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Abstract

Decentralized peer-to-peer (P2P) storage networks using blockchain technology such

as Swarm emerge as a viable alternative to central cloud storage. Providing a solution

to having a single point of failure, added security by not having to trust third party

cloud providers, and resistance against possible censorship. However, ensuring the

longevity, reliability, and fairness of such networks presents formidable challenges

in the face of node churn and free riding. Each network participant needs to be com-

pensated accordingly for both their storage capacity needed to persist user files, and

the bandwidth needed for clients to upload and retrieve their files. Swarm in partic-

ular aims to be a zero cost of entry, self regulating, and sustainable storage network,

boasting that storage incentives is the missing piece for blockchain. The Swarm stor-

age incentives are handled by a redistribution game that is run by a set of Ethereum

compatible smart contracts. Each round of this game decides on a network partici-

pant to receive the reward for storing files through the redistribution smart contract.

In this thesis we are evaluating the storage incentives in Swarm by analysing the

redistribution smart contract. Our analysis shows that the current truth selection and

freezingmechanisms in Swarm, lead to a viable free riding strategy formalicious stor-

age nodes. We propose two alternative solutions to mitigate the problem: the alpha

solution, and the bank solution. Both solutions have the attribute, that the reward in

a redistribution roundmight not be handed out to storage node network participants.

In the case where multiple different proofs of storage are submitted in a round, thus

providing incentive for every network node to work together in submitting the same

value. We refer to the case of when there is no winning storage node, as a win for the

bank entity. The bank solution is more simple, and it is easier to implement such that

it minimizes the gas cost of the contract. Whereas the alpha solution is overall more

fair, but trickier to implement, and with more gas overhead.

Further key milestones in this thesis are that. We show how both solutions can

be implemented in the Solidity programming language. That we evaluate the im-

plemented solutions by using real data from previous redistribution rounds. In this

evaluation we showed that the implemented smart contracts could be run in a realis-

tic albeit development setting with ganache blockchain. And we were able to confirm

that we were effective in mitigating the strategy of sending in arbitrary proof of stor-

age, whilst comparing the two different solutions. When deciding what to do when

the bank entity wins, we take care to analyse what happens if we burn or carry the
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reward over into the next round. Particularly interesting is the latter case (which

we decided to implement), where new possible storage incentive exploits could oc-

cur. These are exploits that rely on a node operator being present in multiple Swarm

neighbourhoods, to try and increase their chance to win the carried over reward. We

looked into ones where said node operator had i) the same stake in each neighbour-

hood, and ii) dividing the neighbourhoods the operator is in by two, having a separate

stake in each. The majority of exploits we looked at needed an unfeasible amount of

investment to pull off for bank, and alpha. However we did discover that the bank

solution is vulnerable to ii).
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Chapter 1

Introduction

1.1 Background and Motivation

The most prominent solutions for distributed storage today are cloud storage plat-

forms such as Google Drive [1], or Microsoft OneDrive [2]. These services provide

users access to their files anywhere, anytime, and do so while potentially reducing

the time and money someone would need to spend to persistently store their files

locally. The catch is, however that you need to trust the service provider with your

files, and should they fail or go bankrupt then your data might not be recoverable.

Recently Google has had to deal with backlash over lost files on their Google Drive

[3]. A solution against this single point of failure is instead of using a client-server

model, to use a peer to peer (P2P) network in order to have decentralized storage.

Swarm is a decentralized storage network where participating nodes called bees

organised into neighbourhoods, store user data by splitting an uploaded file into 4KB

chunks that are stored and replicated on the network [4]. Other, similar actors to

Swarm in decentralized storage are Filecoin[5], Storj[6], and Sia[7]. These networks

are utilizing the properties of blockchain, to provide a ledger that keeps track of nodes

storing files, and/or keep track of storage transactions between client and storage

node. Each network conduct transactions using their own token or cryptocurrency,

BZZ being Swarm’s token.

Currently it is difficult for most to say they own the full stack of their application,

and often times it is the hosting of the application that ismissing [8]. This is one thing

decentralized storage can be used for, and right now it is possible to host a website

with storage on Swarm [9]. In particular this can solve possible censorship by third

parties or governments. Citizens in China, Russia, South Korea, Pakistan, Egypt and

more, are experiencing a censored Wikipedia [10]. Since Wikipedia is a central and

public organisation, it is possible to put pressure on them to take down or alter their

content. However, by hosting Wikipedia on Swarm then you would have to pressure

the whole network, and it allows for the possibility of forking Wikipedia [8][11].

Swarm can look to the success and failings of the P2P file sharing service BitTor-
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rent. Notably while the tit for tat file-sharing in BitTorrent is cost-effective, it lacks

incentives for nodes to keep sharing files after they have completed their download

[12]. Which makes it hard for the system to persist files long term, especially those

with lower popularity. Thus suggesting the need for financial incentives instead to

allow for both sustainability and responsibility in file storage.

Additionally if decentralized storage is to become a proper alternative to cloud,

then they need to find good ways to handle a central problem. Node churn, that is

storer nodes may arbitrarily choose to leave the network. And when that happens

data is at best unavailable, or lost forever [13]. As it stands the way to deal with node

churn is to store data redundantly on many nodes, the caveat being that such storage

networks are then reliant on having a lot of participating nodes. Furthermore if there

is a crash in the token economy, or a sudden surge of popularity from a competing

network, then it may cause a mass exodus of nodes. Which ultimately leaves the

storage situation volatile. It is then all the more vital to have robust incentives, in

order to keep nodes participating.

Swarm seeks to become a sustainable platform by (unlike BitTorrent) creating fi-

nancial incentives for nodes taking part in the network. And by doing so avoiding a

great deal of node churn in the long run. There are two kinds of financial incentives

in Swarm. Firstly there’s the bandwidth incentives that compensate nodes for their

internet usage. Secondly there’s the storage incentives which reward nodes for cor-

rectly storing the chunks. Swarm is adamant that storage incentives are the missing

piece in order to make blockchain technologies viable [8].

1.2 Objectives

Exploring the effectiveness of, and improving upon Swarm’s storage incentives will

be themain focus of this thesis. Currently, Swarm utilizes Ethereum smart contracts,

including the PostageStamp, PriceOracle, Staking, and Redistribution contracts, to

manage storage incentives by handling network participation and rewarding BZZ to-

kens. Specifically, the redistribution smart contract decides how the rewards are al-

located among network participants [4]. The redistribution of rewards play out as

a coordination game using a commit-reveal scheme. Where all storage nodes in a

neighbourhood commit a proof of storage for all their stored chunks, to later reveal.

Ideally all nodes should reveal the same proof of storage, but there have been numer-

ous cases where there are many different proofs revealed in a neighbourhood. It is

believed that some of these different proofs are intentionally fabricated. The objec-

tive is to analyse the existing redistribution smart contract by the Swarm team, and

investigate what incentive there could be to fabricate proofs of storage. Subsequently,

if any such incentives are discovered, the aim is to propose and evaluate any potential

solutions to mitigate the problem. In summary, the goal is to conduct a comprehen-

sive analysis of the redistribution smart contract and propose how it can be further

insulated from malicious actors.



1.3 Approach and Contributions

Weanalyse the existing redistribution contractmathematically. In this analysis it was

found that the current freezing mechanisms of Swarm give possible incentive to send

in fabricated proofs of storage. During truth selection the false proof of storage has

a chance to be selected proportional to node stake as all other revealed values. And

if selected all other nodes will be freezed, unable to participate in upcoming rounds.

The increased likelihood for the malicious node to be freezed is offset with the ability

to freeze the others and be the only node eligible for rewards in that neighbourhood

in upcoming rounds. As such we show that the honest strategy is only a weakly dom-

inating nash equillibrium, as this malicious strategy is equal to it. Furthermore if

we consider that the malicious strategy does not necessarily need to store chunks, its

utility increases.

We propose two alternative redistribution contracts, namely the ”Bank” and ”Al-

pha” contracts. Each alternative contract was designed to address the freezingmech-

anism problem identified during the mathematical analysis of the existing contract.

The problem is solved by giving a bank actor the chance to win the reward in neigh-

bourhoods where different proof of storage have been revealed. The ”Bank” contract

prioritizes efficiency and scalability, while the ”Alpha” contract emphasizes enhanced

security and fairness in reward distribution.

We extensively discuss what to do with the reward given to the bank (burn or

keep), and mathematically analyse the expected reward when the reward won by the

bank is carried over into the pot for subsequent rounds.

The proposed alternative contracts were implemented in Solidity, the program-

ming language for Ethereum smart contracts. In particular finding solutions to avoid

floating point operations, as these are not supported by Solidity, such as using the

Babylonian method for roots, and multiplication instead of division. Ultimately try-

ing to get as high performance, i.e lower gas costs as possible.

We test the implementation using truffle firstly by a cooked up example. And sec-

ondly by using real data of previous redistribution rounds from the existing contract,

where the datawas obtained from the SwarmscanAPI [14]. Our goal being to test that

the implementation is flexible enough to handle any potential redistribution rounds.

And to evaluate differences in the two alternative contracts ”Bank”, and ”Alpha”.

1.4 Outline

This thesis first begins by presenting relevant background information, and theory

related to the Swarm decentralized storage network. Starting frommore generalised

information then narrowing it down to the focal point of the thesis, the Swarm storage

incentives. We then analyse the current Redistribution contract, and discuss poten-

tial improvements. After which we implement the new Redistribution contract, and

test it. Finally we discuss the results of our testing, and conclude the thesis. The



content of each chapter is as follows:

• Chapter 2RelatedWork, coverswhat research has previously been done regard-

ing Swarm, and storage incentives.

• Chapter 3 Swarm, presents information about how the Swarm network is built

in a bottom up manner, ending in an overview of the storage incentives.

• Chapter 4 Approach, starts by covering the existing redistribution contract in

detail in section4.2. We then analyse the contractmathematically using aMarkov

chain to provewhatwebelieve to be a vulnerability. Afterwhichwediscusswhat

our approach will be to fix the vulnerability.

• In chapter 5 Implementation, we show how the approach in chapter 4, is im-

plemented in Solidity.

• In chapter 6 Experimental Evaluation, we present the test setup for testing our

implementation. And the results of testing.

• Chapter 7 Discussion, Looks at the research findings found during the thesis.

• Chapter 8 Conclusions, provides a short conclusion of the thesis as a whole.



Chapter 2

RelatedWork

In this chapter we look at previous work done related to Swarm and storage incen-

tives in decentralised storage networks. Furthermore we review the state of current

research on decentralised storage networks by investigating the most recent surveys

on the area. In addition to Swarm, these surveys consider the Storj, Filecoin, and Sia

networks. Finally we do our own review of the aforementioned alternatives to Swarm,

by looking through their respective documentation. We do this in order to get a grasp

of other ways to do storage incentives than those present in Swarm.

We will now begin exploring research related to the Swarm decentralised storage

network. The work done by Lakhani et al. studied the fairness of the reward distribu-

tion for Swarm’s bandwidth incentives. They built a simulation tool, and simulated

a Swarm network of 1000 nodes. The Lorenz curves with their corresponding gini

coefficient was used to represent the fairness of the incentives

[15].

In the previous year, Kristian H. Tjessem in his master thesis developed a simu-

lator coded in Go that simulates the Swarm network and storage incentive. By using

the gini coefficient as a measure, Tjessem studied how fair reward distribution was

given different network configurations and strategies [16].

In the paper by [13], they studied the data retention of Swarm, and found that an

uploaded 5MB file could be irretrievable within less than a month. This due to key

chunks going off the network. To solve this they proposed a Storage Upkeep Protocol

(SUP), the protocol comprises of three agents, challenger, prover, and verifier. The

challenger would ask the prover to prove that they stored a chunk. The proof sent by

the prover would then be verified by the verifier. During file reupload, it can then be

figured out exactly which chunks need to be reinstated, which saves bandwidth.

While the following paper is general purpose in nature, and not about Swarm

specifically. it is relevant as a possible approach to storage incentives. Tas and Boneh

propose a protocol for what they call Data Availability Committees (DAC). The defini-

tion of which is an off-chain system, for persisting and accessing data. This is done to

reduce the cost of storing data on-chain, but the DAC can no longer rely on the secu-
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rity of the blockchain. Decentralized storage networks, Swarm included, have a DAC

consisting of storage nodes in the network. The issues of DAC is trusting member

nodes to store data. And even when correctly storing the data, trusting those same

nodes will not deny legitimate requests for the data. They propose a solution to the

problem of data availability that uses financial incentives. Slashing nodes that with-

hold data. If a client does not receive data within a timeout off-chain, then the next

step of the protocol is to send the data query on-chain. The nodes who do not respond

to the on-chain challenge, have their blockchain stakes slashed [17].

We found two papers mentioning Swarm, that provide recent insight into the

area of decentralised storage as a whole. The most recent being a Systematization

of Knowledge (SoK) conducted this year (2024). While the other paper is a survey

from 2020.

The SoK by Chuanlei et al (2024), covers the topic of decentralized storage net-

works. They describe them as a paradigm shift for data storage. The SoK focuses on

proof of storage, and storage incentives in the networks. They first describe the archi-

tecture of a decentralised storage network in general, and then compare the various

storage networks: Sia, Storj, Filecoin, FileDAG, and Swarm. In particular they look

into how the different networks do proof of storage, and which consensus algorithms

are used for transactions. They have labeled Swarm as proof of work, but Swarm is

using Ethereum based networks with proof of stake. Furthermore they are not cover-

ing the storage incentives in Swarm, although they domention the Swarm bandwidth

incentives. We take this as an indication that description of the storage incentives are

not currently readily available [18].

In 2020 Zahed Benisi et al conducted a survey of decentralised storage networks

mentioning Storj, Filecoin, Sia, and Swarm. Although a good survey at the time due

to the rapidly evolving nature of this scene. Information from 4 years ago regarding

the storage networks is already likely to be quite outdated. In regards to themain con-

clusions on disadvantage and benefits of decentralized storage and centralized cloud

storage providers however, then the insight is still useful. A main issue blockchain

networks face is scaleability. They highlight that it is possible to build reputation sys-

tems for storage nodes in these blockchain systems, as in the choice to only allow

reputable nodes to store your data. Although there are various issues for how to do

reputation in the most correct manner. The survey is focusing mostly on Storj [19].

The following is an evaluation of the other decentralized storage networks out

there besides Swarm. We review the Filecoin, Sia, and Storj networks by looking

through their official documentation, and papers.

Filecoin is built on the InterPlanetary File System protocol IPFS. Themain differ-

ence from Swarm is that instead of levying more passive storage incentives FIlecoin

uses the idea of a storagemarket. Additionally themarket has three agents, the client,

the storage providers (storage nodes), and retrieval providers. Retrieval providers

provide bandwidth for a client to retrieve data from the storage node. Clients make

deals with storage and retrieval providers, buying their solicited services for FIL. In

a deal among other terms price, size of storage, and duration of storage are negoti-



ated. The deal negotiation itself happens off-chain, and is published to the Filecoin

blockchain upon agreement [5].

Sia also follows the marketplace principle unlike Swarm, where renters negotiate

contracts on the blockchain with storers for storage. It also differs from Swarm by

using a proof of work blockchain. Storage nodes set the prices and the idea is that

freemarket rules of supply and demandwillmanage the price. Where Sia differs from

Filecoin is that the Sia renter software renterd, will automatically form contracts for

the client, based on their parameters [7].

In Storj’s whitepaper they state that the system cannot be subject to restrictions

by waiting for a blockchain to agree and process transactions, and propose a game

theory approach. Storj differs from Swarm by using a reputation based system with

satelittes. Their core design philosophy is that clients should avoid untrusted storage

providers. Storj network comprises of storage nodes, and satellites. Satellites act as a

network moderator for storage nodes, storage nodes get their payment from satellite

nodes (they can work for multiple satellites). And satellites also manage the repu-

tation of nodes, they will send random audits to storage nodes to check if they are

faithfully storing data. In the case of failure a storage node will risk expulsion, and

get no more payments from the satellite [6].

In most cases a storage node is assumed to be a reliable service providing node,

this comes with the side effect that any new node must prove themselves. And as

a result receive limited business opportunities. For them there is a vetting process,

where the satellite will choose some unvetted nodes to store file data that does not

impact the ability to retrieve that data. This in addition to a proof of work system, a

filtering system, and a preference system is part of storej’s reputation handling [6].





Chapter 3

Swarm

In this chapter, we will delve into the design principles underlying Swarm, offering

essential context for understanding its storage incentive mechanisms. Following an

overview, we will describe the Swarm Network layer, and how the routing between

storage nodes work. Furthermore we will explain how files are organised into chunks

for storage. And lastly the overall design of the Swarm storage incentives.

Swarm is a p2p network of storage nodes, that aims to let people share their left-

over storage capacity for financial gain [8]. Users canpay to store files on the network.

Swarm is designed as a layered architecture, starting from the bottom the layers are

as follows:

• 1. underlay p2p network

• 2. overlay network and storage

• 3. data access API

• 4. application layer

1): Underlay p2p network refers to the protocol that allows direct network com-

munication over IP to storage nodes. 2): Is the Swarm storage network itself, nodes,

content addressing, file storage, and blockchain storage incentives. 3): Handles ac-

cess to stored files.

And 4) being for people building applications on top of Swarm [20]. Of these four

layers the developers of Swarm are mostly concerned with layers 2), and 3), calling

those the Swarm core. This thesis concerns itself with 2) overlay network and storage.

3.1 Network

3.1.1 Underlay p2p network

While the specific underlay p2p network 1)used is up to each node to decide, there are

some requirements the transport protocol needs to fill decided by the Swarm team.
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Sent messages need to have guaranteed delivery, and messages need to be encrypted

and authenticated. Swarm base their upper layer implementation on the libp2p li-

brary that satisfies all the requirements [21] [22]. These requirements are described

in further detail in the book of swarm [20]. However, themain takeaway is that nodes

in the underlay network are identified by theirunderlay address. It is this underlay

address peers use to connect to each other.

3.1.2 Overlay network

Moving to layer 2), in addition to the underlay address, nodes are also identified by

a unique 256 bit overlay address. The address is created by using the Ethereum

account public key and hashing it together with the bzz network ID for Swarm. This

network ID is different for testnet, andmainnet Swarm, giving users different overlay

addresses on each. The overlay address is used to determine what peer a node will

connect to, and the pathmessages are forwarded in the underlying p2p network [20].

The overlay network uses a Kademlia topology, which can ensure that there is a

network path between any twonodes inO(log(n))hops. Allowing the network to send

messages using underlay network peer connections. Kademlia is a distributed hash

table (DHT) [23]. The Kademlia table in Swarm indexes peers using the Prox-

imity Order (PO) of the peer address relative to the nodes own overlay address

[20]. PO is a measure of how related two addresses are, PO(x, y) counts the match-

ing bits starting from the most significant bit between the addresses until a bit no

longer matches. In a 256 bit address space, the minimum distance then becomes

256, and the maximum 0. The table is organised into PO bins, peers with PO 255

are kept in the same bin and continuing on.

Now if a node has at least one peer in every bin until PO bin dx, then it has a

saturatedKademlia table. dx is called theneighbourhooddepth, and nodeswithin

that depth are the nearest neighbours of a node. For routing purposes a saturated

Kademlia table should always be satisfied. Because any peer could at any point go

offline then it is not enough to only have a single peer in each bin [20].

Routing

Swarm uses what they call forwarding Kademlia. In forwarding Kademlia for a node

to reach their destination, they will find the closest peer to that destination in their

Kademlia table. And then that node will do the same forwarding the message at least

one PO closer each time, until the destination is reached. The return trip can then

follow the same path [20].



3.2 Chunk storage

3.2.1 Addressing

When a file is uploaded to the network, the file is split into 4KB chunks. Each chunk

has an address that coincides within the same address space as the nodes themselves.

The idea is that each chunk is stored on the nodes that are closest to the address.

One reason for splitting the file is to help achieve storage load balancing between

nodes. Chunks are spread uniformly in the address space, and as such it makes load

balancing simpler when their size is fixed at 4KB. Another reason is that with the

smaller size it allows concurrent retrieval even for small files in a manner similar to

BitTorrent.

There are two different kinds of chunks in swarm. The first is a content addressed

chunk, whose address is calculated by hashing an8-byte spanwith the root of aBinary

Merkle Tree (BMT) of the data. It is known as a BMT chunk. The data in the chunk

is further segmented into 32-byte segments, the 8-byte span is the number that says

how many of these segments hold actual data, the rest are padded to fill the 4KB

chunk. The segments are put into the BMT to create a verifiable inclusion proof for

the segments, that can be proven in O(log(n)), where n is number of segments.

The second type of chunk is a single owner chunk, where the address is calculated

as a hash of a 32-byte arbitrary ID and the owner address. Within the chunk content

in addition to the data and the 8-byte span as before, there is the ID and a digital

signature made by the owner. The signature is signed on the ID and the BMT chunk

hash which is the same calculation as the BMT chunk adress above. The single owner

chunk can be validated by extracting the ID, signature, and payload. Then by recon-

structing the content to sign, with ID and BMT hash, one can get the owner address,

which finally is used with the ID to reconstruct the chunk address [20].

3.2.2 Chunk replication

When a node hosting a chunk leaves the network, then the chunk cannot be retrieved.

In order to combat this situation the chunk is also stored by the nodes nearest neigh-

bours. The number of times a chunk should be replicated, is called the redundancy

factor r [20]. Currently in Swarm r is set to 4. The nearest neighbours, with neigh-

bourhood depth d, must contain at least r peers. Each node also possesses a cache,

where they can keep chunks that have been forwarded to them for quick relay access.

3.2.3 Push & pull syncing

Push syncing is the protocol that moves a chunk to its intended neighbourhood. For-

warding Kademlia can be used to deliver the chunk to the closest node to its address.

A receipt of storage is then passed back from that node.

Pull syncing makes sure that each node in the neighbourhood have their chunk

storage synchronized.



3.3 Storage incentives

Storage incentives are ways of financially compensating individuals for providing

their storage capacity. The storage incentives of Swarm are handled on-chain, by use

of Ethereumbased smart contracts, currently deployed on the Gnosis chain [24]. The

smart contracts are called: PostageStamp, PriceOracle, Staking, and Redistribution.

The latter will be covered separately in section 4.2.

3.3.1 Postage stamps

The funding for the storage incentives come from when clients pay to upload con-

tents, the way they do this is by purchasing postage stamps. The postage stamp is

associated with a chunk, and the digital signature of the uploader. It acts as a proof

of payment for the chunk. Nodes are more likely to keep storing a chunk with a high

value associated postage stamp.

Buying a stamp for each 4KB chunk is a tedious process, so instead they are paid

for in batches. It is the batch depth which decides howmany chunks a postage stamp

can pay for, this number is a base 2 logarithm. With batch depth of 8, it pays for 28 =

256 chunks. A per-chunk balance is kept, which is the total amount of BZZ paid for

the batch, divided by the number of chunks paid for. Importantly anyone can choose

at a later date to increase the batch balance, although only the owner can increase

the batch depth to dilute the price. This means that data people deem important can

remain on the service, even after the owner has lost interest. Batches expire when

their balance runs out, and when this happens they are no longer protected against

being evicted [4].

Postage batches are handled in the PostageStamp smart-contract. Additionally it

keeps track of the pot of rewards to be redistributed. The redistribution itself happens

in rounds, orchestrated by the Redistribution contract. We will discuss this in detail

in section 4.2.

3.3.2 Depths

The storage incentives have some key metrics for describing the data stored on the

network, these are the depths, and there are three in total. First the reserve depth,

which tells us about how much storage has been reserved by the purchase of postage

batches. It is calculated by using the total number of storage slots in valid postage

batches, the reserve size. And taking the base 2 logarithm of that reserve size, round-

ing it upwards towards the nearest integer[20].

Secondly the storage depth, which is important to the operation of the redis-

tribution contract as it defines the number of neighbourhoods. Storage depth is a

measure of the postage batches that are currently utilized to store data, as in the total

number of chunks uploaded to the network. The storage depth of a node is the lowest

PO at which the node stores all batch bins[20].



The third depth is the Neighbourhood depth, it is somewhat similar to the

same depth defined for the overlay network. It relates to the local replication of

chunks, each neighbourhood decided by the storage depth should have at least four

nodes (redundancy factor r). The neighbourhood depth of a node is the highest PO:

d, that allows the address range decided by the d bit address prefix, to contain at least

three (r-1) other peers [20].

3.3.3 Price oracle

The PriceOracle contract is a measure to self regulate the price of storage. It calcu-

lates the current storage rent. At each block in the blockchain, the balance for the

postage batches decrease by the amount of the storage rent [4]. It is the accumulated

total storage rent that becomes the reward pot mentioned earlier. The price regu-

lation is a result of feedback from the Redistribution contract. The Redistribution

contract at the end of a round tells the PriceOracle contract how many neighbour-

hood nodes participated honestly. If this amount is equal to the redundancy factor,

then the storage rent remains the same. Otherwise if it is larger then the rent de-

creases to encourage more files uploaded to the network. Final case if it is less than

the redundancy factor, the storage rent increases to increase the number of storage

nodes[24].

3.3.4 Staking

Swarm uses a Proof of Stake (PoS) system for storage nodes, the idea is to make sure

that only invested/serious node operators join the network. Each node has a chance

to earn storage incentives proportional to their staked amount of BZZ. Furthermore

this provides each node with some accountability for their actions, since it is possible

to both freeze and/or slash anode’s stake if theymisbehave. Having one’s stake frozen

means being ineligible to take part in the storage incentive. This is also the case if

one’s stake is slashed below the minimum BZZ needed to be staked. These actions,

and the management of stake is handled in the Staking contract.

The full overview of the storage incentive system can be seen in figure 3.1. As a

brief summary clients pay for chunks in postage batches in the PostageStamp con-

tract. The storage rent is deducted from the postage batches, and added to a pot, that

is to be redistributed. Storage nodes stake BZZ through the staking contract in order

to be eligible to participate in the redistribution. Misbehaving nodes can have their

stake frozen, and/or slashed. The Redistribution contract hands out the pot from

the PostageStamp contract, and gives feedback to the Staking, and PriceOracle con-

tract. And the PriceOracle contract adjusts the price of the storage rent based on said

feedback.



Figure 3.1: Block diagram of the storage incentive system



Chapter 4

Approach

4.1 Introduction

In this chapter we will be analysing the existing redistribution contract by Swarm.

While considering the results of said analysis, we define the properties and require-

ments, that an improved redistribution should have. Additionally discussing the dif-

ferent approaches to take in order to safely and fairly, reward Swarm storage nodes.

Subsequently we propose the alpha, and bank solutions. Finally we discuss and anal-

ysewhat to dowith thenewbank reward, that comes as a consequence of the proposed

solutions.

4.2 Existing Approach

The current redistribution contract acts as aRedistributionSchelling game. ASchelling

game is in game theory a coordination game that revolves around a focal point. The

idea being that if multiple parties are asked to make decision or find a solution, with-

out being able to communicate, then this focal point would come up naturally and

independently as a solution [25]. The coordinators in this case being a neighbour-

hood of storage nodes, and the focal point the chunks they all store.

Every 15 minutes a round of this redistribution Schelling game occurs. The game

runs in three phases, commit, reveal, and claim. First a swarm neighbourhood is ran-

domly selected. Then the commit phase starts: nodes in that neighbourhood should

be storing the same data. To prove that the nodes have consensus about the chunks

they store, then they must show evidence called Proof of Entitlement (PoE). This evi-

dence needs to be unstealable, such that a node not doing storage does not get a hold

of it. That is why a commit/reveal scheme is necessary and hence why it is the com-

mit phase. Furthermore in the commit phase the staking contract is checked to make

sure that the node has the minimum amount of staked BZZ to participate.

In the reveal phase the committed PoE are revealed, they submit a ”transaction

containing their reserve commitments, their storage depth, their overlay address, and
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the key they used to obfuscate the commit”. The reserve commitment being a hash

representing the stored chunks, it acts as PoE in this case. Checks are done to verify

that the sent information does hash to the previous committed message, and that the

node is in the storage depth that they claim to be in.

The winner is decided in the claim phase. To decide the winner of the game one

reveal is selected as the truth. Based on this truth the participants are divided into

roles:

• Honest are those that agree with the reveal

• Liars are the ones who disagree with the reveal

• Saboteurs are the ones that did not reveal or who gave a faulty reveal

One randomly selected winner among the honest nodes can issue a claim transac-

tion on the smart-contract. The winner in a neighbourhood is selected proportionally

to their stake. Liars and saboteurs are punished by being frozen. Which means they

cannot participate in upcoming rounds [4].

There is an issue that arises since selecting the truth is done at randomon the valid

reveals. The truth can be a spurious solution that does not correctly correlate with

the chunks being stored, as long as it passes the aforementioned checks. A malicious

actor could create a PoE that only he knows, and if it is chosen as the truth, then the

malicious actor gets all the rewards. But since everyone else also gets frozen in this

case, if his neighbourhood is selected again for the reward distribution game, then he

can get the rewards for that one as well as the only participant. However there is still

a significant risk of becoming a liar himself and getting frozen. This is not the only

reason a node would select a different truth than the others however. For instance

it might be running an earlier version of swarm. Or its chunk storage could be not

synced somehow, maybe due to network instability.

Looking at transactiondata fromSwarmscan [14] using readSi script fromethersphere/bee-

scripts [26], for 3144 rounds in January-February 2024. There have been 419 times

that a minority revealed truth has been selected, which is 13% of the rounds. Fur-

thermore different revealed values are present in 60% of the rounds.

4.3 Analysis

In this analysis we will analyse the claim phase of the current redistribution contract,

to see what the real impact that the issue with the freezingmechanism has. We define

the expected reward for Storage nodes in Swarm, first with everyone following the

protocol honestly. And secondly with the case where there is one malicious node in

each neighbourhood. We show that for this second case, that the malicious node can

expect an equal expected reward to the honest nodes in the neighbourhood.



4.3.1 Expected honest node reward

First of all what will be the expected rewards in a world where everyone does as they

are supposed to? In this case the selection of revealed truth is always going to result

in every node being able to participate, therefore we only need to look at an individ-

ual node’s chance of being selected as a winner. The expected reward for any sinlge

nodek in a round is the probability for it to be selected given that its neighbourhood

is selected (eq. 4.1). We assume that the winningsWi for each round i, is equal to 1.

Therefore we can simplify the expected distribution of rewards after n rounds to be

equal to equation 4.2. Let S(hoodk) be the sum of stake in a neighbourhood where

nodeK is a member, and S(nodek), be the stake of nodeK . Finally let nhood be the

number of neighbourhoods.

E(reward) =

n∏
i=1

P (hood)P (k|hood)Wi (4.1)

E(reward) =

n∏
i=1

1

nhood

S(nodek)

S(hoodk)
(4.2)

From equation 4.2, we have that the expected reward is exactly proportional to a

node’s stake.

4.3.2 One malicious node

We now introduce one malicious node into each neighbourhood. For each redistri-

bution round we have two different outcomes; whether the honest nodes win, or the

malicious node wins. Nodes will be frozen in each round, making subsequent rounds

affected by who was frozen in the previous round. We therefore have that the ex-

pected reward of round n is dependent on what happened in the previous rounds.

Every time a round is ran the set of frozen rounds is updated, and the chance of win-

ning in the next round for any node depends on that update. We consider this as the

outcome of the next round only being dependent on the frozen state of the previous

round. This gives us a Markov property, which allows us to model the situation as a

Markov chain model.

A visualization of our Markov chain model can be seen in figure 4.1. The model

has three states s1, s2, s3 = unfrozen,mfrozen, hfrozen. In the unfrozen state, no

node is frozen. In themfrozen state, the malicious or faulty node is frozen, whereas

in thehfrozen state all the honest nodes are frozen. Continuing onwewill be defining

the transition probabilities: P (h), P (m), and P (uf).

First let us take a step back to redefine the expected reward for honest nodes. Let

us assume that stakes among nodes are evenly distributed. The equal stake assump-

tion canbe justified by considering that currentlymost nodes only stake theminimum

amount. However we mainly think that since the assumption that the reward is pro-

portional to stake holds throughout the process, which is backed in Tjessem’s work

[16]. Nodes will ever only have an equal chance of winning with the same stake. For



reference the honest node equation 4.2 of the previous subsection can now be written

like in equation 4.3.

E(reward) =

n∏
i=1

1

nhood

1

|kϵhood|
(4.3)

Where n is the number of rounds, nhood is the number of neighbourhoods, and

hood is a set of nodes k representing the selected neighbourhood.

E(reward) =

n∏
i=1

r

N

1

r
=

1

N
(4.4)

Let us also assume that the number of nodes in each neighbourhood is uniform,

and equal to the redundancy factor r. The number of neighbourhoods nhood can then

be described as N
r , whereN is the total number of nodes. This results in the expected

honest reward found in equation 4.4.

Probability of a malicious node having its reveal selected as the truth is P (m), and

the probability for the revealed truth to be the honest reveal is P (h).

P (m) =
1

nhood

1

r
=

1

N
(4.5)

P (h) =
1

nhood

(r − 1)

r
=

(r − 1)

N
(4.6)

The probability of leaving the unfrozen state, and going to either mfrozen or

hfrozen, are P (h), and P (m) respectively. And the probability of staying unfrozen

is 1− (P (m) + P (h)).

We now need to find the probability of being unfrozen P (uf). Each node in prac-

tice is frozen for a set number of rounds. However, in aMarkov Chainmodel we need

to use probabilities, since each row in the transition matrix have to sum up to 1. For

said probability we say that we expect a frozen node to unfreeze after a certain num-

ber of rounds. We define ft, freezing time, as the number of rounds that a node is

frozen. Which gives us P (uf) = 1
ft . As an additional consequence of using a Markov

chain model we have the probability of remaining frozen, which will be 1 − P (uf).

Although the previously deterministic unfreezing process, is now nondeterministic.

It will still closely approximate the deterministic behaviour in the long run.

ft = penaltyMultiplierDisagreement ∗ roundLength ∗ 2truthRevealedDepth (4.7)

In the current redistribution contract the freezing time ft is calculated like shown

in equation 4.7 [24]. The penaltyMultiplierDisagreement is a tune-able parameter for

how severe we want to punish nodes disagreeing with the revealed truth. Currently

this penalty is set to 1 in the contract, and as such does not impact the time at all.

The Markov chain model calculates round by round, and as such the roundLength

also gets set to 1 in the model. This leaves the simulation freeze time as ftsim =



2truthRevealedDepth, truthRevealedDepth being the storage depth revealed in the truth.

2storageDepth calculates the number of neighbourhoods, nhood, which we previously

defined as N/r. SubstitutingN/r into equation P (uf) = 1
ft , leaves us with equation

4.8.

P (uf) =
1

nhood
=

r

N
(4.8)

Putting it all together, we have the complete Markov chain transition matrix in

(tab. 4.1). And as previously mentioned there is a visualization of the Markov chain

in figure 4.1.

unfrozen mfrozen hfrozen

unfrozen 1 − (P (m) + P (h)) P(h) P(m)

mfrozen P(uf) 1 - P(uf) 0

hfrozen P(uf) 0 1-P(uf)

Table 4.1: Transition matrix

The expected rewards of each singular node are dependant on the probabilities of

being in each state, P (s1), P (s2), P (s3) (eq. 4.9). By letting the reward value be equal

to 1, it can be omitted from the equations. However, do note that it is still a factor in

each term.

E(Reward) = P (s1)P (win|s1) + P (s2)P (win|s2) + P (s3)P (win|s3) (4.9)

When considering the chances to win for a singular node in the unfrozen (s1)

state, it is uniformly 1
N = P (m), regardless of what proof of storage it provides.

Where honest and malicious nodes differ however, is their chances of winning in

states s2, s3. The malicious node will always lose in state s2, and always win in state

s3 (eq. 4.10). And an honest node will always lose in state s3. While in state s2 it will

need to compete with the rest of the nodes in the neighbourhood submitting the right

proof, which is: 1
r−1 (eq. 4.11).

E(Rewardm) = P (s1)P (m) + P (s2) ∗ 0 + P (s3) ∗ 1 = P (s1)P (m) + P (s3) (4.10)

E(Rewardh) = P (s1)P (m) + P (s2) ∗
1

r − 1
+ P (s3) ∗ 0 = P (s1)P (m) + P (s2)

1

r − 1
(4.11)

From the above equations we have that E(Rewardm) = E(Rewardh), if

P (s3) =
P (s2)
r−1 . To find out if that is the case, we have the equations for finding P (s1),

P (s2), and P (s3) 4.12, 4.13, and 4.14. These are derived from the incoming edges to



Figure 4.1: The Markov chain model



the target state P (sx → sy), factored by the probability of being in the initial state

P (sx).

P (s1) = P (s1 → s1)P (s1) + P (s2 → s1)P (s2) + P (s3 → s1)P (s3) (4.12)

P (s2) = P (s2 → s2)P (s2) + P (s1 → s2)P (s1) (4.13)

P (s3) = P (s3 → s3)P (s3) + P (s1 → s3)P (s1) (4.14)

Solve equation 4.13 for P (s1):

P (s2) = (1− r

N
)P (s2) + (

r − 1

N
)P (s1) (4.15)

P (s1) =
NP (s3)− (N − r)P (sr)

r − 1
=

rP (s3)

r − 1
(4.16)

And also solve equation 4.14 for P (s1):

P (s3) = (1− r

N
)P (s3) +

1

N
P (s1) (4.17)

P (s1) = NP (s2)− (n− r)P (s2) = rP (s2) (4.18)

Finally substitute eq. 4.18 into eq. 4.16.

rP (s3) =
rP (s2)

r − 1
(4.19)

P (s3) =
P (s2)

r − 1
(4.20)

We have know shown that since P (s3) = P (s2)
r−1 , that the expected reward for

honest nodes E(Rewardm), is equal to the expected reward for the malicious node

E(Rewardh).

It can be tested out experimentally by assigning values to N, and r. Noted that the

current value for r in Swarm is 4, we should still try different values. P (s1), P (s2),

and P (s3) can be calculated by finding the left eigenvectors of the transition matrix.

Whichever one of the eigenvectors has the eigenvalue 1, corresponds to the eigen-

vector holding the information for the state probabilities. By normalising that eigen-

vector by dividing each element with the sum of all the elements in the vector, the

percentages are found.

We also simulated the single malicious node scenario, by modifying Kristian H.

Tjessem’s SwarmSI [16]. In our modification we built on the FixedIdealSwarmNet-

work, in this network all the neighbourhoods have the same number of nodes equal

to r. We made it possible for nodes to submit different truths, and for the network



N R s1 s2 s3
P (s2)
r−1

512 4 0.5 0.375 0.125 0.125
2048 4 0.5 0.375 0.125 0.125
7777 5 0.5 0.400 0.100 0.100
4096 8 0.5 0.437 0.062 0.062

Table 4.2: Markov chain experimental results

to handle freezing, and unfreezing of nodes. And for the SelectWinner method to

account for frozen nodes.

We ran a single run of the simulator with r = 4, and 1024 nodes, for 10000 rounds.

Let h be the group of honest nodes, andm the group of malicious nodes. The results

for each group can be seen in table 4.3. We took the earnings for the nodes at the

last round of the simulation, and found the average earnings: E(h), E(m), and the

standard deviation: SD(h), SD(m).

Group h m
Mean 0.000988 0.000941
SD 0.000350 0.000410
N 768 256

Table 4.3: SwarmSI result

On the simulation data we did an unpaired t test, in order to check if any signifi-

cant difference between the two groups could be found. Withα = 0.05, t = 1.7799 and

df = 1022. The 95% confidence interval found goes from −0.00000488 to 0.0000988.

And the P value is 0.0754. This P value is not quite statistically significant, therefore

the SwarmSI simulation also concludes with E(h) = E(m). Admittedly this particu-

lar test, with only this result, is weak on its own. However in combination with the

above mathematical proof, We have deemed it sufficient for now.

What our analysis in this section shows is that the expected reward (proportional

to stake) for revealing the same truth as other neighbourhood nodes, and for reveal-

ing a different truth to that, is the same. In game theory terms the expected honest

strategy is only a weakly dominating Nash equilibrium. Which means that if one is

following that strategy, then there is no utility gained for switching to the alternative,

but there is also no reason not to. In fact additional utility could be gained by the

malicious node by not using storage capacity to store the neighbourhood chunks. In

particular since storage rent adjustments are based on how many nodes are eligible

to claim the reward of the round. This could lead to negative consequences for the

network as a whole, if this number of eligible nodes is repeatedly marked as 1 due

to others getting frozen. Since when this number is less than r, the storage rent in-

creases, which gives better terms to storage nodes, and therefore the single claimant.

If this happens repeatedly one could only speculate that it can increase the storage

rent such that uploaders will take their files elsewhere.



4.4 Proposed Solution

In the following section we first set up what requirements the new redistribution con-

tract needs to have. After which we comment on possible approaches for our solution

that mitigates the issue of node’s sending in arbitrary reserve commitments. Finally

we present our solutions the bank, and alpha solution.

4.4.1 Requirements

The properties and considerations our solution should hold are as follows:

Fairness: A storage node gets rewarded proportional to the effort it puts in. In

Swarmsince every node in aneighbourhood stores the same chunks, thatmeans

nodes need to be rewarded in proportion to their stake in the PoS blockchain.

Coordination rewarding: If the storage nodes all decide the same storage depth

and proof of reserve capacity. Then they should be rewarded more than if any

subset of nodes decide different values.

Sybil resistance: Havingmultiple storagenodes in the sameneighbourhood should

not disproportionately increase one’s expected reward. Formally given nodes

A, B, C, if the stake of C is greater than that of A and B combined. Then for any

combination of strategies used by A and B, C can always expect greater or equal

rewards.

As the network grows, the storage incentive should remain an enticing protocol,

it should be Scalable. Survey by Zahed Benisi et al mentions scalability as one of the

greatest challenges for blockchain based systems [19].

The storage incentive process needs to be a high performance solution. Since

both hardware and bandwidth usage is not free. Additionally since the process uses

Ethereum smart contracts, whatever solution chosen should be as optimised as pos-

sible in order for it not to use a lot of gas. The transaction gas overheadmakes certain

programming approaches that otherwise would be trivial with modern hardware less

so. Storing information on chain is more expensive than in memory.

Crucially the property not already taken care of by the existing contract is coordi-

nation rewarding. Since with freezing of nodes, if a minority reveal is chosen as the

truth, it is expected to gain an equal reward to the others, due to the freezing of the

majority. See previous analysis.

The reason for having Sybil resistance is such that someone does not benefit from

creating multiple overlays in a neighbourhood with less stake, compared to placing

all their stake in one overlay. Storage incentives should be done in a way that incen-

tivizes nodes to join neighbourhoods in a symmetric manner. To fix a previous issue

of imbalanced neighbourhoods, the number of nodes in a neighbourhood would vary

greatly, Swarm introduced a way to mine the overlay for the storage node. Andmade

an interface highlighting neighbourhoods that would benefit from more members,



so new nodes would try join those neighbourhoods[27]. This could imbalance neigh-

bourhoods more if people tried to mine themselves into having more in the same

neighbourhood. This behaviour is undesirable since it limits the decentralization of

certain chunks. Which is why the incentives should discourage such behaviour. On

the contrary an actor having multiple nodes each in a different neighbourhood is a

good thing, because it increases storage capacity of the network as a whole.

4.4.2 different approaches

We want to update the existing contract, to further incentivize storage nodes in a

neighbourhood to provide the same reserve commitment. Which is an indication

that they are all storing the same chunks. This is because in the current contract

committing a reserve commitment in the minority is an equal strategy to following

the majority.

Improving the existing redistribution contract has two main easily identifiable

approaches. The first is to work on a more robust truth reveal. It would simplify the

process if the smart-contract can decide on the truth on its own for what chunks store.

Additionally more restrictions might be possible to add for what constitutes a valid

reveal. The other approach is to live with not being able to 100% know the truth. This

is the current approach, and why the truth chosen is left up to chance. If the method

of calculating the reserve commitment changes between versions, and one has nodes

both on the old version and the new. It might be possible for both versions to take

part, if we do not assume a certain truth. Also if a node is acting honest, as in trying

to store every chunk the neighbourhood is responsible for, but is unable to obtain all

of them either due to network fault, or some other node(s) purposely withholding the

chunk [17], it can also have a shot at the reward.

Why Schelling coordination game?

Why not distribute rewards to all storage nodes? If it remains probabilistic, and if

the network grows substantially large then being rewarded while being fair in the

long run. Might be too much like winning the lottery, and that there is no reason-

able security that you will be paid today, or tomorrow. Which could be off putting

to some.However since Swarm seeks to have what they call zero cost of entry, the

potential lack of liquidity is not that much of a factor. At the time of writing BZZ is

worth $0.3926, so starting to stake is not expensive. Furthermore the round time can

be adjusted to give more or less payout chances.

Another reason is for performance. Firstly the contract needs to somehow verify

that a storage node is not free riding. Which as stated the current smart contract

already has some difficulty figuring out. It would take a lot of messages (bandwidth)

and smart contract calculations (CPU/gas) to do this for every node. Using random

selection anchors to select a single neighbourhood is a boon for performance, since

it means the contract only needs to use for loops that loop through neighbourhood



members. And neighbourhoods are incentivized to be a manageable size, to increase

the chance for any given node to win. In this way the smart contract uses less gas.

Secondly, with the current smart contract, only one claim transaction can be made

for each round. And that greatly reduces the amount of transactions that need to be

stored on chain.

4.4.3 Redesign options

The reason why the two strategies presented in section 4.3.2 are equal, is because

when a single node remains unfrozen, it gets the whole reward. If instead that re-

ward was reduced, the outcome could be different. The expected reward is reliant

on two things: the probability of being rewarded, and the value of the reward itself.

Thus we can either decrease the chance to win, or hand out less reward. However

regardless of which we choose to reduce, there is no distinction outside of how we

choose to implement the redesigned smart contract The question is: based on what,

do we tweak the expected reward?

Already the redistribution contract sends the number of ”truthy” participants to

the PriceOracle contract, which in turn gets compared to r, and ends up regulating

the number of nodes in the neighbourhood. We can punish nodes by withholding

some reward if the number of truthy participants is less than r. However that is the

opposite incentive of what the PriceOracle intends to do in this case. It increases

storage rent, to increase number of nodes in the neighbourhood.

Other ways to tweak the expected reward that is more in line with Swarm’s other

incentives are as follows:

Number of different revealed values: Ideally we want all storage nodes to de-

cide on the same reveal value, indicating that they are storing the same chunks.

Let us say that every node in the neighbourhood gets punished in proportion

to number of different reveals. Then as a whole the neighbourhood would get

less reward, compared to neighbourhoods with fewer revealed values. But the

expected reward within a neighbourhoodwould still be the same for any chosen

reveal.

Number of reveals different frommy reveal:

For every node with its own reveal value count the number of reveals from the

other nodes in the roundwith a different reveal value. As an example let 5 nodes

reveal the majority reveal, two nodes have the sameminority reveal, and a final

eight node has its own unique reveal.. Then for every node following the ma-

jority there would be 3 different reveals, the two nodes with the same minority

reveal have 6 different reveals, and the remaining node would have 7 differ-

ent reveals. Instead of punishing every node equally based on the number of

different reveals, as with number of different revealed values. This allows the

node’s voting for themajority reveal, with the lower number of different reveals



to be punished less, than those following aminority reveal. Furthermore allow-

ing for coordination rewarding as any nodes with the same reveal are punished

less than, nodes with a unique reveal value. However, without involving node’s

stake we do not have sybil resistance. Additionally this criterion is expensive to

implement in practice.

Stake belonging to my reveal: Let rvli be the reveal of nodei, and S(rvli) be

the sum of stake, staked by the nodes revealing rvli. Utilizing stake also in our

solution is a good way to ensure we do not weaken the redistribution contract’s

Sybil resistance. Using this criterion therefore allows us sybil resistance while

it also can allow for coordination rewarding.

In essence all of these methods are ways of achieving the coordination rewarding

property. However the ones not taking stake into account: number of different re-

vealed values, and number of reveals different frommy reveal, have issues with Sybil

resistance. Although the latter could be transformed to be stake belonging to differ-

ent reveals. Due to the lower complexity the one we are most in favour of utilizing is

the stake belonging to my reveal.

The question that arises is what to do with the part of the reward that does not get

handed out:

Burn it: The tokens can be burnt, in which case the system loses that part of the

reward. One would think that this approach can lead to deflation, benefiting

those with a stockpile of tokens.

Add it back to the pot: It can be added to the pot next round, in which case if a

faulty nodemanaged to freeze the others. Then it would still be possible to earn

some extra reward if its neighbourhood was picked once again in a subsequent

round. The natural solution for that is to only inject the leftover reward into the

reward pot of a round, after which all frozen nodes in the initial round has been

unfrozen.

Bank The money can be claimed by a bank entity, and repurposed for some other

incentive.

We can also decide whether to keep freezingmechanism or not. It might be either

too complex, or too punishing to have both the proposed new mechanisms and the

old freezing. On the other hand since these mechanisms arent mutually exclusive it

is entirely possible to combine them. We will be removing freezing in the updated

contract however, since it lowers analytical complexity and gas costs.

Now finally we can consider how to punish misbehaving nodes. The main idea is

that everyone in the neighbourhood in the current round, gets their chance ofwinning

reduced if there are multiple different reveals. However, it is also possible to punish

the neighbourhood in future rounds. By reducing the chance that the neighbourhood

gets selected in the future. Perhaps as an additional measure if the neighbourhood

repeatedly misbehaves by having many unique reveals.



4.4.4 Chosen solutions

So far we have spent some time discussing the existing contract and the possible op-

tions that are available for us to adjust, and hopefully improve it. Also we have dis-

cussedwhat properties it should have, andwhichmethod possesseswhich properties.

In this section we will present the concrete solutions we are going forward with.

What we have come up with are two solutions that use the stake belonging to

my reveal, criterion. Let si be the stake, and vi be the revealed value of nodei. Also

let Φ be the set of all reveal values v in the redistribution round. Finally let S(v),

the stake belonging to each reveal value, be the sum of all si where vi = v, shown in

equation 4.21.

S(v) =
∑

viϵΦ,vi=v

si (4.21)

The first of these two solutions, is the one alpha solution, due to the use of the

Greek letter α to act as a scaling parameter. The second is the Bank solution, named

after the bank player we introduce.

We have chosen these two different solutions because we found that the alpha

solution is difficult to implement in the solidity programming language while being

economic in terms of gas cost. While the bank solution is easier to implement, but

is not as intuitively coordination rewarding. The alpha solution gives each storage

node a chance to win relative to its stake and the stake committed to that storage

node’s reveal value. For example if the storage nodes are split by running different

versions of the Swarm bee client, each calculating a different reveal value, then the

alpha solution lets each respective version cooperate for an increased chance to win

the round. Whereas the stake for the bank player in the bank solution adjusts itself

only on the highestS(v). Whichmeans no inherent cooperation between themajority

not staking on the highest S(v).

Alpha

In this solution, we calculate the stake belonging to each reserve proof reveal,

The chance for a node in a selected neighbourhood to win, is given in equation

4.22. S(Φ) is the stake belonging to all reveals, or the total amount of stake in the

redistribution round. Equation 4.22 gives each node a chance to win proportional to

their share of the stake in the first factor. In the second factor: S(vi))
α

S(Φ)α , the reward is

made proportional to the stake belonging to the node’s reveal.

R(nodei) =
si

S(Φ)

S(vi))
α

S(Φ)α
(4.22)

If there is stake attached to different reveal values in a round, then this second

factor will make it so each node has a reduced chance to win depending on which

reveal value they have. It also means that a storage node is not guaranteed to win in



a round, as the sum of all winning probabilities for storage nodes does not equal to

one. When no storage node is the winner, we say that the bank wins.

There is a scaling parameter α, αϵ(0, 1], that is meant to offset the severity of pun-

ishment for when a node’s stake is small. With α = 1, nodes with less stake are

punished unreasonably much, compared to those with a lot of stake. Although this

can be a desirable property to deter nodes acting on their own. In general the lower

α is the less impact the S(vi))
α

S(Φ)α factor has. Reducing the equation to the first factor
si

S(Φ) .

Bank

For the bank solution we introduce the bank as a player in the Redistribution game

just like the nodes. The idea is to control the bank’s chance of winning as the same

thing as storage nodes going unrewarded. The bank nodes stake is defined in equa-

tion 4.23, it is the sum of all stake minus the reveal value with the highest stake at-

tached to it.

sbank = sum(S(v))−max(S(v)) (4.23)

The banks stake will be added to the total stake, this means that the bank has an

equal chance of winning as all the other reveal values not equal to max(S(v)). It is

possible to tune the bank solution as well by adjusting the stake the bank receives. As

the bank solution does not disproportionately punish nodes with small stake like the

alpha solution. And in the interest of keeping it simple, we are not tuning parameters

to the bank solution. With that the game is played normally but with an extra bank

player (eq 4.24).

R(nodei) =
si

S(Φ) + sbank
(4.24)

Example

Here is an example scenario that highlights the differences between the solutions.

Furthermore we will be using this example to later test our implementation.

There are three different reveals, r1, r2, and r3, each with 0.5, 0.4, and 0.1 ratio of

the stake respectively. In the bank solution it is obvious what we mean by the bank

player winning, but we will here also consider the case where no storage nodes win

the round as the bank winning with the alpha approach. In table 4.4, the expected

winnings of following each reveal, for the respective incentive contract and α value

has been noted down.

Having at least three different values is important to highlight the difference be-

tween the solutions, as with only two stake fraction camps the solutions work largely

the same. The bank stake in the bank solution is set to reflect the largest of the stake

fractions. And as such each stake fraction is punished collectively based on the ma-

jority. While for the alpha solution each stake fraction is punished individually based



on their stake. With two stake fractions each value looks to be simply reflective of the

majority fraction.

r1 r2 r3 bank
si

S(Φ) 0.500 0.400 0.100 tbd

bank win % 0.333 0.267 0.067 0.333

α = 1 win % 0.250 0.160 0.010 0.600

α = 1
2 win % 0.350 0.250 0.030 0.370

α = 1
3 win % 0.400 0.290 0.050 0.260

Table 4.4: Expected relative winnings

Notably if α = 1 (no tuning), then the bank wins more than half the time. Fur-

thermore r1’s chances have been cut in half, while r3 now is ten times less likely to

win. This is the issue discussed earlier in subsection 4.4.4, where the node with the

lesser stake gets punished disproportionately. We believe that the punishment in this

situation to be too harsh, and therefore the need for α to scale the punishment. As

one can see in table 4.4 decreasing α evens it out.

It is hard to say with precision what is the correct punishment however. We need

to consider both how often the neighbourhood as a whole should lose, and how fairly

each stake fraction is treated. For the former we have in this case that half of the stake

is not belonging to r1, and as such it is best if the bankwin percentage does not exceed

0.5. This factor can be seen as how live the neighbourhood is, as in if can expect that

eventually a storage node will win. For the latter the bank solution has punishes each

stake fraction uniformly, while the alpha solution punishes smaller stake fractions

more than the larger ones. This property of the alpha solution can be desirable since

it means nodes are rewarded for coordinating towards bigger stake fractions. At the

same time we do not know the true reveal value, so we do not want this property to

be too prominent. Letting α be 0.333 is the best we have in this regard.

4.5 Bank rewards: keep or burn?

The existing redistribution contract has every round pay out rewards to a winner,

where the reward pot for that round is taken from the storage rent due from all of the

postage batches. But we have now introduced a chance for no storage node to win,

and this ultimately leaves a lot to consider regardless of what we choose to do with

the reward. This section is wholly dedicated to discussing the potential issues of each

of the approaches mentioned before: burn, keep it in the reward pot, or give it to a

bank entity.



4.5.1 Effects of carrying over pot in the next round

In this section the impact of keeping the pot for the next round when the bank wins

will be discussed analytically. The reason why we do this is tomake sure we cover our

ground, and do not introduce worse exploits than the one we are looking to mitigate.

It is thinkable that with nodes inmultiple neighbourhoods an operator can find a way

to increase their expected reward by trying to win not only the reward for the current

round, but for the prior rounds as well.

We look at two cases of how a malicious node operator can take advantage of the

rewards being carried over. In the first case the operator has the same stake in mul-

tiple neighbourhoods. The operator is hoping that by giving a faulty reserve commit-

ment, he can capitalise on being part of many neighbourhoods, in order to eventually

earn the carried over reward. We find that this first case strategy for both solutions

only provides a higher expected reward, under infeasible conditions. The second case

is similar, but we now consider that the operator has two different stakes, each in half

of the neighbourhoods that he participates in. In this second case we find that the

bank solution is vulnerable, while the alpha solution is more resistant.

Like we did earlier in section 4.3.1 we are going to start this out by assuming that

everyone is honest and then introduce a possible malicious actor. And then see if that

actor has a possible strategy that is either equal, or better than remaining honest. In

the all honest case both bank and alpha approach is the same as before, the expected

reward of a node is equal to its stake divided by the total stake of reveals in the round

(eq. 4.2). As before all rewards are assumed to be equal to 1.

Bank

We will now begin analysing the scenario where there is one malicious node, start-

ing with the bank solution. Let Φ be the set of reveal values, and S(Φ) be the sum of

stake belonging to all reveal values. Let node x, with stake sx be a part of k neigh-

bourhoods, and choose to reveal a different commitment hash than the other nodes

in each neighbourhood which have S(Φ) − sx stake combined. For the sake of con-

venient notation let pn be the fraction of neighbourhoods node x is in. This gives the

bank a chance of winning, which is dependant on whichever of sx, and S(Φ) − sx is

the highest. Which gives us two separate cases to solve one where sx
S(Φ) <= 0.5, and

one where sx
S(Φ) >= 0.5. To start of with we will assume S(Φ) − sx is the highest, as

in sx
S(Φ) <= 0.5, which gives a bank stake sbank as seen in equation 4.25.

sbank = S(Φ)− (S(Φ)− sx) = sx (4.25)

Which means both the bank, and the malicious node will have the same chance

of winning P (M), and P (B) respectively as in equation 4.26, given that a neighbour-

hood with node x has been chosen.

P (M) = P (B) =
sx

S(Φ) + sx
(4.26)



Conversely node x’s chance of winning if acting as a honest storage node: P (H)

is described in equation 4.27.

P (H) =
sx

S(Φ)
(4.27)

Thenodexwhile playing dishonestly eitherwins in a roundwith probabilityP (M),

or the bank wins with probablity P (B).

The expected reward in a round for this strategy can be summed up as the chance

for x towin as amalicious nodeplus the chance towin an extra roundworth of rewards

given that the bank won in previous rounds. The chance that the bank wins in each

subsequent round decreases over time, and leaves uswith the expected reward shown

in equation 4.28. The probability of a neighbourhood with x being selected in each

round pn plays a role for each term. We assume pn, P (M), andP (B) remain constant

for every round. Let n be any number of rounds.

E(xm) = pn ∗ P (M) + pn ∗ P (M)

n∑
i=1

(pn ∗ P (B))i (4.28)

What we are interested in is whether E(xm) < pn ∗ P (H)

pn ∗ P (M) + pn ∗ P (M)

n∑
i=1

(pn ∗ P (B))i ≤ pn ∗ P (H) (4.29)

P (M) + P (M)

n∑
i=1

(pn ∗ P (M))i ≤ P (H) (4.30)

In step seen in equation 4.30, we cancel out pn on each side, and substitute P (B)

with P (M), to take advantage of that P (B) = P (M). Let us ignore the right hand

side for now and write out the sum on the left hand side.

P (M) + pnP (M)2 + pn2P (M)3 + pn3P (M)4 ... pnn−2P (M)n−1 + pnn−1P (M)n

(4.31)

This results in the left hand side being a new geometric series:
∑n

i=1 pn
i−1P (M)i.

We are interested in what this series converges to as n approaches infinity, which we

can find by using the geometric series formula:
∑∞

i=1 ai =
a1

1−k , where a1 = P (M),

and k = pn ∗ P (M) (eq. 4.32).

∞∑
i=1

pni−1P (M)i =
P (M)

1− (pn ∗ P (M))
(4.32)

Now that we have solved the sum on the left hand side we can bring back P (H)

on the right hand side (eq. 4.33).

P (M)

1− (pn ∗ P (M))
≤ P (H) (4.33)



sx
S(Φ)+sx

1− (pn ∗ ( sx
S(Φ)+sx

))
≤ sx

S(Φ)
(4.34)

We first consider the edge case where node x exists in every neighbourhood, as in

pn = 1.

sx
S(Φ)+sx

1− (1 ∗ ( sx
S(Φ)+sx

))
≤ sx

S(Φ)
(4.35)

sx
S(Φ)+sx

S(Φ)+sx−sx
S(Φ)+sx

≤ sx
S(Φ)

(4.36)

sx
S(Φ)

≤ sx
S(Φ)

(4.37)

Equation 4.37 shows that the left hand side is equal to the right hand side, if pn =

1. Furthermore if pn < 1, we can see from equation 4.33, that the term (pn ∗ P (M))

decreases since both pn, and P (M) are less than one. When (pn ∗ P (M)) decreases,

the denominator 1−(pn∗P (M)), increases, which ultimately means that the fraction

on the left hand side decreases and has its maximum value when pn = 1. Thus we can

conclude that in this case themalicious strategy is only ever equal to playing honest, if

node x is able to join every single Swarm neighbourhood, which is an infeasible task.

However, this was only while sx
S(Φ) <= 0.5, for completeness sake we will now

consider when sx
S(Φ) >= 0.5. This means redefining P (M) (eq. 4.38), and P (B) ( eq.

4.39), while we now have that P (M) ̸= P (B).

P (M) =
sx

2S(Φ)− sx
(4.38)

P (B) =
S(Φ)− sx
2S(Φ)− sx

(4.39)

We can this time continue from equation 4.30, however this time we will calcu-

late what the geometric series
∑n

i=1(pn ∗ P (B))i converges to, on its own. Which is:∑∞
i=1(pn ∗ P (B))i = pn∗P (B)

1−(pn∗P (B)) , and that leaves us with equation 4.40.

P (M) + P (M)
pn ∗ P (B)

1− (pn ∗ P (B))
≤ P (H) (4.40)

In equation 4.41 we substitute in P (M), P (B), and P (H).

sx
2S(Φ)− sx

+
sx

2S(Φ)− sx

pn ∗ S(Φ)−sx
2S(Φ)−sx

1− (pn ∗ S(Φ)−sx
2S(Φ)−sx

)
≤ sx

S(Φ)
(4.41)

To simplify equation 4.41 further let S(Φ) = 1, and 0.5 ≤ sx ≤ 1.

sx
2− sx

(1 +
pn ∗ 1−sx

2−sx

1− pn ∗ 1−sx
2−sx

)
) ≤ sx (4.42)



sx
2− sx

(1 +
pn ∗ (1− sx)

2− pn
) ≤ sx (4.43)

As before let us check the special case where pn = 1, this gives us equation 4.44.

sx
2− sx

(2− sx)) ≤ sx (4.44)

sx ≤ sx (4.45)

Which shows that sx ≤ sx, and therefore we have as before that when pn = 1

playing maliciously is equal to playing honest, but not greater. If we lower pn then in

equation 4.43, the denominator pn∗(1−sx)
2−pn becomes higher, while the numerator gets

lower, both of which reduce the effectiveness of themalicious strategy. We can there-

fore conclude that the bank solution is safe for all sx, and while the strategies do give

equal rewards when pn = 1, the additional stake cost of joining every neighbourhood

makes it not worth going for.

Alpha

We have now covered how the carried over reward pot affects the bank solution, if an

actor possesses stake in multiple neighbourhoods. The alpha solution however will

not be affected entirely in the same way, and as such it is important that we redo our

analysis for the alpha solution. In this analysis we find that while not particularly fea-

sible, that the alpha solution can potentially be vulnerable to this exploit. Depending

on both stake in the neighbourhoods, and the fraction of neighbourhoods the mali-

cious actor is part of. The actor does however, need at least half of the stake in each

neighbourhood to be successful.

First of we need to once again redefine P (M) (eq. 4.46), and P (B) (eq. 4.47),

while P (H) remains the same. This time P (M) is not equal to P (B), but they are

related.

P (M) =
sx

S(Φ)

sαx
S(Φ)α

(4.46)

P (B) = 1− (P (M) + (
S(Φ)− sx

S(Φ)

(S(Φ)− sx)
α

S(Φ)α
)) (4.47)

For simplicity’s sake let S(Φ) = 1, and sx < 1. This lets us write P (M) as P (M) =

sα+1
x , and P (B) as P (B) = 1 − sα+1

x − (1 − sx)
α+1 We can start this time from the

same point as equation 4.40.

P (M) + P (M)
pn ∗ P (B)

1− (pn ∗ P (B))
≤ P (H) (4.48)

sα+1
x + sα+1

x

pn ∗ 1− sα+1
x − (1− sx)

α+1

1− (pn ∗ 1− sα+1
x − (1− sx)α+1)

≤ sx (4.49)



In equation 4.49, we substituteP (M), P (B), andP (H) out of the equation. Equa-

tion 4.50 is a more compact way to write 4.49 courtesy of wolfram alpha [28].

sα+1
x

pn(sα+1
x − sx(1− sx)α + (1− sx)α − 1) + 1

≤ sx (4.50)

We know trivially that the left hand side is equal to the right hand side when sx

is equal to 0 or 1. We will consider the α values: {1, 1
2 ,

1
3}. Starting with α = 1 the

inequality becomes what is shown in 4.51. Which we solve to find a correlation be-

tween pn and sx, again with some help fromwolfram alpha to refactor the expression

[28]. The good part of this correlation is that when pn = 1, you still need at least

half of the stake in each neighbourhood: sx = 1
2 , in order to play equally to an honest

node. Furthermore if pn < 1
2 , then no matter how much stake the malicious node

has, then the expected reward is less, only ever being equal if pn = 1
2 , and sx = 1. On

the other hand with pn = 1, any sx > 0.5, also means that node x has a much greater

reward than other nodes. Although x becomes the majority in this case, and we have

assumed sx <= 0.5 for this analysis, what this highlights is the increased coordina-

tion rewarding of the alpha solution. Which ultimately makes alpha vulnerable to

being exploited if any entity can obtain a monopoly of the network.

s2x
2sxpn(x− 1) + 1

≤ sx (4.51)

sx
2sxpn(sx − 1) + 1

≤ 1 (4.52)

sx ≤ 2sxpn(sx − 1) + 1 (4.53)

sx − 1

(sx − 1)
≤ 2sxpn (4.54)

pn ≤ 1

2sx
(4.55)

The pn correlation for α = 1
2 , and α = 1

3 , are ultimately too messy expressions to

make sense of. However, we can find solutions for specific values of pn, and we know

that lowering αmakes the left hand side converge towards the right hand side which

is sx. We solve each equation graphically by reading off the intersection between

P (M) + P (M)
∑n

i=1(pn ∗ P (B))i and P (H) in the geogebra tool [29]. One can see

the solutions for each value in table 4.5. A visualization of the problem can be seen in

figure 4.2, where P (M) +P (M)
∑n

i=1(pn ∗P (B))i is plotted in blue, P (H) is plotted

in red.

What the results of table 4.5 shows, is that the stake fraction of node x: sx, gen-

erally has to be greater than 0.5 for the malicous strategy to be worthwhile. And the

relation found for pn with α = 1 is a good approximation for how it is with α = 0.5,

and α = 0.33. However we have found that less stake is needed for the malicious
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(a) pn = 1, α = 1
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(b) pn = 0.5, α = 1
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(c) pn = 1, α = 0.5
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(d) pn = 0.5, α = 0.5
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(e) pn = 1, α = 0.33
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(f) pn = 0.5, α = 0.33

Figure 4.2: Plots of P (M)+P (M)
∑n

i=1(pn∗P (B))i (blue) against P (H) (red), while
varying pn and α. x axis represents sx, while the y axis is probability of winning
P (win).



α = 0.5 α = 0.33
pn solution pn solution
1 sx ≤ 0.5 1 sx ≤ 0.5
0.75 sx ≤ 0.63 0.75 sx ≤ 0.62
0.5 sx ≤ 0.84 0.5 sx ≤ 0.8
0.25 sx ≤ 1 0.25 sx ≤ 1

Table 4.5: Solutions for selected pn and α values

node to profit when pn = 0.5, the increased odds beyond sx ≈ 0.8 are very marginal,

but even so the strategies are equal slightly earlier, this point is illustrated in figure

4.2.

The conclusion is still that getting this much stake in this many neighbourhoods

is infeasible. While the bank solution is always safe however no matter the stake,

the alpha solution does generally provide greater rewards to node x when sx > 0.5

and pn > 0.5. On the other hand with the bank the amount of stake for node x sx,

does not matter as an equal strategy is always possible with pn = 1, but the malicious

strategy does not ever become higher rewarded as it does for alpha. Depending on

the α, the alpha solution is skewed more greatly towards the majority, this is related

to the alpha parameter discussion when we first introduced the approach in section

4.4.4.

4.5.2 Different stake distributions

In this section we will be seeing if there is a possible way to game the bank reward

carryover system by having a different stake values in different neighbourhoods. We

believe that by having neighbourhoods where the operator has higher stake they can

more reasonably expect to win the reward in those neighbourhoods. While the lower

stake neighbourhoods serve as a way to make the bank win, in order to increase the

pot earned by those higher stake neighbourhoods. Although it requires a relatively

large amount of micro-management, we find that the bank solution is vulnerable to

such an approach, while the alpha solution is not particularly so.

We have a node operator in a fraction of neighbourhoods pn, with stakes s1, and

s2. In half of the neighbourhoods the operator plays with s1, and the other half with

s2. For the neighbourhoods with s2 the operator plays as an honest node with a

chance of winning in a round with the appropriate neighbourhood selected is P (Ω) =
s2

S(Φ) . Furthermore with s1 the operator plays dishonestly with chance of winning

P (M), which gives the bank a chance of winning in a selected round of P (B). Let s1,

s2 <= 1, and S(Φ) = 1. Also let s2 = 2s1.

The intention is to see if the node operator gets more expected reward than pn ∗
P (H) = pn ∗ s1

S(Φ) .

f(0) = pn ∗ P (M) +
1

2
pn2 ∗ P (B)(P (Ω) + f(0)) <= pn ∗ P (H) (4.56)



f(0) = P (M) +
1

2
pn ∗ P (B)(P (Ω) + f(0)) <= P (H) (4.57)

Lets write f(0) (eq. 4.57) out to n terms.

f(0) =P (M) +
1

2
pnP (B)P (Ω)

+
1

2
pnP (B)P (M) +

(
1

2
pn

)2

P (B)2P (Ω) + . . .

+

(
1

2
pn

)n−1

P (B)n−1P (m) +

(
1

2
pn

)n

P (B)nP (Ω)

(4.58)

∞∑
i=1

(
1

2
pn

)i−1

P (B)i−1P (M) +

(
1

2
pn

)i

P (B)iP (Ω) (4.59)

For solving the convergence of the geometric series we have
∑∞

i ai =
a1

1−k , where

a1 = P (M) + 1
2pnP (B)P (Ω), and k = ( 12pn)P (B), which gives equation 4.60.

f(0) =
P (M) + 1

2pnP (B)P (Ω)

1− ( 12pn)P (B)
(4.60)

First of let us look at how this all works with the bank solution. As we already now

the bank solution has two ways to define P(M), and P(B), one while s1 <= 0.5 , and

another when s1 >= 0.5. We will only be using s1 <= 0.5 however, because we will

put a upper bound on s2 such that it is at max s2 = 2s1. Since s2 <= 1, we cannot

have s1 > 0.5.

which gives us P (M) = P (B) = s1
S(Φ)+s1

.

f(0) =
s1

1+s1
+ 1

2pn
s1

1+s1
s2

1− ( 12pn)
s1

1+s1

(4.61)

f(0) =
s1(2 + pns2)

2 + s1(2− pn)
(4.62)

What we end up with is the f(0) seen in equation 4.62. Let us now evaluate it with

pn = 1 (eq. 4.63).

f(0) =
s1(2 + s2)

2 + s1
(4.63)

From equation 4.63 we see the ratio 2+s2
2+s1 , and that if s1 = s2, then we have

f(0) = P (H). But if s2 > s1 then f(0) > P (H). This means that having differ-

ent stakes in separate neighbourhoods is in fact a possible exploit. Looking back at

equation 4.62 we find that decreasing pnwill make it more difficult as pns2 decreases

while s1(2 − pn) increases. However we also have that the greater the ratio between

s1 and s2 is the greater the rewards are for the malicious actor. If we look at the to-

tal stake in a neighbourhood S(Φ), where it can be any positive number, the more

stake committed to the neighbourhood or in other words the larger the neighbour-



hood, the easier it is to give yourself a small fraction of the stake. And the smaller the

neighbourhood the easier it is for the storage node operator to give himself a larger

portion of the stake. One takeaway is that the malicious operator is incentivized to

join larger established neighbourhoods and act maliciously, while acting honest in

newer smaller neighbourhoods, in order to maximize the stake ratio difference. With

a stake difference of 10, i.e s2 = 10s1, this limits s1 <= 0.1, but it will be profitable

with pn >≈ 0.2. This makes the following exploit themost viable that we have looked

at so far. Although it does appear to require a lot of micro-management, in order to

position stake correctly in the correct neighbourhoods, andmaintain that stake ratio.

If done wrongly the exploiter can just as easily get less reward, than by playing honest

in every neighbourhood, though that is mainly dictated by pn.

Let us take a look at how this works for the alpha solution, we now have that

P (M) = sα+1
1 , and P (B) = 1 − sα+1

1 − (1 − s1)
α+1. We can start by substituting

P (M), P (B), and P (Ω) into equation 4.60.

f(0) =
sα+1
1 + 1

2pn (1− sα+1
1 − (1− s1)

α+1)s2

1− 1
2pn(1− sα+1

1 − (1− s1)α+1)
(4.64)

f(0) =
2sα+1

1 + pn (1− sα+1
1 − (1− s1)

α+1)s2

2− pn(1− sα+1
1 − (1− s1)α+1)

(4.65)

Let us evaluate equation 4.65 with α = 1. The alpha analysis we did before shows

us that having α = 1 is a good approximation for finding the turning point at which

the malicious strategy overtakes the honest strategy, even for lower values of alpha.

The main impact lowering alpha has is that it approaches the honest strategy more

closely, which means that the expected losses decrease while below the aforemen-

tioned turning point. As well as the expected increase of rewards while s1 is greater

than the turning point.

f(0) =
2s21 + pn(1− s21 − (1− s1)

2)s2
2− pn(1− s21 − (1− s1)2)

(4.66)

f(0) =
s21 − pns21s2 + pns1s2

1 + pns21 − pns1
(4.67)

Continuing on lets solve the equation f(0) = P (H), for pn.

s21 − pns21s2 + pns1s2
1 + pns21 − pns1

= s1 (4.68)

s1 − pns1s2 + pns2 = 1 + pns21s1 − pns1 (4.69)

pn(−s21 − s1s2 + s1 + s2) = 1− s1 (4.70)

pn =
1− s1

−s21 − s1s2 + s1 + s2
(4.71)



Now let s2 = a s1, where a >= 1.

pn =
1− s1

−(a+ 1)s21 + (a+ 1)s1
(4.72)

pn =
1− s1

(a+ 1)s1(1− s1)
(4.73)

pn =
1

(a+ 1)s1
(4.74)

If we want it solved for s1 instead we just need swap the positions of s1 and pn.

s1 =
1

(a+ 1)pn
(4.75)

From equation 4.74 if we have s2 = 2s1, or a = 2, then the maximum s1 we can

have is s1 = 0.5, from which the minimum pn needed to profit is 0.66. While the

minimum s1 is s1 = 0.33, however pn needs to be 1. If we compare this to the alpha

solution analysis the equilibrium point has shifted down to s1 = 0.33, from s1 = 0.5,

with pn = 1. Since s1 <= 0.5, there is a 0.5 − 0.33 = 0.17, s1 stake window where

having different stakes is a viable strategy. The entire window being one which re-

quires s2 > 0.5, in fact having the minimum s1 = 0.33 in one half of neighbourhoods,

and s2 = 0.66 in the other is the same as having sx = 0.5 in every neighbourhood.

Except from here there is a greater window for increasing sx, and also for increasing

the possible rewards.

As suchwe can conclude that the alpha solution is not anymore vulnerable to hav-

ing different stakes in each neighbourhood, than having the same stake in each. Both

being quite infeasible due to the necessary amount of total stake needed to invest into

the strategy. Furthermore the different stake strategy requires one to remain an hon-

est participant of Swarm in some subset of neighbourhoods, which means providing

storage capacity in those neighbourhoods. The bank solution however, is vulnerable

using the different stake in each neighbourhood approach. As opposed to not being

vulnerable while the stake fraction remained the same in every neighbourhood.

4.5.3 Effect on other neighbourhoods

One concern about letting the pot carry over into new rounds is about how it affects

the balance of neighbourhoods. In a malicious neighbourhood there are actors who

reveal a different reserve commitment which gives the bank a chance to win. The

storage incentives might select a malicious neighbourhood to earn the carried over

pot, but most likely is that over time the reward will be given to neighbourhoods with

zero, or close to zero stake committed to different reserve commitments, so called

honest neighbourhoods.

Now this does sound like intended behaviour, we incentivize the nodes that are

cooperating. The problem however, lies in how each neighbourhood is responsible to



its assigned chunks. Ideally the number of nodes in each neighbourhood is uniform,

such that each neighbourhood has asmany nodes equal to the redundancy factor des-

ignated by Swarm, necessary to safely persist the chunk data from node churn. But

also in order for the network to store as much data as possible. We postulate that

few storage node operators would willingly join neighbourhoods wheremalicious be-

haviour has been registered, potentially leaving the data chunks of that neighbour-

hood at risk. On the other hand with a good data migration protocol to other (new)

neighbourhoods, perhaps the network can combat malicious actors to some degree.

4.5.4 Burn

The simplest alternative to having the reward carry over into the next round, is to

delete the reward, i.e burn it.

The immediate issue with analysing the impact of burning is that the storage in-

centives are no longer zero sum.

While it is not generally nice to burn money, one can say that all it does is deflate

the bzz token. Which increases the value of the token for those who have already

earned a reward. This is likely to have a similar effect on the neighbourhoods as what

was discussed in section 4.5.3. Although less obvious, storage nodes in neighbour-

hoods without a chance for the bank to win, will be more attractive since they will

earn bzz at a greater rate. While if the bank wins in any other neighbourhood, the

value of their stockpiled bzz increases.

There is also a practical problem to consider, who is going to call the code to burn

the reward? The current idea for reward distribution in the existing contract, is that

once the redistribution game reaches the claim phase, whoever won the round will

call the claim function. Although anyone can call the claim function, and the winner

of the round gets the reward, if no one calls claim, the rewardwont be handed out, and

will be carried over to the next round. A safe assumption is that mainly the winner

will be calling the function, because it costs gas and therefore tokens on the ethereum

based blockchain where the smart contracts are hosted.

Essentially what this means is that one cannot rely on the storage nodes to burn

the bzz, in the claim round, as whoever does it will lose ether. Thus there is a need for

an additional bank smart contract, that calls the claim function in the case of the bank

winning. This contract will need to foot the bill for calling claim to burn the money,

and as such will be an expense from the Swarm team. One issue of this arrangement

is that it is not a decentralized approach, as the network becomes dependent on a

kind of central bank entity.

4.5.5 Bank it

The last option for what to do with the money when the bank wins, is to give it to

the bank. After which it can be repurposed. First of this means that we once again

need a bank smart contract to call claim, but this time it receives the reward. Which



is going to offset the cost of calling claim. Secondly and more importantly are the

implications of the Swarm team essentially taking a cut of the networks storage in-

centives. This is to an extent ethically unwise, as there now exists a conflict of interest

between whoever is responsible for the smart contracts creating a safe redistribution

game that minimizesmalicious behaviour. And on the other hand allowingmalicious

behaviour to happen in order for the bank to win, which in turn rewards the smart

contract hosts. To summarizewe fear that allowing the bank to gain the rewardmakes

the system vulnerable to corruption.





Chapter 5

Implementation

In this chapter we go through how we implement the discussed alpha, and bank ap-

proaches. And also touch on how we can test the correctness of the implementation.

We create two alternate redistribution.sol contracts, in the Solidity programming

language version 0.8.1. And test them using the truffle test suite for Solidity.

5.1 the existing Redistribution.sol

During the following sections we are mainly going to be commenting on the parts of

the original redistribution contract that we are changing in order to implement our

solutions, my source for the original is this one: [24]. And as such we will in this

section give a quick primer on how the original is implemented.

The way that the redistribution game operates was already discussed in section

4.2. So we know that there is a commit, reveal, and claim phase. Which phase the

contract is in is decided by the current block number in the blockchain, and the round

length. The round length being set as a number of blocks in the blockchain, and thus

lasting for the duration it takes for the chain to mine this many blocks. The com-

mit phase is the first quarter of the round, it is checked by taking the block number

modulus the round length, and checking if that is less than a quarter times the round

length. Similarly the reveal phase lasts for half the round length, and comes after the

commit phase, subsequently the claim phase takes place in the final quarter of the

round. The roundLength variable in this contract is set to 152, and the current round

is the block number divided by the round length.

Each phase has a function that can only be run in that phase: commit, reveal, and

claim. In addition the claim phase has the isWinner view, that has the same winner

checking logic as the claim function, but does not hand out the reward. In solidity

views do not cost gas when called externally. The claim function is intended to only

be ran once by the winner after first having checked the isWinner view, since it is a

gas expensive operation.

The commit function takes in an obfuscated hash, overlay, and the number of the
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round to commit in. It checks if its commit phase, and if the round number given

is the current round. As well as if the overlay belongs to the caller of the function,

if that overlay has at least staked the minimum stake, and that the overlay has not

already committed in this round. The commit function simply takes the overlay and

the obfuscated hash, and collects commits for the round.

The reveal function, takes overlay, and parameters used to create the obfuscated

hash committed, the reserve-commitment hash, storage depth, and nonce. It checks

if the overlay has committed and if the given parameters hash to the previously ob-

fuscated hash. Crucially the reveal checks whether the overlay for the commit and the

reported depth is within proximity order of the currentRoundAnchor as it is in code,

or neighbourhood selection anchor as we understand it. And if every check passes, it

collects a reveal for that overlay.

Finally the Claim function, which is the function that is subject to change with

our solutions. It takes no parameters as all necessary data, commits and reveals,

were collected in previous phases. It randomly selects a a truth from the reveals, and

the final winner, using a corresponding anchor. Each anchor is decided on by a seed

taken from the blockchain as seen in code snippet B.1.

function updateRandomness() private {
seed = keccak256(abi.encode(seed, block.prevrandao));

}

Listing 5.1: Setting the seed for each selection anchor

Both the truth selection and winner selection parts of claim share the same selec-

tionmechanic. They will go through all reveals, generate a random number using the

keccak256 hash of the truth selection anchor and the index of the current reveal in

the reveal array. Then they add the stakeDensity of that reveal to the current sum.

And evaluate winner based on inequality 5.1, where MaxH is the maximum value of

the keccak hash. Which is coded as in inequality 5.2, to compensate for solidity’s lack

of floats. The way this works is that the first reveal will always win, but will be offset

by the chance of winning that all the subsequent reveals in the array have. Each hav-

ing a somewhat higher chance of winning than normal, until the last reveal, which

has exactly as high chance of winning as its stake divided by total sum of stake in that

round.

randomNumber

MaxH + 1
<

stakeDensity

currentSum
(5.1)

randomNumber ∗ currentSum < stakeDensity ∗ (MaxH + 1) (5.2)

In the original contract every reveal not equal to the selected truth will be unable

to participate in the winner selection, since its stake will be frozen. After the winner

selection, the redistribution contract will tell the PostageContract to transfer the re-

ward pot to the winner. And give feedback on how many correct participants there



were in the winner selection to the PriceOracle contract.

5.2 Shared code

As previously stated in section 4.4.3, both versions use the stake belonging to my

reveal, criterion. And therefore share the part of the implementation that keeps

track of thismetric. I build amapping from the reveal hash (bytes32), to stake (uint256)

(listing 5.2). Maps in solidity do not keep track of the keys, and that is why it is needed

to keep an additional array to store the keys. The keys are needed primarily so that

we can reset the map for every round, as simply using the delete keyword on a map

is not inherently supported in solidity version 0.8.1.

bytes32[] currentRevealHashes;
mapping(bytes32 => uint256) currentRevealToStake;

function _resetRevealToStake() internal {
for (uint256 i = 0; i < currentRevealHashes.length; i++) {

delete currentRevealToStake[currentRevealHashes[i]];
}
delete currentRevealHashes;
}

Listing 5.2: reveal hash to stake mapping

We have chosen to alter the reveal function to update themap for every submitted

reveal. It is fitting as its purpose is already to handle incoming reveals, and it saves

me an extra for-loop as opposed to if we where to do it in the claim function. In

listing 5.3, we show how we update the mapping by taking the reserve commitment,

(_hash function parameter), and adding the stake from the commit corresponding to

the reveal.

//build reveal map
currentRevealHashes.push(_hash);
if (currentRevealToStake[_hash] == 0) {

currentRevealToStake[_hash] = currentCommits[i].stake * uint256(2
** _depth);

} else {
currentRevealToStake[_hash] += currentCommits[i].stake * uint256

(2 ** _depth);
}

Listing 5.3: updating the reveal to stake map

We have for both versions also removed (commented out), any code that pertains

to the freezing of node’s stake. However, we did not remove the logic which selects

the true reveal, which is ultimately an oversight that costs me a fair bit of gas. It does

make it possible to retroactively freeze nodes, looking at the truthSelected event, and

also easier to reimplement freezing if we want to. We will however, need to make

use of this for loop later in each version anyway. Furthermore in both versions when



no storage node has won (bank win). We let the reward pot carry over into the next

round, by simply not making the Redistribution contract withdraw from the Postage-

Contract.

5.3 Alpha

Equation 4.22 is how we will be selecting a winner with the alpha solution. We will

generate a RandomNumber and ensure its between 0 and 1 by dividing it with the

maxRandomNumber. While the lefthandside represents a node’s chance to win as

introduced in section 4.4.4. If this chance to win is greater than the random number,

then we select that node as the winner of the redistribution round. To implement

equation 4.22 in solidity we have to do some tweaking. Because there is no support

for floating point numbers, and as a consequence also no nth root function for α.

RandomNumber

maxRandomNumber
<

si
S(Φ)

∗ S(v(nodei))
α

S(Φ)α
(5.3)

The first thing we need to do for inequality 5.3, is to make sure there are no more

division operations. By multiplying with every divisor on both the right hand side,

and the left hand side, this can be accomplished. And the result is inequality 5.4.

RandomNumber ∗ S(Φ) ∗ S(Φ)α < si ∗ S(v(nodei))α ∗maxRandomNumber (5.4)

Now we have an inequality similar to the one used in the existing contract seen

in inequality 5.2. The most natural thing to try is to substitute the old one with the

new one. However using the same approach as before of going through each reveal

and iteratively calculating the current sum of stake does not work. This is because the

winning chances for each node no longer inherently sum up to 100 %. They only do

so in the case there is only one unique reserveCommitment. What will happen if we

keep the old approach, but change the criterion function? The first reveal gets a 100

% chance of winning, and the subsequent reveals decrease the first reveals chance of

winning by amuch smaller amount than before. This gives the first reveal processed a

disproportionate chance of winning, and crucially the bank will never be able to win.

What we will have to do is calculate the total sum of stake beforehand. Giving

everyone the correct proportional chance to win, to begin with. This must be done

in a for loop before the winner selection for loop. Since we never removed the truth

selection, we can use the sum calculated there. And with that we will also need to

calculate the stake belonging to each reveal beforehand, which is a process I have

already shown.

Using the same process as before but replacing the iterative currentSum, with a

precalculated currentSum still has an issue. By creating a new random number for

each reveal, then setting a new winner each time the criterion inequality evaluates to

true, then the winner chances of each node are not independent of each other.



To create make every node’s chance of winning independent, we have gone with a

wheel of fortune themed solution. We had to reduce the number of random numbers

from k to one, based only on the winner selection anchor. What we did was assign

every node a disjoint slice equal to the right hand side of inequality 5.4.

In the code in listing 5.4, we have the version with α = 1. It is part of a loop

that loops through all the reveals in the round, obtaining a new revIndex each loop,

and incrementing k. The first line is just sanitizing the randomNumber so it is not

possible for it to be higher thanMaxH. The second line is a bit hard to read as it spans

three lines in this document, what it does is define the end of the wheel slice that this

reveal has. The first slice will start at 0, that is the currentWheelSliceStart variable

will be 0. And as previously mentioned we add on the right hand side of inequality

5.4, to the current wheel slice start. In order to create an interval: [start : end], that

the random number can land in, for reveal k to win proportionately to stake as in

equation 4.22. On line 3 the left hand side of inequality 5.4 is calculated. We must

then make two separate comparisons in the if sentence starting at line 4. One for if

the random number calculation is greater or equal to the start of the interval, and

another to check if it is less than end of that interval. If both of these apply we have a

winner, and it is possible to break the loop early with a break; statement. The reason

this is possible is because the slices for each reveal are disjoint, so if one of themwins,

then there is no reason to check the others, because it would no longer be possible for

them to win, using this wheel of fortune approach. Finally if the current reveal is not

thewinner, we set the start of thewheel slice equal to the end, and test the next reveal.

1 randomNumberTrunc = uint256(randomNumber & MaxH);
2 currentWheelSliceEnd = currentWheelSliceStart + (currentReveals[

revIndex].stakeDensity*currentRevealToStake[currentReveals[
revIndex].hash]) * (uint256(MaxH) + 1));

3 uint randCalc = randomNumberTrunc*currentSum *currentSum * alpha;
4 //do initially with alpha ==1
5 if (
6 (currentWheelSliceStart <= randCalc) &&
7 randCalc <
8 currentWheelSliceEnd
9 ) {
10 winner = currentReveals[revIndex];
11 break;
12 }
13 currentWheelSliceStart = currentWheelSliceEnd;
14 k++;

Listing 5.4: wheel of fortune winner selection

If a regular winner is not selected during the aforementioned loop. Then we say

the bank wins. And currently that means that the reward for this round will be added

to the reward pot for the next round.

A major challenge is setting the alpha tuning parameter. Currently we are imple-

menting square root, and cube root, using the Babylonian method. One can see the

square root function in listing 5.5, and the cube root function in listing 5.6.

Adding the α tuning is as simple as calling the root function on the part in the



function sqrt(uint x) public pure returns (uint y) {
if (x == 0) return 0;
else if (x <= 3) return 1;

uint z = (x + 1) / 2;
y = x;
while (z < y ) {

y = z;
z = (x / z + z) / 2;

}
}

Listing 5.5: Square root function

function cbrt(uint x) public pure returns (uint y) {
if (x == 0) return 0;

uint z = (x + 1) / 3;
y = x;
while (z < y) {

y = z;
z = (x / (z * z) + 2 * z) / 3;

}
}

Listing 5.6: Cube root function

code that corresponds to the left hand side, or right hand side of inequality 5.4, re-

spectively. As seen in listing 5.7.

randomNumberTrunc = uint256(randomNumber & MaxH);
currentWheelSliceEnd = currentWheelSliceStart + (currentReveals[

revIndex].stakeDensity*cbrt(currentRevealToStake[currentReveals[
revIndex].hash]) * (uint256(MaxH) + 1));

uint randCalc = randomNumberTrunc*currentSum *cbrt(currentSum) * alpha;

Listing 5.7: adding alpha tuning

5.4 Bank

We can now discuss how the bank solution is implemented. And as discussed earlier

it is substantially easier to implement.

First of the bank needs an inevitable look through the reveal to stake mapping.

Because to determine its own stake, it needs to find the reserveCommitment with

the maximum amount of attached stake. In listing 5.8, we use the truth selection for

loop, to look through the reveals, and find the reveal hash with the most stake from

all reveals attached to it. Courtesy of the currentRevealToStake map, that we made

before.

After finding the reveal commmitment with the most stake. Then we need a sim-

ple calculation to find out the stake of the bank (eq. 4.23). Implemented in listing



// Find the maximum stake reveal
if (currentMaxReveal < currentRevealToStake[currentRevealHashes[revIndex

]] ) {
currentMaxReveal = currentRevealToStake[currentRevealHashes[revIndex

]];
}

Listing 5.8: Looping through reveals to determine the Reveal with the most stake
attached

5.9.

uint256 bankStakeDensity = currentSum - currentMaxReveal;

Listing 5.9: calculate bank stake

Nowweneed to introduce the bank into thewinner selection. Since it is possible to

make use of the existing approach discussed earlier to implement the bank solution,

that is what we are doing. In this regard what we could do to add the bank player into

the game is to give the bank a mocked commit, with a corresponding reveal. But this

muddies the arrays responsible for handling node commits, that in theory should hold

legit data. What we have done instead is a slightly ugly yet verbose solution, of having

the for-loop that goes through the commits go one extra step past the commits array

length (k+1). And on this step handle checking if the bank will win, see listing 5.10.

Now since the winner to be emitted in the solidity event is of a reveal type. We still

if (i >= commitsArrayLength){
randomNumber = keccak256(abi.encodePacked(

winnerSelectionAnchor , k+1));
randomNumberTrunc = uint256(randomNumber & MaxH);

currentWinnerSelectionSum += bankStakeDensity;
if(

randomNumberTrunc * currentWinnerSelectionSum <
bankStakeDensity* (uint256(MaxH) + 1)

) {
winner = Reveal({

owner: address(this),
overlay: keccak256("BANK"),
stake: bankStakeDensity,
stakeDensity: bankStakeDensity,
hash: keccak256("bankhash"),
depth: 0

});

}

}

Listing 5.10: Bank solution winner selection

have to create a reveal representation of the bank. One can see the details in the above

code (listing 5.10), but the main takeaway is that the redistribution contract itself



is the owner. And the overlay address of the bank is the keccak256 hash of BANK.

Additionally the calculated bank stake is emitted. An important thing to note is that

no storage node is likely to run the claim function in the event that the bank wins,

due to the fees of the transaction not being counter balanced by a received reward.

In reality the isWinner view will return the overlay of the bank, and in this case the

storage nodes will not run claim, which justifies the need for a recognisable bank

overlay. Furthermore, the bank reveal is still useful for testing the claim function.

5.5 Testing Results

Here we are testing the contracts on if they are able to reproduce the example writ-

ten about in section 4.4.4. This is done to check if the contracts are implemented

correctly, as in each provides reasonably corresponding results. In particular we are

testing to see if we can correctly tune with the α parameter. And how much doing so

will cost us in gas. It also allows us to confirm that the math done in section 4.4.4 is

correct. However we will assume that an implementation error is more likely in this

case, than an oversight in the mathematical model.

We simulated 1000 redistribution game rounds with different smart contracts us-

ing the truffle suits and collected data of which participant r1-bank, was the winner.

The results of the test can be seen in table 5.1. In table 5.1 each contract has two

rows, the first being the expected results found earlier in table 4.4.4, the second the

experimental test results. The difference column is the sum of the absolute difference

between the expected values, and the experimental results. For comparison we also

ran the existing Swarm redistribution contract to see what an acceptable difference

would be. We refer to it as the baseline.

r1 r2 r3 bank difference
si

S(Φ) 0.500 0.400 0.100 tbd

baseline win % 0.500 0.400 0.100 0
(existing contract) 0.511 0.403 0.086 0 0.028

bank win % 0.333 0.267 0.067 0.333
0.348 0.269 0.060 0.323 0.034

α = 1 win % 0.250 0.160 0.010 0.600
0.241 0.162 0.006 0.591 0.024

α = 1
2 win % 0.350 0.250 0.030 0.370

0.335 0.267 0.024 0.374 0.44

α = 1
3 win % 0.400 0.290 0.050 0.260

0.386 0.311 0.052 0.251 0.46

Table 5.1: Testing results



We are able to get corresponding results to the example in section 4.4.4. With a

fairly low difference, less than 0.50 in all cases. α = 1
2 , and α = 1

3 , have a slightly

greater difference than the others not using root functions, however. Which could be

due to imprecision in the root functions.

α Average Gas Minimum Gas Maximium Gas

Baseline 216925 207116 326357

BankContract 196467 154222 320069

1 169983 141129 239663

1
2 263696 265061 371173

1
3 473145 322403 757759

Table 5.2: Gas prices for implementation of different α

In table 5.2 one can see that the gas cost grows very rapidly when using root func-

tions as a tuning parameter. It also shows that when α is equal to one, the perfor-

mance is better than the bank solution, and the baseline. This is likely due to the

wheel of fortune approach being able to skip out of the for loop that selects a win-

ner early. The BankContract performs similarly to the baseline as one would expect

since they are implemented almost the same, but has a significantly lower minimum

gas cost. Which is primarily due to us removing the logic that checks and handles

freezing.

Can we optimise root functions?

The previous test showed that using root functions was a major gas sink. To investi-

gate further if we can optimise the contracts gas cost, we added an additional constric-

tion on the root functions: that they would run only amaximumnumber of iterations

k. By limiting the number of iterations, we expect to observe a lack of accuracy from

the functions

We implemented the constriction by adding a uint8 integer i variable to each func-

tion, and during the while loop checking if i was less than the maximum number of

iterations k. And then incrementing i on every iteration. In essence this is a smart

programming pattern to stop a while loop that might theoretically run an infinite

number of times. The catch however is that it introduces another few instructions to

run per while loop, further increasing the gas cost by its inclusion.

An additional thing to note is that we for this experiment did not break the winner

selection loop when a winner was selected, letting the root functions run as many

times as possible each round. In order to remove the variable of the loop ending

early to the result, and to see the max cumulative gas cost reduction possible.

For each kwe ran 100 rounds of the redistribution game, to produce the presented



(a) Sqrt performance

(b) Sqrt cost

Figure 5.1: Testing result for the square root function



data. We tookmeasure of the difference as before in 5.1, using the same example, and

theminimum,maximum, and average gas costs of running the claim function. We are

using difference as a performance metric, to see if the square root is able to produce

correct results, even while being limited in iterations. The lower the difference the

more correct results come from the functions, although we do expect some difference

due to the stochastic nature of the redistribution game, especially at 100 rounds. In

figure 5.1, the first plot has the difference plotted (5.1a), and the second the gas costs

(5.1a). The x axis for both being the value of k.

What we found is that the minimum gas cost will stabilise at a value and remain

there, as k grows, see the yellow line in plot 5.1b. The significance here is that this

marks the point where k is no longer the limiting factor, when it comes to the number

of iterations the while loop makes. And it is exactly here that the accuracy of the

function peaks, if we look at the difference in plot 5.1b.

We ran the same test for the cube root function as well seen in figure 5.2, with one

difference, we only tested every fifth k value, but we tested up until k = 100. The cube

root function was expected to takemore iterations, since it was already known to cost

more gas than average than the square root function. And to save considerable time

we increased the interval between each k.

The results from testing cbrt (fig. 5.2), show the same thing that we pointed out

for squareroot, and even more clearly. When increasing k, no longer matters, as in

the gas cost stops growing, it is the exact time the performance improves.

From this we can conclude that the root functions are already optimised. At least

as far as we can tell. Which unfortunately means that there is no gas reduction pos-

sible by altering these functions. And while enforcing a limit k might be good sanity

wise, such that we know each while loop will at some point end. It is an increase in

gas whose cost outweighs the gain, and as such we will not be using it outside of this

test.



(a) Cbrt performance

(b) Cbrt cost

Figure 5.2: Testing result for the cube root function



Chapter 6

Experimental Evaluation

In this chapter we will be discussing how to evaluate the effectiveness of the new

storage incentive proposed in chapter 4. And show the experimental results of our

evaluation.

6.1 Experimental Setup and Data Set

Our purpose is to use real data of previous redistribution rounds, in order to see how

those rounds would have turned out had they used our Redistribution contract. And

with that evaluate the effectiveness of the bank and alpha solutions. As while the

implementation test in section 5.5

We are using data obtained from the swarmscan API [30] spanning roughly the

year of 2023. We are collecting data from rounds numbered: 205956, to 180241.

These rounds happened originally between the 6Th of December 2023, and the 22

of December 2022. Rounds older than 180241 do not provide me with the necessary

selection anchors, and as such we cannot use them. This is likely due the smart con-

tract used by Swarm being updated at this time, though it could also be due to an

API change. Rounds newer than 205956 use a newer smart contract developed by

Swarm, than the one we are basing our work off of. The new contract by Swarm fo-

cuses on improving inclusion proofs, such that it is harder to submit a wrong reserve

commitment. Although the round data from swarmscan is still in usable format for

our testing beyond round 205956, the testing setup we will use makes it cumbersome

due to time constraints to run a number of rounds greater than around 10000 rounds.

As such we are not generally in need of more data.

The testing setup uses truffle to deploy our redistribution smart contracts to a

local ganache blockchain. The pipeline for running each round is as follows. First

we go through each reveal in the round and configure the blockchain accounts given

to us by ganache. Each account is given bzz to match the stake in the reveal, and

we precompute the obfuscated hash needed to be commited in the commit phase.

If there are more reveals than we have blockchain accounts, then we loop around
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and use the same accounts again. We then advance the blockchain such that we are

at the beginning of the commit phase, and start committing the obfuscated hashes

calculated before. After which we run reveal, and finally claim, before logging the

results of our simulation in a CSV file.

In order to accomplish this we need the following data from each round in order

to run the round again for a new contract. Most importantly we need the reveals for

that round, as this is where all the data that the nodes send in, is as the name suggests,

revealed. The data contained in reveal is the stake of the node, the reserve commit-

ment, depth, and overlay. With this data it is possible to create the obfuscated hash

used to commit in the commit round. We require the neighbourhood selection an-

chor, to be able to pass a check in the redistribution contract. The test checks whether

the reported depth and overlay in the reveal is within PO of the anchor. Or in more

plain English: it tests that the node is a member of the neighbourhood that it claims

to be in.

We feed the data from the API into a sqlite database for local storage. Having

the data locally saves us from using time and network resources on retrieving the

data from the API every time. Furthermore it lets us reliably be able to run tests and

analyss The decision to use a SQL database for local storage was mainly motivated by

the ability to issue powerful queries on the data to filter out, analyse, and retrieve the

necessary data for testing.

The data used in the test is gained by getting all the round numbers of frozen

rounds from thedatabase. A frozen round is a roundwhere therewas originally frozen

nodes in the neighbourhood at either the onset of a round, or after it. Meaning that

the round generally had different reserve commitments revealed. By doing this we

can test our solutions on every potentially problematic round.

The pie chart in figure 6.1 shows how the rounds retrieved from the API are dis-

tributed. There are four categories: honest rounds, rounds with majority reveal,

chaotic rounds, and frozen in previous round. Of which the rounds with majority

reveal, chaotic rounds, and frozen in previous round, are subcategories of the 7580

frozen rounds found in our data. In total these frozen rounds make up for 28% of

all the rounds. Rounds with majority reveal, mean that we have 50% or greater of

the reveals voting for, or including the same reserve commitment. While chaotic

rounds means we have less than 50% of reveals with the same reserve commitments.

These categories account for 6611 rounds, and 584 rounds respectively. There are 385

rounds that are noted as frozen in previous rounds. What this means is that they

possess no conflicting reveals due to all the disagreeing nodes being frozen in a pre-

vious round. In our case this means that they are unusable as test data, but serve

as evidence of the issue that a faulty reveal can freeze the rest of the neighbourhood,

to increase their reward in subsequent rounds. Of course most of these 385 rounds,

most likely had the correct reveal chosen as truth. To clarify the remaining frozen

rounds could also have frozen nodes in previous rounds, but, they in that case have

new conflicting reveals in this round. There are 18135 honest rounds, we do not test

these rounds since due to the way alpha and bank behave, these would not perform



Figure 6.1: Pie chart of retrieved data

any differently than the original redistribution contract. In the bank solution, the

bank player would not get any stake, and in the alpha solution the factor considering

stake belonging to reveal, would evaluate to 1.

This leaves us with 6611 rounds with majority reveal, and 584 chaotic rounds that

we can use for testing. In the following section I will present the result of each of these

two categories separately.

The settings used for the ganache network are as follows. We set the block timing,

to automine, which means for every transaction, the blockchain advances one block

ahead. This is the fastest setting for commiting transactions to the chain, and to be

able to read events. We create 12 blockchain accounts, each with 10000000000000000

ether. Additionally we set the transaction gas limit to 8000000000000000, and the

gas price to 1. These settings are in order to allow as many redistribution rounds as

possible to be able to run. Each account has a more or less inextinguishable supply

of ether to pay a minimum gas price for running transactions. While the gas limit is

set high such that any transaction is allowed to complete.

The experiment took some time to run through. While hardware dependant we

were able to run one set of 6611 rounds in around 5 hours using AMD Ryzen 5 5600x

12 cores cpu, with 32 GiB of DDR4 memory. As we ended up running 3 sets of rep-

etition per storage contract, this took approximately 3 ∗ 3 ∗ 5h = 45h, And this is

only counting the useful runs. Running the chaotic rounds with 584 rounds went a

lot smoother, as it did not need to risk losing connection to the ganache blockchain,

or running out of memory. In this case each repetition took around 10− 20minutes.

Beforemoving on to the results let us comment on the pros and cons of the testing



setup. As stated before we are using the truffle test suite along with a local ganache

blockchain. The reason why we are using truffle is since I already used it to test the

smart contract implementation, the pipeline to run redistribution rounds is some-

thingwehave already set up in truffle. In addition it is heavily integratedwith ganache,

which is the most convenient blockchain as far as we know to use to run the contract.

And instead of looking for, or developing a better solution, it could just as well be bet-

ter in this case to keep it simple, as in if I start testing in this way while thinking about

other solutions, We will probably be done running the simulation of rounds anyway

before figuring out a better way to do it. Swarm-SI or other simulation without a live

blockchain is an option, but we wanted to keep it a realistic blockchain setting.

Truffle however is not the ideal way to run 7195 redistribution rounds, and the

many smart contract function calls needed each round, as it is designed to be used

for unit testing. Furthermore it emphasises setting gas limits and making sure the

tests ran are manageable in gas such that the tested smart contracts are suitable to

be deployed on a real ethereum blockchain. Even more restricting for us is that the

tests have a set timeout, as in if the tests run for longer than this time it will timeout

before completing. One can increase this timeout, but it was found that truffle will

lose connection to the ganache server, and end the test after one hour when running

the truffle test command with default settings. Which is why we needed to run the

ganache network manually.

Even with the lenient ganache configuration, we still ran into issues where truffle

could not connect to the blockchain after a long time had passed. Our current hy-

pothesis as to why is because the blockchain had gotten too large and strained the

computer system resources, making it less responsive. Restarting truffle with the

same ganache instance, would make the connection to the network timeout sooner

than for a fresh ganache blockchain. This meant we had to reinitalise the ganache

blockchain every now and then, whichmade getting the test results a semi-automatic

procedure. The most important setting to increase the speed of the simulation, is

how often the ganache blockchain mines new blocks. In this regard we found that

anything other than automine is dreadfully slow. We tried to run with the minimum

block mining time of 1 second, but it was still much slower. Automine however, gives

us a transaction limit to work with. Because the redistribution rounds, round length

and the lengths of each phase, are decided by the block number on the blockchain. It

can only process so many commit / reveal transactions before it rolls over into a new

round, this worked for all but one redistribution round in the chaotic rounds where

there were 45 reveals. In all likelihood the easiest fix to allow any round to be com-

pleted this way, is to increase the length of each round on the redistribution smart

contract.



6.2 Experimental Results

6.2.1 Simulating with swarmscan data

We present the results of the swarmscan data testing in two batches, one for the rea-

sonably well behaving rounds where one reserve commit is chosen by at least half of

the storage nodes. And another batch for chaotic rounds where we cannot tell for the

most part which reserve commitment is the real truth.

The x axis on figures 6.2-6.7 shows the fraction of stake that the reserve com-

mitment with the most stake has in each round. When this fraction is denoted as

0, it means stake fractions 0 < s < 0.1, as the highest stake in each round has to

be nonzero. While the y axis is the rewards in each bin normalized to be between 0

and 1, and as such I have denoted it as the reward percentage for each fraction. The

reason for normalizing is because each bin, each fraction does not have a uniform

number of rounds in the data set. And as such they are not easily comparable in a

raw format. Furthermore this means certain fractions have greater variability than

others due to the lower number of rounds. The number of rounds for each fraction

are also displayed on the plots. In particular the 0.4 fraction in figures 6.2, 6.3, and

6.4, only have 23 rounds worth of data. For the rounds withmajority reveal, each plot

is an average of 3 repetitions worth of data, with accompanying error bars. And for

the chaotic rounds each plot is an average of 10 repetitions worth of data, but as the

number of rounds for each fraction is generally much lower, the variability remains

much higher.

The majority reveal for each round in context of the result plots, was decided by

which reserve commit had the most stake attached. If the winner of a round had

the majority reserve commitment its reward is added to the majority reward column

(green). If not it is added to the minority reveal column (blue). That is unless the

overlay submitted to the reveal matches the overlay given to the bank which is the

keccack256 hash of ”BANK”. In which case the reward is denoted bank reward (red).

The results presented are with the pot of the original rounds, which means it does

not have the pot carried over to the next round. The reason not to do this is due to us

having chosen specifically rounds with different reveals, and this is an issue because

in many cases in reality, the carried over gold would go to an honest neighbourhood

selected in the next round. On the other hand using reward carryover, could display a

more worst case scenario, but it does make the results harder to read, since the bank

reward carryover, would arbitrarily flow over into majority, or minority reward, in

any of the stake fraction columns.

Rounds with majority reveal

The graph in figure 6.2 shows the result of running the rounds with majority reveal

for the bank solution. We can see how both the majority reveal, and minority reveal

get less overall expected reward due to the bank player. Looking at the graph the

bank reward and minority reward are just about equal for every stake fraction. Fur-



Figure 6.2: Result for bank solution

thermore we have when the stake fraction is greater than 0.5 that the majority stake

fractions reward percentage is reduced relatively less than for the minority, which is

overall positive.

The graph in figure 6.3 shows the result of running the roundswithmajority reveal

for the alpha s solution with α = 1
2 . Here we see that generally the bank, and the

minority factions get different rewards. With the bankwinningmuchmore often than

theminority, compared to the bank solution, this is due to the alpha scaling discussed

in sections 4.4.4, and 4.4.4. The consequences of the bank winning more often is

mainly that the minority reveal is punished more harshly, Although each faction or

strategy do appear to be equal when the stake fraction is 0.5. We have found before

that stake fraction 0.5 is a turning point, and that any stake above that means the

majority gets more reward (with bank reward carryover).

The graph in figure 6.2 shows the result of running the roundswithmajority reveal

for the alpha s solution with α = 1
3 . Since α is lower this time the bank reward in this

plot is less than it was for figure 6.3. Stake fraction 0.5 still marks a turning point

where bank reward plus minority reward is now greater than the majority reward.

Chaotic rounds

We have for the chaotic round figures 6.5 , 6.6, and 6.7, that the most relevant bars

are for the stake fractions between 0.5 to 0.1. Firstly because these are stake fractions

we have yet to look at for the rounds withmajority reveal, and secondly because these

are the bars where we have the most rounds of data. One could say that the major-

ity versus minority comparison is less relevant, due to it being harder to tell what the

majority is in these rounds, and if thatmajority is submitting the correct reserve com-



Figure 6.3: Result for alpha with α = 1
2

Figure 6.4: Result for alpha with α = 1
3



Figure 6.5: Result chaotic rounds for bank solution

Figure 6.6: Result chaotic rounds for alpha with α = 1
2



Figure 6.7: Result chaotic rounds for alpha with α = 1
3

mitment for the neighbourhood. However, the majority faction is still representing

the reserve commitment with the most stake and is likely a result of multiple reveals

voting for it. Even so as the stake fraction goes down, the likelihood of the majority

just being a singular reveal from a node with slightly more stake than the others in-

creases. Id like to point out again that the 0.0 fraction in the figures is representing

stake fractions 0.1 > s > 0.

The comments made for the rounds with majority reveal are all still applicable to

the chaotic rounds. The alpha solution when α = 1
2 gives the bank more rewards

than the minority (fig. 6.6), while the bank solution generally has around equal bank

reward percentage, as minority reward percentage (fig 6.5). While when α = 1
3 the

bank reward fraction is less (fig. 6.7), compared to when α = 1
2 (fig. 6.6). The main

takeaway for the bank reward reward fraction to be so high overall is that we do not

have much coordination among nodes, as in few nodes reveal the same reserve com-

mitment.





Chapter 7

Discussion

In this chapter we will discuss our new redistribution contract solutions, and how

they ultimately fare compared to the original approach.

The existing redistribution smart contract has neighbourhoodnodes agree onwhich

data chunks are being stored in said neighbourhood by calculating a reserve commit-

ment hash. Each neighbourhood node submitting a hash has a chance to be selected

as the true reserve commitment proportional to their stake, and subsequently the

more nodes submit the same hash, the more likely that hash has to become the truth.

What we see happening however, is that in many rounds there are many hashes dif-

ferent from the majority, or most likely truth, being committed, often times each dif-

ferent hash only being submitted by a singular storage node. The reason for these

different hashes could be due to arbitrary misconfiguration or network error, but it is

believed that a significant fraction of them are due to storage node operators looking

to take part in the storage incentives, without doing actual storage. To mitigate such

malicious free riding storage nodes, the existing contract has a freezing systemwhich

would by freezing nodes that did not commit the same hash as the selected truth,

make them ineligible to take part in upcoming rounds until unfrozen. It would also

make them eligible for being further punished by having their stakes slashed.

Our analysis of the freezing mechanism found that it actually facilitated the re-

veal of malicious reserve commitments. As in if one got lucky and had their reserve

commitment chosen, it meant that everyone else is frozen, which means that when

the neighbourhood is once again selected, the malicious storage node would be the

only one to be rewarded. Ultimately we found this strategy to be equally profitable to

being an honest storage node, but since this method allows free riding on storage it

is of course a problem.

Our way of stopping malicious actors are two alternative coordination rewarding

smart contracts. Both of which provide a chance for the storage nodes in a round to

lose the reward entirely, when this happens we say the bank wins.

The first smart contract presented is the one we refer to as the bank solution,

named after the mocked storage node (bank) player we create. This contract is im-

65



plemented in much the same way as the existing contract, except for the definition

of the stake that the bank player is playing with. Which is set to be relative to the

total stake in the neighbourhood and the reserve commitment with the most stake

attached.

The other smart contact alpha, gives each storage node a chance to win relative

to its stake and the stake committed to that storage node’s reserve commitment. We

were unable to implement alpha in the same way as the existing contract due to the

summed up chances for each player in the redistribution game to win is not equal to

one. And as such the old strategy of giving the first player a 100% chance of winning,

offset by each subsequent player’s chance of winning. Will not work since the offset

is much smaller this time around with the alpha equation 4.22. It works for the bank

solution due to the bank acting as a player. Instead we opted to use a wheel of fortune

approach, which does perform a little better than the existing contract baseline with

α = 1. However, it only uses one random number instead of one for each player. The

consequences for which we are unsure of, since it is our belief that if a player is able

to obtain the random seed, to discover one of the random numbers, they can also find

all of the other randomnumbers. Setting and usingα is themain performance bottle-

neck, as square root and cube root functions cost us a lot of gas. By the testing done

in section 5.5, where we looked at if it was possible to limit the number of iterations

of these functions, we found no further way of optimising them.

The gas costs of both alpha and bank do increase over the original, due to the ne-

cessity of keeping track of the stake associated with each reserve commitment. How-

ever, great gas savings aremade by removing the freezingmechanisms of the old con-

tract, resulting in both the bank and alpha with α = 1 having increased performance

over the original in table 5.1, in section 4.4.4. Reintroducing freezing would ulti-

mately make them perform slightly worse than the original. Alpha with α = 1 could

perform slightly better than the original depending on how much performance was

gained by using the wheel of fortune implementation. Meanwhile the performance

whenα = 1
2 , i.e when using square root performs slightly worse than the original con-

tract. And it will perform even worse with the freezing mechanisms enabled. Which

also applies to when α = 1
3 .

Deploying the alpha contract with α = 1
3 , is as it stands not viable due to the high

gas cost, having a maximum recorded gas of 757759 in our testing (tab. 5.1). That is

more than double the maximum gas of the original contract, which was 326357 gas in

our testing. Looking at the maximum gas values allows us to make decisions based

on the worst case scenario.

Continuing on when it comes to the alpha solution having α set to 1 is also not

viable, due to the disparity between how larger stake fractions, and smaller stake

fractions are punished. We discussed this aspect of α during the presentation of the

alpha solution in section 4.4.4, and when discussing the implementation test in sec-

tion 4.4.4. As it stands the only alpha smart contract that looks to be viable to deploy

is when α = 1
2 .

Both alpha and bank lowers the expected reward of a storage node submitting the



wrong reserve commitment by providing the bank a chance to win. This behaviour

can be observed by looking at the plots in chapter 6, for example in figure 6.2 con-

taining results for the bank solution. In the 0.9 stake fraction column, the 0.9 − 1.0

reward percentage interval would with the existing contract be all reward awarded to

the minority, but with the bank contract it split with the bank.

The properties of the alpha function, and the bank solution differ slightly. The dif-

ference is rooted in how the different reward function for each solution look. We have

R(nodei) =
si

S(Φ)+sbank
(eq. 4.24) for the bank solution, andR(nodei) =

si
S(Φ)

S(v(nodei))
α

S(Φ)α

(4.22) for the alpha solution. S(Φ) being the stake of the neighbourhood summed up,

si stake of nodei, S(v(nodei)) is the stake belonging to the reveal of nodei. With Sbank

referring to the bank stake defined as sbank = sum(S(v)) − max(S(v)). As such for

the bank solution its chance of winning depends on the reserve commitment with the

most stake attached only, while the alpha solution is relative to howmany other stor-

age nodes also reveal the same reveal as nodei. This means that the alpha solution

is more sensitive to other nodes working together. Since stake inherently provides

some sybil resistance, as in an operator within a neighbourhood expects either the

same or less reward, when splitting a node with x stake into nodes n with x/n stake.

Then the alpha solution ismainly going to help nodes that aren’t malicious, but which

may come up with different reserve commitments for other reasons. Such as those

storage nodes using different versions, or storage nodes being unable to obtain the

chunks they need to store either by those chunks being withheld, or by network error.

By deploying the smart contracts on ganachewith truffle, and simulating, wewere

able to experimentally evaluate the different contracts. In figure 6.2 where the bank

contract was deployed compared to 6.3 with the alpha-contract (α0 1
2 ), the bank is

winning a greater amount with the alpha solution. In the same plots but for the chaos

dataset (fig. 6.5 and fig. 6.6), this ismuchmore pronounced. Ultimately the takeaway

is that the nodes with minority reveal did not coordinate their actions as in each one

reveal different reserve commitment hashes. And this behaviour is punished a lot

more with the alpha approach.

We had some discussion about what to do with the reward if the bank wins. The

one that comes out on top for the time being is to carry that reward over into the

next round. The reason why being mainly that there is a practical issue with burning

the reward, as to who pays the blockchain fees to do so, and that letting the Swarm

team take that responsibility might not be aligned with the vision of a self regulating

decentralised storage network. Giving the reward to the bank entity instead, does not

have the fee paying problem however, it does produce a conflict of interest. That if

the bank funds are managed by the Swarm team, they might want to at some point

facilitate a high chance for the bank to win, in order to gain more funds.

Furthermore both burning, and carrying over the bank rewards, have the same

problem. In that the neighbourhoodwhich produces a chance for the bank to win, are

inherently undesirable, since whoever joins such a neighbourhood will have a lower

chance of winning, than if they would join another neighbourhood with all honest

nodes. With a carried over reward, those honest neighbourhoods are likely to re-



ceive that carried over reward, making them more desirable. Likewise with burned

bank rewards, the honest neighbourhoods are generally more likely to win, while the

burned tokens create deflation increasing the value of tokens for those holding on to

them. Arguably the effects of deflation in this regard are not as pronounced as when

the reward is carried over however.

The reward being carried over introduces the storage incentives to some new pos-

sible exploits however. These aremainly possiblewith operators havingnodes present

in multiple neighbourhoods, to exploit that the additional reward might be a part of

the pot for one of these nodes. We looked at two cases to game the systemwith nodes

in multiple neighbourhoods, one with a node with the same stake in each neighbour-

hood. And another where the operator has two different stakes one being played in

one half of the neighbourhoods the operator is part of, and the other stake value in

the other half. We will refer to the first as 1), and the second as 2). For 1) we found

that the bank solution is overall safe for this exploit, as the exploiter would need to

be part of every neighbourhood. While the alpha solution has combinations of node

stake, and fraction of neighbourhoods entered, that would allow the malicious actor

to get more rewards than if acting honestly. These combinations however, still need

so much stake that the exploit is thought to be possible in theory only.

In the case of 2), the bank solution has issues however as with a high enough

difference between the two stakes, it is possible to accomplish this exploit, with a

lower fraction of neighbourhoods entered. On the other hand the alpha solution is

just about as resistant to the different stakes approach, if not more due to a decreased

stake window where the exploit is possible.

In conclusion we have the more theoretically sound alpha solution, with better

coordination rewarding, that is generally more resilient to exploits. If we do not

consider the possibility of an actor or collective of storage nodes, managing to ob-

tain a monopoly (51%) on neighbourhood stake. And the easier to implement, less

expensive bank solution. The bank solution providing more or less comparatively

fair results to the alpha solution, while having a lower gas overhead. Makes it the

more viable solution for practical deployment. This can change if we manage to find

a cheaper way to implement a contract with the same properties as the alpha solution.

One aspect of our analysis that might not translate well into the real world, is that

we think of rewards obtained later as being as valuable, as rewards earned today.

The affected parts are mainly our analysis of the existing contract, and the analysis

of the bank carryover reward. Even so we can see in reality from swarmscan that

redistribution rounds with multiple different reserve commitments continue to be a

problem. Meaning there are many who aim for the possibility to be rewarded in later

rounds, with the other neighbourhoods frozen. Additionally as we briefly discussed,

when considering our approach for the solution, the storage incentives in Swarm are

set up as an indeterminate game of chance where a single node takes all reward for

a round. Which means that while the expected reward in the long term might be

reliable income, in the short term it is unreliable.

With simulating the redistribution rounds using data from swarmscan we were



attempting to show that the solutions are good enough to be used in practice. What

we did not do however, is deploy the implemented contracts on real blockchains or

more realistic test-nets, and by spinning up storage nodes with bee clients. While

something one should do extensively before actual deployment, it is not as relevant

to this thesis. The main advantage gained by our approach is the time gained by not

having to wait for the next redistribution round, and the time gained in setting up

and managing Swarm nodes.

What we have left to explore is how our new solutions would work while keep-

ing the existing freezingmechanisms. Mainly how this could affect our mathematical

analysis, that is to say would the weak Nash equilibrium for honest nodes in section

4.3.2 become a strong equilibrium ? And how would it affect the possibility of ex-

ploiting the carried over reward.





Chapter 8

Conclusions

In this thesis we have evaluated and redesigned the Swarm redistribution contract.

The analysis of the existing contract revealed that a node revealing a different reserve

commitment than other nodes is an equal strategy to cooperating on revealing the

same reserve commitment. This due to the freezing mechanisms allowing the node

with the different reserve commitment to freeze all other nodes in that neighbour-

hood. If the same neighbourhood is once again selected, then the malicious node is

the only one eligible to win. Our approach to solving the issue is for the new con-

tract to have a greater coordination rewarding incentive. We created two alternative

solutions for the new contract, the alpha solution, and the bank solution. The alpha

solution selects a winner proportional to a node’s own stake, and the stake of nodes

also submitting that node’s reserve commitment. Whereas the bank solution adds an-

other player in the game with stake based on the reserve commitment with the high-

est amount of stake in that round. Implementing the bank solution is easier, than

the alpha solution. Through testing our implementation we found the gas costs of

the alpha solution to be much higher than the bank solution. Although this is mainly

due to the usage of root functions. This ultimately makes the bank solution best fit

for practical purposes. However the alpha solution, does intuitively allow nodes not

meaning to misbehave, but who produce different reserve commitments due to bee

version mismatches. The ability to coordinate amongst themselves on the correct re-

serve commitment for that version. Furthermore the bank solution with the reward

carrying over into the next round, is vulnerable to an exploit where the storage node

operator has nodes in neighbourhoods with different stake amounts. While the alpha

solution is resilient to this exploit, but does otherwise encounter problems if any one

entity manages to hold the majority of stake in a neighbourhood.
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Appendix A

Code repository

The code for this project is available at the following GitHub repository:

https://github.com/DanielHavstadUIS/MasterThesisSSC

This repository contains the implementations of the alpha and bank solution in

solidity. Along with our testing setup using data from swarmscan. And data analysis

of the results of simulating previous redistribution rounds with our new solutions.

The repository below contains modifications i have made to Kristian Tjessem’s

SwarmSI [16], while working on this thesis:

https://github.com/DanielHavstadUIS/SwarmSI-Sim
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Appendix B

Bank solution contract code

1 // SPDX-License-Identifier: BSD-3-Clause
2 pragma solidity ^0.8.1;
3 import "./@openzeppelin/contracts/access/AccessControl.sol";
4 import "./@openzeppelin/contracts/security/Pausable.sol";
5 import "./PostageStamp.sol";
6 import "./PriceOracle.sol";
7 import "./Staking.sol";
8

9 /**
10 * @title Redistribution contract
11 * @author The Swarm Authors
12 * @dev Implements a Schelling Co-ordination game to form consensus around

the Reserve Commitment hash. This takes
13 * place in three phases: _commit_, _reveal_ and _claim_.
14 *
15 * A node, upon establishing that it _isParticipatingInUpcomingRound_ , i.e.

it's overlay falls within proximity order
16 * of its reported depth with the _currentRoundAnchor_ , prepares a "reserve

commitment hash" using the chunks
17 * it currently stores in its reserve and calculates the "storage depth" (see

Bee for details). These values, if calculated
18 * honestly, and with the right chunks stored, should be the same for every

node in a neighbourhood. This is the Schelling point.
19 * Each eligible node can then use these values, together with a random,

single use, secret _revealNonce_ and their
20 * _overlay_ as the pre-image values for the obsfucated _commit_, using the

_wrapCommit_ method.
21 *
22 * Once the _commit_ round has elapsed, participating nodes must provide the

values used to calculate their obsfucated
23 * _commit_ hash, which, once verified for correctness and proximity to the

anchor are retained in the _currentReveals_.
24 * Nodes that have commited but do not reveal the correct values used to

create the pre-image will have their stake
25 * "frozen" for a period of rounds proportional to their reported depth.
26 *
27 * During the _reveal_ round, randomness is updated after every successful
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reveal. Once the reveal round is concluded,
28 * the _currentRoundAnchor_ is updated and users can determine if they will

be eligible their overlay will be eligible
29 * for the next commit phase using _isParticipatingInUpcomingRound_.
30 *
31 * When the _reveal_ phase has been concluded, the claim phase can begin. At

this point, the truth teller and winner
32 * are already determined. By calling _isWinner_, an applicant node can run

the relevant logic to determine if they have
33 * been selected as the beneficiary of this round. When calling _claim_, the

current pot from the PostageStamp contract
34 * is withdrawn and transferred to that beneficiaries address. Nodes that

have revealed values that differ from the truth,
35 * have their stakes "frozen" for a period of rounds proportional to their

reported depth.
36 */
37 contract Redistribution is AccessControl, Pausable {
38 // An eligible user may commit to an _obfuscatedHash_ during the commit

phase...
39 struct Commit {
40 bytes32 overlay;
41 address owner;
42 uint256 stake;
43 bytes32 obfuscatedHash;
44 bool revealed;
45 uint256 revealIndex;
46 }
47 // ...then provide the actual values that are the constituents of the pre

-image of the _obfuscatedHash_
48 // during the reveal phase.
49 struct Reveal {
50 address owner;
51 bytes32 overlay;
52 uint256 stake;
53 uint256 stakeDensity;
54 bytes32 hash;
55 uint8 depth;
56 }
57

58 // The address of the linked PostageStamp contract.
59 PostageStamp public PostageContract;
60 // The address of the linked PriceOracle contract.
61 PriceOracle public OracleContract;
62 // The address of the linked Staking contract.
63 StakeRegistry public Stakes;
64

65 // Commits for the current round.
66 Commit[] public currentCommits;
67 // Reveals for the current round.
68 Reveal[] public currentReveals;
69

70 // Role allowed to pause.
71 bytes32 public constant PAUSER_ROLE = keccak256("PAUSER_ROLE");
72



73 uint256 public penaltyMultiplierDisagreement = 1;
74 uint256 public penaltyMultiplierNonRevealed = 2;
75

76 // Maximum value of the keccack256 hash.
77 bytes32 MaxH = bytes32(0

x00000000000000000000000000000000ffffffffffffffffffffffffffffffff);
78

79 // The current anchor that being processed for the reveal and claim
phases of the round.

80 bytes32 currentRevealRoundAnchor;
81

82 // The current random value from which we will random.
83 // inputs for selection of the truth teller and beneficiary.
84 bytes32 seed;
85

86 // The miniumum stake allowed to be staked using the Staking contract.
87 uint256 public minimumStake = 100000000000000000;
88

89 // The number of the currently active round phases.
90 uint256 public currentCommitRound;
91 uint256 public currentRevealRound;
92 uint256 public currentClaimRound;
93

94 // The length of a round in blocks.
95 uint256 public roundLength = 152;
96

97

98 // The reveal of the winner of the last round.
99 Reveal public winner;
100

101 /**
102 * @dev Pause the contract. The contract is provably stopped by renouncing
103 the pauser role and the admin role after pausing, can only be called by

the `PAUSER`
104 */
105 function pause() public {
106 require(hasRole(PAUSER_ROLE, msg.sender), "only pauser can pause");
107 _pause();
108 }
109

110 /**
111 * @dev Unpause the contract, can only be called by the pauser when

paused
112 */
113 function unPause() public {
114 require(hasRole(PAUSER_ROLE, msg.sender), "only pauser can unpause");
115 _unpause();
116 }
117

118 /**
119 * @param staking the address of the linked Staking contract.
120 * @param postageContract the address of the linked PostageStamp contract

.
121 * @param oracleContract the address of the linked PriceOracle contract.



122 */
123 constructor(address staking, address postageContract, address

oracleContract) {
124 Stakes = StakeRegistry(staking);
125 PostageContract = PostageStamp(postageContract);
126 OracleContract = PriceOracle(oracleContract);
127 _setupRole(DEFAULT_ADMIN_ROLE , msg.sender);
128 _setupRole(PAUSER_ROLE, msg.sender);
129 }
130

131 /**
132 * @dev Emitted when the winner of a round is selected in the claim phase
133 */
134 event WinnerSelected(Reveal winner);
135

136 /**
137 * @dev Emitted when the truth oracle of a round is selected in the claim

phase.
138 */
139 event TruthSelected(bytes32 hash, uint8 depth);
140

141 // Next two events to be removed after testing phase pending some other
usefulness being found.

142 /**
143 * @dev Emits the number of commits being processed by the claim phase.
144 */
145 event CountCommits(uint256 _count);
146

147 /**
148 * @dev Emits the number of reveals being processed by the claim phase.
149 */
150 event CountReveals(uint256 _count);
151

152 /**
153 * @dev Logs that an overlay has committed
154 */
155 event Committed(uint256 roundNumber, bytes32 overlay);
156 /**
157 * @dev Emit from Postagestamp contract valid chunk count at the end of

claim
158 */
159 event ChunkCount(uint256 validChunkCount);
160

161 /**
162 * @dev Bytes32 anhor of current reveal round
163 */
164 event CurrentRevealAnchor(uint256 roundNumber, bytes32 anchor);
165

166 /**
167 * @dev Logs that an overlay has revealed
168 */
169 event Revealed(
170 uint256 roundNumber,
171 bytes32 overlay,



172 uint256 stake,
173 uint256 stakeDensity,
174 bytes32 reserveCommitment,
175 uint8 depth
176 );
177

178 /**
179 * @notice Set freezing parameters
180 */
181 function setFreezingParams(uint256 _penaltyMultiplierDisagreement ,

uint256 _penaltyMultiplierNonRevealed) external {
182 require(hasRole(DEFAULT_ADMIN_ROLE , msg.sender), "caller is not the

admin");
183 penaltyMultiplierDisagreement = _penaltyMultiplierDisagreement;
184 penaltyMultiplierNonRevealed = _penaltyMultiplierNonRevealed;
185 }
186

187 /**
188 * @notice The number of the current round.
189 */
190 function currentRound() public view returns (uint256) {
191 return (block.number / roundLength);
192 }
193

194 /**
195 * @notice Returns true if current block is during commit phase.
196 */
197 function currentPhaseCommit() public view returns (bool) {
198 if (block.number % roundLength < roundLength / 4) {
199 return true;
200 }
201 return false;
202 }
203

204 /**
205 * @notice Returns true if current block is during reveal phase.
206 */
207 function currentPhaseReveal() public view returns (bool) {
208 uint256 number = block.number % roundLength;
209 if (number >= roundLength / 4 && number < roundLength / 2) {
210 return true;
211 }
212 return false;
213 }
214

215 /**
216 * @notice Returns true if current block is during claim phase.
217 */
218 function currentPhaseClaim() public view returns (bool) {
219 if (block.number % roundLength >= roundLength / 2) {
220 return true;
221 }
222 return false;
223 }



224

225 /**
226 * @notice Returns true if current block is during reveal phase.
227 */
228 function currentRoundReveals() public view returns (Reveal[] memory) {
229 require(currentPhaseClaim(), "not in claim phase");
230 uint256 cr = currentRound();
231 require(cr == currentRevealRound , "round received no reveals");
232 return currentReveals;
233 }
234

235 /**
236 * @notice Begin application for a round if eligible. Commit a hashed

value for which the pre-image will be
237 * subsequently revealed.
238 * @dev If a node's overlay is _inProximity_(_depth_) of the

_currentRoundAnchor_ , that node may compute an
239 * _obfuscatedHash_ by providing their _overlay_, reported storage

_depth_, reserve commitment _hash_ and a
240 * randomly generated, and secret _revealNonce_ to the _wrapCommit_

method.
241 * @param _obfuscatedHash The calculated hash resultant of the required

pre-image values.
242 * @param _overlay The overlay referenced in the pre-image. Must be

staked by at least the minimum value,
243 * and be derived from the same key pair as the message sender.
244 */
245 function commit(bytes32 _obfuscatedHash, bytes32 _overlay, uint256

_roundNumber) external whenNotPaused {
246 require(currentPhaseCommit(), "not in commit phase");
247 require(block.number % roundLength != (roundLength / 4) - 1, "can not

commit in last block of phase");
248 uint256 cr = currentRound();
249 require(cr <= _roundNumber, "commit round over");
250 require(cr >= _roundNumber, "commit round not started yet");
251

252 uint256 nstake = Stakes.stakeOfOverlay(_overlay);
253 require(nstake >= minimumStake, "stake must exceed minimum");
254 require(Stakes.ownerOfOverlay(_overlay) == msg.sender, "owner must

match sender");
255

256

257 require(
258 Stakes.lastUpdatedBlockNumberOfOverlay(_overlay) < block.number -

2 * roundLength,
259 "must have staked 2 rounds prior"
260 );
261

262 // if we are in a new commit phase, reset the array of commits and
263 // set the currentCommitRound to be the current one
264 if (cr != currentCommitRound) {
265 delete currentCommits;
266 currentCommitRound = cr;
267 }



268

269 uint256 commitsArrayLength = currentCommits.length;
270

271 for (uint256 i = 0; i < commitsArrayLength; i++) {
272 require(currentCommits[i].overlay != _overlay, "only one commit

each per round");
273 }
274

275 currentCommits.push(
276 Commit({
277 owner: msg.sender,
278 overlay: _overlay,
279 stake: nstake,
280 obfuscatedHash: _obfuscatedHash,
281 revealed: false,
282 revealIndex: 0
283 })
284 );
285

286 emit Committed(_roundNumber, _overlay);
287 }
288

289 /**
290 * @notice Returns the current random seed which is used to determine

later utilised random numbers.
291 * If rounds have elapsed without reveals, hash the seed with an

incremented nonce to produce a new
292 * random seed and hence a new round anchor.
293 */
294 function currentSeed() public view returns (bytes32) {
295 uint256 cr = currentRound();
296 bytes32 currentSeedValue = seed;
297

298 if (cr > currentRevealRound + 1) {
299 uint256 difference = cr - currentRevealRound - 1;
300 currentSeedValue = keccak256(abi.encodePacked(currentSeedValue,

difference));
301 }
302

303 return currentSeedValue;
304 }
305

306 /**
307 * @notice Returns the seed which will become current once the next

commit phase begins.
308 * Used to determine what the next round's anchor will be.
309 */
310 function nextSeed() public view returns (bytes32) {
311 uint256 cr = currentRound() + 1;
312 bytes32 currentSeedValue = seed;
313

314 if (cr > currentRevealRound + 1) {
315 uint256 difference = cr - currentRevealRound - 1;
316 currentSeedValue = keccak256(abi.encodePacked(currentSeedValue,



difference));
317 }
318

319 return currentSeedValue;
320 }
321

322 /**
323 * @notice Updates the source of randomness. Uses block.difficulty in pre

-merge chains, this is substituted
324 * to block.prevrandao in post merge chains.
325 */
326 function updateRandomness() private {
327 seed = keccak256(abi.encode(seed, block.prevrandao));
328 }
329

330 function nonceBasedRandomness(bytes32 nonce) private {
331 seed = seed ^ nonce;
332 }
333

334 /**
335 * @notice Returns true if an overlay address _A_ is within proximity

order _minimum_ of _B_.
336 * @param A An overlay address to compare.
337 * @param B An overlay address to compare.
338 * @param minimum Minimum proximity order.
339 */
340 function inProximity(bytes32 A, bytes32 B, uint8 minimum) public pure

returns (bool) {
341 if (minimum == 0) {
342 return true;
343 }
344 return uint256(A ^ B) < uint256(2 ** (256 - minimum));
345 }
346

347 /**
348 * @notice Hash the pre-image values to the obsfucated hash.
349 * @dev _revealNonce_ must be randomly generated, used once and kept

secret until the reveal phase.
350 * @param _overlay The overlay address of the applicant.
351 * @param _depth The reported depth.
352 * @param _hash The reserve commitment hash.
353 * @param revealNonce A random, single use, secret nonce.
354 */
355 function wrapCommit(
356 bytes32 _overlay,
357 uint8 _depth,
358 bytes32 _hash,
359 bytes32 revealNonce
360 ) public pure returns (bytes32) {
361 return keccak256(abi.encodePacked(_overlay, _depth, _hash,

revealNonce));
362 }
363

364



365 // build this in reveaL
366 bytes32[] currentRevealHashes;
367 mapping(bytes32 => uint256) currentRevealToStake;
368

369 function _resetRevealToStake() internal {
370 for (uint256 i = 0; i < currentRevealHashes.length; i++) {
371 delete currentRevealToStake[currentRevealHashes[i]]; // Reset the

value to 0
372 }
373 delete currentRevealHashes;
374 }
375

376

377 /**
378 * @notice Reveal the pre-image values used to generate commit provided

during this round's commit phase.
379 * @param _overlay The overlay address of the applicant.
380 * @param _depth The reported depth.
381 * @param _hash The reserve commitment hash.
382 * @param _revealNonce The nonce used to generate the commit that is

being revealed.
383 */
384 function reveal(bytes32 _overlay, uint8 _depth, bytes32 _hash, bytes32

_revealNonce) external whenNotPaused {
385 require(currentPhaseReveal(), "not in reveal phase");
386

387 uint256 cr = currentRound();
388

389 require(cr == currentCommitRound , "round received no commits");
390 if (cr != currentRevealRound) {
391 //currentRevealRoundAnchor = currentRoundAnchor();
392 //edit
393 currentRevealRoundAnchor = currentRoundAnchorValue;
394

395 delete currentReveals;
396 _resetRevealToStake();
397 currentRevealRound = cr;
398 emit CurrentRevealAnchor(cr, currentRevealRoundAnchor);
399 updateRandomness();
400 }
401

402 bytes32 commitHash = wrapCommit(_overlay, _depth, _hash, _revealNonce
);

403

404 uint256 commitsArrayLength = currentCommits.length;
405

406 for (uint256 i = 0; i < commitsArrayLength; i++) {
407 if (currentCommits[i].overlay == _overlay && commitHash ==

currentCommits[i].obfuscatedHash) {
408 //consider wether i Should bother with this check //get

around this with 0 depth
409 require(
410 inProximity(currentCommits[i].overlay,

currentRevealRoundAnchor , _depth),



411 "anchor out of self reported depth"
412 );
413 //check can only revealed once
414 require(currentCommits[i].revealed == false, "participant

already revealed");
415 currentCommits[i].revealed = true;
416 currentCommits[i].revealIndex = currentReveals.length;
417

418 //build reveal map
419 currentRevealHashes.push(_hash);
420 if (currentRevealToStake[_hash] == 0) {
421 currentRevealToStake[_hash] = currentCommits[i].stake *

uint256(2 ** _depth);
422 } else {
423 currentRevealToStake[_hash] += currentCommits[i].stake *

uint256(2 ** _depth);
424 }
425

426 //emit stakeSetToHash(currentRevealToStake[
currentRevealHashes[i]]);

427 currentReveals.push(
428 Reveal({
429 owner: currentCommits[i].owner,
430 overlay: currentCommits[i].overlay,
431 stake: currentCommits[i].stake,
432 stakeDensity: currentCommits[i].stake * uint256(2 **

_depth),
433 hash: _hash,
434 depth: _depth
435 })
436 );
437

438 nonceBasedRandomness(_revealNonce);
439

440 emit Revealed(
441 cr,
442 currentCommits[i].overlay,
443 currentCommits[i].stake,
444 currentCommits[i].stake * uint256(2 ** _depth),
445 _hash,
446 _depth
447 );
448

449 return;
450 }
451 }
452

453 require(false, "no matching commit or hash");
454 }
455

456

457

458

459



460

461 /**
462 * @notice Determine if a the owner of a given overlay will be the

beneficiary of the claim phase.
463 * @param _overlay The overlay address of the applicant.
464 */
465 function isWinner(bytes32 _overlay) public view returns (bool) {
466 require(currentPhaseClaim(), "winner not determined yet");
467

468 uint256 cr = currentRound();
469

470 require(cr == currentRevealRound , "round received no reveals");
471 require(cr > currentClaimRound, "round already received successful

claim");
472

473 string memory truthSelectionAnchor = currentTruthSelectionAnchor();
474

475 uint256 currentSum;
476 uint256 currentWinnerSelectionSum;
477 bytes32 winnerIs;
478 bytes32 randomNumber;
479

480 bytes32 truthRevealedHash;
481 uint8 truthRevealedDepth;
482

483 uint256 commitsArrayLength = currentCommits.length;
484

485 uint256 revIndex;
486 uint256 k = 0;
487

488 //new
489 uint256 currentMaxReveal = 0;
490

491 //can remove truth selection testing gas cost
492 for (uint256 i = 0; i < commitsArrayLength; i++) {
493 if (currentCommits[i].revealed) {
494 revIndex = currentCommits[i].revealIndex;
495 currentSum += currentReveals[revIndex].stakeDensity;
496 randomNumber = keccak256(abi.encodePacked(

truthSelectionAnchor , k));
497

498 //altered
499 if (currentMaxReveal < currentRevealToStake[

currentRevealHashes[revIndex]] ) {
500 currentMaxReveal = currentRevealToStake[

currentRevealHashes[revIndex]];
501 }
502

503 if (
504 uint256(randomNumber & MaxH) * currentSum <
505 currentReveals[revIndex].stakeDensity * (uint256(MaxH) +

1)
506 ) {
507 truthRevealedHash = currentReveals[revIndex].hash;



508 truthRevealedDepth = currentReveals[revIndex].depth;
509 }
510

511 k++;
512 }
513 }
514 uint256 bankStakeDensity = currentSum - currentMaxReveal;
515

516 k = 0;
517

518 string memory winnerSelectionAnchor = currentWinnerSelectionAnchor();
519 //altered
520 for (uint256 i = 0; i < commitsArrayLength+1; i++) {
521 revIndex = currentCommits[i].revealIndex;
522 if (currentCommits[i].revealed) {
523 // if (
524 // currentCommits[i].revealed &&
525 // truthRevealedHash == currentReveals[revIndex].hash &&
526 // truthRevealedDepth == currentReveals[revIndex].depth
527 // ) {
528 currentWinnerSelectionSum += currentReveals[revIndex].

stakeDensity;
529 randomNumber = keccak256(abi.encodePacked(

winnerSelectionAnchor , k));
530

531 if (
532 uint256(randomNumber & MaxH) * currentWinnerSelectionSum

<
533 currentReveals[revIndex].stakeDensity * (uint256(MaxH) +

1)
534 ) {
535 winnerIs = currentReveals[revIndex].overlay;
536 }
537

538 k++;
539 }
540 //new
541 if (i >= commitsArrayLength){
542 currentWinnerSelectionSum += bankStakeDensity;
543 randomNumber = keccak256(abi.encodePacked(

winnerSelectionAnchor , k));
544

545 if(
546 uint256(randomNumber & MaxH) *

currentWinnerSelectionSum <
547 bankStakeDensity* (uint256(MaxH) + 1)
548 ) {
549 winnerIs = keccak256("BANK");
550 }
551

552 }
553 }
554

555 return (winnerIs == _overlay);



556 }
557

558 /**
559 * @notice Determine if a the owner of a given overlay can participate in

the upcoming round.
560 * @param overlay The overlay address of the applicant.
561 * @param depth The storage depth the applicant intends to report.
562 */
563 function isParticipatingInUpcomingRound(bytes32 overlay, uint8 depth)

public view returns (bool) {
564 require(currentPhaseClaim() || currentPhaseCommit(), "not determined

for upcoming round yet");
565 require(
566 Stakes.lastUpdatedBlockNumberOfOverlay(overlay) < block.number -

2 * roundLength,
567 "stake updated recently"
568 );
569 require(Stakes.stakeOfOverlay(overlay) >= minimumStake, "stake amount

does not meet minimum");
570 return inProximity(overlay, currentRoundAnchor(), depth);
571 }
572

573 /**
574 * @notice The random value used to choose the selected truth teller.
575 */
576 function currentTruthSelectionAnchor() private view returns (string

memory) {
577 require(currentPhaseClaim(), "not determined for current round yet");
578 uint256 cr = currentRound();
579 require(cr == currentRevealRound , "round received no reveals");
580

581 return string(abi.encodePacked(seed, "0"));
582 }
583

584 /**
585 * @notice The random value used to choose the selected beneficiary.
586 */
587 function currentWinnerSelectionAnchor() private view returns (string

memory) {
588 require(currentPhaseClaim(), "not determined for current round yet");
589 uint256 cr = currentRound();
590 require(cr == currentRevealRound , "round received no reveals");
591

592 return string(abi.encodePacked(seed, "1"));
593 }
594

595 /**
596 * @notice The anchor used to determine eligibility for the current round

.
597 * @dev A node must be within proximity order of less than or equal to

the storage depth they intend to report.
598 */
599 function currentRoundAnchor() public view returns (bytes32 returnVal) {
600 uint256 cr = currentRound();



601

602 if (currentPhaseCommit() || (cr > currentRevealRound && !
currentPhaseClaim())) {

603 return currentSeed();
604 }
605

606 if (currentPhaseReveal() && cr == currentRevealRound) {
607 require(false, "can't return value after first reveal");
608 }
609

610 if (currentPhaseClaim()) {
611 return nextSeed();
612 }
613 }
614

615 //edited by me for testing
616 bytes32 public currentRoundAnchorValue;
617

618 function setCurrentRoundAnchor(bytes32 _value) external {
619 currentRoundAnchorValue = _value;
620 }
621

622 string public currentTruthSelectionAnchorValue;
623

624 function setCurrentTruthSelectionAnchor(string memory _value) external {
625 currentTruthSelectionAnchorValue = _value;
626 }
627

628

629

630 /**
631 * @notice Conclude the current round by identifying the selected truth

teller and beneficiary.
632 * @dev
633 */
634 function claim() external whenNotPaused {
635 require(currentPhaseClaim(), "not in claim phase");
636

637 uint256 cr = currentRound();
638

639 require(cr == currentRevealRound , "round received no reveals");
640 require(cr > currentClaimRound, "round already received successful

claim");
641

642 //string memory truthSelectionAnchor = currentTruthSelectionAnchor();
643 //edit
644 string memory truthSelectionAnchor = currentTruthSelectionAnchorValue

;
645

646 uint256 currentSum;
647 uint256 currentWinnerSelectionSum;
648 bytes32 randomNumber;
649 uint256 randomNumberTrunc;
650



651 bytes32 truthRevealedHash;
652 uint8 truthRevealedDepth;
653

654 uint256 commitsArrayLength = currentCommits.length;
655 uint256 revealsArrayLength = currentReveals.length;
656

657 emit CountCommits(commitsArrayLength);
658 emit CountReveals(revealsArrayLength);
659

660 uint256 revIndex;
661 uint256 k = 0;
662

663 // find the reveal with the max
664 uint256 currentMaxReveal;
665

666 for (uint256 i = 0; i < commitsArrayLength; i++) {
667 if (currentCommits[i].revealed) {
668 revIndex = currentCommits[i].revealIndex;
669 currentSum += currentReveals[revIndex].stakeDensity;
670 randomNumber = keccak256(abi.encodePacked(

truthSelectionAnchor , k));
671

672 randomNumberTrunc = uint256(randomNumber & MaxH);
673

674 // Find the maximum stake reveal
675 if (currentMaxReveal < currentRevealToStake[

currentRevealHashes[revIndex]] ) {
676 currentMaxReveal = currentRevealToStake[

currentRevealHashes[revIndex]];
677 }
678

679

680

681 // question is whether randomNumber / MaxH < probability
682 // where probability is stakeDensity / currentSum
683 // to avoid resorting to floating points all divisions should

be
684 // simplified with multiplying both sides (as long as divisor

> 0)
685 // randomNumber / (MaxH + 1) < stakeDensity / currentSum
686 // ( randomNumber / (MaxH + 1) ) * currentSum < stakeDensity
687 // randomNumber * currentSum < stakeDensity * (MaxH + 1)
688 if (randomNumberTrunc * currentSum < currentReveals[revIndex

].stakeDensity * (uint256(MaxH) + 1)) {
689 truthRevealedHash = currentReveals[revIndex].hash;
690 truthRevealedDepth = currentReveals[revIndex].depth;
691 }
692

693 k++;
694 }
695 }
696

697

698 uint256 bankStakeDensity = currentSum - currentMaxReveal;



699

700 //currentSum += bankStakeDensity;
701 //create dummy reveal for bank
702 emit maxStakeEmitted(currentMaxReveal,bankStakeDensity);
703 emit TruthSelected(truthRevealedHash, truthRevealedDepth);
704

705 k = 0;
706

707 string memory winnerSelectionAnchor = currentWinnerSelectionAnchor();
708

709 for (uint256 i = 0; i < commitsArrayLength+1; i++) {
710 if (i<commitsArrayLength){
711 revIndex = currentCommits[i].revealIndex;
712 if (currentCommits[i].revealed) {
713 // if (
714 //
715 //truthRevealedHash == currentReveals[revIndex].hash

&&
716 //truthRevealedDepth == currentReveals[revIndex].

depth
717 // )
718 //{
719 currentWinnerSelectionSum += currentReveals[revIndex

].stakeDensity;
720 randomNumber = keccak256(abi.encodePacked(

winnerSelectionAnchor , k));
721

722 randomNumberTrunc = uint256(randomNumber & MaxH);
723

724 if (
725 // randomNumberTrunc * currentWinnerSelectionSum

<
726 // currentReveals[revIndex].stakeDensity * (

uint256(MaxH) + 1)
727 randomNumberTrunc * currentWinnerSelectionSum <
728 currentReveals[revIndex].stakeDensity * (uint256(

MaxH) + 1)
729 ) {
730 winner = currentReveals[revIndex];
731 }
732

733 k++;
734 //} else {
735 // Stakes.freezeDeposit(
736 // currentReveals[revIndex].overlay,
737 // penaltyMultiplierDisagreement * roundLength *

uint256(2 ** truthRevealedDepth)
738 // );
739 // // slash ph5
740 // }
741 } else {
742 // slash in later phase
743 // Stakes.slashDeposit(currentCommits[i].overlay,

currentCommits[i].stake);



744 Stakes.freezeDeposit(
745 currentCommits[i].overlay,
746 penaltyMultiplierNonRevealed * roundLength * uint256

(2 ** truthRevealedDepth)
747 );
748 continue;
749 }
750 // }
751

752 }
753 //new
754 if (i >= commitsArrayLength){
755 randomNumber = keccak256(abi.encodePacked(

winnerSelectionAnchor , k+1));
756 randomNumberTrunc = uint256(randomNumber & MaxH);
757

758 currentWinnerSelectionSum += bankStakeDensity;
759 if(
760 randomNumberTrunc * currentWinnerSelectionSum <
761 bankStakeDensity* (uint256(MaxH) + 1)
762 ) {
763 winner = Reveal({
764 owner: address(this),
765 overlay: keccak256("BANK"),
766 stake: bankStakeDensity,
767 stakeDensity: bankStakeDensity,
768 hash: keccak256("bankhash"),
769 depth: 0
770 });
771

772 }
773

774 }
775 }
776

777 if(winner.overlay == bytes32(0)){
778 winner = Reveal({
779 owner: address(this),
780 overlay: keccak256("BANK"),
781 stake: bankStakeDensity,
782 stakeDensity: bankStakeDensity,
783 hash: keccak256("bankhash"),
784 depth: 0
785 });
786 }
787

788 emit WinnerSelected(winner);
789 //do not pay ban, IE leave pot for next round
790 if (winner.overlay != keccak256("BANK")){
791 PostageContract.withdraw(winner.owner);
792 }
793

794 emit ChunkCount(PostageContract.validChunkCount());
795



796 OracleContract.adjustPrice(uint256(k));
797

798 currentClaimRound = cr;
799 }
800

801 //functions and events to help testing
802 function setCurrentClaimRound(uint256 newRound) external {
803 require(hasRole(PAUSER_ROLE, msg.sender), "only pauser can pause");
804

805 currentClaimRound = newRound;
806 }
807 function getCurrentClaimRound() public view returns (uint256) {
808 return currentClaimRound;
809 }
810

811 event maxStakeEmitted(uint256 indexed mStake, uint256 indexed bStake);
812

813 event emitNumber(uint256 indexed number);
814

815

816 }

Listing B.1: Redistribution contract bank



Appendix C

Alpha solution contract code

1 // SPDX-License-Identifier: BSD-3-Clause
2 pragma solidity ^0.8.1;
3 import "./@openzeppelin/contracts/access/AccessControl.sol";
4 import "./@openzeppelin/contracts/security/Pausable.sol";
5 import "./PostageStamp.sol";
6 import "./PriceOracle.sol";
7 import "./Staking.sol";
8

9 /**
10 * @title Redistribution contract
11 * @author The Swarm Authors
12 * @dev Implements a Schelling Co-ordination game to form consensus around

the Reserve Commitment hash. This takes
13 * place in three phases: _commit_, _reveal_ and _claim_.
14 *
15 * A node, upon establishing that it _isParticipatingInUpcomingRound_ , i.e.

it's overlay falls within proximity order
16 * of its reported depth with the _currentRoundAnchor_ , prepares a "reserve

commitment hash" using the chunks
17 * it currently stores in its reserve and calculates the "storage depth" (see

Bee for details). These values, if calculated
18 * honestly, and with the right chunks stored, should be the same for every

node in a neighbourhood. This is the Schelling point.
19 * Each eligible node can then use these values, together with a random,

single use, secret _revealNonce_ and their
20 * _overlay_ as the pre-image values for the obsfucated _commit_, using the

_wrapCommit_ method.
21 *
22 * Once the _commit_ round has elapsed, participating nodes must provide the

values used to calculate their obsfucated
23 * _commit_ hash, which, once verified for correctness and proximity to the

anchor are retained in the _currentReveals_.
24 * Nodes that have commited but do not reveal the correct values used to

create the pre-image will have their stake
25 * "frozen" for a period of rounds proportional to their reported depth.
26 *
27 * During the _reveal_ round, randomness is updated after every successful

93



reveal. Once the reveal round is concluded,
28 * the _currentRoundAnchor_ is updated and users can determine if they will

be eligible their overlay will be eligible
29 * for the next commit phase using _isParticipatingInUpcomingRound_.
30 *
31 * When the _reveal_ phase has been concluded, the claim phase can begin. At

this point, the truth teller and winner
32 * are already determined. By calling _isWinner_, an applicant node can run

the relevant logic to determine if they have
33 * been selected as the beneficiary of this round. When calling _claim_, the

current pot from the PostageStamp contract
34 * is withdrawn and transferred to that beneficiaries address. Nodes that

have revealed values that differ from the truth,
35 * have their stakes "frozen" for a period of rounds proportional to their

reported depth.
36 */
37 contract Redistribution2 is AccessControl, Pausable {
38 // An eligible user may commit to an _obfuscatedHash_ during the commit

phase...
39 struct Commit {
40 bytes32 overlay;
41 address owner;
42 uint256 stake;
43 bytes32 obfuscatedHash;
44 bool revealed;
45 uint256 revealIndex;
46 }
47 // ...then provide the actual values that are the constituents of the pre

-image of the _obfuscatedHash_
48 // during the reveal phase.
49 struct Reveal {
50 address owner;
51 bytes32 overlay;
52 uint256 stake;
53 uint256 stakeDensity;
54 bytes32 hash;
55 uint8 depth;
56 }
57

58 // The address of the linked PostageStamp contract.
59 PostageStamp public PostageContract;
60 // The address of the linked PriceOracle contract.
61 PriceOracle public OracleContract;
62 // The address of the linked Staking contract.
63 StakeRegistry public Stakes;
64

65 // Commits for the current round.
66 Commit[] public currentCommits;
67 // Reveals for the current round.
68 Reveal[] public currentReveals;
69

70 // Role allowed to pause.
71 bytes32 public constant PAUSER_ROLE = keccak256("PAUSER_ROLE");
72



73 uint256 public penaltyMultiplierDisagreement = 1;
74 uint256 public penaltyMultiplierNonRevealed = 2;
75

76 // Maximum value of the keccack256 hash.
77 //bytes32 MaxH = bytes32(0

x00000000000000000000000000000000ffffffffffffffffffffffffffffffff);
78 //edit to avoid arithmetic overflow
79 bytes32 MaxH = bytes32(0

x000000000000000000000000000000000000000000ffffffffffffffffffffff);
80

81

82 // The current anchor that being processed for the reveal and claim
phases of the round.

83 bytes32 currentRevealRoundAnchor;
84

85 // The current random value from which we will random.
86 // inputs for selection of the truth teller and beneficiary.
87 bytes32 seed;
88

89 // The miniumum stake allowed to be staked using the Staking contract.
90 uint256 public minimumStake = 100000000000000000;
91

92 // The number of the currently active round phases.
93 uint256 public currentCommitRound;
94 uint256 public currentRevealRound;
95 uint256 public currentClaimRound;
96

97 // The length of a round in blocks.
98 uint256 public roundLength = 152;
99

100 //tuning parameter for redistribution game
101 uint256 public alpha = 1;
102

103

104 // The reveal of the winner of the last round.
105 Reveal public winner;
106

107 /**
108 * @dev Pause the contract. The contract is provably stopped by renouncing
109 the pauser role and the admin role after pausing, can only be called by

the `PAUSER`
110 */
111 function pause() public {
112 require(hasRole(PAUSER_ROLE, msg.sender), "only pauser can pause");
113 _pause();
114 }
115

116 /**
117 * @dev Unpause the contract, can only be called by the pauser when

paused
118 */
119 function unPause() public {
120 require(hasRole(PAUSER_ROLE, msg.sender), "only pauser can unpause");
121 _unpause();



122 }
123

124 /**
125 * @param staking the address of the linked Staking contract.
126 * @param postageContract the address of the linked PostageStamp contract

.
127 * @param oracleContract the address of the linked PriceOracle contract.
128 */
129 constructor(address staking, address postageContract, address

oracleContract) {
130 Stakes = StakeRegistry(staking);
131 PostageContract = PostageStamp(postageContract);
132 OracleContract = PriceOracle(oracleContract);
133 _setupRole(DEFAULT_ADMIN_ROLE , msg.sender);
134 _setupRole(PAUSER_ROLE, msg.sender);
135 }
136

137 /**
138 * @dev Emitted when the winner of a round is selected in the claim phase
139 */
140 event WinnerSelected(Reveal winner);
141

142 /**
143 * @dev Emitted when the truth oracle of a round is selected in the claim

phase.
144 */
145 event TruthSelected(bytes32 hash, uint8 depth);
146

147 // Next two events to be removed after testing phase pending some other
usefulness being found.

148 /**
149 * @dev Emits the number of commits being processed by the claim phase.
150 */
151 event CountCommits(uint256 _count);
152

153 /**
154 * @dev Emits the number of reveals being processed by the claim phase.
155 */
156 event CountReveals(uint256 _count);
157

158 /**
159 * @dev Logs that an overlay has committed
160 */
161 event Committed(uint256 roundNumber, bytes32 overlay);
162 /**
163 * @dev Emit from Postagestamp contract valid chunk count at the end of

claim
164 */
165 event ChunkCount(uint256 validChunkCount);
166

167 /**
168 * @dev Bytes32 anhor of current reveal round
169 */
170 event CurrentRevealAnchor(uint256 roundNumber, bytes32 anchor);



171

172 /**
173 * @dev Logs that an overlay has revealed
174 */
175 event Revealed(
176 uint256 roundNumber,
177 bytes32 overlay,
178 uint256 stake,
179 uint256 stakeDensity,
180 bytes32 reserveCommitment,
181 uint8 depth
182 );
183

184 /**
185 * @notice Set freezing parameters
186 */
187 function setFreezingParams(uint256 _penaltyMultiplierDisagreement ,

uint256 _penaltyMultiplierNonRevealed) external {
188 require(hasRole(DEFAULT_ADMIN_ROLE , msg.sender), "caller is not the

admin");
189 penaltyMultiplierDisagreement = _penaltyMultiplierDisagreement;
190 penaltyMultiplierNonRevealed = _penaltyMultiplierNonRevealed;
191 }
192

193 /**
194 * @notice The number of the current round.
195 */
196 function currentRound() public view returns (uint256) {
197 return (block.number / roundLength);
198 }
199

200 /**
201 * @notice Returns true if current block is during commit phase.
202 */
203 function currentPhaseCommit() public view returns (bool) {
204 if (block.number % roundLength < roundLength / 4) {
205 return true;
206 }
207 return false;
208 }
209

210 /**
211 * @notice Returns true if current block is during reveal phase.
212 */
213 function currentPhaseReveal() public view returns (bool) {
214 uint256 number = block.number % roundLength;
215 if (number >= roundLength / 4 && number < roundLength / 2) {
216 return true;
217 }
218 return false;
219 }
220

221 /**
222 * @notice Returns true if current block is during claim phase.



223 */
224 function currentPhaseClaim() public view returns (bool) {
225 if (block.number % roundLength >= roundLength / 2) {
226 return true;
227 }
228 return false;
229 }
230

231 /**
232 * @notice Returns true if current block is during reveal phase.
233 */
234 function currentRoundReveals() public view returns (Reveal[] memory) {
235 require(currentPhaseClaim(), "not in claim phase");
236 uint256 cr = currentRound();
237 require(cr == currentRevealRound , "round received no reveals");
238 return currentReveals;
239 }
240

241 /**
242 * @notice Begin application for a round if eligible. Commit a hashed

value for which the pre-image will be
243 * subsequently revealed.
244 * @dev If a node's overlay is _inProximity_(_depth_) of the

_currentRoundAnchor_ , that node may compute an
245 * _obfuscatedHash_ by providing their _overlay_, reported storage

_depth_, reserve commitment _hash_ and a
246 * randomly generated, and secret _revealNonce_ to the _wrapCommit_

method.
247 * @param _obfuscatedHash The calculated hash resultant of the required

pre-image values.
248 * @param _overlay The overlay referenced in the pre-image. Must be

staked by at least the minimum value,
249 * and be derived from the same key pair as the message sender.
250 */
251 function commit(bytes32 _obfuscatedHash, bytes32 _overlay, uint256

_roundNumber) external whenNotPaused {
252 require(currentPhaseCommit(), "not in commit phase");
253 require(block.number % roundLength != (roundLength / 4) - 1, "can not

commit in last block of phase");
254 uint256 cr = currentRound();
255 require(cr <= _roundNumber, "commit round over");
256 require(cr >= _roundNumber, "commit round not started yet");
257

258 uint256 nstake = Stakes.stakeOfOverlay(_overlay);
259 require(nstake >= minimumStake, "stake must exceed minimum");
260 require(Stakes.ownerOfOverlay(_overlay) == msg.sender, "owner must

match sender");
261

262 require(
263 Stakes.lastUpdatedBlockNumberOfOverlay(_overlay) < block.number

- 2 * roundLength,
264 "must have staked 2 rounds prior"
265 );
266



267 // if we are in a new commit phase, reset the array of commits and
268 // set the currentCommitRound to be the current one
269 if (cr != currentCommitRound) {
270 delete currentCommits;
271 currentCommitRound = cr;
272 }
273

274 uint256 commitsArrayLength = currentCommits.length;
275

276 for (uint256 i = 0; i < commitsArrayLength; i++) {
277 require(currentCommits[i].overlay != _overlay, "only one commit

each per round");
278 }
279

280 currentCommits.push(
281 Commit({
282 owner: msg.sender,
283 overlay: _overlay,
284 stake: nstake,
285 obfuscatedHash: _obfuscatedHash,
286 revealed: false,
287 revealIndex: 0
288 })
289 );
290

291 emit Committed(_roundNumber, _overlay);
292 }
293

294 /**
295 * @notice Returns the current random seed which is used to determine

later utilised random numbers.
296 * If rounds have elapsed without reveals, hash the seed with an

incremented nonce to produce a new
297 * random seed and hence a new round anchor.
298 */
299 function currentSeed() public view returns (bytes32) {
300 uint256 cr = currentRound();
301 bytes32 currentSeedValue = seed;
302

303 if (cr > currentRevealRound + 1) {
304 uint256 difference = cr - currentRevealRound - 1;
305 currentSeedValue = keccak256(abi.encodePacked(currentSeedValue,

difference));
306 }
307

308 return currentSeedValue;
309 }
310

311 /**
312 * @notice Returns the seed which will become current once the next

commit phase begins.
313 * Used to determine what the next round's anchor will be.
314 */
315 function nextSeed() public view returns (bytes32) {



316 uint256 cr = currentRound() + 1;
317 bytes32 currentSeedValue = seed;
318

319 if (cr > currentRevealRound + 1) {
320 uint256 difference = cr - currentRevealRound - 1;
321 currentSeedValue = keccak256(abi.encodePacked(currentSeedValue,

difference));
322 }
323

324 return currentSeedValue;
325 }
326

327 /**
328 * @notice Updates the source of randomness. Uses block.difficulty in pre

-merge chains, this is substituted
329 * to block.prevrandao in post merge chains.
330 */
331 function updateRandomness() private {
332 seed = keccak256(abi.encode(seed, block.prevrandao));
333 }
334

335 function nonceBasedRandomness(bytes32 nonce) private {
336 seed = seed ^ nonce;
337 }
338

339 /**
340 * @notice Returns true if an overlay address _A_ is within proximity

order _minimum_ of _B_.
341 * @param A An overlay address to compare.
342 * @param B An overlay address to compare.
343 * @param minimum Minimum proximity order.
344 */
345 function inProximity(bytes32 A, bytes32 B, uint8 minimum) public pure

returns (bool) {
346 if (minimum == 0) {
347 return true;
348 }
349 return uint256(A ^ B) < uint256(2 ** (256 - minimum));
350 }
351

352 /**
353 * @notice Hash the pre-image values to the obsfucated hash.
354 * @dev _revealNonce_ must be randomly generated, used once and kept

secret until the reveal phase.
355 * @param _overlay The overlay address of the applicant.
356 * @param _depth The reported depth.
357 * @param _hash The reserve commitment hash.
358 * @param revealNonce A random, single use, secret nonce.
359 */
360 function wrapCommit(
361 bytes32 _overlay,
362 uint8 _depth,
363 bytes32 _hash,
364 bytes32 revealNonce



365 ) public pure returns (bytes32) {
366 return keccak256(abi.encodePacked(_overlay, _depth, _hash,

revealNonce));
367 }
368

369

370 // build this in reveaL
371 bytes32[] currentRevealHashes;
372 mapping(bytes32 => uint256) currentRevealToStake;
373

374 function _resetRevealToStake() internal {
375 for (uint256 i = 0; i < currentRevealHashes.length; i++) {
376 delete currentRevealToStake[currentRevealHashes[i]]; // Reset the

value to 0
377 }
378 delete currentRevealHashes;
379 }
380

381

382

383

384 /**
385 * @notice Reveal the pre-image values used to generate commit provided

during this round's commit phase.
386 * @param _overlay The overlay address of the applicant.
387 * @param _depth The reported depth.
388 * @param _hash The reserve commitment hash.
389 * @param _revealNonce The nonce used to generate the commit that is

being revealed.
390 */
391 function reveal(bytes32 _overlay, uint8 _depth, bytes32 _hash, bytes32

_revealNonce) external whenNotPaused {
392 require(currentPhaseReveal(), "not in reveal phase");
393

394 uint256 cr = currentRound();
395

396 require(cr == currentCommitRound , "round received no commits");
397 if (cr != currentRevealRound) {
398 //currentRevealRoundAnchor = currentRoundAnchor();
399 //edit
400 currentRevealRoundAnchor = currentRoundAnchorValue;
401 delete currentReveals;
402 _resetRevealToStake();
403 currentRevealRound = cr;
404 emit CurrentRevealAnchor(cr, currentRevealRoundAnchor);
405 updateRandomness();
406 }
407

408 bytes32 commitHash = wrapCommit(_overlay, _depth, _hash, _revealNonce
);

409

410 uint256 commitsArrayLength = currentCommits.length;
411

412 for (uint256 i = 0; i < commitsArrayLength; i++) {



413 if (currentCommits[i].overlay == _overlay && commitHash ==
currentCommits[i].obfuscatedHash) {

414 require(
415 inProximity(currentCommits[i].overlay,

currentRevealRoundAnchor , _depth),
416 "anchor out of self reported depth"
417 );
418 //check can only revealed once
419 require(currentCommits[i].revealed == false, "participant

already revealed");
420 currentCommits[i].revealed = true;
421 currentCommits[i].revealIndex = currentReveals.length;
422

423

424 //build reveal map
425 currentRevealHashes.push(_hash);
426 if (currentRevealToStake[_hash] == 0) {
427 currentRevealToStake[_hash] = currentCommits[i].stake *

uint256(2 ** _depth);
428 } else {
429 currentRevealToStake[_hash] += currentCommits[i].stake *

uint256(2 ** _depth);
430 }
431 emit RevealToStakeMapUpdated( currentRevealToStake[_hash]);
432

433 currentReveals.push(
434 Reveal({
435 owner: currentCommits[i].owner,
436 overlay: currentCommits[i].overlay,
437 stake: currentCommits[i].stake,
438 stakeDensity: currentCommits[i].stake * uint256(2 **

_depth),
439 hash: _hash,
440 depth: _depth
441 })
442 );
443

444 nonceBasedRandomness(_revealNonce);
445

446 emit Revealed(
447 cr,
448 currentCommits[i].overlay,
449 currentCommits[i].stake,
450 currentCommits[i].stake * uint256(2 ** _depth),
451 _hash,
452 _depth
453 );
454

455 return;
456 }
457 }
458

459 require(false, "no matching commit or hash");
460 }



461

462

463 //babylonian square root
464 function sqrt(uint x) public pure returns (uint y) {
465 if (x == 0) return 0;
466 else if (x <= 3) return 1;
467

468 uint z = (x + 1) / 2;
469 y = x;
470 while (z < y ) {
471 y = z;
472 z = (x / z + z) / 2;
473 }
474 return y;
475 }
476

477

478

479 function cbrt(uint x) public pure returns (uint y) {
480 if (x == 0) return 0;
481 uint8 k = 0;
482

483 uint z = (x + 1) / 3;
484 y = x;
485 while (z < y) {
486 y = z;
487 z = (x / (z * z) + 2 * z) / 3;
488 }
489 return y;
490

491 }
492

493

494 /**
495 * @notice Determine if a the owner of a given overlay will be the

beneficiary of the claim phase.
496 * @param _overlay The overlay address of the applicant.
497 */
498 function isWinner(bytes32 _overlay) public view returns (bool) {
499 require(currentPhaseClaim(), "winner not determined yet");
500

501 uint256 cr = currentRound();
502

503 require(cr == currentRevealRound , "round received no reveals");
504 require(cr > currentClaimRound, "round already received successful

claim");
505

506 string memory truthSelectionAnchor = currentTruthSelectionAnchor();
507

508 uint256 currentSum;
509 uint256 currentWinnerSelectionSum;
510 bytes32 winnerIs;
511 bytes32 randomNumber;
512



513 bytes32 truthRevealedHash;
514 uint8 truthRevealedDepth;
515

516 uint256 commitsArrayLength = currentCommits.length;
517

518 uint256 revIndex;
519 uint256 k = 0;
520

521 for (uint256 i = 0; i < commitsArrayLength; i++) {
522 if (currentCommits[i].revealed) {
523 revIndex = currentCommits[i].revealIndex;
524 currentSum += currentReveals[revIndex].stakeDensity;
525 randomNumber = keccak256(abi.encodePacked(

truthSelectionAnchor , k));
526

527 if (
528 uint256(randomNumber & MaxH) * currentSum <
529 currentReveals[revIndex].stakeDensity * (uint256(MaxH) +

1)
530 ) {
531 truthRevealedHash = currentReveals[revIndex].hash;
532 truthRevealedDepth = currentReveals[revIndex].depth;
533 }
534

535 k++;
536 }
537 }
538

539 k = 0;
540

541 string memory winnerSelectionAnchor = currentWinnerSelectionAnchor();
542

543 randomNumber = keccak256(abi.encodePacked(winnerSelectionAnchor , k));
544

545 uint256 currentWheelSliceStart = 0;
546 uint256 currentWheelSliceEnd = 0;
547

548

549 for (uint256 i = 0; i < commitsArrayLength; i++) {
550 revIndex = currentCommits[i].revealIndex;
551 if (
552 currentCommits[i].revealed &&
553 truthRevealedHash == currentReveals[revIndex].hash &&
554 truthRevealedDepth == currentReveals[revIndex].depth
555 ) {
556 currentWheelSliceEnd = currentWheelSliceStart + (

currentReveals[revIndex].stakeDensity*sqrt(
currentRevealToStake[currentReveals[revIndex].hash])*
alpha * (uint256(MaxH) + 1));

557

558 uint256 randCalc = uint256(randomNumber & MaxH)*currentSum *
sqrt(currentSum) * alpha;

559

560



561 if (
562 (currentWheelSliceStart <= randCalc) &&
563 randCalc <
564 currentWheelSliceEnd
565 ) {
566 winnerIs = currentReveals[revIndex].overlay;
567 break;
568 }
569 currentWheelSliceStart = currentWheelSliceEnd;
570 k++;
571 }
572 }
573

574 if (winnerIs == bytes32(0)){
575 winnerIs = keccak256("BANK");
576 }
577

578 return (winnerIs == _overlay);
579 }
580

581 /**
582 * @notice Determine if a the owner of a given overlay can participate in

the upcoming round.
583 * @param overlay The overlay address of the applicant.
584 * @param depth The storage depth the applicant intends to report.
585 */
586 function isParticipatingInUpcomingRound(bytes32 overlay, uint8 depth)

public view returns (bool) {
587 require(currentPhaseClaim() || currentPhaseCommit(), "not determined

for upcoming round yet");
588 require(
589 Stakes.lastUpdatedBlockNumberOfOverlay(overlay) < block.number -

2 * roundLength,
590 "stake updated recently"
591 );
592 require(Stakes.stakeOfOverlay(overlay) >= minimumStake, "stake amount

does not meet minimum");
593 return inProximity(overlay, currentRoundAnchor(), depth);
594 }
595

596 /**
597 * @notice The random value used to choose the selected truth teller.
598 */
599 function currentTruthSelectionAnchor() private view returns (string

memory) {
600 require(currentPhaseClaim(), "not determined for current round yet");
601 uint256 cr = currentRound();
602 require(cr == currentRevealRound , "round received no reveals");
603

604 return string(abi.encodePacked(seed, "0"));
605 }
606

607 /**
608 * @notice The random value used to choose the selected beneficiary.



609 */
610 function currentWinnerSelectionAnchor() private view returns (string

memory) {
611 require(currentPhaseClaim(), "not determined for current round yet");
612 uint256 cr = currentRound();
613 require(cr == currentRevealRound , "round received no reveals");
614

615 return string(abi.encodePacked(seed, "1"));
616 }
617

618 /**
619 * @notice The anchor used to determine eligibility for the current round

.
620 * @dev A node must be within proximity order of less than or equal to

the storage depth they intend to report.
621 */
622 function currentRoundAnchor() public view returns (bytes32 returnVal) {
623 uint256 cr = currentRound();
624

625 if (currentPhaseCommit() || (cr > currentRevealRound && !
currentPhaseClaim())) {

626 return currentSeed();
627 }
628

629 if (currentPhaseReveal() && cr == currentRevealRound) {
630 require(false, "can't return value after first reveal");
631 }
632

633 if (currentPhaseClaim()) {
634 return nextSeed();
635 }
636 }
637

638 //edited by me for testing
639 bytes32 public currentRoundAnchorValue;
640

641 function setCurrentRoundAnchor(bytes32 _value) external {
642 currentRoundAnchorValue = _value;
643 }
644

645 string public currentTruthSelectionAnchorValue;
646

647 function setCurrentTruthSelectionAnchor(string memory _value) external {
648 currentTruthSelectionAnchorValue = _value;
649 }
650

651 /**
652 * @notice Conclude the current round by identifying the selected truth

teller and beneficiary.
653 * @dev
654 */
655 function claim() external whenNotPaused {
656 require(currentPhaseClaim(), "not in claim phase");
657



658 uint256 cr = currentRound();
659

660 require(cr == currentRevealRound , "round received no reveals");
661 require(cr > currentClaimRound, "round already received successful

claim");
662 delete winner;
663 //string memory truthSelectionAnchor = currentTruthSelectionAnchor();
664 //edit
665 string memory truthSelectionAnchor = currentTruthSelectionAnchorValue

;
666

667 uint256 currentSum;
668 //uint256 currentWinnerSelectionSum;
669 bytes32 randomNumber;
670 uint256 randomNumberTrunc;
671

672 bytes32 truthRevealedHash;
673 uint8 truthRevealedDepth;
674

675 uint256 commitsArrayLength = currentCommits.length;
676 uint256 revealsArrayLength = currentReveals.length;
677

678 emit CountCommits(commitsArrayLength);
679 emit CountReveals(revealsArrayLength);
680

681 uint256 revIndex;
682 uint256 k = 0;
683

684 //can remove if we forget about freezing
685 for (uint256 i = 0; i < commitsArrayLength; i++) {
686 if (currentCommits[i].revealed) {
687 revIndex = currentCommits[i].revealIndex;
688 currentSum += currentReveals[revIndex].stakeDensity;
689 randomNumber = keccak256(abi.encodePacked(

truthSelectionAnchor , k));
690

691 randomNumberTrunc = uint256(randomNumber & MaxH);
692

693 // question is whether randomNumber / MaxH < probability
694 // where probability is stakeDensity / currentSum
695 // to avoid resorting to floating points all divisions should

be
696 // simplified with multiplying both sides (as long as divisor

> 0)
697 // randomNumber / (MaxH + 1) < stakeDensity / currentSum
698 // ( randomNumber / (MaxH + 1) ) * currentSum < stakeDensity
699 // randomNumber * currentSum < stakeDensity * (MaxH + 1)
700 if (randomNumberTrunc * currentSum < currentReveals[revIndex

].stakeDensity * (uint256(MaxH) + 1)) {
701 truthRevealedHash = currentReveals[revIndex].hash;
702 truthRevealedDepth = currentReveals[revIndex].depth;
703 }
704

705 k++;



706 }
707 }
708

709 emit TruthSelected(truthRevealedHash, truthRevealedDepth);
710

711 k = 0;
712 //need stake belonging to reveal
713 string memory winnerSelectionAnchor = currentWinnerSelectionAnchor();
714

715

716 randomNumber = keccak256(abi.encodePacked(winnerSelectionAnchor , k));
717

718 uint256 currentWheelSliceStart = 0;
719 uint256 currentWheelSliceEnd = 0;
720

721 for (uint256 i = 0; i < commitsArrayLength; i++) {
722 revIndex = currentCommits[i].revealIndex;
723 if (currentCommits[i].revealed) {
724 // if (
725 // truthRevealedHash == currentReveals[revIndex].hash &&
726 // truthRevealedDepth == currentReveals[revIndex].depth
727 // ) {
728 //currentWinnerSelectionSum += currentReveals[revIndex].

stakeDensity;
729 //randomNumber = keccak256(abi.encodePacked(

winnerSelectionAnchor , k));
730

731 randomNumberTrunc = uint256(randomNumber & MaxH);
732

733 //need stop these from creating integer overflow
734

735 currentWheelSliceEnd = currentWheelSliceStart + (
currentReveals[revIndex].stakeDensity*sqrt(
currentRevealToStake[currentReveals[revIndex].hash])
*alpha * (uint256(MaxH) + 1));

736

737 uint256 randCalc = randomNumberTrunc*currentSum *sqrt(
currentSum) * alpha;

738

739

740 //do initially with alpha ==1
741 if (
742 (currentWheelSliceStart <= randCalc) &&
743 randCalc <
744 currentWheelSliceEnd
745 ) {
746 winner = currentReveals[revIndex];
747 //breaking here might mess with some properties
748 break;
749 }
750 currentWheelSliceStart = currentWheelSliceEnd;
751 k++;
752 // } else {
753 // Stakes.freezeDeposit(



754 // currentReveals[revIndex].overlay,
755 // penaltyMultiplierDisagreement * roundLength *

uint256(2 ** truthRevealedDepth)
756 // );
757 // slash ph5
758 // }
759 } else {
760 // slash in later phase
761 // Stakes.slashDeposit(currentCommits[i].overlay,

currentCommits[i].stake);
762 Stakes.freezeDeposit(
763 currentCommits[i].overlay,
764 penaltyMultiplierNonRevealed * roundLength * uint256(2 **

truthRevealedDepth)
765 );
766 continue;
767 }
768 }
769 if (winner.overlay == bytes32(0)){
770 winner = Reveal({
771 owner: address(this),
772 overlay: keccak256("BANK"),
773 stake: 0,
774 stakeDensity: 0,
775 hash: keccak256("bankhash"),
776 depth: 0
777 });
778 }
779

780

781 emit WinnerSelected(winner);
782

783 //do not pay ban, IE leave pot for next round
784

785 if (winner.overlay != keccak256("BANK") && winner.overlay != bytes32
(0) ){

786 PostageContract.withdraw(winner.owner);
787 }
788

789

790 emit ChunkCount(PostageContract.validChunkCount());
791

792 OracleContract.adjustPrice(uint256(k));
793

794 currentClaimRound = cr;
795 }
796

797

798 //functions and events to help testing
799 function setCurrentClaimRound(uint256 newRound) external {
800 require(hasRole(PAUSER_ROLE, msg.sender), "only pauser can pause");
801

802 currentClaimRound = newRound;
803 }



804 function getCurrentClaimRound() public view returns (uint256) {
805 return currentClaimRound;
806 }
807

808 event RevealToStakeMapUpdated(uint256 indexed stake);
809

810 event emitNumber(uint256 indexed number);
811

812

813

814

815 }

Listing C.1: Redistribution contract alpha
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