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Abstract Conservation laws of the generic form ct +
f (c)x = 0 play a central role in the mathematical
description of various engineering related processes.
Identification of an unknown flux function f (c) from
observation data in space and time is challenging due to
the fact that the solution c(x, t)develops discontinuities
in finite time. We explore a Bayesian type of method
based on representing the unknownflux f (c) as aGaus-
sian random process (parameter vector) combined with
an iterative ensemble Kalman filter (EnKF) approach
to learn the unknown, nonlinear flux function. As a
testing ground, we consider displacement of two fluids
in a vertical domain where the nonlinear dynamics is
a result of a competition between gravity and viscous
forces. This process is described by amultidimensional
Navier–Stokes model. Subject to appropriate scaling
and simplification constraints, a 1D nonlinear scalar
conservation law ct + f (c)x = 0 can be derived with
an explicit expression for f (c) for the volume fraction
c(x, t).We consider small (noisy) observation data sets
in terms of time series extracted at a few fixed posi-
tions in space. The proposed identification method is
explored for a range of different displacement condi-
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tions ranging from pure concave to highly non-convex
f (c). No a priori information about the sought flux
function is given except a sound choice of smoothness
for the a priori flux ensemble. It is demonstrated that
the method possesses a strong ability to identify the
unknown flux function. The role played by the choice
of initial data c0(x) as well various types of observation
data is highlighted.

Keywords Nonlinear conservation law · Multiphase
model · Data-driven mathematical modelling ·
Gaussian random process · Iterative ensemble
(Kalman filter) smoother · Bayesian inversion

1 Introduction

1.1 Learning of PDE models from data in fluid
mechanics

Scalar nonlinear conservation laws of the form

ct + f (c)x = 0, x ∈ (0, L) (1)

represent a rich class of partial differential equations
(PDEs) that arise inmany different applications includ-
ing multiphase flow in porous media and wellbore
operations relevant for subsurface flow. Here, c =
c(x, t) is the unknown variable which varies in a one-
dimensional (1D) domain x ∈ [0, L] as time t elapses.
The conservation law (1) must be augmented with an
initial state c(x, t = 0) = c0(x) and appropriate
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assumptions about boundary behavior at x = 0 and
x = L . Starting with general formulations based on
first physical principles in terms of conservation of
mass, momentum, and energy, one can derive scalar
nonlinear conservation laws in the form (1) with an
explicit expression for the flux function f (c). How-
ever, there are many situations where such deriva-
tions are intractable or even impossible as they become
too complicated or the governing physical laws are
unknown. On the other hand, one often nowadays has
access to spatio-temporal observation data c(xi , t j )
from full numerical solution of the underlying con-
servation equations, or from controlled experiments.
A natural question then is to what extent are we able
to identify the unknown flux function f (c) from such
data.

Currently, there ismuch focus on discovering hidden
PDEmodels from spatio-temporal observation data [1].
A prototype example of PDE model to learn from data
is Burgers’ viscous equation

ct + λ1ccx = λ2cxx (2)

where the main purpose is to identify the unknown
parameters λ1 and λ2 [2,3]. However, to the best of our
knowledge, such methods have not been used to iden-
tify the unknown nonlinear function f (c) in (1) which
appears to be amore complex problemdue to the loss of
regularity and the need for considering weak solutions
supplemented with suitable entropy conditions [4–6].

More precisely, the unique weak entropy solution c
can be characterized by the following integral inequal-
ity when (1) is considered on R (Cauchy problem)

∫ T

0

∫
R

(
|c − k|ϕt + sgn(c − k)( f (c) − f (k))ϕx

)
dx dt

+
∫
R

|c0(x) − k|ϕ(x, 0) dx ≥ 0 (3)

for all nonnegative ϕ ∈ C∞
c (R × [0, T )) and any con-

stant k ∈ R. The fact that solutions of (1) cannot be
understood in a classical sense but in the sense of (3)
hampers use of many modern neural network-based
methods.

In this paper, we will focus on combining Gaus-
sian random processes to represent the unknown f (c)
through a continuous piecewise linear (affine) func-
tion combined with an iterative ensemble Kalman fil-
ter (EnKF) approach to update the parameter vector
and thereby learn the nonlinear flux function. The
EnKF method we use is similar to the one employed

in reservoir engineering setting [7,8]. The EnKF was
first introduced as a state estimation approach within
oceanography [9], and it was superior to older Kalman
filter methods for large-scale nonlinear problems. Sub-
sequently, it was introduced as an approach for param-
eter estimation in reservoir engineering [10–13]. A
number of iterative approaches has since been sug-
gested, e.g., [7,14,15]. An independent line of research
was started in [16] which suggested to use the ensem-
ble Kalman filter update equation for solving general
inverse problems similar to the ensemble smoother
approach. This approach was denoted as Ensemble
Kalman Inversion (EKI) and represents a collection of
algorithms [16–19] that is motivated by ideas from the
EnKF [9].

1.2 Previous studies of learning nonlinear flux
function from data

The problem of flux function identification related to
the nonlinear conservation law (1) has been studied by
different researchers the last two decades. Mathemati-
cal oriented works typically focus on detecting a pre-
cise understanding of the relation between initial data,
observation data and underlying flux function. Kang
and Tanuma investigated strictly convex flux functions
and problems where the solution evolves to a single
shock in finite time [20]. Their work proved that the
flux function can be uniquely determined on an inter-
val [0, δ] with δ > 0 from late-time observation of
the shock corresponding to a given initial datum [20].
James and Sepúlveda formulated the inverse problem
of flux identification as that of minimizing a suitable
cost function [21]. The flux identification problem by
cost function minimization was studied also by Cas-
tro and Zuazua [22] who proved the existence of min-
imizers for solutions with discontinuities and devel-
oped appropriate descent algorithms for such problems.
Holden et al. used the front-tracking algorithm to recon-
struct the flux function fromobserved solutions to prob-
lems with suitable initial data [23].

Recent studies have addressed the reconstruction
of the flux function for sedimentation problems that
involve the separation of a flocculated suspension into
a clear fluid and a concentrated sediment [24]. As dis-
cussed by Diehl, estimation of the batch settling flux
function is sensitive to the choice of initial condition,
and performing experiments with two different ini-

123



Identification of nonlinear conservation laws 18165

tial conditions can enable identification of both convex
and concave parts of the function [25]. Subsequently,
Bürger and Diehl showed that the inverse problem of
identifying the batch flux density function has a unique
solution and derived an explicit formula for the flux
function [26]. Betancourt et al. applied the flux identi-
fication approach of [26] to experimental data by solv-
ing a constrained least-squares minimization problem
[27]. The flux identification approach of [26] with dif-
ferent initial conditions (the Kynch test and the Diehl
test, respectively) was used in the context of cylindri-
cal vessel combined with data from experiments [28].
An approached based on symbolic multi-layer neural
networks were proposed in [29] as a method to recover
hidden nonlinear conservation laws.Work on Bayesian
inversion in the context of hyperbolic conservation laws
is limited. We refer readers to the work [30,31] for
more theoretical aspects of wellposedness related to
such Bayesian inversion relevant for identification of
initial data and flux function.

1.3 The contribution of this work

The inverse problem associated with (1) we are inter-
ested in takes the form

d = h(θ) + η, (4)

where h is the solution operator associated with (1),
θ is the parameter vector (i.e., a representation of the
unknown flux function f ), and d is the selected obser-
vation data with noise η. The main contribution of this
paper is to explore the EnKF-based approach for gen-
eral scalar conservation laws occurring in a multiphase
flow settingwhich involves a family of non-convex flux
functions. The EnKF method allows us to extract sta-
tistical information about the unknown flux f through
the parameter vector θ from noisy observation data
d. To the best of our knowledge, this is a first work
which combines EnKF, sparse observation data, and
entropy solutions. Themethodweuse is flexible regard-
ing observation data d to include in the cost functional
(loss function) and is gradient-free. Our aim is to obtain
a practical and efficient algorithmwhich has a potential
to identify the physical relevant flux function behind
the observation data. A useful and unique feature of
the assimilation method is that lack of uniqueness in
the determination of the flux function is signaled by
showing a larger spread in the updated ensemble of the

candidate flux functions, suggesting that more obser-
vation data may be added. The fluid mechanical set-
ting we focus on involves displacement of one fluid
by another in an annular geometry. In the following,
we briefly describe the more general context of Newto-
nian fluid displacements in a multidimensional setting
as described by the Navier–Stokes model. More details
are provided in Appendix A.

1.4 Mathematical multiphase model for Newtonian
fluid displacements

As themodel problem for the current study,we consider
laminar fluid displacement within the annular space
formed by two concentric cylinders. More specifically,
we consider the fluids to be incompressible and New-
tonian, and that the displacing fluid is injected from
the top. We focus on iso-viscous displacements, i.e.,
assume the fluids have the same constant viscosity and
consider the cases where the displacing fluid may be
either denser or lighter than the displaced fluid [32,33].

The laminar displacement flows are governed by the
equations of mass and momentum conservation, and
we will assume that the concentration of the respective
fluids follow an advection–diffusion equation. Specifi-
cally, the assumption of incompressibility ensures that
the velocity u is solenoidal,

∇ · u = 0. (5)

The momentum conservation equation for fluid phase
i is as follows:

ρi (ut + u · ∇u)

= −∇p + μ∇2u + ρi g, i = 1, 2. (6)

Here, μ is the common viscosity of the two fluids, ρi
is the mass density of fluid i , and g corresponds to
the gravitational acceleration. We let i = 1 denote the
displacing fluid, and i = 2 the displaced fluid.We refer
to Fig. 1 for an illustration of the physical setting of the
displacement process. Letting C ∈ [0, 1] denote the
volume fraction of displacing fluid, the evolution of
this scalar field is given by the advection equation

Ct + ∇ · (uC) = 0. (7)

In Appendix A, we briefly show that, subject to cer-
tain simplifying assumptions, Eqs. (5), (6) and (7) can
be combined to obtain a one-dimensional conservation
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equation for the annular cross-sectional averaged con-
centration c(x, t) = ∫

A C(r, t) dA:

ct + f (c;χ)x = 0. (8)

The derivation shown in that section produces an
explicit expression for the flux function f (c;χ), which
depends on c and the dimensionless number χ which
represents the balance between buoyant and viscous
stresses.

1.5 Problem statement

Motivated by the above derivation of a conservation law
(8) from the general model (5)–(7), subject to certain
constraints, the problem we explore in this work is:
Howcanwe reconstruct the unknownflux function f (c)
where we only have information about the initial state
c0(x) and a relatively sparse set of noisy observation
data d?

A special challengewith identification of the nonlin-
ear flux function of a conservation law is that solutions
typically contain discontinuities, i.e., a jump described
by a left and right state (cl(t), cr (t))with cl �= cr mov-
ing along a certain path x(t) in the x-t-space, where
there is no information used about the specific form
of f (c) in the interval [min(cl , cr ),max(cl , cr )] [4].
Under what circumstances, e.g., knowledge about ini-
tial state and corresponding observation data are we
able to recover a reliable approximation of the flux
function f (c)?

Observation data can be given in terms of states
at specific times, e.g., cobs(x, t∗i ) at times {t∗i }Tobsi=1
or time-dependent data cobs(x∗

i , t) at fixed positions
{x∗

i }Xobsi=1 . The natural initial data c0(x) to consider are
one which contains an initial jump from 1 to 0 to mimic
the situation depicted in Fig. 1 where fluid 1 displaces
fluid 2. Consequently, there will be a “mixing zone”
that evolves over time, i.e., a region where the volume
fraction c(x, t) stays between ε and 1 − ε as defined
by the set Eε given by

Eε(t) = {x : c(x, t) > ε} ∩ {x : c(x, t) < 1 − ε} (9)

for some chosen ε > 0. One may envision to use data
like position and velocity related to this mixing zone
as well.

Our framework is based on an ensemble Kalman
filter (EnKF) approach combined with use of Gaus-
sian random processes to approximate the unknown

Fig. 1 Lubrication model geometry for vertical and concentric
annulus displacements

function f (c). Our starting point is that we seek to
uncover the unknown flux function f (c) by relying
only on time-dependent observations at fixed positions.
We assume that “sensors” at four positions x∗

i , for
i = 1, . . . , 4 have been placed in the region where the
interface between fluid 1 and fluid 2 is located. We typ-
ically start exploring how well we can learn the hidden
flux function from data based on the case with an ini-
tial jump from 1 to 0. Then, we proceed by modifying
this initial state such that it includes some intermedi-
ate states between 0 and 1. This allows for collecting
data that potentially contains more information about
the unknown flux function.We seek to keep the amount
of data used for the learning process at a minimum.We
will address questions like:

(i) Howwell canwe learn f (c) fromnoisy data of the
volume fraction {c(x∗

i , t)}4i=1 over a training time
period [0, T1]? We will consider observation data
corresponding to different flow regimes as repre-
sented by the parameter χ in (8). This amounts
to different shapes of the involved flux function,
ranging from essentially concave to highly non-
convex forms. A representative set of different
examples of f (c;χ) is shown in Fig. 19.
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(ii) How does the choice of initial condition impact
the identified flux function? Can different initial
conditions result in improved flux function iden-
tification?

(iii) How can information about the position and
velocity of the mixing zone be used?

(iv) Are we able to also capture information about the
role played by the parameter χ? I.e., are we able
to extract a good approximation of f (u;χ) over
a range of different choices of χ?

1.6 Structure of this work

The ensemble-based method we explore in this work
is described in Sect. 2. In Sect. 3, we give further back-
ground information related to the implementation of
the identification method and which observation data
to use. Finally, in Sect. 4 we carry out a range of differ-
ent tests of the ability to learn the unknownflux function
based on synthetically generated noisy data.We test the
method for nonlinear flux functions that contain one or
several inflection points.

2 Method based on Gaussian random processes
and EnKF

Based on the given observation data, our aim is to iden-
tify a conservation law (8) now written in the form for
(x, t) ∈ [0, L] × [0, T ]
ct + γ f (c)x = 0

cx |x=0 = cx |x=L = 0

c|t=0 = c0(x)

(10)

where f (c) is the unknown, possible nonlinear flux
function and γ is an unknown constant. The introduc-
tion of the parameter γ is motivated by the identifica-
tion of PDEs as discussed in [2,3] and represented by
(2). It also seems convenient from the point of view of
the ensemble-based method where γ serves the role as
global unknown quantity, whereas the parametrization
of f (c) accounts for the local variations as a function
of c. To estimate f (c), we have chosen an approach
motivated by the success of large-scale parameter esti-
mation from reservoir engineering [8]where ensemble-
based approaches are used to identify spatial varying
fields of unknown parameters. The complexity in rep-
resenting these fields might vary, but quite often they

can be represented as Gaussian random fields. Here,
we will adopt this approach by assuming that f (c) can
be identified by representing it as a Gaussian process (a
one-dimensional Gaussian random field). For numer-
ical implementation, f (c) is represented as a piece-
wise linear function on a designated equidistant grid
{cp}Pp=1.

2.1 Gaussian random processes

We will represent f (c) as a Gaussian process with the
property that the correlation between f1 = f (c1) and
f2 = f (c2) is given as

Cc1,c2 = σ 2e
−

(
(c1−c2)2

l2

)
(11)

where σ is standard deviation and l is correlation
length, i.e., a scaling parameter that determines how
fast the correlation decays as function of the distance
between c1 and c2. To calculate such aGaussian process
on P grid points {cp}Pp=1, we first sample a P-vector ζ

of independently zero-mean normally distributed ran-
dom numbers with variance 1. A Gaussian process ψ

with the required properties is then obtained by letting

ψ = Lζ (12)

where C = LLT . A common choice is to obtain L by
taking the Cholesky decomposition of C . Note that the
Cholesky decomposition is only required once for all
samples of f (c) that should be generated. For modest
size P to describe the unknown f (c) as used in this
work, this leads to an accurate algorithmwith sufficient
efficiency.

2.2 Ensemble smoother—multiple data assimilation

The initial ensemble E f might be obtained using the
algorithm presented in Sect. 2.1. The updated ensem-
ble Ea is obtained using Algorithm 1. The ensemble
smoother–multiple data assimilation (ES-MDA) was
first presented in [7]. Algorithm 1 deviates slightly
from their work by replacing the stochastic ensemble
Kalman filter (see, e.g., [34]) for the update part with
a square-root-filter. The requirement

∑Nit
i=1

1
αi

= 1 on
the scaling factors ensures that for a linear problem
with a Gaussian prior, the posterior solution will be the
correct one. For nonlinear problems, the solution will
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Algorithm 1: Ensemble smoother—multiple data
assimilation (ES-MDA)
Input: Nens: ensemble size; E f : initial ensemble, m:

measurement vector; W : covariance matrix for
measurement errors; H : relationship between
states and measurement; Nit: Number of iterations

Output: Ea: final ensemble
Select Nit scaling factors, αi , such that

∑Nit
i=1

1
αi

= 1.

for i ← 1 to Nit do
Solve (10) with Nens parameter vectors as given by E f

E f ← Ensemble square-root filter(Nens, E f , m, W
αi
,

H) (Algorithm 2)
Ea ← E f

be an approximation, and a number of alternative algo-
rithms have been developed. For a recent discussion on
algorithms available to solve large-scale parameter esti-
mation problemswith ensemble-basedmethods, see [8,
Sect. 5.3.2].

Algorithm 2: Ensemble square-root filter
Input: Nens: ensemble size; E f : ensemble from forecast;

m: measurement vector; W : covariance matrix for
measurement errors; H : relationship between
states and measurement

Data: 1Nens : column vector of length Nens; INens :
Nens × Nens-identity matrix

Output: Ea: updated ensemble
Step 1: ψ f = 1

Nens
E f 1Nens ;

L f = 1√
Nens−1

(
E f − (1TNens

⊗ ψ f )
)
;

M f = HL f ;
K = L f (M f )

T (M f (M f )
T + W)−1;

ψa = ψ f + K (m − Hψ f );
Step 2: A f = √

Nens − 1L f ;

[C, G] = svd

(
INens + (HA f )

T W−1(HA f )

(Nens−1)

)
;

T = CG−1/2CT ;
Aa = A f T ;
Ea = Aa + 1TNens

⊗ ψa;

We use the square-root-filter presented in Algo-
rithm2. It involves twomain steps: (i) compute updated
mean ψa based on K ; (ii) compute corresponding
updated ensemble Ea based on T . The basic idea
behind this square-root-filter was introduced in [35]
and further developed by [36]. The square-root-filters
are based on the basic idea of getting a posterior ensem-
ble with the correct posterior covariance matrix, and a
transformationmatrix T achieving this has to be found.
It was not immediately realized that this transformation

matrix should be mean preserving (which is equivalent
to preserving the zero-mean property of A f ). This was
pointed out in [37,38]. Our choice of transformation
matrix T fulfills both the two requirements. A discus-
sion, and historical account, of square-root-filters are
also included in [34]. InAlgorithm 2, the singular value
decomposition of a symmetricmatrix is computed. The
singular value decomposition of a symmetric matrix,
A has the form A = U�UT where U is an unitary
matrix and� is a diagonal matrix. Calculating this sin-
gular value decomposition is feasible as the size of the
matrix is Nens × Nens.

2.3 Discrete numerical scheme

We base our discrete version of (10) on the Rusanov
scheme [4] which takes the form

cn+1
j = cnj − λ(Fn

j+1/2 − Fn
j−1/2),

λ = �t

�x
γ (13)

with j = 2, . . . , Nx − 1 and where the Rusanov flux
takes the form

Fn
j+1/2 = f nj + f nj+1

2
− M

2
(cnj+1 − cnj ),

M ∼ max
c

| f ′(c)|. (14)

For the first and last grid cell, the boundary condi-
tion gives cn+1

1 = cn+1
2 and cn+1

Nx
= cn+1

Nx−1. We
use a slightly modified version of the Rusanov flux
by relying on a global estimate of | f ′(c)| instead
of a local estimate of M in terms of Mj+1/2 =
max{| f ′(cnj )|, | f ′(cnj+1)|} [4]. The CFL condition [4]
determines themagnitude of�t for a given�x through
the relation

CFL := �t

�x
|γ |M ≤ 1. (15)

We have used �t
�x |γ |M = CFL ≤ 3

4 < 1 when we
compute solutions based on the ensemble of flux func-
tions involved in the learning process.

3 Preliminaries for numerical investigations

We focus on the flux function f (c;χ) obtained in (A.3)
which takes the form

f (c;χ) = c

2
(3 − c2)
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+χc2

12

(3
4

− 2c + 3

2
c2 − 1

4
c4

)
(16)

when we generate synthetic observation data. Initially,
we are interested in an initial state of the form

c0(x) =
{
1, x ∈ [0, 3.5)
0, x ∈ (3.5, 10] (17)

wherewe have a pure interface separating the twofluids
in the domain [0, 10]. This is motivated by the physical
setting for carrying out laboratory experiments. How-
ever, we may expect to see limitations in identification
of the true flux function when it is based on data which
has been collected as a result of using (17). That is,
the possibility for discontinuities to evolve may pre-
vent collecting observation data for all c in [0, 1]. This
motivates us to also consider the following initial state:

c0(x; cI , cI I ) =

⎧⎪⎪⎨
⎪⎪⎩

1.0, x ∈ [0, 2]
cI , x ∈ (2, 3.5]
cI I , x ∈ (3.5, 5]
0, x ∈ (5, 10]

, 1 > cI > cI I > 0

(18)

where cI and cI I are appropriate chosen intermediate
states. This form of the initial data may imply that more
information about the flux function can be obtained
when we collect time-dependent data at the positions

x∗
1 = 1.5, x∗

2 = 2.0, x∗
3 = 3.5, x∗

4 = 5.5. (19)

The motivation for using (18) instead of (17) is to seek
recovering more details of the unknown flux function
f (c) recalling that for a shock wave (cl , cr ) with cl �=
cr , it is only the linear slope that connects (cl , f (cl))
and (cr , f (cr )) that is involved. I.e., the part of f (c)
within the interval [min(cl , cr ),max(cl , cr )] is not used
in the construction of the exact entropy solution [4].
In our investigations, we will also consider modified
versions of (18)which involvemore/fewer intermediate
states connecting the initial jump from 1 to 0.

Observation data set

We consider the data set

dA(t) =
{
c(x∗

1 , t), c(x∗
2 , t), c(x

∗
3 , t), c(x∗

4 , t);�t c(x
∗
1 , t),

�t c(x
∗
2 , t),�t c(x

∗
3 , t),�t c(x

∗
4 , t)

}
(20)

corresponding to collecting time dependent data at
fixed positions {x∗

I }4I=1. Herein, �t c(x∗
I , t) refers to

a discrete difference along time axis that involve spec-
ified times where observation data are collected. Note
that time derivative dc

dt does not make sense as the true
solution typically involve a discontinuous functionwith
respect to time variable. We also explore the effect
of augmenting the observation data with information
about the mixing zone as expressed by

dmix
A (t) =

{
x∗
b (t), x

∗
f (t);�t x

∗
b (t),�t x

∗
f (t)

}
(21)

where we have defined

x∗
b (t) = inf

x
Eε(t), x∗

f (t) = sup
x

Eε(t) (22)

and Eε(t) is defined by (9). We have used ε = 0.025
throughout the rest of this paper.

Weconsider a domain of length L = 10 and consider
simulations over the time period [0, T ] with T = 2.
We apply a numerical grid composed of Nx = 1000
grid cells when we compute numerical solutions of (8)
based on the numerical scheme (13) and (14). This is
used both for obtaining the true solution and corre-
sponding synthetic observation data (which we denote
bym) by aswell aswhenwe compute predictions based
on the ensemble of estimated flux functions (which we
denote by d). We specify times for collecting the time
dependent data

tobsi = i�tobs, i = 1, . . . , N obs
t . (23)

We have set N obs
t = 40, i.e., �tobs = 0.05. Hence,

the number of collected data points in time is sparse
compared to the number of local time steps�t we need
to compute numerical solutions through the discrete
scheme (13) and (14). As training data, we will use
points in the time interval [0, T1] with T1 = 1.

Main algorithm

The main algorithm, based on Algorithm 1 and Algo-
rithm 2, is given through the following steps:

1. Generating initial parameter vector θk . Gener-
ate an initial ensemble of samples {θk}Nens

k=1 with
Nens = 100 where θk = {γk, fk}. Herein, γk is a
scalar generated from the uniform random distribu-
tion of numbers in [0, 2] and fk is a vector that rep-
resents the piecewise linear function generated as
a Gaussian random process on the the uniform grid
{cp}Pp=1 which represents the interval [−0.1,+1.1]
with cp = −0.1 + 1

2�c and �c = 1.2/P . That is,

fk = μk + ψk (24)
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where μk is a mean value randomly sampled from
a uniform distribution in the interval [0, 1] and the
Gaussian processψk = Lζk is constructed from the
correlation matrix C , see (11) and (12) in Sect. 2.1.
We have used σ = 0.25 and l = 20�c as stan-
dard deviation and correlation length, respectively,
in (11). We have used P = 52 such that the length
of the parameter vector θk is 53 (length of fk and
the scalar γk).

2. Computing predicted observation dk = h(θk).
Using the discrete scheme (13) and (14) and the
initial data (e.g., (17) or (18)), we obtain the dis-
crete approximation denoted by ck = c(x j , tn; θk)

(to indicate its dependence on the flux function
described by θk through γk fk) until time T1 = 1
and collect the predicted data set dk = h(θk)where
h(θk) refers to the data set (20). More precisely, it
refers to the discrete version

dkA(tobsi ) =
{
ck(x∗

1 , t
obs
i ), ck(x∗

2 , t
obs
i ),

ck(x∗
3 , t

obs
i ), ck(x∗

4 , t
obs
i );

�t c
k(x∗

1 , t
obs
i ),�t c

k(x∗
2 , t

obs
i ),

�t c
k(x∗

3 , t
obs
i ),�t c

k(x∗
4 , t

obs
i )

}
(25)

for i = 1, . . . , N obs
t /2. Herein, �t ck(x∗

I , t
obs
i ) =

1
2

(
ck(x∗

I , t
obs
i+1) − ck(x∗

I , t
obs
i−1)

)
/�tobs for i =

2, . . . , N obs
t /2 − 1 and I = 1, 2, 3, 4. Similarly,

we consider the discrete version of (21) given by

dmix,k
A (tobsi ) =

{
xk,∗b (tobsi ), xk,∗f (tobsi );

�t x
k,∗
b (tobsi ),�t x

k,∗
f (tobsi )

}
(26)

for i = 1, . . . , N obs
t /2. Herein, �t x

k,∗
b (tobsi ) =

1
2

(
xk,∗b (tobsi+1) − xk,∗b (tobsi−1)

)
/�tobs for i = 2, . . . ,

N obs
t /2−1. As default, we include observation data

of the form (25) as well as (26). I.e.,

dk = h(θk) = {λ1dkA(tobsi )} ∪ {λ2dmix,k
A (tobsi )},

tobsi = 1, . . . , N obs
t /2. (27)

Herein, λ1 andλ2 are scaling parameters to ensure a
proper balance between observation data of differ-
ent types (i.e., order of magnitude should be com-
parable). We have used consistently λ1 = 1 and
λ2 = 1

2 throughout the simulation results if noth-
ing else is specified.

3. Initial data for Algorithm 1 (ES-MDA) Based on
Step 1 and 2, we can form the initial ensemble E f

given by

E f =
[
d1 d2 . . . dNens

θ1 θ2 . . . θNens

]

where dk and θk are written as column vectors.
Together with the measurement data vector m,
which refers to the measured (observed) data of
the form (27), and information about the measure-
ment noise throughW obtained by assuming Gaus-
sian white noise, we are in the position that we can
initiate ES-MDA(Nens, E f , m, W , H , Nit) (Algo-
rithm 1). Herein, H represents a projection matrix
which extracts from E f the part that is related to
the measurement vector m.

4. Repeated use of Algorithm 2 Armed with the ini-
tial ensemble E f from Step 3, we use Algorithm 1
in combination with Algorithm 2 (see Sect. 2.2) to
update ensemble E f . This involves repeated use
of Step 2 given above to find updated dk = h(θk).
Finally, after Nit iterations, we have arrived at Ea,
in accordance with Algorithm 1. From this, we
extract the updated final ensemble {θNit

k }Nens
k=1 which

in turn gives us the ensemble {γ Nit
k f Nit

k }Nens
k=1 of

piecewise linear functions defined on the uniform
grid {cp}Pp=1.

4 Results

An illustration of the initial ensemble of samples
{θk}100k=1 is found inFig. 2 (left)whichplots {γk fk(cp)}52p=1
for k = 1, . . . , 100. In themiddle,we see the initial data
(17) we have used to obtain the observation data and
also employed in the learning process. Similarly, in the
right figure we have plotted initial data of the form (18)
corresponding to c0(x; 0.6, 0.3).

4.1 We can learn the unknown f (c) by using sparse
time-dependent noisy data

We focus on the case where synthetic data are obtained
using f (c;χ = 120), see (A.3), in combination with
initial data (17). In Fig. 3, the results of the identifi-
cation of the flux function are illustrated. The main
observations are: The initial ensemble of possible flux
functions span over a large space, see Fig. 3a. After 3
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Fig. 2 Left: Initial ensemble {θk} where θk = {γk , fk}. Plot is shown of γk fk for k = 1, . . . , 100. Middle: Initial data c0(x) given by
(17). Right: Initial data c0(x; 0.6, 0.3) of the form (18)

Fig. 3 Illustration of the learning process for the case where
synthetic data are generated from the flux function (16) with
χ = 120 combined with initial data (17). a The initial ensemble
of flux functions γk fk span over a wide class of possible flux
functions. bAfter 1 iteration, i.e., we compute predictions based
on initial ensemble and compute an updated ensemble {θ(1)

k }.

c Updated ensemble {θ(3)
k }. d Updated ensemble {θ(5)

k }. e The

mean θ∗ = mean{θ(5)
k }. f Observed data versus predicted behav-

ior. Solid line represents observed data, circles show predicted
result. Note that in panels (b)–(d) we plot γk( fk(ci ) − fk(c5))
where fk(c5) ≈ fk(0) to make the comparison of the different
ensemble flux functions clearer

iterations (Fig. 3c), there is still quite much uncertainty
related to the region c > 0.2, whereas after 5 itera-
tions, the more uncertain region has been reduced to
c > 0.4. However, as seen from the mean flux function
in Fig. 3e there is a systematic error in the learned f (c)

for c > 0.4. What is the discrepancy between the pre-
dicted data based on the learned flux function in Fig. 3e
and observed data? This is visualized in Fig. 3f where
solid line represents observed data (shown herewithout
noise) and circles are used to show predicted behavior
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based on the mean flux in Fig. 3e. We observe that the
time-dependent curves at x∗

1 (blue) and x
∗
2 (green) coin-

cide and contain no variations. This clearly makes the
learning process challenging. Taking a closer look at
data associated with x∗

4 (light blue) we also see a small
discrepancy between observed and predicted which is
associated with the erroneous part of the learned f (u).

In order to collect more characteristic information,
we now replace the initial data (17) by (18) specified
as c0(x; 0.6, 0.3). The result is shown in Fig. 4. Most
strikingly, after 3 iterations there seems to be quite good
agreement on the shape of the flux function f (c) (see
Fig. 4c), and the resulting mean of the ensemble vector
{θ(5)

k } after 5 iterations indeed fits well with the true
f (c;χ = 120), see panel 4e. The observed data asso-
ciated with x∗

1 , . . . , x
∗
4 are shown in Fig. 4f fromwhich

we see a larger part of the interval c ∈ [0, 1] is covered
through the time-dependent data. This explainswhy the
true flux f (c;χ = 120) can be identified much better
than for the case with initial data (17) shown in Fig. 3f.
This is also visualized in the histograms shown in Fig. 5
where we compare the observation data set for the two
different initial states. Clearly, the use of c0(x; 0.6, 0.3)
(right figure) shows that observed c-values are more
uniformly distributed in [0, 1] although there are rela-
tively large gaps between them.

An interesting aspect of themethod is that it provides
insight into which regions the learning process, based
on the used data, find it more challenging to decide
on the shape of f (c). This information may be used
to suggest other type of observation data that can help
improving the learning of the flux function.

What is the observation data we have used in this
learning process? In Fig. 6,we have illustrated the time-
dependent data collected at positions {x∗

i }4i=1 given by
(19) (left plot), whereas collected data of the positions
of the mixture zone as given by (22) with ε = 0.025
are shown in the right figure. 3% noise has been added
to the observation data before used for the learning
process, i.e., we account for measurement error η ∼
N (0, γ 2I) associated with observations d in (4) where
γ = 0.03 and I is the identity matrix. Similarly for
dmix,k
A in (26).
We may wonder what is the role of the information

used about the position of the mixing zone through
x∗
b (t) and x∗

f (t). To test this, we run an identification
simulationbyonly using the data set (25), i.e.,we set the
scaling parameter λ2 = 0 in (27). The result is shown in
Fig. 7. Main observation is that there is a larger degree

of uncertainty in the learning after 3 iterations (panel
a) as compared to the case when we used the data set
(27) illustrated in Fig. 4c. However, after 5 iterations
shown in Fig. 7b results are quite comparable. And the
mean flux function illustrated in Fig. 7c to a large extent
coincides with the true flux f (c;χ = 120) apart for c
close to 1. For the sake of robustness, for example, to
quicker detect the possibility for backflow for larger c
values, we use the data set (27) in the continuation.

A main objective of this work is to demonstrate
that the proposed methodology is general enough to
learn the relevant nonlinear flux function for a large
range of χ values in (A.3). Hence, we now use the
same type of observation data as above, i.e., based on
(27), and consider synthetic data for flux functions in
the range χ ∈ [50, 300] combined with initial data
c0(x; 0.6, 0.3). In Fig. 8, results are shown for synthetic
data based on the conservation law with flux function
f (u;χ = 50) (column a), f (u;χ = 150) (column
b), f (u;χ = 200) (column c), and f (u;χ = 300)
(column d). All cases reflect that the true flux func-
tion to a large extent is captured well, also when χ

increases which gives rise to a stronger convex dip for
u ≥ 0.5. This suggests that the identification process
covers well the different flow regimes corresponding
to χ ∈ [0, 300].

4.2 The learning of f (c) is mildly sensitive to the use
of intermediate states in the initial interface

Clearly, the effectiveness of learning the nonlinear
flux function depends on the data used in the iterative
method to uncover the unknown flux function. Above,
we have used an initial state that jumps from 1 to 0 via
two intermediate states 0.6 and 0.3. What is the role
played by these intermediate states? As a test case, we
consider synthetic data based on (A.3) with χ = 200
combined with the initial data

c0 = c0(x; 0.7, 0.4) =

⎧⎪⎪⎨
⎪⎪⎩

1.0, x ∈ [0, 2]
0.7, x ∈ (2, 3.5]
0.4, x ∈ (3.5, 5]
0, x ∈ (5, 10].

(28)

We find that there is virtually no difference from the
case with initial data c0(x; 0.6, 0.3) (results not shown)
used above. Looking at the corresponding histograms
in Fig. 9 for the case when we try to identify f (c;χ =
200),we see that they are quite similar, thereby suggest-
ing that the learning processes are of similar quality.
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Fig. 4 Illustration of the identification process for the casewhere
synthetic data are generated from the flux function (16) with
χ = 120 and with initial data (18) given by c0(x; 0.6, 0.3). a
The initial ensemble of flux functions γk fk span over a wide
possible class of flux functions. b Updated ensemble {θ(1)

k }. c

Updated ensemble {θ(3)
k }.dUpdated ensemble {θ(5)

k }. eThemean

θ∗ = mean{θ(5)
k }. f Observed data versus predicted behavior.

Solid line represents observed data, and circles show predicted
result

Fig. 5 Distribution of the
different c-values involved
in the observed data used
for the learning of
f (c; χ = 120). Left:
Observed data based on
initial data c0(x) given by
(17). Right: Observed data
based on initial data
c0(x; 0.6, 0.3)
corresponding to (18)

Moreover, we also check the initial data

c0 = c0(x; 0.8, 0.5) =

⎧⎪⎪⎨
⎪⎪⎩

1.0, x ∈ [0, 2]
0.8, x ∈ (2, 3.5]
0.5, x ∈ (3.5, 5]
0, x ∈ (5, 10]

(29)

As a test, we consider (A.3) with χ = 120 and find
an excellent match between learned f (c) and the true
(results not shown). Next, wewant to increase the num-

ber of intermediate states by considering

c0(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1.0, x ∈ [0, 2]
0.8, x ∈ (2, 2.75]
0.6, x ∈ (2.75, 3.5]
0.4, x ∈ (3.5, 4.25]
0.2, x ∈ (4.25, 5]
0, x ∈ (5, 10]

(30)

We used data based on (A.3) with χ = 120. The result
is shown in Fig. 10 (upper row) and reflects a poorer
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Fig. 6 Left: Illustration of
the time-dependent
observation data {u(x∗

i , t j )}
with i = 1, . . . , 4 and
j = 0, . . . , 20 we use for
the training. We have added
3% noise to the data. Right:
Time-dependent data in
terms of the positions x∗

b (t j )
and x∗

f (t j ) with
j = 0, . . . , 20

Fig. 7 Illustration of the learning process for the case where synthetic data are generated from the flux function (16) with χ = 120,
but only the data set (25) is used. a Updated ensemble {θ(3)

k }. b Updated ensemble {θ(5)
k }. c The mean θ∗ = mean{θ(5)

k }

approximation for c > 0.4 (loss of some finer details of
f (u)) as compared to, e.g., Fig. 4 suggesting that these
smaller initial jumps relatively densely located make
the identification process slightly less efficient. Further
testing based on (A.3) with χ = 200 shown in Fig. 10
(middle row) shows the same trend: The higher num-
ber of smaller initial jumps included in the initial data
slightly impedes the identification of the flux function,
see Fig. 10 (column c). In Fig. 10 (panel d and e), we
also see the distribution of the c-values involved in the
observation data corresponding to, respectively, learn-
ing of f (c;χ = 120) (left) and f (c;χ = 200) (right).
The lack of observation data for c ∼ (0.6, 0.9) appears
to be a natural reason for a slightly poorer identification
of f in this interval.

What is the effect of using fewer intermediate states?
We consider the initial c0(x) given by

c0(x) =
⎧⎨
⎩
1.0, x ∈ [0, 2]
0.5, x ∈ (2, 5]
0, x ∈ (5, 10]

(31)

From Fig. 11, column (a) and column (b), we see that
through the learning process the updated ensemble of
flux functions centers around the true flux, both for
f (c;χ = 120) (upper row) and f (c;χ = 200) (mid-
dle row) and identifies the part of the flux which is the
harder one to learn. As for the case in Fig. 10, we see
that it is challenging to capture the very precise shape
of f (c) for c > 0.6 (column c). The corresponding
histograms are shown in Fig. 11d, e, and the lack of
observation data for higher values of c is suggested as
a natural reason for the poorer estimation of the flux
functions in this region for both cases.

4.3 Temporal variation and mixing zone observation
data can compensate for sparse distribution of
c-values

To what extent is there room for a good identification
of the unknown flux function when the observed c-
value distribution in the interval [0, 1] is sparse? In the
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Fig. 8 Illustration of the learning process for the case where synthetic data is generated from the flux function (16) where χ ∈ [50, 300]
combined with initial data (17). a f (c, χ = 50); b f (c, χ = 150); c f (c, χ = 200); (d) f (c, χ = 300)

Fig. 9 Distribution of the different c-values involved in the observed data used for the identification process of f (c; χ = 200). Left:
Initial data c0(x; 0.6, 0.3) based on (18). Right: Initial data c0(x; 0.7, 0.4) based on (18)

following, we explore the effect of using three different
observationdata setsd A

k ,d
B
k , andd

C
k defined as follows:

d A
k = {dk given by (27) with λ1 = λ2 = 1}

dB
k = {dk given by (27) with λ1 = 1, λ2 = 0}

dCk =
{
dk given by (27) with λ1 = λ2 = 1, however, (25) is replaced by

dkA(tobsi ) =
{
ck(x∗

1 , tobsi ), ck(x∗
2 , tobsi ), ck(x∗

3 , tobsi ), ck(x∗
4 , tobsi )

} }
(32)

Hence, dB
k ignores information about the mixing

zone behavior as expressed by (26), whereas dCk
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Fig. 10 Illustration of the learning process where synthetic data
are generated from the flux function (16) with χ = 120 (upper
row) and χ = 200 (middle row) and the data set (27) is used in
combination with (30). a Updated ensemble {θ(3)

k }. b Updated

ensemble {θ(5)
k }. c The mean θ∗ = mean{θ(5)

k }. Distribution of
the different c-values involved in the observed data for d case
with χ = 120; e case with χ = 200

ignores information about the temporal gradients in
the time-dependent observation data as expressed by

�t ck(x∗
I , t

obs
i ) = 1

2

(
ck(x∗

I , t
obs
i+1)−ck(x∗

I , t
obs
i−1)

)
/�tobs

with I = 1, 2, 3, 4.
We want to explore the learning process based on,

respectively, d A
k , d

B
k , and dCk for a case when the true

flux function involves a rather deep convex “dip” for

smaller values of c. For that purpose, we consider
f (c;χ = −200) and we refer to Fig. 13 (third row)
for illustration of the flux function. Clearly, this is a
potential challenge for the identification process since
shock wave solutions (decreasing jumps) depend on
the upper concave envelope [4] which ignores infor-
mation about finer details related to this convex “dip”.
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Fig. 11 Illustration of the learning process where synthetic data
are generated from the flux function (16) with χ = 120 (upper
row) and χ = 200 (middle row) and the data set (27) is used in
combination with (31). a Updated ensemble {θ(3)

k }. b Updated

ensemble {θ(5)
k }. c The mean θ∗ = mean{θ(5)

k }. Distribution of
the different c-values involved in the observed data for d case
with χ = 120; e case with χ = 200

We consider the initial state

c0(x) =

⎧⎪⎪⎨
⎪⎪⎩

1.0, x ∈ [0, 2]
0.4, x ∈ (2, 3.5]
0.2, x ∈ (3.5, 5]
0, x ∈ (5, 10]

(33)

The resulting observation data distribution is shown
in Fig. 12. It reveals that there is lack of observation
data both for smaller c, intermediate, as well as higher.

In Fig. 13, the result of the identification process is
shown for the different observation data sets. The result
based on observation set d A

k is shown in column (a),
observation set dB

k is shown in column (b), whereas
column (c) reflects the learning process based on dCk .
See also the figure text for further details of plots in the
different panels. Main findings are: (i) The use of data
set d A

k allows one to identify most of the details of the
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Fig. 12 Distribution of observation data for the case with true
flux function f (c; χ = −200) combined with initial data (33)

unknown flux function except for the precise level for
c-values close to the end point c = 1. We see that this
learning process is associatedwith goodmatch between
predicted data and true observation data, see bottom
panel of column (a); (ii) The price to pay for relying on
observation data set dB

k , which ignores observation data
pertaining to themixture zone behavior, is a dominating
underestimation of the true flux function where details
about the local variations for c ∈ [0, 0.3] is largely lost,
see column (b). Nevertheless, the predicted observation
data (bottom panel) largely match the true except from
the time-dependent variation associated with x∗

4 ; (iii)
Finally, as seen in column (c), ignoring information
about the variations in the time-dependent curves as
represented by observation data set dCk , gives rise to a
similar behavior as seen in column (b). However, now
it results in a dominating overestimation of the true flux
function. This also results in a poorer prediction of the
observation data as seen in the bottom panel of column
(c). This example illustrates how sparse distribution
of observation data in [0, 1] can be compensated for
through the inclusion of additional information related
to the mixture zone behavior and temporal gradients in
the observations over time, as represented by data set
d A
k .

5 What is the role played by the selected a priori
representation of f (c)?

So far we have focused on investigations that can reveal
insight into the interplay between the selected obser-

vation data and the possibility to identify the ground
truth flux function f (c). This issue has largely to do
with the special nature of the conservation law (1) and
the ambiguity between observation data and the under-
lying flux function. This is reflected by the entropy
solution of (1) where the convex hull of the given flux
is employed in the construction of the solution [4].
We first provide some further characterization of the
entropy solution before we proceed with testing of dif-
ferent a priori processes to represent f (c). For a dis-
continuity (cl(t), cr (t)) moving along a certain path in
the x − t space, the speed s of this jump is given by the
Rankine–Hugoniot condition [4,39]

s = f (cl) − f (cr )

cl − cr
. (34)

Furthermore, from (3) another equivalent formulation
of the entropy condition can be derived for the valid
discontinuity (cl , cr ). This states that for all numbers v

between cl and cr , the following two inequalities must
hold
f (v) − f (cl)

v − cl
≥ s ≥ f (v) − f (cr )

v − cr
(35)

where s is the shock speed velocity (34). It is well
known that (8) generally will generate shock wave
solutions c(x, t) in finite time, i.e., solutions that con-
tain one or several discontinuities expressed as a jump
(cl , cr ) with cl �= cr , despite the fact that initial data
c0(x) are smooth [4,39]. In particular, the specific form
of f (c) in the interval [min(cl , cr ),max(cl , cr )] is not
used in the construction of the entropy solution, only
the slope s = f (cl )− f (cr )

cl−cr
. As jumps arise and disappear

in the solution over the time period for which observa-
tion data are collected, the data may lack information
about f (c) [29,40]. An illustration of this situation is
given in Fig. 14. In the left panel, we plot the flux func-
tion f (c) = c2/(c2 + (1− c)2). In the right panel, the
entropy solution after a time T = 0.5 is shown. At time
t = 0, the initial data c0(x) involve one jump at x = 0
and another jump at x = 1. The initial jump at x = 0 is
instantly transformed into a solution that is a combina-
tion of a continuous wave solution (rarefaction wave)
and a discontinuous wave (cl , cr ) ≈ (0.3, 1.0), as dic-
tated by the lower convex envelope shown in left panel
(green curve) [4]. Similarly, the initial jump at x = 1
is transformed into a solution that is a combination of
a continuous wave solution (rarefaction wave) and a
discontinuous wave (cl , cr ) ≈ (0.7, 0), in accordance
with the upper concave envelope illustrated in left panel
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Fig. 13 Illustration of the learning process for the case where
synthetic data are generated from the flux function (16) with
χ = −200 combined with initial data (33). Upper row.
Updated ensemble {θ(3)

k } after 3 iterations. Second row. Updated

ensemble {θ(5)
k } after 5 iterations. Third row. The mean θ∗ =

mean{θ(5)
k }.Bottom row. Observed data versus predicted behav-

ior. Solid line represents observed data, and circles show pre-
dicted result
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(magenta curve) [4]. From this example, we see that we
have no observation data that directly can reveal the
shape of f (c) in the interval c ∈ [0.3, 0.7] (approxi-
mately). However, as demonstrated in Sect. 4 we can
still obtain effective identification of the unknown flux
function by careful combination of the type of observa-
tion data and sound regularity imposed on the a priori
ensemble to represent f (c).

In the following, we explore in more detail the role
of the a priori distribution through theGaussian process
as described in Sect. 2.1. In particular, we will explore
the effect of using an a priori ensemble θk = {γk, fk}
for k = 1, . . . , Nens that is less regular and/or con-
tains stronger variations. In order to pay special focus
on the role of the smoothness/regularity of fk(c), we
fix γk = 1. For the investigations in this section, we
employ as our testing ground the case with true f given
by f (c;χ = 300) and with initial data c0(x; 0.6, 0.3).

5.1 What is the effect of using a priori ensemble with
less smoothness/regularity?

We tested use of a shorter correlation length l = 10�c
in (11), see Fig. 15, column (a). Results are comparable
to that of using l = 20�c and reported in Fig. 8 (right
column). However, there is amismatch of the identified
flux versus the ground truth for c ∈ [0.4, 0, 6]. Looking
at the discrepancy between predicted data and true data,
we see that the error is very low in the interval t ∈ [0, 1]
fromwhich observation data are extracted. However, at
later times t ∈ (1, 2] the consequences of the difference
in learned flux versus the true comes to the surface as
seen by the observation data at x∗

1 and x∗
4 . This shows

that for the selected observation data, there is clearly
room for this discrepancy between identified and true
f without being revealed by the loss function error. A
natural remedy would be to include more observation
data.

The case with l = 5�c in (11) (or lower values)
becomes impractical to deal with since the different
members of the a priori ensemble involve flux functions
where f ′(c) can take very high values. As seen from
the description of the discrete scheme (14) and (15),
it is clear that high values of f ′ put strong constraints
on the size of the discretization step �t . Noting that
f ′(c) has a clear physical interpretation in terms of
representing the speed by which c-values travel with,
it is reasonable to use this information when we decide

how to generate the a priori ensemble. For the fluid
displacement problem, we know from the experimental
set up that f ′(c) cannot take such higher values and
therefore, account for this information when we design
the a priori process to represent f . This serves as a
justification of using the a priori ensemble with higher
correlation length.

What is the effect of using not so smooth a priori
distribution, e.g., the Matérn kernel with ν = 3/2 or
ν = 5/2, whereas l = 20�c as before? This test will be
quite similar to the above case with shorter correlation
length. The Matérn kernel with ν = 5/2 [41] takes the
following form using the same notation as in (11)

Cν=5/2
c1,c2 = σ 2

(
1 + √

5(r/ l) + 5(r2/3l2)
)
e−√

5(r/ l),

r =
√

(c1 − c2)2. (36)

Results are shown in Fig. 15, column (b). We found
that the identified flux f (c) contained a systematic dif-
ference to the true flux for c ∈ [0.4, 1.0]. However,
looking at the predicted data curves (bottom row) we
find that they largely fit the observed data curves in the
time period t ∈ [0, 1]. This example again illustrates
the challenge when the entropy solution, as character-
ized by (35) and illustrated in Fig. 14, is the source of
the observation data. An improved learning of the flux
function could most likely be obtained by incorporat-
ing more observation data that potentially can reveal
the gap between the entropy solution generated by the
learned and true flux function, respectively.

We also tested the use of a priori Matérn kernel with
ν = 3/2

Cν=3/2
c1,c2 = σ 2

(
1 + √

3(r/ l)
)
e−√

3(r/ l),

r =
√

(c1 − c2)2. (37)

Results are illustrated in Fig. 15, column (c). The devi-
ation between identified flux and true is clearly larger,
whereas the difference between predicted behavior and
observed data is still low in the time period [0, 1] (bot-
tom row). This illustrates that adding more variations
and/or less regularity to the a priori distribution may
increase mismatch pertaining to the underlying flux
functions without showing this in the loss function
behavior. This is due to the construction of the entropy
solutionwhich only uses the convex hull of the involved
f (c) as indicated by the example in Fig. 14.
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Fig. 14 Left: Example of nonlinear flux function f (c) =
c2

c2+(1−c)2
(blue curve). Upper concave envelope (magenta curve)

and lower convex envelope (green curve) are also includedwhich

are identified by the entropy condition (35) as the part of the flux
function involved in the construction of the solution for this ini-
tial data. Right: The solution of (8) at time T = 0.5 is shown
together with its initial data c0(x) (red dashed line)

5.2 What is the role played by the size Nens of the
ensemble {θk}Nens

k=1?

We have consistently used an ensemble of size Nens =
100.We also explore the identification by using a lower
number Nens = 50 and Nens = 25. We use the Gaus-
sian process with l = 20�c and explore identification
for the same case as in Sect. 5.1. In Fig. 16, a com-
parison is made of the identification based on different
ensemble numbers Nens = 100 (a), Nens = 50 (b),
and Nens = 25 (c). Main observation is that reducing
the ensemble number Nens increases the width of the
updated ensemble parameter vector representing the
flux function, see column (b) and (c) versus column
(a). The resulting mean flux function with lower Nens,
i.e., column (b) and (c), gives less accurate learning of
the true flux function, suggesting that Nens = 100 is a
proper choice for the problem under consideration.

5.3 How robust is the identification to larger noise in
the observation data?

We explore how identification of the flux is affected
when noise η in (4) is increased from 0.03 to 0.06,
0.09, and 0.15, respectively. We use the Gaussian pro-
cess with l = 20�c and explore identification for the
same case as in Sect. 5.1. Results are shown in Fig. 17.

We see that increasing noise in the observation data is
manifested in the updated parameter vector represent-
ing the flux through a wider band width. However, the
mean of the updated parameter vector gives the same
accurate identification, see third row. Finally, we also
tested sensitivity to different realizations of the a prior
ensemble generated to represent f (c) for the case with
l = 20�c. We found that the identified flux deviated
minorly from one realization to another (results not
shown).

5.4 Comparison with standard Monte Carlo Markov
Chain (MCMC) algorithm

It is instructive and interesting to do a comparison of
EnKF with the standard MCMC algorithm. Follow-
ing [30,42], we use the Metropolis–Hastings method
to approximate the posterior flux. Let

a(u, v) = min{1, exp(I (u) − I (v))} (38)

where

I (u) = I (u; d) = �(u; d) + 1

2
‖C−1/2u‖2,

�(u; d) = 1

2
‖�−1/2(h(u) − d)‖2.

Herein,� is the covariance matrix for the measurement
error η ∼ N (0, γ 2I) associated with observations d

123



18182 S. Evje et al.

Fig. 15 Illustration of the learning process for the case where
synthetic data are generated from the flux function (16) with
χ = 300 combined with initial data (18) corresponding to
c0(x, 0.6, 0.3). The different colunms refer to a priori ensem-
ble distribution of different types: a Gaussian with correlation
length l = 10�c; b Matérn kernel with correlation l = 20�c

and ν = 5/2; c Matérn kernel with correlation l = 20�c and
ν = 3/2. Upper row. Updated ensemble {θ(3)

k } after 3 iterations.
Second row. Updated ensemble {θ(5)

k } after 5 iterations. Third

row. The mean θ∗ = mean{θ(5)
k }. Bottom row. Observed data

versus predicted behavior. Solid line represents observed data,
and circles show predicted result
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Fig. 16 Illustration of the learning process for the case where
synthetic data are generated from the flux function (16) with
χ = 300 combined with initial data (18) corresponding to
c0(x, 0.6, 0.3). The different columns refer to a priori ensem-
ble distribution of different number: a Nens = 100; b Nens = 50;

c Nens = 25. Upper row. Updated ensemble {θ(3)
k } after 3 iter-

ations. Second row. Updated ensemble {θ(5)
k } after 5 iterations.

Third row. The mean θ∗ = mean{θ(5)
k }. Bottom row. Observed

data versus predicted behavior
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Fig. 17 Synthetic data are generated from the flux function
(16) with χ = 300 and initial data (18) corresponding to
c0(x, 0.6, 0.3). The different columns refer to different levels
of noise in observation data: a Noise∼ 0.06%; bNoise∼ 0.9%;

c Noise ∼ 0.15%. Upper row. Updated ensemble {θ(3)
k } after

3 iterations. Second row. Updated ensemble {θ(5)
k } after 5 iter-

ations. Third row. The mean θ∗ = mean{θ(5)
k }. Bottom row.

Observed data versus predicted behavior

in (4) where γ = 0.03 and I is the identity matrix.
For the sake of comparison, we focus on the the same
case as explored in Sect. 5.1. In particular, we use the
Gaussian process with l = 20�c for the initial a priori

distribution to represent f as well as for the random
walk update step. The MCMC algorithm is then given
by the following standard random walk steps:
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1. Set k = 0 and select f (0)(ci ) from a priori dis-
tribution N (0, C) where C amounts to (11) with
l = 20�c and σ = 0.25.

2. Propose g(k) = f (k) + βξ(k), ξ (k) ∼ N (0, C)

where C amounts to (11) with l = 20�c and
σ = 0.25.

3. Compute a( f (k), g(k)). Then, draw a number i (k) in
[0, 1] from a uniform distribution.
If i (k) ≤ a( f (k), g(k)), then we set f (k+1) = g(k).

4. Set f (k+1) = f (k) otherwise.
5. k → k + 1

The algorithmhas three scalar hyperparameters (β, b, τ )

which need to be specified [30,42]. First, the stepsize β

which controls the size of the move, second the burn-in
b, i.e., the number of samples which are discarded in
order to minimize the contribution of the initial value
f 0, and the sample interval τ which is the number of
states which are discarded between two observations.
For the presented simulation results shown in Fig. 18,
we have used (β, b, τ ) = (0.05, 400, 20). After the
burn-in period, we generate a Markov chain of length
2000 and obtain an ensemble of 100 samples using the
sample interval τ = 20, see Fig. 18a. The main find-
ing is that MCMC gives mean posterior flux (Fig. 18b)
which is essentially of a similar quality as the oneEnKF
gave, see for example, Fig. 16 (left column). In particu-
lar, the predicted data shown in panel 18c are captured
well. The main difference is that MCMC has involved
2400 simulation steps, whereas EnKF has employed
600. We may expect that results are to some extent
sensitive to different parameters. That is, other choices
of a priori distribution and/or covariance structure of
ξ (k) most likely could have some impact on the result.
E.g., a higher burn-in value bwould ensure that a larger
portion of the posterior samples lies closer to the true
flux.

6 Conclusion

In this work, we have explored a methodology that
combines representing the unknown flux function as
a Gaussian random process through a parameter vector
and updating this parameter vector based on the ES-
MDA method. The physical setting we consider is dis-
placement of one fluid by another in a vertical domain.
The parameter χ is a key parameter that expresses the
ratio of buoyant to viscous stresses. As indicated in
Sect. 2, it is possible to derive a nonlinear conservation

law of the form (8) where a functional form f (c;χ) of
the flux function is obtained.Depending on the parame-
ter χ , different flow regimes are involved ranging from
stable to density-unstable displacement. Our aim has
been to explore an ensemble-based approach as ameans
to extract from observation data the unknown nonlin-
ear flux function.Main findings from the investigations
are:

• By relying on a sparse set of time-dependent data
extracted from a few fixed positions in space, com-
bined with some care in the choice of the initial
state, we can to a large extent provide an effec-
tive identification of the nonlinear unknown flux
functions f (c;χ) for different flow regimes corre-
sponding to χ ∈ [−200, 300]. This includes highly
non-convex flux functions.

• The use of Gaussian random fields to represent
the unknown flux function f (c) for c ∈ [0, 1]
adds additional regularity and information which is
exploited in the ensemble-based learning process.
That is, we have seen that a relative effective identi-
fication of f (c) is possible despite the fact that the
time series observation data only partly cover the
domain [0, 1] on which f (c) is described (due to
the occurrence of discontinuities in the solutions).
We have found that this is a direct consequence of
the inclusion of additional observation data related
to temporal variations, as expressed by the second
part (second line) in (25), and information about
the front and back position of the mixing zone as
expressed by (26).

• Further investigations showed that the regularity of
the a priori ensemble distribution was quite essen-
tial for a good identification in the current study
where a sparse amount of observation data was
assumed available. The assumed smoothness of the
a priori ensemble we applied is reasonable from
the setup of the physical process under considera-
tion. By including more observation data, one may
expect to see higher robustness with respect to a
prior regularity/smoothness. More precise under-
standing of this topic seems to be an interesting
direction for further research. The identification
was robust regarding level of noise in the obser-
vation data and to a little extent sensitive to differ-
ent realizations of the a prior ensemble generated
to represent f (c). Finally, comparison with a stan-
dard MCMC algorithm to compute posterior flux
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Fig. 18 Results obtained by using MCMC. Synthetic data are
generated from the flux function (16) with χ = 300 and initial
data (18) corresponding to c0(x, 0.6, 0.3). a A posterior flux.

b Mean of a posterior flux. c Observed data versus predicted
behavior. Solid line represents observed data, and circles show
predicted result

confirmed the effectiveness of EnKF as a reliable
method to identify the unknown flux function for
the chosen set of observation data.

In conclusion, we have seen that the ensemble-based
method explored in this work provides a practical
tool for recovering an unknown nonlinear conservation
law from observation data through point observations
extracted over a time period. This setting is realistic in
view of the fact that sensor data are commonly obtained
in terms of time series. In this study, the choice of the
observation data was motivated by the specific fluid
mechanical process under consideration. More gener-
ally, there seems to be many unexplored aspects of the
use of Bayesian methods to learn a nonlinear conserva-
tion law from observations due to the entropy solution
concept which depends on the underlying flux function
in a highly non-trivial manner.
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Appendix A. A nonlinear conservation law for vis-
cous displacements based on lubrication scaling

For vertical displacements that are dominated by vis-
cous and buoyant stresses, a reduced displacement
model may be derived by suitable scaling of the vari-
ables in the governing Eqs. (5)–(7). To this end, we
consider the model problem shown in Fig. 1, where the
displacing fluid advances vertically downward through
the center of a plane channel with a gap of width D.
This model geometry is analogous to that of a perfectly
vertical, concentric annulus. We assume no flow in the
azimuthal direction, and consider the displacement as
effectively two-dimensional, i.e., along the axial and
radial directions only. This is considered applicable for
the vertical and concentric annulus, and for “stable”
displacements that are density-stable or dominated by
viscous stresses. To this end, a rectangular coordinate
system is oriented as indicated in Fig. 1, with the origin
in the center of the channel and the x-axis parallel to
the direction of imposed flow. The displacing fluid is
injected at a constant volumetric rateq per circumferen-
tial length of the channel, corresponding to a bulk axial
velocity U∗ = q/D in the gap. As pointed out above,
the displacing and the displaced fluids are assumed to
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be constant viscosity fluids, with a common viscosity
μ. Further, the fluids are assumed to be incompressible,
with constant mass densities ρ1 and ρ2 for the displac-
ing and displaced fluid, respectively. In what follows,
a subscript i = 1 refers to displacing fluid and i = 2 to
the displaced fluid, in accordance with the above and
Fig. 1.

A lubrication scaling equal to that by Lajeunesse et
al. [43] is next invoked,where it is assumed that the flow
is essentially unidirectional and parallel to the walls of
the geometry, and that the gap width D is small com-
pared to a characteristic axial length scale of the duct,
L∗, [44]. Defining δ = D/L∗ as the aspect ratio of the
channel, the above assumption implies that δ � 1. The
problem is non-dimensionalized by taking L∗ and D as
length scales for the x and y coordinate, respectively,
and using U∗ as a characteristic scale for the velocity
component in the vertical direction. Then, t∗ = L∗/U∗
is a natural time scale for the displacement process. As
per Lajeunesse et al., we focus on displacements that
occur at sufficiently high flow rates for diffusion to be
negligible, i.e., it is assumed that Pe = δUD/D � 1,
with Pe the Péclet number. Further, τ ∗ = μU∗/D is
used as characteristic scale for viscous stresses. The
pressure is non-dimensionalized by the viscous pres-
sure scale P∗ = τ ∗/δ, [44]. Taking the fluids to be
incompressible and denoting by ux and uy the axial and
transverse dimensionless velocity components, one can
show that the zero-order governing equations are

∂xu
x + ∂yu

y = 0 (A.1a)

− ∂x p + ∂2y∂yu
x + φi

Re

Fr2
= O(δ2, δRe) (A.1b)

− ∂y p = O(δ2, δ3Re) (A.1c)

∂tC + ∂x (u
xC) + ∂y(u

yC) = 0. (A.1d)

Here, Re = ρ̄U∗D/μ is a Reynolds number based on
the average fluid mass density, ρ̄ = (ρ1 + ρ2)/2, and
Fr2 = U∗2/(AtgD) is the densimetric Froude num-
ber expressing the ratio of inertial and buoyant stresses.
TheAtwood number At = (ρ1−ρ2)/(ρ1+ρ2) is intro-
duced in the definition of the Froude number,which can
be either positive or negative depending on whether
the displacement flow is density-unstable or density-
stable. Finally, φ1 = 1 and φ2 = −1. Averaging the
convection Eq. (A.1d) across y, i.e., between the walls
of the channel, while assuming a sharp and single-
valued position of the interface, a hyperbolic conser-

vation equation is found for the average fluid concen-
tration c:

c(x, t)t + ∂x

∫ h

−h
ux dy ≡ c(x, t)t + f (c; χ,m)x = 0,

(A.2)

where it is seen that the flux function is equal to the
flux of the displacing fluid. Lajeunesse et al. [43] and
Amiri et al. [45] obtained an analytical expression for
the flux function by solving Eq. (A.1b) for the velocity
ux , with the result being

f (c;χ) = c

2
(3 − c2)

+χc2

12

(
3

4
− 2c + 3

2
c2 − 1

4
c4

)
. (A.3)

Here, χ = 2Re/Fr2 which is the ratio of buoyant to
viscous stress scales. We note that Lajeunesse et al.
accounted for different viscosity fluids and derived a
more general form of the flux function in Eq. (A.3).
Finally, we point out that a generalization to displace-
ments involving pairs of yield stress and shear thinning
fluids was presented by Zare et al. [46].

In Fig. 19, the impact of varying the sign and mag-
nitude of χ on the flux function and the characteristic
interface profile is illustrated.

For iso-dense fluids, χ = 0, and this limit is equiv-
alent to that of single-phase flow, since now both den-
sity and viscosity are equal for the two fluids. The flux
function has f ′′ < 0 for all c, resulting in a rarefac-
tion wave that is advected according to the Newtonian
velocity profile in a plane channel. Density-stable dis-
placements were considered by Lajeunesse et al. [43]
and are illustrated in the top row of Fig. 19 for the case
of χ = −100. The flux function now contains a convex
region for intermediate values of c, and this manifests
in a jump discontinuity (shock) in the profile c, seen in
the top right panel of Fig. 19. For a positive nonzero
value of χ , the flux function is convex in the lower end
of the c axis and, for increasing values of χ , eventually
develops a second convex region at the opposite side
of the c axis. The resulting interface profile therefore
consists of either one or two jump discontinuities, as
shown in the right panels in Fig. 19. For χ ≈ 117.8,
the second jump discontinuity becomes stationary, due
to the exact balance of buoyant and viscous stresses.
At larger values of χ , buoyant stresses are sufficiently
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Fig. 19 Flux functions and
corresponding
concentration profiles for
iso-viscous displacements,
and different density
differences between the
fluids. The density-unstable
configuration results in a
discontinuity in c for low
values of the concentration.
This corresponds to fast
propagation of displacing
fluid through the center of
the channel. At larger
density differences, a
second discontinuity
emerges at high values of c.
For χ > 117.8, the second
discontinuity reverses
direction, resulting in
back-flow of the less dense
fluid

large to overcome the viscous drag of the displacing
fluid, resulting in reverse flow of the lighter fluid. This
is illustrated for χ = 150 in Fig. 19.

References

1. Berg, J., Nystrom, K.: Data-driven discovery of PDEs in
complex datasets. J. Comput. Phys. 384, 239–252 (2019)

2. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-
informed neural networks: a deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations. J. Comput. Phys. 378, 686–
707 (2019)

3. Long, Z., Lu, Y., Dong, B.: PDE-Net 2.0: Learning PDEs
from data with a numeric-symbolic hybrid deep network. J.
Comput. Phys. 399, 108925 (2019)

123



Identification of nonlinear conservation laws 18189

4. LeVeque, R.J.: Finite VolumeMethods for Hyperbolic Prob-
lems. Cambridge Texts in AppliedMathematics, Cambridge
(2007)

5. Hesthaven, J.S.: Numerical Methods for Conservation Laws
from Analysis to Algorithms. Computational Science &
Engineering, SIAM, Philadelphia (2017)

6. Kröene, D.: Numerical Schemes for Conservation Laws.
Wiley-Teubner Series Advances in Numerical Mathemat-
ics, Wiley, New York (1997)

7. Emerick, A.A., Reynolds, A.C.: Ensemble smoother with
multiple data assimilation. Comput. Geosci. 55, 3–15 (2013)

8. Oliver, D.S., Fossum, K., Bhakta, T., Sandø, I., Nævdal, G.,
Lorentzen, R.J.: 4D seismic history matching. J. Petrol. Sci.
Eng. 207, 109119 (2021)

9. Evensen, G.: Sequential data assimilation with a nonlin-
ear quasi-geostrophic model using Monte Carlo methods
to forecast error statistics. J. Geophys. Res. 99(C5), 10143–
10162 (1994)

10. Nævdal, G., Mannseth, T., Vefring, E.H.: Near-well
reservoir monitoring through ensemble Kalman filter. In
SPE/DOE ImprovedOilRecoverySymposium,Tulsa,Okla-
homa, SPE75235 (April 2002)

11. Haugen, V., Nævdal, G., Natvik, L.J., Evensen, G., Berg, A.,
Flornes, K.: History matching using the ensemble Kalman
filter on a North Sea field case. SPE J. 13, 382–391 (2008)

12. Bianco, A., Cominelli, A., Dovera, L., Naevdal, G., Vallès,
B.: Historymatching and production forecast uncertainty by
means of the ensemble Kalman filter: A real field applica-
tion. In SPEEuropec/EAGEAnnualConference andExhibi-
tion, London, UK, 11–14 (June 2007). Society of Petroleum
Engineers. SPE107161

13. Skjervheim, J.-A., Evensen, G., Hove, J., Vabø, J.G.: An
ensemble smoother for assisted history matching. In SPE
Reservoir simulations symposium, The Woodlands, Texas,
(February 21–23 2011). SPE141929-MS

14. Chen, Yan: Oliver, Dean: Ensemble randomized maximum
likelihood method as an iterative ensemble smoother. Math.
Geosci. 44(1), 1–26 (2012)

15. Chen, Yan, Oliver, Dean S.: Levenberg-Marquardt forms of
the iterative ensemble smoother for efficient history match-
ing and uncertainty quantification. Comput. Geosci. 17,
689–703 (2013)

16. Iglesias,M.A., Law,K.J.H., Stuart,A.M.: EnsembleKalman
methods for inverse problems. Inverse Probl. 29, 045001
(2013)

17. Iglesias, M.A.: A regularizing iterative ensemble Kalman
method for PDE-constrained inverse problems. Inverse
Probl. 32, 025002 (2016)

18. Chada, N.K., Iglesias, M.A., Roininen, L., Stuart, A.M.:
Parameterizations for ensemble Kalman inversion. Inverse
Probl. 34, 055009 (2018)

19. Herty, M., Visconti, G.: Continuous limits for constrained
ensemble Kalman filter. Inverse Probl. 36, 075006 (2020)

20. Kang, H., Tanuma, K.: Inverse problems for scalar conser-
vation laws. Inverse Probl. 21(3), 1047–1059 (2005)

21. James, F., Sepúlveda, M.: Convergence results for the flux
identification in a scalar conservation law. SIAM J. Control.
Optim. 37(3), 869–891 (1999)

22. Castro, C., Zuazua, E.: Flux identification for 1-d scalar con-
servation laws in the presence of shocks. Math. Comput.
80(276), 2025–2070 (2011)

23. Holden, H., Priuli, F.S., Risebro, N.H.: On an inverse prob-
lem for scalar conservation laws. Inverse Probl. 30, 035015
(2014)

24. Bustos, M.C., Concha, F., Bürger, R., Tory, E.M.: Sedimen-
tation and Thickening-Phenomenological Foundation and
Mathematical Theory. Kluwer Academic Publishers, Dor-
drecht (1999)

25. Diehl, S.: Estimation of the batch-settling flux function for
an ideal suspension from only two experiments. Chem. Eng.
Sci. 62, 4589–4601 (2007)

26. Bürger, R., Diehl, S.: Convexity-preserving flux identifica-
tion for scalar conservation laws modelling sedimentation.
Inverse Prob. 29, 045008 (2013)

27. Betancourt, F., Bürger, R., Diehl, S., Mejías, C.: Advanced
methods of flux identification for clarifier-thickener simula-
tion models. Miner. Eng. 63, 2–15 (2014)

28. Bürger, R., Careaga, J., Diehl, S.: Flux identification of
scalar conservation laws from sedimentation in a cone. IMA
J. Appl. Math. 83, 526–552 (2018)

29. Li, Q., Evje, S.: Learning the nonlinear flux function of a
hidden scalar conservation law from data. Netw. Heterog.
Media 18, 48–79 (2023)

30. Mishra, S., Ochsner, D., Ruf, A.M., Weber, F.: Well-
Posedness of Bayesian Inverse Problems for Hyperbolic
Conservation Laws. Seminar for Applied Mathematics,
ETH, 24, (2021)

31. Duong, D. L.: Inverse problems for hyperbolic conservation
laws.ABayesian approach.University of SussexPhD thesis,
(2020)

32. Nelson, E.B., Guillot, D. (eds.): Well Cementing, 2nd edn.
Schlumberger, Sugar Land (2006)

33. Skadsem, H.J., Kragset, S.: A numerical study of density-
unstable reverse circulation displacement for primary
cementing. J. Energy Resour. Technol 144, 123008 (2022)

34. Vetra-Cervalho, S., van Leeuwen, P.J., Nerger, L., Barth,
A., Altaf, M.U., Brasseur, P., Kirchgessner, P., Beckers,
J.-M., Tellus, A.: State-of-the-art stochastic data assimila-
tion methods for high-dimensional non-Gaussian problems.
Dyn. Meteorol. Oceanogr. 70(1), 1445364 (2018)

35. Bishop, C.H., Etherton, B.J., Majumdar, S.J.: Adaptive sam-
pling with the ensemble transformKalman filter. part I: The-
oretical aspects. Mon. Weather Rev. 129, 420–436 (2001)

36. Hunt, B.R., Kostelich, E.J., Szunyogh, I.: Efficient data
assimilation for spatiotemporal chaos: A local ensemble
transform Kalman filter. Physica D 230, 112–126 (2007)

37. Livings, David M., Dance, Sarah L., Nichols, Nancy K.:
Unbiased ensemble square root filters. PhysicaD 237, 1021–
1028 (2008)

38. Sakov, P., Oke, P.R.: Implications of the form of the ensem-
ble transformation in the ensemble square root filters. Mon.
Wea. Rev. 136, 1042–1053 (2008)

39. Holden, H., Risebro, N.H.: Front Tracking for Hyperbolic
Conservation Laws. Springer, Berlin (2011)

40. Diehl, Stefan: Numerical identification of constitutive func-
tions in scalar nonlinear convection-diffusion equationswith
application to batch sedimentation. Appl. Numer. Math. 95,
154–172 (2015)

41. Rue, H., Held, L.: Gaussian Markov Random Fields. The-
ory and Applications. Chapman & Hall/CRC, Boca Raton
(2005)

123



18190 S. Evje et al.

42. Cotter, S.L., Roberts, G.O., Stuart, A.M.,White, D.:MCMC
methods for functions: Modifying old algorithms to make
them faster. Stat. Sci. 28, 424–446 (2013)

43. Lajeunesse, E.,Martin, J., Rakotomalala, N., Salin, D., Yort-
sos, Y.C.: Miscible displacement in a Hele-Shaw cell at high
rates. J. Fluid Mech. 398, 299–319 (1999)

44. Gary Leal, L.: Advanced Transport Phenomena: Fluid
Mechanics and Convective Transport Processes. Cambridge
Series in Chemical Engineering, Cambridge University
Press, Cambridge (2007)

45. Amiri, A., Larachi, F., Taghavi, S.M.: Buoyant miscible
displacement flows in vertical pipe. Phys. Fluids 28(10),
102105 (2016)

46. Zare, M., Roustaei, A., Frigaard, I.A.: Buoyancy effects
on micro-annulus formation: density stable displacement of
Newtonian-Binghamfluids. J.Nonnewton. FluidMech.247,
22–40 (2017)

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.

123


	Identification of nonlinear conservation laws for multiphase flow based on Bayesian inversion
	Abstract
	1 Introduction
	1.1 Learning of PDE models from data in fluid mechanics
	1.2 Previous studies of learning nonlinear flux function from data
	1.3 The contribution of this work
	1.4 Mathematical multiphase model for Newtonian fluid displacements
	1.5 Problem statement
	1.6 Structure of this work

	2 Method based on Gaussian random processes and EnKF
	2.1 Gaussian random processes
	2.2 Ensemble smoother—multiple data assimilation
	2.3 Discrete numerical scheme

	3 Preliminaries for numerical investigations
	Observation data set
	Main algorithm

	4 Results
	4.1 We can learn the unknown f(c) by using sparse time-dependent noisy data
	4.2 The learning of f(c) is mildly sensitive to the use of intermediate states in the initial interface
	4.3 Temporal variation and mixing zone observation data can compensate for sparse distribution of c-values

	5 What is the role played by the selected a priori representation of f(c)?
	5.1 What is the effect of using a priori ensemble with less smoothness/regularity?
	5.2 What is the role played by the size Nens of the ensemble {θk}k=1Nens?
	5.3 How robust is the identification to larger noise in the observation data?
	5.4 Comparison with standard Monte Carlo Markov Chain (MCMC) algorithm

	6 Conclusion
	Appendix A. A nonlinear conservation law for viscous displacements based on lubrication scaling
	References




