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Abstract 

The subsea shuttle tanker (SST) is an innovative 33 600-ton underwater cargo tanker designed 
to transport CO2 to marginal fields. These marginal fields usually have too small CO2 volumes 
to justify using offshore pipelines and tanker ships. The SST travels underwater at a fixed water 
depth of 70 m to carry CO2 from a land facility to a subsea well for direct injection. During 
offloading, the SST will approach and hover in the vicinity of the subsea well. A remotely 
operated vehicle (ROV) will carry and connect a flexible flowline from the subsea well to the 
SST. CO2 is then offloaded via this flexible flowline. The offloading process takes four hours. 
During this time, the SST is subjected to time-varying current load effects, and it will 
dynamically keep its position using its ballast tanks, propeller, and thrusters. Knowing the 
extreme positional responses is essential. The extreme heave motion determines the maximum 
depth and correspondingly the maximum hydrostatic loading. Hydrostatic loading is a 
dominating load and drives the collapse design of the SST hull. Further, the extreme surge 
motion determines the flowline length required to avoid snap loads. In this paper, the extreme 
positional responses of the SST when the aft thruster fails during offloading is investigated for 
mean current velocities of 0.5, 1.0, and 1.5 m/s using the average conditional exceedance rate 
(ACER) method. The empirical data is generated using time-domain simulations with a 2D 
planar Simulink model.  

The proposed methodology provides an accurate bivariate extreme value prediction, utilizing 
all available data efficiently. In this study the estimated vessel response is expressed as 5 years 
return level values and contours, obtained by the ACER 1D and 2D methods. Based on the 
overall performance of the proposed method, it was concluded that the ACER 1D and 2D 
methods can provide robust and accurate both univariate and bivariate predictions based on 
accurate numerical simulations of the vessel motion dynamics.  
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1. Introduction 

The subsea shuttle tanker (SST), as illustrated in Figure 1, is a novel sizeable autonomous cargo 
submarine first proposed by Equinor in two research disclosures in 2019 [1] and 2020 [2]. After 
that, Xing et al. [3] discussed the most critical design considerations surrounding the SST. Xing 
et al. [3] argued that for the SST to be economically attractive, it must have at least 50 % of its 
displacement allocated to the payload. To achieve this, Xing et al. [3] proposed using a series 
of design features and optimisation to reduce weight significantly in the structures, machinery, 
and permanent ballast. A baseline design was developed by Ma et al. [4] based on the design 
considerations.  The baseline SST [4] is a 34 000-ton vessel designed to serve ongoing carbon 
capture and storage (CCS) projects in the Norwegian Continental Shelf, namely Sleipner, 
Utgard, and Snøhvit [5] as illustrated in Figure 2. The SST will collect CO2 from onshore 
facilities off the coast of Norway and then travel autonomously subsea at a constant depth of 
70 m to the subsea well for direct injection. Therefore, the SST can operate in any weather 
condition since it travels underwater away from wind and wave loads. The objective of the SST 
is to be an alternative transportation method to serve remote marginal fields where the CO2 
volumes might not be economically attractive to deploy offshore pipelines and ship tankers. In 
recent economic studies performed by Xing et al. [6], the SST has been proven cheaper than 
offshore pipelines and tanker ships for small CO2 fields. However, the SSTs considered in Xing 
et al. [6] were designed using the state-of-art submarine design code DNVGL-RU-NAVAL-
Pt4Ch1 [7]. The SST is expected to be even more economically attractive when design 
optimisations such as Jamissen et al. [8] are applied.  The main design parameters of the 
baseline SST [4] are presented in Table 1. The baseline SST is used as the object of study in 
this paper.  

 

 

Figure 1 The Subsea Shuttle Tanker (SST) [4]. 



 

 

Figure 2 CCS sites at Norwegian Continental Shelf the baseline SST is designed for [4].  
 

Table 1 Main design parameters of the baseline SST  

Parameter Value Unit 
Length 164 m 
Beam 17 m 
Weight 3.36×107 kg 
Center of buoyancy [𝑥𝑥𝑏𝑏 ,𝑦𝑦𝑏𝑏 , 𝑧𝑧𝑏𝑏] [0, 0, -0.41] m 
Skeg position 𝑥𝑥𝑠𝑠 67 m 
Skeg area 𝐴𝐴𝑆𝑆 40 m2 
Forward tunnel thruster position 𝑥𝑥𝑡𝑡𝑡𝑡 60 m 
Aft tunnel thruster position 𝑥𝑥𝑡𝑡𝑡𝑡 -60 m 
CO2 cargo capacity 1.7×106 kg 

 

During offloading, the SST will first approach and hover above the area close to the subsea well 
at operating depth. An ROV will then carry the flexible flowline from the subsea well to the 
SST for mating. The SST will then offload its CO2 via the flexible flowline. Finally, the ROV 
will disconnect the flowline after offloading is complete. This offloading sequence is illustrated 
in Figure 3. Throughout this process, the SST will maintain its position dynamically using its 
propeller and thrusters while being subjected to the environmental loads from ocean currents, 



as illustrated in Figure 4. The position is controlled using a Linear Quadratic Regulator (LQR) 
control system designed and tuned in Ma et al.  [9]. 

 

 

Figure 3 SST offloading sequence [4].  
 

 

Figure 4 SST subjected to environmental loads during offloading.  
Knowing the extreme positional responses (extreme surge and heave) is essential. This is 
because the extreme heave motion gives the maximum depth, determining the extreme 
hydrostatic load the SST will experience during operation. Hydrostatic loading is a dominating 
load and drives the collapse design of the SST pressure hulls. Further, the extreme surge motion 



will determine the length of the flowline required to avoid it being taut and resulting in snap 
loadings. In this paper, the extreme positional responses of the SST as illustrated in Figure 4 as 
the trajectory footprint (dotted red line) during offloading when the aft thruster fails is 
investigated for mean current velocities of 0.5, 1.0, and 1.5 m/s using the average conditional 
exceedance rate (ACER) method based. The empirical data is generated using time-domain 
simulations with a 2D planar Simulink model. 

 

2. 2D planar model 
2.1. Coordinate system 

The vehicle body-fixed coordinate system locates at the SST’s centre of gravity. The motion of 
the body-fixed frame of reference is relative to an earth-fixed reference frame (North, East and 
Down). The centre of buoyancy (CoB) location is right above the centre of gravity. The CoB is 
also at the geometric centre of the SST. The coordinate system is presented in Figure 5. 

 

 

Figure 5 SST coordinate system with measurement points.   
 

2.2. Simulink implementation 

The Simulink model is presented in Figure 6 and Figure 7  and is briefly discussed in this sub-
section. The model was initially developed by Ma et al. [10] to study the depth control problem 
and later extended in Ma et al. [9] to include more details on the thrusters, ballast tanks, control 
system and current loads. 



 

Figure 6 Simulink model implementation – Control system model feedback loop. 
 

 

Figure 7 Simulink model implementation – Plant model, Actuator system model and 
Current velocity model. 
The Simulink model consists of the following blocks: 

• Plant model: This model implements the equation of motions of the SST considering 
hydrostatics, hydrodynamic derivatives, body drag forces and body lift forces. 

• Actuator system model: This model implements the forces and moments resulting from 
the ballast tanks, the propeller, and thrusters.   

• LQR control system model: This model implements the LQR control system.  



• Observer: This implements the Luenberger Observer [11]. 
• Current velocity model: This model generates the ocean current velocities.  

 

2.3. Plant model 

The equations of motion are presented in Eq. ( 1 ) for the x, z, and q directions, respectively.  

𝑊𝑊(�̇�𝑢 + 𝑤𝑤𝑤𝑤) = 𝐹𝐹𝑥𝑥 + 𝐹𝐹𝑝𝑝 

𝑊𝑊(�̇�𝑢 − 𝑢𝑢𝑤𝑤) =  𝐹𝐹𝑧𝑧 + 𝐹𝐹𝑡𝑡𝑡𝑡 + 𝐹𝐹𝑡𝑡𝑡𝑡 + 𝐹𝐹𝑠𝑠 

𝐼𝐼𝑦𝑦𝑦𝑦�̇�𝑤 =  𝑀𝑀 + 𝑀𝑀ℎ𝑠𝑠 + 𝑀𝑀𝑡𝑡𝑡𝑡 + 𝑀𝑀𝑡𝑡𝑡𝑡 +𝑀𝑀𝑠𝑠 

( 1 ) 

 

where W is mass of the SST, u is the surge velocity in the SST body frame, w is the heave 
velocity in the SST body frame, q is the pitch angular velocity, Fx is the added and damping 
force in the surge direction, Fp is the propeller thrust force, Fz is the added mass and damping 
force in the heave direction, Ftf is the fore thruster force, Fta is the aft thruster force, Fs is the 
skeg force, Iyy is the pitch moment of inertia, M is the added mass and damping moment in pitch 
direction, Mhs is the hydrostatic restoring moment in pitch, Mtf is the pitch moment generated 
by the fore thruster, Mta is the pitch moment generated by the aft thruster and Ms is skeg pitch 
moment. Mhs is calculated using Eq. ( 2 ). 

𝑀𝑀ℎ𝑠𝑠 = 𝑧𝑧𝑏𝑏𝑊𝑊𝑊𝑊 sin𝜃𝜃 ( 2 ) 

 

where zb is the location of the centre of buoyancy (CoB), g is the gravitational acceleration, and 
θ is the pitch angle of the SST. 

The drag and lift forces and moment acting on the SST body, Fx, Fz and M from Eq. ( 1 ) are 
computed using Eq. ( 3 ). 

𝐹𝐹𝑥𝑥 = 𝑋𝑋�̇�𝑢�̇�𝑢 + 𝑋𝑋|𝑢𝑢|𝑢𝑢|𝑢𝑢|𝑢𝑢 + 𝑋𝑋𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝑋𝑋𝑤𝑤𝑤𝑤𝑤𝑤2 

𝐹𝐹𝑧𝑧 = 𝑍𝑍�̇�𝑤�̇�𝑤 + 𝑍𝑍�̇�𝑤�̇�𝑤 + 𝑍𝑍𝑢𝑢𝑤𝑤𝑢𝑢𝑤𝑤 + 𝑍𝑍|𝑤𝑤|𝑤𝑤|𝑤𝑤|𝑤𝑤 + 𝑍𝑍|𝑤𝑤|𝑤𝑤|𝑤𝑤|𝑤𝑤 + 𝑍𝑍𝑢𝑢𝑤𝑤𝑢𝑢𝑤𝑤 

𝑀𝑀 = 𝑀𝑀�̇�𝑤�̇�𝑤 + 𝑀𝑀�̇�𝑤�̇�𝑤 + 𝑀𝑀𝑢𝑢𝑤𝑤𝑢𝑢𝑤𝑤 + 𝑀𝑀𝑢𝑢𝑤𝑤𝑢𝑢𝑤𝑤 + 𝑀𝑀|𝑤𝑤|𝑤𝑤|𝑢𝑢|𝑢𝑢 + 𝑀𝑀|𝑤𝑤|𝑤𝑤|𝑤𝑤|𝑤𝑤 

( 3 ) 

 

where X|u|u, Z|w|w, and Z|q|q are the cross-flow drag terms, 𝑋𝑋�̇�𝑢, 𝑍𝑍�̇�𝑤, 𝑀𝑀�̇�𝑤, 𝑀𝑀�̇�𝑤 and 𝑍𝑍�̇�𝑤 are the added 
mass terms, Xwq, Xqq, and Zuq are the added mass cross-terms. M|w|w and M|q|q are the cross-flow 
drag terms, 𝑀𝑀�̇�𝑤 and 𝑀𝑀�̇�𝑤 are the added mass terms, Muq is the added mass cross term and fin lift, 
Zuw and Muw are the body lift and Munk moment. These terms are the hydrodynamic derivatives 
and are estimated following the procedure presented in Prestero [12] and presented in the 
following. 

The nonlinear axial drag hydrodynamic derivative X|u|u is estimated by Eq. ( 4 ): 

𝑋𝑋|𝑢𝑢|𝑢𝑢 = −0.5𝜌𝜌𝑐𝑐𝑑𝑑𝐴𝐴𝑡𝑡  ( 4 ) 

 



where cd is the axial drag coefficient, and Af  is the SST frontal area. cd = 0.145 and Af  = π·(8.5)2 
= 227.0 m2.  The cross-flow drag terms Z|w|w, Z|q|q, M|w|w, and M|q|q are expressed as follows: 

𝑍𝑍|𝑤𝑤|𝑤𝑤 = −0.5𝜌𝜌𝑐𝑐𝑑𝑑𝑑𝑑 � 2𝑅𝑅(𝑥𝑥)𝑑𝑑𝑥𝑥
𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏

𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
 

𝑀𝑀|𝑤𝑤|𝑤𝑤 = 0.5𝜌𝜌𝑐𝑐𝑑𝑑𝑑𝑑 � 2𝑥𝑥𝑅𝑅(𝑥𝑥)𝑑𝑑𝑥𝑥
𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏

𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
 

𝑍𝑍|𝑤𝑤|𝑤𝑤 = 0.5𝜌𝜌𝑐𝑐𝑑𝑑𝑑𝑑 � 2𝑥𝑥|𝑥𝑥|𝑅𝑅(𝑥𝑥)𝑑𝑑𝑥𝑥
𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏

𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
 

𝑀𝑀|𝑤𝑤|𝑤𝑤 = −0.5𝜌𝜌𝑐𝑐𝑑𝑑𝑑𝑑 � 2𝑥𝑥3𝑅𝑅(𝑥𝑥)𝑑𝑑𝑥𝑥
𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏

𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
 

( 5 ) 

 

where ddc is the cross flow drag coefficient of a cylinder, xtail is SST tail end position, xbow is 
SST bow position, R(x) is the SST hull radius at corresponding x position. ddc = 1.1 (Ref. 
Hoerner [13]),  xtail = -75.3 m, and xbow = 88.7 m.  

Blevins [14] provided an empirical formula for estimating the added mass of an ellipsoid. This 
is used to obtain the SST axial added mass, 𝑋𝑋�̇�𝑢 and given as follows: 

𝑋𝑋�̇�𝑢 = −
4𝛼𝛼𝛼𝛼𝜌𝜌

3
�
𝑙𝑙𝑠𝑠𝑠𝑠𝑡𝑡
2
� �
𝑑𝑑𝑠𝑠𝑠𝑠𝑡𝑡

2
�
2

 
( 6 ) 

 

where α is an empirical parameter, 𝑙𝑙𝑠𝑠𝑠𝑠𝑡𝑡 is the SST length, and 𝑑𝑑𝑠𝑠𝑠𝑠𝑡𝑡 is the SST diameter at the 
parallel mid-body. α = 0.021, 𝑙𝑙𝑠𝑠𝑠𝑠𝑡𝑡 = 164 m and 𝑑𝑑𝑠𝑠𝑠𝑠𝑡𝑡 = 17 m. From Newman [15], the added 
mass of a circle slice, ma(x), can be calculated by Eq. ( 7 ).  

𝑚𝑚𝑡𝑡(𝑥𝑥) = 𝛼𝛼𝜌𝜌𝑅𝑅(𝑥𝑥)2 ( 7 ) 

 

As a result, the cross-flow added mass terms could be expressed as: 

 

𝑍𝑍�̇�𝑤 = −� 𝑚𝑚𝑡𝑡(𝑥𝑥)𝑑𝑑𝑥𝑥
𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏

𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
 

𝑀𝑀�̇�𝑤 = � 𝑥𝑥𝑚𝑚𝑡𝑡(𝑥𝑥)𝑑𝑑𝑥𝑥
𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏

𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
 

𝑍𝑍�̇�𝑤 = 𝑀𝑀�̇�𝑤 

𝑀𝑀�̇�𝑤 = −� 𝑥𝑥2𝑚𝑚𝑡𝑡(𝑥𝑥)𝑑𝑑𝑥𝑥
𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏

𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
 

( 8 ) 

 

The cross term hydrodynamic derivatives are obtained from the added mass coupling. They are 
presented as follow: 



𝑋𝑋𝑤𝑤𝑤𝑤 = 𝑍𝑍�̇�𝑤 
𝑋𝑋𝑤𝑤𝑤𝑤 = 𝑍𝑍�̇�𝑤 
𝑍𝑍𝑢𝑢𝑤𝑤 = −𝑋𝑋�̇�𝑢 
𝑀𝑀𝑢𝑢𝑤𝑤 = −𝑍𝑍�̇�𝑤 

𝑀𝑀𝑢𝑢𝑤𝑤𝑡𝑡 = −(𝑍𝑍�̇�𝑤 − 𝑋𝑋�̇�𝑢) 

( 9 ) 

 

The SST body lift and lift moment can be expressed as follows: 

𝑍𝑍𝑢𝑢𝑤𝑤 = −0.5𝜌𝜌𝑑𝑑2𝑐𝑐𝑦𝑦𝑑𝑑𝑦𝑦 
𝑀𝑀𝑢𝑢𝑤𝑤𝑡𝑡 = −0.5𝜌𝜌𝑑𝑑2𝑐𝑐𝑦𝑦𝑑𝑑𝑦𝑦𝑥𝑥𝑑𝑑𝑝𝑝 

( 10 ) 

 

where 𝑐𝑐𝑦𝑦𝑑𝑑𝑦𝑦 is the Hoerner lift slope coefficient, and xcp is the x position of the viscous force 
centre. 𝑐𝑐𝑦𝑦𝑑𝑑𝑦𝑦=0.003 (Ref. Prestero [12]) and xcp= -31.6 m (Ref. Hoerner [13]).  

Finally, the pitch moment cross term Muw can be expressed as: 

𝑀𝑀𝑢𝑢𝑤𝑤 = 𝑀𝑀𝑢𝑢𝑤𝑤𝑡𝑡 + 𝑀𝑀𝑢𝑢𝑤𝑤𝑡𝑡 ( 11 ) 

 

2.4. Actuator system model 

The actuator system consists of the ballast tanks, the propeller, skegs, and thrusters. These are 
discussed in the following sub-sections.  

 

Ballast tanks 

The neutral buoyant and trim condition is maintained using the ballast tanks divided into the 
compensation tanks and the trim tanks. Two compensation tanks located at the fore and aft 
provide the trim moment and weight necessary to achieve neutral buoyancy. Further, two trim 
tanks that are smaller than the compensation tanks are located at the fore and aft. They provide 
the finer adjustments required to ensure that the CoG is vertically below the CoB. This helps to 
maintain the neutral trim condition. In addition to the ballast tanks, the buoyancy tanks also 
provide additional ballasting capacity to assist in the SST staying neutral buoyant. The locations 
of these tanks are presented in the general arrangement shown in Figure 8. 

 



 

Figure 8 Tank arrangement of the SST [4]. 
 

Propeller 

The SST uses a three-bladed Wageningen B-series propeller [16] with a diameter, dp of 7 m 
and a blade area ratio of 0.3. This results in a propeller thrust coefficient, KTp = 0.19. The 
propeller thrust force, Fp acting on the SST, is given as: 

𝐹𝐹𝑝𝑝 =  𝜌𝜌𝐾𝐾𝑇𝑇𝑝𝑝2 𝑛𝑛𝑝𝑝𝑑𝑑𝑝𝑝4 ( 12 ) 

 

where ρ is the seawater density, and np is the propeller rotational speed in rad/s.  

 

 

 

 

Skegs 

The pitch motion and depth of the SST are controlled by four skegs located at the starboard and 
port side of the aft. There are two skegs on each side. The force and pitch moment, Fs and Ms 
acting on the SST, respectively is given as: 

 



𝐹𝐹𝑠𝑠 = 0.5𝜌𝜌𝐶𝐶𝐿𝐿𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑠𝑠𝑢𝑢2 

𝑀𝑀𝑠𝑠 = 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐹𝐹𝑠𝑠 
( 13 ) 

 

where CL is the skeg’s lift rate coefficient, Sskeg is the skeg area, δs is the skeg angle, u is the 
effective inflow velocity and xskeg is the axial position of the fin post in the SST body frame.  
CL = 6.102 rad/s from Ma et al. [5] is used. This CL value is based on a hydrodynamic XFOIL 
evaluation [17] of Bower’s airfoil profile [18] subjected to a flow with Re = 5 x 106. Sskeg = 40 
m2, δs = 0 ° and xskeg = 67 m are used. 

 

Thrusters 

There are one fore and one aft thruster; both thrusters are identical.  The thruster force and 
resulting pitch moment acting on the SST, Ft and Mt are given in Eq. ( 14 ) and ( 15 ), 
respectively.  

𝐹𝐹𝑡𝑡 =  𝜌𝜌𝐾𝐾𝑇𝑇𝑡𝑡2 𝑛𝑛𝑡𝑡𝑑𝑑𝑡𝑡4 ( 14 ) 

 

𝑀𝑀𝑡𝑡 =  𝐹𝐹𝑡𝑡𝑥𝑥𝑡𝑡 ( 15 ) 

 

where KTt is the thrust coefficient, ρ is the water density, nt is the thruster rotational speed, dt 
is the thruster diameter, and xt is the location of the thruster on SST. KTt = 0.4, ρ = 1025 
kg/m3, dt = x m and xt = -60 m and 60 m (fore thruster and aft thruster, respectively) are used. 

 

2.5. LQR control system model 

The linear quadratic regulator (LQR) is a well-known design technique that provides optimally 
controlled feedback gains and is used in this paper. LQR has been a popular choice when it 
comes to underwater vehicles. It has been utilized for the depth-control of autonomous vehicles 
[22] and steering control [23]. The LQR method uses the state space equation system of the 
SST for deriving the required gains. This controller stabilizes the system using full state 
feedback. The state space equation can be written as: 

�̇�𝑥 = 𝐴𝐴𝑥𝑥 + 𝐵𝐵𝑢𝑢 

𝑦𝑦 = 𝐶𝐶𝑥𝑥 
( 16 ) 

 

where A is the state matrix, B is the input matrix, C is the output matrix, x is the state vector, u 
is the input vector, and y is the output vector. The calculation of the state space matrices is 
further described in Section 2.5.1. 

The optimal gain matrix of the LQR is found as a balance of the performance of the system and 
the actuator effort. A state-feedback controller u = -Kx is designed where K is the optimal 



feedback control gain matrix. Its purpose is to minimize the infinite horizon quadratic cost 
function J defined as:  

𝐽𝐽 = �(𝑥𝑥𝑇𝑇𝑄𝑄𝑥𝑥 + 𝑢𝑢𝑇𝑇𝑅𝑅𝑢𝑢)𝑑𝑑𝑑𝑑
∞

0

 ( 17 ) 

 

where Q is the state weighting matrix and R is the energy weighting matrix, which determines 
the importance of state error and energy expenditure, respectively. The controller is tuned by 
adjusting the weights of Q and R and is described further in Section 2.5.2. 

 

2.5.1. Linearized state space model 

Ma et al. [9] found that tuning for a 1 ° heading is appropriate for the head-on ocean current 
case, which this paper investigates. The model linearizer in Matlab is used. The inputs of the 
linearized model are [np; ntf; nta]. The outputs are [x; z; θ]. The state space matrices, A and B, 
are calculated using linearization at the operating point of the steady current velocity of 0.5, 1 
and 1.5 m/s, respectively, for the individual mean current velocity cases (Ref Section 4) at a 
heading of 1 °. This gives a 6 by 6 A, 6 by 3 B matrix, and a 3 by 6 C matrix as presented in 
Eq. ( 18 ) for the 1 m/s current velocity case.  

𝐴𝐴 =

⎣
⎢
⎢
⎢
⎢
⎡

0 0 0
0 0 0
0 0 0

1 0 0
0 1 0
0 0 1

0 0 −2.65 × 10−5
0 0 −2.87 × 10−6
0 0 −0.0237

−1.00 × 10−3 1.21 × 10−4 −0.0145
−1.32 × 10−4 −0.0089 0.0518
−6.21 × 10−5 0.0039 −0.0596⎦

⎥
⎥
⎥
⎥
⎤

 

𝐵𝐵 =

⎣
⎢
⎢
⎢
⎢
⎡

0
0
0

0
0
0

0
0
0

2.54 × 10−10
3.84 × 10−6
7.13 × 10−7

8.80 × 10−5
−5.25 × 10−9

0

4.24 × 10−10
6.40 × 10−6
−1.19 × 10−6⎦

⎥
⎥
⎥
⎥
⎤

 

𝐶𝐶 = �
1 0 0
0 1 0
0 0 1

0 0 0
0 0 0
0 0 0

� 

( 18 ) 

 

2.5.2. Control tuning 

The LQR controller is tuned based on the state-space matrices A and B. The SST is tuned by 
adjusting the weights of Q and R matrices. This iterative process does not follow any hard and 
fast rules or any strict technique. A complete understanding of the system dynamics is a must 
to tune the weights. Response time should be observed compared to the system's desired 
performance, allowing the designer to fine-tune the weights. The 22-coefficient and 33-
coefficient of the R matrix represent the efforts applied by the aft and fore thrusters. In this case, 
the 22-coefficient is set to 10-5 to represent a failure in the aft thruster.  The Q and R matrices 



were studied in Ma et al. [9] for the SST hovering in the current problem and provided good 
system responses. These are presented in Eq.  ( 19 ) and are used in this paper.  

𝑄𝑄 =

⎣
⎢
⎢
⎢
⎢
⎡
1 0 0
0 1 0
0 0 1

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1 0 0
0 1 0
0 0 1⎦

⎥
⎥
⎥
⎥
⎤

;𝑅𝑅 = �
0.01 0 0

0 10−5 0
0 0 1

� ( 19 ) 

 

The Q and R matrices in Eq.  ( 19 ) leads to the following K matrix presented in Eq. ( 20 ) for 
the 1 m/s current velocity case.  

𝐾𝐾 = �
0.61 98.49 −260.35 0.042 5.15 × 103 121.56

315.61 −196.87 304.40 2.69 × 103 −6.01 × 103 −481.54
0.0102 1.62 −4.31 7.86 × 10−4 85.29 1.98

� ( 20 ) 

 

2.6. Observer 

The discrete-time Luenberger Observer [11] is used in this paper to estimate the states of the 
SST. The observer implements the following discretised equation: 

𝑥𝑥�(𝑘𝑘 + 1) = 𝐴𝐴𝑑𝑑𝑥𝑥�(𝑘𝑘) + 𝐵𝐵𝑑𝑑𝑢𝑢(𝑘𝑘) + 𝐿𝐿𝑑𝑑�𝑦𝑦(𝑘𝑘)− 𝑦𝑦�(𝑘𝑘)� ( 21 ) 

 

where 𝑥𝑥�(𝑘𝑘) is the kth estimated state vector, 𝑦𝑦�(𝑘𝑘) is the kth estimated output vector, u(k) is the 
kth input vector, y(k) is the kth measure output vector, Ad is the discretised state matrix, Bd is 
the discretised input matrix and Ld is the discretized observer gain matrix. The Ad and Bd 
matrices used are the A and B matrices obtained from the linearized model presented in Section 
2.5.1. Ld is chosen based on a pole placement study presented in Ma et al. [9] and is shown in 
Eq. ( 22 ). 

𝐿𝐿𝑑𝑑 = �
4818 179 33 53003 2034 331

114 −1373 982 1049 11826 43893
−211 2336 −1672 −2200 25260 −50749

� ( 22 ) 

 

2.7. Current velocity model 

The ocean current velocity, Vc and current inflow angle 𝜃𝜃𝑑𝑑 are generated using a first-order 
Gauss-Markov process [19], [20]: 

 

𝑉𝑉�̇�𝑑 + 𝜇𝜇1𝑉𝑉𝑑𝑑 = 𝜔𝜔1 

𝜃𝜃�̇�𝑑 + 𝜇𝜇2𝜃𝜃𝑑𝑑 = 𝜔𝜔2 
( 23 ) 

 

where μ1 and μ2 are constants that determine the time constant of the Gauss-Markov process 
and is a non-negative value according to Fossen’s recommendation [19]. ω1 and ω2 are 



Gaussian white noises. In this study, a small value μ1 = μ2 = 1 is used to generate a steady state 
current. The noise power of ω1 and ω2 is set to be 0.1 to render the fluctuating part in current 
velocity and current direction. The design current velocity for the SST is 1 m/s which is the 
highest observed current velocity at the Norwegian coastal [21]. 

The current velocities in the surge and heave directions (SST body frame) are then calculated 
as: 

𝑢𝑢𝑑𝑑 = 𝑉𝑉𝑑𝑑 cos𝜃𝜃𝑑𝑑 

𝑤𝑤𝑑𝑑 = 𝑉𝑉𝑑𝑑 sin𝜃𝜃𝑑𝑑 
( 24 ) 

 

where uc and wc are the water velocities in the x and z directions, respectively. The incoming 
water velocity experience by the SST, u and w in the surge and heave directions (SST body 
frame) are calculated as follows: 

𝑢𝑢 = 𝑢𝑢𝑠𝑠𝑠𝑠𝑡𝑡 − 𝑢𝑢𝑑𝑑 

𝑤𝑤 = 𝑤𝑤𝑠𝑠𝑠𝑠𝑡𝑡 − 𝑤𝑤𝑑𝑑 
( 25 ) 

 

where usst and wsst are the velocities of the SST in the surge and heave directions (SST body 
frame). 

 

3. Averaged conditional exceedance rate (ACER) method  

Consider a long term global response process 𝑋𝑋(𝑑𝑑) of the submarine hull, measured over a time 
interval (0,𝑇𝑇). Let 𝑋𝑋1, … ,𝑋𝑋𝑁𝑁 be measurements of the process 𝑋𝑋(𝑑𝑑) at discrete points in time  
𝑑𝑑1, … , 𝑑𝑑𝑁𝑁 in (0,𝑇𝑇). The target is to estimate the distribution function of the extreme value  𝑀𝑀𝑁𝑁 =
max {𝑋𝑋𝑗𝑗 ; 𝑗𝑗 = 1, … ,𝑁𝑁}  accurately namely, to estimate CDF (cumulative density function) 
𝑃𝑃(𝜂𝜂) = Prob(𝑀𝑀𝑁𝑁 ≤ 𝜂𝜂) for large values of the response 𝜂𝜂. The following random functions are 
introduced:  

 

𝐴𝐴𝑠𝑠𝑗𝑗(𝜂𝜂) = 𝟏𝟏�𝑋𝑋𝑗𝑗 > 𝜂𝜂,𝑋𝑋𝑗𝑗−1 ≤ 𝜂𝜂, … ,𝑋𝑋𝑗𝑗−𝑠𝑠+1 ≤ 𝜂𝜂� , 𝑗𝑗 = 𝑘𝑘, … ,𝑁𝑁,𝑘𝑘 = 2, 3, … ( 26 ) 

 

and  

𝐵𝐵𝑠𝑠𝑗𝑗(𝜂𝜂) = 𝟏𝟏�𝑋𝑋𝑗𝑗−1 ≤ 𝜂𝜂, … ,𝑋𝑋𝑗𝑗−𝑠𝑠+1 ≤ 𝜂𝜂� , 𝑗𝑗 = 𝑘𝑘, … ,𝑁𝑁,𝑘𝑘 = 2, 3, … , ( 27 ) 

 

where 𝟏𝟏{𝒜𝒜} = 1 if 𝒜𝒜 is true, while it is 0 if not. As shown in [24] - [28]: 

𝑃𝑃𝑠𝑠(𝜂𝜂) ≈ exp ( −�
𝔼𝔼[𝐴𝐴𝑠𝑠𝑗𝑗(𝜂𝜂)]
𝔼𝔼[𝐵𝐵𝑠𝑠𝑗𝑗(𝜂𝜂)]

𝑁𝑁

𝑗𝑗=𝑠𝑠

) ≈ exp ( −�𝔼𝔼
𝑁𝑁

𝑗𝑗=𝑠𝑠

[𝐴𝐴𝑠𝑠𝑗𝑗(𝜂𝜂)]), 𝜂𝜂 → ∞ ( 28 ) 

 



The measured time series can be subdivided into 𝐾𝐾 subsequent (short term) blocks such that 
𝔼𝔼[𝐴𝐴𝑠𝑠𝑗𝑗(𝜂𝜂)] remains approximately constant within each block and such that ∑ 𝔼𝔼𝑗𝑗∈𝐶𝐶𝑡𝑡 [𝐴𝐴𝑠𝑠𝑗𝑗(𝜂𝜂)] ≈
∑ 𝑎𝑎𝑠𝑠𝑗𝑗𝑗𝑗∈𝐶𝐶𝑡𝑡 (𝜂𝜂) for a sufficient range of 𝜂𝜂-values, where 𝐶𝐶𝑖𝑖 stands for the set of indices for the 
block with number 𝑖𝑖; with 𝑖𝑖 = 1, … ,𝐾𝐾, and where 𝑎𝑎𝑠𝑠𝑗𝑗(𝜂𝜂) are the realized values of 𝐴𝐴𝑠𝑠𝑗𝑗(𝜂𝜂) for 
the measured time series, then ∑ 𝔼𝔼𝑁𝑁

𝑗𝑗=𝑠𝑠 [𝐴𝐴𝑠𝑠𝑗𝑗(𝜂𝜂)] ≈ ∑ 𝑎𝑎𝑠𝑠𝑗𝑗𝑁𝑁
𝑗𝑗=𝑠𝑠 (𝜂𝜂). Thus, for a given long term 

response process, one can write 

 

𝑃𝑃𝑠𝑠(𝜂𝜂) ≈ exp ( − (𝑁𝑁 − 𝑘𝑘 + 1)𝜀𝜀�̂�𝑠(𝜂𝜂)) , ( 29 ) 

 

where  

𝜀𝜀�̂�𝑠(𝜂𝜂) =
1

𝑁𝑁 − 𝑘𝑘 + 1
�𝑎𝑎𝑠𝑠𝑗𝑗

𝑁𝑁

𝑗𝑗=𝑠𝑠

(𝜂𝜂) . ( 30 ) 

 

In the above equations, an assumption of ergodicity has been used for each short term segment 
of the recorded time series in order to estimate the short term expected values by using observed 
values of the 𝑎𝑎𝑠𝑠𝑗𝑗(𝜂𝜂) functions.  An alternative way of expressing the long term extreme value 
distribution in Eq. (29), is obtained by considering the empirical probability distribution of 𝑚𝑚 =
1, . . ,𝑀𝑀 sea current states having probabilities 𝑝𝑝𝑚𝑚, so that ∑ 𝑝𝑝𝑚𝑚𝑀𝑀

𝑚𝑚=1 = 1. Next, introduce the 
long term ACER function of order k 

ACERk(𝜂𝜂) ≡ � 𝜀𝜀�̂�𝑠(𝜂𝜂,𝑚𝑚)
𝑀𝑀

𝑚𝑚=1

𝑝𝑝𝑚𝑚 ( 31 ) 

 

where 𝜀𝜀�̂�𝑠(𝜂𝜂,𝑚𝑚) has the same expression as in Eq. ( 30 ) but restricted to the specific sea state 
with number 𝑚𝑚.  As shown in [24] - [28], the long-term extreme value distribution of 𝑀𝑀(𝑇𝑇), 
can then be expressed as follows based on the ACER function of order k: 

 

𝑃𝑃(𝜂𝜂) ≈ exp�−𝑁𝑁·ACERk(𝜂𝜂)� ( 32 ) 

 

where 𝐴𝐴𝐶𝐶𝐴𝐴𝑅𝑅𝑠𝑠(𝜂𝜂) is the long term empirical ACER function of order k, with k ≪ 𝑁𝑁; 𝑁𝑁 is the 
total number of data points from the recorded time series used in the estimation of the ACER 
functions. Typically, this could be local peaks from the measured time series.  

As the order k increases, the accuracy of Eq. ( 32 ) improves; results from Section 0 ????? of 
this paper show that the ACERk(𝜂𝜂) functions converge conveniently fast with growing k, see 
[24] - [28]. Note that by increasing the conditioning level k, possible data clustering effects, e.g. 
with narrow-band response components in the recorded time series, can be accounted for. This 



is an essential advantage of ACER method as it increases the accuracy of its extreme predictions 
and avoids resulting in over-conservative design values. 

The ACERk as functions of the level 𝜂𝜂 are generally quite regular in the tail, i.e., for high 
response values of  𝜂𝜂 . More specifically, for 𝜂𝜂 ≥ 𝜂𝜂0 , the tail behaves very closely like 
exp{−(𝑎𝑎𝜂𝜂 + 𝑏𝑏)𝑑𝑑 + 𝑑𝑑} with 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑 being suitable constants.  

It is suggested to do the optimization on the log-level by minimizing the following mean square 
error function F with respect to the four arguments 𝑎𝑎𝑠𝑠, 𝑏𝑏𝑠𝑠, 𝑐𝑐𝑠𝑠,𝑝𝑝𝑠𝑠, 𝑤𝑤𝑠𝑠. 

 

                  𝐹𝐹(𝑎𝑎𝑠𝑠 ,𝑏𝑏𝑠𝑠 , 𝑐𝑐𝑠𝑠 ,𝑝𝑝𝑠𝑠 ,𝑤𝑤𝑠𝑠)=� 𝜔𝜔(𝜂𝜂)
𝜂𝜂1

𝜂𝜂0
�ln�ACERk(𝜂𝜂)� − 𝑑𝑑𝑠𝑠 + (𝑎𝑎𝑠𝑠𝜂𝜂 + 𝑏𝑏𝑠𝑠)𝑑𝑑𝑘𝑘�

2

𝑑𝑑𝜂𝜂,

𝜂𝜂 ≥ 𝜂𝜂0 
( 33 ) 

 

where 𝜂𝜂1 is a suitable data cut-off value, i.e. the largest 𝜂𝜂 response value with a confidence 
interval with acceptable interval width. The weight function ω is defined as 𝜔𝜔(𝜂𝜂)={ln𝐶𝐶+(𝜂𝜂) −
ln𝐶𝐶−(𝜂𝜂)}−2with �𝐶𝐶−(𝜂𝜂),  𝐶𝐶+(𝜂𝜂)� being a 95% CI, empirically estimated from the measured 
data. A detailed procedure for further optimizing parameters 𝑎𝑎𝑠𝑠, 𝑏𝑏𝑠𝑠, 𝑐𝑐𝑠𝑠,𝑑𝑑𝑠𝑠  has been outlined in 
[24] - [28]. 

 

4. Case studies 

Three mean current velocities of 0.5, 1.0 and 1.5 m/s are studied in this paper. A total of 20 4-
hour simulations is performed for each mean current velocity, i.e., there is a total of 60 4-hour 
simulations performed in this paper. The responses at the five measurement points presented in 
Figure 4 are considered. These are five evenly spaced points located at the bottom along the 
length of the SST. 

 

5. Results and discussions 

This paper presents the methodology for estimating the SST’s extreme responses hovering in 
ocean current during offloading when the aft thruster fails. The empirical data is based on 
accurate numerical simulations using a Simulink model as presented in Section 2. The ACER2D 
(bivariate averaged conditional exceedance rate) method is presented in Section 3. The 
proposed methodology provides an accurate bivariate extreme value prediction, utilizing all 
available data efficiently. Based on the overall performance of the proposed method, it was 
concluded that the ACER2D method could incorporate environmental input and provide a more 
robust and accurate bivariate prediction based on proper numerical simulations. For a detailed 
definition of ACER1D and ACER2D functions, see [24] - [28]. 
The described approach may be used at the SST design stage to provide the opportunity of 
defining optimal vessel motion control parameters that would minimize potential vessel 
damage.   
 



5.1. Time-domain responses 

Figure 9 presents R1 and R5 displacement responses simulated time series. R1 and R5 are the 
locations at the aft and fore of the bottom of the SST, respectively, as illustrated in Figure 5. 
Each time record is 80 hours, comprising 20 independent 4-hour time series. It is seen that 
response R5 possesses asymmetric behaviour with respect to its upper and lower bounds. The 
latter indicates more efficient control on the upper response bound. 

 

 

 
Figure 9 Response time series. Top: R1 (SST aft); Bottom: R5 (SST fore). Current speed 0.5 
m/s 

Figure 10 presents the PSD (power spectral density) of the response R1. It is seen that there is 
a PSD peak at the frequency, f of about 0.005 Hz, or equivalently at the eigenperiod, T of about 



3 minutes. The latter information should be reflected in the choice of conditioning level k of 
ACER functions, see Section 3. 

 

Figure 10 Response R1 (SST aft) PSD. Current speed = 0.5 m/s 

The 4-hour maxima responses for the 20 simulations are presented in Figure 11. As observed, 
there are differences in the individual 4-hour maxima response in each simulation case. This is 
an inherent property of all stochastic processes, highlighting the importance of using extreme 
value prediction methods such as the ACER method to predict longer-term maxima responses 
used as design characteristic values accurately. In general, the responses at the aft and fore, i.e., 
R1 and R5, are significantly larger than the responses closer to the centre of the SST. The SST 
aft and fore move more in heave due to the contribution from the pitch motion.  Further, the R1 
(SST aft) responses are more significant than the R5 (SST fore) responses. This is because the 
aft thruster has failed and is not working. The differences between the R1 (SST aft) and the R5 
(SST fore) responses increase with decreasing mean current velocities.  

  



 

 

 
Figure 11 4-hour maxima responses for the 20 simulations. Top: Vc = 0.5 m/s; Middle: Vc = 1 
m/s; Bottom: Vc = 1.5 m/s.  
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The maximum responses corresponding to each current velocity for the 20 4-hour simulations 
are summarised in Table 2. 

Table 2 Maximum SST responses for 20 4-hour simulations 

SST response [m] Vc = 0.5 m/s Vc = 1 m/s Vc = 1.5 m/s 
R1 (SST aft) 3.476 7.512 9.495 
R2 (SST aft-centre) 2.454 4.968 6.324 
R3 (SST centre) 1.446 2.594 4.684 
R4 (SST centre-fore) 1.125 1.616 6.109 
R5 (SST fore) 1.368 3.850 8.042 

 

5.2. Extreme responses: univariate and bivariate analysis 

This section presents statistical analysis results for R1 and R5 displacement responses using the 
univariate and bivariate methods, i.e. ACER1D and ACER2D, respectively, [24]-[35]. The 
focus is on the accurate prediction of extreme response, which is vital for safety and reliability 
at the design stage. The conditioning level k is set to be 50, as it was observed that ACER 
functions have converged at that level in the distribution tail, see Section 3. 

Figure 12 presents univariate extreme response 5-year return period prediction with 95 % 
confidence interval (CI); the 5-year return period is chosen purely as an example. The predicted 
extreme probability level is selected as 𝑝𝑝 = 10−9. Note that the original 80 hours data set has 
at most a probability level of about  𝑝𝑝 = 1/𝑁𝑁 ≈ 2 ∙ 10−7 with N being the number of discrete 
time data points in the underlying response time series. Therefore, the probability tail was 
extrapolated two orders below what the original data contains. Note that probability level, 𝑝𝑝 is 
inversely related to a return period, T, which can be given, for example, in years.  Figure 13 
presents the Gumbel plot for R5. The dashed line indicates extrapolation towards a 5-year return 
period. The prediction in Figure 13 can be directly compared with Figure 12 (bottom). Although 
both methods predicted 5-year return period R5 (SST fore) values of about 1.5 meters, it is seen 
that Gumbel 20 4-hour maxima points do exactly align into a straight line. This means that the 
asymptotic generalized extreme value (GEV) condition was not yet developed in the analysed 
data set. Subsequently, the Gumbel method bootstrapped 95 % CI is substantially wider than 
the 95 % CI predicted by the ACER method. The much smaller 95 % CI is a clear advantage of 
the ACER1D method. 

  



 

 
Figure 12 Univariate ACER1D extreme response 5-year prediction with 95% CI (dotted lines). 
Top: R1 (SST aft); Bottom: R5 (SST fore); decimal log scale. Current speed = 0.5 m/s. 

  



 

Figure 13 Gumbel plot for R5 (SST fore), dashed line indicates extrapolation towards a 5-year 
return period. 20 4-hours maxima points. Current speed = 0.5 m/s. 

Figure 14 presents the phase space for responses R1 (SST aft) vs R5 (SST fore), along with the 

bivariate empirical ACER2D function ℰ̂𝑠𝑠  (see Section 3). It is clearly seen that there is a 
nonlinear correlation between responses R1 (SST aft) and R5 (SST fore). The bivariate empirical 
ACER2D surface, ℰ̂𝑠𝑠  obviously marginally corresponds to univariate ACER1D functions 
presented in Figure 12. 

 

  



 

 
Figure 14 Top: phase space, response R1 (SST aft) vs R5 (SST fore); Bottom: bivariate 
empirical ACER2D function ℰ̂𝑠𝑠, decimal log scale. Current speed = 0.5 m/s. 

  



Figure 15 presents the ACER2D fit to empirical data along with the predicted bivariate contours 
with return periods in years (on the right). Figure 15 shows the contour lines for the optimized 
Asymmetric logistic (AL) 𝒜𝒜𝑠𝑠(𝑅𝑅1,𝑅𝑅5)  and optimized Gumbel logistic (GL) 𝒢𝒢𝑠𝑠(𝑅𝑅1,𝑅𝑅5) 
models, optimally matched to the corresponding empirical bivariate ACER2D function 
ℰ̂𝑠𝑠(𝑅𝑅1,𝑅𝑅5), 𝑘𝑘 = 50, see Gaidai et al. [29][30][32][33], Gao et al. [31] and Xu et al. [34] for 
more information on GL and AL definitions. The contour lines negative labelling numbers in 
Figure 15 indicate decimal logarithmic scale probability levels of 𝑃𝑃(𝑅𝑅1,𝑅𝑅5). Figure 15 clearly 
shows that the empirical bivariate ACER2D surface ℰ̂50 well captures the strong correlation 
between load/response components. The optimized models 𝒢𝒢50  and 𝒜𝒜50  exhibit smooth 
contours along with matching ACER2D empirical contours. The later models may be better 
suited for the response processes bivariate extreme value distributions. Figure 15 shows good 
agreement between the estimated optimized AL and GL surfaces and the bivariate ACER2D 
surface. This means that the correlation between responses R1 (SST aft) and corresponding 
R5 (SST fore) is a crucial non-negligible factor influencing the shape of the bivariate contour 
lines. 

  



 

 
Figure 15 Top: ACER2D fit to empirical data; Bottom: predicted bivariate contours with return 
periods in years. Current speed = 0.5 m/s. 

  



 

The lowest probabilities in Figure 14 and Figure 15 correspond to the value 𝑁𝑁−1 where 𝑁𝑁 is the 
number of equidistant time points in the studied  time series, see Eqs. ( 28 ) to ( 32 ) in Section 
3. Figure 15 (bottom) presents the predicted bivariate contours with corresponding return 
periods of 2 and 5 years. Note that the return period of a few years is quite long compared to 
the short duration of the analysed measured record. As seen from Figure 15 (bottom), the fitted 
lines match the empirical data well, highlighting the accuracy of the ACER method. Further the 
ACER method is efficient as it requires only 20 4-hour realisations to generate accurate results.  

Figure 16 shows that the univariate design point lies outside the safe 2-years zone (dashed area) 
and is outside the 2D design zone. This means that the 1D method is not conservative. 

 
Figure 16 Design safe 2D zone (dashed) due to bivariate analysis, versus univariate 1D design 
point, based on Figure 15. Asymmetric logistic 𝒜𝒜𝑠𝑠(𝑅𝑅1,𝑅𝑅5) 2-years contour line. 

Table 3 presents 5-year return period response predictions in meters, compared between the 
ACER and Gumbel methods. It is seen from the 95 % CI width that the ACER method offers 
more accurate predictions than the Gumbel fit.  

Table 3 5-year return period response predictions in meters with 95 % CI in brackets. 

 0.5 m/s 1 m/s 
ACER R1 (SST aft) 95 % CI   4.65 

(4.21,5.29) 
9.14 

(7.70, 10.03) 
Gumbel R1 (SST fore) 95 % CI   5.12 

(3.86, 6.01) 
9.91 

(7.24, 11.31) 
ACER R5 (SST fore) 95 % CI   1.77 

(1.64, 1.91) 
6.97 

(5.54, 8.35) 
Gumbel R5 (SST fore) 95 % CI   1.79 

(1.52, 2.05) 
6.29 

(4.76, 9.43) 
 

 



6. Conclusions 

The SST is an innovative subsea cargo drone in its very early stages of development with many 
research and development problems to be solved. Hydrostatic loading is a dominating load and 
drives the collapse design of the SST pressure hulls. This paper proposed using the ACER2D 
method to investigate the extreme positional responses (extreme surge and heave) during SST 
offloading in ocean current, considering that the aft thruster fails. Knowing the extreme 
positional responses is important because it gives the maximum depth, which determines the 
extreme hydrostatic load the SST will experience during operation. Further, the extreme surge 
motion will determine the length of the flowline required to avoid it being taut and resulting in 
snap loadings. The ACER2D method is implemented by expressing the long-term extreme 
value distribution in terms of the bivariate average conditional exceedance rate functions.  

It is shown that the extreme responses with return periods of 5 years are, in general, higher than 
the maxima of the 4-hour response by a factor of two. This indicates that the thrusters could be 
required to be sized for two times the mean ocean current velocity speed. Further, it is seen that 
the response at the aft where the thruster fails is two times larger than the response at the fore 
of the SST. 

Regarding the safety and reliability of vessel operation, the multivariate analysis is a more 
proper approach than the classic univariate approach. The presented bivariate technique has the 
following advantages: 

• ACER2D method is Monte Carlo based and does not simplify inherent model non-
linearities.   

• Various kinds of coupled data can be studied: experimentally measured or numerically 
simulated. 

• Clustering and narrow-band effects can be accounted for. 
• Unlike various methods based on asymptotic assumptions, e.g., univariate Gumbel 

(which is also investigated in this paper), Pareto, POT, Weibull, the bivariate ACER2D 
method provides an accurate estimate of the exact bivariate extreme value without 
directly involving asymptotic assumptions.  

• The ACER2D method may provide an efficient way of identifying bivariate copula 
models appropriate for practical design. 

• A novel and more safe design approach has been outlined based on bivariate analysis.  
 
The proposed approach in this paper is useful for further developing the SST design, assisting 
dynamic parameters optimization and minimizing potential vessel damage. Bivariate contours 
facilitate the choice of bivariate design points. This contrasts with using a pair of uncoupled 
univariate design points with the same return period, which is the current practice adopted in 
the industry. The univariate design approach has been shown to result in a non-conservative 
design factor. The multivariate analysis could lead to a safer vessel design extension of the 
bivariate approach. Lastly, the proposed method can be applied to other innovative subsea 
drones, such as the subsea freight-glider [36][37]. 
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