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Abstract: The utilization of hydrogen fuel in gas turbines brings significant changes to the ther-
mophysical properties of flue gas, including higher specific heat capacities and an enhanced steam
content. Therefore, hydrogen-fueled gas turbines are susceptible to health degradation in the form
of steam-induced corrosion and erosion in the hot gas path. In this context, the fault diagnosis of
hydrogen-fueled gas turbines becomes indispensable. To the authors’ knowledge, there is a scarcity
of fault diagnosis studies for retrofitted gas turbines considering hydrogen as a potential fuel. The
present study, however, develops an artificial neural network (ANN)-based fault diagnosis model
using the MATLAB environment. Prior to the fault detection, isolation, and identification modules,
physics-based performance data of a 100 kW micro gas turbine (MGT) were synthesized using the
GasTurb tool. An ANN-based classification algorithm showed a 96.2% classification accuracy for the
fault detection and isolation. Moreover, the feedforward neural network-based regression algorithm
showed quite good training, testing, and validation accuracies in terms of the root mean square
error (RMSE). The study revealed that the presence of hydrogen-induced corrosion faults (both
as a single corrosion fault or as simultaneous fouling and corrosion) led to false alarms, thereby
prompting other incorrect faults during the fault detection and isolation modules. Additionally,
the performance of the fault identification module for the hydrogen fuel scenario was found to be
marginally lower than that of the natural gas case due to assumption of small magnitudes of faults
arising from hydrogen-induced corrosion.

Keywords: hydrogen fuel; micro gas turbines; health degradation; steam-induced corrosion; fault
detection; diagnostics

1. Introduction

The heat and power sector was responsible for ~38% of global carbon dioxide emis-
sions in 2021. Natural gas (NG) reportedly contributed to ~22% of the electric power
generation globally in 2021 [1]. By far, gas turbines are mainly burning NG for power
generation, resulting in greenhouse gas (GHG) emissions and climate change. Therefore,
the decarbonization of gas turbines becomes indispensable to meet the global energy tran-
sition mandate. In this context, the gas turbine industry is aiming for 100% carbon-neutral
gas-fired power generation using low-carbon fuels, such as hydrogen, by 2030 [2].

Nevertheless, the utilization of hydrogen in gas turbines raises several technological
and reliability challenges due to the different thermophysical properties of hydrogen as
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compared to NG. For instance, hydrogen can potentially lead to flashback and thermoacous-
tic instabilities in the lean premixed dry low-emissions/dry low-NOx (DLE/DLN) burners.
Flashback can damage the upstream components of the burner. It is worth noticing that
available DLN technologies are currently capable of burning up to 60% hydrogen [3], with
a few exceptions, such as the recent firing of the Siemens SGT-400 with 100% hydrogen
for limited operational hours [4]. The utilization of 100% hydrogen requires the reconfig-
uration of the gas turbine with a new hydrogen-compliant burner and a modified fuel
system. Even then, high hydrogen utilization produces an enhanced steam content in the
combustion flue gas that, in turn, is responsible for high heat transfer to the metal parts,
higher thermal conductivity, aggravated oxidation corrosion, increased creep, and thermal
fatigue damage to the hot-gas-path components [5]. Consequently, hydrogen-fueled gas
turbines are susceptible to more health degradation caused by the already-mentioned
problems. Especially, the retrofitted gas turbines, in which solely the burner is replaced
with a hydrogen-compliant burner and the existing turbomachinery is kept, have a greater
propensity for health degradation. Therefore, advanced intelligent fault diagnosis, prog-
nosis, and health monitoring are of crucial importance for the enhanced reliability and
availability of hydrogen-fueled gas turbines.

Normally, as the operating hours of gas turbines increase, the performance and health
degrade due to various component faults [6]. To carry out effective maintenance actions,
timely fault detection and identification play a key role in assuring the reliability of the
engines. Fault diagnosis has been performed over the years for industrial and aerogas
turbines. It started with Urban’s rudimentary concept of linear gas-path analysis (GPA) [7,8].
Nowadays, gas turbine gas-path diagnostics are typically carried out via model-based,
data-driven, and hybrid approaches [9]. To gain more accuracy in the fault diagnostics,
digital twins have also been suggested in the most recent literature. For instance, the digital
twin developed by Hu et al. [10] showed a fault diagnostic error between the actual and
predicted values on the order of ±2% that was reportedly promising. A variety of studies
exist in the literature pertinent to component degradation, fault detection, and the diagnosis
of both industrial and aero-derivative gas turbines [11–14], and a short summary focusing
on the studies during the past five years is listed in Table 1.

Table 1. Gas turbine fault diagnostics studies in the past five years.

Ref. Engine Type Faults/Degraded
Components

Diagnosis Phase Approach Specific Method

[15] Turbofan engine Fan, compressor,
and turbine

FDI Model-based Newton–Raphson

[11] Three-shaft IGT Fouling and erosion
in both compressors

and turbines

FDI Improved nonlinear
GPA

Sequential
diagnostics

[16] Single-shaft
heavy-duty gas

turbine

Fouling, erosion,
corrosion, and
blade rubbing;

thermal distortion
and local object
damage in the

compressor and
turbine

FD Hybrid LSTM and GPA

[17] Single-shaft IGT Fouling and erosion
in the compressor

and turbine

FDII Data-driven CNN, DNN, and
SVM

[18] MGT Sensor fault and
fouling in the
compressor

FD Physics-based
model +

data-driven

CNN + Extreme
gradient boosting

(XGBoost)
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Table 1. Cont.

Ref. Engine Type Faults/Degraded
Components

Diagnosis Phase Approach Specific Method

[19] Twin-shaft
aeroengine

Degradation in the
HPC, HPT, LPC,

and LPT

FDI Hybrid
machine-learning

RNN

[20] Three-shaft marine
GT

Fouling, and
foreign object
damage in the

compressor and
turbine

FD Data-driven LSTM

[21] Twin-shaft IGT Fouling and erosion
in the compressor

and turbine

FDI Physics-based
model +

data-driven

Interval type-two
fuzzy logic systems

[22] Twin-shaft gas
turbine

Sensor faults FDII Hybrid
model-based and

unsupervised
learning

SRCKF + DBSCAN

[23] Three-shaft marine
GT

Exergy loss in the
compressor and

turbine

FD Model-based EIL

[24] Single-shaft IGT Fouling, erosion,
corrosion, and
blade rubbing;

thermal distortion
and object damage
in the compressor

and turbines

FD Model-based Kalman filter and
Newton–Raphson

algorithm

[25] IGT Sensor faults FDI Data-driven Wavelet energy
entropy and SVR

[26] Turbofan engine Exhaust gas
temperature-

indication fault and
HPT blade-burnt

fault in the turbine

FDII Data-driven CNN and SVM

IGT: industrial gas turbine, HPC: high-pressure compressor, LPC: low-pressure compressor, HPT: high-pressure
turbine, LPT: low-pressure turbine, FDI: fault detection and isolation, FDII: fault detection, isolation, and identifi-
cation, LSTM: long short-term memory, SRCKFs: square-root cubature Kalman filters, DBSCAN: density-based
spatial clustering of the application with noise, EIL: endogenous irreversible loss, CNN: convolutional neural
network, DNN: dynamic neural network, GT: gas turbine, and SVM: support vector machine.

For micro gas turbines, there are a few studies relevant to performance-based fault
diagnosis that considered radial compressor fouling, turbine erosion, and recuperator
degradation phenomena, all considering NG-fueled scenarios. Gomes et al. [27] reported
that the presence of the recuperator in the MGT increases the sensitivity of the engine to
compressor fouling and turbine erosion, especially in the variable-speed operating mode.
They conducted a comparative study of several single and multiple faults, including fouling,
erosion, foreign object damage (FOD), and recuperator deterioration. The study adopted
a model-based approach, namely, the nonlinear GPA (NLGPA) technique, using Pythia
and Turbomatch tools for the fault diagnosis. Another study conducted by Yoon et al. [28]
employed neural networks for the prediction of the degraded performance of 30 kW MGT.
Various kinds of single and multiple faults in the compressor, turbine, and recuperator
were included in the study. The approach was found to be predicting the results with much
accuracy, even if some of the measurement data were missing.

Talebi and Tousi [29] attributed compressor fouling as one of the majorly occurring
faults in the MGT engine; hence, they investigated the effect of blade surface roughness
on the performance degradation of radial turbomachinery in a 477 kW MGT. The study
revealed that the combustor inlet temperature and turbine outlet temperature were more
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sensitive to blade surface roughness because these measurements showed values greater
than the allowable limits. However, the compressor discharge temperature was found
to be less sensitive to the roughness. In a similar study, Bauwens [30] also asserted that
compressor fouling was a highly likely occurring fault in a 3 kW MTT MGT because
of the possibility of oil ingestion in the compressor originating from a deaerating oil
sump. A recent study conducted by Hashmi et al. [31] reported the effect of steam-induced
corrosion on the performance degradation of a hydrogen-fueled MGT. The amount of steam
was found to be more than twice (mass fraction of H2O with NG: 0.1239; mass fraction
of H2O with H2: 0.2548) than that of a natural gas combustion scenario. Talebi et al. [32]
utilized an artificial neural network (ANN) for the fault detection and isolation of a 100 kW
MGT considering the measurement uncertainties at different part-load settings. The main
faults considered in their study were the compressor, turbine, and recuperator.

Diving deep into the literature manifests that gas turbines running on 100% hydrogen
fuel are susceptible to increased hydrogen-induced corrosion due to the different thermo-
physical properties and the enhanced steam content of the hydrogen fuel as compared to
the NG fuel. The compressor is also highly vulnerable to fouling when the gas turbine’s op-
erating hours are increased. The gas turbine industry has recently tested their gas turbines
with 100% hydrogen for limited operating hours. However, gas turbines would most likely
be exposed to longer operating hours with hydrogen fuel in the future. That would affect
their health and performance, and the industry has a critical need to seek solutions for
hydrogen-related faults. In addition, the existing gas turbines are currently being retrofitted
with new hydrogen-compliant burners. Solely in the retrofitted gas turbines, the burner is
replaced with a new burner, while the rest of the components, i.e., the turbomachinery com-
ponents, are not changed. This kind of retrofitting exposes the hot-gas-path components,
especially the turbine, to enhanced steam, in the case of hydrogen fuel, that can potentially
cause enhanced corrosion as compared to the NG case.

In line with industry ambitions towards energy transition, a 100 kW MGT test facility
at the University of Stavanger was recently retrofitted with a FLOX burner capable of
burning 100% hydrogen [33]. The existing turbomachinery components from the OEM
were retained. In this regard, it was imperative to investigate the effect of various hydrogen-
induced faults and their timely diagnosis to ensure an increased reliability and availability.
However, an in-depth literature search revealed that hydrogen-induced corrosion in the
hot-gas-path components of both larger gas turbines and MGTs had not been investigated
before based on the authors’ best knowledge. These research gaps paved the way for the
development of a fault detection, isolation, and identification model for a 100 kW MGT
running with pure hydrogen fuel.

The present study incorporates a thermodynamic model using the commercial tool
GasTurb 14 [34] to generate validated design-point and off-design performance data. Data
preprocessing was implicated to add noise and correct the data for ambient condition
variations. Subsequently, the data were fed into classification and regression learner tools
in MATLAB (release 2022a) for fault detection and diagnosis purposes using a neural
network approach.

2. Methodology

The overall methodology of the entire study consists of 7 steps. The workflow includes
developing a physics-based performance model, validating the model with real-time MGT
data, implanting the physical faults using health parameters, i.e., the flow capacity and
efficiency, the processing of the synthesized performance data, fault detection and isolation
(FDI), fault identification, and, finally, the testing and validation of the algorithms. Data
processing is further segregated into correcting the data against ambient conditions, finding
the measurement deltas of the signals, and the noise addition. Subsequently, the corrected–
measured–noisy data of the signals are fed to ANN-based classification and regression
algorithms to develop a holistic fault diagnosis model. The different steps of the fault
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diagnosis process are illustrated in Figure 1. The details of these steps are described in the
following subsections.
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Figure 1. The methodology workflow.

2.1. Baseline Performance Model

A thermodynamic performance model of a 100 kW MGT was initially developed
using the commercial software tool GasTurb 14 [34] for physics-based data generation.
The schematic of the MGT with sensor measurement points at various gas-path stations is
illustrated in Figure 2.
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The station numbers have been identified at their respective positions. For instance,
2 is labeled as the compressor intake, 3 as the compressor exhaust, 35 as the recuperator
cold-side exhaust, 4 as the turbine inlet, 5 as the turbine exhaust, and 6 as the recuperator
hot-side exhaust. The design-point calculations were optimized using a random search
algorithm to ensure the accuracy of the baseline model. The off-design performance was
calibrated with the experimental data for accurate validation purposes. The experiments
were conducted at different power settings, varying from 50 to 100 kW, with a step change
of 10 kW. The ambient temperatures were noticed to vary between 281.15 and 287.15 K
during the entire test campaign. The real-time data were obtained by installing different
pressure and temperature sensors in the form of probes. To measure the gas-path conditions
at the intake of the compressor, five pressure- and four temperature-measuring sensors
were installed. Similarly, at the compressor exit, three pressure- and three temperature-
measuring sensors were installed 120◦ apart at circumferential positions to measure the
average values at the flow field. Additionally, the combustor head was also encompassed
with pressure and temperature sensors to measure the conditions of the intake air preheated
by the recuperator. The instruments used for measuring the pressure at different points
were Kiel probes installed ±35◦ apart. Pressure scanners were adopted to scan the pressure
with an accuracy of 0.05 for full-scale output. Similarly, for the temperature measurements,
K-type thermocouples with an accuracy of ±1 K were installed, and a data acquisition
(DAQ) device was utilized to obtain the measured data. Subsequently, the pressure scanner
and the DAQ were connected to a computer in parallel mode via two ports, which led
to data visualization with the LabView software. The validated design-point data are
listed in Table 2.

Table 2. Design-point validation after the optimization.

Parameter OEM Data [35] Present Study % Error

Power output [kW] 100 (±3) 100.1 0.09
Electrical efficiency [%] 30 (±1) 29.99 0.03

Pressure ratio [−] 4.5 4.5 0
Exhaust mass flow 0.8 0.799 0.12

Exhaust gas temperature [K] 543 556.83 2.5

The validated off-design data at different part-load power settings for different mea-
surement points are illustrated in Figures 3–6. Firstly, the engine was simulated by assuming
NG as a working fuel that basically established a baseline for further model development.
Subsequently, the hydrogen was utilized as a fuel that was the prime objective of the
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study. Both simulation scenarios, i.e., the use of NG and hydrogen, were further went
through noise addition to mimic the measurement uncertainties along with the ambient
temperature corrections. These data were further normalized to generate residuals between
the healthy and degraded engine conditions. Finally, these data were made ready for
classification and regression learning by employing an artificial neural network to carry out
the fault detection, isolation, and identification. Based on the deviating fault signatures, the
measurement signals of P3, T3, P35, T35, T4, and T5 were identified as the most significant
parameters for fault diagnosis purposes.
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2.2. Component-Level Degradation

The physical faults, such as fouling, corrosion, erosion, and FOD, occurring in different
components of the gas turbine systems lead to variations in the engine health parame-
ters or independent parameters, i.e., the flow capacity and isentropic efficiencies. These
health parameters, in turn, stimulate deviations in the engine measurements or dependent
parameters, such as the pressure, temperature, fuel flow, and shaft speed. The present
study employed the nonlinear GPA (NLGPA) approach for the gas-path diagnostics of
the MGT because of its added advantage over the LGPA in terms of accuracy [9]. This is
a model-based diagnosis approach that employs a thermodynamic relationship between
dependent and independent parameters, addressing the nonlinearity of the gas turbine
engine. The correlations are as follows,

∆
⇀
Z = H.∆

⇀
X (1)
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∆
⇀
Z is a vector of the measurement deviations of a degraded engine condition from

a clean condition. The clean condition is normally assumed as the healthy condition of

the engine at the design point. ∆
⇀
X expresses the health parameters and H represents the

influence of the coefficient matrix (ICM) that develops a correlation between ∆
⇀
Z and ∆

⇀
X.

Further details can be found in the existing literature, such as [9,36].
The current study encompassed two kinds of component faults, i.e., compressor

fouling and turbine corrosion. The reason for choosing fouling was mainly due to its
high probability of occurrence in recuperated MGTs, as evidenced by the literature [27,30].
Turbine corrosion was selected because hydrogen fuel leads to an enhanced steam content
that can cause higher heat transfer rates and corrosion as compared to an NG-fueled gas
turbine [37]. These H2-specific attributes can further lead to aggravated creep and material
degradation in the hot-gas-path components, and hence to the reduced lifetime of the
gas turbine. The quantification of the components’ physical faults was carried out by
developing the scaling factors of the health parameters (flow capacity: Γ; efficiency: η),
as follows,

Γdeg = Γclean(1 + ∆Γ/100) (2)

ηdeg = ηclean(1 + ∆η/100) (3)

In the abovementioned equations, the subscript “deg” represents the degraded compo-
nent condition, while “clean” represents the engine’s clean or healthy condition; ∆ denotes
the change in the health parameters. To develop fault diagnosis models for gas turbines,
a variety of fault magnitudes have been assumed by the literature that show a relative
change in the flow capacity and the isentropic efficiency from the clean condition in the
form of scaling or correction factors. Table 3 lists the values of the compressor and turbine
degradation magnitudes with their respective ratios. It is worth mentioning that the fault
magnitude of the fouling has been assumed to be similar for both fuel scenarios, while the
fault magnitude of the turbine corrosion for the hydrogen fuel has been assumed to be
higher than that of NG. The assumption for steam-induced corrosion has been borrowed
from a study by Zwebek and Pilidis [38,39] that was conducted for the fault diagnosis of
the steam turbine. The reason lies in the fact that propagation mechanism of steam-induced
corrosion behaves similarly in both steam and gas turbines, though it is caused by hydrogen
fuel usage in the latter type.

Table 3. Quantification of the various physical faults.

Fault FC (X) Eff. (Y) Ratios (X:Y) Ranges Ref.

Natural gas case

CF Γc ↓ ηt ↓ ~3:1 [0, −7.5]
[0, −2.5] [40,41]

TC Γt ↑ ηt ↓ ~2:1 [0, 4]
[0, −2] [42]

Hydrogen case

CF Γc ↓ ηt ↓ ~3:1 [0, −7.5]
[0, −2.5] [40,41]

TC Γt ↑ ηt ↓ ~2:1 [0, 5]
[0, −2.5] [27,39]

FC: flow capacity; Eff.: isentropic efficiency; CF: compressor fouling; TC: turbine corrosion; ↑: increasing;
↓: decreasing.

2.3. Fault Diagnosis

The diagnosis of the gas turbines is normally performed in three steps, i.e., fault detec-
tion, fault isolation, and, finally, fault identification. Fault detection provides information
about the presence of any imminent physical abnormality in the system. Fault isolation
helps in determining the exact type and location of the fault. Fault identification determines
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the severity magnitude of the any physical fault. The present study incorporated all these
steps involved in the diagnosis, as shown in Figure 1.

2.3.1. Data Processing

Prior to the fault diagnosis of the MGT, the data generated from the performance
model went through a preprocessing phase. During preprocessing, the data were first
segregated on a fuel basis, i.e., NG and hydrogen. Subsequently, a fault-wise segregation
(i.e., compressor fouling, turbine corrosion, and simultaneous compressor fouling and
turbine corrosion) was carried out. Temperature corrections were also performed to avoid
the influence of the ambient temperature variations on the measurement signals, as follows,

θ =
Tmeasured
288.15 K

(4)

where θ is the correction factor of the measured temperature (Tmeasured) with respect to the
design ambient temperature of 288.15 K.

Measurement deviations of the degraded conditions from the clean condition of each
signal, i.e., P3, T3, P35, T35, T4, T5, and P5, were estimated using the following equation,

∆
⇀
Z =

(
⇀
Z deg −

⇀
Zclean)

⇀
Zclean

× 100 (5)

where ∆
⇀
Z is the measurement deviation vector between the healthy/clean engine sensor

data (
⇀
Zclean) and the degraded engine data (

⇀
Zdeg). Furthermore, noise was added to the

measurement deltas to account for measurement uncertainties that could happen in the
experimental data. The standard deviation for the Gaussian distribution was assumed to
be 1% for the temperature signals, while it was assumed to be 0.5% for the pressure signals.
The equation involved in the noise generation using the random function was as follows,

x = −1 + 2 × rand(1, N) (6)

where N expresses the number of sample points including clean and faulty engine data.
A total of 800 sample points were generated, i.e., 400 samples for each of the NG and
hydrogen fuel scenarios.

2.3.2. ANN-Based Classification (Fault Detection and Isolation)

After accomplishing the preprocessing of the data, the data were fed into the ANN-
based classification learner in the form of two separate datasets, i.e., NG and hydrogen,
using the MATLAB tool. Using the scenarios involved in the labeled data, a classification
algorithm “learned” about the classification of fresh observations through a supervised
machine-learning approach. Although there are plenty of other algorithms for the classifica-
tion learning, the ANN was chosen in the present study. The reason for choosing the ANN
lies in the inherent ability of this algorithm to (i) efficiently capture the nonlinear behavior
of the engine performance [9], (ii) extract information in a fast and simplistic way [36],
(iii) handle multiple and larger component faults in the presence of sensor faults [43],
(iv) deal with measurement uncertainties [6], and (v) perform the diagnosis with a scarcity
of measurements [44]. The ANN architecture for both the fault detection and isolations are
illustrated in Figures 7 and 8. In the classification learner, a validation method needed to
be chosen to assess the prediction accuracy of the fitted model. The validation not only
provided performance estimations of the model on a completely new dataset (as compared
to the training dataset), but also helped in protecting against overfitting. The validation
scheme chosen in the present study was k-folds cross-validation. This scheme works by dis-
secting the training datasets into k disjoint sets or partitions, and then randomly shuffling
them. For each round of training–validation, a certain partition was used for the validation,
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while the rest of the data were used for the testing. Therefore, each partition was used
once for the validation, while the partitions were used k − 1 times for the training. The
k was assumed to be 5 in the present case based on the data samples. Cross-validation
helps in avoiding the overfitting of the training data, so that the prediction accuracy might
not be compromised.

The classification algorithms finally provided a confusion matrix that determined
the number of faults accurately predicted or wrongly predicted. The confusion matrix
provided information about the performance of the selected classifier in each class, i.e., the
true class or predicted class. The rows in the matrix show the true class, while the columns
represent the predicted class. The diagonal cells depict the matching of both the true and
predicted classes.
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2.3.3. ANN-Based Fault Identification

The final step involved in an MGT diagnosis process is fault identification. The
present study utilizes a multilayer perceptron (MLP) for the intended component fault
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identification. The MLP is a kind of feedforward neural network that works on the concept
of supervised learning, comprised of an input layer, an output layer, and one or more hidden
layers. In the training phase of the ANN, the network manages to learn the correlations
between the input and output data using a back-propagation algorithm. The current
study utilized a single-layer MLP with 10 nodes, as shown in Figure 9. In general, the
fault identification was carried out by tracing the health parameters, i.e., (flow capacity: Γ;
efficiency: η) back from the deviated fault signatures. In Figure 9, on the left-hand side
of the ANN structure, the inputs are provided that have been derived from Equation (5),
while the outputs illustrated on the right-hand side of the structure have been derived from
Equations (2) and (3). The terms with ∆ in the figure represent the measurement deviations,
while Γ and η represent the flow capacity and efficiency of the compressor and turbines,
respectively. The network was trained on the three fault scenarios (CF, TC, and CF + TC) to
identify some suitable relationships from the fed samples, thereby fine-tuning the weights
and biases. The performance of the training or prediction accuracy was determined by the
mean square error (MSE) by combining the results from both the training and validation
datasets. The training progress data and model summary of the ANN algorithm have been
listed in Table 4.
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Table 4. ANN training progress data and model summary.

Criteria Indicators

Total hidden layers 1
Neurons in hidden layers 10
Feeding approach Backpropagation
Target limit of epochs 1000
Performance accuracy target 0
Performance gradient target 1.00 × 10−7

Activation function Sigmoid
Training algorithm Levenberg–Marquardt
Performance indicator Mean square error

2.3.4. Explainable AI for Interpretation

The methodology further encompassed explainable artificial intelligence (XAI) to
acquire useful physics-based interpretations from the ANN-based black-box model. Nor-
mally, SHAP (SHapley Additive exPlanations) values analysis is adopted to see the effect
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of different input features on the AI-based model outputs. In this way, SHAP helps in pro-
viding a true picture of a physical phenomenon present in any of the data and, furthermore,
the influence of those physics-based parameters on the output of the model as the training
evolves. The generic mathematical representation of the SHAP values has been provided
in Equation (7),

φj( f , x) = ∑
S⊆F∖{ f }

|s|!(N − |S| − 1)!
N!

[
fx

(
S
⋃
{j}

)
− fx(S)

]
(7)

where F and N represent the power set of all features and the total number of features,
respectively, while the exclusion of feature j from the features creates a subset S. The term
[ fx(S

⋃
{j})− fx(S)] is the expected marginal contribution of adding feature j to the feature

subset S for sample x, necessitating model f to be evaluated again. The SHAP value is
defined as the amount that feature j contributes to the prediction of sample x over and
above the baseline average forecast or expectation. The most important characteristic of
SHAP theory, local accuracy, is described in Equation (8), and asserts that the total of all
attributions equals the prediction:

f (x) = φ0( f ) +
N

∑
j=1

φj( f , x) (8)

where φ0( f ) is the model’s baseline prediction and f (x) is explained by a linear sum of the
derived SHAP values.

3. Results and Discussion
3.1. Fault Detection and Isolation

For the fault detection and isolation, an ANN-based classifier was employed. Two kinds
of datasets were trained, and three fault scenarios were accounted for. For each dataset, 70%
of the data were utilized for the training, while the remaining 30% were employed for the
testing and validation (15% for each) of the algorithm. The performance of the classification
algorithm is normally assessed by the detection decision matrix and classification confu-
sion matrix, consisting of the main decision metric parameters, i.e., the true positive (TP),
false negative (FN), false positive (FP), and true negative (TN), as illustrated in Figure 10.
The main diagonal depicts the correctly predicted faults, while the off diagonal shows
the wrongly predicted elements. The detection rates of these decision parameters can be
estimated through the normalization that is performed by dividing each matrix element by
the sum of its row’s elements, as follows [45],

TPR =
TP

TP + FN
× 100% (9)

FPR =
FP

FP + TN
× 100% (10)

FNR =
FN

TP + FN
× 100% (11)

TNR =
TN

FP + TN
× 100% (12)

The selected classification algorithm enables the classification of multiple faults, as
shown in Figures 11 and 12. The figures represent the confusion matrix of the hydrogen and
NG-fueled scenarios, respectively. The labels mentioned on the x- and the y-axes represent
the different fault and no-fault conditions for the predicted and true classes, respectively,
as listed in Table 5.
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Figure 11. Confusion matrix for the fault detection and isolation during the hydrogen-fueled scenario.

Table 5. Labels of the different physical conditions in the classification algorithm.

Label Designated Physical Condition

1 No fault
2 CF: Compressor fouling
3 TC: Turbine corrosion
4 CF + TC: Simultaneous
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A detailed overview of the fault detection and isolation accuracy has been portrayed
in Figure 11. The figure illustrates the confusion matrices of the training, validation, testing,
and overall accuracies of the fault detection and isolation modules for the hydrogen-fueled
scenario. The x-axis shows the target or the predicted class, while the y-axis shows the
output or the true class of the variety of faults. It should be noted that correctly classified
classes are represented in green color while misclassified classes are represented in red
color. The overall classification accuracy of the training was found to be 94.7%. The training
phase shows a classification accuracy of 86.8% for class 1, with some misclassification.
Among those misclassifications, 2% of the data were misclassified as compressor fouling,
while 1.6% and 0.4% of the data were misclassified as turbine corrosion and simultaneous
compressor fouling and turbine corrosion, respectively. Similarly, for class 2 and class 3,
some misclassifications were noticed. For instance, 0.4% of the data in class 2 were mis-
classified as simultaneous fouling and corrosion, while, in class 3, 0.8% of the data were
misclassified as simultaneous compressor fouling and turbine corrosion. In the validation
phase, class 1 misclassified 3.5% of the data as compressor fouling, while the rest of the
classes showed 100% accuracy, thereby leading to an overall validation accuracy of 96.2%.
Similarly, the classification accuracy of the testing phase was found to be 96.2%, with some
misclassifications in class 1, in which 1.9% of the data were misclassified as compressor
fouling, while 1.9% of the data were misclassified as simultaneous compressor fouling and
turbine corrosion. Furthermore, a combination of all the confusion matrices has been illus-
trated as “all confusion matrix” and is displayed in Figure 11, which showed an accuracy
of 95.2%. However, the testing accuracy provides true insights about the detection and
isolation of the physical faults in the gas turbines.

Similarly, Figure 12 presents an overview of the classification accuracies of the NG-
fueled scenario. As can be observed from the figure, class 1 shows an accuracy 89.3% with
some misclassification, in which 1.2% of the data were wrongly classified as compressor
fouling, while 2% of the data were wrongly classified as turbine corrosion. Similarly, class 3
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also manifested misclassifications, in which 0.8% of the faults were wrongly classified as
simultaneous compressor fouling and turbine corrosion. In the validation phase, class 1
misclassified 5.7% of the data as compressor fouling, while 1.9% of the faults were misclas-
sified as simultaneous compressor fouling and turbine corrosion. The rest of the classes
showed 100% accuracy, thereby leading an overall validation accuracy of 92.5%. The testing
accuracy of the classification for the NG-fueled scenario was found to be 94.3%, which
was slightly lower than that of the hydrogen-fueled gas turbine scenario. The reason for
this has been illustrated in Figure 12, in terms of three misclassified faults. For instance,
in class 1, 1.9% of the faults were misclassified as turbine corrosion. Similarly, class 2 and
class 3 also represented some misclassified faults, such as 1.9% of the faults misclassified as
simultaneous compressor fouling and turbine corrosion in each class. The overall confusion
matrix accuracy was found to be 95.2%. The comparison of both the hydrogen-fueled and
NG-fueled scenarios concluded that the training accuracy of the hydrogen-fueled scenario
was marginally lower than the NG-fueled scenario, while the validation and testing ac-
curacy of the hydrogen-fueled scenario was slightly higher than that of NG gas scenario.
However, the accuracy of all confusion matrices for both fuel scenarios was surprisingly
found to be same. It is important to note that, while dealing with fault detection, the testing
accuracy of the algorithm maintains a higher prestige, since it serves as a deciding factor
for the correctness of the classification algorithm for the unseen data.

During the fault detection, the presence of a hydrogen-based corrosion fault led to
an increased level of incorrectly classified ‘no fault’ as hydrogen-induced corrosion fault.
Moreover, the turbine corrosion fault prompted an extra fault as simultaneous compressor
fouling and turbine corrosion in contrast with the NG case. This means that the presence
of the hydrogen-induced corrosion fault might influence the fault detection process by
producing a false alarm of the fault, while there is no actual fault in the training face of the
algorithms. However, during the testing phase, the situations were reversed as compared
to the NG scenario. Hence, the study further inferred that the presence of hydrogen-based
steam-induced corrosion might lead to a few false alarms, thereby increasing the downtime
of the asset and subsequently incurring preventive maintenance expenses.

3.2. Sensitivity Analysis for Fault Detection and Isolation

One of the biggest challenges that might arise while performing fault diagnostics is the
inaccuracy of the fault detection modules due to the unavailability of certain measurement
sensors in the actual engine provided by the OEM. The MGT engine considered in the
present study also had a few measurement sensors that were originally installed by the
OEM, such as the turbine inlet temperature (TIT), or T3, and the turbine outlet temperature
(TOT), or T5. However, a variety of the new sensors were also installed on the engine
for the effective condition monitoring and performance optimization of the engine for
future purposes. The measurements considered in this study were conformed with the
newly installed sensors. Moreover, the sensor measurements in the simulation were also
reconciled with the same newly installed measurement sensors. Therefore, the absence of a
few sensors on an engine provided by OEM might impact the fault diagnostic accuracy.
In this regard, the sensitivity analysis of the fault detection and isolation accuracies is of
paramount importance.

The sensitivity analysis involved in the present work was performed on the different
sensor measurement parameters that were inherently made part of the fault diagnostics
process. The sensitivity analysis was conducted with 10 different combinations of the
measurements to investigate the influence of some dropped measurements on the overall
testing accuracy of the fault diagnostics process. All the possible combinations along with
fault diagnostic accuracies for both the hydrogen- and NG-fueled scenarios have been listed
in Table 6. The sensitivity analysis manifests that the unavailability of some temperature
measurements does not create much of an impact on the fault diagnostic accuracy, such
as T3, T4, and T35. However, it is important to note that the unavailability of multiple
measurement sensors significantly affects the accuracy. For instance, dropping T3 and
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T4 simultaneously reduced the fault diagnostic accuracy of the hydrogen-fueled MGT
scenario (62.3%), while the accuracy of the NG-fueled scenario remained unaffected. It
became evident that the fault diagnostic accuracy of the hydrogen-fueled scenario was
more sensitive to the temperature-measurement sensors T3 and T4. Similarly, dropping a
row of sensors led to a catastrophic drop in the accuracy; for example, the removal of T3,
T35, T4, and T5 from the fault diagnostics features led to an accuracy reduction of 56.6%.
The most important finding that was unleashed during the sensitivity analysis was the
vulnerability of the fault diagnostic accuracy to some of the pressure sensors. For instance,
the removal of P5 from the input feature led to a fault diagnostic accuracy reduction of
50.9%. The situation became even worse when a series of pressure-measurement sensors,
i.e., P3, P35, and P5, were removed; the accuracy dropped to 47.2%.

Table 6. Sensitivity analysis of the fault diagnostics.

Sensitivity Measurement Sensors
Dropped Testing Accuracy (%)—H2 Testing Accuracy (%)—NG

S1 T4 94.3 94.3
S2 T4, T3 62.3 96.2
S3 T3 94.3 92.5
S4 T35 92.5 96.2
S5 T3, T35 94.3 96.2
S6 P3 96.2 92.5
S7 P35 92.5 90.6
S8 P5 50.9 60.7
S9 P3, P35, P5 47.2 54.7
S10 T3, T35, T4, T5 56.6 62.3

The entire sensitivity analysis unleashed some new findings. One of the important
findings is that the hydrogen-fueled scenario was more sensitive to the fault diagnostic
accuracy when it came to the unavailability of the measurement sensors. The unavailability
of multiple measurement sensors, both pressure- and temperature-based sensors, showed a
drastic reduction in the fault diagnostic accuracy in the hydrogen-fueled scenario, whereas
the NG-fueled scenario did not seem to be affected much by the unavailability of multiple
temperature and pressure sensors. It is also worthy to note that dropping even some of the
temperature sensors did not change the accuracy at all, such as the exclusion of T3 and T35.
A strange behavior for the hydrogen-fueled scenario was also noticed when dropping P3;
the removal of P3 led to an increase in the fault diagnostic accuracy. The findings of this
study highlight the importance of some pressure- and temperature-measurement sensors
for the accurate fault diagnostics of the hydrogen-fueled gas turbine scenario. Therefore, it
is suggested to carry out an inspection before performing maintenance to avoid the risk of
the malfunctioning of the measurement sensors, which might lead to potentially inaccurate
fault diagnostics.

3.3. Fault Identification

The fault identification of the MGT was carried out by using a feedforward neural
network. The computational framework of the ANN based fault identification employed
regression analysis. The regression plots of the training, testing, and validation are illus-
trated in Figure 13. The figure indicates that the ANN was able to identify the physical
fault parameters with a quite good accuracy, since the regression values were almost close
to 1. The performance of the ANN prediction is normally evaluated by the level of error
minimization with respect to the number of epochs (cycles). An epoch is basically the
training process of the ANN with all the available data at once for one cycle. It is always
desirable to keep the accuracy as high as possible during the training.

Normally, a learning curve graph helps in visualizing the convergence of the training,
testing, and validation; hence, it provides information about the accuracy in given epochs.
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The learning curve graph continues to improve until the model coverages with a minimized
error, as shown in Figure 14.
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Figure 14. Performance of the ANN training for the NG-fueled scenario.

The regression of both the NG- and hydrogen-fueled scenarios was found to be nearly
identical, with a similar accuracy, as can be observed from Figure 15. The learning curve-
based performance of the hydrogen-fueled scenario is shown in Figure 16. The error
minimization of the hydrogen scenario took 404 epochs, which was significantly greater
than that of the NG scenario, i.e., 202 epochs.
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The overall accuracy of the ANN training, testing, and validation was determined by
the root mean square error (RMSE) using Equation (13). The n involved in the equation
expresses the total sample size, while p f and t f represent the predicted and target fault
values. The results of both the MSE and RMSE between the predicted and target values for
both the NG and hydrogen scenarios are listed in Table 7. It became evident that the RMSE
of the training, testing, and validation phases of the hydrogen scenario was slightly higher
than that of the NG scenario.
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√
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√
1
n

n

∑
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Table 7. Analysis of the fault identification results in terms of the RMSE.

MSE NG MSE Hydrogen RMSE NG RMSE Hydrogen

Training 5.92 × 10−4 0.0018 0.0243 0.0424
Testing 6.41 × 10−4 0.0022 0.0253 0.04694

Validation 7.40 × 10−4 0.0032 0.0271 0.0565

A list of different studies (including the current one) related to the fault diagnostics
is presented in Table 8. The list includes studies dealing with some deep-learning and
machine-learning algorithms for a variety of gas turbine engines, such as MGT, IGT, and
aeroengines, using natural gas fuel. It should be noted that the accuracy of the algorithms
is critically related to the corresponding gas turbine system configuration and the volume
of the dataset. The accuracy of the present work was found to be 96.2% for the natural gas
case. However, for the hydrogen scenario, this might be further decreased due to presence
of false alarms and missed detections. Making a comparison between the current study
and the one in [32], both considering MGTs, there is a small difference in the accuracy. The
reason for this is the difference in the data size and the hyperparameters selected during
the training of the algorithms.

Table 8. List of fault diagnostics studies in the literature, along with the present work.

Ref. System Methodology FD Accuracy (%)

Current study MGT ANN 96.2
[32] MGT ANN 97.6

[16] Heavy-duty gas
turbine LSTM

[18] MGT CNN 95.5
[19] aeroengine RNN 89
[21] IGT Fuzzy logic 99

[26] Turbofan engine
Transfer

learning-based CNN
and SVM

93

3.4. Physics-Based Insights from the ANN Model

To acquire the physics-oriented insights from the ANN-based black-box model, XAI-
based SHAP (SHapley Additive exPlanations) values were utilized. Figure 17 illustrates
a feature importance bar plot that explains the influence of different input parameters
on the model parameters. The average impact of the model output magnitude has been
depicted by calculating mean SHAP values of all the input features. The spread of the
bars reveals that input features, such as P5, P35, and T4, had a significant contribution
in the fault diagnostics model. However, the contribution of the input feature P5 was
one of the dominant features in the model output prediction. In prediction of the output
characteristics of the diagnostic model, the compressor flow capacity and turbine flow
capacity were found to be significantly affecting to the P5 feature, while the contribution
of the compressor efficiency and turbine efficiency was comparatively small. The reason
for this is supported by the fact that, during the physics-based model development, the
magnitudes of the compressor and turbine isentropic efficiencies were assumed to be
smaller than that of the flow capacity magnitudes. It is also worth noticing that the features
consisting of the pressure terms have the turbine flow capacity as the dominant factor in
the SHAP values, represented by a blue color. The results from the SHAP values are quite
well in agreement with the sensitivity analysis results elaborated in Section 3.2.
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4. Conclusions

This study aimed at developing a fault diagnosis model for a hydrogen-fueled MGT
in comparison with an NG-fueled case. The study involved the development of a physics-
based model for data generation as an initial step. The data further went through a
preprocessing phase prior to the fault detection, isolation, and identification. Fault detection
and isolation were carried out using an ANN-based classification learner, while the fault
identification was performed using an MLP feedforward ANN. The detection and isolation
module showed greater percentages of wrongly classified faults due to the involvement
of steam-induced corrosion in the hydrogen-fueled scenario as compared to an NG-fired
MGT. The performance of the fault identification was, however, found to be similar for
both the NG- and hydrogen-based scenarios. Further work is needed with increased levels
of fault severity arising due to steam-induced corrosion for better fault identification in
hydrogen-fueled scenarios. This study was part of an initial attempt towards the fault
diagnosis of hydrogen-fueled micro gas turbines. However, further advancements might
help design and maintenance engineers assure the optimum reliability and availability of
the MGT.
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