
FACULTY OF SCIENCE AND TECHNOLOGY

Bachelor’s Thesis

study program/specialisation: Spring semester 2024

Bachelor in engineering / Open or Confidential

Bachelor of Science in Computer Science

Author(s): Alexander Bjørnås

Faculty supervisor: Nejm Saadallah

Netpower supervisor: Anders Endresen

Tittel på bacheloroppgaven: Timeføringssystem

English title: Time tracking system

Credits: 20

Keywords: Pages: 74

Time tracking, C#, ASP.NET Core, + Attatchments:

Domain-Driven Design, MUI, React, Vite Stavanger 15. may 2024

Contents

Contents i

Abstract 1

1 Introduction 1

1.1 Background and motivation 1

1.2 Problem statement . 1

1.3 About the company . 2

1.4 Thesis Outline . 2

2 Technology and library 4

2.1 React . 4

2.2 ViteJS . 5

2.3 Material UI . 5

2.4 TypeScript . 5

i

CONTENTS

2.5 ASP.NET Core 8 . 6

2.6 Entity FrameWork . 6

2.7 ASP.NET Core Identity . 6

3 Design and construction of software 7

3.1 Miro . 7

3.2 Figma . 10

4 Architecture and Models 19

4.1 Architecture . 20

4.2 Domain-Driven Design . 21

4.3 Model . 21

5 Back-end Implementation 24

5.1 Infrastructure implementation 24

5.2 ASP.NET Core Identity . 26

5.3 Controller . 27

5.3.1 The GET method 28

5.3.2 The POST method 28

5.3.3 The PUT method 30

5.3.4 The DELETE method 32

ii

CONTENTS

5.4 MediatR . 34

5.5 Pipelines . 34

6 Front-End Implementation 37

6.1 Components . 37

6.1.1 Register Hours . 39

6.1.2 Admin Menu . 41

6.2 Pages . 41

6.3 HTTP-requests . 42

6.4 Routing . 43

6.4.1 React Hooks . 43

6.4.2 React Router . 45

7 Results 51

7.1 Final design . 51

7.2 Admin Menu . 62

8 Discussion 71

8.1 Next Steps . 71

8.2 Looking Back . 72

9 Conclusion 74

iii

CONTENTS

Bibliografi 76

Attachments 76

A Programlisting 77

B Data sheet 78

iv

Abstract

The need for efficient and user-friendly time tracking solutions is crucial for
any company aiming to improve productivity. Many existing applications,
such as SharePoint Webpart and Power Apps, require a Microsoft account
and can be difficult for users with limited technological experience. This
thesis presents the development of a standalone time logging/tracking web
application that simplifies the hour logging process.

The main objective of this project was to create an easy to use application
using modern technologies. The application features a minimalistic design
to ensure ease of use for regular users while providing administrators with
necessary tools for management and customization. Key functionalities
include user-friendly interfaces for logging and viewing hours, along with
administrator privileges for managing employees and projects.

This thesis shows how I have developed a standalone time tracking applica-
tion that meets the needs of users seeking a standalone, simple and efficient
solution, making it a valuable asset for companies that wants a simple ap-
plication to view and log their hours.

v

Acknowledgements

I would like to thank Nejm Sadallah, Associate Professor in Computer Sci-
ence at the University of Stavanger, for his help with writing this thesis
and answering any questions I had. Additionally, I want to thank several
people from Netpower for their and help with developing the application.
People worth mentioning are Joakim Hannestad Tveter and Andre Mæland
for their help on the front-end, Siren Melkevig for her help on the back-end.

Cecilie Dalva for helping me design the application, and Anders Endresen
for helping me with any issues I had and for giving me this opportunity to
work on this project.

I would also like to thank Jim Seo Markussen and Marius Kaada Heske for
proof reading.

vi

Chapter 1

Introduction

1.1 Background and motivation

The background for my bachelor thesis is when I met Netpower at IKT-
dagen at the University of Stavanger, and they told me about their idea
of a new application for their customers to register and keep track of their
hours where it is not possible to use Sharepoint Webpart, Power Apps or
other similar technologies which requires that the users have Microsoft or
guest accounts. Hence comes the need for a standalone application where
external users, often from subcontractors or similar, can log in and register
their hours.

I accepted this project because I found it exciting and challenging. It covers
many different parts of software development, from the planning stages to
developing the application. This experience will be valuable for my future
career.

1.2 Problem statement

My goal is to develop a standalone application designed to simplify the
hour logging process, providing a user-friendly interface that eliminates us-

1

1.3 About the company

ing applications such as Sharepoint Webpart, Power Apps or other similar
technologies that requires a Microsoft account, which can be a difficulty
barrier for someone with limited experience with technology. This solu-
tion will specifically benefit users who prefer a simple, efficient method to
track their working hours without the need for extensive setups or platform
dependencies.

1.3 About the company

Netpower is an IT company delivering self-developed software products such
as Software as a service(SaaS), messaging systems, quality management sys-
tems, websites, online stores, digital marketing services, data center services
and IT operations. Netpower is an established competence center within
web solutions and internet-based technology. Netpower has its head of-
fice on Forus, and also has branch offices in Bergen, Harstad and Oslo,
and their own development department in HO Chi Minh City in Vietnam.
[Netpower, nd]

1.4 Thesis Outline

2. Chapter 2 - Technology and library
Presents the technology choices, as well as frameworks and libraries I
used.

3. Chapter 3 - Design and construction of software
Describes the design process of the front-end of the application.

4. Chapter 4 - Architecture and Models
I discuss the different architecture and models used in the application,
and how it is built up.

5. Chapter 5 - Back-end Implementation
Demonstrates the implementation of the back-end, detailing the in-
frastructure and controllers and explaining their connection with the
front-end.

2

1.4 Thesis Outline

6. Chapter 6 - Front-end Implementation
Demonstrates the implementation of the front-end, highlighting key
components and how it connects with the back-end.

7. Chapter 7 - Results
Presents the final front-end design through a YouTube video and im-
ages, and provides an analysis of the initial design concepts to the
finished application.

8. Chapter 8 - Discussion
Discusses next steps for the application, and decisions that should
have been made differently.

9. Chapter 9 - Conclusion
Concludes my bachelor thesis.

3

Chapter 2

Technology and library

This chapter presents the technology and libraries used for developing the
application. The first meetings with Netpower was used to discuss which
technologies that would suit the development of this application the best.
Both Netpowers recommendations and my own experiences were taken into
consideration while figuring out what technologies and libraries to use.

This chapter introduces technologies such as: React, ViteJS and Material
UI and ASP.NET Core 8.

2.1 React

React is a front-end Javascript library maintained by Meta and currently
is one of the most popular frameworks. Netpower recommended that I use
React as my front-end framework based on their experience with React, and
makes it easier for Netpower to assist me if I encounter any issues and also
streamlines the update process for them, if the application should need to
be updated in the future.

4

2.2 ViteJS

2.2 ViteJS

Vite is a build tool that aims to provide a faster and leaner development
experience for modern web projects. [Vite, nda] I choose to pair React with
Vite because of the advantages it has over just a normal React application.
One of the main reasons is the speed of loading the project, Vite utilises
esbuild instead of webpack, Vite explains that Vite pre-bundles dependen-
cies using esbuild. esbuild is written in Go and pre-bundles dependencies
10-100x faster than JavaScript-based bundlers. [Vite, ndb]

2.3 Material UI

Material UI is an open-source React component library that implements
Google’s Material Design. It includes a comprehensive collection of pre-
build components that are ready for use in production right out of the box.
[MUI, nd]
Netpower advised me to use Material UI as the design component for the
front-end, as it’s the library that they use for their front-end design, which
makes it more in style with the rest of their applications.

2.4 TypeScript

W3Schools explains the following on Typescript: TypeScript is a syntactic
superset of JavaScript which adds static typing. This basically means that
TypeScript adds syntax on top of JavaScript, allowing developers to add
types [W3Schools, nd].

Netpower recommended me to use TypeScript due to focus on maintain-
ability, as well as their familiarity and experience with the language.

5

2.5 ASP.NET Core 8

2.5 ASP.NET Core 8

ASP.NET Core is a cross-platform, high-performance, open-source frame-
work for building modern, cloud-enabled, Internet-connected apps. [Microsoft, 2023].
ASP.NET Core uses the C# programming language, due to earlier experi-
ences with .NET and the programming language.

2.6 Entity FrameWork

Entity Framework is a modern object-relation mapper that lets you build
a clean, portable, and high-level data access layer with .NET (C#) across
a variety of databases, including SQL Database (on-premises and Azure),
SQLite, MySQL, PostgreSQL, and Azure Cosmos DB. It supports LINQ
queries, change tracking, updates, and schema migrations [Microsoft, nd].

I decided to use SQLite as the database due to my previous experience
with it. Entity FrameWork Core made the SQLite database‘s changes and
updates easy to maintain throughout this project.

2.7 ASP.NET Core Identity

Rick Anderson writes the following: ASP.NET Core Identity is an API
that supports user interface (UI) login functionality, and manages users,
passwords, profile data, roles, claims, tokens, email confirmation, and more.
[Anderson, 2024]

I opted to use ASP.NET Core Identity for my application because of its
feature set and easy integration with ASP.NET Core. This also ensures
that my application had everything necessary to implement a secure au-
thentication.

6

Chapter 3

Design and construction of
software

In this chapter, I discuss what software tools I used to design the applica-
tions front-end, with the help from Netpower. The main tools chosen for
this task were Miro, which was used as a wireframe/prototype and Figma,
for a more finalized design. the finalized front-end of the application can be
seen in Chapter 7.

3.1 Miro

Miro is the online workspace for innovation that enables distributed teams
of any size to dream, design [Miro, 2023]. Miro is a whiteboarding platform,
and offers a range of tools I used to design my wireframe/prototype.

In the following images I show how I designed the wireframe/prototype in
Miro before discussing with Cecilie Dalva (Interaction designer at Netpower)
to finalize the design of the completed application.

7

3.1 Miro

Figure 3.1: Login page and register hours and view page.

8

3.1 Miro

Figure 3.2: Entering admin mode.

Figure 3.3: Manage employees and their projects and work packages.

9

3.2 Figma

Figure 3.4: Approving hours.

3.2 Figma

Figma design is for people to create, share, and test designs for websites,
mobile apps, and other digital products and experiences. It is a popular tool
for designers, product managers, writers and developers and helps anyone
involved in the design process contribute, give feedback, and make better
decisions, faster [Figma, nd].

After using Miro to create the wireframe/prototype as explained in 3.1, I
sat down with Cecilie Dalva and Anders Endresen and discussed how the
design should look, and the following pictures is how the end product should
look like.

10

3.2 Figma

Figure 3.5: Sign in page.

11

3.2 Figma

Figure 3.6: Welcome page and register hours page.

12

3.2 Figma

Figure 3.7: Hours registered page.

Figure 3.8: Admin menu after logging in.

13

3.2 Figma

Figure 3.9: Manage employees and the admin menu.

Figure 3.10: Manage employees and manage hours.

14

3.2 Figma

Figure 3.11: Approving or declining hours.

Figure 3.12: Manage work packages

15

3.2 Figma

Figure 3.13: Add employee to work package.

Figure 3.14: Viewing project and adding employees to projects.

16

3.2 Figma

Figure 3.15: Viewing project groups and adding employees.

Figure 3.16: Viewing work package groups and options.

17

3.2 Figma

Figure 3.17: How the filter works.

18

Chapter 4

Architecture and Models

This chapter details my approach on how I made maintainable code using
different architecture and design strategies. This chapter also includes in-
formation on domain-driven design, a software development methodology
which is used in this project.

19

4.1 Architecture

4.1 Architecture

Figure 4.1: Relationship among the various domain objects.

In Figure 4.1, each domain has its own associated pipelines, however, for
simplicity sake, all pipelines are represented as a single pipeline in the dia-
gram.

20

4.2 Domain-Driven Design

4.2 Domain-Driven Design

Domain-Driven Design(DDD) is a collection of principles and patterns that
help developers craft elegant object systems. Properly applied it can lead
to software abstractions called domain models. These models encapsulate
complex business logic, closing the gap between business reality and code
[Laribee, 2016].

4.3 Model

The Figure 4.2 below, visualizes the relationship between the different do-
main objects.

Figure 4.2: Entity relationship diagram.

Company: The Company object represents an organization that uses the time
tracking system. It serves as the central entity and has relationships
with employees and projects.

Employee: This entity represents individuals working for the company. Employ-
ees are directly linked to the company. Their roles are also defined to

21

4.3 Model

accommodate various employment types, such as external or tempo-
rary employees.

Roles: The Roles entity links to employees to define their responsibilities and
access within the system. It helps manage what tasks or projects an
employee can log time against, depending on their role.

Project: Projects are associated with the company, so multiple projects can
be initiated by a single company. Employees are linked to projects as
they need to assign their registered hours to specific projects they’ve
worked on.

Work Package: These are subdivisions of projects that allow for more detailed task
management, such as specifying work on particular aspects of a project
(e.g., electrical systems in a building). Work packages are not used
by every company, their utilization depends on the specific needs of
the project and company.

Time Register: This is where the employees log their hours. It is connected to both
employees and projects, ensuring that hours are recorded accurately
against the correct project. An employee can have multiple time reg-
istrations across different projects.

22

4.3 Model

Figure 4.3: Overview of system entities and their connections.

23

Chapter 5

Back-end Implementation

The back-end is structured into three sections: Controllers, Domains and
Infrastructure. The controller section consists of various system controllers
that communicates with the front-end. The domains section contains the
domain models, their associated objects and functionalities. The infras-
tructure section contains the database and its initialization procedures. I
explain the implementation of the three parts that creates the back-end,
detailing the reasons behind the choices I made.

5.1 Infrastructure implementation

The data access layer of the system is implemented by using Entity Frame-
work Core, which streamlines the interaction between the domain models
and the database. The model outlines how the application entities are
mapped to the underlying database. A database context class is used to to
specify which entities are included in the model. Also, this context class
establishes a session with the database, which enables migrations to up-
date and create the database. In this system, the model is made up of the
context class named Trcontext and the entity sets Company, Project, Em-
ployee, Role, WorkPackage, Timeregister, Absenceregister, EmployeePro-
ject and EmployeeWorkPackage. To include the entity sets into our model,
the DbSet for each entity type is included. In Listing 5.1, all the domain

24

5.1 Infrastructure implementation

objects necessary for the application are added to the model. This allows
Entity Framework Core to convert the entity sets into database tables and
manage the entities, including reading and writing instances to and from
the database.

1 public class Trcontext : IdentityDbContext<IdentityUser>
2 {
3 public Trcontext(DbContextOptions<Trcontext> options) :

base(options) { }↪→

4 public DbSet<Company> Companies { get; set; } = null!;
5 public DbSet<Project> Projects { get; set; } = null!;
6 public DbSet<Employee> Employees { get; set; } = null!;
7 public DbSet<Role> Roles { get; set; } = null!;
8 public DbSet<WorkPackage> WorkPackages { get; set; } = null!;
9 public DbSet<Timeregister> Timeregisters { get; set; } = null!;

10 public DbSet <Absenceregister> Absenceregisters { get; set; } =
null!;↪→

11 public DbSet<EmployeeProject> EmployeeProjects { get; set; } =
null!;↪→

12 public DbSet<EmployeeWorkPackage> EmployeeWorkPackages { get;
set; } = null!;↪→

Listing 5.1: Code excerpt showing the Trcontext class, used by Entity Framework
Core to manage database operations.

Entity Framework Core provides several benefits through its built-in con-
ventions. One such benefit, is that it automatically designates properties
containing "id" as the primary key of the corresponding database table for
the class. Another one is that Entity Framework Core establishes a rela-
tionship whenever it finds a navigation property on a type. A property
qualifies as a navigation property if it refers to other types of entities. See
Figure 4.3 on how the entities are connected.

To establish the needed relationships between these entities, Fluent API
mappings are defined within the OnModelCreating method. These map-
pings include defining a primary keys and setting up many-to-many rela-
tionships using the specified foreign key properties, as shown in Listing 5.2.

25

5.2 ASP.NET Core Identity

1 protected override void OnModelCreating(ModelBuilder modelBuilder)
2 {
3 base.OnModelCreating(modelBuilder);
4 modelBuilder.Entity<EmployeeProject>().HasKey(i => new {

i.EmployeeId, i.ProjectId });↪→

5 modelBuilder.Entity<EmployeeProject>().HasOne(e =>
e.Employee).WithMany(p =>
p.EmployeeProjects).HasForeignKey(e => e.EmployeeId);

↪→

↪→

6 modelBuilder.Entity<EmployeeProject>().HasOne(p =>
p.Project).WithMany(p =>
p.EmployeeProjects).HasForeignKey(p => p.ProjectId);

↪→

↪→

7

8 modelBuilder.Entity<EmployeeWorkPackage>().HasKey(i => new {
i.EmployeeId, i.PackageId });↪→

9 modelBuilder.Entity<EmployeeWorkPackage>().HasOne(e =>
e.Employee).WithMany(wp =>
wp.EmployeeWorkPackages).HasForeignKey(e =>
e.EmployeeId);

↪→

↪→

↪→

10 modelBuilder.Entity<EmployeeWorkPackage>().HasOne(wp =>
wp.WorkPackage).WithMany(e =>
e.EmployeeWorkPackages).HasForeignKey(wp =>
wp.PackageId).IsRequired(false);

↪→

↪→

↪→

Listing 5.2: Code Excerpt, this configures the relationships between the Employ-
eeProject and EmployeeWorkPackage.

5.2 ASP.NET Core Identity

As previously written in 2.7, I utilized Identity to handle the login process.
This implementation serves as a backbone for both authentication and au-
thorization within the application, ensuring robust security and streamlined
user management.

I configured ASP.NET Core Identity to use IdentityUser and IdentityRole
for managing users and roles, respectively. This setup was integrated with
Entity Framework Core, allowing seamless interaction with the SQLite

26

5.3 Controller

database, which stores user credentials and role information securely.

1 // Identity configuration with roles
2 builder.Services.AddIdentity<IdentityUser, IdentityRole>()
3 .AddEntityFrameworkStores<Trcontext>()
4 .AddDefaultTokenProviders();

Listing 5.3: Configuring ASP.NET Core Identity with roles in Program.cs

At first run, the application ensures that essential user roles are present
and creates an administrative user if not already set up. This is critical for
maintaining a controlled access environment from the start.

By invoking AddDefaultTokenProviders(), the application is equipped to
handle token generation for operations such as password resets and two-
factor authentication, increasing the security.

The addition of app.UseAuthentication() and app.UseAuthorization() mid-
dleware ensures that each request is appropriately authenticated and au-
thorized before it is processed by the application. This middleware setup is
key to enforcing security policies across all endpoints.

5.3 Controller

The controllers are used for communicating with the front-end. The con-
trollers execute tasks that is requested by the front-end, such as sending
information, modifying database entries and other relevant activities. The
back-end has a variety of controllers, depending on the scenario.

The controllers feature various methods that perform specific tasks. These
methods are named Post, Patch, Delete, and Get. Each method corresponds
to a specific attribute that indicates the type of Web API it belongs to, such
as HttpGet, HttpPost, HttpPatch, and HttpDelete.

27

5.3 Controller

5.3.1 The GET method

The GET method retrieves data from the server. For example, the HttpGet
method in TimeRegisterController lists the hours recorded for an employee
by using their employeeId, which then displays on the front-end. See Listing
5.4.

1 [HttpGet("ListHoursRegistered/{employeeId}")]
2 public IActionResult GetTimeRegistrations(string employeeId)
3 {
4 if (!Guid.TryParse(employeeId, out Guid parsedEmployeeId))
5 {
6 return BadRequest("Invalid employee ID.");
7 }
8

9 var listregisterhours = _context.Timeregisters
10 .Where(tr => tr.EmployeeId == parsedEmployeeId)
11 .ToList();
12

13 return Ok(listregisterhours);
14 }

Listing 5.4: HttpGet that shows hours registered on a employee based on their
Id.

5.3.2 The POST method

The POST method sends data to the server to create a new resource. For
example, the HttpPost method in EmployeeProjectController allows you to
add an employee to a project by submitting the employee’s details, which
are then processed and stored. See Listing 5.5

28

5.3 Controller

1 [HttpPost("AddEmployee")]
2 public async Task<IActionResult> AddEmployee(
3 [FromBody] AddEmployeeToProjectDto dto)
4 {
5 var newEmployeeProject = new EmployeeProject(
6 dto.ProjectId, dto.EmployeeId);
7

8 bool projectExists = await _context.Projects.AnyAsync(
9 p => p.ProjectId == dto.ProjectId);

10 if (!projectExists)
11 {
12 return NotFound(
13 $"Project with ID {dto.ProjectId} not found.");
14 }
15

16 bool employeeExists = await _context.Employees.AnyAsync(
17 e => e.EmployeeId == dto.EmployeeId);
18 if (!employeeExists)
19 {
20 return NotFound(
21 $"Employee with ID {dto.EmployeeId} not found.");
22 }
23

24 bool alreadyExists = await _context.EmployeeProjects.AnyAsync(
25 ep => ep.ProjectId == dto.ProjectId &&
26 ep.EmployeeId == dto.EmployeeId);
27 if (alreadyExists)
28 {
29 return BadRequest(
30 "The employee is already assigned to the project.");
31 }
32

33 _context.EmployeeProjects.Add(newEmployeeProject);
34 await _context.SaveChangesAsync();
35

36 return Ok(
37 $"Employee {dto.EmployeeId} added to project {dto.ProjectId}.");
38 }

Listing 5.5: Adding an employee to a project via POST request.

29

5.3 Controller

5.3.3 The PUT method

The PUT method is most often used to update an existing resource when
you need to modify a specific entry. See Listing 5.6

30

5.3 Controller

1 [HttpPut("UpdateEmployee/{employeeId}")]
2 public async Task<IActionResult> EditEmployee(
3 string employeeId, [FromBody] EmployeeDto updateDto)
4 {
5 if (!Guid.TryParse(employeeId, out Guid parsedEmployeeId))
6 {
7 return BadRequest("Invalid employee ID format.");
8 }
9

10 var existingEmployee = await _context.Employees
11 .FindAsync(parsedEmployeeId);
12 if (existingEmployee == null)
13 {
14 return NotFound($"Entry with ID {employeeId} not found.");
15 }
16

17 // Update employee details
18 existingEmployee.FirstName = updateDto.FirstName;
19 existingEmployee.LastName = updateDto.LastName;
20 existingEmployee.PhoneNumber = updateDto.PhoneNumber;
21 existingEmployee.Email = updateDto.Email;
22 existingEmployee.Status = updateDto.Status;
23 existingEmployee.EmployeeRole = updateDto.EmployeeRole;
24

25 try
26 {
27 _context.Employees.Update(existingEmployee);
28 await _context.SaveChangesAsync();
29 return Ok($"Employee with ID {employeeId} has been
30 successfully updated.");
31 }
32 catch (Exception ex)
33 {
34 return StatusCode(500,
35 $"An error occurred while updating the employee.
36 Error details: {ex.Message}");
37 }
38 }

Listing 5.6: PUT method for updating an employee’s details.

31

5.3 Controller

5.3.4 The DELETE method

The DELETE method is used to delete a resource. In listing 5.7, it is
used to delete an employee’s hours or absence records if an employee has
registered something wrong.

32

5.3 Controller

1 [HttpDelete("RemoveEntry/{logId}")]
2 public async Task<IActionResult> RemoveEntry(string logId)
3 {
4 try
5 {
6 if (!Guid.TryParse(logId, out Guid parsedLogId))
7 {
8 return BadRequest("Invalid format for log ID.");
9 }

10

11 var timeEntry = await _context.Timeregisters
12 .FindAsync(parsedLogId);
13 if (timeEntry != null)
14 {
15 _context.Timeregisters.Remove(timeEntry);
16 await _context.SaveChangesAsync();
17 return Ok($"Time register entry with ID {logId} has been
18 successfully deleted.");
19 }
20

21 var absenceEntry = await _context.Absenceregisters
22 .FindAsync(parsedLogId);
23 if (absenceEntry != null)
24 {
25 _context.Absenceregisters.Remove(absenceEntry);
26 await _context.SaveChangesAsync();
27 return Ok($"Absence register entry with ID {logId} has been
28 successfully deleted.");
29 }
30

31 return NotFound($"Entry with ID {logId} not found in both time and
32 absence registers.");
33 }
34 catch (Exception ex)
35 {
36 return StatusCode(500, $"An error occurred while
37 deleting the entry.
38 Please try again.
39 Error details: {ex.Message}");
40 }
41 }

Listing 5.7: DELETE Method for deleting hours registered and absence register.
33

5.4 MediatR

5.4 MediatR

MediatR is designed for implementing the Mediator pattern in .NET ap-
plications, serving to decrease direct dependencies among components by
employing a mediator object to manage communications.

As seen in the pipeline at Listing 5.8, I used IRequest interface to request
for the GUIDs of projects linked to a specific employee, then the IRe-
questHandler interface to specify the logic for handling this request and
returning the relevant ProjectIds for that employee.

5.5 Pipelines

The pipelines in the application connects to the database . Data entries
stored in the database are retrieved, deleted or updated with these pipelines.
Listing 5.8 is one of the pipelines I used, that retrieves projects linked to
an employee.

34

5.5 Pipelines

1 public class GetProjectIds
2 {
3 public record Request(Guid employeeId) : IRequest<List<Guid>> { }
4

5 public class Handler : IRequestHandler<Request, List<Guid>>
6 {
7 private readonly Trcontext _db;
8

9 public Handler(Trcontext db)
10 {
11 _db = db;
12 }
13

14 public async Task<List<Guid>> Handle(Request request,
CancellationToken cancellationToken)↪→

15 {
16 var projectIds = await _db.EmployeeProjects.Where(ep =>

ep.EmployeeId == request.employeeId).Select(ep =>
ep.ProjectId).ToListAsync();

↪→

↪→

17 return projectIds;
18 }
19 }
20 }

Listing 5.8: Pipeline to fetch ProjectIds linked with a given employeeId

35

5.5 Pipelines

1 [HttpGet("GetProjectsByEmployee/{employeeId}")]
2 public async Task<ActionResult<List<Guid>>> GetProjectsByEmployee(Guid

employeeId)↪→

3 {
4 var request = new GetProjectIds.Request(employeeId);
5 var projectIds = await _mediator.Send(request);
6 if (projectIds == null || !projectIds.Any())
7 return NotFound("No projects found for this employee.");
8

9 return Ok(projectIds);
10 }

Listing 5.9: Code used to retrive projectIds for a specified employee using Me-
diatR.

36

Chapter 6

Front-End Implementation

In this chapter, I show the implementation of the front-end for the appli-
cation, and how the front-end works with the back-end. The front-end is
developed using React Vite, and the folder structure is as follows: Compo-
nents and Pages, the two folder consists of different elements which together
builds up the application. Additionally, outside these two folders, there are
three more important files: Main.tsx, App.tsx and AuthContext.tsx.

6.1 Components

The components are responsible for both rendering elements on the front-
end, and also handling interactions with the back-end. As can be seen in the
example Listing 6.1 and Listing 6.2 which is the ‘SignIn‘ component, respon-
sible for employee authentication. The component manages the employees
input, handles state for input fields and error messages, and communicates
with the authentication API to verify the employees credentials.

37

6.1 Components

1 export default function SignIn() {
2 const [emailUsername, setEmailUsername] = useState("");
3 const [password, setPassword] = useState("");
4 const [error, setError] = useState(false);
5 const [helperText, setHelperText] = useState('');
6

7 const handleSubmit = async (event) => {
8 event.preventDefault();
9 setError(false);

10 setHelperText('');
11 try {
12 const response = await

fetch('http://localhost:5163/api/Auth/login', {↪→

13 method: "POST",
14 headers: {"Content-Type": "application/json"},
15 body: JSON.stringify({ Email: emailUsername, Password:

password })↪→

16 });
17 if (response.ok) {
18 const data = await response.json();
19 navigate('/welcome');
20 } else {
21 setError(true);
22 setHelperText('Login failed. Please check your login.');
23 }
24 } catch (error) {
25 setError(true);
26 setHelperText('Error logging in.');
27 }
28 };

Listing 6.1: Key functionality of the SignIn component. Part 1.

38

6.1 Components

1 return (
2 <div>
3 <TextField
4 label="Email or username"
5 variant="outlined"
6 value={emailUsername}
7 onChange={(e) => setEmailUsername(e.target.value)}
8 error={error}
9 />

10 <TextField
11 label="Password"
12 type="password"
13 variant="outlined"
14 value={password}
15 onChange={(e) => setPassword(e.target.value)}
16 error={error}
17 helperText={helperText}
18 />
19 <Button onClick={handleSubmit}>Login</Button>
20 </div>
21);
22 }

Listing 6.2: Key functionality of the SignIn component. Part 2.

This application has a lot of components, varying in complexity, that I will
be discussing in this section. Together, these components are used to create
a complete page.

6.1.1 Register Hours

The Register Hours page is a crucial part of my application, created to
allow employees to log their working hours. This page is composed of seven
components, the components used can be seen in table 6.1 below.

39

6.1 Components

Component name
AdminMenu
DatePicker

LunchToggle
Project

TimePicker
WorkPackage

TimeRegisterMain

Table 6.1: List of components used to create the TimeRegisterPage

• The first component, AdminMenu, is exclusive to admin users and
is accessible on most pages of the application. Further details about
this menu is provided in Section 6.1.2 below.

• The second component, DatePicker, allows employees to select the
date for registration.

• The third component, LunchToggle, is a toggle button for employees
to select if they took a lunch break that day.

• The fourth component, Project, employees can select which project
they worked on.

• The fifth component, TimePicker, is used for logging start and end
times of the workday.

• the sixth component, WorkPackage, allows employees to select the
specific work package they contributed to, if it’s used by the company.

• the seventh component, TimeRegisterMain, integrates all the com-
ponents above to build the complete page.

40

6.2 Pages

6.1.2 Admin Menu

Component name
AddEmployee

AddEmployeesProject
AddEmployeeWorkPackage

EditEmployee
EmployeeOverviewMain

ProjectDetail
ProjectsManage

WorkPackageDetail
WorkPackageManage

Table 6.2: List of components used for the Admin Role

6.2 Pages

Pages are structured as components that correspond to routes within the
application. They are used for organizing the application into navigable
sections, as can be seen in Listing 6.3, where the ‘AddEmployeePage‘ com-
ponent works as the interface for user interactions related to when an admin
wants to register an employee.

1 import AddEmployee from "../Components/Admin/AddEmployee";
2

3 const AddEmployeePage = () => {
4 return (
5 <div>
6 <AddEmployee/>
7 </div>
8)
9 }

10 export default AddEmployeePage;

Listing 6.3: The AddEmployeePage

41

6.3 HTTP-requests

6.3 HTTP-requests

The front-end of the application sends HTTP requests to the back-end,
such as retrieving data and submitting updates. The Fetch API handles
the HTTP requests, which provides an easy way to fetch resources from
the database. Below, in Listing 6.4 is an example, that demonstrates on
how I’ve added the implementation of an HTTP POST request to add an
employee to a project.

1 const addEmployeeToProject = async (employeeId: string) => {
2 if (!projectId || addedEmployeeIds.has(employeeId)) return;
3

4 try {
5 const response = await

fetch(`http://localhost:5163/api/EmployeeProject/AddEmployee`,
{

↪→

↪→

6 method: 'POST',
7 headers: {
8 'Content-Type': 'application/json',
9 },

10 body: JSON.stringify({ projectId, employeeId }),
11 });
12 if (!response.ok) {
13 throw new Error('Failed to add employee to project');
14 }
15

16 setAddedEmployeeIds(new Set([...addedEmployeeIds, employeeId]));
17 setSnackbarOpen(true);
18

19 } catch (err) {
20 setError(err.message);
21 }
22 };

Listing 6.4: A POST HTTP-request to the back-end for adding an employee to
a project.

42

6.4 Routing

6.4 Routing

This section demonstrates how to route data between the various endpoints
and establishing a connections between them. To achieve this, React Hooks
and React Router has been used.

6.4.1 React Hooks

React explains that hooks let you use different React features from your
components. You can either use the built-in Hooks or combine them to
build your own. [React, nd].

Among the various hooks provided by React, the most commonly used once
are:

useState: This hook lets you add state to components. For example, see
Listing 6.5, which demonstrates initializing the hadLunch toggle state to
false by default when employees enter the page where they register their
hours.

1 const [hadLunch, setHadLunch] = React.useState(false);

Listing 6.5: useState hook initializing state to false.

useParams: is a hook that extracts parameters from the URL, such as
IDs, allowing components to access variable parts of route paths, which can
be seen in Listing 6.6, and is further discussed in Section 6.4.2.

1 const { employeeId } = useParams();

Listing 6.6: useParam hook that extracts the employeeId from the URL.

43

6.4 Routing

useEffect: allows you to perform side effects in function components, such
as data fetching, and it runs after the render is committed.

1 useEffect(() => {
2 const fetchEmployee = async () => {
3 try {
4 const response = await fetch(`http://localhost:5163/api/Employee ⌋

/EditEmployee/${employeeId}`,
{

↪→

↪→

5 headers: { 'Accept': 'application/json' },
6 });
7 if (!response.ok) throw new Error('Failed to fetch employee

data');↪→

8 const data = await response.json();
9 setFormData({

10 email: data.email || '',
11 firstName: data.firstName || '',
12 lastName: data.lastName || '',
13 phoneNumber: data.phoneNumber.toString() || '',
14 role: Object.keys(roleMapping).find(key => roleMapping[key]

=== data.employeeRole) || '',↪→

15 status: data.status,
16 });
17 } catch (error) {
18 console.error(error.message);
19 }
20 };
21

22 fetchEmployee();
23 }, [employeeId]);

Listing 6.7: useEffect to fetch employee data based on a changing ‘employeeId‘,
and updating form state with the fetched data.

useNavigate: is a hook from that allows the user to navigate or change
routes within the application.

44

6.4 Routing

1 const BackButton: React.FC<BackButtonProps> = () => {
2 const navigate = useNavigate();
3

4 const handleBack = () => {
5 navigate(-1);
6 };

Listing 6.8: useNavigate hook that is used to navigate back to the previous page.

useLocation: is a hook from React Router that provides access to the
location object, which represents where the app is currently, allowing you
to query and use information about the current URL in your component.

1 const location = useLocation();
2

3 const projectName = location.state?.projectName || 'Unknown Project';

Listing 6.9: useLocation hook retrieving a ‘projectName‘ from the navigation
state with a default value.

6.4.2 React Router

Since React lacks native page routing features, I’ve used React Router, to
enable navigation between the different pages.

Among the various router components, BrowserRouter is the one utilized in
this application. React Router describes the following on BrowserRouter: A
<BrowserRouter> stores the current location in the browser’s address bar
using clean URLs and navigates using the browser’s built-in history stack
[BrowserRouter, nda]. Router enables Client Side Routing, which React
Router provides the following explanation for: Client side routing allows
your app to update the URL from a link click without making another
request for another document from the server. Instead, your app can im-
mediately render some new UI and make data requests with fetch to update

45

6.4 Routing

the page with new information [BrowserRouter, ndb]. See Listing 6.10 that
shows some of the routes that are implemented.

46

6.4 Routing

1 interface ProtectedRouteProps {
2 children: ReactNode;
3 }
4

5 const ProtectedRoute: React.FC<ProtectedRouteProps> = ({ children }) => {
6 const { isAuthenticated } = useAuth();
7 return isAuthenticated ? <>{children}</> : <Navigate to="/" replace />;
8 }
9

10 function App() {
11 return (
12 <AuthProvider>
13 <Router>
14 <Routes>
15 <Route path="/" element={<HomePage />} />
16 <Route
17 path="/welcome"
18 element={
19 <ProtectedRoute>
20 <WelcomePage />
21 </ProtectedRoute>
22 }
23 />
24 <Route
25 path="/registerhours"
26 element={
27 <ProtectedRoute>
28 <TimeRegisterMain/>
29 </ProtectedRoute>
30 }
31 />
32 <Route
33 path="/editemployee/:employeeId"
34 element={
35 <ProtectedRoute>
36 <EditEmployeePage />
37 </ProtectedRoute>
38 }
39 />

Listing 6.10: Example of some of the routings used.
47

6.4 Routing

ProtectedRoutes

As shown in Listing 6.10, the ‘ProtectedRoute‘ component increases the
application security by ensuring that only authenticated users can access
specific routes, which is provided by the AuthContext component for au-
thentication checks, which can be seen in the Listings 6.11 and Listing 6.12.

48

6.4 Routing

1 interface AuthContextType {
2 isAuthenticated: boolean;
3 isAdmin: boolean;
4 setIsAuthenticated: React.Dispatch<React.SetStateAction<boolean>>;
5 login: (role: string) => void;
6 logout: () => void;
7 setRole: (role: string) => void;
8 }
9 const AuthContext = createContext<AuthContextType | undefined>(undefined);

10

11 export const AuthProvider = ({ children }: { children: ReactNode }) => {
12 const [isAuthenticated, setIsAuthenticated] = useState(false);
13 const [role, setRole] = useState('');
14

15 const updateRole = useCallback((newRole: string) => {
16 setRole(newRole);
17 setIsAuthenticated(true);
18 }, []);
19

20 const login = useCallback((role: string) => {
21 updateRole(role);
22 }, [updateRole]);
23

24 const logout = useCallback(() => {
25 setIsAuthenticated(false);
26 setRole(''); // Clear the role on logout
27 }, []);
28

29 const isAdmin = role === 'Admin';
30

Listing 6.11: ‘AuthContext‘ and ‘AuthProvider‘ for managing authentication
state.

49

6.4 Routing

1 return (
2 <AuthContext.Provider value={{ isAuthenticated, setIsAuthenticated,

isAdmin, login, logout, setRole: updateRole }}>↪→

3 {children}
4 </AuthContext.Provider>
5);
6 };
7

8 export const useAuth = () => {
9 const context = useContext(AuthContext);

10 if (context === undefined) {
11 throw new Error('useAuth must be used within an AuthProvider');
12 }
13 return context;
14 };

Listing 6.12: Continuation of the ‘AuthProvider‘.

50

Chapter 7

Results

In this chapter, I present the finished front-end of the application and I
discuss the difference between the design from Chapter 3 and the finalized
product.

7.1 Final design

Video demonstration of the application: https://www.youtube.com/watch?
v=LY3f17LMSmk

A couple of clarifications in regards to the video:

At the 1:12 mark in the video, an error appeared in the console log when
the inspect window was opened. This error has not recurred since.

Regarding the repetition of my name when adding employees to projects or
work packages, this arises from multiple registrations under the same name.

There are some differences between the design in Chapter 3 and the finalized
application, this is due to a miscommunication under one of the meetings,
so the designer used Material Design instead of Material UI in the design
process.

51

https://www.youtube.com/watch?v=LY3f17LMSmk
https://www.youtube.com/watch?v=LY3f17LMSmk

7.1 Final design

Figure 7.1: Login page

Figure 7.2: NFC-error because the browsers on my PC does not support NFC.

52

7.1 Final design

Figure 7.3: Login failed, shows error on both for security reasons.

Figure 7.4: Forgot password

53

7.1 Final design

Figure 7.5: Reset password email sent if email is found in the database

Figure 7.6: Welcome page after logging in, the "Welcome, string!" takes in the
first name, so if a employee with the name "Anders" logs in it will be "Welcome,
Anders!"

54

7.1 Final design

Figure 7.7: Register hours page with admin privileges(the admin menu is up in
the left hand side corner)

Figure 7.8: Register hours page without the admin menu.

55

7.1 Final design

Figure 7.9: Work Package menu showing up because this employee has it avail-
able.

Figure 7.10: Date select on a PC browser.

56

7.1 Final design

Figure 7.11: Date select on a phone.

Figure 7.12: Clock select on a PC browser.

57

7.1 Final design

Figure 7.13: Clock select on a phone.

Figure 7.14: Hours registered.

58

7.1 Final design

Figure 7.15: Absence registered.

Figure 7.16: List of registered hours and absence.

59

7.1 Final design

Figure 7.17: Edit or delete option for the hours registered.

Figure 7.18: Editing the hours.

60

7.1 Final design

Figure 7.19: Editing hours successfully.

61

7.2 Admin Menu

7.2 Admin Menu

Figure 7.20: The admin menu

Figure 7.21: Overview of the employees.

62

7.2 Admin Menu

Figure 7.22: Options on employees.

Figure 7.23: Editing employee.

63

7.2 Admin Menu

Figure 7.24: Registering a new employee.

64

7.2 Admin Menu

Figure 7.25: Sucessfully added a new employee.

65

7.2 Admin Menu

Figure 7.26: Projects overview.

Figure 7.27: Adding a new project.

66

7.2 Admin Menu

Figure 7.28: Managing a project.

Figure 7.29: Edit or delete options on the project.

67

7.2 Admin Menu

Figure 7.30: Editing the project

68

7.2 Admin Menu

Figure 7.31: Options for employees in a project.

Figure 7.32: Adding an employee to a project.

69

7.2 Admin Menu

Figure 7.33: Work package overview.

The structure of the work package setup mirrors that of the project setup.
It can be seen in the video at the beginning of the section 7.1.

70

Chapter 8

Discussion

In this chapter, I discuss what I would add or change in my application if I
had more time. I talk about my ideas for making it better, fixing any issues
the application has, and also adding new features.

8.1 Next Steps

This was a fairly large project for one person. Because of that, there were a
few functionalities and ideas that I wanted to implement but did not have
the time for. This opens up many possibilities for the future development
of this project.

• Disable or activate employees: In Figure 3.10, it’s shown that
deleting an employee is an option. However, due to potential com-
plications this could cause, it might be more practical to include a
disable/activate button on the employee.

• Approving or declining hours: A feature that is work in progress,
and can be seen in Figure 3.10 is the ability to review and manage
an employees recorded hours. This functionality would allow admin-
istrators to approve, decline, or edit logged hours, and also provide
employees with a status of their logged hours.

71

8.2 Looking Back

• Project creation options: Project creation only involves naming
the project, However, it would be beneficial to include options for
adding employees based on their roles or linking the project to a spe-
cific work package. Similarly, expanding the options available for work
packages would enhance the overall functionality of the application.

• More defined roles: There are only three roles, Admin, Internal and
External. Introducing more defined roles would simplify employees
filtering, and the potential to implement more features based on what
role they have.

• Improved filtering: Improving the filtering system would be ben-
eficial for administrators to more effectively sort through employees,
projects, or work packages.

• See what projects or work packages an employee is on: It
should be possible to go into an employees projects or work packages
to make it easier for an administrator to view and edit.

• Dynamic branding: Implement functionality to dynamically adjust
the application’s logo and color scheme according to the company
using the application.

• Dark Mode: A feature we talked about was implementing dark mode
in the application, offering users the flexibility to switch between light
and dark modes for improved usability in various lighting conditions.

8.2 Looking Back

Due to my limited experience with projects of this scale, I did not have
much experience with good coding practices and clean code principles. As
a result of this, there are valuable lessons learned, and certain aspects I
would have handled differently that I will discuss in this section.

• Optimize the components: Certain components could benefit from
optimization to improve their functionality and efficiency.

• Scaling issues: Some pages in the application do not scale correctly
with each other. This could be fixed by reworking some of the com-
ponents as written above.

72

8.2 Looking Back

• Tests: With tests, it would have provided better documentation on
how the code is running, increased maintainability, and offered the
potential for faster development on the project.

• Back-end rework: Rewrite certain code segments and update pipelines
that require attention.

73

Chapter 9

Conclusion

The goal of this thesis was to develop a standalone time register web appli-
cation that does not require users to use SharePoint, Power Apps or other
similar technologies which requires that the users have a Microsoft or guest
account. Through using modern technologies such as React and Vite with
MUI as the front-end, and ASP.NET Core 8 as the back-end, the application
will have support and updates for a long time.

This application is designed with simplicity in mind, especially for regu-
lar users without admin privileges. By minimizing the number of pages,
users can log in, record their hours, or view them without unnecessary com-
plexity. While administrators have access to menus for making necessary
adjustments or modifications to, for example employees or projects. This
makes it user-friendly for all users, while equipping administrators with the
tools they need for management and customization.

74

Bibliography

[Anderson, 2024] Anderson, R. (2024). Introduction to identity on
asp.net core. Accessed on May 13, 2024. https://learn.microsoft.
com/en-us/aspnet/core/security/authentication/identity?view=
aspnetcore-8.0.

[BrowserRouter, nda] BrowserRouter (n.d.a). Browserrouter v6.23.0.
Accessed on May 9, 2024. https://reactrouter.com/en/main/
router-components/browser-router.

[BrowserRouter, ndb] BrowserRouter (n.d.b). Feature overview. Ac-
cessed on May 10, 2024. https://reactrouter.com/en/main/start/
overview.

[Figma, nd] Figma (n.d.). What is figma? Accessed on
April 19, 2024. https://help.figma.com/hc/en-us/articles/
14563969806359-What-is-Figma.

[Laribee, 2016] Laribee, D. (2016). Best practice - an introduction to
domain-driven design. Accessed on May 13, 2024. https://learn.
microsoft.com/en-us/archive/msdn-magazine/2009/february/
best-practice-an-introduction-to-domain-driven-design.

[Microsoft, 2023] Microsoft (2023). Overview of asp.net core. Accessed
on January 26, 2024. https://learn.microsoft.com/en-us/aspnet/
core/introduction-to-aspnet-core?view=aspnetcore-8.0.

[Microsoft, nd] Microsoft (n.d.). Entity framework documentation hub. Ac-
cessed on May 13, 2024. https://learn.microsoft.com/en-us/ef/.

75

https://learn.microsoft.com/en-us/aspnet/core/security/authentication/identity?view=aspnetcore-8.0
https://learn.microsoft.com/en-us/aspnet/core/security/authentication/identity?view=aspnetcore-8.0
https://learn.microsoft.com/en-us/aspnet/core/security/authentication/identity?view=aspnetcore-8.0
https://reactrouter.com/en/main/router-components/browser-router
https://reactrouter.com/en/main/router-components/browser-router
https://reactrouter.com/en/main/start/overview
https://reactrouter.com/en/main/start/overview
https://help.figma.com/hc/en-us/articles/14563969806359-What-is-Figma
https://help.figma.com/hc/en-us/articles/14563969806359-What-is-Figma
https://learn.microsoft.com/en-us/archive/msdn-magazine/2009/february/best-practice-an-introduction-to-domain-driven-design
https://learn.microsoft.com/en-us/archive/msdn-magazine/2009/february/best-practice-an-introduction-to-domain-driven-design
https://learn.microsoft.com/en-us/archive/msdn-magazine/2009/february/best-practice-an-introduction-to-domain-driven-design
https://learn.microsoft.com/en-us/aspnet/core/introduction-to-aspnet-core?view=aspnetcore-8.0
https://learn.microsoft.com/en-us/aspnet/core/introduction-to-aspnet-core?view=aspnetcore-8.0
https://learn.microsoft.com/en-us/ef/

BIBLIOGRAPHY

[Miro, 2023] Miro (2023). What is miro? Accessed on
April 19, 2024. https://help.miro.com/hc/en-us/articles/
360017730533-What-is-Miro.

[MUI, nd] MUI (n.d.). Overview. Accessed on Janury 21, 2024. https:
//mui.com/material-ui/getting-started/.

[Netpower, nd] Netpower (n.d.). Om netpower. Accessed on January 18,
2024. https://www.netpower.no/om-netpower/.

[React, nd] React (n.d.). Built-in react hooks – react. Accessed on May 8,
2024. https://react.dev/reference/react/hooks.

[Vite, nda] Vite (n.d.a). Getting started. Accessed on January 26, 2024.
https://vitejs.dev/guide/.

[Vite, ndb] Vite (n.d.b). Why vite. Accessed on February 7, 2024. https:
//vitejs.dev/guide/why.

[W3Schools, nd] W3Schools (n.d.). Typescript introduction. Accessed on
May 13, 2024. https://www.w3schools.com/typescript/typescript_
intro.php.

76

https://help.miro.com/hc/en-us/articles/360017730533-What-is-Miro
https://help.miro.com/hc/en-us/articles/360017730533-What-is-Miro
https://mui.com/material-ui/getting-started/
https://mui.com/material-ui/getting-started/
https://www.netpower.no/om-netpower/
https://react.dev/reference/react/hooks
https://vitejs.dev/guide/
https://vitejs.dev/guide/why
https://vitejs.dev/guide/why
https://www.w3schools.com/typescript/typescript_intro.php
https://www.w3schools.com/typescript/typescript_intro.php

Attachments A

Programlisting

For access to the source code, please contact Anders Endresen.

77

Attachments B

Data sheet

Figure B.1: Back-end folder structure

78

Data sheet

Figure B.2: front-end folder structure

79

	Contents
	Abstract
	Introduction
	Background and motivation
	Problem statement
	About the company
	Thesis Outline

	Technology and library
	React
	ViteJS
	Material UI
	TypeScript
	ASP.NET Core 8
	Entity FrameWork
	ASP.NET Core Identity

	Design and construction of software
	Miro
	Figma

	Architecture and Models
	Architecture
	Domain-Driven Design
	Model

	Back-end Implementation
	Infrastructure implementation
	ASP.NET Core Identity
	Controller
	The GET method
	The POST method
	The PUT method
	The DELETE method

	MediatR
	Pipelines

	Front-End Implementation
	Components
	Register Hours
	Admin Menu

	Pages
	HTTP-requests
	Routing
	React Hooks
	React Router

	Results
	Final design
	Admin Menu

	Discussion
	Next Steps
	Looking Back

	Conclusion
	Bibliografi
	Attachments
	Programlisting
	Data sheet

