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ABSTRACT Precision in building delineation plays a pivotal role in population data analysis, city
management, policy making, and disaster management. Leveraging computer vision technologies,
particularly deep learning models for semantic segmentation, has proven instrumental in achieving accurate
automatic building segmentation in remote sensing applications. However, current state-of-the-art (SOTA)
techniques are not optimized for precisely extracting building footprints and, specifically, boundaries of
the building. This deficiency highlights the need to leverage Light Detection and Ranging (LiDAR) data
in conjunction with aerial RGB and streamlined deep learning for improved precision. This work utilizes
the MapAI dataset, which includes a variety of objects beyond buildings, such as trees, electricity lines,
solar panels, vehicles, and roads. These objects showcase diverse colors and structures, mirroring the
rooftops in Denmark and Norway. Due to the aforementioned problems, this study modified UNet and
CT-UNet to use LiDAR data and RGB images to segment buildings using Intersection Over Union (IoU)
to evaluate building overlap and Boundary Intersection Over Union (BIoU) to evaluate precise building
boundaries and shapes. The proposed work changes the configuration of these networks to streamline
with LiDAR data for efficient segmentation. The batch data in training is augmented to improve model
generalization and overcome overfitting. Batch normalization inclusion also improves overfitting. Four
backbones with transfer learning are employed to enhance convergence and parameter efficiency of
segmentation: ResNet50V2, DenseNet201, EfficientNetB4, and EfficientNetV2S. Test-Time Augmentation
(TTA) is employed to improve the predicted mask. Experiments are performed using single and ensemble
models, with and without Augmentation. The ensemble model outperforms the single model, and TTA also
improves the results. LiDAR data with RGB improves the combined score (average of IoU and BIoU) by
13.33% compared to only RGB images.

INDEX TERMS Building precision, deep learning, LiDAR, remote sensing, semantic segmentation, U-Net,
context-transfer U-Net.

I. INTRODUCTION
Terrestrial LiDAR is a sophisticated, active tool for remote
sensing purposes that utilizes laser pulses to illuminate a
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specific area and then receives the reflected pulses bounced
back by the objects within that area [1]. The process allows
for the creation of precise 3D representations of the scene,
which contain x and y coordinates to illustrate the location
corresponding to other objects and z as the depth of the
sensing objects. This tool is widely used in various fields,
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such as geography, geology, and engineering, to obtain
accurate and detailed information about the surrounding
area’s topography, structure, and composition.

Airborne LiDAR systems are extensively required to
acquire high-resolution data over large areas, i.e., urban
regions [2], [3], [4]. These systems are typically affixed to
planes, helicopters, or drones and consist of four primary
components: an Inertial Measurement Unit (IMU), a global
positioning system (GPS), a laser scanner, and a computer.
In the process of data acquisition, the airborne traverses
the target area and laterally emits pulses of near-infrared
light. The sensor captures the reflected light, registering
the duration it takes for the light to travel from the laser
to the object and back. The GPS monitors the airborne
vehicle’s altitude and location while the IMU keeps track
of its orientation and speed. The precise determination of
the location where the laser pulse was reflected becomes
achievable by integrating data from the GPS for location,
IMU for accurate spatial orientation with speed, and the
recorded time from the sensor. Subsequently, a computer is
employed to process and manage this comprehensive dataset.

In the past few decades, a huge effort has been made
to design innovative models for building extractions from
remote sensing images, while accurate building extraction
with precise boundaries is still challenging for the computer
vision community. Building extraction in remote sensing
images is challenging due to three issues: first, various other
objects like electricity lines and trees cover the building [5];
second, building shadows and band reflectance; third, high-
resolution images make it challenging to segment building
boundaries accurately. Building extraction is mainly based
on aerial images [6] (RGB), Lidar-based [7], [8], and
fusion-based [9].

The significance of building extraction through remote
sensing LiDAR data is multifaceted, contributing to diverse
fields such as urban planning [6], environmental manage-
ment [10], disaster management [11], and geospatial analysis.
LiDAR-derived building information is crucial in urban
planning as it offers insights into land use patterns, supports
zoning decisions, and monitors urban growth. In environ-
mental management, the data aids in assessing the ecological
impact of urbanization and analyzing green space distribu-
tion. For disaster management, accurate building information
enhances vulnerability assessments and emergency response
planning. Building extraction contributes to spatial modeling,
3D visualization, and simulations in geospatial analysis.
Moreover, the data is valuable for infrastructure monitoring,
supporting asset management utility planning, contributing
to a comprehensive understanding of urban landscapes,
fostering sustainable development, and making informed
decisions across various academic disciplines.

A. PROBLEM DESCRIPTION
In recent years, advancements in remote sensing through
LiDAR technology have introduced novel challenges,

particularly in pixel classification based on depth information
in satellite imagery. Broadly, image segmentation encounters
numerous difficulties, with one of the most formidable issues
arising when attempting to simultaneously utilize RGB and
LiDAR data for training on a specific dataset and achieving
robust generalization on a distinct test set (the same is the case
with the MapAI dataset). This challenge becomes notably
pronounced in satellite imagery, where images in the test set
may be affected by varying illumination conditions or pertain
to different geographical areas than those represented in the
training set [12].
This study used the MapAI dataset, which relies on preci-

sion in building segmentation challenge held at a conference
organized by the Norwegian Artificial Intelligence Research
Consortium (NORA) in cooperation with the University of
Agder (CAIR) [13]. The MapAI competition consists of two
tasks: the first task exclusively utilizes aerial images, while
the second task requires laser data (LiDAR) either alone
or in conjunction with aerial images. The primary goal is
to formulate models for building segmentation with precise
boundary delineation. The secondary objective involves
comparing the outcomes of both tasks to assess the impact of
LiDAR data in conjunction with aerial images on the accurate
segmentation of buildings.

B. DATASET
The dataset utilized in this study is the MapAI dataset [13],
and Figure 1 offers a visual depiction of sample images
from this dataset. The dataset comprises diverse components,
including aerial images, LiDARdata, and ground truthmasks.
White pixels in ground truth illustrate buildings, while black
pixels depict the ground surface and other objects except
buildings.

FIGURE 1. MapAI dataset sample images, each having 500 × 500 pixel
resolution. (a) RGB format (b) Float32 (c) Binary.

The dataset consists of train, validation, task1_test, and
task2_test. The training set consists of 7500 images, while
the validation set comprises 1500 images, both drawn from
diverse locations throughout Denmark. This diversity ensures
that the training and validation sets encompass various
environments and types of buildings. The two test sets consist
of 2346 (1368+978) images. The test set is thoroughly
curated to span seven locations across Norway, covering a
mix of rural and urban settings such as Bergen, Kristiansand,
etc in Norway.
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The LiDAR data in the published dataset is preprocessed
data that omits other information like elevation and CRS.
The data originates from a production setting, implying
that buildings may not be properly accurately marked in
the masks, and discrepancies may exist between ground
truth masks and actual buildings due to production errors.
Furthermore, the ground truth masks are created using a
Digital Terrain Model (DTM) in the test splits. Both the
Digital Surface Model (DSM) and DTM are employed,
where continuous terrain surfaces are marked using DTM.
Consequently, the roofs of the buildings in the test sets may
appear distorted compared to the masks. However, in the
training and validation set, this issue is mitigated as the masks
are created via DSM, capturing the artificial attributes of the
environment to avoid distortion in the building tops [14].

C. EVALUATION METRICS
The MapAI competition evaluates image segmentation using
region-based and boundary-based metrics. Region-based
metrics, such as Intersection over Union (IOU) or Jaccard
Index (JI), measure the similarity between two binary images:
the ground truth image Ig and the predicted mask Ip. These
metrics calculate the intersection area divided by the total area
shown in Equation 1 [15].
On the other hand, boundary-based evaluation metrics,

such as Boundary Intersection Over Union (BIOU), offer
a different perspective when assessing the performance of
models in tasks like image segmentation. Unlike pixel-wise
evaluation metrics that focus on the classification of each
pixel, BIOU evaluates the intersection over the union of the
edged ground truth and edged prediction mask. It takes into
account the thickness of the edge from the contour line in
Equation 2 [16]. These metrics provide a way to assess the
performance of image segmentation algorithms and compare
them to the ground truth. Equation 3 presents score as a
combined metric of IoU and BIoU as official metrics for
MapAI competition. The score is the average of IoU and
BIoU values for all images.

IoU = JI =
Intersection
Union

=
|Ig ∩ Ip|

|Ig| + |Ip| − |Ig ∩ Ip|
(1)

BIoU =
|(Igd ∩ Ig) ∩ (Ipd ∩ Ip)|
|(Igd ∩ Ig) ∪ (Ipd ∩ Ip)|

(2)

Score =
IoU + BIoU

2
(3)

D. CONTRIBUTION
The primary goal of this study is to design an enhanced
Encoder–Decoder architecture for segmenting buildings and
assess the impact of LiDAR data on segmentation. Two
encoder–decoder architectures with different backbones are
modified, employed, and compared to achieve precise
building segmentation for remote sensing. Four backbones
(ResNet50V2, DenseNet201, EfficientNetB4, and Efficient-
NetV2S) are utilized to improve feature extraction, enhance
generalization, and reduce overfitting. In experiments, batch

normalization is positioned before and after Relu to deter-
mine the optimal placement in the models. Multiple initial
learning rates and various loss functions are tested on the
validation data to identify models best learning rate and
efficient loss function. In addition to testing, models are
evaluated on training and validation data to detect overfitting.
Training augmentation and test time augmentation (TTA) are
employed for both single and ensemble models to assess the
improvement of ensemble model performance.

II. LITERATURE
Semantic segmentation models are pivotal in the accurate
classification and monitoring of objects, and they play
a fundamental role in various application fields such as
environment protection [17], urban area management [18],
[19], [20], [21] and resource management [22] and moni-
toring [23]. Therefore, semantic segmentation is a powerful
technique that can achieve pixel-level building classification
in remote-sensing images. In shallow models, XGBoost and
LightGBM show promising results on the same dataset [24].
Groundbreaking technology in computer vision has emerged
with Convolutional Neural Networks (CNNs) in this context,
with their productive creation as Dropout [25], RasNet [26],
and Batch Norm [27]. CNN achieves semantic represen-
tations using different encoder–decoder designs [28], [29],
[30], [31] using convolution and pooling operation and later
restores the exact image size by upsampling [32].
The large quantity of data also opens an opportunity to use

Deep Learning (DL) to minimize the need for expert domain
knowledge. Many Deep Learning model calculations can
be parallelized on modern hardware, such as graphical pro-
cessing units, substantially reducing computation time. The
deep learning model is widely used in the segmentation of
large-scale publically available datasets of building footprints
in the African continent [33], the United States [34], [35],
other countries [36], and this study used datasets collected
from Denmark and Norway.

Liu et al. [37] proposed a Context-Transfer-UNet
(CT-UNet) network to address the poor recognition of
high-resolution images and intra-class inconsistency. The
CT-UNet network design includes the Dense Boundary Block
(DBB) to refine features and solve the fuzzy boundary
problem and the Spatial Channel Attention Block (SCAB)
to handle intra-class inconsistency. The CT-UNet achieves
promising results on the WHU and Massachusetts datasets,
outperforming baseline methods and existing approaches.
The improved performance is attributed to the feature
refinement capability and the defect compensation ability of
CT-UNet [37].

Khan et al. [38] designed an encoder–decoder framework
to automatically extract building footprints. The encoder
utilizes a dense network with convolutional and transition
blocks for capturing global multi-scale features, while the
decoder employs deconvolution layers to recover lost spatial
information, resulting in a dense segmentation map. Training
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the network in an end-to-end fashion using a hybrid loss
enhances overall performance [38].

Zhu et al. [39] propose an Edge-Detail-network (E-D-Net)
specifically designed for building segmentation in visible
aerial images. E-D-Net comprises two subnetworks: E-Net
captures and preserves edge information, while D-Net refines
E-Net results to achieve predictions with higher detail quality.
Additionally, a fusion strategy combines the outputs of
both subnetworks, integrating edge information with fine
details [39].

Yang et al. [34] compare four state-of-the-art CNN
architectures for extracting building footprints across the
entire continental United States to exploit the scalability
of convolutional neural networks (CNNs) and leveraging
areas with abundant building footprints. The evaluated CNNs,
including Branch-out CNN, fully convolutional network
(FCN), conditional random field as recurrent neural network
(CRFasRNN), and SegNet, specialize in semantic pixel-wise
labeling and emphasize capturing multiscale textural infor-
mation. The evaluation employs 1-meter resolution aerial
images from the National Agriculture Imagery Program
and compares the extraction results of the four methods.
Additionally, it proposed enhancing SegNet, identified as
the preferred CNN architecture through extensive evalu-
ations, by combining signed-distance labels to advance
building extraction results to the instance level. Further-
more, the utility of incorporating additional near-infrared
information is demonstrated in the building extraction
framework [34].

Hong et al. [40] proposed a Multi-Task Learning (MTL)
framework using a Swin transformer as a backbone and
lightweight Building Extraction (BE) and Change Detection
(CD) heads as a decoder. The MTL architecture utilizes a
Siamese network with shared weights for feature extraction,
allowing effective handling. The model employs different
heads for tasks, such as using a multilayer perceptron (MLP)
for building labels and a convolution-based head for CD [40].

Wei et al. [41] proposed BuildMapper for producing effec-
tive building polygons, comprising a contour initialization
module for creating building contours and a contour evolution
module for contour vertex enhancement to bypass complex
post-processing [41].

Luo et al. [42] proposed a domain generalization method,
Batch Style Mixing (BSM), to combine classic data aug-
mentation techniques with a new style-mixing method.
BSM addresses complex generalization challenges and can
be seamlessly integrated into existing building extraction
models [42].

Hodne and Furdal [43] utilize two encoders, Resnest26d
and EfficientNet-B1, pre-trained on ImageNet, to enhance
ensemble diversity. The training process involves multiple
models per task, incorporating additional datasets and vary-
ing resolutions. An evolutionary algorithm is used to optimize
weights for ensemble combinations. Post-processing steps

include resizing predictions, filtering based on building area,
and employing bilinear interpolation [43].
ATTransUNet, a deep learning model for building seg-

mentation, is proposed by Bicakci and Sarica [44]. The
model combines Attention Gated Networks and TransUnet.
It employs a hybrid loss function that merges dice and focal
losses with a scaled factor. ATTransUNet utilizes a Vision
Transformer with specific configurations, including group
normalization and GeLu activation function [44].

Borgersen and Grundetjern [45] utilize UNet with
ResNet50 as the backbone. They increase the batch size
and decrease the learning rate to approximately 1e−5 while
employing the Dice Loss as the chosen loss function. Stable
diffusion-based dataset augmentation was introduced as a
novel approach, leveraging diffusion models to generate
entirely new image features for segmentation challenges [45]

Mrozik et al. [46] identify an autoencoder with a
ResNeXt101_32×8d backbone as themost successful model.
The authors employ bilinear interpolation for up-scaling
feature maps and utilize a series of convolutional and residual
blocks. The model is trained with Soft mIoU as the loss
function and augmented with random rotations and mirroring
to improve performance. The effectiveness of the architecture
is illustrated through its ability to produce optimal results
on the MapAI dataset, showcasing its potential for image
segmentation tasks [46].
Kong et al. [47] proposed a boundary-enhanced network

inspired by Zhu et al.’s E-D-Net [39], which adopts
the classic encoder–decoder structure with U-Net as the
backbone for building segmentation. The first enhancement
involves modifying the original bridge block of U-Net
by incorporating dilated convolutional layers (DCs) with
varying dilation rates (1, 2, 5). The second improvement
introduces a new segmentation head after the decoder,
featuring two branches that output two classification results
for background, boundary, and building. This enhancement
improves the network’s capability for capturing boundary
information [47].

Sørensen et al. utilized a U-Net architecture followed
by a conditional random fields denoiser for building seg-
mentation [48]. Losses were applied to both the U-Net
raw output and the denoised output, with final predictions
based on the denoised output. Performance improvement
was achieved by ensembling the top three models for tasks
1 and 2. To address size constraints, mirror-padding of input
images and clipping network output were implemented. The
ensemble models were implemented in PyTorch using the
PyTorch Lightning framework and exported to the Open
Neural Network Exchange (ONNX) format. Following the
approach by Moshkov et al. [49], test time augmentation was
employed by averaging predictions for the final ensemble.
Table 1 presents a summary of comparative methods with
limitations, which provides insights into the proposed work’s
advantages over other closely related methods.
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TABLE 1. Summary of comparative methods.

III. METHOD
From input dataset to output segmentation, the overall
workflow is shown in Figure 2. The dataset block is explained
in I-B section. In the preprocessing block, input data is
tweaked to be fitted as input for models. Data from each
batch is augmented to improve training and overcome the
overfitting of the model. Configuration of the proposed
models is listed in the second block of training, where red
text represents modification as compared to the original
models. Test time augmentation improves the robustness and
generalization of model prediction by creating ensembles
of individual input in test data to minimize noise and
uncertainties. In the testing block, the predicted masks are
evaluated using mean Intersection over Union (IoU) and
Boundary Intersection over Union (BIoU); IoU measures
the degree of overlap for the building, and BIoU measures
accurate alignment and delineation of building boundaries.

This section is structured to start with dataset pre-
processing, where we prepare the dataset to align with the
requirements of the models. The second segment focuses
on batch data augmentation for training. The third part
focuses on developing the model architecture and train-
ing, involving configuring diverse model architectures and

applying ensemble techniques and data augmentation to
enhance performance. The fourth component elaborates on
Test-Time Augmentation. The fifth section delves into testing
and evaluation, where we test model predictions against
ground truth masks, employing various metrics. This section
comprehensively evaluates single model predictions with and
without TTA and ensemble models with and without TTA.

A. PREPROCESSING
This section provides an in-depth discussion of the prepro-
cessing methods applied to the data. Figure 3 provides an
informative flowchart outlining the methodology used in this
part of the approach. In the proposed models, downsampling
(in the encoder) and upsampling (in the decoder) are
performed using max-pooling and transpose convolution
(or upsampling) layers, respectively. These operations are
typically easier to implement when the input and output sizes
are powers of 2, as they allow for clean and predictable
resizing of feature maps. In the case of original images with
a resolution of 500×500 pixels, resizing them to dimensions
like 512 × 512 pixels or 448 × 448 pixels is a practical
and well-aligned approach. Therefore, in the preprocessing
step, images (Aerial, LiDAR, and Mask) are resized to 512×
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FIGURE 2. Workflow diagram. The input block shows the dataset content.
The proposed method block consists of preprocessing (resizing and
fusion), training (data augmentation and proposed models), testing
(Test-time augmentation and evaluation metrics), and segmenting the
image as output. The red text represents modifications for each model
architecture to adopt for segmentation on RGB+LiDAR data.

512 pixels, driven by three considerations. First, its minimal
difference, compared to 448 pixels, ensures the data retains
a high-resolution quality. Second, 512 pixels match the
power of 2, which is more convenient for encoder–decoder
architecture, simplifying the implementation of operations.
Third, due to the usage of pre-trained models in the training
step, it is common to use input image size as a power
of 2 within the deep learning approaches.

The proposed work transfers LiDAR data from the
float32 to uint8 format, which is driven by two primary
considerations. First, Tensorflow only supports 8-bit data
formats for images with four channels when loading batches

FIGURE 3. Pre-processing Overview, to align data with model
requirements.

FIGURE 4. Zoomed illustration of Original and Preprocessed LiDAR data
of a building roof. Almost negligible roughness in contour appeared.

from the directories. Second, unit8 is computationally more
efficient than float32 values. However, this transition results
in a minor loss of information and detail, which is visible
in Figure 4. Specifically, we observe a subtle reduction in
the regularity of shapes for building tops and pixels near
objects at ground level, such as cars and fences. However,
it is important to emphasize that the building’s shape,
location, and overall height remain unaltered, resulting in
a limited impact on the training outcomes. Following the
pre-processing phase, LiDAR data is integrated into the
model input by concatenating it with an RGB image, creating
a 4-channel data structure.

B. BATCH DATA AUGMENTATION
Due to the massive size of the dataset, the Keras data
generator is used to load one batch at a time. To further
enhance model performance, the online data augmentation
first block in Figure 2 is used to avoid overfitting and
reduce memory overhead compared to offline data augmenta-
tion [56]. Techniques incorporated in data augmentation are -
90 to 90 degrees rotation, width, and height shift alone x-axis
and y-axis, respectively, in the interval of 0.7 to 1.3, shear,
zoom, horizontal flip, and vertical flip. Figure 5 shows sample
images that have undergone online data augmentation.
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FIGURE 5. Original images in the first row. Augmented images in the
second row.

C. MODELS
Two different architectures are proposed based on the U-Net
model due to its popularity in medical imaging [57], [58].
The first model used the baseline of the original U-Net
architecture [31], and the second used the baseline of Context
Transfer UNet (CT-UNet) [37]. The proposed work uses
U-Net and CT-UNet because they share a foundational
encoder–decoder architecture that enables them to capture
high-level contextual information and fine-grained spatial
details, which is crucial for segmentation tasks. These
architectures incorporate skip connections that connect the
encoder and decoder, help in precise localization, mitigate
the vanishing gradient problem, and facilitate information
transfer. The U-shape design makes them versatile enough to
adapt to various segmentation tasks. CT-UNet, in particular,
incorporates mechanisms for capturing and transferring
contextual information across the image, making CT-UNet
the best segmentation option.

1) PROPOSED U-NET
Figure 6 illustrates the proposed architecture using base-
line U-Net. The input layer is set up with a dimension
of 512 × 512 pixels, and the number of channels is either
3 for RGB or 4 for RGB with LiDAR. The encoder side
of the original U-Net at each depth is modified with double
3×3 convolution, ReLU, and batch normalization. For every
convolution, zero-padding has been added to preserve shape
consistency between the input and output. AGaussian normal
distribution is utilized to initialize kernels in order to handle
the problem of dying ReLU. The initial network depth utilizes
64 kernels for each convolution, doubling this number for
subsequent depths. Following these operations, 2 × 2 max-
pooling has been employed to shrink the feature maps’ spatial
dimensions.

On the decoder side, a transposed convolution of 3 × 3 is
employed, as opposed to the original U-Net architecture,
which uses 2 × 2. The decision to implement this change
stemmed from experimental findings revealing that 2 × 2
transposed convolutions could generate a checkerboard

FIGURE 6. Illustration of proposed U-Net architecture adapted for
Building Segmentation. Batch Normalization was added after Conv
3 × 3 and Relu. Transpose convolution 3 × 3 is used instead of 2 × 2,
followed by Relu and Batch Normalization. For output mask convolution
1 × 1 followed by sigmoid.

pattern in the expanded feature map. This occurrence had
the potential to introduce misleading edges, thereby compro-
mising the overall performance of the network. Following
the transposed convolutions, ReLU activation and batch
normalization are applied. Each depth on the encoder side is
concluded with batch normalization. After the concatenation
of feature maps, two sequences of 3 × 3 convolutions are
executed, mirroring the operations performed on the encoder.

Following that, the architecture undergoes the last convolu-
tion using a 1×1 singular kernel, and the sigmoid is used as an
activation function after the final series of 3×3 convolutions.
Backbones can be easily integrated into a U-Net network
by replacing the encoder part of the architecture. The final
feature map obtained from the backbone for each spatial
dimension concatenates with the associated decoder feature
map.

Batch normalization is included in both the encoder and
decoder parts of the original U-Net to stabilize training, faster
convergence, and a small amount of reduction in overfitting.
Batch Normalization can be included before and after Relu.
Figure 7 depicts the outcomes of experiments (utilizing batch
size of 6, dice as loss function, and the learning rate of 0.0001)
comparing batch normalization before and after. Applying

FIGURE 7. U-Net: For different orders of BN, the IoU and Loss curves on
the validation set are computed during training.
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FIGURE 8. U-Net: IoU and Loss curves are computed on the validation set
for different initial learning rates during training.

FIGURE 9. U-Net: IoU is computed for Binary Cross-Entropy, Jaccard, and
Dice loss on the validation set during training.

batch normalization after ReLu results in a higher validation
of 0.0029 in Intersection over Union (IoU). Considering the
observed impact of batch normalization from the experiment,
the decision has been made to execute batch normalization
after the Relu function for the proposed models.

Two experiments are performed on validation data for IOU
and loss to establish the U-Net model with optimal initial
learning rate. Figure 8 shows experiments with different
learning rates with the same dice loss and batch size of 6.
The graphs indicate that using ADAM as the optimizer,
the highest IoU and fast convergence were achieved with a
learning rate of 0.0001.

To determine the best loss function for the models,
experiments are performed using three loss functions: Binary
Cross-Entropy, Jaccard Loss, and Dice loss, having the best
initial learning rate of 0.0001, with ADAM as the optimizer
and batch size of 6. The experiment is evaluated on the base
of validation IOU. Figure 9 illustrates that Dice and Jaccard
loss exhibit similar performance, with Dice loss having a
validation Intersection over Union (IoU) slightly higher by
0.0001 than Jaccard loss. Furthermore, unlike Jaccard loss,
Dice loss ends the training ten epochs earlier.

2) PROPOSED CT-UNET
A modified version of U-Net called Context-Transfer-UNet
(CT-UNet) was created to improve remote sensing image
segmentation. In CT-UNet, the encoder portion of the
network is replaced with a backbone. Compared to U-Net,
CT-UNet has an extra level; it can capture more intricate
and abstract patterns. It introduces the Dense Boundary
Block (DBB), which is composed of two components called
Dense Block (DB) and Boundary Block (BB), along with
a Spatial Channel Attention Block (SCAB). DB refines the
feature before transferring it to the decoder. DBB transfers
low-level features to high-level features to ensure the
presence of boundary information at a high level to improve
BIOU metrics, and SCAB tries to improve intra-class
consistency.

To reduce the training time and increase the network’s
performance, four backbones, ResNet50V2, DenseNet201,
EfficientNetB4, and EfficientNetV2S, are used in CT-UNet
as encoders. ImageNet [59] dataset is used to train these
backbones using a 3-dimensional input, which makes them
appropriate for Task_1, while Task_2 input is 4-dimensional,
due to which training from scratch is required. Based on the
specific task, the network takes an input size of 512×512with
either three channels for RGB only or four channels for
both RGB and LiDAR. As we reach the lower layers of the
network, the featuremaps have a spatial dimension of 16×16,
and the channel count corresponds to the output of the chosen
backbone.

Referring to Figure 3: Architecture of CT-UNet in [37],
Global Average Pooling (GAP) is replaced with a Squeeze-
and-Excitation (SE) block and later removed. The feature
map’s spatial dimension is eventually reduced to 1 × 1,
leading to a dimension mismatch in the decoder section of the
network. This study attempts to substitute the Global Average
Pooling (GAP) with a Squeeze-and-Excitation (SE) block.
However, the network exhibited improved performance when
neither GAP nor SE block was utilized. Notably, in the
network’s decoder section, the ReLU activation function and
Batch Normalization (BN) block swap positions compared
to the original network. The final up-sampling block from
the original CT-UNet network is eliminated to match input
and output dimensions. In the decoder section of the network,
modifications have been made to the convolution and
transposed convolution operations, utilizing a 3 × 3 kernel
size. Having half as many channels as this particular block,
the output of the Dense Block (DB)/DBB block from the
previous stage is used as the second input of the Dense
Boundary Block (DBB) in the original CT-UNet design.
A 1×1 convolution is applied to the second input to adjust its
channel count to match that of the DBB block. After the DBB
block, features undergo max-pooling to align dimensions
with the Spatial Channel Attention Block (SCAB) and the
subsequent DBB block. All convolutional blocks utilizing
ReLU activation follow the He normal initialization [60],
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FIGURE 10. CT-UNet: For different orders of BN, the IoU and Loss curves
on the validation set are computed during training.

TABLE 2. CT-UNet results on the test set for various BN orders.

while blocks having sigmoid are employed with Glorot
normal.

Figure 10 shows the results of experiments (batch size
of 6, dice as loss function, and a learning rate 0.0001) for
batch normalization before and after based on IOU and
Loss. An increase of 0.0019 is observed in the validation
Intersection over Union (IoU) when Batch Normalization
(BN) is applied prior to the activation function. However,
BN implementation follows the ReLu, which results in amore
consistent training progression. Due to almost similar results,
another experiment is performed by testing themodel on a test
dataset. Table 2 shows results for the BN position based on
IoU and BIoU. The final score suggests that BN after ReLu
is the best option.

In order to establish the optimal initial learning rate for
the CT-UNet model, two experiments are performed on
validation data for IOU and loss. Figure 11 shows results
from the experiments with four different learning rates that
have the same dice loss and batch size of 6. The graphs show
that the highest validation Intersection over Union (IoU) is
produced with an initial learning rate of 0.00005.

3) MODELS COMPLEXITY
The complexity of the model while training depends on the
number of parameters, the batch size, and the complexity of
the model. Memory is directly proportional to the complexity
of the model. A larger batch size necessitates more memory
because gradients for every sample in the batch must be
stored in the model. In instances where memory is limited,
complex models often resort to using smaller batch sizes in
comparison to smaller models. Experimentation results for all
model variations in this work are presented in Table 3, which
denote that complex models require less batch size and vice
versa.

FIGURE 11. CT-UNet: IoU and Loss curves are computed on the validation
set for different initial learning rates during training.

TABLE 3. Models batch size and parameter.

4) SINGLE AND ENSEMBLE MODELS
A total of 9 different models listed in Table 5 are tested as
single models. Five variations of U-Net have a baseline, and
four different backbones are used. Four different variations of
CT-UNet with different backbones are used in experiments.

Ensemble model prediction refers to combining the
predictions of multiple individual models to make a final
prediction or decision to improve the overall performance,
accuracy, and robustness of predictions compared to using
a single model. All models are trained on the same dataset
and predicted once on the whole dataset. Each model’s
prediction is weighted differently based on its performance
on a validation set. Better-performing models receive higher
weights in the final prediction.

D. TEST TIME AUGMENTATION
Test-time augmentation (TTA) in the first block of Figure 2
is employed to avoid misclassification caused by slight
variations in input data [61] during testing. It introduces a
slight increase in testing time. In the image segmentation
context, TTA generates multiple augmented variations of a
test image, predicts each version, and afterward counts the
average score as indicated in Figure 12 after reversing the
augmentation of each anticipated mask to the original image.

IV. EXPERIMENTATIONS AND RESULTS
The experimentation section is structured into two main
sections, namely Task_1 and Task_2, each concentrating on a
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FIGURE 12. Left side: Predicted masks (original, 90 degrees, 180 degrees,
and 270-degree mask). Right side: reverse and the average of predicted
masks.

distinct aspect of the research. Within each section, a detailed
breakdown is further divided into three parts: training and
validation evaluation, single model performance analysis,
and ensemble model results. This structured approach allows
for a comprehensive systematic exploration of the research’s
objectives and outcomes.

A. TASK_1
This section exclusively presents and analyzes the experimen-
tal results conducted using RGB/aerial images only.

1) TRAINING AND VALIDATION EVALUATION
The training and validation progress curve for all the models
listed in Table 3 is visually shown in Figure 13. This
analysis leads to the conclusion that most models exhibit
stable training curves, maintaining consistent performance
during the training process. However, two models, U-Net
DenseNet201 and CT-UNet ResNet50V2, demonstrate a drop
in validation IoU that lasts for the fourth epoch before
reaching a new peak, followed by a new high peak IoU value.
CT-UNet shows lower IoU in the starting epoch as compared
to U-Net because the CT-UNet models’ learning rate is lower.

Table 4 provides a comprehensive summary of the
best training and validation IoU scores achieved by each
model, along with the number of epochs used to reach the
highest peak. It is concluded that U-Net EfficientNetV2S
outperforms other models with 63 epochs in both training
and validation IoU. Moreover, there is an average difference
of approximately 2% in IoU between training and validation
across all models. This signifies the extent to which the
models demonstrate generalization and reduced overfitting
to the training set despite the training and validation sets
belonging to distinct regions.

2) SINGLE MODEL RESULTS
Table 5 represents the results of single models with and
without TTA for testing datasets. The results presented
in the table indicate that the CT-UNet EfficientNetB4
model demonstrates the highest performance in single-
image prediction, achieving 78.65% Intersection over Union
(IoU), 61.48% Boundary Intersection over Union (BIoU),
and 70.07% average score. This superior performance is

TABLE 4. Task_1: IoU for both U-Net and CT-UNet models on training and
validation set with different backbones after the last epoch.

TABLE 5. Task_1: Single model predictions results for both U-Net and
CT-UNet models with different backbones on test datasets with and
without TTA for all models.

TABLE 6. Task_1: Results of Top 5 best ensembles of two models
with TTA.

also evident in the case of Test-Time Augmentation (TTA)
predictions, where the model attains an IoU of 79.14%, BIoU
of 61.89%, and an average score of 70.52%. Across all
models considered, it is noteworthy that TTA consistently
enhances both IoU, BIoU, and total score by an average of
0.67%, 0.6%, and 0.84%, respectively.

3) ENSEMBLE MODELS
The ensemble model consists of different models with
weights that represent the influence of the model in
prediction. The sum of the weights should be 1. Each model’s
prediction is multiplied by its weight, and then the values are
summed up. According to a specified threshold, depending
on the dataset, each pixel value is assigned to 0 or 1, which
results in a predicted mask. The appropriate threshold for
this experiment is 0.5. Table 6 shows results for the top
five best combinations of two model ensembles. The data
presented in the table conclude that the most influential
ensemble configurations were achieved by assigning equal
weight, which is 0.5, to both models. The top-performing
ensemblewas composed of U-Net DenseNet201with 79.54%
IoU and CT-UNet EfficientNetB4 with 62.19% BIoU and
70.86% average score.
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FIGURE 13. Task_1: Validation and Training IoU for all models during training.

The most effective model ensemble within the top five,
utilizing Test-Time Augmentation (TTA), comprises U-Net
with DenseNet201 encoder having 0.4 weight, CT-UNet with
EfficientNetB4 encoder having 0.3 weight, and CT-UNet
with EfficientNetV2S encoder having 0.3 weight achieved
80.11% IoU, 62.95% BIoU, and 71.53% score with a
threshold of 0.3. This ensemble model is used for Task_1
as the proposed solution. TTA demonstrates an average

improvement in IoU and BIoU across the top 5 ensembles
by 0.61% and 0.74%, respectively.

B. TASK_2
This section presents experimental results performed on the
combination of both LiDAR data and RGB aerial images.
Both data are fed to the network as input simultaneously,
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TABLE 7. Task_1: Top 5 best ensembles of three models with TTA.

with the first three channels belonging to RGB images and
the fourth channel belonging to LiDAR.

1) VALIDATION AND TRAINING SET EVALUATION
The same models presented in Table 3 are trained using
a combination of LiDAR data and RGB aerial images for
this specific task. In Figure 14, we observe the learning
curves based on IoU for all these models. Compared to
Figure 13 of Task_1, Figure 14 shows a very small difference
in training and validation IoU for all models, which depicts
that models are less overfitted for Task_2 as compared
to Task_1.

Figure 14 illustrates notable instability in the training
progress for the U-Net with ResNet50V2 encoder, U-Net
with DenseNet201 encoder, and CT-UNet with DenseNet201
encoder. This is evident in a sudden and pronounced drop
in validation Intersection over Union (IoU) during the
initial epochs of training. However, it’s noteworthy that the
validation IoU manages to recover and align with the IoU
of training towards the conclusion of the training process.
The CT-UNet models, having similarity to Task_1, exhibit
a lower initial starting point and take more time to reach the
IoU plateau of the training set, primarily because of the lower
initial learning rate.

Table 8 presents the IoU scores obtained after the last
epoch for both training and validation datasets. Remarkably,
the U-Net Baseline demonstrates superior performance on
the training dataset, achieving an impressive IoU score of
89.46%. Conversely, the U-Net EfficientNetB4 surpasses
others on the validation dataset, attaining 89.18% of the IoU
score.

TABLE 8. Task_2: IoU on training and validation set for all models after
the final epoch.

The discrepancy between the training and validation
IoU scores typically serves as an indicator of potential
overfitting to the training data. However, in this case, the

average difference between the two scores is just 0.6%.
This minimal gap suggests that the model does not exhibit
significant overfitting on the training set nor underfitting on
the validation dataset.

2) SINGLE MODEL RESULTS
Single model results on the test dataset are presented in
Table 9. The Table shows results for models having TTA and
models without TTA. Notably, U-Net DenseNet201 emerges
as the top performer for single-image predictions, yielding
an impressive 89.09% of IoU, 79.07% of BIoU, and 84.08%
overall score. This strong performance is consistent when
TTA is applied, having 89.30% of IoU, 79.39% of BIoU,
and 84.35% overall score. Moreover, when considering all
models collectively, it’s apparent that TTA yields an average
improvement of 0.31% in IoU and 0.46% in BIoU across the
table.

TABLE 9. Task_2: Single model prediction results for all models on test
datasets with and without TTA.

3) ENSEMBLE MODELS
Table 10 presents the top five models ensemble using
TTA. The most successful model ensemble, achieved by
Test-Time Augmentation (TTA), comprises three models:
U-Net Baseline having 0.5 weight, U-Net with DenseNet201
encoder having 0.3 weight, and CT-UNet with Efficient-
NetV2S encoder having 0.2 weight. This ensemble exhibits
outstanding performance, achieving 89.64% IoU, 80.09%
BIoU, and 84.86% overall score. This model ensemble serves
as the best option for Task_2. Among the top five ensembles,
when TTA is applied, there is an average enhancement
of 0.25% in IoU and 0.57% in BIoU. Notably, it’s worth
highlighting that the U-Net Baseline consistently emerges as
the dominant component in all of the top five ensembles that
utilize TTA.
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FIGURE 14. Task_2: Validation and Training IoU for all models during training.

TABLE 10. Task 2: Illustration of results from top 5 weighted ensembles with TTA.
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C. ANALYSIS
The experiments clearly demonstrate the superiority of model
ensembles over single-model predictions in both tasks. This
advantage is derived from the ensemble’s ability to mitigate
prediction variability by employing diverse model architec-
tures. Given that each model possesses distinct strengths
and weaknesses, one model’s strengths can compensate
for another’s weaknesses. Additionally, leveraging multiple
models enables the capturing of a broader spectrum of
features since each model has learned different features based
on its underlying architecture.

Furthermore, the experiments reveal that TTA predic-
tions slightly outperform single-instance predictions. TTA
achieves this by reducing prediction uncertainty, capturing
a wider representation of the input image, and exhibiting
superior edge localization between the background and
foreground. The predictions gain accuracy and resilience
when TTA and ensemble modeling are combined.

The effects of several prediction models on Task_1 and
Task_2 of the test set are shown in Figures 15 and 16,
respectively. The best models are used to create these
predictions. In Figure 15, the top row of predictions reveals
that the left building is erroneously connected with the right
building by the model within the masks, resulting in red
pixels that serve as false positives. However, while employing
model ensembles or TTA, the majority of these false positive
pixels are successfully eliminated. Notably, the ensemble
with TTA demonstrates the ability to differentiate shadows
and small gaps within the building, eliminating all scattered
false positive artifacts.

FIGURE 15. Illustraction of task 1 predicted masks generated from the
test dataset. White: True Positives, Black: True Negatives, Red: False
Positives, Blue: False Negatives.

In the middle row, it is evident that as we progress
to more advanced prediction models, the gaps and false
negatives within the primary building are progressively
filled. Conversely, in the bottom row, the single model
prediction encounters challenges in correctly identifying the
building row as foreground at the bottom. TTA proves
beneficial by aiding in the correct classification of two of the
buildings. The majority of the buildings in the bottom row
are accurately classified when the ensemble is used, despite
some uneven borders. This is a substantial improvement.

These irregularities are subsequently rectified when TTA is
employed.

Examining Figure 16, subtle variations are observed in
the generated masks distinguished from those in Task_1.
The overall geometry of predicted buildings in the masks
remains consistent; the primary distinction lies in the removal
of minuscule false positive artifacts as we transition toward
more sophisticated methods. This phenomenon primarily
arises from the models assigning greater importance to
the LiDAR data compared to the RGB data. As a result,
the projections closely match the building’s geometry and
positioning, as shown in the LiDAR data.

FIGURE 16. Illustration of task 2 predicted mask using the test dataset.
White pixel: True Positives, Black pixel: True Negatives, Red pixel: False
Positives, and Blue pixel: False Negatives.

The U-Net network performs better on the validation
set when using only RGB images, as seen in Tables 4
and 5. In contrast, the CT-UNet network excels on the test
set. With the incorporation of LiDAR data, as shown in
Tables 8 and 9, U-Net emerges as the top performer for both
validation and test sets. However, it’s important to note a
significant performance gap between the sets for each task,
as highlighted in Table 11. Weighted ensembles are used
along with TTA for both sets to obtain the results presented
in the table. Tables 7 and 10 previously identified the optimal
performing models using TTA for Task_1 and Task_2, which
correspond to the ensembles used.

TABLE 11. Results for the validation and test set utilizing the
top-performing model with TTA for each task.

The disparities in the metrics are likely attributed to the
methodology employed in generating the ground truth masks.
Specifically, the validation masks were created with the help
of DSM, whereas test sets were created using DTM. This
difference introduces an inherent bias, particularly affecting
the upper portions of the buildings.

Another contributing factor could be the variations in
building and environmental characteristics between Denmark
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TABLE 12. The proposed approach compared with the top 3 groups of the MapAI competition.

and Norway. Given that images in the training and validation
sets belong to Denmark, while images in both test datasets
belong to Norway, this geographical discrepancy may
introduce a performance drop due to inherent bias stemming
from the differing architectural and environmental contexts.

FIGURE 17. Illustration of task 1 and 2 predicted masks from the
validation dataset. White pixel: True Positives, Black pixel: True Negatives,
Red pixel: False Positives, and Blue pixel: False Negatives.

A comparison of the generated masks on the validation set
for only RGB and fusion of RGB and LiDAR data is shown in
Figure 17. In the top row, the prediction based on LiDAR data
effectively distinguishes most buildings concealed by trees
in the image’s lower right corner. In the middle row, when
relying solely on the RGB image, the prediction erroneously
identifies a building that was a white truck, and at the right
corner of the last row, the model misclassifies the building
as background. These errors are rectified by utilizing LiDAR
data.

The LiDAR-based prediction accurately identifies a bicy-
cle shed that the RGB-based prediction incorrectly labels
as background in the bottom row. Furthermore, the LiDAR
prediction correctly classifies some false positives near the
top of the building.

Superior outcomes achieved through our proposed
approach are systematically contrasted with those of MapAI
competitors in Table 12. This comparison is grounded in the
utilization of identical datasets, tasks, and evaluation metrics.
In their investigation, Hodne and Furdal [43] employed

ResNest26b and efficientB1 backbones, which, despite
being lightweight, possess a greater number of parameters.
Consequently, the decoders in their framework exhibit high
complexity compared to the backbones employed in our
methodology. Furthermore, Hodne et al. utilized the original
UNet architecture, whereas our proposed approach involves
a tailored modification of the UNet to optimize it specifically
for building precision.

Kaliyugarasam and Lundervold [54] utilize RasNet34
as a backbone in U-Net architecture and Inria Aerial
image dataset [50] to pretrain the aerial model. RasNet
is a shallow backbone as compared to others used in the
proposedwork. ResNet50V2 introduces skip connections and
residual blocks, offering improved training convergence and
performance to the proposed work compared to ResNet34.
Furthermore, maggiori et al. didn’t utilize batch normaliza-
tion for generalization.

Li compared UNet, ConvNext, and different versions of
SegFormer [62]. The UNet architecture effectively encap-
sulates global and local features. This characteristic renders
it especially well-suited for tasks where preserving spatial
details and context proves paramount, as exemplified in the
context of building segmentation. Notably, Li et al. employ
EfficientNet as the encoding backbone in their models, and
models are tested on IoU only, while our proposed approach
leverages more advanced and intricate backbones.

Khan et al. [38] introduced an efficient UNet architec-
ture tailored for building segmentation, employing solely
DenseNet201. This choice is motivated by the model’s
ability to effectively reuse feature information and optimize
parameter utilization. In contrast, our proposed methodology
adopts a more intricate approach. It leverages an ensemble
of diverse backbones, incorporating DenseNet201 alongside
EfficientNet to mitigate the overall parameter count. Addi-
tionally, ResNet is integrated to introduce skip connections
and residual blocks, enhancing convergence and overall
performance.

V. CONCLUSION
Two types of experiments are performed. The first part
belongs to the parameter turning of the models, and the
second part belongs to results analysis using the fine-tuned
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models. The second section of experiments is subdivided
into two components: the first portion necessitated the devel-
opment of a method solely employing aerial images, while
the latter portion required a method utilizing LiDAR data,
either independently or in conjunction with aerial images.
Two distinct architectures, namely U-Net and CT-UNet, are
modified and employed for model creation, each integrated
with four diverse backbone architectures: EfficientNetB4,
EfficientNetV2S, ResNet50V2, and DenseNet201. Tech-
niques such as data augmentation at training, transfer learning
via backbones, weighted model ensemble, and test time
augmentation were implemented to bolster the model’s
robustness.

Three experiments are conducted for bothmodel parameter
tuning. The first experiment was to find the order of BN
before or after the Relu function. Figure 7 for U-Net and
Figure 10 and Table 2 for CT-UNet recommended using
BN after Relu activation function. The second experiment
in fine-tuning was to find the best initial learning rates
for both models. Figure 8 and Figure 11 recommend
0.0001 and 0.00005 initial learning rates for UNet and CT-
UNet, respectively. The Third experiment was to find the best
loss function for model architecture. Figure 9 recommends
Dice loss as the best loss function for the UNet model.

In the result analysis experimental setup, a total of four
experiments for each task are conducted: single model
prediction both with and without TTA, as well as model
ensemble prediction, again with and without TTA. The
experimentation result concluded that ensembles of models
outperformed single models. Moreover, Test Time Augmen-
tation (TTA) yielded a slight enhancement in the outcomes
of both of these methodologies. Indeed, the experimental
results suggest that CT-UNet exhibited superior performance
in Task_1, whereas U-Net excelled in Task_2. The Dense
Boundary Block and Spatial Channel Attention Block are less
essential when employing LiDAR data, as the network finds it
more straightforward to discern between the foreground and
background classes.

The potential of LiDAR data can be concluded from
Table 11, which presents results from the best model
recognized with the help of thorough experimentation.
LiDAR data improve IoU 9.53% and BIoU 17.14%, which is
a significant improvement in applications of precision. In the
scoring metric, the impact of LiDAR data shows 13.33%
enhancement.

As evident in the table, the proposed approach outperforms
competitors across all competition metrics. Several leading
groups, as reported by [43] and [54], utilized U-Net in
their solutions. Apart from other modifications like optimal
learning rate, loss function, data augmentation, and ReLu
position, the primary distinction between their approach
and ours lies in their adoption of weaker backbones
(EfficientNetB1, ResNet26d, ResNet34), resulting in models
with a higher parameter count, indicating more complexity
in their decoders. Attempts were made to raise the kernels
in the convolutional layers of the decoders. Nevertheless, this

approach yielded less than optimal outcomeswhen contrasted
with the proposed method, indicating that the models became
excessively complex for the given dataset.

REFERENCES
[1] X. Liu, ‘‘Airborne LiDAR for DEM generation: Some critical issues,’’

Prog. Phys. Geogr., Earth Environ., vol. 32, no. 1, pp. 31–49, Feb. 2008.
[2] R. Nelson, W. Krabill, and G. MacLean, ‘‘Determining forest canopy

characteristics using airborne laser data,’’ Remote Sens. Environ., vol. 15,
no. 3, pp. 201–212, Jun. 1984.

[3] S. Debnath, M. Paul, and T. Debnath, ‘‘Applications of LiDAR in
agriculture and future research directions,’’ J. Imag., vol. 9, no. 3, p. 57,
Feb. 2023.

[4] S. Li, L. Dai, H. Wang, Y. Wang, Z. He, and S. Lin, ‘‘Estimating leaf area
density of individual trees using the point cloud segmentation of terrestrial
LiDAR data and a voxel-based model,’’ Remote Sens., vol. 9, no. 11,
p. 1202, Nov. 2017.

[5] Y. Liu, B. Fan, L. Wang, J. Bai, S. Xiang, and C. Pan, ‘‘Semantic labeling
in very high resolution images via a self-cascaded convolutional neural
network,’’ ISPRS J. Photogramm. Remote Sens., vol. 145, pp. 78–95,
Nov. 2018.

[6] M. Ghanea, P. Moallem, and M. Momeni, ‘‘Building extraction from high-
resolution satellite images in urban areas: Recent methods and strategies
against significant challenges,’’ Int. J. Remote Sens., vol. 37, no. 21,
pp. 5234–5248, Nov. 2016.

[7] R. Wang, Y. Hu, H. Wu, and J. Wang, ‘‘Automatic extraction of building
boundaries using aerial LiDAR data,’’ J. Appl. Remote Sens., vol. 10, no. 1,
Mar. 2016, Art. no. 016022.

[8] S. Du, Y. Zhang, Z. Zou, S. Xu, X. He, and S. Chen, ‘‘Automatic building
extraction from LiDAR data fusion of point and grid-based features,’’
ISPRS J. Photogramm. Remote Sens., vol. 130, pp. 294–307, Aug. 2017.

[9] A. Zarea and A. Mohammadzadeh, ‘‘A novel building and tree detection
method from LiDAR data and aerial images,’’ IEEE J. Sel. Topics Appl.
Earth Observ. Remote Sens., vol. 9, no. 5, pp. 1864–1875, May 2016.

[10] C. Grecea, A. Bala, and S. Herban, ‘‘Cadastral requirements for urban
administration, key component for an efficient town planning,’’ J. Environ.
Protection Ecol., vol. 14, no. 1, pp. 363–371, 2013.

[11] Q. Hu, L. Zhen, Y. Mao, X. Zhou, and G. Zhou, ‘‘Automated building
extraction using satellite remote sensing imagery,’’ Autom. Construct.,
vol. 123, Mar. 2021, Art. no. 103509.

[12] S. Ohleyer. (2018). Building Segmentation on Satellite Images.
[Online]. Available: https://project.inria.fr/aerialimagelabeling/files/
2018/01/fp_ohleyer_compressed.pdf

[13] S. Jyhne, M. Goodwin, P.-A. Andersen, I. Oveland, A. S. Nossum,
M. Ørstavik, K. Ormseth, and A. Flatman, ‘‘MapAI: Precision in building
segmentation,’’ Nordic Mach. Intell., vol. 2, no. 3, pp. 1–3, Sep. 2022.

[14] E. Finnesand, ‘‘A machine learning approach for building segmentation
using laser data,’’ Master’s thesis, Dept. Elect. Eng. Comput. Sci., Univ.
Stavanger, Stavanger, Norway, 2023.

[15] Y.-J. Cho, ‘‘Weighted intersection over union (wIoU): A new evaluation
metric for image segmentation,’’ 2021, arXiv:2107.09858.

[16] B. Cheng, R. Girshick, P. Dollár, A. C. Berg, and A. Kirillov, ‘‘Boundary
IoU: Improving object-centric image segmentation evaluation,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021,
pp. 15329–15337.

[17] S. Liu and Q. Shi, ‘‘Local climate zone mapping as remote sensing
scene classification using deep learning: A case study of metropolitan
China,’’ ISPRS J. Photogramm. Remote Sens., vol. 164, pp. 229–242,
Jun. 2020.

[18] S. M. Azimi, P. Fischer, M. Körner, and P. Reinartz, ‘‘Aerial LaneNet:
Lane-marking semantic segmentation in aerial imagery using wavelet-
enhanced cost-sensitive symmetric fully convolutional neural networks,’’
IEEE Trans. Geosci. Remote Sens., vol. 57, no. 5, pp. 2920–2938,
May 2019.

[19] J. Huang, X. Zhang, Q. Xin, Y. Sun, and P. Zhang, ‘‘Automatic building
extraction from high-resolution aerial images and LiDAR data using
gated residual refinement network,’’ ISPRS J. Photogramm. Remote Sens.,
vol. 151, pp. 91–105, May 2019.

[20] X. Yang, X. Li, Y. Ye, R. Y. K. Lau, X. Zhang, and X. Huang, ‘‘Road
detection and centerline extraction via deep recurrent convolutional neural
network U-Net,’’ IEEE Trans. Geosci. Remote Sens., vol. 57, no. 9,
pp. 7209–7220, Sep. 2019.

60344 VOLUME 12, 2024



M. Sulaiman et al.: Building Precision: Efficient Encoder–Decoder Networks for Remote Sensing

[21] K. Yue, L. Yang, R. Li, W. Hu, F. Zhang, and W. Li, ‘‘TreeUNet:
Adaptive tree convolutional neural networks for subdecimeter aerial image
segmentation,’’ ISPRS J. Photogramm. Remote Sens., vol. 156, pp. 1–13,
Oct. 2019.

[22] W. Liao, F. Van Coillie, L. Gao, L. Li, B. Zhang, and J. Chanussot, ‘‘Deep
learning for fusion of APEX hyperspectral and full-waveform LiDAR
remote sensing data for tree species mapping,’’ IEEE Access, vol. 6,
pp. 68716–68729, 2018.

[23] J.-D. Sylvain, G. Drolet, and N. Brown, ‘‘Mapping dead forest cover
using a deep convolutional neural network and digital aerial photography,’’
ISPRS J. Photogramm. Remote Sens., vol. 156, pp. 14–26, Oct. 2019.

[24] M. Sulaiman, M. Farmanbar, A. Nabil Belbachir, and C. Rong, ‘‘Precision
in building extraction: Comparing shallow and deep models using LiDAR
data,’’ 2023, arXiv:2309.12027.

[25] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-
nov, ‘‘Dropout: A simple way to prevent neural networks from overfitting,’’
J. Mach. Learn. Res., vol. 15, pp. 1929–1958, Jun. 2014.

[26] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[27] S. Ioffe and C. Szegedy, ‘‘Batch normalization: Accelerating deep
network training by reducing internal covariate shift,’’ in Proc. Int. Conf.
Mach. Learn., 2015, pp. 448–456.

[28] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam,
‘‘Encoder–decoder with atrous separable convolution for semantic
image segmentation,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018,
pp. 801–818.

[29] S. Dey, A. K. Singh, D. K. Prasad, and K. D. Mcdonald-Maier,
‘‘SoCodeCNN: Program source code for visual CNN classification
using computer vision methodology,’’ IEEE Access, vol. 7,
pp. 157158–157172, 2019.

[30] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, ‘‘Pyramid scene parsing
network,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2017,
pp. 2881–2890.

[31] O. Ronneberger, P. Fischer, and T. Brox, ‘‘U-Net: Convolutional networks
for biomedical image segmentation,’’ in Proc. 18th Int. Conf. Med.
Image Comput. Comput.-Assist. Intervent., vol. 9351. Cham, Switzerland:
Springer, 2015, pp. 234–241.

[32] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang,
G. Wang, and J. Cai, ‘‘Recent advances in convolutional neural networks,’’
Pattern Recognit., vol. 77, pp. 354–377, May 2018.

[33] W. Sirko, S. Kashubin, M. Ritter, A. Annkah, Y. S. E. Bouchareb,
Y. Dauphin, D. Keysers, M. Neumann, M. Cisse, and J. Quinn,
‘‘Continental-scale building detection from high resolution satellite
imagery,’’ 2021, arXiv:2107.12283.

[34] H. L. Yang, J. Yuan, D. Lunga, M. Laverdiere, A. Rose, and B. Bhaduri,
‘‘Building extraction at scale using convolutional neural network:Mapping
of the United States,’’ IEEE J. Sel. Topics Appl. Earth Observ. Remote
Sens., vol. 11, no. 8, pp. 2600–2614, Aug. 2018.

[35] Microsoft. U.S. Building Footprint. Accessed: Nov. 30, 2024. [Online].
Available: https://github.com/microsoft/USBuildingFootprints

[36] Microsofts. Global ML Buildings Footprint. Accessed: Nov. 30,
2024. [Online]. Available: https://github.com/microsoft/GlobalMLBuilding
Footprints

[37] S. Liu, H. Ye, K. Jin, and H. Cheng, ‘‘CT-UNet: Context-transfer-UNet for
building segmentation in remote sensing images,’’ Neural Process. Lett.,
vol. 53, no. 6, pp. 4257–4277, Dec. 2021.

[38] S. D. Khan, L. Alarabi, and S. Basalamah, ‘‘An encoder–decoder deep
learning framework for building footprints extraction from aerial imagery,’’
Arabian J. Sci. Eng., vol. 48, no. 2, pp. 1273–1284, Feb. 2023.

[39] Y. Zhu, Z. Liang, J. Yan, G. Chen, and X. Wang, ‘‘E-D-Net: Automatic
building extraction from high-resolution aerial images with boundary
information,’’ IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 14, pp. 4595–4606, 2021.

[40] D. Hong, C. Qiu, A. Yu, Y. Quan, B. Liu, andX. Chen, ‘‘Multi-task learning
for building extraction and change detection from remote sensing images,’’
Appl. Sci., vol. 13, no. 2, p. 1037, Jan. 2023.

[41] S. Wei, T. Zhang, S. Ji, M. Luo, and J. Gong, ‘‘BuildMapper: A fully
learnable framework for vectorized building contour extraction,’’ ISPRS
J. Photogramm. Remote Sens., vol. 197, pp. 87–104, Mar. 2023.

[42] M. Luo, S. Ji, and S. Wei, ‘‘A diverse large-scale building dataset
and a novel plug-and-play domain generalization method for building
extraction,’’ IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 16,
pp. 4122–4138, 2023.

[43] L.M. Hodne and E. H. Furdal, ‘‘Team fundator:Weighted UNet ensembles
with enhanced datasets,’’ Nordic Mach. Intell., vol. 2, no. 3, pp. 4–6,
Mar. 2023.

[44] Y. S. Bicakci and B. Sarica, ‘‘ATTransUNet: Semantic segmentation model
for building segmentation from aerial image and laser data,’’ Nordic
Mach. Intell., vol. 2, no. 3, pp. 7–9, Mar. 2023.

[45] K. A. Borgersen and M. Grundetjern, ‘‘MapAI competition submission for
team kaborg: Using stable diffusion for ML image augmentation,’’ Nordic
Mach. Intell., vol. 2, no. 3, pp. 10–12, Mar. 2023.

[46] L. F. Mrozik, A. H. Eike, and P. Alves, ‘‘Precision in building segmentation
competition submission–team UiAI,’’ Nordic Mach. Intell., vol. 2, no. 3,
pp. 20–22, Mar. 2023.

[47] G. Kong, C. Zhang, Y. Zhao, and H. Fan, ‘‘Building segmentation from
remote sensing data using enhanced u-net,’’ Nordic Mach. Intell., vol. 2,
no. 3, 2022.

[48] T. K. Sørensen, M. Vermeer, J. A. Hay, D. Fantin, and D. Völgyes, ‘‘Our
MapAI approach: Focusing on data pipeline and loss functions,’’ Nordic
Mach. Intell., vol. 2, no. 3, pp. 26–28, Mar. 2023.

[49] N. Moshkov, B. Mathe, A. Kertesz-Farkas, R. Hollandi, and P. Horvath,
‘‘Test-time augmentation for deep learning-based cell segmentation on
microscopy images,’’ Sci. Rep., vol. 10, no. 1, p. 5068, Mar. 2020.

[50] E. Maggiori, Y. Tarabalka, G. Charpiat, and P. Alliez, ‘‘Can semantic
labeling methods generalize to any city? The inria aerial image labeling
benchmark,’’ in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS),
Jul. 2017, pp. 3226–3229.

[51] S. Ji, S. Wei, and M. Lu, ‘‘Fully convolutional networks for multisource
building extraction from an open aerial and satellite imagery data set,’’
IEEE Trans. Geosci. Remote Sens., vol. 57, no. 1, pp. 574–586, Jan. 2019.

[52] V. Mnih, Machine Learning for Aerial Image Labeling. Toronto, ON,
Canada: Univ. Toronto, 2013.

[53] I. M. Gerke, ‘‘Use of the stair vision library within the ISPRS 2D
semantic labeling benchmark (Vaihingen),’’ Univ. Twente, Enschede, The
Netherlands, Tech. Rep., 2014.

[54] S. Kaliyugarasan and A. S. Lundervold, ‘‘LAB-Net: LiDAR and aerial
image-based building segmentation using U-Nets,’’ Nordic Mach. Intell.,
vol. 2, no. 3, pp. 23–25, Mar. 2023.

[55] L. Li, T. Zhang, S. Oehmcke, F. Gieseke, and C. Igel, ‘‘BuildSeg: A general
framework for the segmentation of buildings,’’Nordic Mach. Intell., vol. 2,
no. 3, pp. 1–4, Mar. 2023.

[56] L. Perez and J. Wang, ‘‘The effectiveness of data augmentation in image
classification using deep learning,’’ 2017, arXiv:1712.04621.

[57] A. B. Gavade, R. Nerli, N. Kanwal, P. A. Gavade, S. S. Pol, and
S. T. H. Rizvi, ‘‘Automated diagnosis of prostate cancer using mpMRI
images: A deep learning approach for clinical decision support,’’
Computers, vol. 12, no. 8, p. 152, Jul. 2023.

[58] R. Younisse, R. Ghnemat, and J. Al Saraireh, ‘‘Fine-tuning U-Net for
medical image segmentation based on activation function, optimizer and
pooling layer,’’ Int. J. Electr. Comput. Eng., vol. 13, no. 5, p. 5406,
Oct. 2023.

[59] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, ‘‘ImageNet:
A large-scale hierarchical image database,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2009, pp. 248–255.

[60] L. Datta, ‘‘A survey on activation functions and their relation with Xavier
and He normal initialization,’’ 2020, arXiv:2004.06632.

[61] J. Nalepa, M. Myller, and M. Kawulok, ‘‘Training- and test-time data
augmentation for hyperspectral image segmentation,’’ IEEE Geosci.
Remote Sens. Lett., vol. 17, no. 2, pp. 292–296, Feb. 2020.

[62] L. Li, ‘‘Segment any building,’’ in Proc. Comput. Graph. Int. Conf. Cham,
Switzerland: Springer, 2023, pp. 155–166.

MUHAMMAD SULAIMAN received the B.S.
degree in computer science from COMSATS
University Islamabad (CUI), Wah Campus,
Rawalpindi, Pakistan, in 2016, and the Master of
Science (M.S.) degree in computer engineering
from the Ghulam Ishaq Khan Institute Engineering
Sciences and Technology (GIKI), Swabi, Pakistan,
in 2019. He is currently pursuing the Ph.D.
degree in computer science with the University of
Stavanger (UiS), Norway. His research interests

include image processing, 3D point cloud, online learning, and deep learning
on image and LiDAR data.

VOLUME 12, 2024 60345



M. Sulaiman et al.: Building Precision: Efficient Encoder–Decoder Networks for Remote Sensing

ERIK FINNESAND received the master’s degree
in computer science, reliable and secure systems
from the Department of Electrical and Computer
Science, University of Stavanger. He is cur-
rently an Automation Engineer with TietoEVRY
Norway.

MINA FARMANBAR received the Ph.D. degree
in computer science from Eastern Mediterranean
University, Cyprus. She is currently an Associate
Professor with the University of Stavanger (UiS),
Norway. Her research interests include data sci-
ence and machine learning applications.

AHMED NABIL BELBACHIR (Member, IEEE)
received the Engineering and master’s degrees in
electronics from the University of Oran, Algeria,
in 1996 and 2000, respectively, and the Ph.D.
degree in computer science from TU Vienna,
Austria, in 2005. From 2000 to 2006, he was
the Technical Manager of Austrian contribution
on image compression for PACS (ESA-Herschel
Infrared Observatory). He joined AIT Austrian
Institute of Technology, in 2006, as a Senior

Scientist, with a focus on bio-inspired vision. He has been the Director of eu-
robotics BoD, since 2021. He is currently the Research Director of NORCE
Norwegian Research Centre and leading the DARWIN Group dealing with
AI, data, and robotics for automation and autonomous systems. Among
others, he co-invented the bio-inspired 360◦ panoramic 3D camera for
robotics within the EUREKA program. He is an Editor of the Springer Smart
Cameras book 2009 (English) translated into Chinese by China Machine
Press, in 2014. He has about 140 publications, 100 invited talks, three granted
patents, and two TV documentaries (Euronews/TV2 Norway). His research
interests include artificial vision and machine learning for industrial and
robot perception.

CHUNMING RONG (Senior Member, IEEE)
received the Ph.D. degree from the University
of Bergen, Bergen, Norway, in 1998. He was an
Adjunct Senior Scientist leading big-data initiative
with NORCE, Oslo, Norway, from 2016 to 2019,
and the Vice President of the CSA Norway
Chapter, from 2016 to 2017. He is currently
the Head of the Center for IP-Based Service
Innovation, University of Stavanger, Stavanger,
Norway. He is also the Co-Founder of two startups

bitYoga and Dataunitor, Norway, both the received EU Seal of Excellence
Award in 2018. He has supervised 26 Ph.D. students, nine postdoctoral,
and more than 60 master projects. He has an extensive contact network and
projects in both the industry and academia. He has extensive experience
in managing large-scale research and development projects in Norway and
EU. His research interests include cloud computing, data analytics, cyber
security, and blockchain. He has been honored as a member of Norwegian
Academy of Technological Sciences, since 2011. He served as the steering
chair from 2016 to 2019. He has been the Steering Member and an Associate
Editor of IEEE TRANSACTIONS ON CLOUD COMPUTING, since 2016. He served as
the Global Co-Chair for IEEE Blockchain in 2018. He is the Chair of IEEE
Cloud Computing, an Executive Member of the Technical Consortium on
High-Performance Computing, and the Chair of STC on Blockchain in the
IEEEComputer Society. He is also anAdvisor of the StandICT.EU to support
European scandalization activities in ICT. He is the Founder and the Steering
Chair of the IEEE CloudCom conference and workshop series. He is the Co-
Editor-in-Chief of the Journal of Cloud Computing (Springer).

60346 VOLUME 12, 2024


