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Abstract  
 
Floating offshore wind turbines (FOWT) belong to the contemporary offshore wind energy industry 
generating green renewable energy. Accurate prediction of extreme loads and responses during FOWT 
offshore operation is an important design concern. In this paper, the OpenFAST code was used to analyse 
offshore wind turbine mooring line tension force and internal bending moment due to environmental 
hydrodynamic wave loads, acting on a specific FOWT under actual local sea conditions.  This paper 
advocates a computationally efficient Monte Carlo based methodology to study bivariate extreme dynamic 
response statistics. The bivariate ACER2D (average conditional exceedance rate) method is briefly discussed. 
The ACER2D method enables accurate estimation of bivariate statistics, utilizing available data efficiently. 
Large return period two-dimensional probability contours, were obtained using the ACER2D method. Based 
on the overall performance of the presented method, it is seen that the ACER2D method provides an efficient 
and accurate prediction of extreme return period contours. More accurate and reliable estimations of extreme 
responses are significant for the offshore wind industry as it advances the design, manufacturing and 
deployment of large FOWTs in the coming decade. 
The described approach may be well used at the design stage, while defining optimal wind turbine design 
values that would minimize potential FOWT structural damage due to excessive environmental loadings. 
Note that the bivariate design point is less conservative than the classic univariate one, therefore this study 
advocates a design method leading to lower structural production costs. 
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1. Introduction 

Wind energy is an important component of the renewable green energy industrial sector within the expanding 
offshore energy industry. Offshore wind energy is typically generated by wind farms installed offshore 
harvesting wind energy and generating green electricity. Offshore wind speeds are on average stronger 
compared to those onshore, therefore offshore wind energy contribution in terms of electricity supplied, is of 
industrial importance. Low ocean surface roughness normally leads to higher mean wind speeds. FOWTs are 
naturally exposed to violent turbulent wind flows and hydrodynamic loads, thus their extreme load capacities 
are of engineering importance for FOWT design. There are several floating wind farms that are now in the 
planning stage, and one operated floating wind farm called Hywind Scotland. With the trend that harnessing 
offshore wind energy moves to the deep water, studying bivariate extreme loads of FOWTs becomes more 
significant. 

There are usually two approaches for obtaining FOWT design loads: (1) simulate rare events with that cause 
high load levels; (2) simulate turbine response under normal environmental conditions and extrapolate 
structural loads and responses by fitting extreme tail probability distribution (Dimitrov, 2016). Both of the 
aforementioned procedures for attaining extreme design loads are recommended by the IEC 61400-1 standard 
(IEC, 2005). This article will discuss the second strategy (b), which is concerned with long-term probability 
distributions. The latter approach is statistically more precise since it utilizes full statistical distributions, 
instead of single extreme load/response events. This study thus advocates a methodology that has been 
already validated for a wide range of offshore marine structures including various vessels  and offshore 
platforms (Gaidai et. al., 2018; Zhang et. al., 2019; Gaidai et. al., 2016; Naess et. al., 2010; Naess et. al., 
2009; Naess et. al., 2008; Naess and Moan, 2013).  Figure 1 presents an example of a semi-submersible 
FOWT, similar to the target model analyzed in this paper. 
 

 

Figure 1. An example of FOWT in offshore field operation. 



 
 

Numerous studies were conducted in the past, aiming at accurate estimation of ultimate loads within the 
framework of offshore wind turbines design. Fogle et. al. (2008) applied block maxima and global maxima 
for a wind turbine loads extrapolation. Ernst and Seume (2012) used data from FINO (Research platforms in 
the North Sea and Baltic Sea) platform to investigate turbulent intensity and extreme loads of a 5 MW wind 
turbine using a POT (peaks-over-threshold) extrapolation method. Dimitrov (2016) presented four 
extrapolation techniques applied to FOWT environmental loads. Li et. al. (2015) developed semi-submersible 
floating wind turbine MATLAB code for dynamic analysis. Graf et al. (2016) studied long-term fatigue loads 
of a FOWT by using the Monte Carlo method. Aggarwal et al. (2017) studied a spar-type FOWT nonlinear 
short-term extreme responses. Dimitrov et al. (2018) proposed a procedure for quick assessment of site-
specific lifetime fatigue loads by means of surrogate models. Li et. al. (2018) studied effects of numerical 
simulation length on accumulated FOWT fatigue damage. Zhao and Dong (2021) investigated the long-term 
extreme response analysis for semi-submersible platform mooring systems and the proposed method was 
shown to be effective compared with traditional environmental contour methods. Qu et al. (2021) compared 
short-term extreme response of FOWT using two different blade models and the result revealed that linear 
beam model would underestimate the extreme load. However, the approaches described above to fit the 
empirical data to an assumed extreme value distribution do not accurately reflect the inherent properties of 
the data. This may result in less trustworthy predictions, which is particularly more crucial when predicting 
extreme values. Extreme values are obtained near the tail of the probability distribution and are thus very 
sensitive to uncertainties and errors. 

This paper aims at efficient use of simulated structural data. For that purpose, the novel bivariate averaged 
conditional exceedance rate (ACER2D) method has been applied. The available structural load statistics is 
combined with a matching class of parametric functions for extrapolating the bivariate extreme value 
distribution tail surface. The ACER2D method does not rely on the generalized extreme value distribution 
(GEV) assumption, the latter makes the ACER2D method more suitable to analyze actual data sets which are 
rarely truly asymptotic. The latter inconsistency between pre-assumed asymptotic behavior on actual non-
asymptotic data may occasionally lead to errors in long return period design value predictions.  A clear 
engineering design merit of the advocated statistical approach, compared with the example using direct 
Monte Carlo method, is that far fewer numerical simulations are required to provide comparably accurate 
extreme value estimates. 

2. Environmental conditions 

It is often difficult to find high quality metocean data with sufficient temporal resolution. The National 
Oceanic and Atmospheric Administration (NOAA) was used as a data source for this study. The NOAA 
organization posesses an extensive network of offshore floating data gathering buoys spread over US and 
international waters. Data from these buoys can be obtained at the US National Data Buoy Center 
(https://www.ndbc.noaa.gov/). 

This study therefore used data downloaded from the NOAA website. The 8 years 2010-2017 of available 
environmental data were selected. Selected buoys readings included five measurement signals: mean wind 
speed, wave peak-spectral period, significant wave height, wind and wave directions. For this paper only 
three major measurement signals were selected, the latter however is not a limitation of the suggested 
approach.  Requirements for a wave direction measurement led to a selection of 23 offshore sites. Figure 2 
indicates names and locations of selected from the NOAA database. 

The wind-wave data was collected and processed by different device sensors. The wind speed and direction 
data were averaged over 8 min period and recorded hourly. The significant wave height was defined as the 
average height of the highest one-third of waves over a 20 min period, recorded hourly. Peak-spectral period 
corresponded to the wave period with the greatest wave energy over the same 20 min period. Wave direction 
was the direction from which the dominant period waves arrived. 



 
 

National Data Buoy Center Station Cape Elizabeth was selected for the present study. The measurement buoy 
was located about 45 nautical miles Northwest of Aberdeen, Washington; near the continental shelf edge at 
the water depth about 125 m. Figure 2 presents various US National Data Buoy Centre stations along with 
Cape Elizabeth location indicated in red (Stewart et. al., 2016). Joint wind-wave directional statistics for the 
above-mentioned location was assessed based on the in situ metocean hourly historical data measured during 
2010-2017 years.  
 

 

Figure 2. US National Data Buoy Center stations. Cape Elizabeth is marked in red. 

Figure 3 presents the Monte Carlo based long term statistical analysis flow chart utilized in this paper. Note 
that "sea state” implies a full set of recorded environmental conditions, including wind direction and speed.  

 

Figure 3. Flow chart for long term statistical analysis. 

Data post-processing then proceeded with extrapolating of the wind speed to the FOWT hub height of 90 m. 
Cape Elizabeth's anemometers were installed at a height of 5 meters above sea level. Most engineering 
techniques use either power law or log law wind shear equations to extrapolate, see Eqs (1) and (2), 
respectively: 
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                                                                (2) 
with 𝑈(𝑧), 𝑈(𝑧!) being wind speeds at height 𝑧 and the reference wind speed at height 𝑧! respectively. 𝑧) 
being the surface roughness length and 𝛼 being the power law constant. In this paper the power law given by 
Eq. (1) has been equal 𝛼=0.14, see Xu et. al. (2020) . Following conditionalities were used, according design 
standards, see e.g. Xu et. al. (2020): 

§ Wind speed	𝑈 
§ Significant wave height	𝐻*  
§ Peak-spectral period	𝑇+  

In this paper a scatter diagram approach was utilized, the measured buoy data was post-processed into an 
empirical three dimensional joint distribution, without any simplifications and assumptions. A three-



 
 

dimensional scatter map was generated by directly estimating the empirical joint probability density function 
(PDF)  𝑝-𝑈, 	𝐻*	𝑇+/  from the available observed metocean data. Due to the fact that the wind/wave 
misalignment is not included in the OpenFAST simulation, only the latter three-dimensional probability 
space -𝑈, 	𝐻*	𝑇+/  was used. It has to be noted that the described approach is well suitable for higher 
dimensional scatter diagrams. Figure 4 on the left presents: wind speed versus significant wave height 
correlation pattern; on the right: -𝐻*, 𝑇+/ contour plot,  𝑝-	𝐻*	𝑇+/ = ∫𝑝-𝑈, 	𝐻*	𝑇+/ 𝑑𝑈. 

 

Figure 4. Left: In situ wind speed vs significant wave height correlation pattern; Right:	-𝑯𝒔, 𝑻𝒑/ 
contour plot of the joint probability density 𝒑-𝑯𝒔	𝑻𝒑/ = ∫𝒑-𝑼, 	𝑯𝒔	𝑻𝒑/ 𝒅𝑼. 
 
The advocated technique is a direct Monte Carlo long term simulation approach, having the advantage of not 
incorporating various assumptions and simplifications, like e.g. Stewart et. al. (2016), where the wind speed 
was assumed to be an independent parameter (typical in various FOWT engineering applications). Note that 
Figure 4 on the left, exhibits certain correlation between wind speed 𝑈 and significant wave height 𝐻*. Thus, 
it is not always accurate to pre-assume wind speed as an independent parameter.  
For this study, a total 12 different wind speed bins were selected, ranging from 3 to 25 m/sec. For each wind 
speed bin (𝑈), about 30 corresponding sea states -𝐻*, 𝑇+/ with different probabilities were selected for 
numerical simulation. In this paper, the scatter diagram of the three dimensional probability 
distribution	𝑝-𝑈, 	𝐻*	𝑇+/ was taken into account within the framework of Monte Carlo simulation. For more 
details on how the bivariate ACER2D functions correspond to different short term wind-sea states and further 
combined into one long term ACER2D function, see Gaidai et al. (2016), Gaidai et al. (2017), Gaidai et al. 
(2018). 
Note that this study has relied on the NOAA buoy measured data, with subsequent application of a scatter 
diagram approach to obtain the empirical multi-dimensional probability density function (PDF). This study 
did not accommodate satellite data. 



 
 

3. Model description in brief 

The DeepCwind semi-submersible supporting platform, namely OC5 semi-submersible floating system 
(Robertson et. al., 2016) has been chosen as the target model for the this study. The model of the semi-
submersible platform is shown in Figure 5, and it contains one main column and three outer offset columns. 
There are heave plates (base columns) attached to the bottom in order to reduce large heave motions. 

 

Figure5. 1/50 scale model of the DeepCwind semi-submersible platform. 

Table 1 presents the main dimensions of the full scale semi-submersible platform. 

Table 1. Main dimensions of the semi-submersible platform. 

Item Value 

Platform draft 20.0 m 

Spacing between offset columns 50.0 m 

Length of upper columns 26.0 m 

Length of base columns 6.0 m 

Diameter of central column 6.5 m 

Diameter of offset (upper) columns 12.0 m 

Diameter of base columns 24.0 m 

 
The NREL 5-MW baseline wind turbine is placed on top of the OC 5 semi-submersible platform. The 
diameter of the three-bladed rotor is 126 m, while the hub height of the cylindrical tower is 90 m. The 5-MW 
baseline wind turbine's parameters are summarized in Table 2. 
 

Table 2. Summary properties of 5-MW baseline wind turbines. 



 
 

Item Value 

Rotor orientation Upwind, 3 blades 

Cut-in/Rated/Cut-out wind speed 3 m/s, 11.4 m/s, 25 m/s 

Rotor mass 110,000 kg 

Nacelle mass 240,000 kg 

Tower mass 347,460 kg 

Hub height 90 m 

 
OpenFAST and AeroDyn account for applied aerodynamic and gravitational loads, allowing for accurate 
numerical modeling of the wind turbine structural dynamics. Various advanced corrections, including tip 
loss, hub loss, skewed inflow and dynamic stall corrections, are included in the BEM method.The OpenFAST 
software include incorporates a variety of mechanical effects such as e.g. elasticity of the rotor tower, along 
with the elastic coupling between their motions and the motions of the support platform as well as dynamic 
coupling between the support platform motions and the wind turbine motions. OpenFAST is based on a 
combined modal and multibody structural dynamics formulation (Jonkman et. al., 2005). 
Numerical simulations for the current study were run with a sufficient number of degrees-of-freedom (DOFs), 
including OpenFAST two flap wise and one edgewise mode DOFs per blade, one drivetrain torsion DOF, 
one variable generator-speed DOF, one nacelle yaw DOF, two fore-aft and two side-to-side tower mode 
DOFs, as well as floating system DOFs, namely three translational (surge, sway, and heave) and three 
rotational (roll, pitch, and yaw) DOFs of the platform (Jonkman et. al., 2007). 
 

4. Dynamic analysis of wind turbine simulations 

To model various coupled system reactions in this investigation, the aero-hydro-servo-elastic simulation code 
OpenFAST (Jonkman et al., 2005) was employed. TurbSim (Jonkman, 2009) generates stochastic wind fields 
on a 31×31 square grid with a 145 m width. AeroDyn, an OpenFAST code module, was capable of modeling 
the aerodynamics of baseline wind turbines using the blade element momentum approach while taking into 
account rotor-wake effects and dynamic stall. The structural dynamic responses in the time domain are 
determined by solving the rigid-flexible coupled system's equations of motion, which are derived using 
Kane's technique. Hydrodynamic loads were modeled using the OpenFAST HydroDyn (Jonkman et al., 
2014) module, which integrates both Morison's equation and potential flow theory for large-diameter 
structures. Potential flow theory is used to predict hydrodynamic coefficients such as additional mass and 
potential damping coefficients in the frequency domain. To account for viscous drag forces operating on 
FOWT, Morison's equation incorporated a drag force component. Second-order wave forces have also been 
included into the OpenFAST numerical simulation (Bayati et. al., 2014). NREL 5MW semi-submersible 
FWTs use MoorDyn mooring module that is based on lumped mass theory. The control system used in the 
5MW FOWT is implemented by ROSCO.  
 
According to IEC-61400-1 from the International Electro technical Commission (2005), at least 15 short term 
simulations of 10 minute duration were needed for ultimate loads extrapolation, with a target return time of 
50 years under normal production circumstances. Based on IEC-61400-3 from the International Electro-
technical Commission (2009), Design Load Case (DLC) 1.1, for the current study the total of 2550 times 10 
min short term random cases have been numerically simulated, with cut-in wind speed 3 m/s and cut-out 
wind speed 25 m/s. Speed scatter diagram bin size was set to 2 m/s. Each simulation was set to a total duration 
of 800 seconds, with the first 200 seconds being excluded from post processing owing to initial temporary 
effects. Three wind speed (7m/s, 11m/s and 15m/s, also denoted as below-rated, rated and over-rated cases) 
are selected as the sample wind speeds for sample plotting. Figure 6 presents sample time series plots of 



 
 

platform pitch, tower base fore-aft bending moment (TwrBsMyt), blade root out-of-plane bending moment 
(RootMyc)and mooring line tension. The mean value of the tower base fore-aft bending moment is non-zero 
because of the wind turbine thrust force and is proportional to the wind turbine thrust force. It indicates that 
ultimate structural loads are more likely to reach a certain extreme level when subject to large wind forces. 
Besides, the obvious fluctuating component is observed, and therefore the ultimate structural loads are 
determined by both aerodynamic and hydrodynamic excitation. 
Extensive experimental work has been undertaken on the OC4 and OC5 projects in order to provide 
experimental data that can be used to validate floating offshore wind turbine modeling tools (Coulling et al. 
2013; Benitz et al. et al., 2015). The average error with respect to experimental results across OC5 OpenFAST 
numerical results was about 10% under-prediction of the tower top ultimate shear load; about 14% under-
prediction for the tower-base load; and approximately 20% under-prediction of the upwind mooring tension 
for wave-only cases (Robertson et. al., 2017). The experimental validation results give the authors confidence 
in selecting OpenFAST as a numerical simulation tool for this research. 
 

	

 
Figure 6  Sample time series  when 𝑼𝒉𝒖𝒃 = 𝟕，𝟏𝟏，𝟏𝟓𝐦/𝐬 
 



 
 

 
 

Figure 7  PSD of the blade root out-of-plane bending moment and mooring line tension  
 
Fig. 7 presents the corresponding power spectral density (PSD) of the blade root bending moment out-of-
plane and mooring line tension. It can be seen from Fig. 7 that there is a characteristic period around 5 sec 
(frequency 0.2 Hz)(Incorrect, dt=0.05s) with pronounced narrow band nature. Since simulated time series 
consisted of discrete temporal data points with constant time increment Δt = 0.05 sec (Δt =0.2 is FPSO, not 
FOWT), bending moment PSD from Fig. 7 suggests blocking (comprising) of time series into consequent T 
= kΔt = 5 seconds maxima, with 𝑘 = 25	being ACER proper conditioning level. The latter T seconds blocked 
(comprised) simulated maxima constitute the new blade root bending moment time series, that has been  used 
further in this paper for statistical analysis. 
 

5. The ACER2D method - statistical approach 

The 2D (bivariate) Average Conditional Exceedance Rate, or briefly ACER2D, method has been applied to 
analyse offshore wind turbine blade root bending moment and mooring line tension force due to 
environmental hydrodynamic wave loads. It should be noted that both the above mentioned stochastic 
response processes (blade root bending moment and mooring line tension) are time synchronous, the latter is 
certainly beneficial for coupling effects and bivariate statistics study. A brief introduction of the bivariate 
ACER2D method is outlined below, for more details see Gaidai et al. (2016), Gaidai et al. (2017), Gaidai et 
al. (2018), Naess et al (2008), Naess et al (2009a), Naess et al (2009b), Naess et al (2010).  
This paper studies the bivariate stochastic process 𝑍(𝑡) = (𝑋(𝑡), 𝑌(𝑡)) , having two scalar component 
processes 𝑋(𝑡)  and 𝑌(𝑡)  simulated synchronously, over a time span (0, 𝑇) . The bivariate data points 
(𝑋1, 𝑌1), … , (𝑋2, 𝑌2) correspond to equidistant time instants 𝑡1, … , 𝑡2.  
The CDF (joint cumulative distribution function)  𝑃(𝜉, 𝜂):= 	Prob	-𝑋N2 ≤ 𝜉, 𝑌N2 ≤ 𝜂/ of the maxima vector 
-𝑋N2, 𝑌N2/, with 𝑋N2 = maxS𝑋3 	; 𝑗 = 1,… ,𝑁X, and  𝑌N2 = maxS𝑌3 	; 𝑗 = 1,… ,𝑁X is introduced. In this paper 𝜉 
and 𝜂 are blade root bending moment and mooring line tension force, respectively.  
Next, the non-exceedance event is introduced: 𝒞43(𝜉, 𝜂):= {𝑋3(1 ≤ 𝜉, 𝑌3(1 ≤ 𝜂,… , 𝑋3(451 ≤ 𝜉, 𝑌3(451 ≤ 𝜂} 
for 1 ≤ 𝑘 ≤ 𝑗 ≤ 𝑁 + 1. Based on the definition of the CDF 𝑃(𝜉, 𝜂), 
 

 

𝑃(𝜉, 𝜂) = 		Prob	(𝒞251,251(𝜉, 𝜂))
= 		Prob	(𝑋2 ≤ 𝜉, 𝑌2 ≤ 𝜂	|	𝒞22(𝜉, 𝜂)) ⋅ Prob	(𝒞22(𝜉, 𝜂))
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		Prob	(𝑋3 ≤ 𝜉, 𝑌3 ≤ 𝜂	|	𝒞33(𝜉, 𝜂)) ⋅ Prob	(𝒞88(𝜉, 𝜂))
 (4) 

 
The CDF 𝑃(𝜉, 𝜂) can expressed as (see Error! Reference source not found.-Error! Reference source not 
found.) 
 



 
 

 
𝑃(𝜉, 𝜂) ≈ exp c−∑2374 &𝛼43(𝜉; 𝜂) + 𝛽43(𝜂; 𝜉) − 𝛾43(𝜉, 𝜂)'h		  

(5) 

 
for a suitably large conditioning level parameter 𝑘 , and	large	𝜉	and	𝜂  with 	𝛼43(𝜉; 𝜂) ≔ 	Prob	(𝑋3 >
𝜉	|	𝒞43(𝜉, 𝜂)), 𝛽43(𝜂; 𝜉) ≔ Prob	(𝑌3 > 𝜂	 o𝒞43(𝜉, 𝜂)' , 𝛾43(𝜉, 𝜂) ≔ Prob	(𝑋3 > 𝜉, 𝑌3 > 𝜂	|	𝒞43(𝜉, 𝜂)). 
Next, the 𝑘-th order bivariate average conditional exceedance rate (ACER2D) functions are introduced 

 
ℰ4(𝜉, 𝜂) = 	

1
𝑁 − 𝑘 + 1	q

2
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&𝛼43(𝜉; 𝜂) + 𝛽43(𝜂; 𝜉) − 𝛾43(𝜉, 𝜂)'				 (6) 

for 𝑘 = 1, 2,…; when 𝑁 ≫ 𝑘,  
 

 
𝑃(𝜉, 𝜂) ≈ exp{	–	(𝑁 − 𝑘 + 1)ℰ4(𝜉, 𝜂)}	; 	for	large	𝜉	and	𝜂. 

(7) 

From Eq. (7), it is seen that accurate estimate of the bivariate CDF	𝑃(𝜉, 𝜂) relies on the equally accurate 
estimation of ACER2D functions	ℰ4. 

6. Extreme bivariate load analysis 

This section provides the bivariate statistical results using the ACER2D method, for the dynamic loading 
time series, obtained from the aero-hydro-servo-elastic simulation OpenFAST code simulation. 

 



 
 

 
Figure 8  Up: moment- force correlation pattern. Down: ACER2D 𝓔w𝒌 function plotted on a decimal 
logarithmic scale, with conditioning level 𝒌 = 𝟐𝟓. 

Figure 8 on the right presents the bivariate ACER2D functions ℰz4 empirically calculated for conditioning 
level 𝑘 = 25 on a decimal logarithmic scale.  
 

 
Figure 9  Empirically estimated 𝓔w𝟐𝟓 surface (•) contour plot, along with optimized Gumbel logistic 
𝓖𝟐𝟓	(∘) and optimized Asymmetric logistic 𝓐𝟐𝟓 (－) surfaces. Negative labeling numbers correspond 
to probability levels on decimal logarithmic scale. 
 
Figures 9, 10 show optimized Asymmetric logistic (AL) 𝒜4(𝜉, 𝜂) and optimized Gumbel logistic (GL) 𝒢4 
models contour lines, optimally matched to the empirical bivariate ACER2D function ℰz4, 𝑘 = 25, see Gaidai 
et al. (2016), Gaidai et al. (2017), Gaidai et al. (2018) for GL and AL definitions in terms of the marginal 
ACER1D functions. The optimized models 𝒢8= and 𝒜8= exhibit smooth contours well matching ACER2D 
empirical contours. The latter models are therefore suitable for bivariate response extreme value distributions 
for the applications in this paper. Figure 9 shows good agreement between optimized AL and GL surfaces 
and empirical bivariate ACER2D surface. It is obvious that correlation between wind turbine blade root 
bending moment and mooring line tension force 	is not pronounced, judging from the shape of the bivariate 
contour lines. The lowest probabilities in Figure 9 correspond to the value	𝑁(1	where	𝑁 is the number of 



 
 

equidistant time points in the corresponding  time series, see Eqs. (4) ˗ (7) in the  previous section. 
 

 
 

Figure 10  Predicted return period contours for optimized Gumbel logistic	𝓖𝟐𝟓	(∘) and optimized 
Asymmetric logistic 𝓐𝟐𝟓 (－) surfaces. Boxes indicate return periods in years. 
 
Figure 10 presents predicted return period contours for optimized Gumbel logistic 	𝒢8=  and optimised 
Asymmetric logistic 𝒜8=  surfaces, with return periods indicated in years. Clearly, both Gumbel logistic 
and	Asymmetric logistic models are in a very good match. It is seen that correlation between tension force 
and bending moment is influencing the shape of the bivariate contour lines. Bivariate contour lines 
corresponding to large return periods, e.g. 10 years return period, are important safe engineering design 
components. Therefore, the above mentioned results are of practical engineering importance, especially given 
the advantage of the bivariate statistical analysis over the classical univariate one.   
 
 

7. Conclusions 

The offshore wind turbine mooring line tension force and internal bending moment due to environmental 
hydrodynamic wave loads were studied. The bivariate ACER2D method was briefly described and applied 
to account for the coupled load effects, namely dynamic moment and force simulated synchronously in time. 
Bivariate extreme value distribution low probabilities (or equivalently high quantiles) contours were 
estimated by adopting various bivariate copula models. 
Regarding safety and reliability of FOWT operations, the multivariate analysis is obviously a more proper 
approach, than classic univariate approach. The presented technique has following advantages: 
n Unlike IFORM/ SORM, ACER2D method does not simplify model non-linearities.   
n Various kinds of coupled data can be studied: either measured or numerically simulated. 
n Clustering effects can be accounted for. 
n Unlike various methods based on asymptotic assumptions (e.g. Gumbel, Pareto, POT, Weibull) the 

ACER2D method provides an accurate estimate of the exact bivariate extreme value distribution without 
directly involving asymptotic assumptions.  

n ACER2D method may provide an efficient way of identifying appropriate bivariate copula models for 
practical design.  
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