLOR_BGR2GRAY)
311 frame = cv2.cvtColor(frame , cv2....

COLOR_GRAY2RGB)
312 # print("Gray Linear Enhancement ")
313 # print(frame)
314 elif image_enhancement == "gray_nonlinear":
315 # print("Gray Non Linear Enhancements ")
316 frame = cv2.cvtColor(frame , cv2....

COLOR_BGR2GRAY)
317 gamma =2.0
318 invGamma = 1.0 / gamma
319 table = np.array ([((i / 255.0) ** invGamma) ...

* 255
320 for i in np.arange(0, 256)]).astype("...

uint8")
321 frame = cv2.LUT(frame , table)
322 frame = cv2.cvtColor(frame , cv2....

COLOR_BGR2RGB)
323 elif image_enhancement == "he":
324 frame = cv2.cvtColor(frame , cv2....

COLOR_BGR2GRAY)
325 frame = cv2.equalizeHist(frame)
326 frame = cv2.cvtColor(frame , cv2....

COLOR_GRAY2RGB)
327 elif image_enhancement == "retinex_ssr":
328 variance =300
329 img_ssr=SSR(frame , variance)
330 frame = cv2.cvtColor(img_ssr , cv2....

COLOR_BGR2RGB)
331 elif image_enhancement == "retinex_msr":
332 variance_list =[200 , 200, 200]
333 img_msr=MSR(frame , variance_list)
334 frame = cv2.cvtColor(img_msr , cv2....

COLOR_BGR2RGB)

125

Code excerpts

335 elif image_enhancement == "mask":
336 frame = cv2.bitwise_and(frame , frame , mask=...

mask)
337 frame = cv2.cvtColor(frame , cv2....

COLOR_BGR2RGB)
338 else:
339 frame = cv2.cvtColor(frame , cv2....

COLOR_BGR2RGB)
340

341 if brightness is not None:
342 brightness_percent = 1 + (brightness / 100)
343 frame = cv2.convertScaleAbs(frame , alpha=...

brightness_percent , beta =0)
344

345 if self.noise_manager.noise_type is not None:
346 frame = self.noise_manager.add_noise(frame)
347

348 img_enh_end = time.time()
349 self.image_enhancement_current = img_enh_end - ...

img_enh_start
350 self.mean_image_enhancement_time += self....

image_enhancement_current
351

352 return frame
353

354 def detect(self , frame):
355 detection_start = time.time()
356 model_detections = self.detection_model.detect(...

frame , self.width , self.height)
357 detection_end = time.time()
358 self.detection_time_current = detection_end - ...

detection_start
359

360 if self.detection_time_current < 10:
361 self.mean_detection_time += self....

detection_time_current
362

363 if self.min_detection_time == -1 or (self....
detection_time_current < self.min_detection_time and ...
self.detection_time_current > 0):

364 self.min_detection_time = self....
detection_time_current

365 if self.detection_time_current > self....
max_detection_time and self.detection_time_current < ...
10:

366 self.max_detection_time = self....
detection_time_current

367

368 return model_detections

126

Code excerpts

369

370 def track(self , model_detections):
371 track_start = time.time()
372 self.tracking_model.track(model_detections)
373 track_end = time.time()
374 self.tracking_time_current = track_end - ...

track_start
375

376 self.mean_tracking_time += self....
tracking_time_current

377

378 if (self.min_tracking_time == -1 or self....
tracking_time_current < self.min_tracking_time) and ...
self.tracking_time_current > 0:

379 self.min_tracking_time = self....
tracking_time_current

380 if self.tracking_time_current > self....
max_tracking_time:

381 self.max_tracking_time = self....
tracking_time_current

382

383 def detect_and_track(self , frame):
384 self.number_of_frames += 1
385 model_detections = self.detect(frame)
386 self.track(model_detections)
387

388 self.total_time_current = self....
detection_time_current + self.tracking_time_current +...
self.image_enhancement_current

389 self.mean_total_time += self.total_time_current
390

391 if (self.min_total_time == -1 or self....
total_time_current < self.min_total_time) and self....
total_time_current > 0:

392 self.min_total_time = self....
total_time_current

393 if self.total_time_current > self.max_total_time...
:

394 self.max_total_time = self....
total_time_current

395

396 self.fps_current = 1.0 / (self....
total_time_current)

397 self.fps_current = round(self.fps_current , 3)
398

399 self.mean_fps += self.fps_current
400 if (self.min_fps == -1 or self.fps_current < ...

self.min_fps) and self.fps_current > 0:
401 self.min_fps = self.fps_current

127

Code excerpts

402 if self.fps_current > self.max_fps:
403 self.max_fps = self.fps_current
404

405 def read(self , resize=1, new_resolution=False):
406 if self.type == "Video":
407 return True , self.vid.read(), False , None
408 else:
409 frame = None
410 ret = False
411 new_video = False
412 mask = None
413 try:
414 entry = self.entries[self....

next_entry_index]
415 path = entry["images_path"]
416 mask_path = entry["mask_path"]
417 image_path = os.path.join(path , '{}'....

format(entry["filename"]))
418 frame = cv2.imread(image_path)
419 self.height , self.width , _ = frame.shape
420 mask = cv2.imread(mask_path , 0)
421 ret = True
422

423 if resize ≤ 1:
424 self.scale = resize
425 self.width = int(self.width * self....

scale)
426 self.height = int(self.height * self...

.scale)
427 frame = cv2.resize(frame , (self....

width , self.height), interpolation = cv2.INTER_AREA)
428 mask = cv2.resize(mask , (self.width ,...

self.height), interpolation = cv2.INTER_AREA)
429

430 if new_resolution:
431 resolutions = {
432 '720': {'width': 1280, 'height ':...

720},
433 '648': {'width': 1152, 'height ':...

648},
434 '576': {'width': 1024, 'height ':...

576},
435 '360': {'width': 640, 'height ': ...

360}
436 }
437 new_resolution = resolutions[...

new_resolution]
438 self.scale = resize
439 self.width = int(new_resolution['...

128

Code excerpts

width'])
440 self.height = int(new_resolution['...

height '])
441 frame = cv2.resize(frame , (self....

width , self.height), interpolation = cv2.INTER_AREA)
442 mask = cv2.resize(mask , (self.width ,...

self.height), interpolation = cv2.INTER_AREA)
443

444 if self.current_video != entry['...
images_path '] and self.current_video != "":

445 new_video = True
446 self.current_video = entry['images_path '...

]
447 except IndexError as e:
448 print(e)
449 self.next_entry_index += 1
450

451 return ret , frame , new_video , mask
452

453 def get_tracks(self):
454 return self.tracking_model.get_tracks ()
455

456 def queue_performance(self , queue_stats , queue_time)...
:

457 cars = []
458 self.queues_detected = len(queue_stats)
459

460 length = 0
461 max_queue_length = 0
462 min_queue_length = -1
463 for queue in queue_stats:
464 queue = queue_stats[queue]
465 length += len(queue)
466

467 if (self.min_queue_length == -1 or self....
min_queue_length > len(queue)):

468 self.min_queue_length = len(queue)
469

470 if self.max_queue_length < len(queue):
471 self.max_queue_length = len(queue)
472

473 if (min_queue_length == -1 or ...
min_queue_length > len(queue)):

474 min_queue_length = len(queue)
475

476 if max_queue_length < len(queue):
477 max_queue_length = len(queue)
478

479 for car in queue:

129

Code excerpts

480 if car not in cars:
481 cars.append(car)
482

483 self.avg_queue_length = length / len(queue_stats...
)

484

485 for car in cars:
486 car_tracker = 0
487 for queue in queue_stats:
488 queue = queue_stats[queue]
489 if car in queue:
490 car_tracker += 1
491

492 if car_tracker > 1:
493 self.queue_changes += car_tracker - 1
494 self.mean_queue_changes = self.queue_changes / ...

len(cars)
495

496 self.min_queue_detection_time = queue_time if ...
queue_time < self.min_queue_detection_time or self....
min_queue_detection_time == -1 else self....
min_queue_detection_time

497 self.max_queue_detection_time = queue_time if ...
queue_time > self.max_queue_detection_time else self....
max_queue_detection_time

498 self.queue_detection_time.append(queue_time)
499 self.mean_queue_detection_time = sum(self....

queue_detection_time) / len(self.queue_detection_time...
)

500

501 self.frame_queues = {
502 'avg_queue_length ': length / len(queue_stats...

),
503 'max_queue_length ': max_queue_length ,
504 'min_queue_length ': min_queue_length ,
505 'mean_queue_changes ': self.queue_changes / ...

len(cars)
506 }
507

508 def status(self , frameData):
509 detection_time = int((self....

detection_time_current) * 1000)
510 track_time = int(self.tracking_time_current * ...

1000)
511 print(f"\nFrame: {self.number_of_frames}")
512 print(f"FPS: {self.fps_current}")
513 print(f"IE time: {int(self....

image_enhancement_current* 1000)} ms")
514 print(f"Detection time: {detection_time} ms")

130

Code excerpts

515 print(f"Tracking time: {track_time} ms")
516 print(f"Total time: {int(self.total_time_current...

* 1000)} ms")
517

518 class_to_id = {'car': 1, 'person ': 2, 'truck': ...
3, 'bus': 4, 'bike': 5, 'motorbike ': 6, 'Road anomaly...
': 10}

519 avg_score = 0
520 avg_score_adjusted = 0
521 number_of_detections_adjusted = 0
522 number_of_correct_classes = 0
523 number_of_wrong_classes = 0
524 number_of_correct_ids = 0
525 number_of_wrong_ids = 0
526 number_of_duplicate_ids = 0
527 object_ids = []
528 print("Detected objects:")
529 for detected_object in self.detected_objects:
530 print("Detected object: ", detected_object)
531 print("Class: ", detected_object['object ']['...

class'])
532 print(f"\t- {detected_object['object ']['...

class ']}, {round(detected_object['score ']*100, 2)} %"...
)

533 avg_score += detected_object['score']
534 if detected_object["real_object"]['info']['...

occluded '] == "False":
535 avg_score_adjusted += detected_object['...

score']
536 number_of_detections_adjusted += 1
537 if detected_object["object"]["class"] == ...

detected_object["real_object"]["class"]:
538 print("\t\t- Correct Class")
539 number_of_correct_classes += 1
540 else:
541 print("\t\t- Wrong Class")
542 number_of_wrong_classes += 1
543

544 x1 , y1 , x2, y2 = detected_object["object"]["...
bbox"]

545 bx , by = (x1 + x2) // 2, (y1 + y2) // 2
546 bx , by = int(bx), int(by)
547 if self.mask[by , bx] == 255:
548 self.cars_outside_mask += 1
549

550 if 'ID' in detected_object['real_object ']['...
info']:

551 if detected_object['real_object ']['info'...
]['ID'] in self.detected_objects_previous:

131

Code excerpts

552 if self.detected_objects_previous[...
detected_object['real_object ']['info']['ID']] == ...
detected_object['object ']['ID']:

553 if detected_object['real_object '...
]['info']['ID'] in object_ids:

554 print("\t\t- Duplicate ID")
555 number_of_duplicate_ids += 1
556 else:
557 print("\t\t- Correct ID")
558 number_of_correct_ids += 1
559 else:
560 print("\t\t- Wrong ID")
561 if detected_object["real_object"...

]["class"] != "person":
562 number_of_wrong_ids += 1
563 self.detected_objects_previous[...

detected_object['real_object ']['info']['ID']] = ...
detected_object['object ']['ID']

564 else:
565 self.detected_objects_previous[...

detected_object['real_object ']['info']['ID']] = ...
detected_object['object ']['ID']

566 object_ids.append(detected_object['...
real_object ']['info']['ID'])

567

568 self.track_values['true_labels ']. append(...
detected_object['real_object ']['class_id '])

569 self.track_values['predicted_labels ']. append...
(detected_object['score'])

570

571 self.tracking_accuracy += number_of_correct_ids
572 self.tracking_id_switches += number_of_wrong_ids
573 self.tracking_id_duplicates += ...

number_of_duplicate_ids
574

575 self.detection_accuracy += avg_score
576 self.detection_accuracy_adjusted += ...

avg_score_adjusted
577 self.total_number_of_valid_detections += len(...

self.detected_objects)
578 self.total_number_of_valid_detections_adjusted ...

+= number_of_detections_adjusted
579 if len(self.detected_objects): avg_score /= len(...

self.detected_objects)
580 if number_of_detections_adjusted > 0: ...

avg_score_adjusted /= number_of_detections_adjusted
581 print(f"Average score: {round(avg_score *100, 2)}...

%")
582 print(f"Average score adjusted: {round(...

132

Code excerpts

avg_score_adjusted *100, 2)} %")
583

584 tmp_missed = 0
585 if object_ids != []:
586 for real_object in self.entries[self....

next_entry_index -1]["objects"]:
587 if real_object['info']['ID'] not in ...

object_ids:
588 self.missed_detections += 1
589 tmp_missed += 1
590 self.total_number_of_real_detections += len(...

self.entries[self.next_entry_index -1]["objects"])
591

592 print(f"Missed detections: {tmp_missed}")
593 try:
594 print(f"Missed detections: {round (100*...

tmp_missed/len(self.entries[self.next_entry_index ...
-1][' objects ']), 1)} %")

595 except Exception as e:
596 print(e)
597 print(f"False positive detections: {self....

false_positives_detections - self....
false_positives_detections_previous}")

598

599 systemAnalytics = frameData['computational_data '...
]

600 frame_data = {
601 'frame_number ': frameData['frame_number '],
602 'current_time ': frameData['current_time ']
603 }
604 if self.incident_accuracy+self.missed_incidents ...

> 0:
605 incident_accuracy_accumulated = round (100*...

self.incident_accuracy /(self.incident_accuracy+self....
missed_incidents), 1)

606 else:
607 incident_accuracy_accumulated = 0
608 frameInfo = {
609 'frame_data ': frame_data ,
610 'computational_data ': systemAnalytics ,
611 'mean_detection_time ': int (1000 * self....

mean_detection_time / self.number_of_frames),
612 'min_detection_time ': int (1000 * self....

min_detection_time),
613 'max_detection_time ': int (1000 * self....

max_detection_time),
614 'mean_tracking_time ': int (1000 * self....

mean_tracking_time / self.number_of_frames),
615 'min_tracking_time ': int (1000 * self....

133

Code excerpts

min_tracking_time),
616 'max_tracking_time ': int (1000 * self....

max_tracking_time),
617 'avg_score ': avg_score ,
618 'number_of_valid_detections ': len(self....

detected_objects),
619 'number_of_detections_adjusted ': ...

number_of_detections_adjusted ,
620 'number_of_correct_classes ': ...

number_of_correct_classes ,
621 'number_of_wrong_classes ': ...

number_of_wrong_classes ,
622 'number_of_correct_ids ': ...

number_of_correct_ids ,
623 'number_of_wrong_ids ': number_of_wrong_ids ,
624 'number_of_duplicate_ids ': ...

number_of_duplicate_ids ,
625 'false_positive_detections ': self....

false_positives_detections - self....
false_positives_detections_previous ,

626 'missed_detections ': round (100* tmp_missed/...
len(self.entries[self.next_entry_index -1]['objects '])...
, 1),

627 'incident_accuracy_accumulated ': ...
incident_accuracy_accumulated ,

628 'queue_info ': self.frame_queues
629 }
630

631 self.frame_queues = {}
632

633 self.frameData.append(frameInfo)
634

635 self.detected_objects = []
636

637 self.false_positives_detections_previous = self....
false_positives_detections

638

639 def summary(self):
640 text = "\n"
641 jsonFormat = {}
642 try:
643 total_detections = self....

total_number_of_valid_detections + self....
false_positives_detections

644 text += f"Scale: {int(self.scale *100)} %\n"
645 text += f"Resolution: {int(self.width*self....

scale)}x{int(self.height*self.scale)} px\n"
646 text += f"Mean image enhancement time: {int...

(1000 * self.mean_image_enhancement_time / self....

134

Code excerpts

number_of_frames)} ms\n"
647 text += "\n"
648 text += f"Mean detection time: \t{int (1000 *...

self.mean_detection_time / self.number_of_frames)} ...
ms\n"

649 text += f"Min detection time: \t{int (1000 * ...
self.min_detection_time)} ms\n"

650 text += f"Max detection time: \t{int (1000 * ...
self.max_detection_time)} ms\n"

651 text += "\n"
652 text += f"Mean tracking time: \t{int (1000 * ...

self.mean_tracking_time / self.number_of_frames)} ms\...
n"

653 text += f"Min tracking time: \t\t{int (1000 *...
self.min_tracking_time)} ms\n"

654 text += f"Max tracking time: \t\t{int (1000 *...
self.max_tracking_time)} ms\n"

655 text += "\n"
656 text += f"Mean total time: \t{int (1000 * ...

self.mean_total_time / self.number_of_frames)} ms\n"
657 text += f"Min total time: \t{int (1000 * self...

.min_total_time)} ms\n"
658 text += f"Max total time: \t{int (1000 * self...

.max_total_time)} ms\n"
659 text += "\n"
660 text += f"Mean fps: \t{round(self.mean_fps /...

self.number_of_frames , 1)}\n"
661 text += f"Min fps: \t{int(self.min_fps)}\n"
662 text += f"Max fps: \t{int(self.max_fps)}\n"
663 text += "\n"
664 text += f"False positive detections: \t{...

round (100* self.false_positives_detections/...
total_detections , 1)} %\n"

665 text += f"Missed detections: \t\t\t{round...
(100* self.missed_detections/self....
total_number_of_real_detections , 1)} %\n"

666 text += "\n"
667 text += f"Detection accuracy: \t\t\t{round...

(100* self.detection_accuracy/self....
total_number_of_valid_detections , 1)} %\n"

668 text += f"Detection accuracy adjusted: \t{...
round (100* self.detection_accuracy_adjusted/self....
total_number_of_valid_detections_adjusted , 1)} %\n"

669 text += f"Tracking accuracy: \t\t\t\t{round...
(100* self.tracking_accuracy /(self.tracking_accuracy+...
self.tracking_id_switches+self.tracking_id_duplicates...
), 1)} %\n"

670 text += f"Tracking ID duplicates: \t\t{round...
(100* self.tracking_id_duplicates /(self....

135

Code excerpts

tracking_accuracy+self.tracking_id_switches+self....
tracking_id_duplicates), 1)} %\n"

671 text += f"Tracking ID switches: \t\t\t{round...
(100* self.tracking_id_switches /(self....
tracking_accuracy+self.tracking_id_switches+self....
tracking_id_duplicates), 1)} %\n"

672 text += "\n"
673 text += f"Incident accuracy: \t{round (100*...

self.incident_accuracy /(self.incident_accuracy+self....
missed_incidents), 1)} %\n"

674 text += f"Missed incidents: \t{round (100*...
self.missed_incidents /(self.incident_accuracy+self....
missed_incidents), 1)} %\n"

675 text += f"False alarms: \t\t{round (100* self....
false_alarms/total_detections , 1)} %\n"

676 text += "\n"
677 text += f"Total number of valid detections: ...

{self.total_number_of_valid_detections }\n"
678 text += f"Total number of detections: {...

total_detections }\n"
679

680 # Own statistics
681 text += "\n"
682 text += f"Cars detected outside of the mask:...

{self.cars_outside_mask }\n"
683 # text += f"Foreign objects detected inside ...

the mask: \n"
684

685 # Queue statistics:
686 text += "\n"
687 text += f"Queues detected: {self....

queues_detected }\n"
688 text += f"Amount queue changes: {self....

queue_changes }\n"
689 text += f"Average queue changes per car: {...

self.mean_queue_changes }\n"
690 text += f"Max length of a queue: {self....

max_queue_length }\n"
691 text += f"Min length of a queue: {self....

min_queue_length }\n"
692 text += f"Avg length of a queue: {self....

avg_queue_length }\n"
693

694 text += f"Min queue detection time: {self....
min_queue_detection_time }\n"

695 text += f"Max queue detection time: {self....
max_queue_detection_time }\n"

696 text += f"Mean queue detection time: {self....
mean_queue_detection_time }\n"

136

Code excerpts

697

698 # Json format:
699 resolution = f"{int(self.width*self.scale)}x...

{int(self.height*self.scale)}"
700 jsonFormat = {
701 'scale': int(self.scale *100),
702 'resolution ': resolution ,
703 'mean_image_enhancement_time ': int (1000 ...

* self.mean_image_enhancement_time / self....
number_of_frames),

704 'mean_detection_time ': int (1000 * self....
mean_detection_time / self.number_of_frames),

705 'min_detection_time ': int (1000 * self....
min_detection_time),

706 'max_detection_time ': int (1000 * self....
max_detection_time),

707 'mean_tracking_time ': int (1000 * self....
mean_tracking_time / self.number_of_frames),

708 'min_tracking_time ': int (1000 * self....
min_tracking_time),

709 'max_tracking_time ': int (1000 * self....
max_tracking_time),

710 'mean_total_time ': int (1000 * self....
mean_total_time / self.number_of_frames),

711 'min_total_time ': int (1000 * self....
min_total_time),

712 'max_total_time ': int (1000 * self....
max_total_time),

713 'mean_fps ': round(self.mean_fps / self....
number_of_frames , 1),

714 'min_fps ': int(self.min_fps),
715 'max_fps ': int(self.max_fps),
716 'false_positive_detections ': round (100*...

self.false_positives_detections/total_detections , 1),
717 'missed_detections ': round (100* self....

missed_detections/self....
total_number_of_real_detections , 1),

718 'detection_accuracy ': round (100* self....
detection_accuracy/self....
total_number_of_valid_detections , 1),

719 'detection_accuracy_adjusted ': round...
(100* self.detection_accuracy_adjusted/self....
total_number_of_valid_detections_adjusted , 1),

720 'tracking_accuracy ': round (100* self....
tracking_accuracy /(self.tracking_accuracy+self....
tracking_id_switches+self.tracking_id_duplicates), 1)...
,

721 'tracking_id_duplicates ': round (100* self...
.tracking_id_duplicates /(self.tracking_accuracy+self....

137

Code excerpts

tracking_id_switches+self.tracking_id_duplicates), 1)...
,

722 'tracking_id_switches ': round (100* self....
tracking_id_switches /(self.tracking_accuracy+self....
tracking_id_switches+self.tracking_id_duplicates), 1)...
,

723 'incident_accuracy ': round (100* self....
incident_accuracy /(self.incident_accuracy+self....
missed_incidents), 1),

724 'missed_incidents ': round (100* self....
missed_incidents /(self.incident_accuracy+self....
missed_incidents), 1),

725 'false_alarms ': round (100* self....
false_alarms/total_detections , 1),

726 'total_number_of_valid_detections ': self...
.total_number_of_valid_detections ,

727 'total_number_of_detections ': ...
total_detections ,

728 'cars_detected_outside_mask ': self....
cars_outside_mask ,

729 'queues_detected ': self.queues_detected ,
730 'min_queue_length ': self....

min_queue_length ,
731 'max_queue_length ': self....

max_queue_length ,
732 'avg_queue_length ': self....

avg_queue_length ,
733 'queue_changes ': self.queue_changes ,
734 'mean_queue_changes ': self....

mean_queue_changes ,
735 'min_queue_detection_time ': self....

min_queue_detection_time ,
736 'max_queue_detection_time ': self....

max_queue_detection_time ,
737 'mean_queue_detection_time ': self....

mean_queue_detection_time ,
738 'frame_data ': self.frameData ,
739 'detection_data ': self.track_values
740 }
741

742

743

744 except Exception as e:
745 print("Exception happened in performance ...

evaluator")
746 print(e)
747

748 return text , jsonFormat

138

Code excerpts

Kode B.4: performance_evaluator.py was altered for this thesis and its original
source code was a part of the thesis written by Aleksander Vedvik for which the
source code can be found at [48]

1 import cv2
2 import numpy as np
3

4 class Noise_Manager:
5 def __init__(self , noise_type):
6 self.noise_type = noise_type
7

8 def add_noise(self , frame , mean=0, sigma =0.5):
9

10 noise = None
11

12 if self.noise_type == "gauss":
13 noise = np.random.normal(mean , sigma , frame...

.shape).astype('uint8')
14 frame = cv2.add(frame , noise)
15 return frame
16

17 if self.noise_type == "salt":
18 result = np.copy(frame)
19

20 salt = np.ceil (0.01 * frame.size)
21 coords = [np.random.randint(0, i - 1, int(...

salt)) for i in frame.shape]
22 result[tuple(coords)] = 255
23

24 pepper = np.ceil (0.01 * frame.size)
25 coords = [np.random.randint(0, i - 1, int(...

pepper)) for i in frame.shape]
26 result[tuple(coords)] = 0
27

28 return result
29

30 if self.noise_type == "speckle":
31 gauss = np.random.normal(mean , sigma , frame....

shape).astype("float32")
32 frame = cv2.add(frame.astype("float32"), ...

frame.astype("float32") * gauss)
33 return frame.astype("uint8")
34

35 return frame

139

Code excerpts

Kode B.5: noise_manager.py was a class specifically developed for this thesis to
introduce noise and be able to evaluate data with artificially reduced quality.

1 import cv2
2 import matplotlib
3

4 matplotlib.use('TkAgg')
5

6

7 def draw_circle(image , object , img_ratio , color =0):
8 center_coordinates = (int((float(object["x1"]) + (...

float(object["x2"]) - float(object["x1"])) / 2)*...
img_ratio), int((float(object["y1"]) + (float(object[...
"y2"]) - float(object["y1"])) / 2)*img_ratio))

9 radius = 0
10 if color == 0:
11 color_circle = (0, 0, 255)
12 else:
13 color_circle = color
14 thickness_circle = 10
15

16 cv2.circle(image , center_coordinates , radius , ...
color_circle , thickness_circle)

17

18

19 def draw_line(image , start_point, end_point):
20 color , thickness = (255 ,255 ,255), 2
21 cv2.arrowedLine(image , start_point, end_point , color...

, thickness)
22

23

24 def draw_text(image , track , text):
25 object = track.to_tlbr ()
26

27 coordinates = (int(object [0]), int(object [1] -10))
28 font = cv2.FONT_HERSHEY_SIMPLEX
29 fontScale = 1
30 color_text = (255, 255, 255)
31 thickness = 2
32

33 cv2.putText(image , text , coordinates , font , ...
fontScale , color_text , thickness)

34

35

36 def draw_rectangle(image , track , color):
37 object = track.to_tlbr ()

140

Code excerpts

38 0
39 start_point, end_point = (int(object [0]), int(object...

[1])), (int(object [2]), int(object [3]))
40 color_rectangle = color
41 thickness_rectangle = 2
42

43 cv2.rectangle(image , start_point, end_point , ...
color_rectangle , thickness_rectangle)

44

45 def draw_parallelogram(image , top_left , top_right , ...
bottom_left , bottom_right):

46 thickness = 2
47 color = (57, 255, 20)
48 # print(top_left)
49 top_left = (int(top_left [0]), int(top_left [1]))
50 top_right = (int(top_right [0]), int(top_right [1]))
51 bottom_left = (int(bottom_left [0]), int(bottom_left...

[1]))
52 bottom_right = (int(bottom_right [0]), int(...

bottom_right [1]))
53 cv2.line(image , top_left , top_right , color , ...

thickness)
54 cv2.line(image , top_right , bottom_right , color , ...

thickness)
55 cv2.line(image , bottom_right , bottom_left , color , ...

thickness)
56 cv2.line(image , bottom_left , top_left , color , ...

thickness)

Kode B.6: visualize_objects.py was altered for this thesis and its original source
code was a part of the thesis written by Aleksander Vedvik for which the source
code can be found at [48]. The altered code was mainly focuesed around the
paralellogram visualization

1 import os
2 import argparse
3 import json
4 import matplotlib.pyplot as plt
5 import seaborn as sns
6 import numpy as np
7 import pandas as pd
8 from sklearn.metrics import roc_curve , auc , ...

precision_recall_curve
9 from sklearn.preprocessing import label_binarize

10

11 parser = argparse.ArgumentParser(
12 description="Analyzing output statistics from the ...

141

Code excerpts

main software"
13)
14 parser.add_argument("-s",
15 "--source",
16 help="Select the source directory , ...

This is expecting a directory created from the ...
session config file with its setup , expects only name...
of the directory",

17 type=str)
18

19 args = parser.parse_args ()
20

21 def confMatrix(confMatrix , outputDir):
22 print("\nConfusion matrix")
23 print(confMatrix)
24 for matrix in confMatrix:
25 # print(matrix)
26 matrixOutputDir = os.path.join(outputDir , matrix...

['statInfo ']['detection '], matrix['statInfo ']['...
tracking '], matrix['statInfo ']['image_enhancement '])

27 if not os.path.exists(matrixOutputDir):
28 os.makedirs(matrixOutputDir)
29 confMtx = np.array([
30 [matrix['tp'], matrix['fn']],
31 [matrix['fp'], matrix['tn']]
32])
33 confMtx = confMtx.astype(int)
34

35 plt.figure(figsize =(8, 6))
36 sns.heatmap(confMtx , annot=True , fmt="d", cmap="...

Blues", cbar=False)
37 title = f"Detection: {matrix['statInfo ']['...

detection ']}, Tracking: {matrix['statInfo ']['tracking...
']}, Img_enh: {matrix['statInfo '][' image_enhancement...
']}, Noise_type: {matrix['statInfo ']['noise_type ']}"

38 plt.title(f"Confusion Matrix {title}")
39 plt.ylabel('True Label')
40 plt.xlabel('Predicted Label ')
41 plt.xticks ([0.5 , 1.5], ["Positive", "Negative"])
42 plt.yticks ([0.5 , 1.5], ["Positive", "Negative"],...

rotation =0)
43 print(matrix['statInfo ']['file'])
44 dataFile = matrix['statInfo ']['file'].split('.')...

[0] if matrix['statInfo ']['file']. endswith('.json') ...
else matrix['statInfo ']['file']

45 filename = f"{matrixOutputDir }/ Confusion_matrix_...
{dataFile}_{matrix['statInfo ']['noise_type ']}.png"

46 plt.savefig(filename)
47 plt.close ()

142

Code excerpts

48

49 def datasetConfMatrix(matrix , outputDir):
50 filename = os.path.join(outputDir , "Confusion_matrix...

.png")
51 confMtx = np.array([
52 [matrix['tp'], matrix['fn']],
53 [matrix['fp'], matrix['tn']]
54])
55 confMtx = confMtx.astype(int)
56

57 plt.figure(figsize =(8, 6))
58 sns.heatmap(confMtx , annot=True , fmt="d", cmap="...

Blues", cbar=False)
59 title = f"Detection: {matrix['statInfo ']['detection...

']}, Tracking: {matrix['statInfo ']['tracking ']}, ...
Img_enh: {matrix['statInfo '][' image_enhancement ']}, ...
Noise_type: {matrix['statInfo ']['noise_type ']}"

60 plt.title(f"Confusion Matrix {title}")
61 plt.ylabel('True Label')
62 plt.xlabel('Predicted Label ')
63 plt.xticks ([0.5 , 1.5], ["Positive", "Negative"])
64 plt.yticks ([0.5 , 1.5], ["Positive", "Negative"], ...

rotation =0)
65 print(matrix['statInfo ']['file'])
66 dataFile = matrix['statInfo ']['file'].split('.')[0] ...

if matrix['statInfo ']['file']. endswith('.json') else ...
matrix['statInfo ']['file']

67 plt.savefig(filename)
68 plt.close ()
69

70 def brightness_graphing(graphs , outputDir):
71

72 for graph in graphs:
73 if None in graph['brightness_level ']:
74 continue
75 graphOutputDir = os.path.join(outputDir , graph['...

statInfo ']['detection '], graph['statInfo ']['tracking '...
], graph['statInfo ']['image_enhancement '])

76

77 if not os.path.exists(graphOutputDir):
78 os.makedirs(graphOutputDir)
79

80 for value in graph['y_value ']:
81 x_value = np.array(graph['brightness_level '...

])
82 y_value = np.array(graph['y_value '][value])
83

84 indices = np.argsort(x_value)
85 sorted_x = x_value[indices]

143

Code excerpts

86 sorted_y = y_value[indices]
87

88 # print(f"\n Filename: {graph['file ']}, ...
folder: {graphOutputDir }")

89 # print(f"Brightness: Value: {sorted_x}, {...
value}: {sorted_y} \n")

90 plt.figure(figsize =(8,4))
91 plt.plot(sorted_x , sorted_y)
92 title = f"Detection: {graph['statInfo ']['...

detection ']}, Tracking: {graph['statInfo ']['tracking...
']}, Img_enh: {graph['statInfo '][' image_enhancement...
']}, Noise_type: {graph['statInfo ']['noise_type ']}"

93 plt.title(title)
94 plt.xlabel('Brightness Value ')
95 plt.ylabel(value)
96 filename = f"{graphOutputDir }/{ graph['...

statInfo ']['noise_type ']}_{value }.png"
97 plt.savefig(filename)
98 plt.close ()
99

100 def over_time_performance(df, outputDir):
101 filename = os.path.join(outputDir , f'...

over_time_performance.png')
102

103 plt.figure(figsize =(12, 6))
104 plt.plot(df['frame_number '], df['mean_detection_time...

'], label='Mean Detection Time')
105 plt.plot(df['frame_number '], df['min_detection_time '...

], label='Min Detection Time')
106 plt.plot(df['frame_number '], df['max_detection_time '...

], label='Max Detection Time')
107 plt.xlabel('Frame number ')
108 plt.ylabel('Time (ms)')
109 plt.title('Detection Time Over Time')
110 plt.legend ()
111 plt.savefig(filename)
112 plt.close ()
113

114 #
115 def detection_accuracy_bar(df, outputDir):
116 filename = os.path.join(outputDir , f'...

detection_accuracy_bar.png')
117 print(df['detection_accuracy '])
118 print(df['detection_accuracy_adjusted '])
119 print(df['tracking_accuracy '])
120 print(df['incident_accuracy '])
121 accuracy_data = df[['detection_accuracy ', '...

detection_accuracy_adjusted ', 'tracking_accuracy ', '...
incident_accuracy ']]

144

Code excerpts

122 long_format = accuracy_data.melt(value_vars =['...
detection_accuracy ', 'detection_accuracy_adjusted ', '...
tracking_accuracy ', 'incident_accuracy '], var_name='...
Metric ', value_name='Percentage ')

123

124

125 sns.barplot(x="Metric", y="Percentage", data=...
long_format)

126 plt.xlabel('Metric ')
127 plt.ylabel('Percentage ')
128 plt.title('Detection and Tracking Accuracy Metrics ')
129 plt.savefig(filename)
130 plt.close ()
131

132 #
133 def tracking_analysis_bar(df, outputDir):
134 filename = os.path.join(outputDir , f'...

tracking_analysis_bar.png')
135

136 tracking_data = df[['tracking_id_switches ', '...
tracking_id_duplicates ']]

137 long_format = tracking_data.melt(value_vars =['...
tracking_id_switches ', 'tracking_id_duplicates '], ...
var_name='', value_name='Count')

138

139 sns.barplot(x="", y="Count", data=long_format)
140 plt.ylabel('Count')
141 plt.savefig(filename)
142 plt.close ()
143

144 def incident_analysis_graph(df, outputDir):
145 filename = os.path.join(outputDir , f'...

incident_analysis_graph.png')
146

147 plt.plot(df['frame_number '], df['...
number_of_wrong_classes '], label='Number of wrong ...
classes ')

148 plt.plot(df['frame_number '], df['...
false_positive_detections '], label='False positive ...
detections ')

149 plt.xlabel('Frame number ')
150 plt.ylabel('Count')
151 plt.title('Incident Reporting Over Time')
152 plt.legend ()
153 plt.savefig(filename)
154 plt.close ()
155

156 # def queue_analysis(df , outputDir):
157 # plt.figure(figsize =(12, 6))

145

Code excerpts

158 # plt.plot(df['frame_number '], df['avg_queue_length...
'], label='Average Queue Length ')

159 # plt.xlabel('Frame number ')
160 # plt.ylabel('Queue Length ')
161 # plt.title('Queue Length Over Time ')
162 # plt.legend ()
163 # plt.savefig(filename)
164 # plt.close()
165

166 #
167 def detection_time_analysis(df, outputDir):
168 filename = os.path.join(outputDir , f'...

detection_time_analysis.png')
169

170 plt.figure(figsize =(10, 5))
171 sns.boxplot(data=df[['mean_detection_time ', '...

mean_tracking_time ', 'mean_total_time ']])
172 plt.ylabel('Time (ms)')
173 plt.title('Distribution of Detection , Tracking , and ...

Total Times ')
174 filename = os.path.join(outputDir , f'')
175 plt.savefig(filename)
176 plt.close ()
177

178 def detection_heatmap(df , outputDir):
179 filename = os.path.join(outputDir , f'...

detection_heatmap.png')
180

181 plt.figure(figsize =(10, 6))
182 sns.kdeplot(x=df['x_coords '], y=df['y_coords '], cmap...

="Reds", shade=True , bw_adjust =.5)
183 plt.xlabel('X Coordinate ')
184 plt.ylabel('Y Coordinate ')
185 plt.title('Heatmap of Detection Locations ')
186 plt.savefig(filename)
187 plt.close ()
188

189 #
190 # def roc_recall_curves(df , outputDir):
191 # rocFilename = outputDir
192 # recallFilename = os.path.join(outputDir , f'recall....

png ')
193

194 # true_labels = df['true_labels ']
195 # pred_score = df['pred_scores ']
196 # print(f'True labels length: {len(true_labels)}')
197 # print(f'pred labels length: {len(pred_score)}')
198

199 # classes = np.unique(true_labels)

146

Code excerpts

200 # true_labels_bin = label_binarize(true_labels , ...
classes=classes)

201

202 # for i in range(len(classes)):
203 # class_to_id = {0: 'None ',1: 'car ', 2: 'person...

', 3: 'truck ', 4: 'bus ', 5: 'bike ', 6: 'motorbike ', ...
10: 'Road anomaly '}

204 # rocClassFilename = os.path.join(rocFilename , f...
"_{class_to_id[i]}_roc.png")

205 # print(pred_score)
206 # fpr , tpr , _ = roc_curve(true_labels_bin [:, i],...

pred_score [:, i])
207 # roc_auc = auc(fpr , tpr)
208

209 # plt.figure(figsize =(10, 5))
210 # plt.plot(fpr , tpr , color='darkorange ', lw=2, ...

label='ROC curve (area = %0.2f)' % roc_auc)
211 # plt.plot([0, 1], [0, 1], color='navy ', lw=2, ...

linestyle='--')
212 # plt.xlabel('False Positive Rate ')
213 # plt.ylabel('True Positive Rate ')
214 # plt.title('Receiver Operating Characteristic ')
215 # plt.legend(loc=" lower right ")
216 # plt.savefig(rocClassFilename)
217 # plt.close ()
218

219 # precision , recall , _ = precision_recall_curve(...
true_labels , pred_score)

220 # pr_auc = auc(recall , precision)
221

222

223 # plt.figure(figsize =(10, 5))
224 # plt.plot(recall , precision , color='blue ', lw=2, ...

label='PR curve (area = %0.2f)' % pr_auc)
225 # plt.xlabel('Recall ')
226 # plt.ylabel('Precision ')
227 # plt.title('Precision -Recall curve ')
228 # plt.legend(loc="lower left")
229 # plt.savefig(recallFilename)
230 # plt.close()
231

232

233

234 def system_load_analysis(df, outputDir):
235 filename = os.path.join(outputDir , f'...

system_load_analysis.png')
236

237 plt.figure(figsize =(14, 7))
238

147

Code excerpts

239 plt.subplot(2, 2, 1)
240 plt.plot(df['frame_number '], df['gpu_load_percent '],...

label='GPU Load')
241 plt.xlabel('Time')
242 plt.ylabel('GPU Load (%)')
243 plt.title('GPU Load Over Time')
244

245 plt.subplot(2, 2, 2)
246 plt.plot(df['frame_number '], df['gpu_memory_usage '],...

label='GPU Memory Usage')
247 plt.xlabel('Time')
248 plt.ylabel('Memory Usage (MB)')
249 plt.title('GPU Memory Usage Over Time')
250

251 plt.subplot(2, 2, 3)
252 plt.plot(df['frame_number '], df['cpu_usage '], label=...

'CPU Usage ')
253 plt.xlabel('Time')
254 plt.ylabel('CPU Usage (%)')
255 plt.title('CPU Usage Over Time')
256

257 plt.tight_layout ()
258 plt.savefig(filename)
259 plt.close ()
260

261

262

263 def main():
264 if not args.source:
265 print("No source file specified")
266 return
267

268 sourceBaseDir = r'.\\ data\\ output '
269 baseOutputDir = r'.\\ data\\ graphics_output '
270 sourceDir = os.path.join(sourceBaseDir , args.source)
271 outputDir = os.path.join(baseOutputDir , args.source)
272

273 i = 0
274 try:
275 while os.path.exists(outputDir):
276 alt_path = f"{args.source}_{i}"
277 outputDir = os.path.join(baseOutputDir , ...

alt_path)
278 i += 1
279

280 if i == 10000:
281 raise TimeoutError
282 except TimeoutError as e:
283 print(f"The directory part has timed out , i = {i...

148

Code excerpts

}")
284 return
285

286

287 statisticList = []
288

289 # Collecting data
290 for entry in os.listdir(sourceDir):
291 runDir = os.path.join(sourceDir , entry)
292

293 for jsonFiles in os.listdir(runDir):
294 # if jsonFiles.startswith (" Video2 "):
295 # continue
296 if jsonFiles.split(".")[1] != "json":
297 continue
298

299 sourceFile = os.path.join(runDir , jsonFiles)
300

301 try:
302 with open(sourceFile , 'r') as file:
303 data = json.load(file)
304 statisticList.append ({'file': file ,'...

data': data , 'filename ': jsonFiles })
305 except FileNotFoundError:
306 print(f"The file was not found. {...

sourceFile}")
307 except json.JSONDecodeError:
308 print("Error decoding JSON.")
309 except Exception as e:
310 print(f"An error occurred: {e}")
311

312

313 # Processing data
314 graphs = []
315 graphDict = {'statInfo ': {}}
316 confusionMatrix = []
317 dataframe = {}
318 dataframes = []
319

320 detection_accuracy = []
321 detection_accuracy_adjusted = []
322 tracking_accuracy = []
323 incident_accuracy = []
324 tracking_id_switches = []
325 tracking_id_duplicates = []
326 mean_detection_time = []
327 mean_tracking_time = []
328 mean_total_time = []
329 true_labels = []

149

Code excerpts

330 pred_labels = []
331 confMatrixValues = {
332 'statInfo ': None ,
333 'tn': 0,
334 'fp': 0,
335 'fn': 0,
336 'tp': 0
337 }
338 for stat in statisticList:
339 file = stat['file']
340 filename = stat['filename ']
341 stat = stat['data']
342 keys = ['brightness_level ', 'mean_detection_time...

', 'mean_tracking_time ', 'detection_accuracy ', '...
cars_detected_outside_mask ', 'resolution ']

343 if not all(key in stat for key in keys):
344 continue
345

346 #Statistics cleanup
347 # print(stat)
348 statInfo = {'file': filename ,'detection ': stat['...

detection '], 'tracking ': stat['tracking '], '...
image_enhancement ': stat['image_enhancement '], '...
noise_type ': stat['noise_type '], 'resolution ': stat['...
resolution ']}

349 statInGraph = False
350

351 if stat['brightness_level '] == 0 or stat['...
brightness_level '] == None:

352 tn = stat['total_number_of_detections '] - ...
stat['total_number_of_valid_detections ']

353 confusionMatrix.append ({'statInfo ': statInfo...
, 'tn': tn , 'fp': stat['false_positive_detections '], ...
'fn': stat['missed_detections '], 'tp': stat['...
total_number_of_valid_detections ']})

354 confMatrixValues['statInfo '] = statInfo
355 confMatrixValues['tn'] += tn
356 confMatrixValues['fp'] += stat['...

false_positive_detections ']
357 confMatrixValues['fn'] += stat['...

missed_detections ']
358 confMatrixValues['tp'] += stat['...

total_number_of_valid_detections ']
359

360 try:
361 for graph in graphs:
362

363 if graph.get('statInfo ', None) == ...
statInfo:

150

Code excerpts

364 graph['file']. append(file)
365 graph['brightness_level ']. append(...

stat['brightness_level '])
366 graph['y_value ']['...

mean_detection_time ']. append(stat['...
mean_detection_time '])

367 graph['y_value ']['mean_tracking_time...
']. append(stat['mean_tracking_time '])

368 graph['y_value ']['detection_accuracy...
']. append(stat['detection_accuracy '])

369 graph['y_value ']['...
cars_detected_outside_mask ']. append(stat['...
cars_detected_outside_mask '])

370 statInGraph = True
371

372 if not statInGraph:
373 tempDict = {
374 'statInfo ': statInfo ,
375 'file': [file],
376 'brightness_level ': [stat['...

brightness_level ']],
377 'y_value ': {
378 'mean_detection_time ': [stat['...

mean_detection_time ']],
379 'mean_tracking_time ': [stat['...

mean_tracking_time ']],
380 'detection_accuracy ': [stat['...

detection_accuracy ']],
381 'cars_detected_outside_mask ': [...

stat['cars_detected_outside_mask ']],
382 }
383 }
384 graphs.append(tempDict)
385 except KeyError as err:
386 print(f"Key error: {err}")
387 continue
388

389

390 detection_accuracy.append(stat['...
detection_accuracy '])

391 detection_accuracy_adjusted.append(stat['...
detection_accuracy_adjusted '])

392 tracking_accuracy.append(stat['tracking_accuracy...
'])

393 incident_accuracy.append(stat['incident_accuracy...
'])

394 tracking_id_switches.append(stat['...
tracking_id_switches '])

395 tracking_id_duplicates.append(stat['...

151

Code excerpts

tracking_id_duplicates '])
396 mean_detection_time.append(stat['...

mean_detection_time '])
397 mean_tracking_time.append(stat['...

mean_tracking_time '])
398 mean_total_time.append(stat['mean_total_time '])
399 video_data = {'filename ': filename , 'img_enh ': ...

statInfo['image_enhancement '], 'frame_data ': {}, '...
centerpoints ': {'x': [], 'y': []}}

400 for frame in stat['frame_data ']:
401

402 if video_data['frame_data '] == {}:
403 video_data['frame_data '] = {
404 'frame_number ': [frame['frame_data '...

]['frame_number ']],
405 'current_time ': [frame['frame_data '...

]['current_time ']],
406 'mean_detection_time ': [frame['...

mean_detection_time ']],
407 'min_detection_time ': [frame['...

min_detection_time ']],
408 'max_detection_time ': [frame['...

max_detection_time ']],
409 'number_of_wrong_classes ': [frame['...

number_of_wrong_classes ']],
410 'false_positive_detections ': [frame[...

'false_positive_detections ']],
411 'gpu_load_percent ': [frame['...

computational_data ']['gpu_load_percent ']],
412 'gpu_memory_usage ': [frame['...

computational_data ']['gpu_memory_usage ']],
413 'cpu_usage ': [frame['...

computational_data ']['cpu_usage ']],
414 }
415 else:
416 video_data['frame_data ']['frame_number '...

]. append(frame['frame_data ']['frame_number '])
417 video_data['frame_data ']['current_time '...

]. append(frame['frame_data ']['current_time '])
418 video_data['frame_data ']['...

mean_detection_time ']. append(frame['...
mean_detection_time '])

419 video_data['frame_data ']['...
min_detection_time ']. append(frame['min_detection_time...
'])

420 video_data['frame_data ']['...
max_detection_time ']. append(frame['max_detection_time...
'])

421 video_data['frame_data ']['...

152

Code excerpts

number_of_wrong_classes ']. append(frame['...
number_of_wrong_classes '])

422 video_data['frame_data ']['...
false_positive_detections ']. append(frame['...
false_positive_detections '])

423 video_data['frame_data ']['...
gpu_load_percent ']. append(frame['computational_data '...
]['gpu_load_percent '])

424 video_data['frame_data ']['...
gpu_memory_usage ']. append(frame['computational_data '...
]['gpu_memory_usage '])

425 video_data['frame_data ']['cpu_usage ']....
append(frame['computational_data ']['cpu_usage '])

426

427 video_data['centerpoints ']['x'] = stat['...
detection_data ']['centerpoint ']['x']

428 video_data['centerpoints ']['y'] = stat['...
detection_data ']['centerpoint ']['y']

429

430 if statInfo['image_enhancement '] in dataframe:
431 dataframe[statInfo['image_enhancement ']]['...

video_stats ']. append(video_data)
432 else:
433 dataframe[statInfo['image_enhancement ']] = {
434 'video_stats ': [video_data],
435 'dataset_stats ': {}
436 }
437

438 true_labels = true_labels + stat['detection_data...
']['true_labels ']

439 pred_labels = pred_labels + stat['detection_data...
']['predicted_labels ']

440

441 dataframe[statInfo['image_enhancement ']]['...
dataset_stats '] = {

442 'img_enh ': statInfo['image_enhancement '],
443 'detection_accuracy ': sum(detection_accuracy...

) / len(detection_accuracy),
444 'detection_accuracy_adjusted ': sum(...

detection_accuracy_adjusted) / len(...
detection_accuracy_adjusted),

445 'tracking_accuracy ': sum(tracking_accuracy) ...
/ len(tracking_accuracy),

446 'tracking_id_switches ': sum(...
tracking_id_switches) / len(tracking_id_switches),

447 'tracking_id_duplicates ': sum(...
tracking_id_duplicates) / len(tracking_id_duplicates)...
,

448 'incident_accuracy ': sum(incident_accuracy) ...

153

Code excerpts

/ len(incident_accuracy),
449 'mean_detection_time ': sum(...

mean_detection_time) / len(mean_detection_time),
450 'mean_tracking_time ': sum(mean_tracking_time...

) / len(mean_tracking_time),
451 'mean_total_time ': sum(mean_total_time) / ...

len(mean_total_time),
452 'true_labels ': true_labels ,
453 'pred_labels ': pred_labels
454 }
455

456

457

458 videoOutputPath = os.path.join(outputDir ,)
459

460 # Visualizing data
461 confMatrix(confusionMatrix , outputDir)
462

463 baseBaseOutputDir = outputDir
464 for key in dataframe:
465 dafa = dataframe[key]
466 baseOutputDir = os.path.join(baseBaseOutputDir , ...

dafa['dataset_stats ']['img_enh '])
467 print("\n")
468 print(dafa['dataset_stats ']['img_enh '])
469 if not os.path.exists(baseOutputDir):
470 os.mkdir(baseOutputDir)
471 for video in dafa['video_stats ']:
472 filename = video['filename ']
473 outputDir = os.path.join(baseOutputDir , ...

filename.split('.')[0])
474 if not os.path.exists(outputDir):
475 os.mkdir(outputDir)
476 df = pd.DataFrame(video['frame_data '])
477

478 heatmap_vals = {
479 'x_coords ': video['centerpoints ']['x'],
480 'y_coords ': video['centerpoints ']['y']
481 }
482

483 # heatmap_vals = pd.DataFrame(heatmap_vals)
484

485 over_time_performance(df, outputDir)
486 incident_analysis_graph(df , outputDir)
487 detection_heatmap(heatmap_vals , outputDir)
488 system_load_analysis(df, outputDir)
489

490 roc_values = {
491 'true_labels ': dafa['dataset_stats ']['...

154

Code excerpts

true_labels '],
492 'pred_scores ': dafa['dataset_stats ']['...

pred_labels ']
493 }
494 outerDf = pd.DataFrame(dafa['dataset_stats '])
495 datasetConfMatrix(confMatrixValues , ...

baseOutputDir)
496 detection_accuracy_bar(outerDf , baseOutputDir)
497 tracking_analysis_bar(outerDf , baseOutputDir)
498 detection_time_analysis(outerDf , baseOutputDir)
499 # roc_recall_curves(roc_values , baseOutputDir)
500

501

502

503 # print("Hey :)")
504

505 if __name__ == '__main__ ':
506 main()

Kode B.7: StatisticAnalyser.py was specifically built for this thesis to analyze
exported data into graphs

1 import os
2 import json
3

4 class Tunnel_Manager:
5 def __init__(self):
6 self.objects = {}
7

8 def get_tunnel_data(self , tunnel):
9 tunnel_data_folder = r'.\\ data\\ tunnel_data '

10 tunnel_data_file = os.path.join(...
tunnel_data_folder , tunnel)

11 tunnel_data_file += '.json'
12 if not os.path.exists(tunnel_data_file):
13 return False
14

15 with open(tunnel_data_file , 'r') as f:
16 tunnel_data = json.load(f)
17

18 return tunnel_data

Kode B.8: tunnel_manager.py was specifically built for this thesis to keep track
of values for each video or tunnel in the dataset

155

	Introduction
	Background
	Automatic Incident Detection (AID)
	Comparative
	Statistical
	Traffic-model-based
	Artificial-model-based
	Mixed models

	Challenges
	Objectives

	Related Work
	Theory
	Image enhancement methods
	Gray level transformation
	Histogram equalization
	Retinex
	Mask

	Artificial Neural Networks
	Inner workings of an Artificial Neural Network

	Convolutional Neural Networks
	Layers
	Hyperparameters and filter

	Deep Neural Network
	Object Detection
	YOLO
	YOLOv5
	YOLOv7
	YOLOv8

	Object Tracking
	Deep SORT
	DBScan

	Approach
	Tools
	Roboflow
	OpenCV
	StreamCapture

	Limitations
	Dataset
	Available Source code
	GPU resources

	Datasets
	Dataset distribution
	Preparation of self annotated dataset

	Image Enhancements
	Object Detection
	YOLOv5
	YOLOv7
	YOLOv8

	Tracking with DeepSORT
	Queue tracking
	Queue Definition
	Lane Separation
	Approaches
	Development Challenges
	Possible improvements

	Improvements
	Session Configurations
	JSON formatting

	Performance evaluation
	Evaluating the model
	Statistics Analysis
	Graphing evaluations

	Discussions and Results
	Image Enhancements methods
	Object Detection
	Object Tracking
	Queues
	Camera Placement

	Graph Analysis
	Confusion matrix
	Incident analysis graph
	Time analysis
	System load analysis
	Heatmap

	Model Improvements
	Further work

	Conclusion
	Vedlegg
	GitHub repository
	Code excerpts

