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Abstract

In 2022, Ethereum, one of the largest and most utilized blockchains, underwent a major

upgrade called the merge. This transition from proof-of-work to proof-of-stake aimed to

enhance the network’s scalability, security, and energy efficiency. Researchers have since

published numerous papers on Ethereum, examining its security and identifying potential

vulnerabilities.

This thesis focuses on deploying a private development network for Ethereum 2.0 to fa-

cilitate detailed simulations and evaluations of these proposed security concerns. The pri-

mary objective is to create a robust and flexible testing environment that allows for studying

various attack scenarios and the effectiveness of consensus protocols.

The research involves developing tools for managing Ethereum nodes, such as simpli-

fying the node deployment processes and enabling features for validator management. Key

contributions include creating scripts for easy setup and maintenance of Ethereum nodes,

user-friendlymonitoring systems, and ensuring client diversity to enhancenetwork resilience.

It also lays the groundwork for enablingByzantine behavior in validators, enabling researchers

to perform simulations to test their attack scenarios even more easily.

Experimental conducted offers valuable guidelines for researchers and developers who

wish to deploy their own nodes. The findings highlight the differences in hardware usage

between the private development network andmainnet, providing a comprehensive analysis

of resource requirements under different configurations.

Not only does the work address the technical challenges associated with deploying and

managing Ethereum 2.0 nodes, but it also contributes to the Ethereum community by en-

hancing its usability and accessibility.
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Chapter 1

Introduction

Since its inception, Ethereum has undergone continuous evolution, leading to the devel-

opment of Ethereum 2.0, a major upgrade aimed at enhancing the network’s security and

sustainability. This upgrade introduces significant changes, including transitioning from a

proof-of-work to a proof-of-stake consensus mechanism, which necessitates deploying con-

sensus and validator clients. Large amounts of theoretical research have focused on identify-

ing potential vulnerabilities and improving the security of Ethereum 2.0. Multiple research

papers [1, 2, 3] provide valuable insights into potential attack vectors, weaknesses, and so-

lutions. However, these studies lack practical testing, leaving a gap in the validation of their

findings.

A private network is a controlled environment where developers can experiment with

new features, test network upgrades, and simulate transactions without impacting the main

network. These networks are known as devnets, short for development networks. By lever-

aging devnets, researchers can replicate theoretical attack scenarios to test their impacts on

the network and verify the correctness of protocols. For example, they can test Ethereum 2.0

mechanisms, such as the inactivity leak or the proposer boost. Devnets are essential for as-

sessing a network’s resilience against challenging scenarios and validating the correctness of

the protocols. These capabilities help understand network behavior under stress and devise

strategies to enhance robustness and reliability.

As the Ethereum ecosystem constantly evolves with updates and improvements, docu-

mentation is often minimal and lacks comprehensive coverage of the full functionality re-

quired to effectively deploy andmanage Ethereumnodes. This gap in documentationmakes

setting up a devnet a non-trivial task that requires a deep understanding of the underlying

protocols.

We do not aim to perform the simulations described in the papers referenced. How-

ever, we aim to provide an application for researchers to test such theories in a controlled

environment, thereby enabling research validation.
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1.1 Objectives

The primary objective of this thesis is to create a robust and flexible testing environment

for Ethereum 2.0, which uses the proof-of-stake consensus mechanism. This application

can be a viable tool for researchers performing detailed simulations and evaluating various

attack scenarios. By providing a practical platform for these activities, we aim to support the

validation of theoretical research and enhance the overall understanding of Ethereum 2.0’s

security and functionality. To enable these capabilities, we have outlined several specific

goals:

• Research and Evaluation of Tools: Conduct a comprehensive review of the exist-

ing tools for managing Ethereum nodes. This involves evaluating their functionalities,

ease of use, and integration capabilities to identify the best options for our application.

• Simplification of Node Deployment: Develop streamlined processes for deploy-

ing Ethereum nodes, including execution, consensus, and validator clients. This ob-

jective focuses on simplifying the setup process to make it accessible to researchers

and others who want to experiment with Ethereum.

• Validator Management: Study and utilize existing tools for managing validators

and develop scripts to streamline operations such as setup and maintenance.

• Node Monitoring: Set up user-friendly monitoring that enables researchers to ob-

serve the status and performance of nodes easily.

• Client Diversity: Ensure the application supports multiple Ethereum clients to pro-

mote client diversity. This helps assess thenetwork’s resilience andperformance across

different software implementations.

• Measuring Hardware Usage: Experiment with different devnet configurations to

examine the hardware usage of the clients, comparing findings to the minimum and

required resources stated by the clients utilized.

• Enable Byzantine Clients: Implement byzantine functionality, laying the ground-

work for allowing researchers to study and perform possible attacks on the chain.

These objectives together create a strong and flexible environment for Ethereum 2.0 re-

search, enabling researchers to explore and make valuable contributions to Ethereum.

1.2 Approach and Contributions

The approach adopted in this thesis involved a comprehensive investigation intoEthereum 2.0’s

core functionalities and requirements, focusing on the intricacies of node deployment and

validatormanagement. Through this exploration, the thesis identifies and addresses several

gaps in the existing methodologies for setting up and managing Ethereum nodes. Based on

this study, we developed an application that provides the end user with a suite of scripts

2



designed to achieve all the previously defined objectives. These scripts streamline the pro-

cesses of node deployment, validator management, and node monitoring, facilitating easier

experimentation and research within the Ethereum 2.0 ecosystem.

Contributions

This thesis makes several significant contributions to Ethereum’s research and develop-

ment. Our work enhances the usability and accessibility of Ethereum 2.0 by addressing key

challenges and introducing innovative solutions. The following points summarize the pri-

mary contributions of this thesis:

• Detailed Study of Ethereum 2.0: This thesis offers an in-depth examination of

Ethereum, focusing on its critical components and underlying principles that are es-

sential for understanding Ethereum 2.0. Delving deeply into various technical aspects.

By providing a thorough technical overview, the thesis prepares readers with the nec-

essary knowledge to understand the key components of Ethereum 2.0.

• Comprehensive Ethereum2.0DevelopmentNetwork and Tools: This thesis

contributes to the field by developing a method for deploying a private Ethereum 2.0

development network. It also provides tools to cover comprehensive functionalities,

including setting up validators and making deposits, withdrawing funds, and exiting

validators. Compared to previous attempts by others to create similar environments,

this thesis presents a more complete and feature-rich solution. Earlier efforts, dis-

cussed later in Chapter 4, have fallen short, primarily due to a lack of comprehensive

features and user-centered design.

• Resource Comparison Between Devnet and Mainnet: We analyze the hard-

ware requirements for running Ethereum clients on a private network and compare

them to the mainnet requirements. By doing so, we provide users with the necessary

information to make informed decisions about the resources they need for their sim-

ulations and testing environments.

In conclusion, this thesis not only addresses the technical challenges associated with de-

ploying and managing Ethereum 2.0 nodes but also significantly contributes to the broader

Ethereum ecosystem by enhancing its usability and accessibility. This work, through de-

tailed research and development, paves the way for robust and user-friendly interactions

with Ethereum.

1.3 Outline

This section provides a structured overview of the thesis, detailing the contents and focus

of each chapter, guiding the reader through the progression of research and analysis under-

taken.
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• Chapter 2 lays the foundational concepts necessary for understanding this thesis.

It introduces the technical background and theoretical foundation of Ethereum and

blockchain technologies.

• Chapter 3 thoroughly examines Ethereum 2.0, focusing on its key upgrades and in-

novations over previous versions. It gives an in-depth explanation of Ethereum.

• Chapter 4presents a review of existing literature and the various Ethereum 2.0 clients

currently available. It presents previous attempts at solving similar problems.

• Chapter 5 details the research methods and the approach adopted for developing the

proposed solution. It outlines the steps taken in the design and implementation phases

of the application.

• Chapter 6, we perform experiments using the devnet. We analyze the results of the

experiments.

• Chapter 7 critically reflects on the application and the choicesmade during the imple-

mentation phase. We discuss the selection of tools used, the challenges encountered,

and how these issues were addressed. Additionally, we compare the proposed solu-

tions with related work, highlighting the advancements and contributions made.

• Chapter 8 concludes the thesis.

4



Chapter 2

Background

This chapterwill provide the foundational concepts necessary for understanding the remain-

der of this thesis. We start by examiningMerkle trees and their usage. Then, we look at con-

sensus and its importance in distributed systems and blockchains. Next, we delve into the

workings of blockchains and explore various consensus protocols used in blockchain net-

works, such as proof-of-work and proof-of-stake. We also look at how blockchains can be

updated through soft and hard forks. Then, we provide a concise overview of the Ethereum

Virtual Machine and its enabling of smart contracts. Finally, we conclude with digital sig-

natures essential for ensuring blockchain security.

2.1 Merkle Tree

AMerkle tree is a tree data structure where leaf nodes are labeled with the hash of the data,

and non-leaf nodes (intermediate nodes) are the result of the hash of their children [4].

Merkle trees provide an efficient way to compare data by exchanging the root hash. It also

provides an efficient way to verify the membership of a leaf without requiring the verifier to

know all the leaves by usingMerkle proofs.

When dealing with large Merkle trees, adding a leaf entails recomputing all intermedi-

ate nodes up to the new node, which could be impractical for production use. To address

this issue, an optimization called an incremental Merkle tree initializes the tree with empty

nodes (filled with zeroes) and maintains a partial Merkle tree for updates. In an incremen-

tal Merkle tree, leaf nodes are incrementally added from left to right, updating the partial

Merkle tree by replacing an empty leaf. This approach ensures that only the hashes of the

nodes on the path from the new leaf to the root need to be recomputed.

2.2 Consensus

Consensus is fundamental to distributed systems and blockchains, enablingmultiple partic-

ipants (often called nodes) to agree on a common, unchangeable value. Given the unreliable

infrastructure, which can suffer from crashes, corrupted messages, and other failures, a ro-

bust protocol is essential to manage these challenges. In distributed systems, we examine

5



two key properties: safety and liveness [5].

• Safety ensures that nothing bad will happen. More formally, if a safety property is

violated at any time t, it cannot be satisfied again after that point.

• Liveness guarantees that something good will eventually happen. More formally, for

any time t, there is a possibility that the property will be satisfied at some future time

t′ ≥ t.

For consensus, a safety property is that every participant learns the same value, while a

liveness property is that a value will eventually be chosen.

When selecting a consensus protocol, one must consider the failure model in which one

operates. The two most common failure models are crash-stop and Byzantine [5].

In the crash-stop model, a node follows the protocol correctly until it crashes, stopping

executing steps and sending messages. In contrast, the Byzantine model, commonly used

in blockchains, allows nodes to exhibit arbitrary behavior. This means a node could be

down, non-communicative, following a different protocol version, attempting to mislead

other nodes, publishing contradictory messages, or displaying other faults.

2.3 Blockchain

In its simplest form, a blockchain is an immutable data structure consisting of blocks, each

cryptographically linked to its predecessor. This linkage ensures the integrity of the blockchain,

as it becomes impossible to remove or alter a block once it has been added. A basic example

of a blockchain is shown in Figure 2.1.

Each block in a blockchain consists of two parts: the block header and the block body.

The block header contains metadata about the current block, including the hash value of the

parent block (each block is linked to its parent block through the hash value of the parent

block), timestamp, Merkle Tree Root, and other information. The Merkle Tree is a binary

tree where each leaf node represents a transaction record. It summarizes all transactions in

a block. TheMerkle Tree provides a digital fingerprint of the entire transaction set, allowing

for efficient verification of specific transactions within the block.

Genesis

Transaction 1
Transaction 2
Transaction 3

…
Transaction n

Prev Hash

Block Hash

Tx Root

Block 1

Transaction 1
Transaction 2
Transaction 3

…
Transaction n

Prev Hash

Block Hash

Tx Root

Block 2

Transaction 1
Transaction 2
Transaction 3

…
Transaction n

Prev Hash

Block Hash

Tx Root

Block 3

Transaction 1
Transaction 2
Transaction 3

…
Transaction n

Prev Hash

Block Hash

Tx Root

Figure 2.1: Each block points to its parent blocks through the Prev Hash, creating an im-
mutable and tamper-evident chain.
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Any modification to a block would result in a different hash value, making such changes

easily detectable. For example, in Figure 2.1, changing block 1 would affect its child, block

2, because block 2’s reference to block 1’s hash would no longer match. This discrepancy

would cascade through the blockchain, affecting block 3, block 4, and all subsequent blocks.

The first block in the chain, which has no predecessor, is typically called the genesis block.

Another perspective on a blockchain is as a replicated state machine, which all partici-

pants maintain by applying blocks in a specific agreed-upon sequence. Each block causes a

state transition, determined by a function that inputs the previous state and the new block to

produce an updated state. Since all nodes start from a predefined genesis block and process

the same sequence of blocks, they ultimately converge to the same state. Since each partici-

pant maintains their own local copy of the state machine, it is crucial to employ a consensus

protocol to ensure all participants have the correct data and decide who will add the next

block. When choosing a consensus protocol, it is also important to consider whether the

blockchain operates in a permissionless or permissioned environment [6].

Permissioned Blockchains Permissioned blockchains restrict participation to autho-

rized readers and writers. In these systems, a central entity controls and grants the rights

to participate in read and write operations. Such blockchains typically rely on Byzantine

fault tolerance protocols, which assume a known set of participants to generate and reach

consensus on blocks.

Permissionless Blockchains Bitcoin [7] and Ethereum [8] are the most popular per-

missionless blockchains known for their openness and decentralization. In these systems,

anyone can join or leave the network as a reader and/or writer. There is no central authority

to manage membership or to ban illegitimate participants. As a result, the content on these

blockchains is publicly accessible to anyone.

The two most common consensus protocols for permissionless blockchains are proof-

of-work and proof-of-stake [9]. While often referred to as consensus protocols, they are

actually Sybil resistance mechanisms. Both impose a cost on participation to prevent at-

tackers from overwhelming the protocol at little or no cost.

2.3.1 Proof-of-Work

Proof-of-work, also called Nakamoto consensus [7], is the first consensus protocol for per-

missionless blockchains, where the cost of participation is in the form of computational re-

sources.

Nodes operating within a proof-of-work system engage in a process known as mining,

wherein they seek a nonce to solve a mathematical puzzle. This puzzle is solved if a nonce,

when hashed with the block’s content, produces a hash value lower than a predetermined

target value, referred to as the target difficulty. The difficulty parameter dictates the average

number of nonces a miner must iterate through. The miner can extend the blockchain by

adding a new block upon solving the puzzle.
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If an attacker seeks to alter a previous block, they must redo the proof-of-work for the

target block and all subsequent blocks. This is because any change to an earlier block alters

the hash value of all subsequent blocks built upon it. This renders an attack on proof-of-work

blockchains impractical unless the attacker controls at least 51% of all mining power.

2.3.2 Fork-Choice Rule

In proof-of-work systems, it is possible for two or more blocks to be generated simultane-

ously, both pointing to the same predecessor. When this happens, it creates a fork, where

participants must choose which block to follow, as each block represents a different ver-

sion of the blockchain’s state. To resolve this, blockchains implement a fork-choice rule to

find a single leaf block, often referred to as the head block, upon which honest participants

should follow and build upon. The chain extending from the genesis block to the head block

is called the canonical chain. Any fork not included in the canonical chain is reorganized

out, implying that it is not recognized within the blockchain’s worldview.

Themost prevalent fork-choice rule is theheaviest chain rule, usedbyBitcoin andEthereum

before transitioning to proof-of-stake [7]. This rule selects the chain with the highest accu-

mulated work. People often assume that the heaviest chain rule is the same as the longest

chain rule, which selects the chain with the greatest number of blocks, but they are not iden-

tical. However, in about 99% of cases, they produce the same result, as the chain with the

highest accumulated work usually also has the greatest number of blocks.

Another prevalent fork-choice rule is theGreedyHeaviestObservedSubTree (GHOST) [10],

which prioritizes the heaviest subtree when identifying the head block. GHOST acknowl-

edges that a published block serves as a vote for all its ancestors, thereby attributing a no-

tion of weight to blocks rather than solely considering their height. In the event of a fork,

GHOST follows the block with the heaviest subtree until it finds a single-head block.

Figure 2.2 highlights how the two fork-choice rules find a head block for honest partici-

pants. Under the longest chain rule, participants would build upon the blue block and dis-

card alternative chains, as the head block has the highest height of 6. In contrast, blockchains

using GHOST would prioritize the light red block as the head block due to its consideration

of following the chain with the heaviest subtrees.

Genesis height 1
weight 13

height 2
weight 5

height 3
weight 2

height 3
weight 4

height 2
weight 7

height 4
weight 3

height 5
weight 2

height 6
weight 1

Head Block
Longest Chain Rule 

height 3
weight 3

height 3
weight 1

height 4
weight 2 

height 5
weight 1

Head Block
GHOST

height 4
weight 1

Height is relevant for Longest Chain Rule
Weight is relevant for GHOST

Figure 2.2: The height represents the distance from the genesis block, with the genesis block
having a height of 0. The weight denotes the weight of each subtree.
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2.3.3 Proof-of-Stake

Proof-of-stake is another Sybil resistance protocol employed in permissionless blockchains,

which addresses the high resource consumption associated with proof-of-work. Instead of

participating through computational resources, participants must stake a certain amount of

the blockchain’s cryptocurrency to engage in the protocol. In recent times, proof-of-stake

adoptionhas significantly increaseddue to its reduced environmental footprint. Blockchains

such as Ethereum, Cardano [11], Solana [12], Algorand [13], Polkadot [14] and many more

utilize proof-of-stake as their consensus protocol. However, early proof-of-stake protocols

have been susceptible to attack vectors such as nothing at stake and long-range attack [15].

Nothing at stake refers towhen participants attempt to build on two ormore blockswhen

forks occur. This issue is typically addressed by introducing some form of punishment for

malicious behavior by making participants sign their published messages.

On the other hand, long-range attacks involve participants withdrawing their stake from

the honest chain and then building a new chain from a block preceding the stake withdrawal.

Subsequently, they publish the new chain, which diverges from the history of the honest

chain such that the honest participants can’t discern which chain to follow.

Long-range attacks are effectively tackled by integrating finality into the blockchain.

This mechanism selects checkpoints that participants agree about, so everything before the

checkpoint is finalized and will never be reverted, as shown in Figure 2.3. When a chain

emerges from a block predating this checkpoint, honest participants unanimously disre-

gard it. Subsequently, the protocol relies on a fork-choice rule to determine the validity of

any post-checkpoint forks.

Genesis Block Block

Block

Block

Block Block

Checkpoint

Finalized Forkful

Block

Block

Figure 2.3: The consensus among honest participants confirms that the checkpoint block
and all its ancestors are finalized and immune to reversal. Consequently, all forks before
this checkpoint are reorganized to make a single chain. However, the descendants of the
checkpoint block are susceptible to forks, allowing forking to occur. This characteristic ren-
ders long-range attacks unfeasible.

2.3.4 Updating a Blockchain

Permissionless blockchains involve participants who each maintain their localized perspec-

tive of the chain. These participants operate diverse software versions with no established

mechanism to track updates. When a blockchain seeks tomodify its functionality, such as al-
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tering block size or updating consensus rules, two primary methods are typically employed:

soft fork and hard fork [16].

Definition 2.1. A soft fork is an update that introduces changes, enabling certain transac-

tions or blocks to remain valid under both the new and prior versions, ensuring backward

compatibility. However, blocks or transactions from the previous version are invalid under

the new version.

The outcome of a soft fork hinges on the adoption rate among users. If less than 50%of users

update, the blockchain splits into two forks, each having a distinct view of the canonical

chain. Conversely, if more than 50% adopt the new version, users operating the old version

will produce blocks that become orphaned.

Example 2.1. Reducing the block size from 1 MB → 0.5 MB can be done as a soft fork

because nodes that don’t upgrade their software will still accept the new smaller blocks.

However, the updated nodes are not guaranteed to accept blocks from non-upgraded nodes,

as these blocks can exceed the size limit set by the updated protocol.

Definition 2.2. A hard fork is an update that creates blocks and transactions incompatible

with the existing protocol, making them invalid under the previous rules. However, blocks

and transactions adhering to the rules of the prior protocol remain valid under the new pro-

tocol.

The success of a hard fork, like a soft fork, relies on user adoption rates. In contrast, if less

than 50% of users adopt the new protocol, the new blocks become orphaned. Conversely, if

more than 50% adopt the new rule, two chains emerge, each with a distinct canonical chain.

Example 2.2. Increasing the block size from 1 MB→ 2 MB requires a hard fork because

nodes that do not upgrade their software will not accept the new blocks, as they will, in most

cases, exceed the size limit set by their protocol.

Table 2.1 presents a comparative overview of these methods.

Soft Fork Hard Fork

Tightening the rules (e.g., 1MB→ 0.5MB) Expanding the rules (e.g., 1MB→ 2MB)

Backwards compatible Not backward compatible

Old nodes accept new blocks Old nodes don’t accept new blocks

Table 2.1: Summarized difference between a soft fork and a hard fork.

Ethereum’s update process is overseen by the Ethereum Foundation, which typically imple-

ments changes via hard forks due to their practicality [17]. A hard fork in Ethereum typically

comprises one ormore Ethereum Improvement Proposals (EIPs) [18]. Each EIP undergoes

several phases, during which people can discuss and propose enhancements before it is ei-

ther accepted for inclusion in a hard fork or rejected as Ethereum’s direction evolves.

10



2.4 Ethereum Virtual Machine

Compared tomany blockchains that only support a distributed ledger, Ethereumoperates as

a distributed state machine through the Ethereum Virtual Machine (EVM) [19]. The EVM

supports powerful functionality through smart contracts [20].

A smart contract is a program governed by code that runs on the EVM. It comprises two

parts: code and data. The code defines the logic and rules of the smart contract, and once

deployed to the EVM, it cannot be altered. The data represents the contract’s state, which

can be modified through user interactions, such as updating a variable from 5 to 10.

This structure allows smart contracts to automate complex processes and transactions,

ensuring they execute exactly as programmed without the need for intermediaries. The

code’s immutability and the data’s dynamic nature make smart contracts a robust tool for

building decentralized applications.

Smart contracts on the EVM are written in Turing-complete programming languages,

with the most popular being Solidity [21], a language specifically designed for developing

smart contracts on Ethereum. Once written, smart contracts are compiled into EVM byte-

code and deployed to the Ethereum blockchain, where they can be interacted with by users

and other contracts.

The state of the EVM, which includes account balances, contract storage, and other data,

is stored in a modified Merkle tree known as theMerkle Patricia Trie [22]. This data struc-

ture provides efficient O(log(n)) complexity for lookups, inserts, and deletes, ensuring that

the state can be quickly accessed and updated as needed.

2.4.1 Gas

In the EVM, every operation necessitates computational effort from each participating node

in the Ethereum network. Consequently, a potential vulnerability exists where a smart con-

tract could execute an infinite loop, consuming network resources indefinitely. To mitigate

this issue and ensure that nodes are incentivized to execute commands on the EVM, every

transaction incurs a cost known as gas [23]. Each interaction with the EVM carries a fixed

gas cost multiplied by the current gas price. This is called the gas fee and must be paid

regardless of whether the transaction succeeds or fails.

The gas fee comprises two components: the base fee and the priority fee. The base
fee is dynamically determined by the protocol and adjusts according to block sizes. In

Ethereum, the target for each block is approximately 15million gas, with amaximum limit of

30million gas. When the gas usage surpasses the target, the base fee increases; conversely,
when it falls below the target, it decreases. The base fee is burned, effectively removing it

from circulation. On the other hand, the priority fee serves as an incentive for nodes to

include transactions in their blocks. Gas fees are denominated in Ether and are typically

quoted in Gwei or Wei, with 1 Gwei equal to 10−9 Ether and 1 Wei equal to 10−18 Ether,

respectively. The node initiating the transaction bears the responsibility of paying the gas

fee.
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2.5 Digital Signatures

In the Byzantine fault-tolerant model, which is prevalent in blockchain systems, there must

be a reliable way to verify that transactions originate from the correct participant. Digital

signature schemes provide this verification by ensuring several key properties [24]:

• Authenticity: A valid signature confirms that the signer intentionally signed the as-

sociated message.

• Unforgeability: Only the signer canproduce a valid signature for the associatedmes-

sage.

• Non-reusability: The signature of one message cannot be reused for another mes-

sage.

• Non-repudiation: The signer cannot deny having signed a message that has a valid

signature.

• Integrity: Ensures that the message’s contents have not been altered.

Digital signatures use cryptographic techniques to bind a participant’s identity to the trans-

actions they authorize. When a participant signs a transaction, they use their private key

to create a signature that others can verify using the corresponding public key. This cryp-

tographic linkage ensures that only the participant with the correct private key could have

created the signature.

EthereumandBitcoin utilize theElliptic CurveDigital SignatureAlgorithm (ECDSA) [25]

for signing transactions. ECDSA offers robust security by leveraging themathematical prop-

erties of elliptic curves. This makes it computationally infeasible for attackers to derive pri-

vate keys from public keys or signatures.

2.5.1 BLS Signatures

For blockchains that require storing large amounts of digital signatures in blocks, using

ECDSA poses challenges due to the fixed size of each signature. As participant counts in-

crease, accommodating these signatures becomes impractical. In such cases, blockchains,

especially those utilizing proof-of-stake, often opt for the Boneh-Lynn-Shacham (BLS) dig-

ital signature scheme [26] due to its support for signature aggregation. This enables a set of

signatures to be condensed into a single aggregated signature without any increase in size

compared to an individual signature.

The BLS digital signature scheme utilizes two elliptic curve groups, G1 and G2, defined

over finite fields, each with an order of r and leverages a unique property of elliptic curves

known as pairing [27]. Notably, G1 offers faster operations and a more compact represen-

tation than G2 due to its definition over a smaller field. The generators for G1 and G2 are

denoted as g1 and g2 respectively.

1. The secret key (sk) is a number between 1 and r, with a length of 32bytes as anunsigned

integer.
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2. The public key (pk) is a point on the G1 curve obtained by scalar multiplication of the

secret key and the generator g1, denoted as pk × g1. Its compressed serialized form

occupies 48 bytes.

3. During the signing process, the message (m) is mapped to a point on G2, denoted as

H(m), whereH() is a hash function that maps bytes to G2.

4. The signature σ is a point on the G2 curve represented as sk ×H(m). Its compressed

serialized form occupies 96 bytes.

The BLS signature scheme offers the following API functionalities [26]:

• Sign(sk,m) → α: The signing function generates a deterministic signature given a

secret key sk and messagem.

• V erify(pk,m, α) → True/False: The verification function determines whether the

signature α is valid for the given public key pk and message m. It outputs True if the

signature is valid and False otherwise.

• Aggregate([α1, ..., αn]) → αagg: The aggregation algorithm combines a list of signa-

tures [α1, ..., αn] into a single aggregated signature αagg.

• AggregateV erify([pk1, ..., pkn], [m1, ...,mn], αagg) → True/False: The aggregate ver-

ification function verifies whether the aggregated signature αagg is valid for the given

public keys [pk1, ..., pkn] and messages [m1, ...,mn]. It outputs True if the aggregated

signature is valid for all the public keys and messages and False otherwise.

The Aggregate function is simply group multiplication on the G2 group, resulting in the

aggregated signature occupying 96 bytes the same as a single signature. Similarly, public

keys can undergo aggregation using the same principle applied in signature aggregation,

albeit within the G1 group, resulting in an aggregated public key of 48 bytes.

The AggregateVerify function poses inherent challenges as it necessitates information

about every message and its corresponding public key for verifying the correctness of the

aggregate signature. This entails allocating space for each included public key and its corre-

sponding message. Furthermore, it demands n+1 pairing operations to validate the aggre-

gated signature, rendering it prohibitively expensive.

A solution proposed in [28, 29] addresses these challenges by reducing the pairings re-

quired to verify an aggregated signature over the same message m from n + 1 to just 2 by

utilizing the Verify function. However, instead of processing a single signature α and pub-

lic key pk, it handles an aggregated signature αagg and an aggregated public key pkagg. To

implement this type of signature aggregation, the system must be capable of tracking the

included public keys in pkagg since distinguishing between a single public key and an aggre-

gated public key is not feasible. If the membership status of all participants is known, one

bit per participant can be used to track them. In cases with duplicate participant signatures,

additional bits are necessary, as a single bit can only indicate inclusion or exclusion. An

end-to-end example is shown in Figure 2.4.
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Public KeySecret Key

Message

Signature

Public KeySecret Key

Message

Signature

Public KeySecret Key

Message

Participant A Participant B Participant C

Message Public KeySignature True / False

Figure 2.4: End-to-end example.

Note 2.1. In the context described above, public keys reside on the G1 curve, while signa-

tures are on the G2 curve. Conversely, it is also feasible to invert this arrangement, with

public keys in G2 and signatures in G1, resulting in public keys of 96 bytes and signatures

of 48 bytes [26]. Implementers can choose the appropriate group based on their specific

requirements. For instance, if fast signature aggregation is essential, it is advisable to have

signatures in G1. Conversely, if there is a higher frequency of public key aggregation, it is

advisable to have public keys inG1. In essence, operations on theG1 group are notably faster

than those on G2.
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Chapter 3

Technical Overview of Ethereum

2.0

Since its initial release, the Ethereumproof-of-stake protocol has undergone four hard forks,

each building upon the previous version. All the releases are documented onGitHub through

specifications [30]. The original release, known as Phase 0 [31], contains the most compre-

hensive information regarding the proof-of-stake protocol. Subsequent hard forks, includ-

ing Altair [32], Bellatrix [33], Capella [34], andDeneb [35], introduce specific changes and

improvements. To fully understand the evolution of the proof-of-stake protocol up to the

latest hard fork, it is necessary to review each specification document chronologically.

This chapter aims to provide technical insight into the proof-of-stake protocol that se-

cures Ethereum’s blockchain, commonly referred to as Ethereum 2.0. The content and struc-

ture of this chapter draw inspiration from the specifications [30], Vitalik Buterin’s annotated

specifcations [36], and Ben Edgington’s forthcoming book, ”Upgrading Ethereum” [37].

For readers already acquaintedwithEthereum 2.0, we recommend skipping sections cov-

ering familiar topics. However, we strongly encourage reading the following sections as they

are particularly relevant for understanding Chapter 5.

• In Section 3.1.2, we outline the necessary setup to participate in Ethereum, focusing

on client architecture. This overview is essential for understanding the client require-

ments in our private deployment setup.

• In Section 3.3, provides a detailed exploration of a validator’s lifecycle, covering all the

steps involved in onboarding validators, a feature our devnet support.

• In Sections 3.4.4 and 3.4.5, we delve into attestation aggregation and how specific val-

idators are selected for this task in Ethereum through an aggregator selection process.

Understanding this process is crucial since we test an attack related to aggregator se-

lection.

• In Section 3.5, we examine the networking stack for the consensus layer, including

peer discovery, gossiping, and one-to-one communication.
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The remaining sections provide a comprehensive overview of Ethereum 2.0, helping readers

understand the various components and concepts that enable Ethereum to use proof-of-

stake as its consensus protocol. These sections are particularly beneficial for those who do

not already have an in-depth understanding of Ethereum 2.0.

3.1 The Beacon Chain

In this section, we start by explaining the beacon chain and presenting a timeline of the

various hard forks it has undergone. Next, we delve into the client architecture powering

Ethereum2.0. We then explore how the beacon chainmeasures time using slots and epochs.

Then, we discuss the beacon state and its state transition function. Finally, we provide a

brief overview of the serialization method for the beacon chain, known as simple serialize,

and how objects can be represented using merkleization with a single hash.

3.1.1 Timeline and The Merge

On December 1, 2020, Ethereum launched the beacon chain [38], which uses proof-of-stake

as its consensus protocol. The beacon chain operated alongside the original proof-of-work

chain, known as the execution chain, as illustrated in Figure 3.1. Subsequently, on Septem-

ber 15, 2022, Ethereum underwent a significant event known as themerge, during which the

proof-of-work mechanism was disabled, and proof-of-stake took over as the primary con-

sensus protocol [39]. Before the merge, beacon blocks did not include transactions; they

contained only consensus-related data. However, following the merge, blocks from the ex-

ecution chain were merged into the beacon blocks. These blocks from the execution chain,

integrated into the beacon blocks, are commonly referred to as execution_payload, con-
taining transactions and header information [40].

Beacon 
Block

Beacon 
Block

Beacon 
Block

PoW 
Block

PoW 
Block

PoW 
Block

Beacon Chain (Proof-of-Stake)

Execution Chain (Proof-of-Work)

Merge

Figure 3.1: An illustration of the merge event that changed the consensus protocol for
Ethereum from proof-of-work to proof-of-stake.

Figure 3.2 provides a comprehensive timeline, covering the initial releases of the beacon

chain and all subsequent hard forks up to the present date. Notably, the Bellatrix hard fork

marks the countdown of the merge event, which occurred nine days after the hard fork.
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Timeline

Fork:

Date:

Phase 0 Altair Bellatrix Capella Deneb

01.12.2020 27.10.2021 06.09.2022 12.04.2023 12.04.2024

Beacon Chain
Launch

Sync Committees
and Reward Reforms

Merge Preparations
Merge on 15.09.2022

Withdrawals 
Enabled

Data Availability
EIP-4844

Figure 3.2: The timeline of hard forks related to Ethereum’s proof-of-stake protocol.

3.1.2 Client Architecture

After transitioning to proof-of-stake, active participation in the Ethereum blockchain in-

volves running two clients: the execution client and the consensus client [41]. The collab-

oration of these two clients forms a node, empowering users to contribute actively to the

security and maintenance of the blockchain. Additionally, users can operate a third client

known as the validator client, responsible for managing validators who have deposited the

requisite amount. The validator’s role is to propose blocks and vote on blocks to reach a

consensus on the chain. Figure 3.3 visually illustrates the distinction between a standard

node and a node operating as a validator.

Validator Client

Consensus Client

Execution Client

Consensus Layer

Execution Layer
Node

Node + Validator

Figure 3.3: Client stack for a node. The validator client is only relevant for nodes that have
deposited the required stake.

The two clients operate on different layers: the consensus client operates within the con-

sensus layer, while the execution client operates within the execution layer. This setup was

designed to simplify the transition to proof-of-stake and ensure a clear separation of re-

sponsibilities for each client. The clients communicate through a local connection called

the Engine API [42] to facilitate interaction between the layers. They operate in a leader-

follower setup, where the consensus client takes on the role of the leader, actively initiating

actions, while the execution client assumes the follower role, responding to requests initi-

ated by the consensus client. Figure 3.4 depicts this interaction, with solid lines denoting

requests and dashed lines representing responses. The consensus and execution layers have

separate peer-to-peer networks. Users can communicate with an Ethereum node using the
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Beacon API [43] for the consensus layer and the Execution API [44] for the execution layer.

The validator client is an optional plugin that is added externally to the Ethereum node and

isn’t essential for system interaction.

User

Ethereum Node

Consensus Layer

Execution Layer

Validator Client

Engine
API

Ethereum Node

Consensus Layer

Execution Layer

Validator Client

Engine
API

CL P2P

EL P2P

Beacon API

Execution API

Figure 3.4: Simplified diagram of a coupled execution and consensus client with separate
peer-to-peer networks. A user interaction with an Ethereum node occurs through their re-
spective APIs.

Consensus Client

The consensus client, also called a beacon node, actively manages all aspects of consen-

sus logic and the exchange of blocks and consensus votes across its dedicated peer-to-peer

network, represented as CL P2P in Figure 3.4. The consensus client undertakes block ver-

ification upon receiving blocks on the CL P2P network. During this verification process, it

inspects header information and forwards the execution_payload (bundle of transactions)
to the execution client via the Engine API, awaiting a response. The block is appended to

the chain if the header and the execution_payload are valid.

Execution Client

The execution client manages transaction-related tasks such as handling transactions, gos-

siping transaction information, andmanaging the EVM. It is not responsible for block build-

ing and consensus logic, as the consensus client handles these tasks. The peer-to-peer net-

work associated with the execution client, depicted as EL P2P in Figure 3.4, exclusively gos-

sip transactions and nothing else.

If a user wishes to execute a transaction, they must send it to an execution client. The

execution client checks its validity, places it in themempool if legitimate, and broadcasts the

transaction on the EL P2P network.

When the execution client receives a request from the consensus client, it involves either

receiving an execution_payload or generating one. Upon receiving an execution_payload,
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the execution client validates and executes all the transactions bundled in the payload, send-

ing a status message back to the consensus client indicating whether the payload was valid.

The other request type process involves taking transactions from its mempool, executing

them, updating the EVM state, and returning the newly generated exectuion_payload to

the consensus client.

Validator Client

Nodes can run a validator client alongside the beacon client, enabling them to manage one

ormultiple validators based on the staked amount. The validator’s role is to grow and secure

the chain. They receive rewards for active participation in the network butmay face penalties

if they act maliciously or fail to fulfill their duties adequately. The lifecycle of a validator will

be detailed in Section 3.3.

3.1.3 Time

Time is inherently imprecise in proof-of-work protocols as blocks emerge when a valid block

is successfully mined. However, the proof-of-stake consensus protocol in Ethereum 2.0 op-

erates differently. The beacon chain uses a notion of time through the use of slots and epochs.

A slot is SECONDS_PER_SLOT (12) seconds long, while an epoch consists of SLOTS_PER_EPOCH
(32) slots, which is equivalent to 6.4 minutes [31]. Figure 3.5 visually represents slots and

epochs.

Epoch 0 Epoch 1 Epoch 2

0 1 31 3230 33 63 64 6562. . . . . .

Time

Slots 2-29 Slots 34-61

Figure 3.5: Timemoves from left to right through slots and epochs. Each slot has the poten-
tial to contain a block.

Each slot involves the selection of a single validator, known as the proposer, to propose a

block. The proposed block is gossiped throughout the peer-to-peer network of the consensus

layer. While it’s anticipated that there will be a block in each slot, occasional factors like

asynchrony or invalid proposals might cause its absence. Each slot can only have one block

associated with it, which typically arrives at intervals of SECONDS_PER_SLOT (12 seconds). If

a slot passes without a block proposal, it remains indefinitely devoid of any associated block.

Figure 3.6 demonstrates an example where there is a missing block proposer for slot 1, and

the block proposer for slot 3 experiences some asynchrony issues, whichmakes the canonical

chain (0, 0)← (2, 1)← (4, 2)← (5, 3) where the first element is the slot and second element

is the block number. The concept and usage of epochs will be discussed in Section 3.2.
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Slot 0 Slot 1 Slot 2 Slot 3 Slot 4 Slot 5

Block 0 Block 1

Block 1

Block 2 Block 3

Genesis Block

Figure 3.6: Slot 0 consists of the genesis block (block number 0). In slot 1, the block proposer
is absent, so block number 1 is linked with slot 2 instead. Since the block proposer for slot 3
has some asynchrony problem, he does not see the block for slot 2, so he mistakenly thinks
his block should be number 1. Then, the block proposers for slots 4 and 5 continue building
on the block from slot 2, resulting in a chain of four blocks over six slots. This sequence of
events involves the absence of one block and the reorganization of another block.

Note 3.1. To calculate the epoch j of a given slot i, the formula epoch(i) = j = ⌊ i
C ⌋ is

employed, where C is SLOTS_PER_EPOCH (32). Beacon blocks in epoch j have slot numbers

denoted as jC+k, where k traverses the set {0, 1, ..., C−1}. Consequently, the genesis block
Bgenesis holds the slot number 0 and marks the initial slot of epoch 0.

3.1.4 Beacon State

The goal of every nodeparticipating in the beacon chain is to agree on a commonobject called

the beacon state, which is amonolithic object containing all the necessary information about

the beacon chain [34]. Not everything associated with the beacon state will be relevant to

this thesis, so wewill introduce parts of it when necessary. For a complete view of the beacon

state, refer to Listing D.1 in Appendix D.

To ensure uniformity across nodes regarding the beacon state, block proposers incor-

porate their updated beacon state into their proposed beacon blocks after running a state

transition function. This ensures that all nodes share a consistent view. The beacon state is

condensed into a single 32-byte hash for a minimal increase in block size. To see everything

included in a beacon block, check Listings D.3 and D.4 in Appendix D.

State Transition

The typical method for updating a blockchain is through a state transition function that runs

for each new block added to the chain, as was the case with Ethereum before it transitioned

to proof-of-stake. In the beacon chain, however, state transitions are slot-driven rather than

block-driven. Thismeans the state transition function is executed for every slot, irrespective

of block inclusion. In instances with no associated block for a slot, minimal changes occur

to the state.

In addition to slots and blocks, the state transition function also oversees epoch transi-

tions, occurring every SLOTS_PER_EPOCH (32) slots. Listing D.2 outlines all the tasks carried

out during epoch processing, which takes place during the last slot of an epoch [34]. Epoch
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processing will be frequently discussed in this thesis, and each instance will pertain to one

of the tasks listed.

In summary, the beacon chain state transition function comprises three phases.

1. Slot processing: It processes the slot regardless of whether a block is associated.

2. Epoch processing: It processes the epoch, occurring every EVERY_PER_EPOCH (32)

slots.

3. Block processing: This occurs only for slots with an associated beacon block.

3.1.5 Simple Serialize and Merkleization

Simple Serialize (SSZ) serves as the serialization method for the beacon chain [45]. It can

represent objects of varying complexity, like the beacon state, as strings of bytes. Given

its dual usage in communication and consensus protocols on the beacon chain, SSZ must

adhere to two key properties. Firstly, when serializing an object of a certain type, the deseri-

alized result shouldmatch the original object; this is crucial for the communication protocol.

Secondly, two objects of the same type with identical values should serialize to the same SSZ

object, ensuring consistency for the consensus protocol. One aspect of SSZ is that it lacks

self-description, meaning the expected deserialized object must be known beforehand [46].

This section provides a brief overview of SSZ, covering only the essential aspects. While a

detailed understanding of SSZ is unnecessary for this thesis, this overview will help under-

stand various components within the beacon chain.

SSZ supports only three basic types: unsigned integers, bytes, and booleans [47]. Un-
signed integers are denoted as uintN, where N represents the bit count, with N ∈ [8, 16,
32, 64, 128, 256]. Meanwhile, byte comprises 8 bits, and boolean values are either True
or False. Given the simplicity and limited utility of the basic types alone, SSZ introduces

composite types that combine multiples of smaller types to accommodate a wider range of

use cases. The following composite types exist [47].

• Vector: Represents an ordered fixed-length collection of a specific type with N ele-

ments, denoted as Vector[type, N] (e.g., Vector[uint32, N]).

• List: Represents an ordered variable-length collection of a specific type up to N ele-

ments, denoted as List[type, N] (e.g., List[uint32, N]).

• Bitvector: Represents an ordered fixed-length collection of the boolean type with N
bits, denoted as Bitvector[N].

• Bitlist: Represents an ordered variable-length collection of the boolean type up to N
bits, denoted as Bitlist[N].

• Union: This composite type is not currently utilized in Ethereum.

• Container: A container is a collection of values arranged in a specific order and can be

of different types. Essentially, it can hold anymix of types, including other containers.
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An example of a container is demonstrated in Listing 3.1, which showcases a Python

data class containing key-value pairs.

class ContainerExample(Container):
foo: Foo
bar: Bar
indices: List[uint32, 64]

Listing 3.1: ContainerExample class as defined by the consensus specifications [47].

The types Foo and Bar serve as type annotations but are not explicitly defined; instead,
they represent underlying types such as uint64 or Bytes32. These Python data class

containers are frequently used in the consensus specifications [30] and will be used

often in this thesis to make things easier to understand.

Merkleization is the process of representing an SSZ object as a 32-byte hash, known as a hash

tree root [48]. This allows nodes in the network to compare beacon blocks, beacon states,

and other relevant objects in the consensus layer, ensuring consistency across the network.

The process involves taking a list of 32-byte chunks as inputs, which serve as the leaves,

and applying the same process as generating a Merkle tree, as discussed in Section 2.1. No

restrictions exist on the minimum or maximum number of chunks (leaves) provided. How-

ever, Merkleization utilizes zero-padded chunks to ensure that the total number of chunks

is rounded to the next whole power of two, creating a complete binary tree.

For basic types or collections of basic types (such as lists and vectors), Merkleization

proceeds straightforwardly. However, for containers and collections of composite types,

one must recursively calculate the components’ hash tree roots before Merkleizing the final

hash tree root. Figure 3.7 illustrates the Merkleization process of the ContainerExample
class from Listing 3.1.

R(ContainerExample) Represents a 32 byte chunk

Merkleize

S(foo) S(bar)

0R(foo) R(bar)

4

S(indices) 0 0

R(indices)

List[uint32, 64]

Merkleize

⋅⋅⋅

8

Merkleize

2

S(length(indices))

S(type) = SSZ serialization type
R(type) = hash tree root of type

Figure 3.7: Illustrating the steps required to calculate the hash tree root of ContainerExam-
ple. Here, S(type)denotes SSZ serialization of type, while R(type) indicatesMerkleization
of type. The small digits indicate the number of chunks (leaves).

22



3.2 Gasper the Consensus Protocol

This section explores Ethereum’s proof-of-stake consensus protocol, Gasper [49]. We start

by exploring how validators convey their worldview through attestations. Subsequently, we

investigate the progression of a slot and the timing assumptions that Ethereum relies on.

Then, our focus shifts to Casper FFG, the mechanism utilized to achieve finality. Following

this, we analyze the fork-choice rule LMD GHOST. Finally, we discuss Gasper, the protocol

that integrates Casper FFG and LMD GHOST.

3.2.1 Attestations

To come to an agreement on the canonical chain, every validator actively participates in

the consensus process by casting a vote for their interpretation of the beacon chain through

a mechanism known as an attestation [50]. This involves expressing preferences for the

validator’s selected head of the chain, determined by a fork-choice rule, and casting votes

for specific checkpoints that play a crucial role in achieving finality.

With the active validator set in Ethereum standing at 985, 000 as of the writing of this

thesis [51], broadcasting an attestation for each slot by every validator would result in sig-

nificant network congestion and processing overhead. Instead of voting for every slot, each

validator votes for just one slot within an epoch, while all active validators vote together

during each epoch. The definition of an active validator will be explained in Section 3.3.

Validators are effectively distributed across SLOTS_PER_EPOCH (32) slots, with each slot

corresponding to 1
SLOTS_PER_EPOCH of the active validators. So, over an epoch, every active val-

idator is expected to have made an attestation declaring their view of the canonical chain.

See Figure 3.8 for an illustrative example.

Validators

…

Epoch j

Slot jC Slot jC + 31

…

Figure 3.8: All validators vote for an epoch but only 1
C of active validators vote for a slot. C

is SLOTS_PER_EPOCH (32) slots.

Achieving finality typically demands at least two-thirds agreement from the active validator

set regarding a shared perspective. Since only a subset of validators cast votes for each slot,

establishing a common voting reference becomes crucial. This is where the checkpoint votes

come into play. A checkpoint vote marks an epoch boundary, coinciding with the first slot

of each epoch. For instance, in Figure 3.5, these boundaries correspond to slot 0, slot 32,
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and slot 64. Checkpoint votes are directed at a block linked with an epoch, represented by a

Checkpoint class, shown in Listing 3.2 [31].

class Checkpoint(Container):
epoch: Epoch
root: Root

Listing 3.2: Checkpoint class as defined by the consensus specifications [31].

The epoch field specifies a particular epoch, while the root signifies a specific block hash

usually associated with the block of the first slot of that epoch. If a block is not found at the

epoch boundary, the validator must backtrack in the chain to find the most recent block it

observed before the boundary slot. This process is depicted in Figure 3.9, where LEBB(Slot)
identifies the latest epoch boundary block.

31 32 33

31 34

Epoch 0 Epoch 1

LEBB(33) = 32

LEBB(34) = 31

Figure 3.9: Illustration of epoch boundary blocks, with blocks labeled by their corresponding
slot numbers. The block labeled 31 in epoch 1 serves as an illustration, emphasizing that
block 34 endeavors to locate an epoch boundary block for slot 32 but encounters a challenge
in finding one. Consequently, it pulls up block 31 from epoch 0 as an alternative.

The content of an attestation is detailed in the AttestationData class, outlined in List-

ing 3.3.

class AttestationData(Container):
slot: Slot
index: CommitteeIndex # the committee the validator belongs to
# LMD GHOST vote
beacon_block_root: Root
# FFG vote
source: Checkpoint
target: Checkpoint # target.epoch == epoch(slot)

Listing 3.3: AttestationData class as defined by the consensus specifications [31].

The slot indicates the validator’s assigned slot, while index denotes the committee it be-

longs to; the usage of a CommitteeIndex will be explored in Section 3.4.3. The beacon_-
block_root field indicates the block that the validator sees as the head of the chain after

running a fork-choice rule. The source and target fields are checkpoint votes utilized in

calculating finality. Section 3.2.2 will explore the last two fields.
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Progression of a Slot

During a single slot, the time is divided into INTERVALS_PER_SLOT (3) segments, eachwith its

designated objective [52]. In the initial segment (0−4 seconds), the assigned block proposer
generates and disseminates a block across the network. Subsequently, during the second

segment (4− 8 seconds), a committee of validators creates attestations for the current slot,

typically by voting on the newly proposed block. If no block is proposed within the first 4

seconds of a slot, validators instead cast their votes for a previous block they deem the head

of the chain. In the final interval (8 − 12 seconds), a designated aggregator consolidates

attestations and broadcasts the aggregated attestation, ready for inclusion in an upcoming

block, typically assigned to slot i+1. This aggregation task will be looked at in Section 3.4.4.

Figure 3.10 provides a visual representation of the progression of a slot.

Block propagation Attestation propagation Aggregation propagation

t=0 t=4 t=8 t=12

Honest proposer generate a 
block with transactions and 
attestations from earlier slots.

Attestation deadline, where 
validator decide which block 
they will vote on.

Chosen validators aggregate 
attestations.

Slot

Repeat

Figure 3.10: The progression of a slot is divided into 3 distinct parts. This process is repeated
for every slot.

Timing Assumption

Ethereum does not assume that validators see the samemessages simultaneously or possess

an identical view of the chain. Therefore, Ethereum relies on timing assumptions within

its consensus mechanics to ensure safety and liveness. The timing assumptions commonly

employed in blockchains are synchronous, partial synchronous, and asynchronous [5, 49].

Ethereum relies on the assumption that the internal clocks of nodes are synchronized

within the timeframeof a slot (12 seconds) [52]. This synchronization ensures that validators

can construct and attest to the latest block without issue.

Regarding the fork-choice rule, nodes ideally should not be more than (SLOTS_PER_-
SECOND/INTERVALS_PER_SLOT) (4) seconds apart. Otherwise, theymay experience degraded

performance and will not vote for the correct head.

Timing assumptions are not considered in terms of safety properties. This means the

blockchain won’t confirm conflicting checkpoints, ensuring safety regardless of timing vari-

ations. However, for continuous finalization of checkpoints in the blockchain, nodes should

be synchronized within a 12-second timeframe.

3.2.2 Casper FFG

The protocol responsible for achieving finality (safety) in Ethereum is known as Casper the

Friendly Finality Gadget (Casper FFG) [49]. Casper FFG operates in two phases: justifi-
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cation and finalization, which are inspired by Practical Byzantine Fault Tolerance (PBFT)

concepts such as prepare and commit [53].

Casper FFG functions atop blockchains that can consistently produce new blocks and

employ their own fork-choice rule. However, these blockchains lack inherent finality, a gap

that Casper FFG aims to address. In alignment with conventional PBFT protocols, Casper

FFG necessitates a supermajority vote to achieve finality, corresponding to a quorum of 2/3.

Given that the beacon chain maintains knowledge of the active validator set, as active par-

ticipation necessitates a stake, it becomes feasible to determine when 2/3 of the validators

have voted for the same checkpoints.

Justification and Finalization

Casper FFG achieves finality through two rounds of all-to-all communication. In the first

round, validators cast their votes to justify a particular checkpoint C, corresponding to the

target field in Listing 3.3. If the validators observe a supermajority of votes for checkpoint

C as the target, they update checkpoint C to justified. As there is no assurance that other

validators have achieved a supermajority for checkpointC, this justification process is a local

property.

The second round aims to finalize checkpoint C, corresponding to the source field in

Listing 3.3. Validators voting for checkpoint C as the source indicate that they have re-

ceived a supermajority of votes in favor of checkpointC as the target during the first round
and wish to verify this view across the network in the second round. Upon receiving a super-

majority of votes designating checkpoint C as the source, validators finalize checkpoint C
and commit never to revert this decision. Finalization represents a global property, ensuring

that once a checkpoint is finalized, honest validators will never revert it.

In summary, justifying a checkpoint entails a personal commitment never to revert it,

while finalizing a checkpoint signifies a global commitment never to revert it [54].

Each round lasts an epoch (32 slots). Therefore, the protocol requires two epochs to final-

ize a checkpoint, corresponding to 12.8minutes. Every validator includes a source and tar-
get checkpoint in their AttestationData class, indicating the aim of finalizing the source
checkpoint and justifying the target checkpoint. This vote is typically represented as a link
in the form of Cs

V−→ Ct, where Cs represents the source checkpoint and Ct represents the

target checkpoint. The source checkpoint vote is always the latest justified (LJ) checkpoint

that the validator has seen, while the target checkpoint is the latest epoch (LE) boundary.
Combining the source and target votes into a single message, a checkpoint can be final-

ized every 6.4 minutes if a supermajority is achieved. For a link Cs
V−→ Ct to be valid, Cs

must be an ancestor of Ct. Otherwise, the vote would contradict the validator’s personal

commitment to never revert a justified checkpoint.

Even though a round spans 32 slots (one epoch), validators may receive a supermajority

vote after slot 22, which is 2/3 of the way through an epoch. However, they won’t update

their justified and finalized statuses until the epoch is complete, as these calculations are

carried out during epoch processing. Only attestations included in blocks are considered
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when calculating if a supermajority is achieved.

A link is termed a supermajority link when it receives a supermajority vote, signifying

agreement from 2/3 of validators. Such a link is represented as Cs
J−→ Ct indicating that the

target checkpointCt should be justified. Figure 3.11 illustrates an instance of a supermajority

link, where Cn represented the latest justified checkpoint. Since Cn+1 failed to garner a

supermajority link during epoch j + 1, it remained ineligible for an update to the justified

status. However, during epoch j + 2, a supermajority link Cn
J−→ Cn+2 was established,

consequently allowing Cn+2 to be updated to justified.

Cn Cn+1 Cn+2

Epoch j Epoch j+1 Epoch j+2

J J
> 2/3

Figure 3.11: During epoch j+2, a supermajority linkCn
J−→ Cn+2 justifiesCn+2. However, as

Cn+1 did not receive a supermajority link during epoch j +1, it does not update to justified.

The rationale behind not finalizingCn in Figure 3.11, despite the presence of a supermajority

linkCn
J−→ Cn+2, lies in the requirement that to finalize a checkpoint, the target checkpoint

must be a direct child to the source checkpoint, which is not the scenario here [49]. How-

ever, Cn+2 attains justification simply because of a supermajority link.

In contrast, Figure 3.12 showcases a scenario where a supermajority link Cn
J−→ Cn+1

exists, with the target checkpointCn+1 being a direct child of the source checkpointCn. In

this case, Cn transitions to a finalized state, and Cn+1 becomes justified.

Cn Cn+1 Cn+2

Epoch j Epoch j+1 Epoch j+2

F J
> 2/3

Figure 3.12: During epoch j + 1, a supermajority link Cn
J−→ Cn+1 results in the finalization

of Cn, while Cn+1 is justified.

The scenario depicted in Figure 3.12 is referred to as 1-finality, indicating that the source
checkpoint and the target checkpoint are precisely one epoch apart. However, this concept
can be extended to what is known as k-finality if there is an integer k ≥ 1 and there exist

adjacent checkpoints Cj , ..., Cj+k such that checkpoints Cj , Cj+1, ..., Cj+k−1 are all justified

and there exists a supermajority link Cj
J−→ Cj+k, then checkpoint Cj will be finalized [49].

Note3.2. One reason for voting on checkpoints (block, epoch) rather than individual blocks

is to accommodatemissing blockswithin epochs. For example, in epoch j, the only proposed
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block was for slot jC, while no other blocks were observed for the remaining slots. Conse-

quently, the target checkpoint for epoch j would be (BjC , j), where BjC represents the

block for slot jC. Since no additional blocks were observed during epoch j, the checkpoint

(BjC , j) would not be justified.

Suppose the block for the initial slot of epoch j + 1 is also missing. In this scenario, all

attestations made during epoch j + 1 would fail to locate an epoch boundary block for slot

(j +1)×C. Thus, the protocol would backtrack along the chain until it finds a block, which

would be the block for slot jC. Consequently, the target checkpoint for epochs j and j + 1

would share the same block BjC but differ in their epochs. This differentiation provides

clarity regarding during which epoch a block is justified.

The Four-Cases in Ethereum

The Ethereum 2.0 protocol employs a 2-finality approach, meaning the beacon state mon-

itors the justification status of the four most recent epochs. This design choice is due to

Ethereum 2.0 only recognizing attestations for up to two epochs; attestations older than this

are considered invalid. Consequently, checkpoints up to two epochs in the past can become

newly justified (and subsequently finalized), resulting in four possible cases as outlined be-

low and illustrated in Figure 3.13 [31, 49].

1. If checkpointsCn−3,Cn−2 are justified and there is a supermajority linkCn−3
J−→ Cn−1,

then Cn−1 will be justified and Cn−3 will be finalized.

2. If checkpoint Cn−2 is justified and there is a supermajority link Cn−2
J−→ Cn−1, then

Cn−1 will be justified and Cn−2 will be finalized.

3. If checkpoints Cn−2, Cn−1 are justified and there is a supermajority link Cn−2
J−→ Cn,

then Cn will be justified and Cn−2 will be finalized.

4. If checkpoint Cn−1 is justified and there is a supermajority link Cn−1
J−→ Cn, then Cn

will be justified and Cn−1 will be finalized.

Under normal conditions, characterized byminimal asynchrony and high participation, pri-

marily 1-finality cases (cases 2 and 4) are anticipated, with case 4 occurring most frequently.

Instances of 2-finality (cases 1 and 3) arise under special conditions, such as delayed attesta-

tions or when the protocol is close to the two-thirds threshold required for checkpoint final-

ization, necessitating a wait for the next epoch processing to determine if a supermajority

has been achieved [49].

Note 3.3. The 2-finality cases are checked sequentially, starting with case 1, followed by

case 2, and so on. For example, case 2might finalizeCn−2, and then case 4 could immediately

finalize Cn−1.
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Cn-3 Cn-3 Cn-3 Cn-3

Cn-2 Cn-2 Cn-2 Cn-2

Cn-1 Cn-1 Cn-1 Cn-1

Cn Cn Cn Cn

Case 1 Case 2 Case 3 Case 4

F

J

J
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J

F

J

J

F

J

Figure 3.13: The four cases of 2-finality. In each case, the supermajority link finalizes the
source checkpoint and justifies the target checkpoint. Inspired by [49].

3.2.3 LMD GHOST

The fork-choice rule implemented in Ethereum’s proof-of-stake protocol is called Latest

Message Driven Greedy Heaviest Observed SubTree (LMD GHOST) [49]. LMD GHOST

is an adaptation of the GHOST protocol; however, it utilizes validators’ attestations instead

of blocks to calculate subtrees and find the head block. LMD GHOST only considers the

latest attestation from each validator, hence the term latest message driven.

In Ethereum, LMDGHOSTandCasper FFGwork together to ensure a secure blockchain.

LMD GHOST is responsible for growing the chain by handling block proposals and attes-

tations, while Casper FFG, built on top of LMD GHOST, provides finality by periodically

finalizing blocks to protect against chain reorganization and ensure consistency.

Unlike Casper FFG, which exclusively considers attestations included in blocks, LMD

GHOST also considers attestations received directly through the gossip protocol. Conse-

quently, the head discovered after executing LMD GHOST relies on each node’s local view

of the chain, as there is no assurance that nodes have observed the same blocks and attesta-

tions.

Each node records the latest attestation from every validator using a Store object [52].

Once a valid attestation from a validator is recorded, it is stored indefinitely in Store and

continuously contributes to calculating subtrees in LMDGHOST.Onlywhen a validator sub-

mits a newer attestation will his record be updated. To be deemed valid for inclusion in the

Store, an attestation must originate from the previous or current epoch and pertain to a

block that actually exists (i.e., the node has observed it).

To illustrate how LMDGHOST operates, refer to Figure 3.14, where the blue blocks rep-

resent the canonical chain after running LMDGHOST. In this instance, each attestation has

a vote of 1, but in the actual implementation, it depends on the stake size. Nonetheless, the
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fundamental principle remains the same. In this scenario, validators are expected to attest

to the leaf block in the canonical chain, while a block proposer should build upon it. The leaf

block identified after executing LMD GHOST will serve as the beacon_block_root vote in

AttestationData.

Genesis 8 8

3

5

3

2

1

1

1

3

1

1 1Block

Attestation

Figure 3.14: An example of the LMD GHOST fork-choice rule. In this example, the blue
blocks will be the canonical chain. Inspired by [49].

3.2.4 Gasper

TheEthereumconsensus protocol, knownasGasper, combinesCasper FFGandLMDGHOST.

Casper FFG is designed to guarantee the protocol’s safety, whereas LMD GHOST is primar-

ily focused on ensuring liveness. Validators vote simultaneously for each of these consen-

sus mechanisms in their attestation, which was highlighted in Listing 3.3 where beacon_-
block_root is the LMD GHOST vote and the source and target checkpoint votes are for

Casper FFG.

In Gasper, the most significant changes pertain to LMDGHOST, particularly in terms of

which blocks it deems viable for the head. Unlike the traditional LMD GHOST algorithm,

which considers all blocks from genesis onwards, Gasper’s LMD GHOST algorithm adjusts

its considerations. With Casper FFG providing finality to the blockchain, there is no neces-

sity to consider blocks preceding the last finalized checkpoint, given the global commitment

to never revert it. As the last justified checkpoint represents a personal commitment to avoid

reversion, nodes initiate from this point and only concern themselves with branches ascend-

ing from this juncture onward. For an illustrative example, see Figure 3.15.

For further insights into Gasper and its implementation specifics within Ethereum, refer

to [55, 56].

Note 3.4. During the genesis epoch, which spans slots [0, 31], votes for Casper FFG do not

directly influence protocol decisions but still impact the fork-choice rule. Validators active

during this period receive full rewards and are incentivized to attest [50].
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Figure 3.15: The global commitment applies to the finalized checkpoints, which include all
blocks from the genesis block up to checkpointC1. The personal commitment refers to a val-
idator’s pledge not to reverse the justified checkpoint C2. The black-grey blocks are pruned
and will not be part of the main chain. The blue blocks are the potential head blocks that the
LMD GHOST algorithm can choose.

Slashing

As each validator generates precisely one attestation per epoch and has its stake locked up,

Ethereum 2.0defines slashing conditions to penalizemalicious behavior. A slashed validator

will have some or all of its stake removed.

Definition 3.1. A validator is slashed if one the following conditions is violated [49].

(S1) No validator makes two distinct attestations α1, α2 with epoch(α1) = epoch(α2).

(S2) No validator makes two distinct attestation α1, α2 with

epoch(LJ(α1)) < epoch(LJ(α2)) < epoch(LE(α2)) < epoch(LE(α1)).

(S3) No validator proposes two distinct blocks b1, b2 with slot(b1) = slot(b2).

The first condition (S1) prohibits validators from issuing multiple attestations with differ-

ing AttestationData. The second condition (S2) is pertinent to Casper FFG and prevents

validators from attesting to a source and target that surrounds another attestation from

the same validator. The final condition (S3) prohibits block proposers from engaging in

equivocation.

Inactivity Leak

Given Ethereum 2.0’s emphasis on liveness over safety, the protocol continues to generate

blocks even when checkpoints remain unfinalized. In cases where there hasn’t been a fi-

nalized checkpoint for MIN_EPOCHS_TO_INACTIVITY_PENALTY (4) epochs [31], an emergency

measure known as the inactivity leak is triggered to restore finality to the protocol.

The inactivity leak uses a scoringmechanism called the inactivity score [32, 57] to penal-

ize inactive validators. This score is maintained individually for each validator in the beacon

state and is updated during epoch processing.
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Figure 3.16 illustrates how the inactivity score is adjusted for validators, with active de-

noting those who submitted a timely attestation. During epoch processing, validators may

have a portion of their stake deducted due to their inactivity score. These penalties increase

exponentially as their inactivity score increases. Upon re-finalizing a checkpoint, the in-

activity leak is turned off, indicating that the active validators now possess 2/3 of the total

stake.

Even after deactivating the inactivity leak, validators who remained offline throughout

the period will continue to face penalties in subsequent epochs until their inactivity scores

reach 0, representing the minimum score a validator can have.

Decrease score by 1

Increase score by 4

Decrease score by 16

No

Yes No

Yes

Active? In leak?

Figure 3.16: Flow diagram of how the inactivity_score is updated for each validator dur-
ing epoch processing. Inspired by [57].

3.3 Validator Lifecycle

This section provides an overview of the lifecycle of a validator in Ethereum 2.0. We start

by defining a validator per the consensus specifications and explaining how it is stored in

the beacon state. Then, we discuss the rate-limiting mechanisms for activations and exits

of validators. Subsequently, we explore both the deposit and withdrawal processes. Finally,

we summarize all the aspects of a validator.

3.3.1 Validator

At the heart of Ethereum 2.0 are the validators who are responsible for tasks like proposing

blocks and making attestations. The core details about validators in Ethereum are encapsu-

lated within a specific Validator class, shown in Listing 3.4 [31].

class Validator(Container):
pubkey: BLSPubkey
withdrawal_credentials: Bytes32 # Commitment to pubkey for withdrawals
effective_balance: Gwei
slashed: boolean
# Status epochs
activation_eligibility_epoch: Epoch # When criteria for activation were met
activation_epoch: Epoch
exit_epoch: Epoch
withdrawable_epoch: Epoch # When validator can withdraw funds

Listing 3.4: Validator class as defined by the consensus specifications [31].
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The pubkey field serves as a unique identifier for validators and is used to verify their signa-
ture. It contains a BLS public key, the digital signature scheme used for the consensus layer.

The withdrawal_credentials field is the withdrawal address, which indicates the destina-

tion for a validator’s rewards and remaining balance upon exiting. The effective_balance
denotes the effective balance of a validator. The slashed field is a boolean value indicating

whether the validator has been slashed. The remaining four fields are utilized in the acti-

vation and exiting processes by specifying the epochs for these events. When a validator is

initialized, all status epochs are set to FAR_FUTURE_EPOCH (264− 1), a predefined constant in

Ethereum. This is the default value for validators’ status epochs until explicitly defined [31].

A simplified overview of a validator’s lifecycle is depicted in Figure 3.17.

X
Activation

XX
Exit Withdrawable

Eligible for Rewards and Penalties

Liable to being Slashed

X
Eligibility

Waiting for

Activation

Figure 3.17: An overview of the status epochs in the Validator class 3.4.

An active validator, introduced briefly in Section 3.2.1, is formally defined as a validator

whose activation_epoch ≤ current_epoch < exit_epoch [31] (eligible for rewards and

penalties in Figure 3.17). Validators who meet this criterion are eligible to participate as

validators, generate attestations, and qualify for selection as block proposers.

Registry

In Ethereum 2.0, the beacon state maintains a registry of all validators [31]. Each validator

is assigned a unique ValidatorIndex (uint64) directly linking them to an Validator class

within the validators field in the BeaconState class, as illustrated in Listing 3.5.

class BeaconState(Container):
# Registry
validators: List[Validator, VALIDATOR_REGISTRY_LIMIT]
balances: List[Gwei, VALIDATOR_REGISTRY_LIMIT]
# Inactivity [New in Altair]
inactivity_scores: List[uint64, VALIDATOR_REGISTRY_LIMIT]
# Participation [Modified in Altair]
prev_epoch_participation: List[ParticipationFlags , VALIDATOR_REGISTRY_LIMIT]
cur_epoch_participation: List[ParticipationFlags , VALIDATOR_REGISTRY_LIMIT]

Listing 3.5: BeaconState class as defined by the consensus specifications [31, 32]. Only the

relevant fields are included.

This approach enables easy access to a specific validator’s state information by simply know-

ing its ValidatorIndex. Including the ValidatorIndex rather than the entire Validator
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class in messages significantly minimizes the message size. The VALIDATOR_REGISTRY_-
LIMIT (240) [31] establishes the maximum allowable number of validators. In the current

design, validators are only added to the registry without any removal, regardless of whether

they are active. As a result, the VALIDATOR_REGISTRY_LIMIT sets a cap of 1.1 trillion valida-

tors. Given that generating a validator requires aminimum deposit of MIN_DEPOSIT_AMOUNT
(1 ETH) [31], reaching this limit of 1.1 trillion validators is not anticipated to be an issue in

the foreseeable future.

Within the BeaconState class, the fields balances and inactivity_score are likewise

associated with a distinct ValidatorIndex, albeit stored in separate registries. This separa-
tion stems from these fields being updated every epoch, unlike the Validator class, which

undergoes less frequent updates. When computing the beacon state root, only the modified

portions need to be recalculated, while the data of unchanged parts can be cached. There-

fore, having data almost guaranteed to be updated on a per-epoch basis in their registries

reduces the necessary calculation required. The inactivity_score is linked to the inactivity
leak explored in Section 3.2.4.

Theparticipation fields indicatewhich validators have provided timely attestations. These

fields use flags to signal whether validators have submitted timely votes for the head, source,

and target in AttestationData. Such information is crucial for calculating their rewards and

confirming if a supermajority link was reached for an epoch. Storing data for two epochs is

necessary because validators can have their attestations for epoch j included up to the final

slot of epoch j + 1.

Balances

The beacon chain tracks two balance records for each validator: their actual balance and

effective balance [58]. The actual balance corresponds to the balances field in the Beacon-
State class, while the effective balance is directly stored inside the Validator class. The

actual balance for a validator is straightforwardly calculated using Equation 3.1.

actual balance = deposits+ rewards− penalties− withdrawals (3.1)

The actual balance of validators is updated during epoch processing and is measured with

high precision, calculated in Gwei, which represents 10−9 ETH and can be any amount of

Gwei. On the other hand, the effective balance is also calculated in Gwei but is limited to

whole multiples of EFFECTIVE_BALANCE_INCREMENT (1 ETH) [31], derived from the actual

balance. The effective balance underpins nearly all validator calculations. When determin-

ing if a validator can be activated, the effective balance is the focal point of consideration.

When voting through attestations, the effective balance is considered for the LMD GHOST

vote and is utilized in the Casper FFG calculations. The Ethereumprotocol sets a limit on the

maximum number of increments, MAX_EFFECTIVE_BALANCE (32 ETH) [31], that a validator

can possess.

Example 3.1. For instance, if a node desires to stake N ETH, where N is a multiple of
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MAX_EFFECTIVE_BALANCE andN > 1, the node must haveN validators to attain an effective

balance of N × MAX_EFFECTIVE_BALANCE.

Updating Effective Balance

At the conclusion of each epoch (epoch processing), a function assesses whether validators’

effective balances require adjustment based on their actual balances. This process incorpo-

rates hysteresis to decrease the frequency of adjustments resulting from minor fluctuations

in the actual balance, with the goal of minimizing the need to recalculate the hash tree root

of the Validator class. Specifically, a validator’s effective balance remains unchanged until

their actual balance changes by at least 0.5 ETH [58]. If the actual balance is less than the

effective balance minus 0.25 ETH, the effective balance is decremented. Conversely, if the

actual balance exceeds the effective balance plus 1.25 ETH, the effective balance is incre-

mented.

Example 3.2. Two validators, A and B, have effective balances of 31 and 32, respectively.

For validatorA to increase its effective balance to 32, its actual balance must be≥ 32.25. On

the other hand, for validatorB to decrease its effective balance to 31, its actual balance must

be ≤ 31.75.

Ejection

If a validator’s effective balance drops to or below EJECTION_BALANCE (16ETH), the validator
is automatically ejected from the system [31, 57]. This serves a dual purpose: it protects an

offline validator thatmay have lost its key from losing all its ETH, and it aids in restoring 2/3

of the total effective stake back to active validators. Regarding effective balance calculation,

a validator is queued for ejection as soon as its actual balance drops below 16.75 ETH.

3.3.2 Rate-Limiting Activations and Exits

Validators can leave the system, while new validators can join anytime. Tomaintain stability

within the validator set between two checkpoints used to calculate if a supermajority link has

been achieved, Ethereum enforces restrictions on the number of validators allowed to join

or exit the system through a rate-limitingmechanism. In principle, Ethereum does not want

the active validator set to change rapidly.

We will look at the process for joining the system, which is analogous to exiting. Valida-

tors with an effective balance of MAX_EFFECTIVE_BALANCE that have not yet been activated

are added to an activation queue. During epoch processing, a limited number of validators,

determined by a churn limit, are dequeued from the activation queue following a first-in,

first-out (FIFO) order. The churn limit controls the rate at which validators are activated
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per epoch [59] and is determined by Equation 3.2 and 3.3.

churn_limit = max(MIN_PER_EPOCH_CHURN_LIMIT,
⌊ |Vactive|

CHURN_LIMIT_QUOTIENT

⌋
) (3.2)

churn_limit = min(churn_limit, MAX_PER_EPOCH_ACTIVATION_CHURN_LIMIT (3.3)

For Equation 3.2, MIN_PER_EPOCH_CHURN_LIMIT is 4, CHURN_LIMIT_QUOTIENT is 216, and

|Vactive| represents the number of active validators [31, 35]. The MIN_PER_EPOCH_CHURN_-
LIMIT ensures a minimum number of validators can join the system, particularly when the

number of active validators is low. This mechanism guarantees that new validators will

eventually be able to join the system. For Equation 3.3, the MAX_PER_EPOCH_ACTIVATION_-
CHURN_LIMIT (8) determines the maximum amount of validators eligible to join or exit the

system on a per-epoch basis [35].

3.3.3 Lifecycle

We will now explore the lifecycle of a validator in a step-by-step manner based on the infor-

mation provided in [50, 59], with Figure 3.18 showing a visual presentation of the steps. All

the validator fields that will be checked and updated below are stored in the Validator class
from Listing 3.4.

1. Deposited: The validator has initiated a transaction of 32ETH to a specific smart con-

tract on the execution layer. Subsequently, the validator has been added to the beacon

state after undergoing a deposit process, which will be discussed in Section 3.3.5.

2. Eligiblity: During epoch processing, validators are evaluated to see if they can join

the activation queue. To qualify, a validatormust have an effective_balance equal to
MAX_EFFECTIVE_BALANCE (32 ETH) and their activation_eligibility_epoch must

be set to FAR_FUTURE_EPOCH. If they meet both conditions, their activation_eligi-
bility_epoch is updated to current_epoch + 1, and they are added to the end of the

activation queue.

3. Activation Queue: During epoch processing, validators in the activation queue un-

dergo checks to determine if they can be activated. To be eligible for activation, a val-

idator must have its activation_eligibility_epoch finalized and the activation_-
epoch set to FAR_FUTURE_EPOCH. If both of these conditions are met, validators up to

the churn limit will have their activation_epoch set to current_epoch + MAX_SEED_-
LOOKAHEAD + 1 in a FIFO order. The MAX_SEED_LOOKAHEAD (4 epochs≈ 25.6mins) [31]

is related to an attack on the randomness accumulator and will be looked at in Sec-

tion 3.4.2.

4. Activated: After activation, the validator will provide attestations on a per-epoch

basis and is eligible for selection as a block proposer. Most validators will remain in

the active state for an extended period to accumulate rewards.
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5. Exit: There are three ways a validator can exit the active validator set: voluntary

exit, ejection, and being slashed. Regardless of the method, all validators must un-

dergo an initiate exit process, which unfolds as follows: The validator is placed in an

exit queue akin to the activation queue. Validators dequeued from the exit queue, up

to the churn limit, have their exit_epoch updated to current_epoch + MAX_SEED_-
LOOKAHEAD. Subsequently, the withdrawable_epoch is set to exit_epoch + MIN_VAL-
IDATOR_WITHDRAWABILITY_DELAY (28 epochs ≈ 27 hours) [31]. The rationale behind

the withdrawable delay is to ensure that validators who engage in misconduct can still

be identified and penalized even after they exit the system but still have their stake

locked up.

a) Voluntary Exit: This occurs when a validator initiates a voluntary exit, indi-

cating that it wants to stop being a validator. Before a validator can initiate a

voluntary exit, it must have been active for at least SHARD_COMMITTEE_PERIOD
(28 epochs ≈ 27 hours) [31].

b) Ejection (InsufficientBalance): This happenswhen the effective_balance
of an validator drops to or below EJECTION_BALANCE (16 ETH).

c) Slashed: If a validator gets slashed, the withdrawable_epoch is set to exit_epoch
+ EPOCHS_PER_SLASHINGS_VECTOR (213 epochs ≈ 36 days) instead of the usual

withdrawable epoch in the initiate exit procedure [31].

6. Withdrawable: The validator can now withdraw their stake, officially ending their

status as a validator.

Appending an additional epoch to some of the validator’s status fields is necessary due to the

timing of epoch processing, which occurs at the last slot of an epoch. During this process,

calculations are carried out for epoch j + 1 while still within epoch j. This step is unneces-

sary for the initiate exit process, as it is handled during block processing rather than epoch

processing.

Note 3.5. All nodes in the network maintain the activation queue as a separate data struc-

ture. However, this isn’t the case for the exit queue, which is dynamically recalculated from

the exit epochs of all validators stored in the beacon state, ensuring a fixed number can exit

per epoch. Upon a validator initiating the exit process, all associated fields are promptly up-

dated, regardless of potential changes in the churn limit in subsequent epochs. For example,

in epoch j, if the churn limit is 5 and 200 validators initiate the exit process during epoch j,

all of these validators will have their exit epoch determined based on the current churn limit

of 5, even if the churn limit were to change to 4 or 6 in the subsequent epoch j + 1.

3.3.4 Deposit

In Ethereum 2.0, individuals interested in becoming validators must deposit a stake of 32

Ether onto the execution layer through a specified smart contract [50]. With Ethereum’s

dual-layer structure consisting of the execution and consensus layers, a distinction exists
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Figure 3.18: Lifecycle stages of a validator in Ethereum 2.0, including deposit, eligibility
assessment, activation, operation, and exit processes. Inspired by [59].
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between the Ether on these layers [60]. Ether on the execution layer is used for transaction

execution and smart contract interactions, whereas Ether on the consensus layer is solely for

the balance of validator accounts. As a result, users with Ether on the execution layer cannot

directly utilize it on the consensus layer; instead, it must be explicitly transferred from the

execution layer to the consensus layer.

Deposit Contract

To become a validator in Ethereum 2.0, a usermust initiate a standard Ethereum transaction

to a specific smart contract known as the deposit contract [61]. A transaction amount of

32ETH is required for activation, although it is also possible to become a validator bymaking

multiple transactions of lower amounts that sum up to 32 ETH. The minimum deposit a

user can make to the deposit contract is MIN_DEPOSIT_AMOUNT (1 ETH) [31]. There is no

maximum deposit limit, but it is futile to deposit more than 32 ETH, as the effective balance

of a validator caps at MAX_EFFECTIVE_BALANCE (32 ETH).

The deposit contract utilizes an incremental Merkle tree with a depth of DEPOSIT_CON-
TRACT_TREE_DEPTH (32), enabling it to accommodate up to 232 leaves, thus facilitating a ca-

pacity for up to 4.3 billion deposits. This contract supports two primary operations: ap-

pending a leaf and calculating the root. The deposit contract and its corresponding Solidity

source code are available on Ethereum’s GitHub [62].

Listing 3.6 outlines a user’s specific data required for the transaction. The pubkey will

be the public key of the validator. Withdrawal information is stored in the withdrawal_-
credentials field. The amount indicates the deposited amount to the deposit contract and

determines the increment in the validator’s balance. The amount is measured in Gwei and

must surpass MIN_DEPOSIT_AMOUNT (1 ETH).

class DepositData(Container):
pubkey: BLSPubkey
withdrawal_credentials: Bytes32
amount: Gwei
signature: BLSSignature # Signing over DepositMessage

Listing 3.6: DepositData class as defined by the consensus specifications [31].

The field signature contains a BLS signature over a DepositMessage, encompassing the

initial three fields: pubkey, withdrawal_credentials, and amount. A DepositData is es-

sentially a signed version of a DepositMessage. The signature serves as evidence that the

user possesses the secret key corresponding to the provided public key.

Once the deposit transaction executes on the EVM, it generates a receipt as an EVM log

event containing the DepositData, provided the deposit contract validates its data. The con-
sensus layer then retrieves this data and incorporates it into a beacon block for processing.

Note 3.6. The EVM does not validate the signature field due to its incapability to support
BLS signature verification [62]. So, the responsibility of verifying the signature lies with the

consensus layer. Should the signature fail to pass this validation, the associated validator

will not be included in the BeaconState, resulting in the loss of the deposited amount. All
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interactions with the deposit contract burn Ether, effectively reducing its circulation. How-

ever, receipts from the deposit contract act as proof for the consensus layer to issue new

Ether. This process explains the differentiation between Ether on the execution and con-

sensus layers.

3.3.5 Deposit Processing

During the pre-merge phase, the beacon chain and the execution chain ran concurrently.

Given that the beacon chain relies on the state of the deposit contract housed within the

execution chain, participants need to establish a unified view of the deposit contract. This

is accomplished through a voting mechanism, where each block proposer integrates their

view of the deposit contract by including an Eth1Data class shown in Listing 3.7 in their

beacon block. The deposit_root signifies the current hash tree root of the deposit contract’s
incremental Merkle tree, while the deposit_count indicates the total number of deposits

recorded in the deposit contract. The last field block_hash refers to a particular block on

the execution chain that reflects this view of the deposit contract.

class Eth1Data(Container):
deposit_root: Root
deposit_count: uint64
block_hash: Hash32

Listing 3.7: Eth1Data class as defined by the consensus specifications [31].

To update the unified view of the deposit contract, participants must achieve consensus by

having a majority of block proposers vote for the same Eth1Data over a period of EPOCHS_-
PER_ETH1_VOTING_PERIOD (64 epochs = 2048 slots ≈ 6.8 hours) [31]. The voting period is

often denoted as a cycle.

All information concerning the voting process and the latest deposit contract view is

stored in the BeaconState, as depicted in Listing 3.8. The eth1_data represents the most

recent unified view of the beacon chain regarding the deposit contract. The eth1_data_-
votes contain the Eth1Data votes from block proposers in the current cycle and are reset at

the beginning of a new cycle. The last field, eth1_deposit_index, indicates the total number

of deposits the beacon chain has processed.

class BeaconState(Container):
# Eth1
eth1_data: Eth1Data
eth1_data_votes: List[Eth1Data, EPOCHS_PER_ETH1_VOTING_PERIOD*SLOTS_PER_EPOCH]
eth1_deposit_index: uint64

Listing 3.8: BeaconState class as defined by the consensus specifications [31]. Only the

relevant fields are included.

During block processing, a check is conducted to determine if amajority of the same Eth1Data
is present in the eth1_data_votes. Usually, block proposers vote for the Eth1Data with the
highest level of support. However, if the eth1_data_votes is empty, the block proposer

votes for its latest view of the deposit contract.
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Upon reaching a majority (≥ 1025) in a cycle, the beacon state adopts this new per-

spective. If a majority is not achieved during a cycle, the deposit contract view remains

unchanged, prompting validators to retry in the next cycle.

To cast a vote for a contract deposit view, the block containing the view must also have

a timestamp that is ETH1_FOLLOW_DISTANCE (211 = 2048) × SECONDS_PER_ETH1_BLOCK (14

seconds) old, amounting to roughly 8 hours [31]. This measure was implemented to ensure

high confidence that potential long reorganizations on the execution chain would not affect

the beacon chain. Considering both the following distance and voting period, the minimum

time a validator needs to wait after depositing to the deposit contract is 11.4 hours, compris-

ing 8 hours for distance and 3.4 hours for voting.

Upon updating the eth1_data with a new Eth1Data featuring a deposit_count of n,

replacing the prior deposit_count ofm, there may be n−m new deposits included in forth-

coming beacon blocks. The deposit_root in the new Eth1Data represents the root of the

incremental Merkle tree after n deposits. Therefore, block proposers must construct Merkle

proofs for depositsm+1,m+2, ..., n such that the final tree root for each proof matches the

deposit_root stored in the beacon state. Each validator maintains its own deposit Merkle

tree based on the deposit receipts (EVM log events) it has encountered from its execution

client. As validators come across deposit receipts, they update their Merkle trees accord-

ingly. Over time, this results in a deposit Merkle tree root that matches the deposit_root
of the Eth1Data already present in the BeaconState. Validators can then easily generate

Merkle proofs for depositsm+1,m+2, ..., n since they have already constructed theMerkle

tree with n deposits. Therefore, if a validator becomes a block proposer, it can generate up

to MAX_DEPOSITS (16) Deposits to include in its beacon block.

The Deposit class, as delineated in Listing 3.9, encompasses two components: a data ob-
ject, which takes the form of a DepositData from Listing 3.6, and a proof, which constitutes
a Merkle proof. This proof enables other validators to verify that the included DepositData
has indeed been deposited to the deposit contract.

class Deposit(Container):
# Merkle path to deposit root
proof: Vector[Bytes32, DEPOSIT_CONTRACT_TREE_DEPTH + 1]
data: DepositData

Listing 3.9: Deposit class as defined by the consensus specifications [31].

A block proposer is required to incorporate all available Deposits into the beacon block

in sequential order, up to the maximum of MAX_DEPOSITS (16). However, if the difference

between deposit_count and eth1_deposit_index is less than 16, only the deposit disparity

should be included. If this difference is zero, no deposits are expected to be included.

Maintaining the sequential order of Deposits is crucial because the eth1_deposit_in-
dex in the beacon state is used to verify that the included Merkle proof accurately proves

the deposit’s position in the deposit tree created by the deposit contract. The entire beacon

block is considered invalid if a block proposer fails to include any outstanding Deposits or
any proofs are found invalid.
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During block processing, all the Deposits included in the beacon block undergo pro-

cessing. If all the Deposits are deemed valid, new validators are incorporated into the Bea-
conState. However, if a Deposit is made with a specific pubkey that already exists in the

BeaconState, it adjusts the balance of the corresponding Validator instead of appending

a new entry to the BeaconState. New validators are only added to the BeaconState if their

pubkey has not been previously added.

Note3.7. Following themerge, the execution chain becamepart of the beacon chain through

an execution_payload, ensuring that all nodes tracking the canonical beacon chain share a
unified view of the execution chain, which includes the deposit contract. In the post-merge

stage, consensus on the deposit contract is automatically achieved through agreement on

the beacon chain, but the voting process is still used. An upcoming hard fork is expected to

fix the voting mechanism [63].

3.3.6 Withdrawals

The last remaining part of a fully functional proof-of-stake system is enabling participants

to withdraw their stake. In earlier phases, including Phase 0, Altair, and Bellatrix, validators

could not withdraw their balances, locking all deposited Ether on the consensus layer. The

capability to withdraw rewards and stakes from the consensus layer to the execution layer

was introduced in the Capella hard fork, as illustrated in Figure 3.2.

Every validator holds two BLS keys: one for signing and one forwithdrawal. The sign-

ing key is used for all activities associated with being an active validator, while the with-

drawal key proves ownership of the validator’s balance and allows for modifying the with-
drawal_credentials [64]. In the initial stages of Ethereum’s proof-of-stake system, the

withdrawal_credentials were included as a commitment to enable future withdrawals, as

the integration of all system components was not yet fully understood [34].

Withdrawal Credentials

During the phases when withdrawals were not possible, and the methods for conducting

withdrawals were not yet defined, each validator retained a withdrawal key. Through the

withdrawal_credentials, this key allowed validators to prove ownership of their balance.
Separating the withdrawal key from the signing key divides the ownership and manage-

ment responsibilities of the stake. Thewithdrawal key controls ownership of the stake, while

the signing key handles the day-to-day operations of managing the stake. This separation

allows third-party staking services to use the signing key for routine activities without hav-

ing ownership of the stake or rewards, as the individual staker retains control through the

withdrawal key [64].

With the introduction of Capella, withdrawals became possible (the process of howwith-

drawals occur will be examined in Section 3.3.6). Validators wishing to have their stake

withdrawable from the consensus layer to the execution layer had to upgrade their with-
drawal_credentials to a new format introduced in Capella. Currently, Ethereum employs

two styles of withdrawal_credentials, distinguished by their prefix (the first byte) [34].
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In the old style, a hash of the withdrawal public key is stored, with the first byte substi-

tuted by BLS_WITHDRAWAL_PREFIX (0x00). An example of the old style can be seen in List-

ing 3.10.

0x0089bd80690958ec4cd3a98d426c227dbf90238c599d0a3b6e5f1c76267cf07d

Listing 3.10: Old withdrawal credential using the BLS_WITHDRAWAL_PREFIX (0x00) prefix.

The new style uses a new prefix, ETH1_ADDRESS_WITHDRAWAL_PREFIX (0x01), followed by 11
zero bytes and then 20 bytes representing a standard Ethereum address (execution layer

address). An example of the new style can be seen in Listing 3.11.

0x0100000000000000000000003804bd29e8b6140ae020cb14061dfa2f34bf1a9f

Listing 3.11: New withdrawal credential using the ETH1_ADDRESS_WITHDRAWAL_PREFIX
(0x01) prefix.

Validators whose withdrawal_credentials begin with 0x00 and wish tomake their balance

withdrawable can update their credentials to the new style 0x01. To update their credentials,
a validator must submit a BLSToExecutionChange message, as defined in Listing 3.12 [34].

class BLSToExecutionChange(Container):
validator_index: ValidatorIndex
from_bls_pubkey: BLSPubkey
to_execution_address: ExecutionAddress

Listing 3.12: BLSToExecutionChange class as defined by the consensus specifications [34].

The validator_index indicates a specific validator in the beacon state. The from_bls_pub-
key represents the withdrawal public key of the requesting validator. The to_execution_-
address field indicates the execution layer address where withdrawals will be sent.

For the message to be accepted by nodes, it must be signed by the withdrawal secret

key (ownership key) and then broadcast to the consensus layer’s peer-to-peer network. The

broadcasted message can be seen in Listing 3.13.

class SignedBLSToExecutionChange(Container):
message: BLSToExecutionChange
signature: BLSSignature

Listing 3.13: SignedBLSToExecutionChange class as defined by the consensus

specifications [34].

After a period of time, a block proposer should include the SignedBLSToExecutionChange in
its proposed beacon block. The block proposer can include up to MAX_BLS_TO_EXECTUION_-
CHANGE (16) of these changes in its beacon block.

During block processing, each included SignedBLSToExectuionChange must meet the

following requirements [64]:

1. The associated validator_index within the BeaconState is prefixed with BLS_WITH-
DRAWAL_PREFIX (0x00) for its withdrawal_credentials.
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2. The hash of from_bls_pubkey matches the withdrawal_credentials except for the

first byte.

3. The signature over the message is verified against from_bls_pubkey.

If these requirements are met, a validator’s withdrawal_credentials are permanently up-

dated to Eth1 withdrawal credentials, allowing the validator to receive withdrawals.

Once the withdrawal_credentials have been updated to the new style, the withdrawal

key becomes obsolete and serves no further purpose as changing withdrawal_credentials
is a one-time operation. The execution layer address then assumes ownership of the stake.

However, if a validator loses its withdrawal key before updating the withdrawal_creden-
tials, the Ether associated with that validator will remain indefinitely locked in the con-

sensus layer.

Voluntary Exit

The typical method for validators to exit the active validator set is to issue a voluntary exit

message indicating their intention to leave the system and have their stake made withdraw-

able. This involves creating a VoluntaryExit and encapsulating it within a SignedVolun-
taryExit, which are shown in Listings 3.14 and 3.15 respectively.

class VoluntaryExit(Container):
epoch: Epoch # Earliest epoch when voluntary exit can be processed
validator_index: ValidatorIndex

Listing 3.14: VoluntaryExit class as defined by the consensus specifications [31].

The epoch field in the VoluntaryExit class indicates the earliest epoch when the voluntary

exit can be processed. If the epoch field is later than the current epoch, nodes can choose to

buffer themessage or ignore it. Additionally, both the included epoch and the current epoch

must be greater than or equal to a validator’s activation_epoch + SHARD_COMMITTEE_PE-
RIOD (256), as depicted in Figure 3.18. The validator_index identifies the specific validator
requesting to exit the active validator set.

For a VoluntaryExit message to be considered valid, it must be encapsulated within

a SignedVoluntaryExit, signed by the exiting validator’s signing key (not the withdrawal

key). This mechanism prevents unauthorized parties from broadcasting voluntary exit mes-

sages on behalf of other validators.

class SignedVoluntaryExit(Container):
message: VoluntaryExit
signature: BLSSignature

Listing 3.15: SignedVoluntaryExit class as defined by the consensus specifications [31].

The SignedVoluntaryExit is broadcast to the consensus layer peer-to-peer network, en-

abling an upcoming block proposer to include it in their beacon block. Unlike the deposit

process, which involves the execution layer, the exiting process is solely managed within the

consensus layer.
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Note 3.8. A beacon block can accommodate a maximum of MAX_VOLUNTARY_EXITS (16)

instances of a SignedVoluntaryExit [31]. This allows up to 512 validators to signal their

intent to cease being active validators per epoch.

Withdrawal Process

Withdrawals for validators occur automatically, with block proposers sweeping through the

validator set to identify withdrawals for inclusion in their beacon block [34]. Thewithdrawal

process follows a round-robin pattern, commencing with ValidatorIndex 0. Each block

proposer iterates through the validator set until they discover MAX_WITHDRAWALS_PER_PAY-
LOAD (16) withdrawals for inclusion. The next block proposer resumes the search fromwhere

the previous one left off.

To limit the computational effort involved in identifying withdrawals, a block proposer

examines a maximum of MAX_VALIDATORS_PER_WITHDRAWALS_SWEEP (214) validators [34].

The search stops if it hasn’t found 16 withdrawals during the sweep. This limit is necessary

when many validators don’t meet the requirements for a withdrawal.

There are two types of withdrawals: partial withdrawal and full withdrawal [64]. A

partial withdrawal occurs when a validator’s actual balance exceeds 32 ETH, and the effec-

tive balance is MAX_EFFECTIVE_BALANCE (32 ETH). The requirement for the effective balance

ensures that validators do not remain stuck at an effective balance of 31 ETH due to the

hysteresis threshold for updating the effective balance. Partial withdrawals are performed

because an actual balance greater than 32 ETH is not needed, as the effective balance is

capped at that amount. This process ensures that instead of all rewards being locked on the

consensus layer, they become available on the execution layer.

On the other hand, a full withdrawal is only possible after a validator exits the valida-

tor set. To be eligible for a full withdrawal, the current_epoch must equal or surpass the

validator’s withdrawable_epoch, and the actual balance exceeds zero.
When processing the validator set, a block proposer determines whether a validator

should undergo a full or partial withdrawal, with priority given to full withdrawals. To qual-

ify for withdrawals, the withdrawal_credentials must adhere to the new style, starting

with the prefix 0x01.
Each withdrawal in a beacon block follows the format specified by the Withdrawal class,

as depicted in Listing 3.16.

class Withdrawal(Container):
index: WithdrawalIndex
validator_index: ValidatorIndex
address: ExecutionAddress
amount: Gwei

Listing 3.16: Withdrawal class as defined by the consensus specifications [34].

The index field represents the cumulative number of withdrawals up to the current block.

The amount field determines the reduction in the actual balance of the validator associated

with the validator_index, as well as the increase in the execution layer account specified
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in the address. The address field is set to the last 20 bytes of the withdrawal_credentials,
provided it adheres to the new withdrawal credentials style.

All nodes track the total number of withdrawals up to the present block and determine

the next eligible validator for withdrawal by retaining this data within the BeaconState, as
depicted in Listing 3.17. This stored information in the BeaconState is leveraged by block

proposers to generate a list of Withdrawal for their beacon block. At the same time, other

nodes use it to validate the included list of Withdrawal in beacon blocks.

class BeaconState(Container):
# Withdrawals [New in Capella]
next_withdrawal_index: WithdrawalIndex
next_withdrawal_validator_index: ValidatorIndex

Listing 3.17: BeaconState class as defined by the consensus specifications [34]. Only the

relevant fields are included.

3.3.7 Validator Lifecycle Summarized

Ahigher-level overview of a validator’s lifecycle can be observed in Figure 3.19. Withdrawals

are transferred from the consensus layer to the execution layer via the EngineAPI. ThePend-

ing state represents the deposit process, during which validators express their view of the

deposit contract. The queue, active, and exiting stages align with the phases illustrated in

Figure 3.18.
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Figure 3.19: Time progresses clockwise, and a validator can remain in the active state indef-
initely. Accounts 1 and 2may be the same or different execution layer addresses. Account 2
serves as the withdrawal address.

The transfer type to the deposit contract in Figure 3.19 is a single transaction of 32 ETH.
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However, users have the flexibility to achieve the same result gradually by making multiple

transactions of 1 ETH ormore, incrementing the validator’s account balance until it reaches

32 ETH [61, 62]. The hysteresis threshold outlined in Section 3.3.1 also affects top-ups. In

cases where a validator holds an actual balance of 31 ETH, a top-up of 1 ETH will not be

enough to update the effective balance to 32 ETH since it does not exceed the hysteresis

threshold.

3.4 Building Blocks

This section explores the key components that have enabled Ethereum 2.0. First, we in-

troduce domains and explain how messages signed by different fork versions are handled

during a hard fork. Next, we delve into how the beacon chain attains randomness. Fol-

lowing that, we analyze the composition of committees and the aggregation of attestations.

Finally, we investigate the selection process for aggregators.

3.4.1 Domain

On the consensus layer, all BLS signatures incorporate an additional value known as a do-

main, which varies depending on the type of signing being performed [65]. Including a

domain aims to prevent different signed messages intended for one function from inadver-

tently being valid in another function. After the Deneb fork, there are 11 distinct domain

types. Table 3.1 includes 8 of these domain types, while the other 3 are excluded as they are

irrelevant to this thesis.

Table 3.1: The consensus specifications define the domain types [31, 34]. The DomainType
are represented as Bytes4. The column on the right indicates during which hard fork the
domain type was introduced.

Name Value Fork

DOMAIN_BEACON_PROPOSER DomainType('0x00000000') Phase 0

DOMAIN_BEACON_ATTESTER DomainType('0x01000000') Phase 0

DOMAIN_RANDAO DomainType('0x02000000') Phase 0

DOMAIN_DEPOSIT DomainType('0x03000000') Phase 0

DOMAIN_VOLUNTARY_EXIT DomainType('0x04000000') Phase 0

DOMAIN_SELECTION_PROOF DomainType('0x05000000') Phase 0

DOMAIN_AGGREGATE_AND_PROOF DomainType('0x06000000') Phase 0

DOMAIN_BLS_TO_EXECUTION_CHANGE DomainType('0x0A000000') Capella

Constructing a Domain (32 bytes) involves incorporating the appropriate DomainType from

Table 3.1 corresponding to the signed message, along with a hashed tree root of a ForkData
class, which is depicted in Listing 3.18. The initial four bytes of the Domain comprise of

the DomainType, while the remaining 28 bytes constitute the first 28 bytes of the hashed tree

root of the ForkData class. The ForkData consists of the current fork version and the genesis
validator root. Including the genesis validator root serves to distinguish between different
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chains. For instance, if a validator uses the same signing key for two different chains, such

as two testnets, a signature on one will not be valid on the other unless they share the same

genesis validator root. Including the fork version also ensures thatmessages across different

chain forks become invalid. This acts as a security measure to prompt users to upgrade their

software for new hard forks.

class ForkData(Container):
current_version: Version # Fork Version
genesis_validators_root: Root

Listing 3.18: ForkData class as defined by the consensus specifications [31].

However, there are three Domains that do not incorporate the current fork version: the DO-
MAIN_DEPOSIT, the DOMAIN_BLS_TO_EXECTUION_CHANGE and the DOMAIN_VOLUNTARY_EXIT.
Instead, these three incorporate the genesis fork version, making them valid for all fork ver-

sions. User experience considerations primarily drive this design choice. Tools employed

for these specific operations are relieved from the burden of monitoring the current fork

version, thus enhancing user convenience.

Every BLS signature within the consensus layer is generated by signing the hash tree root

of a SigningData, which includes an object_root and a domain, as illustrated inListing 3.19.
The object_root refers to the hash tree root of a particular object, such as an Attestation,
while the domain represents a Domain linked with that object.

class SigningData(Container):
object_root: Root
domain: Domain

Listing 3.19: SigningData class as defined by the consensus specifications [31].

When a hard fork is planned, a special situation arises with ForkData. For instance, an at-

testation created during the final slot of epoch j cannot be incorporated in a block before

the first slot of epoch j + 1. If a new fork version becomes active at epoch j + 1, the attes-

tation must have been signed using the previous fork version. Even though the attestation

was signed with an outdated fork version, it should still be valid. To facilitate the valida-

tion of messages signed under a previous fork, nodes maintain a Fork class, as illustrated in
Listing 3.20, within the beacon state. This enables the verification of messages associated

with an older fork version. If the epoch associated with the message is less than the epoch
field in the Fork class, the verification will use the previous_version instead of the cur-
rent_version. Messages created during the epoch specified or later are verified against the
current_version and cannot utilize an outdated fork version, encouraging users to update

their software.

class Fork(Container):
previous_version: Version # Fork Version
current_version: Version # Fork Version
epoch: Epoch # Epoch of latest fork

Listing 3.20: Fork class as defined by the consensus specifications [31].
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3.4.2 Randomness

In Ethereum 2.0, determining the roles of validators, like choosing the block proposer and

organizing the active validator set into committees, represents a challenge within the con-

sensus protocol. If every participant knew all the future block proposers and committee

members for upcoming slots and epochs, the system would be susceptible to attacks like

denial-of-service and censoring transactions. Tomitigate these issues, the protocol requires

a form of randomness, which is achieved through the use of pseudo-randomness that is con-

tinually updated as the beacon chain grows.

RANDAO

In Ethereum 2.0, the mechanism that accumulates randomness is called Randao. It acts as

an accumulator, gradually collecting randomness from contributors via blocks in the bea-

con chain [66]. In each proposed beacon block, the block proposer contributes to Randao.

This contribution is denoted by a randao_reveal object containing the BLS signature of the
block proposer for their designated epoch. Thus, all block proposers for a given epoch j

will sign the same message (sign over epoch j), irrespective of their assigned slot within the

epoch. The BLS signature scheme ensures precisely one valid signature for a given signing

key for a message. This differs from ECDSA, where multiple possible signatures can be pro-

duced with the same secret key for the message. This restricts the block proposer’s capacity

to manipulate the Randao value, as they can only update it with a unique randao_reveal,
minimizing the possibility of selecting a value advantageous to themselves.

The randao_reveal contributes to the update of the Randao through an XOR operation,

ensuring that the Randao is regularly refreshed with each valid block. IfRn−1 represents the

current Randao value and rn is the hash of randao_reveal for the newly proposed block, the
new Randao value Rn is calculated with Equation 3.4 and decpited in Figure 3.20.

Rn = rn ⊕Rn−1 (3.4)

A block must include a randao_reveal to be valid; otherwise, it will be rejected. If a block

is missing or invalid for a slot, the Randao value remains unchanged.

Lookahead

To give nodes in the network sufficient time to prepare for committee duties (the slot they

should attest for), they are informed about the Randao value for the current and the next

epoch in advance. How far in advance is determined by MIN_SEED_LOOKAHEAD (1 epoch) [31].
Therefore, the Randao value for epoch j is based on the randomness from MIN_SEED_LOOKA-
HEAD + 1 epochs ago (j − 2), while the Randao value for epoch j + 1 is derived from the

randomness accumulated up to the end of epoch j − 1. However, predicting the Randao

values for epochs beyond j+1 is not feasible since they are contingent on the current epoch

j, which is still accumulating randomness.
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Figure 3.20: The Randao value is updated by proposed blocks containing a randao_reveal,
which is hashed and XOR’d with the Randao value from the previous slot.

Note 3.9. The selection of block proposers is not influenced by the MIN_SEED_LOOKAHEAD
parameter because their selection is based on their effective balance, which can be updated

during epoch processing. Therefore, the election of all 32 block proposers for an epoch oc-

curs at the beginning of each epoch [50]. Since the same Randao value is employed for the

entire epoch, the same block proposer would be selected for all 32 slots. Therefore, the slot

number is also incorporated into the seed to enable distinct block proposers for each slot in

an epoch. For instance, during epoch j to find the block proposer for each slot, the corre-

sponding slot number jC+k, where k = {0, 1, ..., C−1}would be included in the calculation.

Since the Randao value is utilized for selecting validators from the entire active validator set,

there exists a potential vulnerability where attackers could exploit the network by strategi-

cally activating and exiting validators at specific times. To mitigate this risk, a maximum

lookahead parameter known as MAX_SEED_LOOKAHEAD (4 epoch) is enforced, ensuring that

all activation and exiting processes for epoch j are delayed by a minimum of 4 epochs [31,

50]. See Figure 3.21 for a visual example of the lookahead parameters.
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Figure 3.21: The Randao value accumulated until the end of epoch j dictates committee
duties for epoch j+2, as dictated by MIN_SEED_LOOKAHEAD (1 epoch). Validators exiting and
joining during epoch j+1will remain active until at least the end of epoch j+5 or join at the
earliest at epoch j + 5. Both exits and activations are determined by MAX_SEED_LOOKAHEAD
(4 epochs). Inspired by [66].
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Note 3.10. When computing the seed, validators incorporate a DomainType from Table 3.1

corresponding to its function. For example, the seed for determining block proposers in-

cludes DOMAIN_BEACON_PROPOSER, while the seed for determining committee duties includes

DOMAIN_BEACON_ATTESTER. Additionally, validators factor in the epoch number during seed

calculation. This is a precautionary measure in case no blocks are observed for over two

epochs. If this happens, the Randao value will become stale, potentially locking the system

(no blocks being proposed) in special cases.

Biasability

Each block proposer can modify the Randao value by proposing a valid block or maintain

its current value by abstaining from proposing a block. In the latter scenario, the validator

loses all rewards associated with the block proposal. Since the Randao value at the end of an

epoch j determines the committee duties for epoch j + 2 and the block proposers for epoch

j + 1, the last slot of an epoch holds significant importance in influencing the duties. This

influence is characterized as a binary decision, where the validator’s action can either update

the seed or not, resulting in a 1-bit influence [66]. If a validator possesses the last k slots,

they wield k bits of influence, affording them 2k possible ways to impact the seed value.

A validator can use k bits of influence as an attack commonly referred to as selfish mix-

ing [67], a strategy aimed at maximizing profits for a validator. The greater the number

of k bits of influence a validator possesses, the larger the opportunity to maximize profits.

Users with a higher percentage of the overall stake are expected to receive more slots in each

epoch. The attacker can also try to receive a majority in committees to influence the LMD

GHOST algorithm. For instance, if a validator holds 25% of the overall stake, it is antici-

pated to receive 1/4 of all slots in an epoch, equating to 8 slots. When validators obtain the

last slots of an epoch, they can maximize their profits in upcoming epochs. However, they

must consider that they forfeit this reward opportunity if they fail to propose a block. For a

detailed analysis and examples of the biasability of the Randao, refer to sources [66, 67].

3.4.3 Committees

The objective of committees is to divide the validator set so that each validator participates

in each epoch but only for a single slot. This division alleviates the burden on validators and

keeps the message overhead associated with attestations within manageable limits. Each

validator is assigned to precisely one committee, ensuring that all committees remain dis-

tinct throughout the epoch. Once the epoch concludes, all committees disband, and the

active validator set is rearranged into new committees for the subsequent epoch. These com-

mittees are often denoted as beacon committees to differentiate them from sync committees,

which is pertinent to light clients and falls outside the scope of this thesis. We’ll refer to the

beacon committees as committees in the remainder of this thesis.
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Shuffling

Ethereum utilizes a shuffling algorithm called swap-or-not [68] to randomly divide the ac-

tive validator set into committees using the seed fromRandao. This algorithm takes an array

of any length and pseudorandomly shuffles it (e.g., [0, 1, 2, 3, 4]→ [3, 0, 4, 2, 1]), with the com-

mittees being consecutive slices of the output array. Unlike many shuffling algorithms that

shuffle the entire array simultaneously, the swap-or-not algorithm shuffles only one index

at a time. This feature allows validators to easily determine their responsibilities for a given

epoch without performing the entire shuffling process. Additionally, it facilitates reverse

lookup, identifying the original array index corresponding to a shuffled array index.

The swap-or-not algorithm is also utilized for selecting the block proposer, with each val-

idator’s effective balance determining their probability of being chosen. For further details

about the shuffling algorithm and its implementation in Ethereum, refer to [69, 36].

Composition and Sizes of Committees

So far, we have assumed that each slot would have a single committee, but this is not always

the case. In any given slot, there can be a maximum of MAX_COMMITTEES_PER_SLOT (64)

committees, each capable of accommodating up to MAX_VALIDATORS_PER_COMMITTEE (2048)
validators. This results in a maximum of 32 × 64 × 2048 = 4, 194, 304 active validators in

Ethereum. However, achieving this limit would require approximately 134 million Ether

staked, surpassing the total amount of Ether, estimated to be around 120million [70].

To ensure a satisfactory level of security, each committee should consist of at least TAR-
GET_COMMITTEE_SIZE (128) validators. This requirement makes it improbable for an at-

tacker to randomly obtain a supermajority within a committee, even if they control many

validators [71].

When generating committees for an epoch, the objective is to ensure the following [72]:

1. Each slot within an epoch should accommodate the same number of committees.

2. Maximize thenumber of committeeswhilemaintaining TARGET_COMMITTEE_SIZE (128)
validators per committee.

3. When the number of committees per slot reaches MAX_COMMITTEES_PER_SLOT (64), the
committee will increase up to a maximum of MAX_VALIDATORS_PER_COMMITEE (2048)

validators.

The first condition hinges on having aminimum of SLOTS_PER_EPOCH (32) validators; other-
wise, some committees will contain zero validators. Regarding requirement 2, theremust be

at least 4096 validators (32× 128), or else some committees may not achieve their minimum

size requirement of TARGET_COMMITTEE_SIZE (128). Refer to Figure 3.22 for a graphical de-

piction illustrating the distribution of committees assigned to each slot throughout an epoch.

As shown in the AttestationData class from Listing 3.3, each attestation includes an

index field containing a CommitteeIndex, which indicates the committee the validator is

assigned in their designated slot. The CommitteeIndex ranges from 0 to N − 1, where N
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Figure 3.22: Each slot within an epoch accommodates the same number of committees,
denoted as N , capped at a maximum of MAX_COMMITTEES_PER_SLOT (64). Each committee
aims for a minimum of TARGET_COMMITTEE_SIZE (128) validators.

represents MAX_COMMITTEES_PER_SLOT (64) as shown in Figure 3.22. The decision to have

64 committees per slot originated from a sharding solution that is now deprecated [73].

3.4.4 Aggregate Attestations

Given the potential for up to 4million active validators (currently around 985, 000), storing

all attestations made for a slot in a single block would be unfeasible due to the extraordinary

size requirements. This underscores the primary rationale for adopting the BLS signature

schemewithin the consensus layer: its capability to aggregatemultiple signatures into a sin-

gle signature without compromising any inherent properties of a digital signature. Each val-

idator generates an AttestationData class from Listing 3.3 in Section 3.2.1, with their view

of the beacon chain (consensus votes), along with their assigned Slot and CommitteeIndex.
This AttestationData class is then integrated into an Attestation class, as illustrated in

Listing 3.21, where the signature field represents the validator’s signature over the Attes-
tationData. The validators also set a single bit to 1 in the aggregation_bits to denote their
membership in their assigned committee.

class Attestation(Container):
aggregation_bits: Bitlist[MAX_VALIDATORS_PER_COMMITTEE]
data: AttestationData
signature: BLSSignature

Listing 3.21: Attestation class as defined by the consensus specifications [31].

When two validators share identical AttestationData and their aggregation_bits are dis-
jointed, their signatures can be aggregated into a single signature using the BLS signature

scheme. If a validator is included multiple times in the signature, the aggregation_bits
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will not account for it, highlighting the necessity for them to be disjointed.

To verify an aggregated attestation, nodes must reconstruct the aggregated public key of

all included validators. This involves:

1. Identify the validators included in the aggregated attestation by their ValidatorIndex,
using the slot and index from the AttestationData in conjunction with the aggre-
gation_bits from the Attestation through the swap-or-not algorithm in reverse.

2. Retrieve and aggregate their public keys from the beacon state using their Valida-
torIndexs.

3. Authenticate the aggregated signature using the reconstructed public key.

Note 3.11. The maximum number of aggregated attestations a block proposer can include

is determined by MAX_ATTESTATIONS (128) [31]. To optimize block space, the block proposer

ismotivated to include aggregated attestationswhere the number of 1s in the aggregation_-
bits matches or closely aligns with the committee’s size. As slots have a MAX_COMMITTEES_-
PER_SLOT (64), indicating that a block can contain up to two slots’ worth of attestations. This
provides capacity within blocks to account for missed attestations from previous slots and

allows for including some imperfectly aggregated attestations.

Most Attestationswithin a single slot are likely to contain the same consensus votes (beacon_-
block_root, source, and target), while the index in their AttestationData will vary. Re-

moving the index from AttestationData could facilitate further aggregation of Attesta-
tions beyond the current maximum of 2048.

The upcoming hard fork (Electra) [74] will include EIP-7549 [75], which relocates the

index field from AttestationData to Attestation, allowing for even greater aggregation

of attestations beyond the current limit of 2048. This modification’s primary objective is to

significantly reduce the number of BLS verifications necessary to achieve a supermajority

vote (2/3 threshold).

3.4.5 Aggregator Selection

To prevent overwhelming the global Ethereum network with attestations, each committee

operates within a subnet where attestations circulate before an aggregated attestation is

broadcasted to the global network for block inclusion. These subnets will be looked at in

Section 3.5. If every validator were to aggregate attestations and broadcast an aggregate

attestation to the global network, it would be akin to each validator broadcasting its own at-

testation. Tomitigate this issue, only a subset of each committee is chosen to act as aggrega-

tors. These selected aggregators aggregate attestations from their committee and broadcast

the aggregated attestation to the global network during the final segment of a slot (8 − 12

seconds into the slot). The aggregation and selection process is shown in Figure 3.23.
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Figure 3.23: In each committee, validators sign their attestation and share it within a des-
ignated subnet. Aggregators are then selected to aggregate these attestations and broadcast
the aggregated attestation to the global network. Inspired by [76].

Selecting Aggregators

When choosing the subset of aggregators for a committee, it is advisable to include several

aggregators to enhance the likelihood of having an honest aggregator with a strong network

connection. Setting the number too low, such as 1 or 2, could pose risks if these aggregators

experience asynchrony or choose not to fulfill their duties properly. Ethereum targets TAR-
GET_AGGREGATORS_PER_COMMITTEE (16) aggregators per committee. However, to prevent at-

tacks such as denial-of-service, the selection process for aggregators is random and known

only to the chosen aggregators. Therefore, the chosen aggregators provide proof of their

selection, which other validators can easily verify when the aggregated attestation is broad-

casted to the global network [76].

The process for choosing aggregators for a committee is described in [50] and goes as

follows.

1. Each validator in the committee creates a verifiable random number by making a BLS

signature over the current slot number. The BLS signature is hashed using SHA256 to

generate a uniform random number denoted as x.

2. Equation 3.5 determines whether a validator is an aggregator for its committee.

Aggregator:

True, if x mod len(committee)
TARGET_AGGREGATORS_PER_COMITTEE = 0

False, otherwise
(3.5)

The len(committee) is how many validators are included in the given committee,

which can be a value between 1 and MAX_VALIDATORS_PER_COMMITTEE (2048).

Validators use their signing key to sign the slot number, ensuring the confidentiality of ag-

gregator selection. This signature is included as proof so other validators can verify their
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selection as an aggregator. In Listing 3.22 [31], the selection_proof represents the valida-
tor’s signature over the slot number.

class AggregateAndProof(Container):
aggregator_index: ValidatorIndex
aggregate: Attestation
selection_proof: BLSSignature

Listing 3.22: AggregateAndProof class as defined by the consensus specifications [31].

To prevent non-selected aggregators from altering the aggregate field while keeping the

selection_proof valid, the AggregateAndProof must be encapsulated within a SignedAg-
gregateAndProof. This wrapper includes the selected aggregator’s signature over the Ag-
gregateAndProof [50], which is shown in Listing 3.23.

class SignedAggregateAndProof(Container):
message: AggregateAndProof
signature: BLSSignature

Listing 3.23: SignedAggregateAndProof class as defined by the consensus

specifications [31].

Given the probabilistic nature of selection, the number of aggregators for a committee will

vary. However, on average, there will be approximately 16 aggregators for each committee.

Theworst-case scenario occurs when there are zero aggregators for a committee, resulting in

all the validators assigned to the committee missing out on their rewards since their attesta-

tions will not be included in a block. The probability of having no aggregator in a committee

is calculated as (1− 16
N )N , whereN represents the committee size and 16 is the TARGET_AG-

GREGATORS_PER_COMMITTEE [76].

3.5 Networking

This section examines the networking stack used by the consensus layer. We begin by ex-

plaining what format nodes use for their peer-to-peer address. Next, we delve into the dis-

covery process. We then explore howmessages are gossiped across the network using gossip

domains. Finally, we investigate how nodes request missing blocks using the Request/Re-

sponse domain.

3.5.1 Ethereum Node Record

In Ethereum, there are three ways to convey a node’s peer-to-peer address and identity:

multiaddr, enode, and Ethereum Node Record (ENR) [77].

1. Multiaddr: A universal address format designed for peer-to-peer networks, repre-

senting addresses as key-value pairs with keys and values separated by a forward slash.

2. Enode: An Ethereum-specific URL scheme primarily used in the discovery process

for the execution layer. This process closely mirrors the consensus layer discovery

(discussed in Section 3.5.2) but utilizes Discv4 [78] instead of Discv5 [79].
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3. ENR: The latest format, ENR, has replaced enode in most places due to its versatility.

An ENR is a signed key-value record sorted by key and must be unique, meaning each

key can only be present once. Some keys have predefined meanings as specified in

EIP-778 [80], limiting their use to the stated purposes. ENR is used in the consensus

client’s discovery process and for storing information about other peers.

The ENR record contains the following information:

• Sequence Number - A number incremented whenever the record is updated, enabling

nodes to track the most recent information effectively.

• Signature - A cryptographic signature of the record’s content.

• Additional key-value pairs - Pairs that can contain arbitrary metadata.

The additional key-value pairs listed below are the fields used for the consensus layer, as

specified in the consensus specifications [81].

• id: Specifies the name of the identity scheme (v4 is used). The identity scheme is

responsible for deriving a node’s address/ID.

• secp256k1: Represents a compressed secp256k1 public key, consisting of 33 bytes.

• ip: Refers to the IPv4 address of the node, consisting of 4 bytes.

• tcp: Denotes the TCP port of the node’s IPv4 address.

• udp: Indicates the UDP port of the node’s IPv4 address.

• ip6/tcp6/udp6: Same as above, but for IPv6 instead.

• eth2: Consists of an SSZ encoded object ENRForkID.

class ENRForkID(Container):
fork_digest: ForkDigest
next_fork_version: Version
next_fork_epoch: Epoch

The ForkDigest is the first 4 bytes of the hash tree root of ForkData (32 bytes) from

Listing 3.18 in Section 3.4.1. The next_fork_version is a Bytes4 value representing

the version of the upcoming planned hard fork, with next_fork_epoch indicating the

epoch when the hard fork is scheduled to occur. If there is no hard fork planned, the

next_fork_version mirrors the current fork version, and next_fork_epoch is set to

FAR_FUTURE_EPOCH.

For seamless network operations, clients should connect to peers with matching EN-
RForkID. Clients can also connect to peers with a different next_fork_version and

next_fork_epoch but must make sure they match before the hard fork occurs. Peers

should never connect if their fork_digest values differ, as this indicates they do not

share the same view of the current fork and/or the hash root of the genesis validator

set.
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• attnets: A SSZ object consisting of Bitvector[ATTESTATION_SUBNET_COUNT], which
indicates what attestation subnets the node is subscribed to. There are ATTESTATION_-
SUBNET_COUNT (64) subnets, matching the maximum committee size per slot of MAX_-
COMMITTEES_PER_SLOT (64) [81]. These subnets are used for aggregating attestations

before broadcasting them to the global network, as detailed in Section 3.4.4.

As there is no backbone for the subnets, each node is subscribed to SUBNETS_PER_NODE
(2) subnets for a given period of EPOCHS_PER_SUBNET_SUBSCRIPTION (256 epochs≈ 27

hours) [81]. This allows committeemembers to find their assigned subnet through the

attnets field in the ENR of other nodes. The node’s ID and the current epoch deter-

mine which subnets it should be subscribed to, ensuring that each node’s selection is

deterministic and shuffled.

3.5.2 Consensus Layer Network Stack

The networking stack of the consensus layer comprises three domains: discovery, gossip-

sub, and request and response, which are shown in Figure 3.24. Each domain has a distinct

responsibility, which will be explored in the following sections. Additionally, the right col-

umn in Figure 3.24 indicates each domain’s networking protocol/framework.

Discv5

Gossipsub

Req/Resp

Discovery

LibP2P

Node 1 Bootnode Node 2
FINDNODE

FINDNODE
WHOAREYOU

NODES
REGTOPIC

TICKET
REGTOPIC

REGCONFIMRATION

Status

BeaconBlocksByRange

BeaconBlocksByRoot

Ping

GetMetaData

beacon_block beacon_attestation_{subnet_id}

proposer_slashing attester_slashingvoluntary_exit

beacon_aggregate_and_proof

bls_to_execution_change

Chain_status

BeaconBlocks

BeaconBlocks

MetaData.seq_number

MetaData

LibP2P

GRAFT PRUNE IHAVE IWANT Control Messages

Figure 3.24: The networking stack of the consensus layer.

Discovery Domain

The initial step in joining the peer-to-peer network of the consensus layer involves discovery,

as depicted in Figure 3.24, which uses the Discv5 discovery protocol [79]. This protocol

draws inspiration from Kademlia Distributed Hash Table (DHT) [82], albeit focusing on

relaying and storing ENRs rather than arbitrary keys and values.

Since locating nodes without prior information is not feasible, the consensus client in-

corporates hardcoded bootnode addresses (ENR addresses). These addresses typically be-

58



long to various client teams or the Ethereum foundation. From a high-level perspective, the

system bootstraps by contacting a predefined set of known bootnodes. It then performs it-

erative lookups across the network to discover additional peers, populating a routing table

organized into k-buckets.

In the routing table, nodes are placed into a k-bucket according to their XOR distance

from the local node’s ID. Given that a node ID consists of 256 bits, each node maintains a

k-bucket for nodes where log(self, n) == i and 0 ≤ i < 256, resulting in up to 256 k-buckets.

The discovery protocol uses k = 16, meaning each k-bucket can contain up to 16 nodes [83].

The first part for a new node related to the discovery process involves establishing a

handshake with the bootnode by exchanging FINDNODE and WHOAREYOU messages. Once the

handshake is complete, the new node can request additional nodes from the bootnode by

sending a FINDNODE request for nodes near a specific target distance. The bootnode responds
with a NODES message containing nodes at the queried distance. If the new node requires

more nodes, it can adjust the distance and retrieve additional nodes from adjacent k-buckets

from the bootnode.

After receiving a sufficient number of nodes from the bootnode, the new node initiates

the handshake procedurewith each of these nodes and stores them in its DHT. The newnode

may request more nodes from these newly discovered nodes or decide that its k-buckets are

adequately populated.

Gossip Domain

The gossip domain, a component of the libp2p framework [84], operates using the gossipsub-

protocol. This domain facilitates gossiping (one-to-many communication)messages through-

out the network. Each message type in Ethereum has a distinct topic associated with as

shown in Table 3.2. Most topics are global, meaning that every node in the network sub-

scribes to them. Some topics, such as beacon_attestation_{subnet_id}, are subscribed
to only by a subset of the validator set, as indicated by the attnets field in the ENR.

Table 3.2: Some topics as defined by the consensus specification [81, 85]. Five fields are
excluded as they are outside the scope of this thesis.

Name Message Type

beacon_block SignedBeaconBlock
beacon_aggregate_and_proof SignedAggregateAndProof
beacon_attestation_{subnet_id} Attestation
voluntary_exit SignedVoluntaryExit
bls_to_execution_change SignedBLSToExecutionChange

To join and leave topics, nodes send subscribe and unsubscribe messages. Topic discovery

occurs through a process involving the exchange of REGTOPIC, TOPIC, and REGCONFIRMATION
messages [83], as highlighted in Figure 3.24. This process is necessary because libp2p does

not inherently support discovering other peers and establishing connections with them [86].
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Gossipsubmanages topics by creating an overlay of peers for each topic, where each peer

forwards messages to a subset of its peers rather than to all known peers. There are two

different types of peering in a topic: full-message peering andmetadata-only peering [84,

86].

Full-message peering involves transferring the entire content of amessage. For example,

in the topic beacon_block, a full-message corresponds to a SignedBeaconBlock. Each node
in a topic is only fully peeredwith a small subset of all the peers, forming a sparsely connected

network known as amesh, with each member being amesh member. Every node aims for a

specific number of mesh members, with Ethereum targeting 8 [81].

Additionally, a densely connected graph of peers exists, referred to as remote peers.

These are peers connected to anodebut not full-message peering; instead, they havemetadata-

only peering. The metadata-only network gossips about available messages and performs

functions to help maintain the network of full-message peerings.

Peers are bidirectional, meaning each peer considers the other as either a full-message

peering or a metadata-only peering. The process of upgrading a peer to full-message or

demoting it to metadata-only is facilitated through two control messages: GRAFT and PRUNE.
GRAFT is utilized to elevate a peering to full-message status, while PRUNE is employed to down-

grade it to metadata-only. These updates occur at regular intervals of 0.7 seconds, referred

to as heartbeats [81].

The last two control messages, IHAVE and IWANT, ensure that remote peers have received

the content of full-messages. A node sends an IHAVEmessage containing the IDs ofmessages

it has seen in the last few seconds to a subset of its remote peers at regular intervals. If a

remote peer has not encountered one of the message IDs included in an IHAVE message, it

can request it through an IWANT message.

In summary, peers construct and maintain their topic mesh over time by exchanging

control messages [84, 86]. These messages are essential for keeping each topic healthy and

making sure messages can reach every participating peer.

Note 3.12. In the consensus layer, peers store the ENRs of other peers, while libp2p uses

multiaddr to identify nodes. This is resolved by deriving a node’s multiaddr from its ENR.

Request/Response Domain

TheRequest/Response (Req/Res) domainhandles one-to-one communicationbetweennodes,

allowing them to request specific information, such as missing blocks. All request and re-

sponse types are depicted in Figure 3.24 and described in the consensus specifications [81].

The Status request and Chain_Status response contain identical fields: ForkDigest,
Finalized_Root, Finalized_Epoch, Head_Root, and Head_Slot. This message exchange

is crucial for establishing connections and ensuring nodes are aligned with the latest head

slot. If the ForkDigest or the pair (Finalized_Root, Finalized_Epoch) provided by the

peer does not match the client’s chain at the expected epoch, the client should immediately

disconnect, as this discrepancy indicates that the nodes are on different chains.
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After establishing a peer connection, nodes can request missing beacon blocks using ei-

ther BeaconBlocksByRange or BeaconBlocksByRoot requests. When a node is significantly

behind the current head of the chain, it can utilize the BeaconBlocksByRange request. This

request includes a start_slot and a count, indicating that the node wants blocks start-

ing from start_slot up to start_slot + count. The responding node will return a list of

beacon blocks, with a maximum limit of MAX_REQUEST_BLOCKS (1024). This request type is

primarily used to sync new peers to the network. On the other hand, the BeaconBlocksBy-
Root request is typically used for recovering recent blocks. For example, this request is used

when a node receives a block or attestation whose parent block is unknown. This allows the

node to request specific blocks by providing a list of block roots it wants to obtain.

The Ping request checks the liveness of connected peers by including its own Meta-
Data.seq_number. The responding peer replies with its own MetaData.seq_number. This
exchange allows both peers to verify if they have themost current ENR record for each other.

If the responding peer’s MetaData.seq_number is newer than the one stored in the ENR, the
node requests the latestmetadata using the GetMetaData request. Conversely, if the request-
ing peer’s MetaData.seq_number is newer, the responder may also request an update. This

mutual verification ensures both nodes maintain up-to-date ENRs in their DHT.
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Chapter 4

RelatedWorks

In this chapter, we provide a list and brief description of available execution and consensus

clients. Moving on, we present other projects that aim to achieve similar goals to ours.

4.1 Available Clients

The functionality andperformance of a node are significantly influenced by the specific client

software it operates. With a variety of clients available, each developed and maintained by

different teams, the ecosystem benefits from increased client diversity [87]. This diversity

enhances the system’s overall resilience, providing a robust defense against vulnerabilities,

bugs, and potential attacks, therefore contributing to the network’s stability and security.

We will briefly introduce a list of execution and consensus clients available and highlight

their usage percentage among Ethereum nodes in Figure 4.1. We start by introducing the

execution clients [88]:

• Geth [89], short for Go-Ethereum, is the oldest and most utilized execution client. It

offers the broadest range of tools and resources for both users and developers.

• Besu [90] is written in Java. Besu provides all Ethereum Mainnet functionality and

extensive monitoring.

• Erigon [91], initially a fork of Geth, has since developed into a client that prioritizes

speed and disk space efficiency. Its primary goal is to deliver a faster, more modular,

and optimized execution layer implementation.

• Nethermind [92] is built on .NET, and focuses on high-performance and vast con-

figuration options.

The following consensus clients are available for running Ethereum nodes [93]:

• Prysm [94] is the most used consensus client. It is written in Go and focuses on user

experience, configurability, and documentation.
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• Teku [95] is developed by the same team behind Besu, meaning they are often used

in combination. Teku is a fully-fledged consensus and validator client written in Java,

enabling participation in proof-of-stake consensus.

• Nimbus [96] is open source andwritten inNim. Nimbus focuses onbeing as lightweight

as possible regarding resources used. A lighter client means a greater margin of safety

when the network is under stress.

• Lodestar [97], written in Typescript enables development for the JavaScript ecosys-

tem.

• Lighthouse [98] is one of the earliest implementations of Ethereum and is written in

Rust. Lighthouse has been available since the beacon chain genesis.

• Grandine [99] was recently released in 2024, and is written in Rust. Grandine aims to

be high-performance and lightweight, enabling stakers to run on a Raspberry Pi [100].

The client diversity of each client in percentage among Ethereum nodes is shown in Fig-

ure 4.1 with data from [101]. Ethereum’s goal is to have multiple clients with an equal share

of the nodes, making it resilient to bugs and attacks and ensuring the chain can be finalized.

Client diversity in Ethereum, particularly concerning the consensus client, is crucial. If

a single client controls over 33% of the nodes and experiences a bug or attack, the chain

might be unable to finalize without triggering the inactivity leak. The risk escalates if a client

exceeds 66%, potentially causing the chain to finalize an incorrect checkpoint. Figure 4.1

illustrates that Prysm exceeds the 33% threshold. Tomitigate this risk, users shouldmigrate

to other clients. Those running Geth should also transition to other clients to dilute the pool.

Consensus Clients

Lighthouse - 30.27%

Teku - 19.63%

Nimbus - 10.95%

Lodestar - 0.9%

Grandine - 0.0%

Prysm - 38.26%

Execution Clients

Nethermind - 28%

Besu - 14%

Erigon - 3%

Geth - 55%

Figure 4.1: Client diversity of Ethereum execution and consensus clients as of June 12th,
2024 [101].
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Note 4.1. The data sourced from [101] and depicted in Figure 4.1 is not completely accu-

rate, as there is no inherent way to determine exactly which clients a node is running. The

methodology used to gather this data is supermajority for the execution client and block-

print for the consensus client. These methods are explained in detail in [102].

4.2 Transitioning into Proof-of-Stake

Historically, onemethod for initiating a proof-of-stake development network involved start-

ing the chain with a proof-of-work protocol. This initial phase continued until the mining

difficulty reached a specific threshold, at which point the network transitioned to proof-of-

stake [103].

However, the contemporary approach for launching a proof-of-stake devnet involves ini-

tiating the chain directly with proof-of-stake from slot 0. To progress the blockchain, val-

idators must be initially injected into the beacon state. Without it, the blockchain would be

unable to produce blocks, thereby preventing the addition of more validators later on.

This shift towards starting directly with proof-of-stake stems from significant updates in

blockchain infrastructure, notably the release of Geth v1.12.0. This version introduced a

breaking change by discontinuing support for proof-of-work, effectively moving away from

the Ethash algorithm [104].

4.3 Existing Approaches

Since Ethereum’s move to proof-of-stake is somewhat recent, there is a lack of documenta-

tion on how to set up a proper devnet for private testing. While we were in the process of

setting up a development network, the documentation for the client software we were utiliz-

ing was being updated concurrently by its developers. This underscores the dynamic nature

of the technologies we are working with and underscores the challenges inherent in setting

up a development network.

We review 3 existing approaches for creating a private devnet:

1. Prysm’sHow to Set Up an Ethereum Proof-of-Stake Devnet in Minutes [105].

2. Lighthouse’s Simple Local Testnet [106].

3. Zoraiz Mahmood’s project Deploy your own Local Ethereum PoS Testnet [107].

How to Set Up an Ethereum Proof-of-Stake Devnet in Minutes

This guide, developed by the official Prysm team, offers an introduction to launching an

Ethereum node. It provides basic instructions for setting up a Geth execution client, along

with Prysm’s consensus and validator clients. The guide is designed as a follow-along ap-

proach, where the user copies the commands provided to configure the system. Key ele-

ments such as secret keys, JWT secrets, and configurations are hardcoded within the setup,
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which strictly defines the operational parameters. Additionally, the guide includes instruc-

tions on how to execute a simple transaction through the Geth console.

Another option is to start the devnet through a Docker setup, where users can easily

initiate a basic network using only docker compose. While thismethod provides exceptional

simplicity, it has limitations regarding configurability.

Simple Local Testnet by Lighthouse

The Lighthouse team presents a different approach by offering a set of scripts that assist in

deploying Ethereum nodes. A central script is provided to deploy multiple nodes, initiating

a blockchain that starts from a genesis state post the Ethereum Merge. This method allows

users to specify the number of nodes they wish to launch, providing greater adaptability

for various testing needs. Lighthouse also outlines a manual process for creating a testnet,

which involves a series of smaller scripts that the user can execute as needed. This setup

facilitates increased validator counts across nodes, supporting scalable test environments.

Deploy your own Local Ethereum PoS Testnet

This project builds upon Prysm’s own guide, but it adds the capability to addmultiple nodes.

Like Lighthouse, Zoraiz Mahmood, provides a script rather than a follow-along tutorial with

lines of code and instructions. Needless to say, this project uses Prysm as the consensus and

validator client.

We discuss and compare these guides and approaches to our application later in Chapter 7.
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Chapter 5

Approach

This chapter outlines ourmethodology for deploying a private Ethereumnetwork, providing

a comprehensive guide from initialization tomonitoring. We start with a high-level overview

of the application’s architecture and workflow. Subsequently, we delve into initializing the

blockchain’s state, distributing the genesis state, and connecting peers to enable node in-

teraction. We also detail a step-by-step procedure for activating each component of a node.

Moreover, we discuss the management of validators and various validator operations, in-

cluding generating deposits, changing withdrawal credentials, and making voluntary exits.

Additionally, we explore the behavior of nodes acting Byzantine by intentionally skipping

their aggregation selection duties. Finally, we investigatemethods for users tomonitor their

nodes and inspect the state of the blockchain.

5.1 Introducing the Application

As mentioned, we begin by presenting and briefly explaining the application. The applica-

tion provides the user with scripts that enable the launching of individual nodes. Together,

these nodes run a private development Ethereum blockchain. Review Appendix A for a full

list of all scripts included in the application. We also offer a detailed step-by-step guide on

launching the full system using the provided scripts in Appendix B. In later sections, we will

delve into each part of the application, providing more detail.

In Ethereum, anyone can participate and serve as a node by running both an execution

client and a consensus client together. While there is no cost to running a node, earning

rewards requires staking and running a validator client. In the remainder of this thesis, we

use the term node to refer to a node that also runs a validator client.

Figure 5.1 provides a high-level overview of the application post-deployment. In this

setup, n nodes work together to maintain the blockchain. One node serves as the bootnode,

which carries additional responsibilities during the initial launch of the blockchain.

Figure 5.2 provides an in-depth look at the architecture of a bootnode and a regular node

within the application. The user executes the main script, start_fullnode, to initiate the

deployment. The figure outlines the sequence of actions triggered by this script. The first

node to be launched should always be a bootnode initiated by the user using the --server
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Figure 5.1: A brief overview of the deployed setup. Node 1 acts as the bootnode, enabling
peer discovery for the consensus and execution layers of distinct peer-to-peer networks.

flag. This flag assigns the bootnode additional responsibilities, such as generating and pub-

lishing the initial state on a public server. Finally, both regular nodes and the bootnode

launch their own instances of the execution, consensus, and validator clients. The following

sections elaborate on the detailed steps involved in this process.

Node  

start fullnodesetup

start execution

start consensus

start validator

create validator

import validator

Bootnode 

start fullnode setup

Initialize State  

Generate Genesis Block

Generate Genesis State

Server  

start execution

start consensus

start validator

create validator

import validator

GET Request

User

Instance 1 Instance 2

User

Figure 5.2: The architecture of each instance running a node. Starting with the user calling
the start_fullnode script.

We primarily worked with 30 machines during the project, so the setup is configured by

default for a maximum of 30 nodes. When deploying nodes, the user must specify two pa-

rameters to the start_fullnode script.

The first parameter is the node ID, which must be within the interval [1, ..., 30] and is de-

fined through the --node flag. The second parameter is either the --server flag to indicate

if the node should be a bootnode or the --ip flag to specify the IP address of the bootnode
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so the node can join the system.

Example 5.1. In Figure 5.1, the bootnode (node-1) was started with the --server flag and
has an IP address of 152.94.162.11. To deploy a second node, like node-2, one must supply

this IP address to the start_fullnode script using the --ip flag.

Additional changes are required to run the devnet with more than 30 nodes. In Appendix C,

we outline the modifications required to run a system with a node count greater than 30.

5.2 Client Support

Our application usesGeth as the execution client and provides options to run either Prysmor

Lighthouse as the consensus client. When choosing Prysm or Lighthouse as the consensus

client, the validator client will automatically be selected from the same software origin as the

consensus client. Therefore, running a Prysm consensus client will always be accompanied

by a Prysm validator client, while a Lighthouse consensus client will always be accompa-

nied by a Lighthouse validator client. To choose between Prysm and Lighthouse, the user

can include either the --prysm or --lh flag in the start_fullnode script. If neither flag is

provided, it defaults to Prysm.

When running multiple nodes, for example, node-1, node-2, and node-3, which are re-

sponsible for operating the blockchain, the choice of consensus client does notmatter. node-
1 and node-2 can run Prysm, while node-3 runs Lighthouse.

5.3 Preparing the Chain

This section outlines the steps necessary to prepare the blockchain before its launch. We be-

gin by introducing the tool eth2-testnet-genesis, which is used to define and generate the
genesis state. Next, we examine the tool’s input parameters and explain how we customized

them to generate a genesis state that meets our specific requirements.

5.3.1 Genesis State

Setting up a private Ethereum proof-of-stake chain begins with defining and generating the

genesis state. For this purpose, we use a tool called eth2-testnet-genesis [108]. This tool
is specifically designed to create a genesis state with bootstrapped validators, enabling the

chain to start directly with proof-of-stake.

To generate the genesis state, the tool requires three input parameters (files):

• Genesis Block: An Eth1 block described in a genesis.json file, containing informa-

tion for the execution layer genesis block.

• Beacon Chain Parameters: Configuration parameters for the beacon chain, spec-

ified in a config.yml file.
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• Bootstrap Validators: A mnemonics.yml file specifying the number of validators to

be included in the beacon state at genesis time.

The tool generates a genesis.ssz file, which consensus clients use to create their beacon

state at genesis time. Figure 5.3 demonstrates the operational process of the eth2-testnet-
genesis tool. The following sections will examine these files closely, explaining the adjust-

ments made to generate a genesis state that fulfills our specific requirements.

eth2-testnet-genesis

YAML

config.yml

YAML

mnemonics.yml

genesis.json

JSON

{ ; }
SSZ

genesis.ssz

Figure 5.3: Schematic representation of the eth2-testnet-genesis tool processing flow.

Genesis Block

The execution layer genesis block is specified in a genesis.json file, a snippet of which is

provided in Listing 5.1. This file has two main sections: config, which includes parameters

like chainId and timestamp, and alloc, which contains data relevant to the genesis block.

"config": {
"chainId": 32382,

...
},
"alloc": {

"0x27b160c1d49dfe290be0b1b10be650cd6c6f70a9": {
"balance": "0x3635C9ADC5DEA00000"

},
"0x3804bd29e8b6140ae020cb14061dfa2f34bf1a9f": {

"balance": "0x3635C9ADC5DEA00000"
},
...
"4242424242424242424242424242424242424242": {

"code": "0x60806040526004361061003f5760003560e...",
"balance": "0x0"

}
}

Listing 5.1: Genesis block configuration file.

All the fields under alloc specify what should exist in the EVM from genesis time. The last

field, featuring the address 424242...4242, corresponds to the deposit contract discussed
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in Section 3.3.4. The code field contains the deposit contract in its bytecode format. The

deposit contract must be included with a deposit count of 0. This means that all 232 leaves

in the incremental Merkle tree must be the hash of 0. If the deposit contract includes any

deposit, the eth2-testnet-genesis tool will fail.

Wemanually populated the remaining fieldswith externally ownedaccounts (EOAs) [109]

intended for use by deployed nodes to conduct transactions. Each EOA is initialized with a

balance of 10, 000, 000 ETH, ensuring that nodes have ample Ether reserves during exper-

iments and testing. We included 30 EOAs for the same reasons described in Section 5.1,

assigning each node with an ID in the range [1, ..., 30] a distinct EOA.

The 30 EOAs are created using Geth with the command shown in Listing 5.2.

geth account new

Listing 5.2: The Geth command used for generating EOAs for the execution layer.

The generated EOAs are stored in distinct subfolders under a directory called keys, with
each subfolder following the naming convention node-i, where i ranges from 1 to 30. For

example, node-1 should use the EOA in the directory keys/node-1. This process ensures
that each node controls a unique EOA specified in the genesis.json file, preventing any

overlap where nodes control the same EOA. These folders are safeguarded against deletion,

even during application resets. Each EOA is encrypted with an empty string as its password.

Beacon Chain Parameters

The Beacon chain parameters are outlined in a config.yml file, which comprises two types

of parameters: presets [110] and configurations [111]. Presets are fixed settings established

during compile-time and are generally not changeable without recompiling the application.

Conversely, configurations are dynamic variables that can be loaded during the runtime.

Listing 5.3 showcases the config.yml we utilized for testing the validator lifecycle. The

PRESET_BASE field specifies that any parameters not explicitly listed will default to values

from a designated specification. Two standards are supported by all clients: mainnet and

minimal. Since our PRESET_BASE is set to use the mainnet settings, any unspecified param-

eters will inherit the values from the mainnet configuration.

# Free-form short name of the network that this configuration applies to
CONFIG_NAME: interop
# Extends the mainnet preset
PRESET_BASE: mainnet

# Genesis
MIN_GENESIS_TIME: 1714042445
GENESIS_DELAY: 120

# Time parameters
SLOTS_PER_EPOCH: 32
SECONDS_PER_SLOT: 12
SECONDS_PER_ETH1_BLOCK: 14
ETH1_FOLLOW_DISTANCE: 4
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EPOCHS_PER_ETH1_VOTING_PERIOD: 2
MIN_VALIDATOR_WITHDRAWABILITY_DELAY: 2
SHARD_COMMITTEE_PERIOD: 2

# Validator Cycle
MIN_PER_EPOCH_CHURN_LIMIT: 512
MAX_PER_EPOCH_ACTIVATION_CHURN_LIMIT: 512

# Deposit Contract
DEPOSIT_CHAIN_ID: 32382
DEPOSIT_NETWORK_ID: 32382
DEPOSIT_CONTRACT_ADDRESS: 0x4242424242424242424242424242424242424242

Listing 5.3: The config.yml file used for defining the parameters of the beacon chain.

If one wants to accelerate the blockchain for testing purposes, it is advisable to reduce the

parameters SECONDS_PER_SLOT and/or SLOTS_PER_EPOCH, as these changes have a cascading
impact on the overall protocol. However, for our experiments, we maintained these two

parameters at their default values to closely simulate the conditions of mainnet.

Mainnet configurations pose challenges for onboarding new validators in a devnet due

to the lengthy deposit process outlined in Section 3.3.5 and the rate-limiting measures de-

scribed in Section 3.3.2. To mitigate this, we’ve adjusted the ETH1_FOLLOW_DISTANCE and

EPOCHS_PER_ETH1_VOTING_PERIOD values from 2048 and 64 to 4 and 2, respectively. This

adjustment reduces the minimum time required for the beacon chain to update its deposit

contract view from 11.4 hours to just 7.4minutes, facilitating a more practical timeframe for

adding new validators to the beacon state in a devnet environment.

To address the issue of numerous validators getting stuck in the activation queue due to

the MIN_PER_EPOCH_CHURN_LIMIT and MAX_PER_EPOCH_ACTIVATION_CHURN_LIMIT being set

to 4 and 8, respectively, we’ve increased both limits to 512. Since the beacon chain can pro-

cess up to 512 deposits per epoch, it is possible to have 512 validators joining the activation

queue per epoch. This adjustment effectively removes the rate-limiting constraint.

To initiate a voluntary exit, as outlined in Section 3.3.6 a validator must have been active

for 256 epochs (≈ 27 hours). Additionally, to qualify for a full withdrawal after exiting, as de-

scribed in Section 3.3.3, the validator must wait for an additional 256 epochs (≈ 27 hours).

By reducing the values of SHARD_COMMITTEE_PERIOD and MIN_VALIDATOR_WITHDRAWABIL-
ITY_DELAY from their original 256 epochs to just 2 epochs, we can expedite testing these

functionalities within a reasonable timeframe suitable for a devnet. Instead of enduring a

54-hour waiting period, we can now observe the entire process unfold in just 25.6minutes.

These adjustments significantly improve the practicality of testing functionalities related

to the validator lifecycle, as detailed in Section 3.3. However, our deployed devnet faced

compatibility issues when running both Prysm and Lighthouse nodes due to differences in

how they interact with the config.yml file. These compatibility issues will be elaborated

upon in Section 7.4.2.
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Note 5.1. Adjusting some of these parameters carries a significant risk of compromising

Gasper’s safety properties. This risk becomes particularly apparent when altering the churn

limit, as Casper FFG relies on maintaining extremely low variance in the validator set be-

tween checkpoint calculations.

When deploying the blockchain, it may be desirable for the genesis time to be the current

time,meaning the chain starts at the genesis slot (slot 0). To achieve this, the MIN_GENESIS_-
TIME parameter in the config.yml file must match the current Unix time of the computer

when running the eth2-testnet-genesis tool. To give ourselves some time when connect-

ing other nodes and setting everything up correctly, we incorporate a GENESIS_DELAY which
means that the blockchain won’t start before the computer Unix time reaches MIN_GENSIS_-
TIME + GENESIS_DELAY.

The final fields pertain to the deposit contract and should match the information pro-

vided in the genesis.json file, such as the chain ID and the deposit contract address.

Bootstrapping Validators

Since the blockchain starts directly with proof-of-stake, we must include some validators

in the beacon state at genesis time. Otherwise, the protocol won’t be able to select block

proposers for slots beyond slot 0 as there are none to choose from. To prevent this, we

bootstrap validators directly into the beacon state during the generation of the genesis state.

All validators that should be included from the genesis must be stated in a mnemon-
ics.yml file. This file contains multiplemnemonic strings and their respective counts. The

counts indicate how many validators should be derived from each mnemonic and included

in the beacon state. The validators included in the genesis state are referred to as genesis

validators. For example, in Listing 5.4, the first mnemonic contributes 64 validators, while

the second contributes 128, resulting in 192 genesis validators.

- mnemonic: "nature expand bone never make where chalk autumn chicken present
elegant face trouble giggle wrong stick brave strike child rocket sand try
ask dinosaur"

count: 64
- mnemonic: "mouse anchor daughter original holiday alpha expose brain garden

access random shrug captain circle endless question plate vapor visa rival
merge harvest frame donate"

count: 128
...

Listing 5.4: The yaml file defines the number of validators to generate per mnemonic string.

We included 30 mnemonics for the same reasons described in Section 5.1, assigning each

node with an ID in the range [1, ..., 30] a unique mnemonic. Using distinct mnemonics is

essential to ensure that nodes do not control the same validators, as identical mnemonics

would generate identical validator keys (signing and withdrawal). The mnemonics are ar-

ranged chronologically, with node-1 assigned the firstmnemonic entry, node-2 assigned the
second entry, and so forth. Nodes not participating in the devnet must have a count of 0;

otherwise, there will be validators in the genesis state that are not operated by anyone.
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The process by which nodes assume control of their assigned genesis validators and how

their keys are generated will be explored in Section 5.6.1.

Example 5.2. For setting up a devnet with three nodes—node-1with 64 validators, node-2
with 0 validators, and node-3with 64 validators—theirmnemonic countsmust be set accord-

ingly. The mnemonic counts for the first and third mnemonics must be set to 64, while the

count for the second mnemonic should be 0. For mnemonics numbered 4 through 30, the

count should be set to 0. This setup will generate a genesis state with 128 active validators.

5.4 Distributing State and Peer Discovery

This section begins by detailing the distribution of the genesis state via the bootnode. Next,

we explore the peer discovery mechanisms for both the execution and consensus layers.

5.4.1 Distributing State

In our deployed devnet, we aim for the blockchain to start with the genesis slot (slot 0) cor-

responding to the Unix time when the setup script is executed within the start_fullnode
script. If each node generates its own genesis state based on its individual Unix time, dis-

crepancies will arise because the MIN_GENESIS_TIME will vary. This will lead to differences

in the genesis state, particularly the genesis_time within their beacon state shown in List-

ing D.1. As a result, nodes will have different perspectives of the genesis time, preventing

them from establishing a connection with each other. Additionally, if each node were to

generate its own genesis state, coordinating and ensuring that all input files required by

eth2-testnet-genesis are consistently up-to-date across each node would be impractical

and error-prone. This could result in further inconsistencies and complicate the deployment

process.

To circumvent these issues, we employ a single node, referred to as the bootnode, de-

picted in Figures 5.1 and 5.2, to define the genesis state and distribute it to other participat-

ing nodes. The bootnode is a standard node running an execution, consensus, and validator

client. However, it carries the additional responsibility of generating and distributing the

state and serves as the entry point for other nodes to join the network. The generation part

corresponds to the process described in Section 5.3. To designate a node as a bootnode, the

--server flag must be included when executing the start_fullnode script.

The bootnode starts a basic Python server on port 8000, which hosts all essential genesis

state files, including genesis.json, config.yml, genesis.ssz, and mnemonics.yml. Nor-
mal nodes (those not started with the --server flag) must retrieve this information from

the bootnode. This retrieval is facilitated by specifying an --ip flag in the start_fullnode
script, allowing nodes to fetch the genesis state. This process is depicted in Figure 5.4 and

takes place during the setup phase, which corresponds to the setup box in Figure 5.2. Fur-

thermore, the two remaining fields hosted on the server, enode and enr, serve the purpose
of peer discovery for the execution layer and consensus layer, respectively.
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Figure 5.4: The bootnode operates a server that uploads the genesis state and addresses
necessary for peer discovery. Other nodes fetch this information to synchronize their genesis
state and engage in peer discovery.

5.4.2 Peer Discovery

In Section 3.5, we discussed how nodes rely on specific entry point addresses—enode for the

execution layer and ENR for the consensus layer—to initiate their respective peer discovery

protocols. Typically, these values are hardcoded into clients. However, this approach is not

viable for us because the addresses change depending on the machine used, and no single

machine will always be available as an entry point. Therefore, we distribute enode and ENR

addresses along with the genesis state, as illustrated in Figure 5.4. The selected bootnode,

which uses the --server flag, hosts its enode and ENR addresses. This setup allows other

nodes to retrieve these addresses, initiate peer discovery processes for both layers, and es-

tablish connections with peers.

In summary, when nodes run the start_fullnode script with the --ip flag, they retrieve
the necessary genesis state and peer discovery information from the bootnode, ensuring a

seamless process for new nodes to join the network. Additionally, nodes connected to the

bootnodewill establish connectionswith other peers, as the bootnode provides a list of nodes

it is connected to.

Enode During the bootnode’s setup, we generate a nodekey to derive the enode address.

The execution client automatically generates the nodekey during its initialization phase. The

enode address is formed by combining the nodekey (hexadecimally encoded node ID) with

the bootnode’s IP address and a port number (30303 for Geth). This enode address is then

posted to the hosted server so that regular nodes can retrieve the bootnode’s enode address

and initiate their peer discovery process for the execution layer’s peer-to-peer network. List-

ing 5.5 illustrates an enode address structure: the part before the @ symbol denotes the

nodekey, while the part after denotes the node’s IP address and port number.
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enode://bad2da161572060461ba977eacff67d6cc3bacd0b9577334e17db73c3e48e2bc902316
0355f9cfd5cf55e80ce5afd2f58d5d1da12d460fda89dbef6cf05731cf@152.94.162.11:30303

Listing 5.5: An example enode address of the execution client.

ENR The process of posting and fetching the ENR for the consensus layer is similar to

that of the execution layer, with a notable distinction in how the bootnode obtains its ENR.

The ENR address of the consensus client is not known until after the consensus client has

been started. Once the consensus client is up and running (the process for starting the con-

sensus client will be explored in Section 5.5.2), one can fetch the ENR by querying the end-

point 127.0.0.1:8080/p2p. This phase is specific to Prysm, as we do not support having

Lighthouse as the bootnode. Once obtained, the ENR is posted to the server, enabling other

nodes to fetch it and start their peer discovery process for the consensus layer peer-to-peer

network. The data contained in an ENR was discussed in Section 3.5.1 with an example of

an ENR address in its encoded format shown in Listing 5.6.

enr:-MK4QJoAiA_o -s8Gn7u9c0OsOKHC4aj0ACzMc4TFLgDK_X66dJcNOZ7lxbO2dlait -
y5uqCT9QAJ7VvuA4a2DXxOndCGAY8pKLXhh2F0dG5ldHOIAAAAAAAAAACEZXRoMpDOK
kgBIAAAk___________gmlkgnY0gmlwhJheog -Jc2VjcDI1NmsxoQII5FVvpH7k88yC0W4y
rFjhvTKfBiuNlxBOza2NxATOZ4hzeW5jbmV0cwCDdGNwgjLIg3VkcIIu4A

Listing 5.6: An example ENR address of the consensus client.

5.5 Starting a Node

After themain script start_fullnode finishes the setup phase, it calls three other scripts in-
dividually, responsible for each client: execution, consensus, and validator. The subsequent

sections will delve into how each client is executed. We use node-1 as the example node for

the provided listings, featuring data actually used in the devnet.

5.5.1 Execution Client

The script responsible for launching the execution client begins by initializing the blockchain’s

genesis state (EVM state) for the node with a genesis block. This is accomplished using the

command in Listing 5.7. The command requires the genesis.json file, created during the

setup phase, to initialize the state.

./geth init --datadir="./execution" genesis.json

Listing 5.7: Geth command for initializing the blockchain for a node.

Next, we launch the execution client by running the Geth binary with specific command-

line flags. These flags configure settings such as the network, API access, and metrics. They

ensure the client operates according to the desired requirements and is set up for peer dis-

covery.
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The command for launching the execution client is shown in Listing 5.8, which contains a

subset of the flags usedwith sample values for easier understanding. Flags related to logging

and port numbers are not included in the listing.

The --bootnodes argument is required only if the start_fullnode script is initiatedwith
the --ip flag. When the --server flag is used, the --bootnodes argument should be set to

an empty string or can be omitted altogether. The --nodekey argument involves how the

execution client generates its enode.

The three arguments with comments containing EOA ensure that the client takes control

of its assigned EOA, one of the 30 listed in genesis.json. These arguments specify which

EOA to unlock and the password used for encryption.

For the execution and consensus clients to communicate through the Engine API, they

need a JWT token. The command in Listing 5.7 automatically creates this token, and its

path is specified with the --authrpc.jwtsecret argument.

./geth
--networkid="32832"
--http // Execution API
--metrics // Enable metrics
--authrpc.jwtsecret="./jwtsecret" // Engine API
--datadir="./execution"
--bootnodes="enode://bad2...1cf@152.94.162.11:30303" // Bootnode Address
--keystore="./keys/node-1/keystore" // EOA keystore
--unlock="27b160c6f70a9..." // Execution Layer EOA
--password="./keys/geth_password.txt" // Password for EOA
--nodekey="./bootnode/nodekey" // Enode

Listing 5.8: Command used to start the execution client using Geth.

The script start_geth_execution_client is responsible for generating a Geth database for
the blockchain and launching the client with the necessary flags and values. This script is

called by the start_fullnode script, as illustrated in Figure 5.2.

5.5.2 Consensus Client

Once the execution client is launched, the consensus client is started using either start_-
prysm_consensus_clientor start_lighthouse_consensus_client, depending on theuser’s
preference for the client choice. The initialization process for the consensus client involves

specifying particular flags. These flags are utilized for tasks such as establishing the gene-

sis state based on the genesis.ssz and config.yml files, defining the data directory, and

setting the bootstrap address (bootnode address). For the same reason as described in Sec-

tion 5.5.1, only nodes starting with the --ip flag require a bootnode address.

To enable communication with the execution client via the Engine API, the consensus

client needs to utilize the same JWT token generated by the execution client, specified by

jwt-secret and execution-jwt for Prysm and Lighthouse, respectively. This connection is

established through the address 127.0.0.1:8551, which is the default authentication port

for the execution client (Geth).
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To utilize the Beacon API, specific flags must be set (indicated with Beacon API com-

ments), making the Beacon API accessible at the address 127.0.0.1:3501.

Prysm

Listing 5.9 shows the command to launch the consensus client using Prysm.

./beacon-chain
--datadir="./consensus/beacondata"
--genesis-state="./consensus/genesis.ssz"
--chain-config-file="./consensus/config.yml"
--jwt-secret="./execution/jwtsecret" // Engine API
--http // Beacon API
--grpc-gateway-port="3501" // Beacon API
--bootstrap -node="enr:-MK4QIY9Ssd55tmxl2Gb7U..." // Bootnode Address

Listing 5.9: Command used to start the consensus client, using Prysm.

Lighthouse

Unlike Prysm, we do not directly input the bootnode’s ENR, genesis.ssz, and config.yml
into the Lighthouse binary. Instead, we organize themwithin a designated testnet directory,

whichLighthouse accesses using the --testnet-dir argument for setting up its genesis state

and using the ENR for peer discovery. Listing 5.10 shows the command for launching a

Lighthouse consensus client.

./lighthouse bn
--datadir="./consensus/beacondata"
--testnet-dir="./config/lighthouse_testnet"
--execution -jwt="./execution/jwtsecret" // Engine API
--http // Beacon API
--http-port="3501" // Beacon API

Listing 5.10: Command used to start the consensus client, using Lighthouse.

5.5.3 Validator Client

As the final step, the validator client is launched by the start_fullnode script. Depend-

ing on the user’s selection of the consensus client, a validator client from the same software

origin is invoked using either start_prysm_validator_client or start_lighthouse_val-
idator_client.

Two preliminary steps are required: ensuring the validator client controls its assigned

genesis validators from the mnemonics.yml file and converting its EOA address into a check-

summed version so that block rewards (the priority fee in transactions) can be sent to the
correct execution layer address. Lighthouse andPrysmuse the --suggested-fee-recipient
flag to specify where block rewards should be directed. The process by which the validator

client assumes control of its genesis validators will be looked at in Section 5.6.1.
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We utilize the --graffiti argument to tag blocks with arbitrary data, allowing us to

identify which client and node number generated each block.

Prysm

For Prysm, we specify the wallet directory and passphrase so that the client can identify the

validators belonging to the client. Listing 5.11 lists the flags passed to the client.

./validator
--datadir="./consensus/validatordata"
--chain-config-file="./consensus/config.yml"
--grpc-gateway-port="3501"
--beacon-rpc-gateway-provider="3501"
--suggested -fee-recipient="0x3804bD29E8b614..." // EOA in checksum format
--graffiti="Prysm node-1"
--wallet-dir="./validator/wallet -1"
--wallet-password-file="./validator/passphrase"

Listing 5.11: Command used to start the validator client, using Prysm.

Lighthouse

Lighthouse does not require a wallet path. Instead, it automatically searches the default

validator directory created when importing Lighthouse validators. Listing 5.12 shows the

command for launching a Lighthouse validator client.

./lighthouse vc
--datadir="./consensus/beacondata"
--testnet-dir="./config/lighthouse_testnet"
--beacon-nodes="http://localhost:3501"
--suggested -fee-recipient="0x3804bD29E8b614..." // EOA in checksum format
--http \
--metrics-port="8081"
--graffiti="Lighthouse node-1"

Listing 5.12: Command used to start the validator client, using Lighthouse.

5.5.4 Logging

All clients support different levels of logging verbosity. For instance, Prysm offers seven

levels: trace, debug, info, warn, error, fatal, and panic, with the default set to info.
Users can manually adjust the verbosity level using specific flags: --verbosity for Prysm, -
-debug-level for Lighthouse, and --verbosity for Geth. Typically, we ran each client with
debug to obtain a comprehensive overview of their operations.

Usually, clients are launched either in separate terminalwindows (totaling three) or com-

bined into one. However, each approach has its own challenges, such as managing multiple

windows or dealing with excessive logging in a single window. Instead, we direct all logging

into separate log files and provide a script enabling users to monitor each client’s output.
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Users can specifywhich client tomonitor, e.g., ./monitor <execution|beacon|validator>.
This script reads from the log files and displays the output in the terminal.

We created a script kill_clients, which orderly shutdowns the blockchain. This script
terminates the running blockchain clients and offers an optional feature to preserve opera-

tional logs. Using the --log flag, users can ensure that all logs from a session are saved to

a designated directory. This directory retains its contents across multiple runs, preventing

the automatic deletion of logs on each execution. This functionality is particularly useful for

troubleshooting and historical analysis of simulations. It allows users to review past opera-

tions without the risk of data loss between sessions.

5.6 Managing Validators

In this section, we outline the preparations required for managing validators. First, we ex-

plain the key generation process and how to import them into a wallet that a validator client

can control. Then, we discuss the various operations a node can perform related to its val-

idators once the chain has started, including making and sending deposits, setting up with-

drawals, and exiting validators.

5.6.1 Pre-deployment Validator Preparations

Since validators are already included in the genesis state, we need a deterministic way to

ensure that the deployed nodes control the correct validators based on the count of their

assigned mnemonic in the mnemonics.yml file. To achieve this, we utilize a Hierarchical

Deterministic (HD) wallet [112] for validator key generation. Using an HD wallet, ensure

that validator keys are deterministically generated based on a given mnemonic string. This

setup guarantees that the same validators are consistently generated and match those in-

cluded in the genesis state, enabling nodes to control the correct validators.

HD wallets typically generate validator keys (signing and withdrawal) using the BLS12-

381KeyGeneration standard specified inEIP-2333 [113] and organize them in ahierarchical

structure following the BLS12-381 Deterministic Account Hierarchy standard specified in

EIP-2334 [114].

Each key is generated with a derivation path, a string that specifies indices used to navi-

gate the tree of keys created with EIP-2333. Withdrawal and signing keys follow predefined

paths: m/12381/3600/i/0 and m/12381/3600/i/0/0, respectively, where i represents the

validator number. For example, generating keys for 100 validators involves creating 100

derivation paths for withdrawal keys and 100 derivation paths for signing keys, resulting in

i ranging from 0 to 99.

Once the validator keys are generated, they must be imported into a node’s validator

wallet so that the node’s validator client can control them. Only the signing keys must be

imported into the wallet, as the withdrawal keys are only relevant for changing withdrawal

credentials, as discussed in Section 3.3.6. The withdrawal keys are kept in cold storage for

security.
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Generating validator keys (both signing and withdrawal) takes approximately 1 second

per key, and importing a signing key into a wallet takes around 0.13 seconds. For example, if

a node controls 128 genesis validators, the total time for key generation and import would be

128× (1+0.13) = 144 seconds. While this duration is manageable, it becomes impractically

long for a devnet environment when a node controls thousands of validators, making the

key generation process excessively time-consuming.

To avoid the time-consuming process of generating new validator keys each time, we

have pre-generated 4096 keys (signing and withdrawal) for all 30 mnemonics included in

the mnemonics.yml file. Each node (node-i) has its signing and withdrawal keys in the

keys/node-i folder alongside its EOA. This key generation is a one-time operation and does

not need to be repeated unless additional validators or more than 30 mnemonics are re-

quired; as mentioned earlier, this is discussed in Appendix C.

After setting up the execution and consensus client for a node, we copy its signing keys

from keys/node-i into a distinct node wallet directory (validator/wallet-i) created dur-
ing the startup phase. These keys are then imported into a wallet the validator client uses

to take control of the signing keys, enabling it to perform validator duties. This process en-

sures that when the validator client is launched, it already contains the appropriate number

of genesis validators specified in the mnemonics.yml file. Figure 5.5 illustrates this workflow.

Example 5.3. Consider the first entry of Listing 5.4, featuring a mnemonic string paired

with a count of 64. This indicates that node-1 should start with 64 genesis validators. We

follow these steps:

1. Transfer the initial 64 signing keys fromapool of 4096 signing keys stored in keys/node-
1 to a wallet directory specific to the node (validator/wallet-i).

2. Import these signing keys into the wallet.

3. Start the validator client.

Once the genesis time occurs and the blockchain starts, node-1 can begin performing val-

idator duties for its 64 genesis validators.

In Section 5.3.1, we discussed the GENESIS_DELAY added to the MIN_GENESIS_TIME to provide
additional time for node setup and peer discovery. While we typically use a base GENESIS_-
DELAY of 120 seconds, importing 4096 validators takes approximately 9 minutes, making it

impossible for nodes to be ready within 120 seconds if they have to import more than 923

validators. To accommodate this, we introduce an additional delay to GENESIS_DELAY, calcu-
lated based on the highest validator count in Listing 5.4. This results in Equation 5.1, where

highest_validator_count represents the highest count, and 120 serves as the base delay.

GENESIS_DELAY =
9× 60

4096
× highest_validator_count + 120 (5.1)

Since only the bootnode generates the genesis state and sets the GENESIS_DELAY, the other
nodes that must be active from the genesis time must be started within the base delay. The

base delay must be manually adjusted if starting the nodes requires more time.
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Figure 5.5: An illustration of how node-1’s signing keys from the keys/node-1 folder are
copied to node-1’s wallet folder (validator/wallet-1). This process prepares the keys for
import into the wallet, which the validator client will manage.

Note 5.2. The tool eth2-testnet-genesis can generate signing and withdrawal keys in

milliseconds, significantly faster than the standard method, which takes a whole second.

This increased speed is due to several optimizations within eth2-testnet-genesis, such as
bulk key generation using concurrency. Additionally, the tool bypasses certain securitymea-

sures, such as encrypting each key, which are typically necessary for secure key generation.

Since eth2-testnet-genesis is designed to create genesis states in a devnet environment,

the primary focus is speed and efficiency rather than security.

5.6.2 Creating Validators

The script create_validator is responsible for generating validator keys (signing andwith-
drawal). This script offers two approaches to creating validators, each emphasizing either

security or speed:

1. Secure: Generates the keys from scratch using the node’s assigned mnemonic.

2. Speed: Copies existing keys, as described in Section 5.6.1.

One can choose between the twomethods using the --insecure flag. Including this flag en-
ables the speed method, while omitting it enables the secure method. The overall workflow

of the create_validator script is depicted in Figure 5.6.

When initializing a node with the start_fullnode script, the create_validator script

is indirectly invoked. Since the wallet has not yet been created, the wallet exists check

will always return No. Consequently, the script will create the wallet and copy the signing
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Figure 5.6: Flow diagram illustrating the logic of creating validators with the create_val-
idator script.

keys from keys/node-i into it, as shown in Figure 5.5 and described in Section 5.6.1. Finally,
the validators are imported into the wallet, completing the process.

Once the node is fully set up and operational, with its assigned genesis validators im-

ported into the node’s wallet and managed by the node’s validator client, users can create

additional validators using their preferred method. To accomplish this, one needs to gener-

ate or copy additional signing keys securely. These are then imported into the node’s wallet,

enabling the validator client to manage them effectively.

To activate these additional validators, the user must make a deposit and wait for the

process outlined in Section 3.3.5. The steps for making and sending a deposit will be ex-

plained in Section 5.6.3. Once the additional validators are activated, the node can begin

performing validator duties for the newly added validators.

Note 5.3. We highly recommend using the insecure method when creating additional val-

idators. This approach provides a significant speed advantage for testing purposes. Ad-

ditionally, since there are no economic consequences if the keys are compromised, it is a

suitable choice. However, it’s crucial to note that the mnemonics used for generating the

validator keys are openly available. Therefore, these included mnemonics should never be

utilized in a mainnet scenario.

5.6.3 Validator Operations

While nodes encompass execution, consensus, and validator client functionalities, they lack

certain features, such as generating deposit data for a deposit transaction and altering with-

drawal credentials. To address these limitations, we use a third-party tool called ethdo [115].
ethdo is a command-line tool designed for managing common tasks in Ethereum 2.0 related

to a beacon node. Most operations with ethdo require connecting it to a beacon node, a

functionality supported by all consensus clients. For example, ethdo connects to Prysm us-

ing the localhost address and the port defined by the --grpc-gateway-port flag. We used

ethdo for generating the validator keys (signing and withdrawal) in the create_validator
script described in Section 5.6.2 and the pre-generation of keys described in Section 5.6.1.

Deposit

Since execution clients can generate and broadcast transactions, we utilize Geth to create

and broadcast deposit transcations. The transaction generated with Geth for a deposit is
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shown in Listing 5.13.

./geth attach --exec "eth.sendTransaction({
from: eth.accounts[0], // The node's EOA
to:'0x4242424242...4242', // Deposit contract address
value:'32000000000000000000', // 32 ETH
gas:'120000',
gasPrice:'15000000000',
data:'$RAW_DEPOSIT_DATA '})" // DepositData in raw format
geth.ipc // Provide access to the API

Listing 5.13: The command used to send a deposit transaction from an EOA (execution layer

address), to the deposit contract (0x424242...42).

All fields are generally straightforward, except for the data field, which has the dual func-

tion of either deploying a smart contract or triggering a function call on an existing smart

contract. As the deposit contract has already been deployed with the execution layer address

0x424242..., we use its public deposit function to make deposits [62].

In Section 3.3.4, we introduced DepositData, the data required by the deposit contract

for processing new validators. For a transaction to be valid and interact with the deposit

contract, the DepositData must be in raw format (concatenated and in hexadecimal). The

raw DepositData is generated by ethdo and occurs automatically after generating a valida-

tor’s keys (signing and withdrawal) when using the create_validator script. This data is

stored in a deposit storage directory for easy access. It’s worth noting that the raw Deposit-
Data isn’t generated for the genesis validators, as they are already included and active in the
beacon state from genesis time.

The user must run the make_deposits script to make a deposit transaction. This script

has one prerequisite: the validator keys (signing and withdrawal) must already have been

generated using the create_validator script, such that raw DepositData is available.

Once the make_deposits script is executed, it checks the deposit storage for raw De-
positData that has not yet been spent (i.e., used in a deposit transaction). The script dis-

plays the number of unspent deposits and allows the user to select the number of deposit

transactions to make.

If the total number of unspent deposits is m and the user chooses n where n ≤ m, the

script will generate and broadcast n deposit transactions using the command shown in List-

ing 5.13. These deposits will then be marked as spent to prevent multiple uses. The overall

flow of the make_deposits script is shown in Figure 5.7.

Additionally, the script can be called with a --all-deposits flag to skip the selection

process and automatically process all unspent deposits.

Withdrawal Credentials Change

All genesis validators and validators added through deposits use the old withdrawal creden-

tials style starting with 0x00. To enable partial and full withdrawals, we need to update these
credentials to comply with the new 0x01 style, as discussed in Section 3.3.6.
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Figure 5.7: Flow diagram showing the process formaking deposits. The deposit storage con-
tains all the raw DepositData (deposit-i) for each validator generated beyond the genesis
validators. Once a deposit transaction has been executed, the deposit status is updated to
deposit-i_spent, indicating that a deposit transaction has been made for this validator.
This update prevents the same deposit-i from being used again. The two tables, Deposits
and Unspent Deposits, are included for visual clarity.

We provide a script, convert_withdrawals_address, to update the validators to the new

style. The script uses ethdo to generate SignedBLSToExecutionChangemessages [116]. These

messages are then broadcast through the connected beacon node for inclusion in an upcom-

ing beacon block. The command used in ethdo is shown in Listing 5.14, where --mnemonic
parameter specifies the node’smnemonic, while the --withdrawal-address parameter pro-

vides the node’s EOA in checksum format.

./ethdo validator credentials set
--mnemonic="nature expand bone ... dinosaur"
--withdrawal -address="0x3804bD29E8b614 ..." // EOA in checksum format

Listing 5.14: The command used to create one or more SignedBLSToExecutionChange
message(s). The mnemonic and EOA belongs to node-1.

When running convert_withdrawals_address, ethdo retrieves information from the con-

sensus client about the validators managed by the node and verifies if they were generated

with the provided mnemonic string. For all validators generated with this mnemonic and

still using the old withdrawal prefix style 0x00, ethdo will generate and broadcast a Signed-
BLSToExecutionChange through the consensus client for each one. After some time, these

messages will be included in beacon blocks and processed, updating the validators’ with-

drawal credentials to the new style 0x01, ensuring they become eligible for withdrawals.

Exit

To enable the exiting of validators, we have developed the exit_validator script, which

allows users to exit all validators associated with a specific mnemonic string or select indi-

vidual validators for exit.

The exit script uses ethdo similarly to the withdrawal credentials change but creates

SignedVoluntaryExitmessages instead, which are also broadcasted through the connected

beacon node [117]. Upon executing the exit_validator script, it lists all active validators
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(signing keys) associatedwith the connectednode, displaying themby their derivationpaths.

Based on this list, the user can decide whether to exit all active validators or just a single val-

idator. The process is illustrated in Figure 5.8.

Exit validator
Yes

No

Exit all? Exit all

Exit selectedSelect validator
index

Figure 5.8: Flow diagram showing the process of exiting validators.

The ethdo command used for creating and broadcasting SignedVoluntaryExit is shown in
Listing 5.15. To exit all active validators associated with the given mnemonic string, the --
path argument is omitted. If the user wants to exit a specific validator, theymust provide the

derivation path for that validator’s signing key to the --path argument. When the derivation

paths are listed, each path has an associated index. Users only need to input this index into

the terminal rather than typing out the entire derivation path.

./ethdo validator exit
--mnemonic="nature expand bone ... dinosaur"
--path="m/12381/3600/i/0/0" // Derivation Path i ∈ [0, ..., 4095]

Listing 5.15: The command used to create one or more SignedVoluntaryExit message(s).

The mnemonic belongs to node-1.

5.7 Enabling Byzantine Behavior

To enable Byzantine behavior in our consensus client, we forked Prysm and introduced an

additional flag, --byzantine-behavior. By incorporating this flag when starting Prysm, it

is possible to check anywhere in Prysm’s consensus client code if the flag is set through the

conditional check demonstrated in Listing 5.16.

if flags.Get().Byzantine {
... // Execute Byzantine behavior here

}

Listing 5.16: Check if the --byzantine-behavior flag is set.

We utilized this mechanism to allow nodes running validators to skip the aggregation selec-

tion process described in Section 3.4.5. When a validator controlled by a Byzantine node is

selected to create and broadcast a SignedAggregateAndProof, the validator client requests
an aggregated attestation from the consensus client. The consensus client returns an error

instead of providing an aggregated attestation, preventing the validator from signing and

broadcasting the aggregated attestation.

The selection process for creating and broadcasting a SignedAggregateAndProof is de-

signed to be probabilistic, with the aim of selecting 16 validators for this task. The presence
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of at least one honest validator guarantees the proper completion of the process. However,

this setup allows for the possibility of free-riding. In this context, free-riding refers to a

validator’s strategy of having their attestation included in a block (to earn rewards) without

actively participating in the aggregation process.

The change we implemented in Prysm for enabling a node to skip selection validator

aggregation responsibility can be seen in Listing 5.17.

// If validator is byzantine , it should not broadcast an aggregated attestation
if flags.Get().Byzantine {

fmt.Printf("Byzantine: SubmitAggregateSelectionProof Byzantine Behaviour from
Validator: %d, Slot: %d \n", validatorIndex , req.GetSlot())
return nil, status.Errorf(codes.Internal , "Validator: %d is byzantine",
validatorIndex)

}

Listing 5.17: The modified Prysm code in the aggregator.go file to allows Byzantine actors

to bypass the aggregator selection process, enabling free-riding.

In Chapter 6, we perform an experiment to analyze free-riding behavior. Specifically, we

compare the hardware usage of a client engaging in free-riding with that of an honest client.

5.8 Tracking Metrics

All three clients—execution, consensus, and validator—generate extensive logs during op-

eration. These logs, while informative, often include a significant amount of data that may

not be directly relevant. These logs are primarily utilized to verify the system’s proper func-

tioning. However, they do not offer statistical insights, necessitating alternative methods

for data collection. To get more relevant data, we employ Prometheus [118] to gather the

necessary data and Grafana [119] as the data visualization and presentation tool.

5.8.1 Grafana Dashboard

Grafana is configured with Prometheus as the data source, which is configured to scrape

consensus client data from port 8080, validator client data from 8081, and execution client

data from 6060 with a 15-second time interval. Figure 5.9 shows the dashboard for Geth.

This dashboard shows detailed information about the node, such as the blockchain state

and transactions. It also shows network traffic and CPU usage. Geth provides a Grafana

dashboard, which requires InfluxDB [120] as its data source. However, we use a similar

dashboard designed for Prometheus.

The Grafana dashboard for the consensus client can be seen in Figure 5.10. In the dash-

board for the consensus client, we see both clients’ uptime, the number of validators they

run, the peer count, and their earnings. More complex graphs show the total balance, in-

dividual validator balances and attestation, and the number of block proposals. Our dash-

board is mainly built upon one provided by Prysm [121], with only minor modifications.

One of the main statistics we are focusing on is hardware usage, as we will be conducting

some experiments on this later in Chapter 6.
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Figure 5.9: Grafana dashboard for monitoring the execution client.

Figure 5.10: Grafana dashboard for monitoring the consensus and validator client.

5.8.2 Accessing the dashboard

Typically, the dashboard is accessed via 127.0.0.1:3000. However, when running multiple

nodes simultaneously and communicating with them exclusively through SSH, it is neces-

sary to distinguish between each node. Hence, we increment the Grafana port by the node

ID (node-i where i ∈ [1, ..., 30]). For instance, the dashboard for node-1 will be hosted on

port 3001, node-2 on port 3002, and so forth. This approach is also done for Prometheus,

where the base port is 9090.

Note 5.4. We adopt a similar approach to access the Execution API and Beacon API for the

execution client and consensus client, respectively. Where we also incorporate the node ID

into the port number.
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Chapter 6

Experimental Evaluation

In this chapter, we outline the experiments conducted and their results. We start by briefly

explaining what we aim to examine with the experiments, followed by a brief overview of

the machines operating the application. Following this, we give a brief introduction to all

the experiments performed. Subsequently, we follow a sequential approach, discussing each

experiment and its result before proceeding to the next. Finally, we will conduct an analysis

of all the experiments.

6.1 Goals

Our experiments aim to analyze the hardware usage of all clients, namely consensus, exe-

cution, and the validator, while focusing on two key metrics: CPU and memory usage. By

examining the CPU and memory requirements, we aim to determine whether the hardware

demands for running a node on a devnet differ from those on the mainnet. This comparison

will help us determine the necessary hardware when running a devnet rather than partic-

ipating in mainnet or one of the public testnets. By doing so, researchers can more easily

determine if their equipment can handle running a devnet instead of relying on mainnet

resource requirements, which may be excessive and unnecessary for their needs.

6.2 Setup

The application is deployed on the BBChain cluster at UiS. This cluster consists of 30 ma-

chines, each named bbchain and followed by an ID ranging from 1 to 30, i.e., bbchain1,

bbchain2, and so forth. This simplifies manually entering an ID for each node we launch.

Instead, we use the identifier already present in the hostname. Each of the 30 machines

runs on Ubuntu 23.04, with an Intel(R) Xeon(R) E-2136 CPU at 3.30 GHz, with 6 cores and

12 threads. They have 32 GB of RAM and an INTEL SSD with 1.6 TB storage.

The machines are running Go version 1.21.6. We utilize Prysm fork based on release

v5.0.30 [122] and Lighthouse binary version v5.1.3. Additionally, we use Geth version

v1.13.15.
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6.3 Experiments

The following experiments will be conducted in this section.

• The first Experiment 6.3.1 aims to establish a baseline for comparing hardware usage

in subsequent experiments.

• The second Experiment 6.3.2 examines hardware usage when the execution client

broadcasts transactions and compares it to the baseline experiment where no transac-

tions were made.

• The third Experiment 6.3.3 investigates the impact of peer count on hardware usage

by running the system with 5, 10, 15, and 20 peers, respectively.

• The fourth Experiment 6.3.4 analyzes hardware usage when dynamically increasing

the number of validators over time.

• In the fifth and final Experiment 6.3.5, we use the Byzantine flag implemented in Sec-

tion 5.7 to compare free-riding between an honest node and a Byzantine node.

Most experiments use both Lighthouse and Prysm as consensus clients to allow comparison.

In the experiments, we configure specific parameters for each node’s consensus client by

adjusting the number of peer connections they maintain. For Prysm, this parameter is set

using the --p2p-max-peers flag, while for Lighthouse, it is managed through the --target-
peers flag. These flags specify the maximum number of peers the clients should attempt

to maintain. Any excess peers will be pruned to avoid unnecessary connections. Having an

excessively high peer count can negatively impact the performance of a beacon node [123].

By default, Prysm is configured tomaintain 70 peers, whereas Lighthouse defaults to 100.

However, for the purposes of our experiments, we adjust these values tomatch the number of

nodes in the experiments being conducted. We aim tominimize the overhead of discovering

and maintaining additional peer connections, allowing us to focus on the experiment’s core

objectives with minimal external influences.

Note 6.1. Every slot had an associated block during the experiments, so the slot number

always matched the block number. For instance, slot i had block number i, and slot i + 1

had block number i+ 1. This pattern continued until each experiment was concluded.

6.3.1 Establishing a Baseline

In this experiment, we aim to set a baseline for future reference. We accomplish this by de-

ploying a devnet of 5 nodes, each hosting 128 validators. Node-1 through node-4 is running

Prysm, while node-5 is running Lighthouse. This setup allows us to compare hardware us-

age between the two clients and examine how running Prysm impacts the execution client

Geth compared to Lighthouse.
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Result

Figure 6.1 and 6.2 show the hardware usage for a Prysm and Lighthouse node, respectively.

Prysm’s memory usage shows a steady increase in the beacon node (consensus client). This

memory increase is because Prysm retains the last n blocks (those since the last finalized

checkpoint) in memory to handle potential reorgs. The beacon state also experiences some

space growthwhen newblocks are proposed (multiple beacon states are also kept inmemory

in the case of reorgs). Similarly, the validator client’s memory usage increases slightly when

the node is selected for block proposing, making attestations, or serving as an aggregator.

The most significant memory for the validator client increase occurs when the validator is

selected as the block proposer, as it must generate the beacon block and send it to the bea-

con node. Additionally, since Prysm is written in Go, anything placed on the heap requires

garbage collection.
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Figure 6.1: Hardware usage baseline for a Prysm node running 128 validators.

Lighthouse follows a similar pattern in memory usage, increasing as the number of blocks

grows and also keeps blocks and beacon states in memory in the case of reorgs. One thing

that is especially evident for Lighthouse is how it handles memory compared to Prysm. It

does not have a garbage collector but instead releasesmemorymanually throughRust’s own-

ership model, giving much more evident spikes in memory consumption than Prysm.

Themost notable distinction betweenPrysmandLighthouse in Figure 6.1 andFigure 6.2,

respectively, is their CPU usage for the consensus client, with Prysm registering approxi-

mately 17.5%, and Lighthouse records about 1.0%.

While the CPU usage for the validator client remains exceptionally low for both Prysm

andLighthouse, Lighthouse’s validator client appears to utilize slightlymoreCPU thanPrysm’s

validator client, which consistently maintains a 0.1% usage rate.

The CPU usage for both clients remained extremely stable throughout the 96-hour run-

ning period, indicating that no outside factors affected the experiment.
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Figure 6.2: Hardware usage baseline for a Lighthouse node running 128 validators.

Execution Client The hardware usage for the execution client can be seen in Figure 6.3

with Prysm and Figure 6.4 with Lighthouse as their respective consensus client. Since all

the beacon blocks contain execution_payload with zero transactions, the execution client

Geth exhibitsminimal resource consumption in bothmemory and CPUusage. Themain dif-

ference is that Geth uses slightly more memory when running with Prysm than Lighthouse,

while Geth’s CPU usage is marginally higher when running with Lighthouse compared to

Prysm.
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Figure 6.3: Execution client baseline usage. The corresponding consensus client is Prysm.

91



 0  6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96
Elapsed Hours

0.320

0.325

0.330

0.335

0.340

0.345

M
em

or
y 

Us
ag

e 
(G

B)
Memory Usage (GB) CPU Usage (%)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

CP
U 

Us
ag

e 
(%

)

Geth (5 Peers)

Figure 6.4: Execution client baseline usage. The corresponding consensus client is Light-
house.

6.3.2 Generating Transaction Traffic

This experiment aims to simulate more network traffic by generating transactions to reach

the target block size of 15 million gas as closely as possible. Since a single transaction has

a gas cost of 21, 000, a block can contain up to 714 transactions before exceeding the target

size. A single node can generate around 140 transactions per slot with our machines. With

5 nodes, we achieve approximately 700 transactions per slot. Maintaining around 700 trans-

actions per block enables us to observe hardware usage under more realistic conditions. In

this experiment, we broadcast transactions constantly during the full duration of the deploy-

ment.

Result

In this experiment, we utilize both Prysm and Lighthouse as consensus clients. Figure 6.5

shows the node running Prysm, while Figure 6.6 shows the node running Lighthouse. Both

PrysmandLighthouse follow the samepattern observed in the previous experiment. Prysm’s

CPU usage for the beacon client utilizes around 17%, while Lighthouse only utilizes around

1% of its CPU. One noticeable difference is the validator’s CPU utilization, which is lower

than the baseline recorded previously.
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Figure 6.5: Baseline when transactions are generated and broadcast for a Prysm node.
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Figure 6.6: Baseline when transactions are generated and broadcast for a Prysm node.

To easily see the comparison between the hardware usage of this experiment and the base-

line experiment, we introduce Figure 6.7 and 6.8. These figures show the results of a sepa-

rate deployment conducted over three phases: an initial baseline for 24 hours, followed by

24 hours during which transactions were broadcast, and finally, another 24 hours of normal

baseline execution.
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Figure 6.7: Lighthouse’s hardware usage during a three-phase experiment consisting of tog-
gling transactions on and off.
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Figure 6.8: Prysm’s hardware usage during a three-phase experiment consisting of toggling
transactions on and off.

In Figure 6.7, we see a noticeable reduction in CPU usage for the validator client when trans-

actions are broadcast in the background for the node running Lighthouse. Additionally, the

memory usage of the beacon node stabilizes slightly, characterized by a lower frequency. In

contrast, Figure 6.8 shows that the node running Prysm experiences only a minor decrease

in memory usage for the beacon node.

As we know, blocks are proposed within a slot’s first 4 seconds. During this time, the

proposer also waits for the execution_payload from its execution client. Broadcasting the

block also takes time. When a peer receives this block, it must also send it to its execution

client for validation, execute all transactions, update its EVM state, and ensure the state
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matches the state in the block. This extensive procedure occupies the beacon and validator

client, preventing them from performing other tasks, and therefore, reduces their hardware

utilization.

Execution Client Moving on, we examine the hardware usage for the execution clients.

Figure 6.9 shows the hardware usage for the execution client on the node running Prysm.

Similarly, Figure 6.10 presents the hardware usage for the node running Lighthouse as the

consensus client. These figures represent the hardware usage during the initial experiment,

during which transactions were continuously broadcast.
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Figure 6.9: Baseline when transactions are generated and broadcast. The corresponding
consensus client is Prysm.
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Figure 6.10: Baseline when transactions are generated and broadcast. The corresponding
consensus client is Lighthouse.
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Compared to baseline experiments, there is an obvious increase in the CPU and memory

usage for the execution clients, as we observe in Figures 6.9 and 6.10. Comparing the exe-

cution client usage between nodes running Prysm and Lighthouse, the Prysm node utilizes

slightly lower CPU usage overall. It hovers around 2% CPU usage, while the node running

Lighthouse has higher spikes, nearing 3% utilization. Overall, the execution client’s usage is

barely influenced by which client the consensus layer operates.

6.3.3 Increasing the Peer Count

In this experiment, we analyze the hardware usage when launching a devnet with a varying

number of peers. We observe the first 24hours of deploymentswith different configurations:

5nodes, 10nodes, 15nodes, and 20nodes. In all these deployments, only the first 5nodes are

assigned 128 validators each, while the remaining nodes run without validators. By keeping

the genesis validator set constant, we can avoid the increased hardware usage associated

with a higher validator count. This approach helps manage the beacon state’s growth and

reduces the number of attestations that need to be broadcast. It allows us to focus solely

on how hardware is affected by a higher peer count, minimizing external factors as much as

possible.

This experiment only examines the consensus clients, as the baseline experiment covers

the execution client’s usage.

Result

When nodes report their peer count, they do not include themselves. We refer to peer count

as the total number of nodes in the system, not the reported peer count of a specific node.

For example, node-1 may report 9 nodes, but we refer to the peer count as 10.

Figures 6.11, 6.12, 6.13, and 6.14 shows the Prysm and Lighthouse usage during the first

24 hours of deployment with the different peer counts. Figure 6.11 is from the same experi-

ment as the baseline experiment but only shows the first 24 hours.
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Figure 6.11: Hardware usage for Prysm and Lighthouse with number of peers equal 5.
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Figure 6.12: Hardware usage for Prysm and Lighthouse with number of peers equal 10.
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Figure 6.13: Hardware usage for Prysm and Lighthouse with number of peers equal 15.
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Figure 6.14: Hardware usage for Prysm and Lighthouse with number of peers equal 20.

For the Prysm nodes, the CPU usage fluctuates from the lowest utilization of 17.5% to the

highest of 22.5% for the beacon node. Lighthouse remains more consistent throughout the

different peer counts, with a minimal increase in CPU usage with a higher peer count.

Peer Count for Nodes with Zero Validators

As mentioned, to keep the experiment as fair as possible, we do not run any validators on

any of the nodes apart from the 5 first ones. This also allows us to see how the peer count

affects hardware when we are not running validators. In Figures 6.15 and 6.16, we look at

node-10, which does not run any validators. The experiment with 5 nodes is not included as

all the participating nodes had a genesis validator count of 128.
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Figure 6.15: Hardware for nodes running 0 validators. Left: Peer count 10. Right: Peer
count 15

 0  3  6  9 12 15 18 21 24
Elapsed Hours

0.1

0.2

0.3

0.4

0.5

M
em

or
y 

Us
ag

e 
(G

B)

Memory Validator (GB) Memory Beacon Node (GB) CPU Validator (%) CPU Beacon Node (%)

0

5

10

15

20

CP
U 

Us
ag

e 
(%

)

Prysm - 20 Peers

Figure 6.16: Hardware for nodes running 0 validators with peer count 20.

As expected, the hardware usage for the consensus client for the nodes running 0 validators

remains almost identical to those with 128 validators. The only observable difference is in

the CPU and memory usage of the validator client. Since we do not run any validators, the

usage by the validator client isminimal. We study the effects of an increasing validator count

in the following experiment.

6.3.4 Increasing the Validator Count

In this experiment, we aim to assess the impact of the number of validators on a node’s

performance. We deploy a total of 3 Prysm nodes: node-1 is configured with 1 genesis val-

idator, node-3 runs with 4096 genesis validators, and node-2 starts with 0 genesis validators

and gradually increases its validator count over time. The validator count of node-2 is in-

cremented by 2n, where n ∈ [0, ..., 11], every 12 hours. Node-2 validator counts progresses as
follows: 0, 1, 3, 7, 15, 31 and so forth, until it reaches a total of 4095 validators. After node-
2 reached 4095 validators, the experiment ran for approximately an additional 100 hours to

better understand how the distribution of validators would affect the node’s hardware usage.

For this experiment, we utilize the beacon chain parameters detailed in Listing 5.3 from

Section 5.3.1 to speed up the process of adding validators.

Result

The three Figures 6.17, 6.18 and 6.19 are for node-1, node-2 and node-3, respectively. Since
these nodes ran much longer than the other experiments, we can clearly observe when the

garbage collector frees memory. Additionally, the beacon node’s memory usage increased

noticeably after 96 hours, rising to 1 GB compared to 0.7 GB in the baseline. This increase is
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due to the greater number of validators (starting with 4097 compared to 640 in the baseline),

which means more attestations need to be broadcast, stored in the beacon blocks, and the

beacon state containsmore validators. Consequently, epoch processing requiresmorework.

Although all the nodes require the same amount of beacon nodememory and showmin-

imal differences in CPU usage, there is a significant disparity in the memory consumption

and CPU usage of the validator clients, especially for node-3 and node-2 after some time.

The dashed vertical lines in Figure 6.18 mark the times when node-2 made deposits for new

validators.

The significant rise in memory consumption seen in Figure 6.19 for the validator client

of node-3 after just a few hours is due to its control over 4096/4097 genesis validators. This

control enables node-3 to produce nearly all blocks, broadcast numerous attestations, and

frequently handle attestation aggregation duties. Consequently, it must retain more infor-

mation in memory for its validator client than the other nodes.

As node-2 acquires more validators and its percentage of all active validators increases,

while node-3’s percentage decreases, both nodes must share the responsibility of proposing

blocks. However, the increased number of attestations broadcasted by both nodes leads to

a rapid rise in memory consumption for their validator clients.

An interesting observation when studying Figure 6.18 (node-2) and Figure 6.19 (node-3)
is the CPU usage for their respective validator clients. Initially, node-3 with 4096 active val-

idators has the highest percentage of active validators, leading to increased CPU usage. This

is because having the most active validators means the node proposes a higher percentage

of blocks, thereby intensifying the CPU workload.

Over time, as node-2 gradually increases its validator count, it acquires a larger percent-
age of the total active validators. Consequently, we observe a decrease in validator client

CPU usage for node-3 as its share of validators decreases. This shift reduces the number of

blocks proposed by node-3’s validators, thus lowering its CPU usage.
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Figure 6.17: Node 1’s hardware usage with a stable validator count of 1.
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Figure 6.18: Node 2’s hardware usage when increasing the validator count every 12 hours.
It began with 0 validators and continued until it reached 4095 validators.
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Figure 6.19: Node 3’s hardware usage with a stable validator count of 4096.

6.3.5 Byzantine Node Performance

In this experiment, we compare the performance of a Byzantine Prysm node to that of a reg-

ular, honest Prysm node. Utilizing the --byzantine-behavior flag in the modified Prysm

code, we can designate a single node as Byzantine while the remaining nodes operate as

regular nodes by omitting this flag. The Byzantine node skips its duty when it is selected to

aggregate attestations, as described in Section 5.7. The experiment includes five nodes, each

with 128 genesis validators, all running Prysm. Our focus is solely on the hardware usage

of the consensus client and the validator client, as the execution client’s hardware is not af-

fected and remains equal to that of the baseline experiment. The primary objective of this
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experiment is to evaluate the extent to which a Byzantine node can achieve resource savings

through free-riding behavior.

Result

Figures 6.20 and 6.21 show the non-Byzantine and Byzantine hardware usage, respectively.

The CPU and memory usage for the consensus and validator clients is similar across both

nodes. This suggests that the resources saved for free-riding are minimal or nonexistent.

However, there is a higher risk of missing attestation rewards if one of the Byzantine node’s

validators is the sole validator selected to perform attestation aggregation for a particular

committee.
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Figure 6.20: Non-Byzantine hardware usage with a stable validator count of 128.
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Figure 6.21: Byzantine hardware usage with a stable validator count of 128.
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6.4 Experimental Analysis

We begin by presenting observations made during the experiments. Following this, we re-

flect on the goals set regarding hardware usage requirements for a devnet compared to the

mainnet recommendations. Lastly, we briefly comment on some of the experiments we con-

ducted.

6.4.1 Observations

Across all experiments, we see a consistent pattern for both beacon nodes. Prysm has stable

CPU usage for both the consensus and validator clients, with the consensus client memory

usage increasing steadily as blocks are kept in memory and as the beacon state grows to

combat potential reorgs. In the longer experiment with increasing validator count, we ob-

serve sharp drops in the beaconmemory upon reaching a certain threshold before gradually

increasing just above the initial drop point, repeating this cycle continuously.

Lighthouse has a significantly lower CPU usage for the consensus client, generally hov-

ering at around 1%. The validator memory also follows a distinct pattern across all exper-

iments, releasing memory at a certain point. Interestingly, the first drop always happens

after 40 hours of deployment in all experiments.

Overall, when examining Geth’s hardware usage, it is evident that its resources are min-

imal. The CPU remains at 0% throughout all experiments, barely approaching 1% at times.

Memory is hovering at the 0.2−0.3GB range. Only during transaction generation and broad-

casting do we observe spikes in both CPU and memory utilization. Although, the usage still

remains relatively low, at 0.6 GB memory and 2% CPU.

For our experiments, Lighthouse performed better than Prysm regarding hardware us-

age. Lower memory usage for both consensus and validator clients and lower CPU utiliza-

tion for the consensus client. Prysm’s validator client’s CPU usage barely utilizes less than

Lighthouse’s.

We couldn’t performcertain experiments, like increasing the validator count, usingLight-

house due to reasons discussed later in Section 7.4.2. It would have been interesting to con-

duct an increasing validator count experiment with Lighthouse to understand how Light-

house nodes handle a larger active validator count and control a larger percentage of all

active validators.

6.4.2 Mainnet Comparison

Our objective was to determine whether the required resources for a devnet are equivalent

to those for the mainnet. Table 6.1 presents the recommended hardware requirements for

Geth, Prysm, and Lighthouse.

Note that for Lighthouse, the requirements assume an execution client is also running.

Geth’s disk space recommendation is somewhat outdated, as it was written in late 2022.

At that time, they recommended 2 TB of SSD, including a consensus client. However, an

updated, unofficial community agreement is that 4 TB SSD will be required mid-2024 [124].
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Table 6.1: Recommended System Requirements for Geth [125], Prysm [126] and Light-
house [127] for running a node on mainnet.

Geth Prysm Lighthouse

CPU Quad-core CPU Intel Core i7-4770 or
AMD FX-8310 or better

Quad-core AMD Ryzen
Intel Broadwell, ARMv8

or newer

Memory 16 GB 16 GB 32 GB

Storage 2 TB SSD 100 GB+ of SSD 2 TB SSD

The table shows that 32 GB of memory is recommended when running an execution client

(Geth) and a consensus client (Prysm or Lighthouse) for mainnet.

Based on the results of all experiments, it appears feasible to run a devnet on lower-resource

machines. A machine with 8 GB of memory dedicated solely to the full node should be suf-

ficient for normal devnet operations. Additionally, a somewhat modern CPU with at least

4 cores is adequate for a devnet environment.

However, it’s important to note that experiments with many validators can significantly

increase memory requirements. This was evident in the experiment with an increasing val-

idator count, where the consensus client of all the participating nodes requires more mem-

ory. The nodes with many validators will also see high memory usage for their validator

client.

Performing additional experiments with a greater variation in the total number of valida-

tors and distribution of validators among the nodes following a normal distribution would

likely provide valuable insights. Combining some of the experiments, such as increasing

validator with more peers, could also be highly beneficial.

6.4.3 Runtime and Transaction Load

It became evident that many experiments would have benefited from a longer runtime. For

instance, only in the experiment involving an increasing validator count (Section 6.3.4) did

we observe periodic drops in the memory usage of consensus and validator clients. Unlike

the other experiments, this occurred because it ran long enough to trigger these drops.

The transaction load experiment would also benefit from a more realistic transaction

load. One issue with our generated transaction load was that each client used its own as-

signed EOA and sent a small amount of Wei to itself. This had minimal effect on the EVM

state, as only the already included accounts neededminimal updates (changing balance and

updating nonce).

Incorporating real transactions from the Ethereum mainnet or a testnet would have al-

lowed us to achieve a more accurate comparison of hardware usage for the execution client.

Real transactions would have caused the state to grow by including more EOAs, deploying

smart contracts, and executing smart contract operations. This approach could have pro-

vided a more realistic assessment of hardware usage related to an execution client.
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Chapter 7

Discussion

In this chapter, we begin by reflecting on the application we developed and critically ana-

lyzing its shortcomings. We will delve into the design decisions made throughout the im-

plementation process. Additionally, we will review the tools available for interacting with

Ethereum, comparing the approaches and solutions previously discussed for deploying a

private devnet. Wewill also address the challenges and issues encountered during the appli-

cation’s development and the solutions implemented to overcome them. Finally, we propose

directions for future work, highlighting potential enhancements to improve the application

further.

7.1 Critical Reflection

Reflecting on the objectives set at the beginning of this thesis, we have successfully achieved

our primary goal of creating an application that simplifies the setup of an Ethereum pri-

vate network environment. However, several aspects warrant critical reflection to identify

limitations and areas for improvement.

We start by discussing the initial phase of learning andunderstandingEthereumandhow

it helped develop the application. Next, we reflect on our initial approach with the clients

we used and consider how we could have approached it differently. We also address the po-

tential benefits of dedicating more time to gathering a broader range of deployed node met-

rics. Additionally, we present a paper we initially intended to use to compare our findings

and discuss the challenges and insights gained from this comparison. Finally, we highlight

our experiences in receiving feedback and assisting others in deploying their own Ethereum

nodes within various communities.

7.1.1 Learning from Documentation and Specifications

One thing that greatly helped us understandEthereum’s proof-of-stake protocol was reading

specific documents, such as the consensus specifications, Vitalik Buterin’s annotated spec-

ifications, and Ben Edington’s book, Upgrading Ethereum. These resources were incred-

ibly helpful in deepening our understanding of the protocol. This knowledge significantly
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aided our troubleshooting and decision-making processes, such as the process for dynami-

cally adding validators, exiting validators, enabling withdrawals, and knowing what beacon

chain parameters to adjust to meet our specific demands.

Gaining an understanding of Ethereum’s proof-of-stake protocol through the specifi-

cations was particularly beneficial when working with Prysm’s source code to implement

Byzantine behavior. Given the vast and complex nature of Prysm’s codebase, having a solid

theoretical foundationwas invaluable for identifyingwhich files tomodify and comprehend-

ing various components and their functions.

Overall, reading documentation and specifications proved essential, highlighting the im-

portance of a solid theoretical foundation before making design choices and starting practi-

cal implementations.

7.1.2 Client Diversity

In the early phases of the project, we concentrated primarily on Prysm, themost widely used

consensus client. This focus was mainly because Prysm is written in Go, the programming

language we are most comfortable with. As described in Section 4.3, the Prysm team has

their own guide for setting up a private devnet. Although this guide was somewhat lacking,

it provided a useful starting point.

Later in the project, we integrated support for Lighthouse into our application. The

Lighthouse team has also made a guide for setting up a private devnet, which offered valu-

able tips and a different perspective on setting up a devnet compared to Prysm.

We regret not exploring other consensus clients, such as Teku, Nimbus, and Lodestar,

and not investigating Lighthouse earlier. Doing so would have been extremely beneficial,

providing us with deeper insights into deploying a devnet and understanding the various

available options.

Most clients have their own guides for setting up a devnet, focusing solely on their re-

spective clients. These guides would have helped us understand different clients’ operations

and deployment requirements in a devnet environment, providing a broader perspective on

setting up and deploying a devnet.

Including a broader range of clients can benefit researchers who want to use the project

for their experiments, providing amore realistic client distribution similar tomainnet. Greater

client diversity would also have been advantageous in our evaluation of hardware usage as-

sociated with the clients, offering a more comprehensive overview of their performance.

In summary, thoroughly exploring all the different consensus clients and their config-

urations early on would likely have enabled our application to support the client diversity

that Ethereum aims to achieve.

7.1.3 Metrics and Monitoring Tools

Regarding hardware metrics, we primarily focused on memory and CPU usage. However,

a thorough evaluation should include disk space, read/write operations, and network uti-

lization. These metrics are crucial for understanding the full scope of resource consumption
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and system performance.

Finally, another area for improvement was the utilization of monitoring tools. We re-

lied on existing Grafana dashboards but did not customize them extensively to fit our needs.

Developing a fully customized dashboard that incorporates all the clients (execution, con-

sensus, and validator) could have provided more valuable insights and better visualized the

interactions between these components.

Overall, while the thesis has achieved most of its main objectives, these reflections high-

light areas where additional focus and improvement could further enhance the application.

7.1.4 Experimental Evaluation Comparison

One goal of our study was to compare our findings with those of other research on hardware

utilization of different clients. A notable paper by Cortes-Goicoechea et al. [128] provides a

comprehensive comparison of hardware utilization across various consensus clients. How-

ever, this paper has two inherent flaws that make it difficult to compare their findings with

ours.

First, the paper was published in late 2020, so it is relatively outdated and was conducted

on the Medalla testnet. This was before the beacon chain was even deployed on Ethereum’s

mainnet, which occurred on December 1, 2020, as shown in Figure 3.2. Second, the study’s

objective was different from ours: ”The objective of this study is to monitor specific metrics

in order to understand the behaviour and performance of the clients when initialized to

sync to the Eth2 network.” [128]. In contrast, our focus did not include syncing newnodes to

an existing chain by requesting blocks from other nodes. Instead, we initiated a blockchain

where every node participated from the genesis time, determined by the machine’s local

Unix time.

Because of these two differences, especially the second one, comparing our findings to

those in the paper didn’t make sense. We measured the same metrics but under two vastly

different conditions. However, one consistent observation was the memory consumption

pattern for Prysm. It reached a threshold, triggered garbage collection, and then increased

its threshold for the next cycle until it stabilized. We also observed this pattern clearly in the

increasing validator count experiment.

7.1.5 Community Contributions

Throughout the project, we actively participated in communities related to the different con-

sensus clients, such as the official Discord servers for Prysm and Lighthouse. This was ben-

eficial, as it was helpful to receive assistance from developers within these communities to

set up the devnet.

Moreover, we were also able to contribute by aiding others in setting up their devnets,

addressing their questions, and offering practical tips. We provided support on various is-

sues on GitHub, including validator management and modifying the source code for certain

tools.

106



Additionally, users have expressed notable interest by requesting access to our project

on GitHub, highlighting the relevance of the thesis.

7.2 Exploring Available Tools

Not only is the choice of clients themselves vast, but there are also many tools used to in-

teract with Ethereum. We will now discuss some of the tools we previously used but ended

up selecting another instead. We also discuss several validator management tools that are

available. We start by discussing the tool used for generating the Genesis state.

7.2.1 Genesis State Tools

Generating the Genesis state is a crucial step in setting up a devnet. Both Prysm and Light-

house offer tools tailored for this purpose, named prysmctl and lcli, respectively.
Initially, we utilized prysmctl. However, by recommendation from a Prysm developer

and Lighthouse developer, Chong-He, we transitioned to eth2-testnet-genesis. How-

ever, by recommendation from both Prysm and Lighthouse developers, we transitioned to

eth2-testnet-genesis. One of this tool’s biggest advantages is that it allows us to import

the bootstrapped validators into a validator client. This is because eth2-testnet-genesis
allows us to specify themnemonics it should use to generate the validators. We can then use

ethdo to recreate the keys (signing and withdrawal) by generating them through ethdo and

importing the signing keys into the validator client, as previously detailed in Section 5.6.1.

This was impossible when using prysmctl, as the mnemonic is unknown for the generated

validators. Because of the transition from prysmctl to eth2-testnet-genesis, we can ini-

tiate withdrawals and exits for validators generated at genesis time. We can also use Light-

house as the beacon node since the validators can be imported into a Lighthouse validator

client, which was impossible when they were created by prysmctl.
Adopting eth2-testnet-genesis thus enhanced the flexibility and functionality of our

system, allowing for more robust and versatile devnet configurations.

7.2.2 Deposit and Validator Management Tools

In our exploration of tools for deposit generation and validator management, we assessed

the capabilities of several options:

• staking-deposit-cli [129]

• eth2-val-tools [130]

• ethdo

staking-deposit-cli is the most utilized tool for deposit data generation, particularly on

themainnet. However, its utility is limited tomainnet and a select few testnets. This renders

it impractical for our purposes without resorting to performing source code modifications.

107



eth2-val-tools, developed by the same team responsible for eth2-testnet-genesis,
provides an experimental tool formanaging validators. Beyond facilitating deposit data gen-

eration, it offers a variety of tools for validator management.

ethdo, previously discussed in Chapter 5 is similar, providing various management op-

erations for validators.

Modifying the Source Code

One of the earlier approaches to dynamically adding validators to the system was to utilize

the staking-deposit-cli tool in combination with ethdo. To do this, we first have to per-
form the required code modifications.

The reason why staking-deposit-cli is not supporting a private devnet is due to the

settings of the devnet beingunknown to it. Unlike a public network, a devnet is often launched

under different settings and conditions. This means the initial genesis settings for a devnet

vary, as opposed to the constant settings for public testnets. The staking-deposit-cli tool
utilizes a BaseChainSetting, which consists of the network’s genesis fork version and gen-

esis validator root, see Listing 7.1.

class BaseChainSetting(NamedTuple):
NETWORK_NAME: str
GENESIS_FORK_VERSION: bytes
GENESIS_VALIDATORS_ROOT: bytes

Listing 7.1: BaseChainSetting specification.

Therefore, we defined our own BaseChainSetting. To do this, we implemented a function

that fetches the required parameters from the running devnet. This was done by querying

the beacon chain endpoint to retrieve the GENESIS_FORK_VERSION and GENESIS_VALIDA-
TORS_ROOT. Fetching from the API rather than hard-coding specific values ensures we do

not have to modify the code each run. With these modifications to staking-deposit-cli,
we were able to use it to create keystores and deposit data for the private devnet.

The Process

After generating the keystores with the altered version of staking-deposit-cli, we em-

ployed ethdo to generate the rawdeposit data since it is not supported by staking-deposit-
cli. Generating validators using both tools was done concurrently, ensuring the signing and
withdrawal keys match up at every step. The process is based on a guide by Potuz, a Prysm

developer [131]:

1. Generate the signing keys using staking-deposit-cli.

2. Using ethdo, recreate the signing keys using the same mnemonic.

3. Compare public keys of the created signing keys.

4. After ensuring the signing keys match, generate the withdrawal keys using staking-
deposit-cli.
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5. Recreate the withdrawal keys using ethdo.

6. Compare withdrawal keys, ensuring they match.

7. Generate raw deposit data with ethdo.

8. Make and broadcast the deposit transaction.

Ideally, this process should be performed on an offline, air-gapped machine to ensure the

keys are not compromised. However, ensuring the security of the validator creation is not a

priority for our deployment.

Using this method, creating validators requires two times as many operations, which is

not optimal for our use case, as we are generating a large number of validators. Instead, we

opted to use ethdo alone, abandoning the codemodifications to staking-deposit-cli. The
process of using ethdo alone was outlined earlier in Section 5.6.2.

7.3 Comparing Solutions

Existing solutions, such as the Prysm devnet setup guide, Lighthouse’s local testnet, and

Mahmood’s framework presented in Section 4.3, can provide valuable approaches for node

deployment. However, these approaches also come with inherent limitations. For instance,

Prysm’smethod involves a follow-along, hardcoded configuration process that lacks flexibil-

ity for dynamic setups. Similarly, while Lighthouse offersmore dynamic deployment scripts,

it still requires significant manual effort tomanage and scale. In contrast, our solution seeks

to streamline these processes while offering a more feature-rich, scalable, and user-friendly

approach.

One of the perhapsmain featureswe provide is the ability to add validators after the chain

has started. None of the other three solutions we’ve examined provide a way to streamline

the process of creating validators, generating deposit data, making and broadcasting de-

posits, and importing the validators into the validator client of choice between Prysm and

Lighthouse. Along with adding validators, we lay the groundwork for analyzing incentives

by enabling withdrawals and exits. None of the other approaches support either of these

features.

The projects utilizing Prysm as the consensus client use prysmctl for generating the

state. Similarly, the Lighthouse setup also uses its own tool, lcli. Our approach uses the

third-party tool, eth2-testnet-genesis. Along with the advantages previously presented

in Section 7.2.1, using a third-party tool for state generation ensures that our environment

can easily adapt to include additional clients in the future without substantial modifications.

Table 7.1 compares our application to the other approaches discussed.

Prysm is denoted as partial support for deploying multiple nodes on a single machine

because their guide only briefly mentions the next steps to launch a second node. However,

this is a lackluster and incomplete guide.
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Table 7.1: The table summarizes the available features for each discussed application. 3 in-
dicates full support, and ~ indicates partial support.

Our application Prysm’s Guide Lighthouse’s Testnet Zoraiz Mahmood

Deploy single node 3 3 3 3

Deploy multiple

nodes (single machine)
~ 3 3

Deploy multiple

nodes (multiple machine)
3

Dynamically adding

validators
3

Withdrawals and

Exits
3

Multiple clients

supported
3

Support Byzantine

behavior
3

Enable metric

collection
3

7.4 Challenges

During the development of the application, there were multiple challenges and issues to

overcome. This section will outline some of the challenges and the solutions we imple-

mented.

7.4.1 Cluster Restrictions

Setting up a bare-bone deployment of a single Ethereumnode on localhost was simple; how-

ever, migrating to the cluster and launching multiple nodes presented several challenges.

These cluster challenges impacted our workflow and required various adaptations to be

made.

Alloted Timeslots

One of the primary challenges was the limited timeslots available for using the machines.

This constraint necessitated reducing the length of some experiments. Instead of running

experiments for extended periods, we had to shorten their duration to fit within the given

timeslots. This adjustment ensured we could still conduct the necessary experiments within

the given constraints.
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Software Compatibility

Another significant issue was the incompatibility of the cluster’s software versions with the

requirements of Prysm and Lighthouse. The cluster had an older version of Go, while Prysm

required Go version 1.21. We installed local Go versions on each machine in the cluster to

avoid disrupting other users by updating Go globally. This solution allowed us to meet the

software requirements of Prysm without affecting the overall cluster environment.

Similarly, Lighthouse, written in Rust, typically relies on Rustup for installation. How-

ever, Rustup was not available on the cluster. Fortunately, Lighthouse provides pre-built

binaries, which we were able to utilize. These binaries enabled us to run Lighthouse but did

not include the lcli tool, preventing us from testing it.

Missing Utilities

The absence of certain utilities on the cluster also posed challenges. Initially, we intended to

useweb3py for creating transactions, as it facilitates easier deployment of smart contracts.

However, the cluster lacks pip, making it impossible to install web3py. As a result, we opted

to use simple transactions alternative methods for transaction creation that did not rely on

web3py.

7.4.2 Interoperability Issues

One of the biggest challenges was ensuring Prysm and Lighthouse established a connection.

We encountered a recurring issue where clients failed to sync, eventually leading to Light-

house disconnecting from Prysm and labeling it faulty. During these attempts to connect,

Lighthouse generated warnings indicating invalid responses and issues with blocks from

past failed chains:

Apr 09 10:36:44.262 WARN Peer sent invalid response to parent request., reason:
ExtraBlocksReturned , peer_id: 16Uiu2HAmFdHNjdaJD9Ef7GiqhMGztd..., service: sync

Apr 09 10:59:17.254 DEBG Block is from a past failed chain. Dropping , block_slot:
4, block_root: 0x63ebf5ecabd2c03a1f9880ba418279ec26..., service: sync

The root cause of these connectivity issues was traced back to the beacon chain parameters

settings specified in the config.yml file. At the time, we were using a customized con-
fig.yml with certain values, such as SLOTS_PER_EPOCH, set lower than the mainnet specifi-

cations. Although SLOTS_PER_EPOCH is a preset value and should be fixed during compile-

time, Prysm still allowed us to change this valuewithout any issueswhen running exclusively

Prysm nodes.

The reason Prysm accepted different preset values compared to Lighthouse lies in the

programming languages they are written in. Prysm, developed in Go, benefits from a run-

time environment that allows for dynamic parameter adjustment during execution. In con-

trast, Lighthouse is written in Rust, which lacks a runtime environment. This characteris-

tic means Lighthouse cannot deviate from the predefined preset specification values [132],
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leading to synchronization challenges when interacting with a client like Prysm that can op-

erate under different parameter settings.

Using the mainnet config preset solved our connectivity and syncing issues. However,

using the mainnet configuration presents certain drawbacks, particularly regarding flexibil-

ity in experimental environments. For instance, in the mainnet configuration, the proto-

col only allows adding up to 8 validators per epoch. This limitation becomes a significant

constraint during experiments with increasing validator counts, such as the experiment dis-

cussed in Section 6.3.4.

7.4.3 Bucket List

In Geth’s implementation of Kademlia, each k-bucket has a bucketSize of 16, allowing it

to contain a maximum of 16 peers. Additionally, the bucketIPLimit in Geth is set to 2,

meaning that no more than two IP addresses from the same /24 subnet can be included

in any one bucket [133]. This setting is part of the node discovery protocol to maintain a

healthy network by preventing overrepresenting nodes from the same network. This helps

ensure a more diverse and resilient peer network.

Given that our setup involves deploying up to 30 nodes on the same subnet mask of /24,
we exceed this limit. This means only two nodes from our subnet can be included in any

single bucket. Despite this, the system’s functionality remains unaffected as the nodes con-

nect and communicate successfully. Only during debug mode is this limitation observed by

outputting messages indicating an IP is exceeding the bucket limit:

DEBUG[05-22|14:51:48] IP exceeds bucket limit ip=152.94.162.12
DEBUG[05-22|14:52:01] IP exceeds bucket limit ip=152.94.162.13

7.5 SystemMonitoring

As discussed in Section 5.8.2, our decision to increment port numbers stems from the need

to streamline accessing the dashboards for multiple nodes. This method significantly sim-

plifies port forwardingmanagement, which is essential for remotely monitoring each node’s

status and performance via SSH connections.

Traditionally, accessing a node’s dashboard involves initiating an SSH connection that

maps a local port to the corresponding port on the server hosting the node. The command

typically used is:

ssh -L 3000:localhost:3000 username@bbchain1.ux.uis.no

This setupworkswell for single-nodemonitoring. However, whenmanagingmultiple nodes,

this approach requires the user to terminate and re-establish the SSH tunnel for each node

change, specifying a new hostname each time. For example, switching from bbchain1 to

bbchain2 would necessitate canceling the current port forwarding and setting up a new one

to a different host.
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Example 7.1. For instance, in an experiment involving five nodes, each node can be ac-

cessed through a distinct port on the local machine, with port numbers ranging from 3001

to 3005, corresponding directly to the node’s identifier. Each port directly reflects the node

ID, making it intuitive for users to switch between dashboards of different nodes simply by

altering the port number in the URL.

This approach of incrementing port numbers alleviates the otherwise cumbersome process.

It allows simultaneous and seamless access tomultiple nodes’ dashboards without requiring

manual termination and activation of SSH tunnels.

7.6 FutureWorks

For future improvements to the application, we suggest some of the following features:

• Deploy multiple nodes on a single machine.

• Implement a graphical user interface.

• Simplify and automate setup using Docker

• Perform Byzantine experiments.

• Include support for other consensus and execution clients.

• Measure hardware resources related to syncing.

Having support for deployingmultiple nodes on a singlemachine is beneficial for researchers

and developers who do not utilize a cluster but would like to use our features that other so-

lutions don’t provide. Implementing this is straightforward, requiring only the launch of

multiple clients on a single machine with incremented ports to avoid interference. This was

done during initial testing on localhost. However, we drifted away from it when we transi-

tioned to the cluster, where we initially opted for default ports to simplify the setup.

A graphical user interface that utilizes our scripts could also benefit researchers whomay

not be technically proficient, facilitating easier setup, simulations, and experimentation on a

private development network. A web-based interface could allow users to select the number

of nodes, the validator count for each, and the specific client to launch through a graphical

interface. However, this approach might reduce flexibility, limiting the ability to customize

deployments fully.

To further simplify the deployment anduse of our application, wepropose utilizingDocker.

Docker can simplify the process by allowing users to deploy nodes easily withminimal effort.

With Docker, users can pull pre-configured container images and start multiple instances

on a singlemachine, reducing the complexity and time required for setup. We did not utilize

Docker in our experiments because it was unavailable on our cluster. However, integrating

Docker in future work could significantly enhance the usability of our program, making it

more accessible for researchers.
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We also suggest conductingmore simulations and specific experiments beyond studying

hardware usage. Experiments focusing on the Byzantine fault tolerance implementation we

provide could open up interesting opportunities for further research.

Our groundwork for genesis state generation and distributionmakes the addition of sup-

port for other clients straightforward. Therefore, the potential for additional support for

clients could be explored. Other consensus clients, such as Teku, Nimbus, and Grandine,

could be integrated. Nimbus especially focuses on being lightweight, which would be an

interesting comparison to Prysm and Lighthouse. Currently, we only utilize Geth as the

execution client. Expanding to include support for another execution client could provide

valuable research insights. For instance, Nethermind is an emerging client with significant

migration from Geth.

Additionally, measuring the hardware and network usage during the protocols’ sync-

ing process would be an interesting area for experimentation. This could involve running

multiple nodes for an extended period (e.g., 2-4 weeks), then introducing a new node and

observing the time required to achieve full synchronization from the genesis state. Monitor-

ing the hardware and network usage throughout this period would provide valuable insights

into the performance and efficiency of different clients during the syncing process.
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Chapter 8

Conclusion

In the rapidly evolving world of Ethereum, deploying a development network is essential for

providing researchers with a proper testing environment. This setup allows them to perform

simulations and test potential attacks, contributing significantly to the security and robust-

ness of Ethereum. Our application facilitates an easy setup of a cluster consisting ofmultiple

nodes, enabling a wide range of features, including validatormanagement and flexible client

configuration. Notably, none of the existing solutions offer a comparable set of features.

Using our applications, we conducted various experiments to conclude the necessary

hardware requirements for a development network and compared these to the mainnet rec-

ommendations. We analyzed how hardware usage changes when nodes run with a small

number of validators compared to a larger number. Additionally, we investigated how dif-

ferent levels of network load impact node performance and how the number of connected

peers influences performance.

Our Application also lays a solid foundation for further development. Utilizing third-

party genesis state generation tools that do not rely on a specific client enables easy expan-

sion of consensus client support.
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Appendix A

Overview of All Scripts

Table A.1 is an overview of all the scripts available in the project. Some of these are intended

to be executed frequently, such as start_fullnode, while others, such as start_prysm_-
consensus_client, are not, as other scripts invoke them. For localhost deployment, all

scripts should take a --node flag followed by an integer value, e.g., ”--node 1”. The scripts
will automatically remind the user to supply the flag if it is missing.

Table A.1: An overview of all scripts in the application. Scripts marked with ’*’ are intended
to be executed by the user; the remaining are invoked by other scripts or used as a one-time
setup.

Scripts Description Flags Flag(s) Description

build_deps.sh*
Builds or installs dependencies

required
--all Install all

start_fullnode* Launch a fullnode

--server

--config <value>

--ip <value>

--prysm

--byzantine

--lh

Launch a bootnode

mainnet (default), minimal, interop

IP of the bootnode

Uses Prysm as client (default)

Run Prysm node as Byzantine

Uses Lighthouse as client

create_validator* Creates validators
--num-validators

--insecure

Number to create

Copies instead of generating

make_deposits*
Send deposits to the deposit

contract
--all-deposits Send all deposits available

convert_withdrawal_address*
Enable partial withdrawals

for validators

exit_validator* Used for exiting validators
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monitor*
Used for monitoring a node.

Example : ’./monitor beacon’.

execution

beacon

validator

Monitor the execution client

Monitor the beacon client

Monitor the validator client

kill_clients* Shut down the chain --log
Save all metrics and logs created

by the clients

setup Create genesis block and state.

--server

--config <value>

--ip

--skip

Prepare a bootnode

Defines the config.yml file to use

IP of bootnode

Skip deletion of ./network dir

copy_validators
Copies validator accounts

from pre-generated keystore

start_geth_execution_client
Launch a Geth execution

client

start_prysm_consensus_client
Launch a Prysm consensus

client
--byzantine Run Byzantine version

start_lighthouse_consensus_client
Launch a Lighthouse consensus

client

import_prysm_validators
Import validators into a Prysm

validator client

import_lighthouse_validators
Imports validators into a

Lighthouse validator client

start_prysm_validator_client
Launch a Prysm validator

client

start_lighthouse_validator_client
Launch a Lighthouse validator

client

store_logs
Store logs of current run

(does not stop the chain)

start_metrics
Start the Prometheus and

Grafana servers

init_wallets
Initiates 30 wallets with 4096

accounts each

node_config
Defines variables for the node.

All scripts source this file
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checksum
Compute the checksum address

of provided value
<value>

copy_validators.py
Used by copy_validators to

write the new index file

find_enr.py Get the enr of the beacon client.
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Appendix B

Instructions to Compile and Run

the System

Here, we will go through a detailed example of how to deploy the devnet on the BBChain

cluster. First, we present the requirements for running the system.

B.1 System Requirements

First, Prysm requires Go version 1.21.6 or newer. Scripts require jq and Python 3.11.x.
Prysm, Lighthouse, andother necessary binaries are automatically downloaded and installed

by using the build_deps.sh script.

B.2 Example Configuration Used

For this example, we will use a configuration consisting of 3 nodes on the BBChain cluster

(bbchain1, bbchain2, and bbchain3). node-1 will act as the main node running a Prysm

consensus client; it will be responsible for generating the genesis andmaking it available for

the other nodes. node-1 will run 128 validators, node-2 runs 64 validators using Prysm, and

node-3 will run 32 validators, and run Lighthouse.

B.3 Step by Step Guide

Follow-along steps to set up the private devnet. Ensure the project is cloned on all machines

you wish to deploy nodes.

Node-1:

1. SSH into bbchain1, and change working directory to /home/<user>/deploy-ethereum-pos/

devnet.
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2. Open ./config/mnemonics.yml, and specify the number of validators for the first 3

mnemonics while the remaining 27 should have a count of 0. The beginning of the file

should look like this:

- mnemonic: "nature expand bone never make where chalk autumn chicken
present elegant face trouble giggle wrong stick brave strike child
rocket sand try ask dinosaur"

count: 128
- mnemonic: "mouse anchor daughter original holiday alpha expose brain

garden access random shrug captain circle endless question plate vapor
visa rival merge harvest frame donate"

count: 64
- mnemonic: "liberty annual spread cry eye stereo used suit effort inmate

hello kitten palm since owner comfort blood ginger dolphin soldier ridge
cake direct clip"

count: 32

3. Start the fullnode script: ./start_fullnode --server --config mainnet

Now, the first node has been deployed. Since the max number of validators defined in

mnemonics.yml is 128, we have a genesis delay of around 136 seconds. This means we need

to launch the next nodes within 4minutes to ensure they have a chance to propose the first

couple of blocks.

Node-2:

4. SSH into bbchain2: ssh bbchain2 and change working directory as previously: /home/<

user>/deploy-ethereum-pos/devnet.

5. Execute the fullnode script, but specify the IP of the bootnode, here, node-1: ./start_fullnode
--ip 152.94.64.11.

Now, node-2 should be performing the necessary steps of fetching the genesis information

and importing its validators into the validator client.

Node-3:

6. SSH into bbchain3: ssh bbchain3 and change working directory: /home/<user>/deploy-

ethereum-pos/devnet.

7. Execute the fullnode script as earlier, but include --lh to launch a Lighthouse node:

./start_fullnode --ip 152.94.64.11 --lh.

Now, the system should be up and running with 3 nodes, 128, 64, and 32 validators, respec-

tively. Review logs by using the script: ./monitor execution on each of the nodes.
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B.4 Creating Validators

If we want to increase the validator count on for example node-3 after we have deployed the
system, perform the following steps on node-3:

1. Run ./create_validator (optionally, use the --insecure flag to speed up).

2. Answer prompts about how many you wish to create.

3. After the script finishes, make deposits with ./make_deposits.

4. Answer prompts asking how many deposits you wish to make.

5. Wait until the chain picks up the deposits and they are processed. Refer to Section 3.3.5

for the deposit process.

Review http://localhost:3501/eth/v1/beacon/states/head/validators to see the sta-
tus of all validators, including those we deposited.

B.5 Enable withdrawals

If we wish to enable partial withdrawals on, say node-1, do the following on node-1:

1. Run the script: ./convert_withdrawal_address

Review http://localhost:3501/eth/v1/beacon/states/head/validators to see thewith-
drawal credentials change for the validators belonging to node-1.

B.6 Exit Validators

If we wish to exit one or more validators on, say node-1, do the following on node-1:

1. Run the script: ./exit_validator

2. Answer ”yes” to the prompt if you wish to exit all validators or ”no” if you wish to

further select individual ones.

Review http://localhost:3501/eth/v1/beacon/states/head/validators, to see the val-
idator status change to ”exited” and eventually ”withdrawable” for the validators belonging

to node-1.

B.7 Stopping the System

The script ./kill_clients can be used to stop the nodes running on that node. Supplying the

flag --log stores the logs created by all clients, as well as the data gathered by Prometheus.

131

http://localhost:3501/eth/v1/beacon/states/head/validators
http://localhost:3501/eth/v1/beacon/states/head/validators
http://localhost:3501/eth/v1/beacon/states/head/validators


Appendix C

Additional Changes to Launch

Over 30 Nodes

Asmentioned in Chapter 5, some changes are necessary to use our application when deploy-

ing over 30 nodes.

C.1 Required Changes

In genesis.json, there are 30 execution layer accounts (EOA) with 10 million ETH each.

Creating more of these accounts is necessary to deploy more nodes. The command shown

previously in Listing 5.2 should be used to create further accounts. After creating the ac-

counts, include their public key in genesis.json file. Additionally, add more directories to

the keys directory, such as keys/node-31, keys/node-32, and so on. The generated EOA

for node-i should be put in keys/node-i.
The file mnemonics.yml has 30mnemonic strings listed. To be able to generate validators

for additional nodes above 30, the user has to add one mnemonic string (and count pair) for

each node over 30. Tools such as eth2-val-tools and staking-deposit-cli can be used

to generate a mnemonic. There are also online generators that produce valid mnemonics.

Note that the mnemonic should have a length of 24 words. Entries can be added manually,

or by using the following command:

mnemonic="new mnemonic here" && echo "- mnemonic: \"$mnemonic\"\n count: 0" >>
mnemonics.yml

There is a script init_wallets, which was used once to generate the initial 4096 keys

(signing and withdrawal) for the 30 mnemonics included in the mnemonics.yml file. This

script requires minimal modifications (change for loop from 30 to wanted number) and

should be executed again to generate keys for the additional nodes. More than 4096 keys

can also be generated by modifying the script. Currently, with 30 mnemonics, the script

takes around 11 hours to finish execution.

The keys/node-i directories must exist for nodes beyond 30 if the init_wallets scripts
is executed with more than 30 nodes.
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Appendix D

Code From Consensus

Specification

All the listings and their comments in this Appendix are sourced from the consensus speci-

fications [30].

D.1 Beacon State

class BeaconState(Container):
# Versioning
genesis_time: uint64
genesis_validators_root: Root
slot: Slot
fork: Fork
# History
latest_block_header: BeaconBlockHeader
block_roots: Vector[Root, SLOTS_PER_HISTORICAL_ROOT]
state_roots: Vector[Root, SLOTS_PER_HISTORICAL_ROOT]
historical_roots: List[Root, HISTORICAL_ROOTS_LIMIT] # Frozen in Capella,
replaced by historical_summaries
# Eth1
eth1_data: Eth1Data
eth1_data_votes: List[Eth1Data, EPOCHS_PER_ETH1_VOTING_PERIOD *
SLOTS_PER_EPOCH]
eth1_deposit_index: uint64
# Registry
validators: List[Validator, VALIDATOR_REGISTRY_LIMIT]
balances: List[Gwei, VALIDATOR_REGISTRY_LIMIT]
# Randomness
randao_mixes: Vector[Bytes32, EPOCHS_PER_HISTORICAL_VECTOR]
# Slashings
slashings: Vector[Gwei, EPOCHS_PER_SLASHINGS_VECTOR] # Per-epoch sums of
slashed effective balances
# Participation [Modified in Altair]
prev_epoch_participation: List[ParticipationFlags , VALIDATOR_REGISTRY_LIMIT]
curr_epoch_participation: List[ParticipationFlags , VALIDATOR_REGISTRY_LIMIT]
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# Finality
justification_bits: Bitvector[JUSTIFICATION_BITS_LENGTH] # Bit set for every
recent justified epoch
previous_justified_checkpoint: Checkpoint
current_justified_checkpoint: Checkpoint
finalized_checkpoint: Checkpoint
# Inactivity
inactivity_scores: List[uint64, VALIDATOR_REGISTRY_LIMIT] # [New in Altair]
# Sync
current_sync_committee: SyncCommittee # [New in Altair]
next_sync_committee: SyncCommittee # [New in Altair]
# Execution
latest_execution_payload_header: ExecutionPayloadHeader # [New in Bellatrix]
# Withdrawals
next_withdrawal_index: WithdrawalIndex # [New in Capella]
next_withdrawal_validator_index: ValidatorIndex # [New in Capella]
# Deep history valid from Capella onwards
historical_summaries: List[HistoricalSummary , HISTORICAL_ROOTS_LIMIT] # [New
in Capella]

Listing D.1: BeaconState class as defined by the consensus specifications.

D.2 Epoch Process

def process_epoch(state: BeaconState) -> None:
process_justification_and_finalization(state) # [Modified in Altair]
process_inactivity_updates(state) # [New in Altair]
process_rewards_and_penalties(state) # [Modified in Altair]
process_registry_updates(state)
process_slashings(state) # [Modified in Altair]
process_eth1_data_reset(state)
process_effective_balance_updates(state)
process_slashings_reset(state)
process_randao_mixes_reset(state)
process_historical_summaries_update(state) # [Modified in Capella]
process_participation_flag_updates(state) # [New in Altair]
process_sync_committee_updates(state) # [New in Altair]

Listing D.2: process_epoch function as defined by the consensus specifications.
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D.3 Beacon Block

class BeaconBlock(Container):
slot: Slot
proposer_index: ValidatorIndex
parent_root: Root
state_root: Root
body: BeaconBlockBody

Listing D.3: BeaconBlock class as defined by the consensus specifications.

class BeaconBlockBody(Container):
randao_reveal: BLSSignature
eth1_data: Eth1Data # Eth1 data vote
graffiti: Bytes32 # Arbitrary data
# Operations
proposer_slashings: List[ProposerSlashing , MAX_PROPOSER_SLASHINGS]
attester_slashings: List[AttesterSlashing , MAX_ATTESTER_SLASHINGS]
attestations: List[Attestation, MAX_ATTESTATIONS]
deposits: List[Deposit, MAX_DEPOSITS]
voluntary_exits: List[SignedVoulntaryExit, MAX_VOLUNTARY_EXITS]
sync_aggregate: SyncAggregate
# Execution
execution_payload: ExecutionPayload # [Modified in Deneb:EIP4844]
bls_to_execution_changes: List[SignedBLSToExecutionChange,
MAX_BLS_TO_EXECUTION_CHANGES]
# [New in Deneb:EIP4844]
blob_kzg_commitments: List[KZGCommitment , MAX_BLOB_COMMITMENTS_PER_BLOCK]

Listing D.4: BeaconBlockBody class as defined by the consensus specifications.
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