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1. Introduction

Let Λ be a separated set of real numbers. Denote by

E(Λ) := {e2πiλt, λ ∈ Λ}

the corresponding exponential system.
Approximation and representation properties of exponential systems in different func-

tion spaces is a classical subject of investigation. In particular, the completeness and 
frame problems of E(Λ) for the space L2(a, b) can be stated as follows: Determine if

(a) (Completeness property of E(Λ)) every function F in L2(a, b) can be approximated 
arbitrarily well in L2-norm by finite linear combinations of exponential functions 
from E(Λ);

(b) (Frame property of E(Λ)) there exist two positive constants A and B such that for 
every F ∈ L2(a, b) we have

A‖F‖2
2 ≤

∑
λ∈Λ

|〈F, e2πiλt〉|2 ≤ B‖F‖2
2,

where 〈·, ·〉 is the usual inner product in L2(a, b).

Note that the notion of a frame is very important and can be defined in a similar 
manner for an arbitrary system of elements E = {eλ} in a Hilbert space H. If E is a 
frame in H, then every element f from H admits a (possibly, non-unique) representation

f =
∑
eλ∈E

cλeλ,

for some l2-sequence of complex numbers cλ (see e.g. [3]).
It is easy to check that the completeness property of E(Λ) is translation-invariant: If 

E(Λ) is complete in L2(a, b), then it is complete in L2(a + c, b + c), for every c ∈ R. As a 
‘measure of completeness’, we can introduce the so-called completeness radius of E(Λ):

CR(Λ) = sup{a ≥ 0 : E(Λ) is complete in L2(−a, a)}.

Similarly, the frame property of E(Λ) is also translation-invariant, and we can introduce 
the frame radius as

FR(Λ) = sup{a ≥ 0 : E(Λ) is a frame in L2(−a, a)}.

Both radii above can be expressed in terms of certain densities:

(A) The celebrated Beurling–Malliavin theorem [1] states that CR(Λ) = D∗(Λ). Here 
D∗ is the so-called upper (or external) Beurling–Malliavin density.
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(B) It follows from the classical ‘Beurling Sampling Theorem’ [2] (see also a detailed 
discussion in [7]) that FR(Λ) = D−(Λ), where Λ is a separated (also called uniformly 
discrete) set and D−(Λ) is the lower uniform density of Λ.

We refer the reader to [8] or [11] for a complete description of exponential frames for 
the space L2(a, b). Note that it is not given in terms of a density of Λ.

Observe that the proofs of (A) and (B) use techniques from the complex analysis.
The density D∗ can be defined and the Beurling–Malliavin formula for the com-

pleteness radius remains valid for the multisets (Λ, Γ(λ)), where Λ ⊂ R and Γ(λ) =
{0, ..., n(λ) − 1}, i.e. for the systems

E(Λ,Γ(λ)) := {tke2πiλt : λ ∈ Λ, k = 0, ..., n(λ) − 1}. (1)

Here and in what follows, for convenience of notation, we assume that t0 = 1 for 
every t ∈ R. In (1), by n(λ) we denote the multiplicity (number of occurrences) of the 
element λ ∈ Λ. The same is true for the frame radius, see [4]. In particular, if Λ = Z and 
Γ(λ) = ΓN := {0, ..., N − 1}, λ ∈ Λ, then we have

CR(Z,ΓN ) = FR(Z,ΓN ) = N/2 = #ΓN/2, (2)

where #Γ is the number of elements of Γ, and CR(Z, ΓN ) and FR(Z, ΓN ) are the 
completeness and frame radius of E(Z, ΓN ), respectively. Moreover, the system E(Z, ΓN )
is a Riesz basis in L2(−N/2, N/2), see [12].

We can consider the completeness property of systems from (1) in other function 
spaces, such as Lp(a, b) and C([a, b]). For each of these spaces, the completeness property 
is translation-invariant. Clearly, the completeness in C([−a, a]) implies the complete-
ness in Lp(−a, a) for every 1 ≤ p < ∞. Observe that if E(Λ, Γ(Λ)) is not complete 
in C([−a, a]), its deficiency in C([−a, a]) is at most 1, i.e. by adding to the system an 
exponential function e2πiat, a /∈ Λ, the new lager system becomes complete in C([−a, a])
(see e.g. discussion in [10]). It easily follows that every system in (1) has the same com-
pleteness radius for every space considered above.

2. Statement of problem and results

We will now introduce somewhat more general systems. Assume that Λ ⊂ R is a 
discrete set and that to every λ ∈ Λ there corresponds a finite or infinite set Γ(λ) ⊂
N0 := {0, 1, 2, 3, ...}. Set

E(Λ,Γ(λ)) = {tγe2πiλt : λ ∈ Λ, γ ∈ Γ(λ)}.

Inspired by the recent work of Hedenmalm [5], we ask: What are the completeness and 
frame properties of E(Λ, Γ(λ))? In this paper, we restrict ourselves to the case Λ = Z
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and Γ(n) = Γ ⊂ N0, n ∈ Z, is a fixed set. That is, we will consider the completeness and 
frame properties of the system

E(Z,Γ) := {tγe2πint : n ∈ Z, γ ∈ Γ}, Γ ⊂ N0.

Let us now introduce the formal analogues of the completeness and frame radii:

CR(Z,Γ) := sup{a ≥ 0 : E(Z,Γ) is complete in L2(−a, a)},
FR(Z,Γ) := sup{a ≥ 0 : E(Z,Γ) is a frame in L2(−a, a)}.

We also define the completeness radius CRC(Z, Γ) in the spaces of continuous functions:

CRC(Z,Γ) := sup{a ≥ 0 : E(Z,Γ) is complete in C([−a, a])}.

In what follows, to exclude trivial remarks, we will always assume that 0 ∈ Γ.
Set

Γeven = Γ ∩ 2Z and Γodd = Γ ∩ (2Z + 1),

and introduce the following number

r(Γ) :=

⎧⎨
⎩

#Γodd + 1
2 , if #Γodd < #Γeven,

#Γeven, if #Γodd ≥ #Γeven.

Observe that r(Γ) < #Γ/2 unless #Γeven = #Γodd or #Γeven = #Γodd + 1.
It turns out that the completeness and frame properties of E(Z, Γ) may differ from 

the ones for the systems considered above. In particular, we have

Theorem 1. Given any finite or infinite set Γ ⊂ N0 satisfying 0 ∈ Γ. Then
(i) CR(Z, Γ) = #Γ/2;
(ii) CRC(Z, Γ) = FR(Z, Γ) = r(Γ).

Below we prove more precise results.
Theorem 1 shows that property (2) is no longer true for the systems E(Z, Γ).
The proof of part (i) uses mainly basic linear algebra. We will see that the completeness 

property of E(Z, Γ) in L2(a, b) is translation-invariant, and so CR(Z, Γ) still can be 
viewed as a ‘measure of completeness’ of E(Z, Γ).

On the other hand, neither the frame property in L2(a, b) nor the completeness prop-
erty in C([a, b]) is translation-invariant in the sense that both of them depend on the 
length of the interval (a, b) and also on its position. This phenomenon is intimately 
connected with the solvability of certain systems of linear equations and also with the 
existence of certain uniqueness sets for lacunary polynomials, see Theorem 2 below.
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Given any finite set M ⊂ N0, let P (M) denote the set of complex polynomials with 
exponents in M :

P (M) := {P (x) =
∑

mj∈M

cjx
mj : cj ∈ C}.

If M ⊂ N0 consists of n elements (shortly, #M = n), then clearly no set X ⊂ R

satisfying #X ≤ n −1 is a uniqueness set for P (M), i.e. there is a non-trivial polynomial 
P ∈ P (M) which vanishes on X. This is no longer true if #X = n. Moreover, there exist 
real uniqueness sets X, #X = n, that are uniqueness sets for every space P (M), #M =
n. Indeed, by Descartes’ rule of signs, each P ∈ P (M) may have at most n − 1 distinct 
positive zeros, and so every set of n positive points is a uniqueness set for P (M) (usually, 
Descartes’ rule of signs is formulated only for the real polynomials P , but applying it to 
ReP and ImP , we get the result for complex polynomials P as well). Here we present 
a less trivial example of such a set. Given N distinct real numbers t1, . . . , tN , set

S(t1, . . . , tN ) := {(−1)ktk}Nk=1. (3)

Theorem 2. Assume that 0 < t1 < t2 < · · · < tN . Then both sets ±S(t1, . . . , tN ) are 
uniqueness sets for every space P (M), M ⊂ N0, #M = N .

The rest of the paper is organized as follows: In Section 3 several auxiliary results 
are proved. Theorem 2 is proved in Section 4. We consider the completeness property of 
E(Z, Γ) in L2(a, b) and in C([a, b]) in Sections 5 and 6, respectively. Finally, in Section 7
we consider the frame property of E(Z, Γ) and also present some remarks.

3. Auxiliary lemmas

Given N ∈ N, x = {x0, . . . , xN−1} ⊂ R, and Γ = {γ0, γ1, . . . , γN−1} ⊂ N we denote 
by V (x, Γ) a generalized N ×N Vandermonde matrix,

V (x; Γ) :=

⎛
⎜⎜⎜⎝

xγ0
0 xγ0

1 xγ0
2 . . . xγ0

N−1
xγ1

0 xγ1
1 xγ1

2 . . . xγ1
N−1

. . . . . . . . . . . . . . .

x
γN−1
0 x

γN−1
1 x

γN−1
2 . . . x

γN−1
N−1

⎞
⎟⎟⎟⎠ . (4)

We will usually assume that 0 ∈ Γ. Note that if Γ = {0, 1, . . . , N − 1}, then the matrix 
V (x; Γ) is a standard Vandermonde matrix, and it is easy to compute its determinant 
and establish whether it is invertible or not. However, if Γ has gaps, the situation is more 
complicated. In the case when xi > 0 for all i = 0, . . . , n − 1, we can use the following 
result from the theory of totally positive matrices, see e.g. [6] and [9].

Proposition 1. (see [9], section 4.2) If 0 < x0 < x1 < · · · < xN and γ0 < γ1 < γ2 < · · · <
γN , then V (x; Γ) is a totally positive matrix. In particular, it is invertible.
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This statement is no longer true if x contains both positive and negative coordinates.
We will be interested in a particular case where x = (s, s + 1, ..., s + N − 1) for some 

s ∈ R. Consider the problem: Describe the set of points s ∈ R such that the matrix 
V ((s, . . . , s + N − 1); Γ) is invertible for every Γ ⊂ N0, #Γ = N .

Lemma 1. V ((x0, x1, . . . , xN−1); Γ) is not invertible if and only if there exists a polyno-
mial P ∈ P (Γ) which vanishes on the set {x0, x1, ..., xN−1}.

Proof. Write Γ = {γ0, γ1, . . . , γN−1}. The matrix V ((x0, x1, . . . , xN−1); Γ) is not invert-
ible if and only if its transpose is not. The latter means that there exists a non-zero 
vector a = (a0, . . . , aN−1) satisfying V ((x0, x1, . . . , xN−1); Γ)TaT = 0. This means that 
the polynomial 

∑N−1
j=0 ajx

γj vanishes at the points x0, . . . , xN−1. �
Lemma 2. Given N ≥ 2, the matrix V ((s, . . . , s + N − 1); Γ) is invertible for every 
Γ ⊂ N0, #Γ = N , 0 ∈ Γ, if

(i) s ≥ 0;
(ii) s ∈ (−N/2, −N/2 + 1) \ (1/2)Z.

For part (i), if s > 0 then the statement directly follows from Proposition 1 (and we 
do not even need to assume that 0 ∈ Γ). Now, we consider the case s = 0. Since 0 ∈ Γ, 
we see that the first column of our matrix is just (1, 0, . . . , 0)T , so after the column 
expansion, it suffices to note that the matrix V ((s + 1, s + 2, . . . , s + N − 1); Γ\{0}) is 
invertible by Proposition 1.

Part (ii) follows from Lemma 1, Theorem 2, and the observation that for every s ∈
(−N/2, −N/2 +1) such that s is not equal to k/2 for some k ∈ Z, the set {s, . . . , s +N−1}
can be written as ±S, where S is defined in (3).

Clearly, by Lemma 2, the determinant of V ((s, . . . , s + N − 1); Γ) is a non-trivial 
polynomial of s. Hence, for every fixed Γ, this matrix is invertible for every s outside of 
a finite number of points.

In what follows, by measure we mean a finite, complex Borel measure on R.
Given a measure μ, we denote by μ̂ its Fourier–Stieltjes transform

μ̂(x) =
∫

R

e−2πixt dμ(t).

We also denote by δx the δ-measure concentrated at the point x.

Lemma 3. Let μ be a measure supported on the interval [α, α + 1]. The following are 
equivalent:

(i) μ̂ vanishes on Z;
(ii) μ = A(δα − δα+1), for some A ∈ C.

Proof. We present a proof of (i) ⇒ (ii). The converse implication is trivial.
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Since suppμ ⊂ [α, α + 1], it is easy to see that the function

f(z) := e2πi(α+1/2)zμ̂(z)

is entire and satisfies

|f(x + iy)| ≤ Ceπ|y|, x, y ∈ R, (5)

with some constant C. Since f vanishes on Z, the function g(z) := f(z)/(sin πz) is also 
entire. It is easy to see that there is a positive constant B such that

| sin(π(x + iy))| ≥ Beπ|y|, for all x, y ∈ R, inf
n∈Z

|x + iy − n| ≥ 1/4.

This, (5) and the maximum modulus principle imply that g(z) is bounded in C. Hence, 
g is a constant function, from which the lemma follows by the uniqueness of the Fourier–
Stieltjes transform. �

Let us now consider measures μ that are “orthogonal” to E(Z, Γ):
∫

R

tγe−2πint dμ(t) = 0, for all γ ∈ Γ, n ∈ Z. (6)

Lemma 4. Assume that Γ ⊂ N0, #Γ = N, 0 ∈ Γ, and that a measure μ is concentrated 
on [α, α + N ]. If μ satisfies (6), then there is a finite set S ⊂ (α, α + 1) and measures 
μs, s ∈ S, and ν such that

(i) μ =
∑
s∈S

μs + ν;

(ii) ν and μs, s ∈ S, satisfy (6);
(iii) The following representations hold:

dν =
N+1∑
j=1

ajδα+j−1, dμs =
N∑
j=1

cs,jδs+j−1, s ∈ S, cs,j ∈ C, aj ∈ C. (7)

Note that μs satisfies (6) if and only if

N∑
j=1

(s + j − 1)γcs,j = 0, for every γ ∈ Γ, s ∈ S. (8)

A similar observation is true for the measure ν.

Proof of Lemma 4. Clearly, μ admits a unique representation

dμ(x) =
N∑

dμj(x− j + 1), (9)

j=1
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where each μj is a measure supported on [α, α+ 1) for j = 1, . . . , N − 1, and suppμN ⊂
[α, α + 1]. Then (6) is equivalent to

∫

[α,α+1]

e−2πint
N∑
j=1

(t + j − 1)γ dμj(t) = 0, for every γ ∈ Γ, n ∈ Z.

It follows from Lemma 3 that μj satisfy the system of N equations

N∑
j=1

(t + j − 1)γdμj(t) = Cγ(δα − δα+1), for every γ ∈ Γ. (10)

The corresponding matrix on the left-hand-side is V ((t, . . . , t + N − 1), Γ). As we men-
tioned above, the subset S ⊂ (α, α+1) of the zeros of its determinant is finite. Therefore, 
(10) implies that each measure μj , 1 ≤ j < N , may only be concentrated at {α} and on 
S, while the support of μN belongs to {α, α + 1} ∪ S. We may therefore write:

dμj =
∑
s∈S

cs,jδs + ajδα, 1 ≤ j ≤ N − 1;

dμN =
∑
s∈S

cs,Nδs + aNδα + aN+1δα+1.

This and (9) prove part (i) of the lemma, where ν and μj are defined in (7).
Finally, part (ii) easily follows from (10). �

4. Uniqueness sets for lacunary polynomials

In this section, we will prove Theorem 2. Clearly, if S(t1, . . . , tN ) is a uniqueness set 
for P (M), then so is −S(t1, . . . , tN ), since P (−x) ∈ P (M) whenever P (x) ∈ P (M). 
Therefore, it suffices to prove that S(t1, . . . , tN ) is a uniqueness set for every space 
P (M), #M = N .

Assume that a polynomial P ∈ P (M) vanishes on S(t1, . . . , tN ). Without loss of 
generality, we can assume that P has real coefficients, since otherwise, we can just 
prove the theorem for ReP and ImP separately, because they both also must vanish on 
S(t1, . . . , tN ). If P is even or odd, we have P (tk) = 0, 1 ≤ k ≤ N , and by Descartes’ rule 
of signs, we deduce that P ≡ 0. Thus, we can assume that P �≡ 0 is neither even nor odd 
and derive a contradiction from there.

Consider the polynomials

Pe(x) =
∑

mj∈M,2|mj

cjx
mj = 1

2(P (x) + P (−x))

and
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Fig. 1. P (−x) has many intersections with either P (x) or −P (x).

Po(x) =
∑

mj∈M,2�mj

cjx
mj = 1

2(P (x) − P (−x)).

If one of them is identically zero, then P is even or odd and we are done. Let M have K
even elements and N −K odd elements. Then Pe has at most K − 1 positive roots and 
Po has at most N−K−1 positive roots by Descartes’ rule of signs. We are going to show 
that Pe and Po together have at least N −1 positive roots thus getting the contradiction 
we need.

Let us consider the graphs of P (x), −P (x) and P (−x), see Fig. 1. Since we assumed 
that P is neither even nor odd, these are three different polynomials. For simplicity, 
we first cover the case when P (x) and P (−x) do not have common positive zeroes. We 
indicate tk with odd indices by crosses.

By assumption each cross except the first one and the last one is separated from the 
other crosses by the zeroes of P (x). That is, it is contained in a connected component 
bounded by the pieces of the curves y = P (x) and y = −P (x). Thus, to get from the 
cross number m to the cross number m +1 we have to exit the component containing the 
first and enter the next one, giving us at least two intersections of the curve y = P (−x)
with curves y = P (x) and y = −P (x). Additionally, if N is even, then we also have to 
exit the last connected component as well, since there must be at least one more zero of 
P (x) after the last cross. In total we will always have at least N − 1 intersections, that 
is Pe and Po together have at least N − 1 positive roots as we wanted.

Now, we indicate the necessary changes in the case when P (x) and P (−x) have 
common positive roots. If we have two crosses that are not zeroes of P (x) but between 
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them there is a zero of P (x), then the curve y = P (−x) can go directly from the connected 
component of the first cross to the connected component of the second cross through 
this zero. But if P (x0) = P (−x0) = 0 then x0 is a zero for both Pe and Po, thus we 
anyway get two zeroes.

It remains to consider the case when we have a cross which is also a zero of P (x). 
Assume that crosses from the number m to m + l are zeroes of P (x) and crosses number 
m − 1 and m + l + 1 are not (or there are no crosses with these indices). Then each 
of these l + 1 zeroes are both zeroes for Pe and Po, thus giving us two intersections. 
Finally, since the m + l’th cross is separated from m + l + 1’st by at least one more zero 
of P (x) we have to enter the connected component corresponding to this zero and the 
same between m’th and m − 1’st zero, thus giving us the same number of intersections 
as in the case when P (x) and P (−x) did not have common zeroes.

5. Completeness of E(Z, Γ) in L2(a, b)

Part (i) of Theorem 1 follows from the following theorem.

Theorem 3. Given any finite set Γ ⊂ N0, the system E(Z, Γ) is complete in L2(a, b) if 
and only if b − a ≤ #Γ.

Proof. (i) Assume b − a ≤ N := #Γ. It is then a simple consequence of Lemma 4 that 
E(Z, Γ) is complete in L2(a, b). Indeed, if the system is not complete then there exists 
non-trivial f ∈ L2(a, b) which is orthogonal to our system. Therefore, the measure f dx

is also orthogonal to the system, but it can not be a sum of delta measures unless f is 
identically zero.

(ii) Assume that b −a > N . We have to prove that E(Z, Γ) is not complete in L2(a, b), 
i.e. that there is a non-trivial function F ∈ L2(a, b) such that

b∫
a

tγe−2πint F (t) dt = 0, for every γ ∈ Γ, n ∈ Z. (11)

The existence of such a function follows essentially from elementary linear algebra.
We have b = a + N + δ, for some δ > 0, and we can assume that δ < 1. Write F in 

the form

F (t) =
N∑
j=0

Fj(t− j), t ∈ (a, a + N + δ),

where Fj(t) := F (t + j)1(a,a+1)(t) vanish outside (a, a + 1) for j = 0, ..., N − 1, and 
fN vanishes outside (a, a + δ). Here 1(a,a+1) is the characteristic function of (a, a + 1). 
Clearly, to prove (11) it suffices to find N +1 non-trivial functions Fj as above satisfying 
for a.e. t ∈ (a, a + 1) the system of N equations
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N∑
j=0

(t + j)γFj(t) = 0, for all γ ∈ Γ, t ∈ (a, a + 1).

Rewrite this system in the matrix form

V (t) · (F0(t), ..., FN−1(t))T = −((t + N)γ1 , ..., (t + N)γN )T · FN (t), Γ = {γ1, ..., γN},

where V (t) := V ((t, t +1, . . . , t +(N−1); Γ) is a generalized Vandermonde matrix defined 
above, whose determinant has only finite number of real zeroes. Therefore, there is an 
interval I ⊂ (a, a + δ) where V (t) is invertible and satisfies

sup
t∈I

sup
x∈RN , ‖x‖=1

‖V −1(t) · x‖ < ∞.

Now, we can simply choose FN (t) := 1I(t) and set

(F0(t), ..., FN−1(t))T := −V −1(t) · ((t + N)γ1 , ..., (t + N)γN )T · 1I(t). �
Remark 1. One can check that the above result on completeness of E(Z, Γ) in L2(a, b)
remain true for the space Lp(a, b), 1 ≤ p < ∞.

6. Completeness of E(Z, Γ) in C([−a, a])

Theorem 4. E(Z, Γ) is complete in C([−a, a]) if and only if a < r(Γ).

Clearly, this theorem implies CRC(Z, Γ) = r(Γ).

Proof. 1. Suppose that a ≥ r(Γ). We have to check that the system is not complete in 
C([−a, a]). Clearly, it suffices to produce a bounded measure μ on [−r(Γ), r(Γ)] which 
satisfies (6).

Set O := #Γodd, E := #Γeven and

f(x) =

⎧⎪⎪⎨
⎪⎪⎩

sin(πx) +
O∑

k=1
αk sin ((2k + 1)πx) , if O < E,

1 +
E∑

k=1
αk cos (2πkx) , if O ≥ E,

(12)

where {αk} ⊂ R.

Lemma 5. There exist numbers αk in (12) such that f satisfies

f (γ)(n) = 0, γ ∈ Γ, n ∈ N. (13)
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It is easy to check that f in (12) is the Fourier-Stieltjes transform of a measure 
supported by [−r(Γ), r(Γ)]. We can therefore easily see that Lemma 5 proves the necessity 
in part 1 of Theorem 4.

Proof of Lemma 5. Consider the case E ≤ O.
We wish to find αk so that the function

f(x) = 1 + α1 cos(2πx) + · · · + αE cos(2πEx)

satisfies (13).
It is clear that every odd derivative of f vanishes on Z. Therefore, it suffices to find 

the coefficients so that f (γ) vanishes on Z for every γ ∈ Γeven (in particular, for γ = 0). 
This is equivalent to saying that the coefficients must satisfy the following system of E
linear equations:

γ = 0 : α1 + · · · + αE = −1

and

γ ∈ Γeven, γ �= 0 : (2π)γα1 + (4π)γα2 · · · + (2πE)γαE = 0.

This system has a unique non-trivial solution by Proposition 1.
The case E > O is similar, and we leave the proof to the reader. �
We return now to the proof of Theorem 4.
2. Assume a < r(Γ). We have to show that E(Z, Γ) is complete in C([−a, a]), i.e. that 

the only measure μ on [−a, a] which satisfies (6) is trivial.
We will consider the case E ≤ O, i.e. r(Γ) = E. Clearly, we can assume that E = O

and so E = N/2, where N := #Γ is an even number. Also, to avoid trivial remarks, we 
assume that N ≥ 4.

Assume that μ is concentrated on [−a, a] and satisfies (6). By (7) and Lemma 4, since 
μ({±N/2}) = 0, we have

dμ =
∑
s∈S

dμs + dν =
∑
s∈S

N∑
j=1

cs,jδs+j−1 +
N∑
j=2

ajδ−N/2+j−1,

where S is a finite subset of (−N/2, −N/2 + 1) and the coefficients cs,j satisfy for every 
s ∈ S the system of equations (8). By part (ii) of Lemma 2, this system has only trivial 
solutions cs,j = 0, j = 1, ..., N, s ∈ S \ (1/2)Z, and so

μ = ν1 + ν, dν1 :=
N∑

cjδ−N/2+j−1/2,

j=1
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where ν and ν1 both are orthogonal to E(Z, Γ).
Let us check that ν = 0. It is more convenient to write ν in the form

ν =
N/2−1∑

k=−N/2+1

bkδk, bk := aN/2+k+1.

Then clearly, (6) is equivalent to the system of N − 1 equations:

N/2−1∑
k=−N/2+1

kγbk = 0, for every γ ∈ Γ.

This is equivalent to the following systems:

N/2−1∑
k=0

kγ(b−k + bk) = 0, γ ∈ Γeven,

N/2−1∑
k=1

kγ(b−k − bk) = 0, γ ∈ Γodd.

We can now use Proposition 1 to deduce that b−k + bk = b−k − bk = 0, for every k, thus 
bk = b−k = 0 for every k, that is ν = 0. Similarly, we can check that ν1 = 0, and so 
μ = 0.

The proof of the case O < E is similar, and so we leave it to the reader. �
Remark 2. One can prove that for a ∈ [r(Γ), #Γ/2], the deficiency of E(Z, Γ) in 
C([−a, a]) is always finite.

7. Frame property of E(Z, Γ)

The frame property of E(Z, Γ) in L2(a, b) is closely connected with the completeness 
property of E(Z, Γ) in C([a, b]):

Theorem 5. Assume a < b and ε > 0.
(i) If E(Z, Γ) is complete in C([a, b]), then E(Z, Γ) is a frame in L2(a, b).
(ii) If E(Z, Γ) is not complete in C([a, b]), then E(Z, Γ) is not a frame in L2(a −ε, b +ε).

Observe that to finish the proof of Theorem 1, it remains to show that FR(Z, Γ) =
r(Γ). This follows from Theorem 4 and Theorem 5.

Proof of Theorem 5. (i) Assume that the system E(Z, Γ) is complete in C([a, b]). We 
have to show that it is a frame in L2(a, b).

Recall that E(Z, Γ) is a frame in L2(a, b) if there are positive constants A, B such 
that

A‖F‖2
2 ≤

∑ ∑
|〈F, tγe2πint〉|2 ≤ B‖F‖2

2, for every F ∈ L2(a, b). (14)

n∈Z γ∈Γ
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Using the Fourier transform, this is equivalent to the condition

A‖f‖2
2 ≤

∑
n∈Z

∑
γ∈Γ

|f (γ)(n)|2 ≤ B‖f‖2
2, (15)

where f is the inverse Fourier transform of F .
It is standard to check that the right-hand-side inequality in (14) (and in (15)) holds 

for every interval (a, b), see e.g. [7], Lecture 2. So, we only prove the left-hand-side 
inequality.

By Theorem 1, E(Z, Γ) is not complete, and so is not a frame in L2(a, b) when 
b − a > N := #Γ. Therefore, in what follows we may assume that a + k− 1 < b ≤ a + k, 
for some k ∈ N, k ≤ N .

Write

F (t) =
k−1∑
j=0

Fj(t− j), Fj(t) := F (t + j) · 1(a,a+1)(t). (16)

Then we have

〈F, tγe2πint〉 =
a+1∫
a

e2πint

⎛
⎝k−1∑

j=0
(t + j)γFj(t)

⎞
⎠ dt.

Hence,

∑
n∈Z

|〈F, tγe2πint〉|2 = ‖
k−1∑
j=0

(t + j)γFj(t)‖2
2.

We see that the left-hand-side inequality in (14) is equivalent to

‖Vk(t) · (F0(t), . . . , Fk−1(t))T ‖2
2 ≥ A‖F‖2

2, (17)

where

Vk(t) := V (t, . . . , t + k − 1; Γ)T

denotes the k×N matrix which consists of the first k columns of V (t, . . . , t +N − 1; Γ), 
and we set

‖(G1, . . . , Gk)T ‖2
2 := ‖G1‖2

2 + · · · + ‖Gk‖2
2.

Let us first consider the case b = a + k. Since E(Z, Γ) is complete in C([a, b]), there 
is no measure μ on [a, b] orthogonal to this system. Then, since any measure of the form
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dμ =
k−1∑
j=0

xjδt+j , (x1, . . . , xk) ∈ Rk \ {0}, t ∈ [a, a + 1],

is not orthogonal to E(Z, Γ), we see that Vk(t) · xT �= 0, for every x ∈ Rk \ {0} and 
t ∈ [a, b]. Therefore, there is a constant A such that

‖Vk(t) · xT ‖2 ≥ A‖x‖2, t ∈ [a, a + 1],

which implies (17).
Now, let us assume that b = a + k − 1 + δ, where 0 < δ < 1. Then the function Fk−1

in (16) satisfies Fk−1(t) = 0, δ < t < 1. Similarly to above, for every vectors x ∈ Rk and 
y ∈ Rk−1 we have

‖Vk(t) · x‖ ≥ A1‖x‖, t ∈ [a, a + δ], ‖Vk−1(t) · y‖ ≥ A2‖y‖, t ∈ [a + δ, a + 1],

from which (17) follows.
(ii) Assume that the system E(Z, Γ) is not complete in C([a, b]). We have to show 

that it is not a frame in L2(a −ε, b +ε), for every ε > 0. We can assume that 0 < ε < 1/2.
Let g be the inverse Fourier transform of a measure μ on [a, b] that is orthogonal to 

the system. Then g(γ) vanishes on Z, for every γ ∈ Γ.
Choose any r, 0 < r < ε, and consider the function

f(x) := g(x)ϕ(x), ϕ(x) := sin(πrx)
πrx

.

Then, clearly, f is the (inverse) Fourier transform of an absolutely continuous measure 
on (a − r, b + r) ⊂ (a − ε, b + ε), and

‖f‖2 > C > 0, where C does not depend on ε. (18)

We will need

Lemma 6. There is a constant C such that
∑
n∈Z

|ϕ(j)(n)|22 ≤ Cjrj , j ∈ N. (19)

The proof of the lemma follows from two observations:
(i) ϕ is the Fourier transform of 1(−r/2,r/2)(t)/r, and so ϕ(j) is the Fourier transform 

of

(−2πit)j1(−r/2,r/2)(t)/r.

It easily follows that ‖ϕ(j)‖2
2 ≤ Crj , j ∈ N.
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(ii) The sum in (19) is equal to the norm ‖ϕ(j)‖2
2.

Using (19), since g(γ), γ ∈ Γ, vanishes on Z and the functions g(j), j ∈ N, are bounded 
on R, we can easily see that

∑
n∈Z

∑
γ∈Γ

|f (γ)(n)|2 =
∑
n∈Z

∑
γ∈Γ

|(gϕ)(γ)(n)|2 ≤ Cr,

for some C. This and (18) imply that the left-hand-side inequality in (15) is not true if 
we choose r small enough. �
Remark 3. By a similar argument to the proof of Theorem 1, using Lemma 2 case (i), 
we can show that if 0 ∈ Γ then E(Z, Γ) is complete in C([a, b]) for 0 ≤ a < b if and only 
if b − a < N (and if a > 0 then we do not need to assume that 0 ∈ Γ).

Remark 4. Let us come back to the exponential systems E(Z, Γ(n)) defined at the be-
ginning of Section 2. Here we present a simple example that illustrates that such systems 
can have strikingly different completeness properties in L2-spaces and C-spaces.

Let f(x) = sin(πx/2). Then f (2k)(2n) = f (2k+1)(2n +1) = 0, for every k ∈ N0, n ∈ Z. 
Then, since f is the inverse Fourier transform of (δ1/4 − δ−1/4)/2i, the system

{t2ke4πint : k ∈ N0, n ∈ Z}
⋃

{t2k+1e2πi(2k+1)t : k ∈ N0, n ∈ Z}

is not complete in C([−1/4, 1/4]). On the other hand, one can check that it is complete 
in L2(I) on every finite interval I ⊂ R.
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