™

University
of Stavanger

L. ROTUWS LConk 'xgw\.‘u“\“s L= TR AT RS axt WO b

)] newCont iguration\opts
CRN T b agRE

func (m *Manager
<1 W\ 1enlopts) = 1 LY
NS

if 1en{opts)

| return ni (“wrong TWEDET of oprAY

1, fmt Jerrorf

}
c = EConfigutation“
opt = range opts L

for _»
switch v = npt.('wpe‘) Y
case gorums.undeListﬁption:
= gptuma.%av&sv&%xpma&hsm&ahquxaggx\-i\

c.Configuratiun, ert

if err + nil
| return nil, ere

Y
AR \\\\Q‘t’\m&_\k

case Quorumsvper.-.
last since Vv ™3y match Quorumspec AR

// Must be
c.qspec =V
default:
| return pil, fme Errorf unkaoe QRRART RS SO N
}
if the QuorunSpec interface 1s WL gty W ® AN\

// return an error
yar test interfacedy = RLTTRRAN

empty = test .\Qumm%qec.\',
i\, fat Lreorfl mssiey TN

if _, LRy T AR ™\
m&x\\\%\vﬁ\

| return

}

return ¢, 1L

I, Vidar André Bg, declare that this thesis titled, “Reconfiguration of On-
ceTree” and the work presented in it are my own. I confirm that:

m This work was done wholly or mainly while in candidature for a master’s
degree at the University of Stavanger.

m Where I have consulted the published work of others, this is always
clearly attributed.

m Where I have quoted from the work of others, the source is always given.
With the exception of such quotations, this thesis is entirely my own
work.

m I have acknowledged all main sources of help.

“If debugging is the process of removing software bugs,
then programming must be the process of putting themin”

— Edsger Dijkstra

Abstract

We designed and implemented a fault tolerant version of the tree-based On-
ceTree CRDT protocol using the Gorums framework. The recovery protocol
was designed around using groups composed of a replica’s neighbours to re-
store the tree structure, and thereby recover from a failure. The system was
deployed to a data centre where its fault recovery performance was tested.
As our testing demonstrated minimal service disruption under normal work-
loads, the system’s performance should be good enough for many types of
deployments.

iii

Acknowledgements

I would like to thank my supervisor Hein Meling for his invaluable help and
feedback. The discussions during our weekly meetings has undoubtedly shaped
this thesis for the better.

I would also like to thank Leander Jehl and the rest of the staff and stu-
dents at the Reliable Systems Lab at UiS. Their feedback during the develop-
ment and writing process has been very valuable.

iv

Contents

Abstract iii
Acknowledgements iv
Acronyms vii
1 Introduction 1
1.1 Motivation 1

1.2 Approach and contributions 2

1.3 Outline e 2

2 Background 4
2.1 CRDTs e e e e e 4
2.2 OnceTree i i i i i e e e e e e 4

2.3 gRPC e 6
2.4 GOTUIMS v v e 6

3 Related work ”
4 Design and implementation 9
4.1 Design. e e e 9
4.1.1 Challenges and limitations 9

4.1.2 Groupmembership 10

4.1.3 Moveoperations 0. 11

4.1.4 Reconfiguration message exchange 12

4.1.5 Stateinheritance 14

4.2 Implementation 15
421 Eventbus................ 16

4.2.2 Gorumsprovider., 17

4.2.3 Failuredetector 17

4.2.4 Nodemanageruuuvueue...

4.2.5 StOrageservice i i

4.2.6 Gossipsender

5 Experimental evaluation

5.1 Experimental setup

5.1.1 Correctnesstesting

5.1.2 Performancetesting

5.2 Experimentalresults.

5.2.1 Correctness

5.2.2 Gossipthroughput.
5.2.3 Write throughput

5.2.4 Latency . .

5.2.5 Side effects of the gossipsender

6 Discussion
6.1 Paxos similarities

6.2 OnceTree as a fault tolerant CRDT protocol

6.3 Complexity of fault tolerance

6.4 Consequences of increasing fanout during recovery

6.5 Gorums’ suitabilitytoOnceTree

7 Conclusion and future work

7.1 Conclusion
7.1.1 Future work

A Source code

23
23
23
24
25
25
25
26
28

32

33
33
33
34
34
34

36
36
36

38

Acronyms

BFT byzantine fault tolerant 8

CPU central processing unit 24

CRDT conflict-free replicated data type 1, 4

RAM random access memory 24

RPC remote procedure call 6, 17, 18, 21, 23, 34

vii

Chapter 1

Introduction

1.1 Motivation

In the time of cloud services and infrastructure where the ability handle bor-
derline unlimited traffic is expected, we sometimes end up in situations where
one server is not enough to handle traffic from clients. Services are therefore
horizontally scaled, essentially making copies (replicas) to handle more traf-
fic or to facilitate fault tolerance [1]. Some of these solutions do however im-
pose the limitation that only one of the replicas can handle write operations.
Conflict-free replicated data type (CRDT)s can provide a solution to the prob-
lem of writing to different replicas of a service, but certain protocols have been
problematic with regards to scaling to a large number of replicas [2].

Fault tolerance and recovery is of the utmost importance in distributed
systems. In some systems, a failure at one of the replicas will render the sys-
tem unable to make progress, so quick detection and recovery is essential.
This could be the case for systems where replicas rely on communication with
other replicas to process events. System halts can also occur in any applica-
tion that overlays a logical network infrastructure on top of the physical one.
In that case, the failed replica will effectively create a network partition, mak-
ing sets of replicas unable to communicate with each other.

OnceTree [2] presents itself as a solution to some of these challenges. With
its tree-based architecture and a focus on scalability to a large number of
nodes, without the memory and transmission costs associated with existing
approaches it can yield great performance for some workloads. However, a
well defined reconfiguration and recovery process for when failures occur is
yet to be defined.

1.2 Approach and contributions

In this thesis we have done the following:
« Implemented the OnceTree protocol using Gorums.
+ Designed and implemented a method for tree restructuring.
+ Designed and implemented a method for state inheritance.

Our implementation of the OnceTree protocol and its recovery mecha-
nisms has been designed with the intention that it will act as a service that
can scale up and down in number of replicas as required by the system load.
The system has been designed around being able to handle large amounts of
traffic without interruption and minimal service disruption under failure. The
system design has therefore been dictated by these requirements or goals in
mind:

« Fast tree path restoration after a failure.

« Minimise operations that block the progress of either the system or in-
dividual replicas.

« All nodes should be fully functional during a recovery process as long as
a tree path exists.

The contribution of this thesis is finalising the OnceTree protocol design,
making it fault tolerant. An implementation of the complete protocol is cre-
ated using the Gorums framework.

1.3 Outline

« Chapter 2 covers the operation of the OnceTree protocol and touches on
some other relevant background topics.

« Chapter 3 covers related work, and it relation to our objectives.

« Chapter 4 is split into two main sections, those being the design process
and the implementation. The design process section will go into details
of the design and why we made the design choices that we made. The
implementation section will then cover how this was integrated into an
application with some code examples to demonstrate the key parts.

« Chapter 5 covers how the correctness and performance of the OnceTree
implementation and the accompanying reconfiguration protocol is eval-
uated.

+ Chapter 6 discusses of how the design choices have impacted the results
and how it might have been handled differently. It also discusses short-
comings of the protocol itself and some implementation challenges.

« Chapter 7 covers conclusion and suggest some future enhancements to
the reconfiguration approach.

Chapter 2

Background

2.1 CRDTs

CRDTs are a way of replicating a state across several replicas without coor-
dination. Updates happen without conflict and all updates are eventually ap-
plied to all replicas making the state consistent. An example of a simple CRDT
is an add-only set. Since sets are unordered and do not contain duplicates, we
can apply updates in any order to all replicas, and still end up with an eventu-
ally replicated state [3].

2.2 OnceTree

OnceTree is CRDT protocol that shares state in a tree-structured network of
nodes. The core idea of the protocol is to have an O(1) storage requirement
in an n-node network. It supports the data types that can be aggregated into
a single item, e.g. sums, counters [2]. The nodes in the network will store
values in fragments, one for each of its neighbours and one local fragment.
The joined value of these fragments represents a stored state. A requirement
for these fragments is that the combined fragments should require the same
amount of memory as a single value. This limits the application to support
values like counters if the mathematical properties of the protocol should be
preserved. This by no means prohibits storing types like sets using the pro-
tocol, but the space-requirements of the update messages would not be con-
stant. Each fragment (apart from the local) contains the aggregated value of
the given neighbour’s subtree. Since each node will have a unique position
in the tree, the fragments will differ from one node to the next, while the ag-
gregated value of these fragments will be identical. When changing a state,

4

the node will update its local state (its fragment), then send the aggregated
state to all neighbours. The state that is sent to a neighbour will however not
include the subset of the state that was received from that neighbour. This
ensures that the state is not duplicated. When a node receives a state up-
date, it will write the update to storage if the state is newer than the stored
state. It will then forward the new state to all its neighbours except the origin
of the update. This way we ensure that we create an infinite storm of mes-
sages. Throughout this thesis we will refer to client communication as “read”
or “"write” operations, while internal data transmissions between replicas are
”gossip” operations unless specified otherwise.

Al1
B

Bi11
D[4

Figure 2.1: Gossip procedure

Figure 2.1 shows the state of each node and the flow of gossip messages in
a simple 5 node network after the value stored at node A has been changed. At
node A, the state has been changed to 1. A will have to send a gossip message
to node B and C with this update. For node C, we combine A and B’s fragment
and send the value 12, while for B we combine A and C’s fragment and send
the value 4. Node C has no other neighbours than the message’s origin, so it

will not have to forward this update to any node. Node B however has D and
E as neighbours and will send the values 11 and 10 respectively in the gossip
messages.

2.3 gRPC

gRPC is a remote procedure call (RPC) framework that uses Protocol Buffers
as a serialisation format. The general idea is that a client can call methods on a
server over a network almost as if the server was a local object. gRPC provides
the protoc tool which generates the aforementioned methods for the client to
call based on the Protocol Buffer definitions [4].

2.4 Gorums

The application is built using Gorums [5], a framework built for simplifying
gRPC calls between sets or quorums of replicas. Instead of the RPC client gen-
erated by the protoc tool in the normal gRPC implementation, Gorums pro-
vides configuration objects where RPCs can be performed on all or a subset
of nodes. The configurations are provided by a manager which is responsible
for maintaining the gRPC connections to the nodes. Gorums RPC calls can
be invoked with a couple different modes of operation. Unicast sends mes-
sages to a single replica, essentially working as a standard RPC call. Multicast
RPC calls are invoked on all the replicas present in the configuration, while
ignoring their responses. Quorum RPC calls are also invoked on all replicas
in the configuration, but a function specifying how their responses should be
merged into a single response must be provided. Gorums will not create more
than one gRPC stream to a server within a single client configuration. This
enables the framework to ensure that messages arrive in order for application
where that functionality is needed [5, 6].

Chapter 3

Related work

For the tree restructuring part of the reconfiguration, there have been pub-
lished a couple of papers. Among those is “Self Adjusting Binary Search Trees”
by Daniel Dominic Slator and Robert Endre Tarjan [7]. There are however two
core differences with how tree restructuring works for search trees and the
tree structure in OnceTree. The first one is that there is no fixed entry point
to the tree in OnceTree. Read and write operations can be performed on any
node in the tree, and as long as the tree fan-out is not excessive, the perfor-
mance of the read and write operations should be similar across nodes. Binary
search trees however can benefit greatly if the most commonly accessed items
are closer to the root of the tree. All restructuring that optimises for node
positions and tree height differences are therefore only beneficial for value
propagation latency, and not for outright speed. Secondly, changing a nodes
position in the tree will have adverse effects on the shared state if not coordi-
nated properly. It will also require re-transmitting much of the shared state,
so particularly for large states, it is infeasible to move nodes often. All of this
will be explained in detail in Chapter 4.

In addition to the OnceTree protocol itself, some tree re-configuration
strategies were proposed by C. Power et al. [2]. These strategies do however
require the tracking of much more state than strictly needed, as the replicas
would track the state of neighbours two hops away. In a network with large
fan-out and a large state, this would be problematic. Since one of the primary
objectives of the protocol is to minimise memory usage, we elected to use an
approach that only stores the state of direct neighbours. Another difference in
the approach is that some of the replicas participating in the re-configuration
will ignore updates from certain paths until the reconfiguration if complete,
effectively stopping value propagation from one subtree. This is still partially

true for our implementation, but we don’t ignore updates outright.

Kauri [8] is a byzantine fault tolerant (BFT) communication abstraction
where nodes are organised in a tree structure. Its reconfiguration strategy is
designed with the goal of creating a tree structure were there are safe edges
between the leader and a quorum of correct processes. In Kauri however, the
whole tree structure might change, while in OnceTree, the stored state is de-
pendent on the tree structure and we can not freely move replicas without
consequence.

Chapter 4

Design and implementation

4.1 Design

4.1.1 Challenges and limitations

Due to the way OnceTree stores and updates state, it imposes some limita-
tions to how we can reorganise the tree structure. To illustrate this, consider
a binary tree of replicas where the state in the tree is simply an integer, and
node “x” currently has the local state of 5 and is positioned as a leaf node in
the tree. All other nodes have a local state of 0, meaning the aggregated state
is also 5 across all nodes. As part of the reconfiguration strategy we will want
to move the rightmost node "x” in the tree to be a child of the leftmost node
”y”. If we just perform the move operation without any synchronisation, node
”x” will then begin to propagate the state 5 from its new position in the tree.
As a result of this, nodes will have received the same state twice, meaning we
have double counted the state. We will want to perform our reconfiguration so
that we maintain the original properties of the protocol to the highest degree
possible. This for instance means we cannot perform move operations that
require external coordination of the nodes. We also do not want to have in-
valid state such as double counting of a state or missing state as a side-effect of
the reconfiguration. We chose to design the reconfiguration process with the
intent of inheriting the state of the failed node. This might not be applicable
for all deployments of OnceTree, but it certainly can be useful.

To demonstrate how the reconfiguration works, we will use a binary tree
with 15 nodes as depicted in Figure 4.1. For the demonstrations in this section,
we will introduce a failure at replica 2.

AN
/ AN
/ AN
1 323'3
["'I"(\\
s
v [[N
s L >
3 4 5 6
[/ N\ /7 N\ [\
7 /N /N D
/ 1 1 \

) 8] (o) (o) (=] (=] (=] (=]

Figure 4.1: Before reconfiguration

4.1.2 Group membership

The reconfiguration process is based around each replica having a recovery
group. This group consists of the closest neighbours of the replica. Replicas
that are leaf nodes will only be a member of one recovery group, since it only
has one direct neighbour. Replicas in the middle of the tree will be members
of the recovery groups of its parent and its children. Whenever the neigh-
bours of a replica changes, the replica itself it responsible for informing group
members of who is a member of the group. When a replica sends out these
updates, it includes an epoch number so that group members can ensure they
have identical information of the groups composition. All neighbours of a
replica will receive a heartbeat periodically, so all group members will be able
to detect if a replica has failed. Whenever a replica fails, the recovery group is
responsible for reconnecting the network to a spanning tree.

Figure 4.2 shows the recovery group of node 2 marked in green. Those are
the nodes that are responsible for reconnecting the network to a spanning tree
when node 2 fails.

With how the groups are setup, the system has information for how to re-
connect the tree regardless of which node fails. What it cannot do is reconnect
if two adjacent nodes fails at the same time.

T 67) (=) =7 (o) (=0 o]

Figure 4.2: Recovery group for node 2

AN
/ AN
/ AN
1 323'3
[T L
e
v | | N
/ JR \\
3 4 5 6
| 7\ 7\ N
/o /N /N o

4.1.3 Move operations

Several mode operations are possible to reconnect the tree, but few will have a
simple way of ensuring that we don’t end up with invalid state. As explained in
Section 4.1.1 we cannot simply move a node freely around in the tree without
consequence. If we are to reconfigure the tree without synchronisation with
the remaining parts of the tree, two methods emerge. We can either chain
the nodes in the recovery group to each other with the leader as the first in
the chain, or we can connect all nodes in the group directly to the leader. If
keeping the fanout low is important, then node-chaining might be the best
option since it will only increase the fanout by 1 for each node in the group
except for the leader. The big caveat here is that the height of the tree will
grow immensely for trees with large fanouts if we want to keep the fanout
growth limited. It will also make the state inheritance process (described in
Subsection 4.1.5) a multi-jump process, whereas it can be done as a broadcast
when connecting all group members directly to the leader. We therefore chose
to connect all group members directly to the leader. When the reconnection is
completed the fanout of the leader will have increased by the number of nodes
that were connected to the failed node. The performance implications of this
will be shown in Chapter 5.

Figure 4.3 shows the network of nodes after the reconfiguration process
has been completed.

Ve
Ve
s .
1 5 6
[/7 \ [\
/ I / \ I \
3 4 11 12 13 14
7] N\
/ | | \
/ \
. I I
7 8 9 10

Figure 4.3: After reconfiguration

4.1.4 Reconfiguration message exchange

The message exchange of the reconfiguration phase draws inspiration from
the message flow in Paxos [9]. All replicas start off sending a prepare message
as a group multicast where the current epoch for the group is included. If
epoch differs across replicas, then we know that the group information differs
across replicas and we cannot successfully recover. The replicas will return
a promise to the group member which has the highest position in the tree.
Receiving a promise means that replica is the leader of the group. In the case
where the root node fails, the group will sort the group members’ ids and pick
the first as the leader. Once a replica has received a promise from all group
members it will enter the next stage as a leader.

The elected leader will in the next stage send out proposed tree changes in
an accept message. Included in the message is a map showing which replica
should connect to which. In our case, all map entries point to the leader, but
another scheme is possible. The group members will respond with a learn
message if the proposed changes are possible to perform. Once the leader has
received a learn message from all group members, it knows all replicas can
perform the changes and it moves on to the next stage.

Finally the leader will send a commit message to the group. This will make
all replicas in the group apply the changes to the tree structure.

to group

| |
| |

Multicast prepare ﬁ Prepare(Epoch) . Prepare(Epoch)
| |
|
|

Promise(OKk)
«—

Promise to leader %

tree changes - > —>
Learn(Ok)
L f ch |
earn of changes %
\
Commit
Perform changes %:
- > —>!

I

I

I

!

!

!

\

! !
I I
Send proposed ﬁ Accept(TreeChanges) \
I !
‘ \
! !
!

I

\

!

!

I

Figure 4.4: Successful tree reconfiguration

After the reconfiguration of the tree structure has occurred, the replicas’
new neighbours will propagate updates through gossip messages as normal.
These updates will be integrated into the state of the replicas, despite the state
of the failed replica still existing. To avoid double counting the state, we need
to impose the following ignore rules for the recovery group at this stage:

« Read operations will ignore the state from other replicas in the recovery
group.

+ Gossip messages to replicas in the recovery group will ignore the state
of the failed replica.

 Gossip messages to replicas outside the recovery group will ignore the
state of replicas in the recovery group.

These rules will persist until the local state of the failed replica has been in-
tegrated into the leader of the recovery group. Figure 4.4 shows the Paxos

inspired message flow for the reconnection process.

4.1.5 State inheritance

Since the state stored in OnceTree is dependent on the tree structure, we can-
not completely remove the state of a failed node after the reconfiguration. If
we did, we would also lose the state from all replicas that branch of the failed
node until the new neighbours has propagated their state. As a consequence
of this, the failed node will effectively be converted into a leaf node on replicas
that were part of its recovery group (its closest neighbours before failure). An
illustration of this behaviour is shown in Figure 4.5.

N
\
N

// ® //,»-‘ \\\
2(5) 2(6)

’
s
7

7
7/
7 |
/ | N\

7] (&) (o)) (wf

Figure 4.5: Logical tree state after reconfiguration

Whenever the leader of the reconfiguration process has finished recon-
necting the tree, it will start the state inheritance process. It is the leader that
will integrate the state of the failed node into its own state. In a non fault-
tolerant implementation of OnceTree, the only state that a replica will ever
receive from its neighbour is its aggregated state. To facilitate fault-recovery,
we must however include its local state in the gossip messages as well. Repli-
cas will store this data, but separate from the actual stored state as it will only
be read as a part of the recovery process. It is theoretically possible to deduce
the local state of the failed replica based on the aggregated state stored by its
recovery group, but if one replica has received a newer state than the others,
the computed state will be incorrect. The replicas in the OnceTree network
would have to perform the first hop of the gossip operation atomically to its
neighbours to ensure that all have the same state if it ever needs to be recov-
ered. This is impractical for a number of reasons.

The procedure for state inheritance starts at the leader from the tree re-
structuring process. Note that the leader will include all its neighbours in this
process, not just the recovery group. This greatly simplifies the process as we
do not have to create custom Gorums configurations and trigger sending of
gossip messages to nodes outside of the recovery group to keep those nodes
up to date.

The leader will start by broadcasting a prepare message containing the
timestamp of the failed node’s local state. The replicas will respond with a
promise message with a field set to true if they have a newer version of the
failed replica’s local state. Included in the promise will also be this newer ver-
sion of the failed node’s local state, and additionally the replicas local and ag-
gregated state. Up until now, the leader does not possess its new neighbours’
state unless it has received it through a gossip message, so including this is a
necessity for the next stage. If the leader receives newer version of the failed
node’s state in the promises, it will integrate this into its own state.

Finally, the leader will integrate the failed replica’s local state into its own
state. At the same time it will remove both the local and aggregated state for
the failed replica. It will also remove the read and gossip exclusions that were
put in place at the earlier stages. The leader will then compute gossip values
to send to its neighbours and send it as an accept message. Neighbours re-
ceiving this accept message will then update the state accordingly and remove
all state stored for the failed replica including the aforementioned read and
gossip exclusions. The failed replicas state has now been successfully inher-
ited by the leader and then distributed. From this point, the neighbours will
handle this as any other gossip message - compute and send gossip to next
hop neighbours.

Figure 4.6 shows the Paxos inspired message flow for the state inheritance
process.

4.2 Implementation

In this section we will describe the most relevant and interesting parts of the
implementation. Up until now the state has mostly been referred to as one
single unit, as this is how it is described by C. Power et al. [2]. To simulate
a more real world scenario we chose to implement a key-value store. For the
most part this only really adds a for loop around some operations and requires
indexing with a key on others. All writes and gossips therefore happen on a
key by key basis, and not the entire state.

A (leader) I

I
|

Multicast prepare __Prepare(State ts) :
to group : ’| > :
| | |

' Promise(State, Ok) ' '

Promise to leader ! : : :
| | |

| | |

| | |

| | |

State to | Accept(State) I !
replace failed | [[

. > >

replica’s state : : :

| | |

: Learn(Ok) : :

Learn of changes | T [
< | [

| |

| |

| A (leader) I

Figure 4.6: Message flow for value inheritance

4.2.1 Event bus

To notify of and handle cross-domain events, we implemented an event bus.
Modules in the application are able to register event handlers, and the handler
functions will be executed whenever an event of the appropriate type has been
pushed to the event bus. The event type is extracted from the event using
Go’s reflect package. When an event is pushed to the event bus, the event
bus will fetch all the event’s handlers and execute them on by one. The event
bus uses a fixed, configurable number of goroutines to execute these event
handlers. This is accomplished by spawning goroutines at start up that listen
to the pending events channel and execute the event handlers. An alternative
approach to limit the degree of concurrency here could be Go’s semaphore
functionality and then spawn a new goroutine for each event handler instead.

4.2.2 Gorums provider

As of writing, the Gorums framework does not have a built in way of handling
the configurations for multiple services [6]. We therefore created a package
that given a collection of nodes as input, will provide the application with con-
figurations for the various services. If a module in the application needs a
configuration it will call a function on the provider which will return an ap-
propriate configuration object.

When a node is removed from the OnceTree network, we not only need to
remove it from configurations, but also from the Gorums managers. This is
because it is the managers that actually maintains the gRPC connections, and
we do not want to maintain a connection to failed or otherwise non-required
nodes. The problem with that is that the only way to remove a node from a
Gorums manager is to delete the manager itself, then recreate it with the de-
sired nodes. Configurations that were created by this manager will as a con-
sequence of this be deleted, something that might cause RPC failures to nodes
that are otherwise healthy. To solve the problem of removing nodes, we sim-
ply implemented a scheduled deletion of the manager. It works by creating a
new manager which will hand out new configurations when required and then
spawning a goroutine which after a certain timeout deletes the old manager.
As long as the rest of the application retrieves configuration from the Gorums
provider when required instead of storing then for later use we can ensure that
the configurations is actually functional.

4.2.3 Failure detector

Each node in the network will send out a heartbeat to each of its neighbours
once every second. The failure detector is set up as its own service in the pro-
tocol buffer definitions, and has a multicast RPC enabled by Gorums called
Heartbeat. The nodes maintain a map of the number of "strikes” a given node
has. A strike will be added once every second to each node. When a heart-
beat is registered, the nodes strike count is set to zero. If the number ever gets
above a certain threshold, a node failure event is published. In our deploy-
ment of the OnceTree network, this threshold was set to 5, but it might have
to be set higher if the network conditions requires it.

The failure detector will publish a NodeFailedEvent to the event bus if a
node has not sent out a heartbeat within the last 5 seconds.

4.2.4 Node manager

The NodeManager module is responsible for managing the node’s local view
of the tree. It will call the GorumsProvider to create configurations with the
required neighbours whenever changes to the tree occurs. When the failure
detector publishes a NodeFailedEvent, the NodeManager module will be re-
sponsible for initiating the recovery process. To keep complexity down we
did impose a limitation in the NodeManager that it can only handle a failure
with one group at a time. This way, keeping track of reconfiguration progress
and ignore rules for the state is much simpler.

Join RPC

The Join RPC handled by the NodeManager and is used on startup by replicas
joining the tree. Replicas will call the Join RPC on one of the already known
replicas in the tree. This replica will check if its fanout has reached the max-
imum allowed and attach the replica as a child node if the fanout threshold
has not been reached. If the fanout threshold is exceeded, it will return the
address of one of its child nodes. To ensure a balanced tree structure, it will
send the child addresses in an alternating fashion. Joining replicas will repeat
calling the Join RPC until they are given a place in the tree. After a successful
joining of the network, the pre-existing replica will trigger a share operation
where it will transfer its state to the new replica.

4.2.5 Storage service

The StorageService module is responsible for handling the incoming read, write
and gossip operations, writing to storage, and then send the appropriate gos-
sip messages. It contains a key-value store, the struct for which is shown in

Listing 4.1.

type KeyValueStorage struct {
data map|string |Jmap[int64] TimestampedValue
local map[string Jmap[int64] TimestampedValue
readExclusions map[int64 | hashset . HashSet [string]

gossipExclusions map[int64 Jmap[string]hashset.HashSet[string]
mut sync . RWMutex

Listing 4.1: KeyValueStorage struct

Note the read and gossip exclusions on lines 4 and 5. Each key in the key-
value store will have its exclusions set after a reconfiguration has occurred and

1

will be checked during read operations and gossip calculations, the former of
which is shown in Listing 4.2.

func (kvs *KeyValueStorage) ReadValue(key intG4) (int64, error) {
kvs.mut.RLock ()
defer kvs.mut.RUnlock ()
agg := int64(0)

found := false
for nodelD, values := range kvs.data {
if value, exists := values|key]; exists {
found = true

// we skip the key for that node if it is excluded
if excludedNodes, ok := kvs.readExclusions[key]; ok &&
excludedNodes . Contains (nodeID) {
continue

}

agg += value.Value

}

}

if found {
return agg, nil

}

return 0, fmt.Errorf(”keyvaluestorage does not contain key %v”,
key)

Listing 4.2: Read process

Gossip value calculation is shown in Listing 4.3. It is for the most part the
same as the read operation, except that we exclude the value stored for the
gossip’s destination. There is also a more complex exclude pattern during the
state-inheritance phase as shown on line 10-14.
func (kvs *KeyValueStorage) GossipValue(key int64, destld string) (

int64, error) {
kvs.mut.RLock ()

defer kvs.mut.RUnlock ()
agg := int64(0)

found := false
for nodelD, values := range kvs.data {
if value, exists := values[key]; exists {
found = true

// exclusions contain the key
if destinations, hasExcludeForKey := kvs.gossipExclusions [key
]; hasExcludeForKey {

// exclusions contain the destination of gossip

1

if excludes, hasExcludeForDestination := destinations[destId
]; hasExcludeForDestination && excludes.Contains(nodelD) {

continue

}
if destld != nodeID {

agg += value. Value

}
}
}
if found {
return agg, nil
}
return 0, fmt.Errorf(”keyvaluestorage does not contain key %v”,
key)

Listing 4.3: Gossip value calculation

For completeness the write procedure is included in Listing 4.4. It does
however not require any real changes to enable fault tolerance.
func (kvs *KeyValueStorage) writeValue(key int64, value int64,
timestamp int64 , nodelD string) bool {

if _, containsNode := kvs.data[nodeID]; !containsNode {
kvs.data [nodeID] = make(map[int64] TimestampedValue)

}

if storedValue, exists := kvs.data[nodeID][key]; exists {
if storedValue.Timestamp >= timestamp {

return false

}

kvs.data[nodeID |[key] = TimestampedValue{Value: value, Timestamp:
timestamp }

return true

Listing 4.4: Write process

When a leader has successfully reconfigured the tree structure, it will pub-
lish a TreeRecoveredEvent to the event bus. The StorageService module’s han-
dler for this event will then start the value inheritance process.

4.2.6 Gossip sender

The sending of gossip messages is by far the most common type of outgoing
traffic in the application. These send operations need to happen concurrently

to ensure adequate performance, but there should also be some form of limit
to the degree of concurrency. If there are no bounds to concurrency, network
congestion will cause a large number of messages to be queued for sending.
This can result in severely high memory usage and then potentially a crash.
There is however a potential of deadlocking when limiting the number of con-
current send operations since the gossip process is recursive across nodes.
The Gossip RPC takes the incoming data and writes it to memory if the data is
newer than what is already stored. After the write operation, the node calcu-
lates what data to gossip to all its adjacent nodes except the message origin,
and then spawns new send gossip operations. The Gossip RPC returns right
after the send gossip operations are spawned. If we waited for the response
from the next hop, the write latency would increase along with the height of
the tree structure. To illustrate the problem with a bound degree of concur-
rency, take a tree of nodes and pick two adjacent nodes placed in middle of
the tree heightwise. If these two nodes spawn a gossip operation to each other
concurrently, and the number of concurrent send operations are bound (as-
sume a limit of 1 for instance), there might not be enough free capacity for the
receiving node to spawn its own new send operations. The node will block un-
til there is a free slot, and you end up with a deadlock. An additional problem
with this approach is that when a node fails, traffic to all other nodes will be
held up by attempts to transmit to the failed node.

A way around the deadlock while still not having unbounded concurrency
is to split the limitation by traffic origin. Essentially we impose a limit where
we don’t handle more gossip operations from one part of the tree until it has
been propagated to the next-hop neighbours in the other branches of the tree.
The limitation itself is simply one of Go’s buffered channels making the RPC
block until the new gossip message has been pushed to the channel. We utilise
one channel per origin-recipient pair, but this is mostly so that we can have
a single goroutine responsible for sending to each neighbour. It could have
just as easily been a single channel per origin, and a sender which sends to all
neighbours. The difference here is that if some replicas are slower than others,
they might receive updates much later than the other neighbours, since the
sender has a smaller backlog of gossip messages for those nodes. This is not
problematic for the OnceTree protocol itself, as it is only supposed to provide
eventual consistency.

i1 func (gw *GossipWorker) sendGossip(gossip PerNodeGossip) {

> cfg, ok, _ := gw.configProvider.StorageConfig ()
3 if !Ok {

gw.logger.Error(”no cfg, skipping gossip”,
slog.String ("target”, gw.target))
return
}
gorumsID, ok := gw.gorumsID (gw. target)
if lok {
if lgw.hasSkipped {
gw.logger.Error (”node not in manager, skipping”,
slog.String ("target”, gw.target))
}
gw. hasSkipped = true
return
}
node, ok := cfg.Node(gorumsID)
if lok {
gw.logger.Error (”node not in config, skipping”,
slog.String ("target”, gw.target))

return

// ...send gossip

Listing 4.5: Gossip worker

When a failure is recovered from, the gossip message queue to the failed replica
might be full, blocking the sending of gossips to other replicas. Listing 4.5
shows how the worker will quickly process messages if it can no longer find
the target of the gossip message.

Chapter 5

Experimental evaluation

In order to test the performance and correctness of the application, we devised
two types of tests. The first and simplest are integration tests using Go’s built
in testing functionality. These tests were used to verify the correctness. The
second and more involved type of test is a deployment of the tree on a data
centre, then collecting latency and throughput data during operation.

5.1 Experimental setup

5.1.1 Correctness testing
Software setup

We built our correctness testing around Go’s built in testing functionality and
Stretchr’s testify package. For these tests, we created a collection of OnceTree
replicas in their own goroutine where they listened for traffic on their own
separate port on the loopback interface. The replicas were each provided with
a specific address to join to when entering the network such that we had a
consistent network layout between tests.

Testing methodology

The tests were based around creating some random data to write to each replica
in the network, performing the write RPC calls, then checking that the changes
were reflected in the network by performing read RPC calls. We wrote the fol-
lowing test scenarios:

« Let a replica join an existing network, then check that the new replica
has received the existing state.

23

« Write a collection of random key-value pairs to all replicas, then verify
that the aggregated values of those key-value pairs are correct.

« Write a collection of random key-value pairs to all replicas, then verify
that the local values of those key-value pairs are correct, and only the
required replicas store them.

« Write a collection of random key-value pairs to all replicas, fail a replica,
and then verify that the correct replica has inherited the local state.

« Write a collection of random key-value pairs to all replicas, fail a replica,
and then verify that the aggregated values of those key-value pairs are
correct.

5.1.2 Performance testing
Hardware setup

Each replica in the OnceTree network was run on its own dedicated server.
The servers each had an Intel Xeon E-2136 6 Core central processing unit
(CPU) and 32 GiB random access memory (RAM). They were equipped with
10Gibps network interfaces and we typically observed less than 0.2 ms of
round trip latency between servers. In total, 277 servers were used, 15 of those
being OnceTree replicas and the remaining 12 being clients to generate traffic.

Software setup

To generate load on the system, we created clients that performed read and
write operations on the cluster of OnceTree replicas. The clients were operat-
ing as either a reader or a writer and would would perform a new operation
once every 1000 ms. Each client had a Gorums configuration with all of the
replicas in the network. For each of the replicas, the client spawned a gorou-
tine that was responsible for sending messages to that replica. We recorded
latency of read and write operations on the clients, and recorded throughput
metrics on each of the replicas.

The benchmark run consists of first writing a state with 5000 random key-
value pairs to each of the replicas. When this phase is complete, we enter a 60
second phase of read and write operations at a constant rate where a failure
is introduced for one replica at ¢t = 20.

Test parameters

Number Number Instances) Number of
. Request Tree Gossip
of write ofread per . OnceTree
rate fanout buffer size .
servers servers server replicas
3 9 1-10 1000/s 2,4 10k 15

Table 5.1: Testing parameters

5.2 Experimental results

Where applicable, all plots will be labelled with total read and write load and
fanout for that benchmark run. Throughput metrics are recorded at the repli-
cas, so here the y-axis is a per-replica metric.

5.2.1 Correctness

The correctness testing was essential in the development phase of this thesis.
Having integration tests to rely on when developing this type of system played
a major role in ensuring a smooth integration of features. The list of tests was
not comprehensive, but covered enough failure scenarios that we could feel
reasonably confident that the system functioned as intended.

5.2.2 Gossip throughput

The gossip throughput numbers can give us an indication of whether or not
the system can keep up with the internal demand. If the throughput starts
off very high, then slows down a lot, it can indicate that the gossip message
buffer was filling rapidly and that the replica is unable to transmit the outgoing
gossip messages. Figure 5.1 show how the introduction of a failure at ¢ =
20 impacts the rate of gossip operations. The system is here under a load of
12000 writes per second and 36000 reads per second. The plot shows the
gossip throughput of all the replicas, and we can clearly see that some of them
reaches a rate of 0 after about 20s into the benchmark. This is because some of
the replicas are leaf nodes who’s only connection to the rest of the network is
through the failed node. The other replicas are able to process some traffic, as
the message buffer was large enough to handle the short period of a missing

network path. As long as the gossip message buffers in the direction of the
failed node is not full, a replica can send to the other neighbours.

%103 12000 w/s, 36000 1/s, fanout 2

207 T T T]

15 — :

-.0.... oo »
e o q-..o.."f .

I oﬂ."'-l'M(\'\'..b -

..:' ".JVO'.' e L9480 PNRe 00t mmntnmnmen

T XX TR YY) 1'3:,%,%-1:.';\:&%35;3\;0

s 2 .

o
LTS

Gossips/s
=)

0 10 20 30 40 50 60
Time (s)

Figure 5.1: Per node gossip throughput

In Figure 5.2 we have doubled the load on the system. 24000 writes per
second and 72000 reads per second was the highest that could reliably be
handled by the system. We tested up to 30000 writes and 90000 reads per
second, but the system was not able too keep up with that demand.

Note the quite clear separation of lines in the throughput graph, we will
explain this in Subsection 5.2.5.

Changing the fanout to 4 in Figure 5.3 while keeping the same system load
we see a clearer dip in the gossip throughput until the failure has been re-
covered. OnceTree deployments with larger fanouts are expected to perform
worse in terms of throughput due to there simply being more replicas to trans-
mit updates to for central tree nodes. Incoming traffic should occur in the
same quantities regardless of fanout, just split across more neighbours.

5.2.3 Write throughput

The write throughput can give us an indication of whether or not the system
can keep of with the external demand. Ideally the write throughput should be

Gossips/s

Gossips/s

24000 w/s, 72000 r/s, fanout 2

x103
[
25
20 |- T . RSP ST
"f’.'.'.’o’o'o.'o\'o’o‘.'o'.'-\ °® '.. e o
o’ .n.f\‘.v 0.«0 ’..‘“g..“ ®e 0.‘ > .:.WOO.'OQ'WM ...r.‘ s
15 [o. . . QOQQ % —-_'_'__.
. ’::,y .W \R‘g_ "; FUWLLPRINIANTNANARS oy
10 L .
° L)
.:)
50 ¢ -
; LN]
0 [. edoe
| | | | | | |
0 10 20 30 40 50 60
Time (s)
Figure 5.2: Per node gossip throughput
%103 24000 W/s, 72000 1/s, fanout 4
[[[[
50 |-
40 +
30 | L
X .‘:0'.0.5. HEH
20| T, % RS e gttty
e ¢ L) .e ..“....o 0o ®
10| T &
; R
of ! o=
| | | | | | |
0 10 20 30 40 50 60
Time (s)

Figure 5.3: Per node gossip throughput

constant since the clients are providing a constant load evenly distributed to
the system.

Figure 5.4 shows the write throughput each replica is experiencing under a
12000 writes per second system load. As there is one less replica in the system
after 20 seconds, there is an increase in the write throughput. Apart from that,
no other impact of the replica failure can be observed here.

12000 w/s, 36000 1/s, fanout 2

x 103
I I I I
0.8 | 4 .
0.6 |- i
» H
~~
§ .
‘5 04+ |
= .
H
0.2 |
i
0] B
| | | | | | |
0 10 20 30 40 50 60
Time (s)

Figure 5.4: Per node write throughput

Figure 5.5 shows the write throughput when the write load is increased
to 24000 writes per second. Here we finally see a real impact on the write
throughput due to the failure. The culprit here is a full gossip message buffer
in the direction of the failed replica at one or more of the failed replica’s neigh-
bours. When the reconfiguration is complete, the gossip worker quickly skips
queued message to the failed replica, allowing other gossip messages to be

pushed to the gossip send queues.

5.2.4 Latency

Figure 5.6 and Figure 5.7 show the write and read latency under a load of
12000 writes per second and 36000 reads per second. Under this system load,
a failure’s impact on the read and write latency is minimal.

Writes/s

Write Latency (us)

1.5

—_

0.5

10°

—
)
=

—
]
w

—
)
[\

10!

24000 w/s, 72000 r/s, fanout 2

Time (s)

Figure 5.6: Write latency observed at clients

x10°
2
y] -"\/\
i ! . .
H .
i ' i
'
| | | |
0 10 20 30 40 50 60
Time (s)
Figure 5.5: Per node write throughput
12000 w/s, 36000 1/s, fanout 2
F T T T T T T T]
E \." Y ..00’ e ":.' o', "".' K g
; ?S@é v’s& 55%1«; «s :
| | | | | | |
0 10 20 30 40 50 60

Read Latency (us)

Write Latency (us)

10°

10%

103

102

10!

10°

10%

103

102

10!

12000 w/s, 36000 1/s, fanout 2

T T T T T

| | | | |

o,

E T T SR Y

10 20 30 40 50
Time (s)

Figure 5.7: Read latency observed at clients

24000 W/s, 72000 1/s, fanout 2

60

“
=t T e e s
.

'.{ .. '.:? :ﬁ .;&Wﬁg‘ﬁhﬁ:ﬁﬂ?

| | | | |

10 20 30 40 50
Time (s)

Figure 5.8: Write latency observed at clients

60

Increasing to 24000 writes per second and 72000 reads per second in Fig-
ure 5.8 and Figure 5.9 we start to see some impact of the failure. The clients
are experiencing some spikes in write latency some time after the failure has
been introduced, while the read latency remains largely unaffected. This is
as expected, as the read operations never rely on communication with other
replicas. Write operations will have a spike in latency due to the full gossip
message buffer discussed in Subsection 5.2.2. The points on the latency plots
are timestamped after the client has received its response, so this is why the
spikes in latency appears so much later than when the failure is introduced.

24000 W/s, 72000 1/s, fanout 2

10°

T T T T T T T

—_
[a]
=

. .’o o ..‘o...

.. %o og? .Vs: -o-o?r ? ,; ° .,... .
:~ - '.:m #"«'*:&?ﬂoé@. % '5-;, 5

Read Latency (us)
—_
)
w

.0

—
[a)
[

101 | | | | | | |
0 10 20 30 40 50 60

Time (s)
Figure 5.9: Read latency observed at clients

Figure 5.10 shows the impact that the system load has on the read and
write latency. Apart from the 3 first data points which we do not have a good
explanation for (even though it was consistent across benchmark runs), we
generally see an increase in the latency as the system load increases. This
is not a useful statistic for the reconfiguration process itself, but more of an
indication of the performance under normal operation.

fanout 2

T I
—e— Write
550 - —=— Read ||
a 500 |- |
S
&
=
o]
3 450 - |
400 - |
| | | | | |
5 10 15 20 25 30
Writes per Second x103

Figure 5.10: Read and write latency at varying load

5.2.5 Side effects of the gossip sender

As described in Section 4.2.6, the GossipSender module has one queue for each
origin next-hop pair. This means that, especially under high load, gossip mes-
sages might not be sent to the next hop in the same order that the state was
updated. If the gossip messages that got shuffled was for the same key in the
state, the one with the lowest timestamp will get discarded at the next hop.
This is why we see distinct levels of gossip throughput on the graphs in Subsec-
tion 5.2.2. Effectively what’s happening is an accidental batching of updates
because of the reordering. In a scenario with a slow network and a large send
buffer, we could also manually inspect the messages, and discard updates if a

later update for the same key is queued.

Chapter 6

Discussion

6.1 Paxos similarities

In the start of the development process we imagined that the similarities to
Paxos were more numerous than what it ended up actually being. Paxos gen-
erally operates under the constraint that a majority of replicas need be in-
volved in the consensus process [9]. For OnceTree however we will always
need full participation to ensure that the protocol functions as intended. Since
a single node is able to create a network partition, we cannot allow only a ma-
jority to participate and still make progress. This is especially true for the
reconfiguration processes, where if a single replica is not included, the whole
state of the tree might end up incorrect, or a portion of the tree is not recon-
nected.

6.2 OnceTree as a fault tolerant CRDT protocol

If fault tolerance is of the highest importance, as opposed to minimising mem-
ory footprint, then OnceTree with its tree based architecture might not be the
best option. As there are no redundant links to other replicas, the worst case
scenario is that we can disconnect one half of the network from the other half
if the root node fails (for a tree with fanout of 2). The system we implemented
only appears to still function properly to the clients because of the built in
buffers, but there is potentially a massive backlog whenever the tree is re-
stored. A protocol that would allow redundant links would not have the same
problem, but likely at some other cost.

33

6.3 Complexity of fault tolerance

During the development process of a fault tolerant OnceTree implementation
we noticed how fault tolerance impacts the complexity of the application. Al-
gorithms such as the OnceTree algorithm that are so simple they can be ex-
plained in 20 lines of pseudocode [2] can become unwieldy by the introduction
of fault tolerance. As a simple example, the GossipMessage used in the Gossip
RPC (the majority of internal traffic) has to include two extra fields of data
just to facilitate fault tolerance.

Although we definitely perceive the code as more complex, it is difficult
to quantify the complexity vs a non fault tolerant version. This is because we
likely would not design the applications modules the same way for a fault tol-
erant as for a non fault tolerant version of the protocol. Nevertheless, a sub-
stantial amount of the application modules’ code such as in the NodeManager
could be removed outright if it did not require fault tolerance.

6.4 Consequences of increasing fanout duringre-
covery

A consequence of moving all replicas in the recovery group up to be children
of the leader will make the leader’s fanout increase. From our testing with
a relatively low number nodes and fanouts of 2 and 4, we observed little to
no impact on the metrics we collected in the period after the fault had been
recovered from. That’s not to say that it won’t make an impact if the fanout had
been larger to begin with, but we would argue that unless end to end latency
is exceptionally important, fanout should be kept low. A low fanout will offer
better throughput as we explained in Subsection 5.2.2, and fewer nodes have
to be involved with recovery in the event of a node failure.

6.5 Gorums’ suitability to OnceTree

The use of Gorums for this OnceTree implementation demonstrated some of
its strengths and weaknesses. Some of Gorums’s abstractions are not really
suited for most of the communication that occurs within a OnceTree network.
This mostly comes down to gossip messages being unique for each replica,
so Gorums’s broadcast-like abstractions cannot be used as is. Gorums does
support providing a unique message to each node into the broadcast abstrac-

tion [6], but at that point it is often just as simple to iterate over each replica
and send the message as unicast to it. Message types like heartbeats are how-
ever trivially simple with Gorums, since all messages are the same.

Chapter 7

Conclusion and future work

7.1 Conclusion

In this thesis we have designed and implemented a fault tolerant version of
the OnceTree CRDT protocol using the Gorums framework. The recovery pro-
cess was designed with a goal of minimal service disruption, while preserving
the strengths of OnceTree. We based the recovery process around groups of
adjacent nodes in the tree who are responsible for reconnecting the tree in
the event of a failure. The recovery process also handles the inheritance of
the failed node’s state, so no state is lost due to failures. Our testing showed
that the system was capable of recovering from a fault while under a constant
load, with minimal service disruption. It also demonstrated that tree struc-
ture changes caused by our reconfiguration process yielded negligible impact
on the systems performance.

7.1.1 Future work
Subtree rebalancing

As the protocol currently operates, if the tree goes through many reconfigura-
tion, some parts of the tree might have a much higher fanout than intended.
A possible solution to this could be to initiate a recursive leave and re-join
operation on the subtree that is imbalanced. Only leaf nodes will leave the
network, so the recovery operation when leaving will be inexpensive since no
network transmission except for one round of gossip is needed.

36

Generic data types

An extension to support any data type could be useful, as the application is
currently limited to integers. The most challenging part of this would be to en-
capsulate the data inside a protobuf message, since this would require manual
serialisation and deserialisation. As long as the data supports a merge opera-
tion it should be possible to integrate into the system.

Appendix A

Source code

Source code for the OnceTree implementation as tested can be found at https:
//github.com/vidarandrebo/oncetree/tree/v1.0

38

https://github.com/vidarandrebo/oncetree/tree/v1.0
https://github.com/vidarandrebo/oncetree/tree/v1.0

Bibliography

[1] The PostgreSQL Global Development Group. PostgreSQL documen-
tation. [Online]. Available: https://www.postgresql.org/docs/current/
high-availability.html

[2] C. Power, S. Laddad, C. Douglas, S. Achalla, L. Katahanas, J. M. Heller-
stein, and D. Suciu, “Once upon a tree: Distributed idempotence in o(1)
space.”

[3] M. Shapiro, N. Preguica, C. Baquero, and M. Zawirski, “Conflict-free repli-
cated data types,” in Stabilization, Safety, and Security of Distributed
Systems: 13th International Symposium, SSS 2011, Grenoble, France,
October 10-12, 2011. Proceedings 13. Springer, pp. 386—400.

[4] gRPC Authors. What is grpc. [Online]. Available: https://grpc.io/docs/
what-is-grpc

[5] T.Lea, L. Jehl, and H. Meling, “Towards new abstractions for implement-
ing quorum-based systems,” pp. 2380—2385.

[6] H. Meling, J. I. Olsen, T. E. Lea, and L. Jehl. Gorums github page.
[Online]. Available: https://github.com/relab/gorums

[7]1 D. D. Sleator and R. E. Tarjan, “Self-adjusting binary search trees,”
vol. 32, no. 3, pp. 652—686. [Online]. Available: https://doi.org/10.1145/
3828.3835

[8] R. Neiheiser, M. Matos, and L. Rodrigues, “Kauri: Scalable bft
consensus with pipelined tree-based dissemination and aggregation,” in
Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems
Principles, ser. SOSP ’21. Association for Computing Machinery, pp.
35—48. [Online]. Available: https://doi.org/10.1145/3477132.3483584

[o] L. Lamport, “Paxos made simple.”

39

https://www.postgresql.org/docs/current/high-availability.html
https://www.postgresql.org/docs/current/high-availability.html
https://grpc.io/docs/what-is-grpc
https://grpc.io/docs/what-is-grpc
https://github.com/relab/gorums
https://doi.org/10.1145/3828.3835
https://doi.org/10.1145/3828.3835
https://doi.org/10.1145/3477132.3483584

u

University
of Stavanger

	Abstract
	Acknowledgements
	Acronyms
	Introduction
	Motivation
	Approach and contributions
	Outline

	Background
	CRDTs
	OnceTree
	gRPC
	Gorums

	Related work
	Design and implementation
	Design
	Challenges and limitations
	Group membership
	Move operations
	Reconfiguration message exchange
	State inheritance

	Implementation
	Event bus
	Gorums provider
	Failure detector
	Node manager
	Storage service
	Gossip sender

	Experimental evaluation
	Experimental setup
	Correctness testing
	Performance testing

	Experimental results
	Correctness
	Gossip throughput
	Write throughput
	Latency
	Side effects of the gossip sender

	Discussion
	Paxos similarities
	OnceTree as a fault tolerant CRDT protocol
	Complexity of fault tolerance
	Consequences of increasing fanout during recovery
	Gorums' suitability to OnceTree

	Conclusion and future work
	Conclusion
	Future work

	Source code

