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A B S T R A C T

The rate of penetration (ROP) is a key performance indicator in the oil and gas drilling industry as it directly
translates to cost savings and emission reductions. A prerequisite for a drilling optimization algorithm is a
predictive model that provides expected ROP values in response to surface drilling parameters and formation
properties. The high predictive capability of current machine-learning models comes at the cost of excessive
data requirements, poor generalization, and extensive computation requirements. These practical issues hinder
ROP models for field deployment. Here we address these issues through transfer learning. Simulated and real
data from the Volve field were used to pre-train models. Subsequently, these models were fine-tuned with
varying retraining data percentages from other Volve wells and Marcellus Shale wells.

Four out of the five test cases indicate that retraining the base model would always produce a model
with a lower mean absolute error than training an entirely new model or using the base model without
retraining. One was on par with the traditional approach. Transfer learning STL allowed for reducing the
training data requirement from a typical 70 percent down to just 10 percent. In addition, transfer learning
reduced computational costs and training time. Finally, results showed that simulated data could be used
without real data or in combination with real data to train a model without trading off the model’s predictive
capability.

On top of our previous work Pacis et al. (2022) from a single transfer learning, we explored continuous
transfer learning (CTL) in Alvheim field wells. Due to the inherent uncertainty and dynamics of drilling data, it
was no surprise that continuous retraining further reduced the error than a single transfer learning paradigm.
Moreover, we investigated the effect of drilled formations and input combinations on model performance.
1. Introduction

According to a 2016 study by EIA [1], drilling constitutes 30%–
60% of the average cost per well, which varies from $4.9 MM to $8.3
MM for onshore wells and $120 MM to $230MM for offshore wells.
Thus, a modest improvement in the duration of drilling a well results
in significant monetary savings. Among other factors such as prevent-
ing a non-productive time due to equipment failure or poor weather
conditions, choosing the optimal drilling parameters to increase ROP is
essential in reducing drilling duration.

Many attempts have been made on predicting the ROP. Although
with some success [2], traditional physics-based models require fre-
quent recalibration depending on the auxiliary data such as facies types,
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bit design, and mud properties [3–6]. This is challenging since facies
types, in particular, are often unknown prior to drilling and would
require correlation to data from nearby (offset) wells, if such wells exist.

Machine learning (ML) models try to address these challenges by us-
ing data to find correlations among many drilling variables. A study by
Hegde et al. [7] showed an improvement in ROP prediction in accuracy
from 0.46 to 0.84 when using random forest. Elkatatny et al. [8] also
showed an improvement from 0.72 to 0.94 using an Artificial Neural
Network (ANN).

Despite significant improvements in recent years, no ML approach
has been widely used for ROP optimization to date [9]. The poten-
tial reason could be that the existing ML models are impractical for
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Fig. 1. Data utilization for traditional vs. transfer learning approaches for well data. The traditional approach uses most of the well data for training. Single transfer learning
retrains a pre-trained model using a small portion of the well data. In stateful continuous transfer learning, as soon as the pre-determined well data comes, it retrains the most
recent retrained model, giving several model versions for a single well.
real-time ROP prediction tasks. Developing an ML ROP model is a mul-
tidimensional problem that does not revolve solely around prediction
accuracy. Higher predictive capability comes at the cost of substantial
data requirements, computational constraints, and generalization capa-
bility. From a practical perspective, tackling these constraints would be
desirable for several reasons.

First, the need for large datasets for training a model for every
well would limit the value creation. ANN training, such as Elkatatny
et al. [8] and Abbas et al. [10], would require 70% of data for training;
rendering these methods essentially not applicable in real scenarios
since only a fraction of a well can benefit from such approach, see
Fig. 1.

Second, ML models presented by O’Leary et al. [9], Mantha
et al. [11], and Hegde et al. [7] require a priori knowledge on the
formations being drilled. However, this information is rarely available
prior to drilling the hole. This is problematic for wells drilled in new
areas where offset wells do not exist yet.

Third, ROP prediction is a real-time regression problem. Unlike
physics-based models that only require pre-identification of parame-
ters, the ML requires training before deployment. Hence, one should
consider the online computation requirements.

Fortunately, ROP ML models’ issues are not foreign in other do-
mains. Deep Learning models, in general, suffer from overfitting due
to insufficient training data [12]. Transfer learning (TL) is an active
research field in Deep Learning that deals with reusing a model trained
from a more general task, termed base model or pre-trained model, to
another specific tasks, termed target model. TL techniques have been
proven successful in many domains such as computer vision and natural
language processing [13].

In this paper, we present the application of TL to ROP prediction.
To our knowledge, this is the first application of TL in the context
of drilling. We train base models using real, simulated, and combined
data from previously drilled wells. Then, we reconfigure each model
by freezing some model parameters to limit the number of trainable
parameters. Each reconfigured base model is retrained using a small
fraction of target-well data, yielding a target model. This way, a high-
quality target model is already available from the drilling operation’s
early stage, see Fig. 1. The performance of our TL models is compared
to both the base models and models trained only for the data from the
new well. Furthermore, we showed the benefits of leveraging transfer
learning to continuously retrain the ROP model using the most recent
data using the strategies learned from Pacis et al. [14].

The paper is an extension of previous works [14,15] and is orga-
nized as follows. In Section 2, we briefly discuss the concept of TL. In
2

Section 3, we describe the datasets and proceed with the experimental
setup, including the model architecture, input data, and the method
for training and retraining. We also provide an end-to-end sample
application of the TL approach. Section 4 presents the results of the
single and continuous transfer learning paradigm. Section 5 concludes
the paper.

2. Transfer learning

Following the notations by Pan and Yang [13], Transfer Learning
mainly involves a domain 𝐷 and Task 𝑇 . The domain, denoted by
𝐷 = {𝑋,𝑃𝑋}, includes two components: a feature space 𝑋 and a
marginal probability distribution 𝑃𝑋 , where each input instance is
denoted by 𝑥 ∈ 𝑋. On the other hand, the task, denoted by 𝑇 =
{𝑌 , 𝑓 (⋅)}, includes all possible labels 𝑌 and a predictive function 𝑓 (⋅)
that predicts a corresponding label using unseen instances {𝑥 ∗}𝑠. For
a two domain scenario, given a source domain 𝐷𝑠 and learning task 𝑇𝑠,
a target domain 𝐷𝑡 and learning task 𝑇𝑡, where 𝐷𝑠 ≠ 𝐷𝑡, or 𝑇𝑠 ≠ 𝑇𝑡,
TL leverages learned knowledge from 𝑇𝑠 to improve the 𝑇𝑡 predictive
function. Subscripts s and t here corresponds to source and target,
respectively.

The most common TL technique is fine-tuning [16]. In the context
of ANN, fine-tuning involves reusing the whole network or freezing
certain hidden layers before updating the network weights during
retraining for the target task. Fine-tuning works based on the premise
that Deep Learning models learn different features at different layers.
Thus, reusing a pre-trained model for a target task allows better perfor-
mance with less training time by starting from ‘‘near truth’’ parameters
than training a new model with randomly initialized parameters. More
so, supervised training of feedforward networks does not impose any
explicit condition on the learned intermediate features. Neural network
training is non-deterministic which converges to a different function
every time it is run. Using a pre-trained network reduces the variance
of estimation process [17].

TL has been widely used both in computer vision and Natural
Language Processing [13,18]. This is apparent from the proliferation of
pre-trained networks e.g., VCG-16 [19], XLNet [20], GPT-3 [21] using
large datasets e.g., ImageNet2, Giga53, and Common Crawl Dataset4,
and reused in domains where data is expensive or hard to obtain. For

2 https://www.image-net.org
3 https://catalog.ldc.upenn.edu/LDC2011T07
4 https://commoncrawl.org/the-data/
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Table 1
Description of datasets.
Well name Hole size (in) Depth range (m) Dataset type Dataset source type Test case #

F-1 A 8.5 2602–3682 Train & Val. Sim. & Real
F-1 B 12.25 2603–3097 Train & Val. Sim. & Real
F-1 B 8.5 3097–3465 Retrain & Test Real 4
F-1 C 12.25 2662–3056 Retrain & Test Real 2
F-1 C 8.5 3067–4094 Train & Val. Sim. & Real
F-11 A 8.5 2616–3762 Train & Val. Sim. & Real
F-11 B 12.25 2566–3197 Train & Val. Sim. & Real
F-11 B 8.5 3200–4771 Retrain & Test Real 3
F-15 A 17.5 1326–2591 Retrain & Test Real 1
F-15 A 8.5 2656–4095 Train & Val. Sim. & Real
F-9 A 12.25 489–996 Train & Val. Sim. & Real
F-9 A 8.5 1000–1202 Train & Val. Sim. & Real
Marcellus Shale 8.75 1974–4405 Retrain & Test Real 5
Alvheim well A 12.25 1928–3360 Retrain & Test Real 6
Alvheim well B 12.25 2156–3490 Retrain & Test Real 7
example in medical imaging, Shin et al. [22] fine-tuned AlexNet [23]
— a pre-trained network using ImageNet dataset [24] with more than
14 million images belonging to around 20 thousand categories. They
successfully achieved 85% sensitivity at 3 false positive per patient in
thoraco-abdominal lymph node (LN) detection and interstitial lung dis-
ease (ILD) classification. Another successful application, Bird et al. [25]
used a simulated scene from a computer game to train a model and
resulted in an improvement for the real-world scene classification task.

Pre-trained networks also catalyzed the recent advances in Natural
Language Processing (NLP). For example, Devlin et al. [26] introduced
Bidirectional Encoder Representations from Transformers (BERT),
which can be fine-tuned with adding an output layer to create state-
of-the-art models for a wide range of tasks. Successful applications
of BERT include text summarizing [26], modeling clinical notes and
predicting hospital readmission [27], and machine reading compre-
hension [26].

The success of TL is apparent from its ubiquitous applications. This
motivated websites, such as Hugging Face5 and Model Zoo6, which
rovide a platform to access many open-sourced pre-trained networks
ith ease.

TL has yet to be explored and applied broadly in the oil and gas
omain. Since well-annotated datasets are expensive and difficult to
btain in the oil and gas industry, TL can be used to make rapid
rogress in this domain [28].

. Experimental setup and data

.1. Methodology

TL requires the base model to be trained from several unique wells
o improve their generalization capability. We freeze selected layers
n these base models to keep the original weights and allow some
o be trainable. These reconfigured layers are then fine-tuned using a
re-determined percentage of data from target wells. Hyperparameters
uring fine-tuning are carefully chosen to prevent vanishing or explod-
ng gradients. This happens when the distribution of retraining data is
ntirely different and the learning rate is too high; this impairs the base
odel’s performance. In addition, a new model is also trained using

he same retraining data. All these models are then tested using the
emaining data from the target well.

.2. Datasets

We used well data from four sources: real field data from Volve,
arcellus shale and Alvheim, and synthetic data. Table 1 summarizes

5 https://huggingface.co
6 https://modelzoo.co/
3

the datasets. The well name, hole size, hole depth range, and the data
source type for each dataset are provided for reference.

In general, when drilling an oil and gas well, large diameter holes
are drilled first, followed by smaller holes until they reach the prede-
fined target. This is done to maintain well integrity, particularly when
transitioning to a new geologic formation. Drillers use different drill
bits, bit designs, and drilling fluid properties at each new hole size.
This is similar to drilling an entirely new well from an engineering
perspective. Thus, we produce independent datasets by segregating the
data according to hole size from each well. These datasets contain
recorded real-time drilling parameters such as hookload, stand pipe
pressure, hole depth, weight on bit, mud weight, and rotations per
minute. The frequency of these measurements varies for every well
depending on the equipment used.

3.2.1. Volve
In 2018 Equinor publicly shared raw real-time drilling data from

20 wells found in the Volve field in the North Sea [29], together with
well logging data, surveying data, drilling reports, and other auxiliary
information. Pre-processed Volve drilling logs can be found in a public
data repository [30]. For this paper, we selected drilling data from
7 wells and separated them according to the hole size. In total, we
compiled 12 independent datasets for the experiment. Volve data has
an average sampling frequency of 0.4 Hz, corresponding to a time step
of 2.5 s.

3.2.2. Marcellus shale
Marcellus shale is the most prolific natural gas-producing formation

from the Appalachian basin in the United States [31]. A site owned and
operated by Northeast Natural Energy, LLC provides several horizontal
wells drilled in the Marcellus shale [32]. A specific long horizontal well
spanning 2431 m, with an average measurement frequency of 0.176 Hz
or 5.67 s time step, was chosen for the current study. This well data
allows testing the models’ generalization and re-usability outside Volve
data.

3.2.3. Alvheim
Located in the central part of the North Sea, the Alvheim area

consists of the Boa, Vilje, Volund, Bøyla, and Skogul fields. AkerBP
provided well data from two specific wells for this study. These infill
mid wells were drilled to access attic oil remaining above existing
producers. While drilling these wells, complex hole instability issues
were encountered, and relative to the Volve well data used, Alvheim
wells have higher variation in the ROP; thus, it was chosen for the CTL
approach viability. Unfortunately, due to privacy issues, only limited
information is published, and well names are anonymized.

https://huggingface.co
https://modelzoo.co/
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Fig. 2. Model architecture.

3.2.4. Synthetic data
To provide additional training data and investigate the feasibility of

using simulated training data for the TL application, we generated eight
synthetic datasets using a state-of-the-art drilling simulator which in-
cludes advanced hydraulics, mechanics, and heat transfer models [33].
The well architecture, trajectory, drilling mud properties, drill string
configuration, and formation properties were based on the drilling
reports extracted from the Volve public database [29]. The drilling
set points (top-drive rotary speed, weight on bit, and flow rate) used
as input to the simulations were based on the values from the Volve
recorded drilling logs compiled by Tunkiel [30]. The simulation outputs
were stored as time-series with a time step of 1 s.

3.3. Setup of experiments

3.3.1. Single transfer learning
Our model starts with an input layer, which receives four input

parameters, followed by three successive pairs of dense and batch
normalization layers. By embedding normalization as part of the model
architecture, this prevents internal covariate shift [34] and causes a
more predictable and stable behavior of the gradients [35], allowing
higher learning rates without the risk of divergence [34,35]. In ad-
dition, batch normalization eliminates the need for Dropout [12] for
regularization [34]. We use rectified linear unit [36] as activation
function. Finally, the output layer is a single-output dense layer with
mean squared error as the loss function. A complete and detailed
network structure is shown in Fig. 2.

To predict ROP, we used stand pipe pressure (SPP), weight on
bit (WOB), mud weight (MWin), and top drive rotations per minute
(RPM). We based these inputs from the setup described in Ambrus
et al.’s work [37]. In general, when choosing our input parameters, two
considerations were in place: first, despite using an ANN, the choice of
input parameters should still reflect the physics of the drilling process.
4

Table 2
Training and validation data shapes.

Data source type TrainX TrainY ValX ValY

Real (333400,4) (333400,1) (83350,4) (83350,1)
Simulated (649503,4) (649503,1) (162376,4) (162376,1)
Combined (982903,4) (982903,1) (245726,4) (245726,1)

Second, selected inputs must always be available. During drilling,
hundreds of parameters and metadata are recorded in real-time [38].
The inclusion of many drilling parameters as inputs to the ANN could
be helpful but at the same time dangerous when one or more of these
parameters are missing for the current well due to sensor failure or
they were not necessarily recorded during the operation. Although
one might infer the missing values, this would increase the model’s
prediction uncertainty when there are many inferred values.

Eight datasets were selected to build the base models out of the
12 available well sections from Volve. These were carefully selected
to ensure that they contain values of the upper and lower boundaries
of each input and output parameter. For example, the dataset with the
highest ROP and lowest ROP values should be among the chosen eight.

To avoid overfitting the model, the first 80 percent of each well
section is concatenated into the training dataset, whereas the remaining
20 percent are used for validation. This was done to all the three
data source types — real, simulated, and combined. The shapes of
concatenated training and validation data are shown in Table 2.

Each drilling parameter varies in range wildly depending on the
units of measurement. When left unscaled, some features would dom-
inate the training making it difficult for the neural network to learn
the underlying patterns in the data. For example, during drilling, the
rotation of the drilling tool is measured in RPM (revolution per minute),
which would give a range of two to three-digit values, and for weight
on bit measured in kg could reach five-digit values, the weight-on-
bit would have more effect on the training parameters than the RPM.
However, this is not true, particularly when drilling softer formations
where the RPM is more important than the weight-on-bit. In essence,
by scaling the input parameters, each can affect the model parameters
during the backpropagation [39]. Thus, the data were scaled using a
MinMaxScaler from Scikit-Learn [40] before passing to the model. This
removes the harmful effects of having different value ranges for every
input variable by scaling all of them to a (0,1) range. The introduction
of batch normalization further stresses the importance of scaling the
input.

Scaling the output is unnecessary since ROP is a function of the
input, and the network will learn to map the input to the correct
output during training. Since the final activation function constrains
the model’s output, we did not use any activation function on the last
layer — it was only a single output-dense layer.

Three separate runs for each data source type were conducted to
build base models while keeping the model’s hyperparameters the
same. In particular, batch size, which is the number of samples that
is propagated through the network before updating the internal model
parameters, was chosen to be 10000. This is relatively small, around
1 to 3 percent of each training dataset, to increase variation in batch
statistics, thereby enabling better model generalization during the re-
training process [41]. An early stopping callback was placed to cease
training when the validation loss stops improving after 100 epochs. This
allows us to generate two distinct base models for each data source
type: one base model with the best validation loss and another based
on the training loss. Altogether, we train six base models.

The four remaining well sections from real Volve data and the
Marcellus shale horizontal well are used for retrain and test data. A
sensitivity analysis was done by creating independent datasets with
different retrain: test data ratios. These vary from 30:70, 20:80, 10:90,
and 5:95, where the smaller partition corresponds to retraining data.
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Table 3
Number of trainable and non trainable parameters.

Model configuration Trainable parameters Non-trainable parameters

Base Model 8897 384
Zero Frozen Layers 8513 768
One Frozen Layer 8257 1024
Two Frozen Layers 4161 5120

Similar to the data preprocessing used for building the base model, each
dataset is split sequentially and the values are scaled to a (0,1) range.

During retraining, we kept a similar model architecture to the base
models, except that some layers were frozen. This allows us to retrain
the model using smaller training datasets since fewer parameters are
retrainable, and at the same time, model parameters are not initialized
randomly. In addition, since models are pre-trained, a low learning rate
is needed to reach the global minima. In our case, we used a learning
rate of 0.0001 for all instances, with the exception of test case 4 that
used 10−9. Maximum epochs are set at 150000 for tests. Similar to
training the base model, we set up an early stopping at 50 epochs based
on the training loss.

These base models are reconfigured in three ways: freezing the first
dense layer, first and second dense layers, and keeping all dense layers
unfrozen. This gives us 18 reconfigured base models for retraining. All
batch normalization layers were frozen in all these configurations to
prevent the risk of vanishing or exploding gradients. In this context,
freezing a layer means keeping the parameters learned during the initial
training stage. Table 3 shows the number of trainable and non-trainable
parameters for each configuration.

A randomly initialized new model with similar model architecture
and hyperparameters was trained for every retraining data configura-
tion. This is to compare the performance of fine-tuning a pre-trained
model with that of a new model trained from scratch on the same
dataset.

3.3.2. Continuous transfer learning
Otherwise stated, similar fine-tuning techniques from the single

transfer learning were implemented. One difference in data preparation
is that instead of using a percentage as the unit of amount of data,
we expressed it by the number of drilling pipe stands, similar to our
previous work [14]. A pipe stand consists of two to three pipe joints
and is considered a unit. The drilling stands connect the drilling bit to
the top of the drilling rig. In addition, pipe stands are hollow where
the drilling fluid passes through. We used pipe stands as a data unit for
reproducibility since each well varies in length and sensor measurement
frequency; thus, using percentage could be misleading. Retraining data
to test data ratio are fixed in 10:1 stands, i.e., the first ten drilling stands
were used for retraining, and the model was tested on the 11th stand.
Then, this 𝑛th stand window moves until we exhaust all the available
data. All hyperparameters are the same as with single transfer learning.
On top of our previous work [15] we performed sensitivity analysis on
the optimal input parameters. For this paper, all CTL experiments are
performed on the Alvheim field since it has more variation in ROP than
Volve field wells.

3.4. Model evaluation

3.4.1. Single transfer learning
We have six unique base models from previous sections, wherein

each was reconfigured in three configurations based on the number
of frozen layers. This gives us 18 unique models on top of the base
models plus an entirely new trained model. In total, for every retraining
data configuration, e.g., one test well, with unique retrain:test ratio, we
tested 25 different models.
5

Model performance is evaluated by computing the mean absolute
error (𝑀𝐴𝐸 ∶= 𝐿1) and root-mean-square error (𝑅𝑀𝑆𝐸 ∶= 𝐿2) for
every test data configuration:

𝐿𝑘 =

(

1
𝑁

𝑁
∑

𝑖=1
|𝑦𝑖 − �̂�𝑖|

𝑘

)

1
𝑘

(1)

where 𝑁 is the number for data points, �̂�𝑖 is the true value, and 𝑦𝑖
is the predicted value. In addition, we kept a summary of a moving
window MAE by dividing the test data into ten equal windows with
the exact count of data points and computing MAE at each window.
This enables us to measure prediction quality for various test data sizes.
It is also important to emphasize that every well section data has a
varying frequency of measurements and size, e.g., 30 percent of the
well F-1C 12.25 in. section contains fewer data points than the F-11B
8.5 in. section.

3.4.2. Continuous transfer learning
CTL models were evaluated similarly to the STL, except that the

CTL was evaluated on the current single stand. This is contrary to STL,
where it was evaluated on all the remaining well data excluded for
model retraining. Fig. 1 displays the test data for a given well in STL
and CTL approach.

3.5. Example of usage

3.5.1. Single transfer learning
As discussed in Section 3.3, we train six base models then reconfig-

ure by freezing layers. Subsequently, we derive four different datasets
from well F-15 A 17.5 in data. Each dataset differs on the retrain and
test ratio as described previously. Each of the 18 reconfigured base
models is then fine-tuned using retraining data from every dataset. In
addition, we train an entirely new model using similar retraining data.
From here, we have a total of 25 distinct models — 6 base models, 18
reconfigured base models, and one new model. These 25 models are
then used for predicting ROP on the test datasets. Having 4 data split
ratios from well F-15 A 17.5 gives us a total of 100 test runs. For every
test case, MAE is recorded.

3.5.2. Continuous transfer learning
Each well dataset is subdivided into stands. Starting from the simu-

lated base model, we fine-tune the model using the first ten stands and
test on the 11th stand. We then move the window of retraining and
testing stand until we exhaust all the data for a given well. After the
initial retraining, succeeding models utilize the newly retrained model
as its new base rather than starting from the simulated base model.
This is in accordance with our results from Pacis et al. [14] that in
most cases, stateful continual learning (which retrains the model from
one state to the next as more data becomes available) showed the most
robust results. Thus, for a well drilled with n stands, there will be n-11
unique retrained models. For every test case, MAE is recorded.

4. Results and discussion

In Section 4.1.1, we analyze the results on well F-15 A 17.5 in and
compare the best models from several methods, which includes fine-
tuning, training of an entirely new model, and direct use of the base
model. This section’s results obtained are representative of both Volve
and Marcellus shale test cases. Data from the other four wells can be
found in the Appendix. In Section 4.1.2, we provide recommendations
based on the results of five test cases. In Section 4.1.3, we provide
results on the generalization capability of the approach. Section 4.2
discusses the results of the continuous transfer learning approach. Input

sensitivity and the effect of formation on the model are also presented.
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Table 4
Test Case 1: F-15A 17.5 in.
Frozen layers BM loss type Source type Retrain (%) Train (%) MAE RMSE

0 Validation Simulated 30 N/A 3.674 4.886
2 Validation Simulated 5 N/A 4.104 5.238
1 Validation Combination 30 N/A 4.165 5.656
2 Validation Simulated 30 N/A 4.234 5.562
1 Validation Simulated 30 N/A 4.268 5.87
*New Model Training Real N/A 30 5.061 5.845
*Base Model Validation Simulated N/A 80 9.091 10.767
Fig. 3. ROP predicted by different models for well F-15 A 17.5 in. A. Fine tuned
model with TL. B. Base (pre-trained model) without fine-tuning. C. Newly trained model
only using the data from the current well. Orange and blue lines refer to expected
and predicted ROP values, respectively. Red markers are the computed MAE moving
window e.g., one red marker is the MAE of the previous 2500 observations. All data
are plotted against hole depth on the 𝑋-axis. Fine-tuned model performed best among
other models with an MAE of 3.674.

4.1. Single transfer learning

4.1.1. 3-Way-comparison
After testing 100 models, we plot the predicted vs. expected ROP

values plus a moving MAE window. In each plot, 𝑋-axis represents
the hole depth, 𝑌 -axis to the left is the ROP with m/hr unit, and 𝑌 -
axis to the right is the MAE. A, B, and C plots in Fig. 3 show the best
model among fine-tuned base models, base models, and new models,
respectively. Model configurations and metadata of these models can
be found in Table 4.

Retraining the base model reduces the MAE by 59.6% and 27.4% vs.
using the base model and training an entirely new model, respectively.
A relatively close RMSE to MAE also indicates that the ROP error
disperses equitably across the data. Despite the base model not being
trained with the same 17.5-inch hole size, it outperforms other models
by tuning with the current well data. This is also on top of the fact that
model A has fewer trainable parameters. Although not seen on the plot,
the second-best model overall has an MAE of 4.104, despite only using
5% retraining data and 55% fewer trainable parameters compared to
training a new model. Furthermore, both of the best two models were
pre-trained using simulated data.

4.1.2. Recommendations based on all test cases
Training data source type. Four out of the five test cases suggest

that training with simulated data provides better result than training
with real data in terms of MAE. One explanation for this could be that
6

predictions are less noisy since the simulated data is deterministic; thus,
it produces better results when re-trained on a small section of the test
set.

Base Model loss type. Four out of the five test cases suggest that
the best model should be based on the best validation loss rather than
training loss. This is expected since the early stopping based on the
validation loss helps reduce overfitting on the training data. Although
the best retrained model in test case 3 was obtained using the training
loss criterion, the base model using the validation loss criterion does
not come far behind when considering the MAE.

Number of Frozen Layers. Four out of the five test cases suggest
that fine-tuned models always perform the best. Case 4 performed
just as well as the base model. Although, there was no clear relation
between the number of frozen layers and the MAE. Paradoxically,
increasing the number of frozen layers also increased the retraining
time by 43 up to 247 percent. Thus, from retraining time perspective
the ROP prediction problem benefits more from a pre-trained network
without frozen layers. Another observation is that models with zero,
one, and two frozen layers took an average retraining time of 7, 12,
and 15 min, respectively, versus base models’ 22 min.

Retraining data percent. As mentioned previously, every test well
has a different length; therefore, even having the same retraining data
percentage, the number of data points would still vary. There is no
clear correlation between the number of data points and retraining data
percentage for the best fine-tuned model based on the five test cases,
although one could say that there could be a slight trade-off between
the accuracy of the model and the length of the well to be predicted.

During our experiments we also observed that TL was sensitive to
the choice of base model training data and learning rate. However the
detailed analysis is out of the scope of this paper.

4.1.3. Marcellus shale: Test outside volve data
We tested the approach on the Marcellus shale dataset to evaluate

the generalization and re-usability of the TL approach. This well is
entirely distinct from Volve data in terms of well profile (horizontal),
type of formation (shale), location (onshore well), and equipment used.
This is analogous to recognizing between breeds of dogs and breeds of
cats for the computer vision domain. Clearly, the best-retrained model
reduced the MAE by 29% and 19% when compared with the newly
trained model and base model, respectively. Relative to other test cases
from Volve data, computed MAE is higher because of noise and lower
measurement frequency in the Marcellus data. On top of improving
the MAE, the retrained model only used 20% of retraining data while
decreasing the trainable parameters by 10%. Furthermore, this result
was achieved by training the base model with simulated data. This
demonstrates the potential of using synthetic data generated with a
high-fidelity drilling simulator for training the ANN ROP model that
can be reconfigured for real operations with a minimal amount of
retraining.

4.2. Continuous transfer learning

We compared the performance of a continuous and non-continuous
training paradigm. The red line in plot A in Fig. 4 is the model retrained
only until the 29th stand, while the blue line implements a continuous
training paradigm using the most recent ten stands. The red line has
a higher error in 9 out of 10 test cases. This shows the benefit of the
continuous transfer learning paradigm as observed by Pacis et al. [14].
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Fig. 4. Formation effect.

Fig. 5. Input sensitivity on Alvheim Well A and Alvheim Well B.
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4.2.1. Effect of formation
Charts B and C in Fig. 4 show the composition of formations drilled

in testing and training data, respectively. For example, at the 30th
stand, the test data comprises Top Sele and Top Lista formation. On the
other hand, the corresponding retraining data comprises the ten most
recent stands, i.e., 20th to 29th, which drilled four different formations.
It is imperative to note that the ratio accounts for the number of data
points; hence, it does not directly translate to the actual thickness of the
formation. This discrepancy is caused by two factors inherent in drilling
data, drilling duration at a specific depth and frequency of measure-
ments. As we drill ahead, it is clear that the ratio of the Lista formation
linearly increases upon reaching the Heimdal reservoir formation.

From plot A in Fig. 4, looking at the blue line starting from the 34th
stand, the MAE reduced until the 37th stand and increased thereafter.
Validating the results on the formation effect, it is clear that all the
test cases are Top Lista formation while the ratio of Top Lista on the
retraining data increases. Thus, it is no surprise that the fine-tuned
models are calibrated and more biased towards the Top Lista formation,
as shown by the error trend.

4.2.2. Input sensitivity
Previous work [15] used WOB, RPM, MWin, and SPP as input

parameters. We performed sensitivity analysis on the optimal input
parameters by including the surface torque. Among these five input
parameters, MWin rarely changes and does not reflect the downhole
condition. However, it indirectly affects the ROP by aiding in lifting
cuttings and ensuring wellbore stability. For these reasons, we decided
to experiment with omitting MWin.

Plots A and B in Fig. 5 show the input sensitivity analysis on wells A
and B from the Alvheim field, respectively. Both test wells showed that
omitting the MWin makes every model more stable (red line). Both test
cases showed a similar trend for most of the test stands.

5. Conclusions

We presented the application of TL for ROP prediction in oil and
gas drilling. We trained, retrained, and tested 100 models for each of
the five test wells. Based on MAE evaluation, the TL approach for four
out of five test wells outperforms both the newly trained model and
the non-fine-tuned base model. The TL was on par with the traditional
approach for the fifth well.

We explored the best model configurations based on the five test
cases. In most cases, the best results were obtained with the base
8

models trained on the simulated data. Moreover, the validation loss
seems to indicate the model’s performance on the new well.

During fine-tuning, pre-trained models with zero frozen layers con-
verged faster, although there was no clear relation between the MAE
and the number of frozen layers. Despite uncertainty in the optimal
number of frozen layers and retraining data percentage, results indicate
that transfer learning is valuable in developing an adaptable, reusable,
and more general ROP prediction model.

We also demonstrated that transfer learning could be used to contin-
uously recalibrate an ROP model and adapt it to the current downhole
drilling condition.
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Appendix. Test results

Tables A.5 to A.8 show the best five fine-tuned models, base model,
and new model on each test well. Each table has seven columns that
state the number of frozen layers, the type of loss used for the base
model, the data source type used for training the base model, the
retraining data percentage, the training data percentage, MAE, and root
mean squared error (RMSE).
Table A.5
Test Case 2: F-1C 12.25 in.
Frozen layers BM loss type Source type Retrain (%) Train (%) MAE RMSE

0 Validation Simulated 30 N/A 5.006 6.644
1 Validation Simulated 30 N/A 5.765 9.36
2 Validation Simulated 20 N/A 6.416 9.008
0 Validation Combination 10 N/A 7.161 11.324
0 Training Real 20 N/A 7.522 14.608
*New Model Training Real N/A 30 6.211 7.845
*Base model Validation Real N/A 80 5.22 7.575
Table A.6
Test Case 3: F-11B 8.5.
Frozen layers BM loss type Source type Retrain (%) Train (%) MAE RMSE

0 Training Simulated 10 N/A 9.083 11.696
0 Training Combination 20 N/A 9.222 12.436
1 Validation Real 10 N/A 9.653 12.526
1 Validation simulated 20 N/A 9.878 13.077
0 Training Combination 10 N/A 9.912 12.732
*New Model Training Real N/A 10 10.277 12.949
*Base Model Validation Simulated N/A 80 10.271 13.097
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Table A.7
Test Case 4: F-1B 8.5 in.
Frozen layers BM loss type Source type Retrain (%) Train (%) MAE RMSE

2 Validation Real 30 N/A 5.898 7.498
1 Validation Real 30 N/A 5.899 7.498
0 Validation Real 30 N/A 5.899 7.498
0 Validation Real 20 N/A 7.179 9.266
1 Validation Real 20 N/A 7.185 9.275
*New Model Training Real N/A 20 10.752 12.323
*Base Model Validation Real N/A 80 5.9 7.498
Table A.8
Test Case 5: Marcellus shale 8.75 in.
Frozen layers BM loss type Source type Retrain (%) Train (%) MAE RMSE

1 Validation Simulated 20 N/A 33.151 46.631
2 Validation Real 20 N/A 33.444 48.093
0 Validation Combination 20 N/A 34.679 48.575
2 Training Combination 30 N/A 35.921 46.091
1 Training Combination 10 N/A 36.164 48.261
New Model Training Real N/A 30 46.42 52.231
*Base Model Validation Real N/A 80 41.092 49.633
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