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Abstract

Power generation is transitioning away from centralized electricity generation facilities with the
increase of energy consumption from renewable sources, such as solar and wind. Along with
rising demand for electric vehicle charging, this shift strains the electric grid. With limited
energy storage options, most generated energy must be consumed immediately. To deliver
energy efficiently, voltage and frequency must be maintained at stable levels. The integration
of distributed renewable sources, directly connected to the distribution grid, can produce large
variations in supply and demand, reducing efficiency. This increases the complexity of oper-
ations and requires improved methods for network monitoring and control. In this thesis, a
modified case4 dist distribution network is used to develop a dynamic model in state-space
form to analyze voltage sensitivity and transient response in the system. The performance
of the dynamic model is compared with solutions of power flow equations solved using the
well-established Newton-Raphson method. The results show that the discrepancy between the
models is minimal. The voltage sensitivity analysis reveals how load changes affect the bus
voltages of the network. Transient voltage response analysis shows high voltage variation and
the rapid convergence to the nominal values. The model can be integrated with advanced
analysis and control design to improve the efficiency and reliability of distribution network
operations, and it is proposed as future work.
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Abbreviations

AC Alternating Current
B Susceptance
DC Direct Current
G Conductance
J Jacobian
KCL Kirchhoff’s Current Law
KVL Kirchhoff’s Voltage Law
LTI Linear Time-Invariant
MIM0 Multiple Input, Multiple Output
NR Newton-Raphson
P Active Power
pu Per Unit
Q Reactive Power
R Resistance
RMS Root Mean Square
S Apparent Power
SIMO Single Input, Multiple Output
SVD Singular Value Decomposition
X Reactance
Z Impedance
Y Admittance
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Chapter 1

Introduction

1.1 Motivation

The European Environmental Agency (EEA) provides an analysis on the share of energy consump-
tion from renewable sources in Europe. EEA states that, according to Eurostat the renewable
energy share in Europe is 23 % [7] and is expected to continue growing [1].

This increase in renewable energy sources indicates a shift from centralized energy production
facilities to distributed generation of energy from renewable sources [16]. This bring issues in
effectively controlling the voltage stability in the distribution network. Since there are limitations
in storing produced energy, most of it must be consumed immediately. The renewable energy
sources that are directly connected to the distribution grid can produce large variations that can
affect voltage stability of the power grid.

Voltage sensitivity provides insight into how different load conditions affect voltage levels in the
distribution network and helps to ensure voltage stability [8]. The motivation behind this thesis
is to construct a reduced yet sufficiently accurate dynamic model of a power distribution network
to efficiently compute the sensitivity of voltage magnitude and angle with respect to changes in
active and reactive power demand.

1.2 Problem Statement

To analyze voltage sensitivity, gramian matrix can be obtained trough conventional methods,
such as Newton-Raphson method, that show how changes in active and reactive power injections
at different buses of the distribution network affects the relative voltages. These conventional
algorithms can be computationally demanding to calculate for large systems.

The goal is to develope a dynamic model of the system that is that is sufficiently accurate to
perform voltage stability analysis.

1.3 Thesis Outline

1. Background and Models

2. Two-Bus System Model Defined by Power Flow Equations.

3. Dynamic Model in State-Space Form of a Two-Bus System.

4. Dynamic Model in State-Space Form of a Four-Bus System.

5. Discussion of Reduction Methods

6. Two-Bus Model Performance Comparison.

7. Voltage Sensitivity Analysis of the Four-Bus Network.

8. Transient Response Analysis.

9. Conclusion
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Chapter 2

Background

In this chapter, a short introduction to the power grid is provided. The study case of the case4 dist
model is presented and discussed. The conversion between the three-phase and single-phase equiv-
alent circuits is explained, along the relevant equations for this thesis. A concise derivation of
the power flow equations is demonstrated. The Newton-Raphson algorithm and state-space rep-
resentation of a system is introduced. The π equivalent representation of the transmission lines is
discussed. The voltage sensitivity analysis is described. Finally, various methods used for dynamic
model reduction are mentioned, with a focus on the Singular Value Decomposition method.

2.1 Introduction to Power Grid Networks

A power grid is a sophisticated network comprised of generators, transformers, and substations
which are interconnected by distribution lines that transmit the electric power to the consumers.
Electricity must be delivered reliably and efficiently across multiple voltage levels in order to meet
the varying demand.

Figure 2.1 is a one-line diagram of a power grid system that shows the different parts the grid
can be subdivided into. The transmission grid transports the electricity over long distances at
high-voltage (400-300kV) from the generation sources to the distribution networks. The operation
at high voltage allows to reduce energy losses and efficiency improvement over long distances. [6].

Figure 2.1: One-line diagram of the power grid network

The regional distribution grid is a medium voltage network (132-33kV) that transmits electricity
form the transmission grid to various local distribution networks and power intensive industrial
consumers. The voltage levels are managed and distributed form the substations to ensure stable
and reliable power delivery. The local distribution grid, operating at 22-10 kV for industrial users
and 400-230 V for residential and small commercial users, represents the final step in electricity

8



CHAPTER 2. BACKGROUND 2.2. THE CASE4 DIST DISTRIBUTION NETWORK MODEL

distribution, where voltage is stepped down to levels suitable for end-users [6].

The increasing load demand and the integration of decentralized energy generation sources,
such as wind and solar, in distribution grids is presenting challenges regarding voltage stability
[12]. Significant deviations in voltage levels from their nominal values at the substations can lead
to reduced efficiency of power delivery, equipment malfunctions or power outages. Therefore, it is
important to monitor the impact that load changes have on different nodes within the power grid
and to take the appropriate actions to mitigate the voltage discrepancies.

2.2 The case4 dist Distribution Network Model

The models studied in this thesis are based on a modified version of a case4 dist system found in the
MATPOWER simulation software. This system originally comprises 4 buses and 2 generators. The
modification lies in the second bus, where a generator is substituted by a load (PQ), as presented
in Figure 2.2

Figure 2.2: Modified case4 dist system

This model represents the high voltage local distribution grid, with a voltage range of 22kV to
10kV. The load and impedance units in the diagram are presented in the per unit (pu) system,
which in this case, normalizes the system quantities to a common base of 1MVA of apparent power
(Sb) and 12.5kV for base voltage (Vb). Each bus is connected by transmission lines with equal
impedance, having a resistance of 0.003 pu and a reactance of 0.006 pu. Buses 2, 3 and 4 have
loads connected to them that consume 0.4 pu of active power and 0.2 pu of reactive power. First
bus (slack bus) injects power into the system to keep it balanced and acts as a reference point.
The chosen frequency at which the system operates is f = 50Hz. The angular frequency is then
ω = 2πf = 100π.

A bus is a set of three nodes corresponding to the three phases of the power system where dif-
ferent components, such as generators, loads, transformers, and transmission lines, are connected.
A system that is balanced, time-invariant, and with normalized values can be analyzed as an equiv-
alent single-phase system with only one node representing a bus, as presented in Figure 2.2 [14].
Each bus is associated with four quantities:

• Vi: voltage magnitude at ith bus

• δi: phase angle at ith bus

• Pi: injected active power at ith bus

• Qi: injected reactive power at ith bus

Depending on which of the above quantities are known the buses can be categorized as a slack
bus, generator bus or a load bus as indicated in the Table 2.2.

9



CHAPTER 2. BACKGROUND 2.3. THREE-PHASE NETWORK AND THE SINGLE-PHASE EQUIVALENT

Table 2.1: Bus types and variables

Bus Type
Known
quantities

Unknown
quantities

Slack bus (Ref.) |V | , δ P,Q
Generator bus (PV) P,|V | Q, δ
Load bus (PQ) P,Q |V | , δ

• Slack bus, also known as swing bus, is a reference point for voltage magnitude, set typically
at 1 p.u., and phase angle set at 0 degrees, that accounts for variations in transmission lines
to maintain a power balance in the system. The active and reactive power are unknown
variables but can be determined trough calculations.

• Generator buses, also known as PV buses, denotes nodes where power is injected into
the system by energy sources, such as power plants. The reactive power and the voltage
magnitude are known values.

• Load buses, also known as PQ buses, since the real and reactive power of the bus are
known values. It represent the nodes where power is consumed, such as residential buildings
or industrial facilities.

A N -bus system can be depicted as the sum of all its constituent bus types expressed by the
Equation 2.1. The nPV term represents the number of generator buses, nPQ indicates the number
of load buses, and the addition of 1 accounts for the slack bus in the system.

N = nPV + nPQ + 1 (2.1)

Table 2.2: Power Flow Equations by Bus Type

Bus
Type

Number of Power Flow
Equations per Bus Type

Slack 0
PV nPV

PQ 2(N − nPV − 1)

2.3 Three-Phase Network and the Single-Phase Equivalent

In order to correctly convert the distribution network values, such as impedance and apparent
power, from a three-phase system to an equivalent single-phase circuit, the system needs to be
balanced and the type of connection between the windings of a generator or a transformer and
the load must be known. There are two types of connections: Y-connection and ∆-connection, as
shown in Figure 2.3

10



CHAPTER 2. BACKGROUND 2.3. THREE-PHASE NETWORK AND THE SINGLE-PHASE EQUIVALENT

a) Y-connection

ZZ

Z
Phase
voltage
Vϕ

Line-to-line
voltage, VLL

Line current

Z Z

Z

Phase
current

Line-to-line
voltage,
VLL = Vϕ

Line current

b) ∆-connection

IL IL

Iϕ

n

Figure 2.3: Y- and ∆-connection diagrams

For the Y-connection, each phase is connected to a common neutral point. Assuming a balanced
system, the current flowing in each phase is equal in magnitude. The sum of the currents flowing
trough the neutral point is zero and therefore, the current in the neutral line is also zero. The
phase voltage is measured between the phase and the neutral point, while the line-to-line voltage
is measured between phases. The phase voltage is lower than a line-to-line voltage by a factor of√
3, as presented in Equation 2.2

|VLL| =
√
3
∣∣Vϕ

∣∣ (2.2)

For the ∆-connection, each phase is connected end-to-end in a closed loop. The phase voltage
and line-to-line voltage are equal in magnitude since there is only the line-to-line voltage. In
contrast to the Y-connection, the ∆-connection phase current is proportional to the line current
by a factor of

√
3, as shown in Equation 2.3

|IL| =
√
3
∣∣Iϕ∣∣ (2.3)

When converting a three-phase system to a single-phase circuit, this has to be taken into
consideration. In actual distribution networks, this information would be provided by the utility
company. However, for the purposes of this thesis, it is assumed that all connections between trans-
former and load windings are Y-connected. This assumption is made because voltage sensitivity
is the primary focus, and Y-connections simplify the analysis.

In Figure 2.2 of the modified case4 dist model, the load apparent power is presented as the
total average power that the load consumes. For a single-phase circuit, this power consumption
has to be scaled by a third, since it is the power consumed per phase, as indicated in Equation 2.4.
This is equivalent to scaling the line-to-line voltage and line current by a factor of

√
3.

S3ϕ = 3S1ϕ =
√
3|VLL||IL| (2.4)

To find the actual values for transmission line impedance from the per unit values provided
in the case4 dist diagram, the base apparent power, Sb, and the base voltage, Vb, must first be
converted to single-phase values, using Equations 2.2 and 2.4. The line base impedance, Zb can
then be calculated using the relation shown in Equation 2.5. Afterwards, the transmission line
impedance can be directly scaled by the line base impedance Zb.

∣∣S1ϕ

∣∣ = ∣∣Vϕ

∣∣∣∣Iϕ∣∣ = ∣∣Vϕ

∣∣2
Zb

(2.5)

The effective voltage value of an AC voltage waveform is the root mean square voltage, Vrms,
which is equivalent to the DC voltage that would deliver the same power. The voltage base value,
Vb of 12.5kV, specified in case4 dist diagram, is the RMS voltage. When used as an input sinusoidal
signal in a single-phase circuit, the RMS voltage, Vrms, must be converted to the peak voltage value
Vpeak, as indicated by Equations 2.6, so that the oscillating input signal Vs is scaled correctly, as
shown in Equation 2.7.
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CHAPTER 2. BACKGROUND 2.4. POWER FLOW EQUATIONS

Vrms =
Vpeak√

2
(2.6)

Vs = Vpeak sin(ωt+ θ) (2.7)

2.4 Power Flow Equations

The flow of power in a power grid is described by complex nonlinear equations, which forms
the basis for calculating the phase angle and magnitude of the voltage at each bus, along with
determining the flow of active and reactive power through the transmission lines [13]. A brief
derivation is presented below.

According to Kirchhoff’s current law, the injected current is defined as the sum of currents
flowing into the bus, which can be expressed as the sum of the products between each bus voltage,
Vk and the admittance Yik between the respective buses, denoted in Equation 2.8, where N signifies
the total number of buses within the system.

Ii =

N∑
k=1

YikVk (2.8)

The power vector in the complex plane is equal to the product of bus voltage and the complex
conjugate of the current. This can also be expressed as the sum of active and reactive power, as
shown in Equation 2.9.

Si = ViI
∗
i = Vi(

N∑
k=1

Y ∗
ikV

∗
k ) = Pi + jQi (2.9)

The phase angle, δi, is the angle between the voltage vector Vi at bus i and the reference axis.
The same applies to the voltage vector at a bus k, but the phase angle δk is negative due to its
complex conjugate.

Vi = |Vi| ejδi (2.10)

V ∗
k = |Vk| e−jδk (2.11)

Line admittance Y is the reciprocal of the line impedance Z. The admittance can be expressed
as the sum of conductance G and susceptance B, which are the inverse of resistance R and reactance
X, respectively. In this case, the conjugate of the admittance results in a negative angle when
represented in exponential form.

Y ∗
ik = Gik − jBik = |Yik| e−jθik (2.12)

Substituting Equations 2.10, 2.11 and 2.12 into Equation 2.9, results in the complex power,
where the sum of the bus voltages of the system and the transmission line admittance between the
respective buses with the corresponding angles is equal to the sum of active power Pi and reactive
power Qi, as presented in Equations 2.13.

Si =

N∑
k=1

|Vi||Vk||Yik| ej(δi−δk−θik) = Pi + jQi (2.13)

The complex power can be divided into two equations; Pi, containing all the components in the
real plane, Equation 2.14, and Qi, encompassing the components in the imaginary plane, Equation
2.15. The change in angle sign, as well as of the reactive power, is due to the even and odd
symmetry of cosine and sine functions, respectively.

Pi =

N∑
k=1

|Vi||Vk||Yik| cos(δk − δi + θik) (2.14)

Qi = −
N∑

k=1

|Vi||Vk||Yik| sin(δk − δi + θik) (2.15)
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CHAPTER 2. BACKGROUND 2.5. NEWTON-RAPHSON ALGORITHM

The resulting Equations 2.14 and 2.15 are called power flow equations. The solutions to these
equations allow to determine the flow of power under steady-state conditions. However, due to
the nonlinear nature of these functions, which involve squared voltage terms and trigonometric
functions, finding the solutions requires the use of iterative methods.

2.5 Newton-Raphson Algorithm

Solving the power flow equations for a bus voltage magnitude, |V |, and phase angle, δ, involves the
use of a numerical method, since the equations are nonlinear. There are a few numerical methods
that can be used to find the solutions, such as Gauss-Seidel and Newton-Raphson (NR) iterative
method. Newton-Raphson is a well known method that is widely used in the power network
analysis because of its robust and simple implementation.

With the NR method, the unknown voltage magnitudes and phase angles can be approximated
by finding the roots of the power flow functions, using an iterative process. Essentially, the objective
is to minimize the difference between the specified injected power, P (specified), which represents
the difference between the generated and demanded power, and the calculated power P (calculated),
aiming to converge it to zero. This is called the mismatch power and is presented in Equations
2.16.

∆Pi = P
(specified)
i − P

(calculated)
i

∆Qi = Q
(specified)
i −Q

(calculated)
i

(2.16)

To achieve this objective, it is necessary to linearize the the system around the current operating
point. Equations presented in 2.14 and 2.15. The linear approximation can achieved via first-order
Taylor series expansion around some initial values δ0 and V0 as demonstrated in Equations 2.17,
where ∆δk and ∆Vk represent the correction values for angle and voltage magnitude, respectively.

Pi ≈ Pi(δ
0
k...δ

0
N , V 0

k ...V
0
N ) +

N∑
k=2

∂Pi

∂δk
∆δk +

N∑
k=2

∂Pi

∂Vk
∆Vk

Qi ≈ Qi(δ
0
k...δ

0
N , V 0

k ...V
0
N ) +

N∑
k=2

∂Qi

∂δk
∆δk +

N∑
k=2

∂Qi

∂Vk
∆Vk

(2.17)

The mismatch power equations presented in 2.16 are derived by relocating the first terms from
the right side of Equations 2.17 to the left side. Performing this procedure for every bus in the
system where the voltage magnitudes and angles need to be determined will yield in a system of
linear equations that can be represented in matrix form, as follows:

[
∆P
∆Q

]
=

[
JPδ JPV

JQδ JQV

] [
∆δ

∆|V |

]
(2.18)

In Equation 2.18, the mismatch vector [∆P ,∆Q]TN×1, which contains active and reactive power
mismatch values, is computed as the product of the Jacobian matrix, [J ]N×N and the correction
vector [∆δ,∆|V |]TN×1, formed by the phase angle and voltage magnitude correction values.

The Jacobian is composed of four sub-matrices, as shown in 2.19. The elements of JPδ and
JQδ contain the the partial derivatives of active and reactive power with respect to phase angle,
respectively. The matrix dimension of JPδ is (nPV +nPQ)× (nPV +nPQ), while the size of JQδ is
(nPV +nPQ)×nPQ. Similarly, JPV and JQV are partial derivative matrices of active and reactive
power with respect to the voltage magnitude. JPV has size nPQ × (nPV + nPQ), while JQV is of
dimension nPQ × nPQ.
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CHAPTER 2. BACKGROUND 2.5. NEWTON-RAPHSON ALGORITHM

J =

[
JPδ JPV

JQδ JQV

]
=



∂P2

∂δ2
· · · ∂P2

∂δN
...

. . .
...

∂Pi

∂δ2
· · · ∂Pi

∂δN

∂P2

∂|V2|
· · · ∂P2

∂|VN |
...

. . .
...

∂Pi

∂|V2|
· · · ∂Pi

∂|VN |

∂Q2

∂δ2
· · · ∂Q2

∂δN
...

. . .
...

∂Qi

∂δ2
· · · ∂Qi

∂δN

∂Q2

∂|V2|
· · · ∂Q2

∂|VN |
...

. . .
...

∂Qi

∂|V2|
· · · ∂Qi

∂|VN |



(2.19)

The indexing start at k = 2, since it is assumed that the first bus is the slack bus for which the
voltage magnitude and the phase angles are known.

To find the values of interest, that are phase angle and voltage magnitude, the inverse of the
Jacobian matrix has to be performed as shown in Equation 2.20. The Jacobian matrix must be
invertible, for the solution to converge.



∆δ2
...

∆δN

∆|V2|
...

∆|VN |


=

[
JPδ JPV

JQδ JQV

]−1



∆P2

...
∆PN

∆Q2

...
∆QN


(2.20)

Finally, phase angle and voltage magnitude are approximated by the NR method presented in
Equation 2.21 for which an iterative process is required.

Xn+1 = Xn − [J(Xn)]
−1F (Xn) (2.21)

In each iteration the tolerance is checked, which is the difference between the current and the
previous solutions. If the tolerance is met, the solution has converged. This process is illustrated
in Figure 2.4 as a flow chart.
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Figure 2.4: Newthon-Raphson algorithm flow chart

The convergence speed of the Newton-Raphson method depends largely on the number of
iterations that the algorithm has to perform to converge to a solution. Convergence is not always
guaranteed. If the Jacobian matrix is becomes singular, the solution will diverge. Therefore, it is
good practice to make the initial guess as close to the actual solution as possible.

2.6 State-Space Model

State space of a system is an n-dimensional space in which each axis corresponds to one of the state
variables of the system. State variables are the minimal set of variables that uniquely determine
the state of the system at any given time [9]. The number of state variables in the distribution grid
network can be defined by the number of components that store energy in the system. The modified
case4 dist model can be converted into, a continuous, time-invariant (LTI), single-input, multiple-
output (SIMO) system. Although, multiple-input, multiple-output (MIMO) is more realistic for
real-life applications since there is more than one voltage source connected to the distribution grid,
the focus is on the study of the modified case4 dist model behaviour.

State space model can be expressed using the state equations, that are n simultaneous first-order
differential, linearly independent equations that describe the dynamics of the system, Equation

15



CHAPTER 2. BACKGROUND 2.7. THE π-MODEL REPRESENTATION OF A TRANSMISSION LINE

2.22, and the output equation that describes the relationship between the states and the output,
Equation 2.23 [9]:

ẋ(t) = f(t,x(t),u(t)) (2.22)

y(t) = g(t,x(t),u(t)) (2.23)

x(t0) = x0 (2.24)

Where:

• ẋ(t) is the derivative of the state vector with respect to time

• x(t) is the state vector

• u(t) it the input vector

• y(t) is the output vector

• x0 is the initial state

If the state equations are nonlinear, they must be linearized around the operating point before
they can be expressed in matrix form as follow:

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(2.25)

• A ∈ Rn×n is the state matrix

• B ∈ Rn×m is the input matrix

• C ∈ Rp×n is the output matrix

• D ∈ Rp×m is the direct transmission matrix

There are multiple state-space representations for the same system, meaning that the repre-
sentation for a given system is not unique. This is because there are various ways to arrange
state-space equations to form the state matrix. However, these different representations do not
alter the underlying system [9].

With the system expressed in state-space, various control techniques can be applied, such as
state feedback control, observer-based control, optimal control (LQR) alongside the tools to analyze
observability and controllability of a system. It also provides the possibility for state estimation,
fault detection, and real-time monitoring.

In electric circuits, the state variables are typically chosen as the voltage across capacitors and
the currents through the inductors since these are the components that have an influence on the
behaviour the system over time.

2.7 The π-Model Representation of a Transmission Line

For the modified case4 dist model, a π-model equivalent circuit can be used to represent the trans-
mission lines. The π-model is a sufficiently accurate for modeling medium-voltage transmission
lines, as is in case4 dist network, provided that the line length per π-model does not exceed 150km.
However, for fast transient responses over very short periods, the π-model may not provide accu-
rate results and a wave equation should be used instead [3]. In Figure 2.5 a representation of a
π-model as one-line diagram is shown.
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Figure 2.5: π-model for a medium voltage transmission line

The π-model captures the characteristics of a transmission line, including its resistance, induc-
tance, and capacitance. The capacitors represent the shunt capacitance between the transmission
line and the ground. For long transmission lines, the effects of shunt capacitances and the line
impedance needs to be considered as continuously distributed quantities along the lenght of the
line.

2.8 Voltage Sensitivity Analysis

To meet the load demand and maintain normal operating conditions in the power grid system, volt-
age levels must be maintained within specified operating limits at all buses in the network. Thus,
voltage stability is crucial for grid stability, equipment protection and efficient power transmission
and distribution [2].

Sensitivity analysis is a relatively simple but powerful method that allows to study how the
variations in systems inputs impact the system behaviour in a manner that is easy to conceptualize.
This analytical approach provides insights into the magnitude of the impact that each input has
on the overall behaviour of the system [17]. The sensitivity coefficients are determined when the
solution reach convergence and effect of the small changes of voltage magnitude and phase angle
that have on the system can be interpreted [10]. For a multi-variable system, the sensitivities can
be expressed in a Jacobian matrix as presented in 2.26.

∂f1
∂x1

. . . ∂f1
∂xn

...
. . .

...

∂fm
∂x1

. . . ∂fm
∂xn

 (2.26)

Power distribution networks, which typically are comprised of complex, large-scale systems,
are commonly approximated with high-dimensional, nonlinear models. These factors make it
computationally costly to analyse and predict the system behaviour [18]. With the state-space
model of the network, the sensitivity analysis can be directly performed by monitoring how load
changes affect the voltage levels at different buses in the system.

2.9 Dynamic Model Reduction

In article [5], Savo D.Dukić and Andrija T.Sarić have proposed several reduction techniques for
linear dynamic systems. The proposed techniques are following:

• Singular Perturbation Analysis (SPA)

• Modal Analysis (MA)

• Singular Value Decomposition (SVD)

• Moment Matching (MM)
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• SVD-Krylov Methods, which is a combination of SVD and MM

From the proposed techniques, singular was attempted to implement in this thesis. The singular
value decomposition is a technique used to mitigate large amounts of data in matrices by expressing
the matrix as follow [11]:

A = UΣV T (2.27)

Where:

• U is an m×m size orthogonal matrix

• Σ is and m× n diagonal matrix composed of singular values

• V is an n× n orthogonal matrix

This technique allows to interpret the structure of matrices with large dateset, which in power
distribution can occur for large networks. The vectors in U matrix and the singular values in Σ
are ordered in decreasing order of magnitude. The ordering helps identifying the most significant
components of the matrix, making it useful for dimensionality reduction by truncating the less
influential data set [5].

The application of this technique was attempted on the state matrix of the two-bus and the four-
bus dynamic model. However, the state matrices are not sufficiently large, resulting in no significant
differences between singular values. A naive attempt was made truncating the UΣV T matrices, but
this altered the systems behaviour and made this approach ineffective in these particular cases.

18



Chapter 3

Analysis case and methods

This chapter introduces the models and the methods used to perform voltage sensitivity and
transient response analysis. For each model and method, the underlying equations, the choice of
values, and the calculations are explained. First, the two-bus system is introduced, for which the
Newton-Raphson method is used, and from which the dynamic model in state-space is derived.
Following this, the two bus system created in MATLAB Simscape is introduced and discussed.
Finally, the dynamic model of the full four-bus system is presented.

3.1 Newton-Raphson Method Applied to the Two-Bus Sys-
tem

The goal with the iterative approach of Newton-Raphson method is to find the voltage magnitude
and the phase angle at the second bus employing the power flow equations, discussed in Section
2.5. A simplified version of the modified case4 dist model with only two buses is presented in
Figure 3.1.

The generator is connected to the load via a transmission line with an impedance of Zline =
0.003 + j0.006 pu. S1 and S2 represent the apparent power that is supplied and consumed by
the generator and the load, respectively. The apparent power for the load is given as P2 = 0.4
pu and Q2 = 0.2 pu in the modified case4 dist model. The apparent power for the generator is
not specified, but it is not strictly necessary to know since there is enough information to find the
solutions. The bus connected to the generator also functions as a slack bus since there is only one
generator in the system. The values of voltage magnitude, V1 and phase angle, δ1 are known to be
1 pu and 0 degrees, respectively. For the second bus, voltage magnitude, V2 and phase angle, δ2
are unknown and need to be determined using the Newton-Raphson method.

Zline = R + jX

Bus 1 Bus 2

V1 ∠ δ1 V2 ∠ δ2

S1 = P1 + jQ1 S2 = P2 + jQ2

LoadGenerator

Figure 3.1: Single-line diagram of two-bus system

For every bus in the system, there are two equations that describe the power flow. In this case
of a two-bus system, only two equations are necessary since only the voltage magnitude and the
phase angle for the second bus need to be calculated. The mismatch equation for the active power,
denoted as fP2 is shown in Equation 3.1, and for the reactive power, denoted as fQ2 is presented
in Equation 3.2. Active power, P2, and reactive power, Q2 are the specified load values. The
mismatch equations are referred to in Equation 2.16, and discussed in Section 2.5.
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fP2
= |V1V2Y21| cos(δ1 − δ2 + θ21) +

∣∣∣V 2
2 Y22

∣∣∣ cos(θ22)− P2 (3.1)

fQ2
= −|V1V2Y21| sin(δ1 − δ2 + θ21)−

∣∣∣V 2
2 Y22

∣∣∣ sin(θ22)−Q2 (3.2)

The admittance matrix, also known as Y-bus matrix, shows the relation between the bus
voltages and the injected currents in the transmission line. Using the admittance instead of the
impedance simplifies the process of solving the power flow equations. To calculate the admittance
matrix the Kirchhoff’s current law (KCL) is applied to the line, as shown in Figure 3.2, where
currents i1 and i2 are the currents entering and leaving the transmission line seen from each bus’s
perspective. In this case, this can be expressed in two equations an put in matrix form, as shown
in Equation 3.3.

i1 i2

Y12

Bus 1 Bus 2

Figure 3.2: Current flow through the transmission line.

[
I1
I2

]
=

[
Y11 −Y12

−Y21 Y22

] [
V1

V2

]
(3.3)

Since the line admittance is a complex number and the power flow equations are split into
two real-valued equations that require the admittance magnitude and the angle, the Y-matrix is
decomposed into two matrices: one containing the admittance magnitudes and the other containing
the respective angles, as presented in Equations 3.4 and 3.5, respectively.

|Y | =
[
Y11 Y12

Y21 Y22

]
(3.4)

θ =

[
θ11 −θ12
−θ21 θ22

]
(3.5)

The mismatch Equations 3.1 and 3.2 are nonlinear due to trigonometric and exponential func-
tions. Therefore, they must be linearized around an operating point. Since the operating point is
unknown, reasonable a guess of the solution must be made to achieve convergence. In this case,
the initial values chosen are V 0

2 = 1 pu, for the voltage magnitude and δ02 = 0◦, for the phase angle.
The four linearized equations for the two-bus system form the Jacobian matrix, as shown in

Equation 3.6. These elements indicate how sensitive the power mismatch equations are to changes
in voltage magnitude and phase angle at the second bus, as discussed in Section 2.5.

J =

[
J11 J12
J21 J22

]
(3.6)

Elements J11 and J21 are the partial derivatives of the active power mismatch equation with
respect to the phase angle and the voltage magnitude, respectively, as presented in Equations 3.7
and 3.9. Similarly, elements J12 and J22 are the partial derivatives of the reactive power mismatch
equation with respect to the same variables as indicated in Equations 3.8 and 3.10.

J11 =
∂fP2

∂δ2
= |V1V2Y21| sin(δ1 − δ2 + θ21) (3.7)

J12 =
∂fP2

∂V2
= |V1Y21| cos(δ1 − δ2 + θ21) +|2V2Y22| cos(θ22) (3.8)

J21 =
∂fQ2

∂δ2
= |V1V2Y21| cos(δ1 − δ2 + θ21) (3.9)
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J22 =
∂fQ2

∂V2
= −|V1Y21| sin(δ1 − δ2 + θ21)−|2V2Y22| sin(θ22) (3.10)

The aim of employing Newton-Raphson Equation 3.11 is to bring the solution of voltage mag-
nitude and phase angle as close as possible to the true values by finding the roots of the mismatch
equations. The Jacobian must be invertible for the solution to converge, meaning it cannot be
singular or near-singular [4]. [

δ2
V2

](n+1)

=

[
δ2
V2

](n)
− J−1

[
fP2

fQ2

]
(3.11)

This process is iterative, where the values for voltage magnitude and phase angle are updated for
each iteration, the mismatch equations and the Jacobian matrix are recalculated, and the process
is repeated until the mismatch function is minimized, meaning until the tolerance is achieved. The
algorithm for the NR method was developed using MATLAB (See Appendix). The convergence
tolerance was chosen to be reasonably small for the solutions to be accurate, tolerance = 0.001.

3.2 A Dynamic Model of the Two-Bus System

The aim with the dynamic model in state-space form is to examine the transient and steady-state
response of the voltage magnitude and the phase angle at the second bus by changing active and
reactive power values of the load. To achieve this, a dynamic model of the two-bus system based on
the modified case4 dist model must be developed. The system must be converted from a balanced
three-phase network into a single-phase circuit, as discussed in Section 2.3.

The transmission line is modeled as a π-model, as discussed in Section 2.7. A small value
resistor, Rs, of 0.01 Ω is added to the circuit that represents the internal resistance of the voltage
supply. Stray capacitance, between the transmission line and the ground, is represented by C1

and C2 and both values are 0.1µF/km. The capacitance is chosen to be low, since the model is
assumed to have transmission line length of 1km and the stray capacitance effect is assumed to be
small when the system reaches steady-state. The capacitance value has an effect over the transient
response that is discussed in the Section 4.3.

Rs RL

RT LT

C1 C2

Vs

i1

+
V1

−

+
V2

− LL i2

Bus 1 Bus 2

Figure 3.3: Single-phase diagram of a two-bus system

The rest of the system values specified in per unit in the case4 dist model must be converted
to actual values. The transmission line reactance is Zline = 0.003 + j0.006 pu. The resistive
component is straightforwardly scaled by the impedance base value Zb, discussed in Section 2.3.
The inductances can be found through the inductive reactance, XL, Equation 3.12, since the
frequency, f is 50Hz. The actual values of RT and LT are 0.4688Ω/km and 3mH/km, respectively.

XL = ωL (3.12)

The apparent power for load that is specified in the case4 dist model is S2 = P2 + jQ2 =
0.4+ j0.2 pu for the three-phase network. By multiplying it with the apparent base value, Sb of 1
MVA and then scaling it down by a third, the value is converted to single-phase apparent power
of the load. Load impedance, Zload can then be calculated, as shown in Equation 2.5 (Section
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2.3). With the load impedance known, the values for load resistance RL and inductance LL are
calculated similarly as for the transmission lines. The actual load resistance RL and inductance
LL are 312.5Ω and 497mH, respectively.

The number of states in the system can be determined by the number elements that can store
energy and affect the system’s behaviour over time. Such passive elements are the capacitors and
inductors that display time-dependent behaviour, as shown in Equations 3.13 and 3.14.

i = C
dv

dt
(3.13)

v = L
di

dt
(3.14)

The voltages across capacitors C1 and C2 and the current through inductors LT and LL are
chosen as state variables, with the voltage supply Vs designated as the input. By applying Kirch-
hoff’s voltage law (KVL) to the loops and Kirchhoff’s current law (KCL) to the nodes of the circuit,
linearly independent, first-order differential state Equations 3.15, 3.16, 3.19, and 3.20 are derived.

dV1

dt
= − 1

C1Rs
V1(t)−

1

C1
i1(t) +

1

C1Rs
Vs(t) (3.15)

di1
dt

=
1

LT
V1(t)−

RT

LT
i1(t)−

1

LT
V2(t) (3.16)

dV2

dt
=

1

C2
i1(t)−

1

C2
i2(t) (3.17)

di2
dt

=
1

LL
V2(t)−

RL

LL
i2(t) (3.18)

The state variables are redefined and rewritten in a state vector form as follow:
x1(t)

x2(t)

x3(t)

x4(t)

 =


V1(t)

i1(t)

V2(t)

i2(t)

 (3.19)

The differential state equations can be rewritten in state-space form, as presented in Equations
3.20 and 3.21. The state matrix, A, captures the intrinsic dynamics of the system, while the input
matrix, B incorporates the scalar factor of the input signal. The state derivative vector is ẋ(t),
vector of states is x(t), and u(t) is the supply voltage, Vs that acts as input to the system. The
state-space model is a linear time-invariant (LTI) system because the coefficients of the matrices
are not time-dependent.

ẋ1(t)

ẋ2(t)

ẋ3(t)

ẋ4(t)

 =


− 1

C1Rs
− 1

C1
0 0

1
LT

−RT

LT
− 1

LT
0

0 1
C2

0 − 1
C2

0 0 1
LL

−RL

LL




x1(t)

x2(t)

x3(t)

x4(t)

+


1

C1Rs

0

0

0

u(t) (3.20)

For the output, the direct transmission matrix, D is zero. The output is defined to be the as
the state variable x3(t) that is the voltage, V2 since the goal is to find the voltage magnitude and
the angle over the second bus, Equation 3.21.

y(t) =
[
0 0 1 0

]

x1(t)

x2(t)

x3(t)

x4(t)

 (3.21)
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The state-space system was solved using MATLAB (see Appendix) by performing a time-
domain simulation to analyze the response of the linear system provided the input Vs and the
following initial conditions: x1(t0) = 0, x2(t0) = 0, x3(t0) = 0, x4(t0) = 0. These initial conditions
represent a de-energized state of the system at t0. The input, Vs is sinusoidal (Equation 2.7) with
a frequency of 50 Hz, scaled by the magnitude Vpeak and the phase-shift θ = 0.

As mentioned before, the state matrix, A, describes the core dynamics of the two-bus system.
It encapsulates the coefficients of the resistive (RL) and inductive (LL) components of the load
connected at the second bus. By changing these values, it can be studied how they influence the
voltage in the system.

3.3 Simscape Model of the Two-Bus System

A Simscape model of a simplified power system is shown in Figure 3.4. The system consist of
two buses: swing (slack) bus and a PQ load. The slack is connected to solver configuration that
specifies the parameters that the model needs, and a busbar that is connected to the transmission
line. TThe transmission line is represented as π model whit one shunt capacitor at each end of the
line. The second busbar is connected to the second bus, PQ load bus.

Figure 3.4: Simscape model of a two-bus system. Swing bus and PQ load bus are connected via
the transmission line.

The power flows from the swing bus to the PQ load. The busbar has no effect on the dynamics
of the system, it is just a MATLAB Simscape component that measure the voltage and phase
values. It shows the values in pu basis as well as in kW for active power and kVAR for reactive
power. This model was used to validate the results obtained trough the Newton-Raphson method,
showing correct results and consistency.

3.4 A Dynamic Model of the Modified case4 dist Network

The objective with the state-space representation of the full modified case4 dist model is to assess
the impact of changes in active and reactive power of a load on the bus voltage magnitudes. In
other words, to study voltage sensitivities in the system.
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Figure 3.5: Single-phase diagram of the case4 dist model

The full single-phase equivalent circuit of the modified case4 dist model, presented in Section
2.2, is illustrated in Figure 3.4. The first bus is the slack bus, where the generator Vs with a small
internal resistance Rs of 0.01 Ω is connected. The second, third and fourth buses are PQ buses,
each with one load connected to it with identical apparent power demand value of P = 0.4 pu and
Q = 0.2 pu.

The transmission lines can be modeled by cascading several π-model sections. The parallel shunt
capacitances between the first and the second buses can be combined to form CT3. The same applies
to the shunt capacitances between the first and third buses, forming CT4. The capacitance value for
both CT2 and CT6 is 0.1µF/km and the value for both CT3 and CT4 is 0.1µF/km. The the resistive
components in the transmission lines have the same value: RT2 = RT3 = RT4 = 0.4688Ω/km.
The same applied for the line inductances: LT2 = LT3 = LT4 = 3mH/km. The reasoning of these
values is discussed in Section 3.2. It assumed that the length of each π −model section is 1 km.

Following the same reasoning as in Section 3.2, the chosen state variables are as follow: x1(t) =
i1, x2(t) = V2, x3(t) = i2, x4(t) = V3, x5(t) = i3, x6(t) = V4, x7(t) = i4, x8(t) = i5, x9(t) = V6,
x10(t) = i6. Applying KCL to the nodes and KVL to the loops, ten first-order linear, time-
invariant differential equations (see Appendix) are obtained that describe the behaviour of the
system. The equations are directly expressed in state-space form, in Equations 3.22, 3.23, 3.24,
and 3.24. The state matrix, A has size 10× 10 and encapsulates the coefficients that describe the
systems dynamics. The input matrix B is of size 10 × 1 and describes how the input affects the
states.

A =



−RT2

LT2

−1
LT2

0 1
LT2

0 0 0 0 0 0

1
CT2

0 −1
CT2

0 0 0 0 0 0 0

0 1
LL2

−RL2

LL2
0 0 0 0 0 0 0

−1
CT3

0 0 −1
RsCT3

−1
CT3

0 0 0 0 0

0 0 0 1
LT3

−RT3

LT3

−1
LT3

0 0 0 0

0 0 0 0 1
CT4

0 −1
CT4

−1
CT4

0 0

0 0 0 0 0 1
LL3

−RL3

LL3
0 0 0

0 0 0 0 0 1
LT4

0 −RT4

LT4

−1
LT4

0

0 0 0 0 0 0 0 1
CT6

0 −1
CT6

0 0 0 0 0 0 0 0 1
LL4

−RL4

LL4



(3.22)
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B =



0

0

0

1
RsCT3

0

0

0

0

0

0



(3.23)

The output matrix C, Equation 3.24, has size 10×4 and identifies the specific outputs that are
monitored in the system. These outputs correspond to the bus voltage magnitudes. By structuring
the output matrix in this form, bus voltages can be tracked individually at the same time. This
approach helps to analyze how load variations impact the voltage stability and to study transient
responses.

C =


0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0

 (3.24)

Each row in the output matrix C corresponds to one of the monitored bus voltages as follow:

• The first row captures the voltage at the second bus (V2)

• The second row captures the voltage at the first bus (V3)

• The third row captures the voltage at the third bus (V4)

• The fourth row captures the voltage at the fourth bus (V6)

The source Vs is the input signal u(t) that is a sinusoidal wave with an angular frequency ω of
100π
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Chapter 4

Results

The results obtained from the developed, two-bus and four-bus models, based on the modified
case4 dist four-bus distribution network, are discussed. First, the performance comparison between
solutions obtained through the Newton-Raphson method and the state-space model is examined.
Following this, the voltage sensitivity of the four-bus system is analyzed and interpreted. Finally,
the transient response is evaluated to understand the system’s behaviour under dynamic conditions.

4.1 Comparative Analysis of Two-Bus Systems Using NR-
Method and State-Space Model

The objective developing two simplified two-bus representations from the case4 dist model is to
assess the performance of Newton-Raphson (NR) approach against the dynamic model in State-
Space, which are introduced in Sections 3.1 and 3.2.

The power flow equations, that describe the power flow within a balanced distribution network,
are static. They represent the steady-state conditions of the system. The common approach is to
manipulate and solve these equations by NR method to find the voltage magnitudes and phase
angles in all the buses of a distribution network. However, it does not account for dynamic analysis
or the transient effects. This is where a dynamic a model of the system becomes desirable, but it
needs to be determined if the dynamic model performs as effectively as the NR method in providing
steady-state solutions. The aim was to conduct a comprehensive comparison and evaluate the
degree of similarity between the steady-state solutions produced by these two approaches.

The approach taken for the two-bus system model involves generating random apparent power
values, S2, for the load connected to the second bus (Figure 3.1), ranging from 0.1 pu to 2 pu. These
values were randomly assigned to active and reactive power of the load, and sorted in increasing
order. This ordering of values helps with clear plotting and interpretation of the results and it
does not affect the outcome otherwise. This same technique was employed for dynamic state-space
model with the involved conversions from per unit basis of active and reactive power to resistive
and inductive values of the load (Figure 3.3), discussed in Section 3.2.

To compare the performance of both methods, twenty different apparent power load values
were generated. For each model, the resulting steady-state voltage magnitudes (in kilovolts) and
their corresponding phase angles values (in degrees) are plotted on the x-axis [kV] and y-axis [deg],
respectively. This is illustrated in Figure 4.1.
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Figure 4.1: Solution Comparison: Newton-Raphson Method and State-Space Model

The orange dotted line corresponds to the solutions obtained through Newton-Raphson method
while the blue dotted line are the solutions for state-space model. The values of active and reactive
power were applied to the models in increasing order, the resistivity and inductivity of the load
values gradually increased. The plot meets the expectations, showing that the values of magnitude
and phase angle decrease. For the first solution, the voltage magnitude is around 12.5 kV and the
phase angle is around 0 degrees. With each increase in the load’s apparent power the resulting
voltage magnitude and phase angle are decrease. Both models are closely aligned and follow
approximately the same trend. Although the models may appear to have some discrepancies, they
are quite small. This is illustrated in Table 4.1, where the last ten values from the graph are shown,
as this is where the difference between the trends appears to be the largest.

Table 4.1: Comparison of voltage and phase angle values between measured at bus number two
obtained through Newton-Raphson method and the state space model

Sload = P2 + jQ2 NR algorithm State Space model Discrepancy

S = 0.921 + j0.967 12.39kV ̸ −0.15◦ 12.39kV ̸ −0.14◦ 0.00kV ̸ 0.01◦

S = 1.097 + j1.077 12.38kV ̸ −0.19◦ 12.38kV ̸ −0.20◦ 0.00kV ̸ 0.01◦

S = 1.237 + j1.226 12.36kV ̸ −0.22◦ 12.36kV ̸ −0.22◦ 0.00kV ̸ 0.00◦

S = 1.242 + j1.254 12.36kV ̸ −0.21◦ 12.36kV ̸ −0.22◦ 0.00kV ̸ 0.01◦

S = 1.445 + j1.262 12.35kV ̸ −0.28◦ 12.35kV ̸ −0.27◦ 0.00kV ̸ 0.01◦

S = 1.491 + j1.400 12.34kV ̸ −0.28◦ 12.34kV ̸ −0.27◦ 0.00kV ̸ 0.01◦

S = 1.682 + j1.592 12.31kV ̸ −0.31◦ 12.32kV ̸ −0.31◦ 0.01kV ̸ 0.00◦

S = 1.746 + j1.636 12.31kV ̸ −0.32◦ 12.31kV ̸ −0.31◦ 0.00kV ̸ 0.01◦

S = 1.906 + j1.903 12.28kV ̸ −0.33◦ 12.29kV ̸ −0.32◦ 0.01kV ̸ 0.01◦

S = 1.943 + j1.935 12.28kV ̸ −0.34◦ 12.28kV ̸ −0.32◦ 0.00kV ̸ 0.02◦

Table 4.1 displays the randomly generated apparent power load values in per unit. The cor-
responding results values for the Newton-Raphson method and state-space model are presented.
The last column shows the difference in voltage magnitude and the phase angle between the NR
algorithm and the state-space model. The maximum difference is 0.01 kV for voltage magnitude
and 0.02◦ for the phase angle. The small discrepancy may be due to numerical inaccuracies in the
Newton-Raphson method. These minimal differences indicate that the dynamic model performs
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comparably to the NR method.

By keeping the active power constant and gradually increasing the reactive power by generating
random numbers in the interval of 0.1 pu to 2 pu, it is possible to observe how the increase in
load reactive power affect the bus voltage and angle. The results are shown in the Figure 4.2.
Both methods display approximately the same trend. At the second bus, the voltage magnitude
drops from around 12.47kV to 12.35kV as the load reactive power varies from 0.1 pu to 2 pu. This
voltage drop is expected since the increase in loads reactive power increases the loads impedance,
resulting in voltage drop. The inductive component causes the phase angle to shift in the positive
direction, moving from around -0.11◦ to 0.11◦. This shift occurs because increased reactive power
leads to higher inductance, which affects the phase angle. Both models exhibit similar trends,
indicating accurate solutions.

Figure 4.2: Solution Comparison: Keeping the active power constant

Similarly, Figure 4.3 the results with the reactive power kept constant. As the active power
is increased the voltage magnitude decreases and the phase angle shifts in the negative direction,
moving from 0◦ to -0.55◦. The consistent alignment between the resulting trends indicate reliable
and accurate results.

Figure 4.3: Solution Comparison: Keeping the reactive power constant
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One observation that was made when generating transient data with the state-space model
is that due to high frequencies in the transient, a high sampling of 100 kHz was required to get
achieve a proper resolution. This increased the simulation time. It

In summary, the comparison of the models indicates that the the dynamic model produces
results comparable to those of the Newton-Raphson method. The two-bus model validates the
effectiveness of the dynamic model, showing that is performs nearly as well as the NR method.

4.2 Voltage sensitivity analysis for the modified case4 dist
model

The voltage sensitivity analysis helps to understand how a change in load power consumption
affects the voltage magnitudes at the buses in the system. To perform this analysis, a change
in load apparent power was applied to the full dynamic model (Figure 3.3), based on modified
case4 dist model (Figure 2.3), after the system had reached a steady-state condition.

The initial load at the fourth bus is 0.447 MVA, which is 44.7% of the base power. Then, the
load is increased to 100% of the base power when the system reaches steady-state. This value is
still within the limits of the base power capacity of 1 MVA. It represents a substantial increase of
122% in apparent power consumption at bus four. This increase will produce a voltage drop at
other buses, which are summarized in Table 4.2

Table 4.2: Voltage Sensitivity Analysis for the Four-Bus Dynamic Model

Bus
Voltage

S4 = P4 + jQ4

0.4+j0.2
S4 = P4 + jQ4

0.8+j0.6
Relative Voltage

Drop as a Percentage

V1 12.50kV 12.50kV 0

V2 11.74kV 11.74kV 0

V3 11.72kV 11.68kV 0.34

V4 11.69kV 11.60kV 0.77

The first column in the Table 4.2 indicates the bus to which the voltage values correspond.
The second column shows the respective voltages at the initial load with an apparent power of,
S4 = 0.4 + j0.2. The voltage at the first bus remains unchanged, as expected, since this is the
slack bus. All buses are radially connected (Figure 2.3), meaning there is a single path for each bus
to reach the source. The second bus is connected to a different branch than the third and fourth
buses. This explains the higher starting voltage value at the second bus of 11.74kV compared to
the third and fourth buses, which have starting values of 11.72kV and 11.69kV, respectively.

After the increase in load’s apparent power, there is a voltage drop at buses three and four,
as presented in the second column, since they are connected to the same branch. The relative
voltage change for each bus is summarized in the fourth column as voltage drop in percentage . As
expected, the slack bus voltage presents no change, and the second bus voltage remains unaffected
since it is connected to a different branch. The fourth bus shows the highest voltage drop of 0.77%,
where the load change occurs. The third bus has a lower voltage drop of 0.34% , illustrating how
the changes in load can affect voltage values in other parts of the distribution systems.

To make sense if this voltage variation is within reasonable level, the Norwegian Regulation
on Delivery Quality and Power Systems provides a standard. According to a statute (FOR-1990-
12-07-959-§3-3, 2004) issued by ”Norwegian Ministry of Petroleum and Energy”, it states: ”§
3-3. Slow variations in the effective value of the voltage: The grid company shall ensure that slow
variations in the effective value of the voltage are within a range of ±10% of the nominal voltage,
measured as an average over one minute, at the connection point in the low voltage network”[15]

A variation of ±10% of the nominal value is accepted for a local distribution grid. Figure 4.4
shows four graphs where the alternating bus voltage Vi is plotted with the source voltage, Vs (i.e.,
the slack bus voltage) over time for each bus in the network. By comparing the peak values at the
last crest of the sinusoidal wave of the voltage source and the bus voltage, at around 0.07 seconds,
when the system has reached steady state, it is possible to calculate the voltage drop. This is
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presented in Table 4.3, where the first column displays the bus number, the second column shows
the voltage magnitude and the phase angle of each bus, and the third column shows the voltage
drop as a percentage, comparing the source voltage magnitude with the bus voltage magnitude.

Figure 4.4: Simulated Voltage Responses at Four Buses of case4 dist State-Space Model

The voltage drop lies around 6% with the highest voltage drop being at the fourth bus of 6.6%.
Adding the highest voltage change of 0.77% for the fourth bus from table 4.2, it results in a total
of 7.37%, which is well within the ±10% threshold stated in the regulation.

In summary, the developed dynamic model allows to monitor and interpret the voltage sensi-
tivities that occurs in the distribution network. The results allows for a clear understanding for
how much the different buses in the system are affected by a load change in a specific part of the
system. Although the phase angles were not used for this analysis, it is illustrated in table 4.3
that the angles can be extrapolated from the phase difference between the source wave and the
bus voltage wave by taking the time difference.
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Table 4.3: Voltage Drop Analysis for Each Bus in the Dynamic Model

Bus
number

|V | ̸ ϕ Voltage drop with respect to
slack bus voltage

1 12.50kV ̸ 0.072 0%

2 11.74kV ̸ 1.368 6%

3 11.72kV ̸ 1.224 6.24%

4 11.69kV ̸ 1.062 6.48%

4.3 Transients Response and Steady-State Analysis

One of the many benefits of the dynamic model over the static model is that it provides information
about transients. The dynamic model of the two-bus system presented in Section 3.2 (Figure
3.3) was used to analyze the transient response with two different but equivalent input sources:
sinusoidal wave AC and the DC equivalent, Vrms. The graphs show the voltage results for a single-
phase system. This is fine for the transient response interpretation, because the system is assumed
to be balanced.

At the start of the simulation, all initial values are set to zero. This simulates a de-energized
state of the system and produces a transient when the system is ”energized”. Figures 4.5 and 4.6
show the transient response of the two-bus dynamic model for each input source used. The first
plot (Figure 4.5) shows voltage variation at the second bus, V2 with the input AC source signal Vs

with a peak value of 10, 2kV . The transient is embedded into the resulting voltage V2. A close-up
of the crest is illustrated in (Figure 4.6) for the first 0.001 seconds, where the ripples in V2 are
present. Voltage difference between the ripples is at most of around 60V.

To get a better understanding of what is happening and how fast the voltage is converging to
its nominal value, an equivalent response was simulated with the RMS voltage Vrms as the input
source. This is illustrated in the second plot of Figure 4.5. The resulting response at the second
bus V2 is plotted together with Vrms. Very short convergence time of around 0.05s can be observed,
which is typical for electrical systems. High frequency fluctuations are present shown in the second
plot in Figure 4.6 in a close-up. These fluctuations reach voltage values way above the nominal
value of 7,2kV, Vrms, but it does not directly translate to the real voltage levels in the system,
since the source is AC and the transient is embedded in the response.

Figure 4.5: Transient Response of the Two-Bus System

In summary, these results show a very short convergence times of the transient, in order of
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Figure 4.6: Transient Response Embedded into the Sinusoidal Signal

milliseconds, and the effects that this has on the resulting output wave. The analysis highlights
the importance of accurately modeling transient responses to ensure the stability and reliability
of power systems, particularly when integrating renewable energy sources. Future work could
explore more sophisticated models, consider additional factors such as harmonics and investigate
the impact of varying load conditions.

32



Chapter 5

Conclusion

The dynamic model shows minimal solution discrepancies compared to the solutions obtained
through power flow equations that were solved using the iterative Newton-Raphson (NR) method.
This indicates that the model is reliable for assessing voltage stability analysis of the distribution
network. Additionally, it provides a means to evaluate how changes in one part of the system affect
the rest of the system, and allows to conduct voltage a straightforward sensitivity analysis.

State-space representation offers several advantages over static equations and iterative methods,
such as transients response analysis, simultaneous assessment of all bus voltages, and improved
processing performance. It also avoids the solution divergence issues that can occur applying the
NR method. One disadvantage compared to the Newton-Raphson method is that if the system
changes, the state matrix requires a to be updated, and potentially new states introduced which
requires the reevaluation of the dynamics of the system. For large systems, a well-defined dynamic
model can improve the computational cost compared to Newton-Raphson method, since it does
not require recalculating the system matrices to converge to a solution.

This thesis demonstrates the potential of dynamic models for real distribution networks. The
approach is scalable, can improve monitoring of the network, and helps to mitigate the challenges,
such as voltage variability, from the integration of renewable energy sources in the grid.

As future work, the model can be increased in complexity, and control techniques such as
state feedback or observer-based control can be implemented for voltage control. For real-time
monitoring, fault detection and noise reduction in the data, the implementation of Kalman filter
is proposed to estimate the states in the system for better monitoring and control of the power
distribution system.
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[2] Göran Andersson. Modelling and analysis of electric power systems. ETH Zurich, pages 5–6,
2008.

[3] Tobias Blenk and Christian Weindl. Fundamentals of state-space based load flow calculation
of modern energy systems. Energies, 16(13):4872, 2023.

[4] Kheelesh Kumar Dewangan and Ashish K Panchal. Power flow analysis using successive ap-
proximation and adomian decomposition methods with a new power flow formulation. Electric
Power Systems Research, 211:108190, 2022.

[5] Savo D Dukic and Andrija T Saric. Dynamic model reduction: An overview of available tech-
niques with application to power systems. Serbian journal of electrical engineering, 9(2):131–
169, 2012.

[6] Energidepartementet. Norway’s energy supply system. Statnett SF, the electricity
grid. https://energifaktanorge.no/en/norsk-energiforsyning/kraftnett/#:~:

text=The%20Norwegian%20electricity%20grid%20consists,as%20defined%20by%20EU%

20legislation., 2024. Accessed: 2024-02-03.

[7] Eurostat. Share of energy consumption from renewable sources. https://ec.europa.eu/

eurostat/databrowser/view/nrg_ind_ren/default/table?lang=en. Accessed: 2024-06-
05.

[8] Mirko Ginocchi, Ferdinanda Ponci, and Antonello Monti. Sensitivity analysis and power sys-
tems: Can we bridge the gap? a review and a guide to getting started. Energies, 14(24):8274,
2021.

[9] Ogata Katsuhiko. Modern control engineering. Editorial Félix Varela, 2009.

[10] Prabha Kundur. Power system stability. Power system stability and control, 10:7–1, 2007.

[11] Kenneth Lange and Kenneth Lange. Singular value decomposition. Numerical analysis for
statisticians, pages 129–142, 2010.

[12] Xinyu Liang, Hua Chai, and Jayashri Ravishankar. Analytical methods of voltage stability in
renewable dominated power systems: a review. Electricity, 3(1):75–107, 2022.

[13] Federico Milano. Power Flow Analysis, pages 61–101. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2010.

[14] James W Nilsson and Susan Riedel. Electric circuits. Prentice Hall Press, 2010.

[15] Olje og energidepartementet. Forskrift om leveringskvalitet i kraftsystemet., 2004. FOR-2004-
11-30-1557, FOR-1990-12-07-959-§7-1, LOV-1990-06-29-50-§7-6.

[16] Subhasis Panda, Sarthak Mohanty, Pravat Kumar Rout, Binod Kumar Sahu, Shubhran-
shu Mohan Parida, Hossam Kotb, Aymen Flah, Marcos Tostado-Véliz, Bdereddin Ab-
dul Samad, and Mokhtar Shouran. An insight into the integration of distributed energy
resources and energy storage systems with smart distribution networks using demand-side
management. Applied Sciences, 12(17):8914, 2022.

34



BIBLIOGRAPHY BIBLIOGRAPHY

[17] Allen J Wood, Bruce F Wollenberg, and Gerald B Sheblé. Power generation, operation, and
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Appendix A

Impedance

Z = R+ jX = R+ j(XL −XC)

Admittance

Y =
1

Z
= G− jB = G+ j(BC −BL)

Pure inductance

Y = −jBL

Instantaneous power (time domain)

p(t) = v(t)i(t)

p(t) = VPeak cos(ωt+ δ) · IPeak cos(ωt+ β)

p(t) = VRMS IRMS cos(δ − β)[1 + cos(2ωt+ 2δ)] + VRMS IRMS sin(δ − β) sin(2ωt+ 2δ)

IR = IRMS cos(δ − β)

IX = IRMS sin(δ − β)

Active power

P = VRMSIR

Reactive power

Q = VRMSIX

Complex power (phasor domain)

S = V I∗ = VRMSIRMS∠(δ − β)

Apparent power

S = V I∗ = VRMSIRMS = P + jQ

Expanded Jacobian matrix for a n-bus system:



∆P2

...
∆Pn

∆Q2

...
∆Qn


=



∂P2

∂δ2
· · · ∂P2

∂δn

∂P2

∂|V2|
· · · ∂P2

∂|Vn|
...

. . .
...

...
. . .

...
∂Pn

∂δ2
· · · ∂Pn

∂δn

∂Pn

∂|V2|
· · · ∂Pn

∂|Vn|

∂Q2

∂δ2
· · · ∂Q2

∂δn

∂Q2

∂|V2|
· · · ∂Q2

∂|Vn|
...

. . .
...

...
. . .

...
∂Qn

∂δ2
· · · ∂Qn

∂δn

∂Qn

∂|V2|
· · · ∂Qn

∂|Vn|





∆δ2
...

∆δn

∆|V2|
...

∆|Vn|


(1)
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Jacobian of power flow equations for diagonal and off diagonal terms for

JPδ:

1. Diagonal term

∂Pi

∂δi
=

n∑
k=1
k ̸=i

|Vi||Vk| (−Giksin(δi − δk) +Bikcos(δi − δk))

2. Off-diagonal term

∂Pi

∂δk
=

n∑
k=1
k ̸=i

|Vi||Vk| (Giksin(δi − δk)−Bikcos(δi − δk))

JP|V |:

1. Diagonal term

∂Pi

∂|Vi|
= 2|Vi|Gii +

n∑
k=1
k ̸=i

|Vk| (Gikcos(δi − δk) +Biksin(δi − δk))

2. Off-diagonal term

∂Pi

∂|Vk|
=

n∑
k=1
k ̸=i

|Vi| (Gikcos(δi − δk) +Biksin(δi − δk))

JQδ:

1. Diagonal term

∂Qi

∂δi
=

n∑
k=1
k ̸=i

|Vi||Vk| (Gikcos(δi − δk) +Biksin(δi − δk))

2. Off-diagonal term

∂Qi

∂δk
=

n∑
k=1
k ̸=i

|Vi||Vk| (−Gikcos(δi − δk)−Biksin(δi − δk))
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JQ|V |:

1. Diagonal term

∂Qi

∂|Vi|
= −2|Vi|Bii +

n∑
k=1
k ̸=i

|Vk| (Giksin(δi − δk)−Bikcos(δi − δk))

2. Off-diagonal term

∂Qi

∂|Vk|
=

n∑
k=1
k ̸=i

|Vi| (Giksin(δi − δk)−Bikcos(δi − δk))
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Base:

SB = 1MVA = 106V A

VB = 12.5kV = 12500V

ZB =
V 2
B

SB
= 156.25Ω

IB =
SB

VB
= 80A

Values:

Zline = Zline,pu ∗ ZB = (0.003 + j0.006) ∗ 156.25 = 0.46875 + j0.9375Ω

Zload = Zload,pu ∗ ZB = (0.4 + j0.2) ∗ 156.25 = 62.5 + j31.25Ω

Sgenerator = Sgenerator,pu ∗ SB = (0.4 + j0.2) ∗ 106 = 400kW + j200kV AR

Z = R+ jXΩ

XL = ω ∗ L
ω = 2π ∗ 50Hz = 100π

LOAD : LL =
31.25

100π
= 99.4mH

TRANSM.LINE : LT =
0.9375

100π
= 2.98mH

CHAPTER 4.2

|S4| =
√
0.42 + 0.22 ≈ 0.46MVA (2)

|S4| =
√

0.82 + 0.62 = 1MVA (3)

1MVA− 0.45MVA

0.45MVA
= 1.22 ∗ 100 = 122% (4)
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function [solution] = evaluateNRModel(S_input)
% Apparent power (Sb) and voltage (Vb) base
S_base = 1e6;               % Base apparent power
V_base = 12.5e3;            % 3-phase RMS voltage value = base voltage val.
Z_base = (V_base^2)/S_base; % Base impedance = 156.25ohm

% System parameters
S_pu = S_input;             % Apparent on load side in [p.u.]
p2_pu = -1*real(S_pu);      % Active pwr, P. Negative = load consum. pwr
q2_pu = -1*imag(S_pu);      % Reactive pwr, Q. Negative = load consum. pwr
v1_pu = 1.0;                % Voltage in [pu] at bus #1
d1 = 0;                     % Angle in [rad] at bus #1
Z_line_pu = 0.003+j*0.006;  % Transmission line impedance given in p.u.
%Y_line_pu = 1/Z_line_pu;   % Line admittance in [pu]

% The NR-method converges to a solution from the initial guess.
v2_pu = 1;              % Initial guess of voltage in [pu] at bus #2
d2 = 0;                 % Initial angle guess in [rad] at bus #2

% Converting from [pu] to actual values
Z_line = Z_line_pu * Z_base;    % Line impedance
Y_line = 1/Z_line;              % Line admittance
v1 = v1_pu * V_base;            % Voltage at bus #1
v2 = v2_pu * V_base;            % Voltage at bus #2
p2 = p2_pu * S_base;            % Active power at load bus
q2 = q2_pu * S_base;            % Reactive power at load bus

% Y bus matrices of magnitude and angle
Y = ones(2,2)*abs(Y_line);              % Y bus matrix of admittance mag.
Th = [angle(Y_line) angle(-Y_line);
      angle(-Y_line) angle(Y_line)];    % Y bus matrix of angles [rad]

% Jacobian matrix
J = zeros(2,2);     % Initialized J matrix for linearized PF equations

% Initial guess vector
X = [d2; v2];

% Loop parameters
iter = 0;                   % Tracks the number of complete iterations
tolerance = 1e-3;           % Final solution tolerance.
tolerance_achieved = false; % Stops the loop when the tolerance is achieved

% NR-method
while(~tolerance_achieved)
% Power flow equations

1



fp2 = abs(v1*v2*Y(2,1))*cos(d1-d2+Th(2,1))+abs(v2^2*Y(2,2))*cos(Th(2,2))-p2;
fq2 = -abs(v1*v2*Y(2,1))*sin(d1-d2+Th(2,1))-abs(v2^2*Y(2,2))*sin(Th(2,2))-q2;
fx = [fp2, fq2];

% Jacobian matrix populated with linearized power flow equations
J(1,1) = abs(v1*v2*Y(2,1))*sin(d1-d2+Th(2,1));
J(1,2) = abs(v1*Y(2,1))*cos(d1-d2+Th(2,1))+abs(2*v2*Y(2,2))*cos(Th(2,2));
J(2,1) = abs(v1*v2*Y(2,1))*cos(d1-d2+Th(2,1));
J(2,2) = -abs(v1*Y(2,1))*sin(d1-d2+Th(2,1))-abs(2*v2*Y(2,2))*sin(Th(2,2));

% NR-method: Calculating the next voltage and angle vector value
X = X - J\fx';

% Evaluating if the tolerance is good enough for solution convergence
toler_d2 = d2-X(1);     % Angle tolerance
toler_v2 = v2-X(2);     % Voltage tolerance
if (abs(toler_d2) < tolerance) && (abs(toler_v2) < tolerance)
    tolerance_achieved = true;  % Exit the loop
end

% Updating solution vectors and iteration.
v2 = X(2);
d2 = X(1);
iter = iter + 1;
end

% Converged solution
solution.v2 = v2*1e-3;          % In [kV]
solution.d2 = rad2deg(d2);      % In [degrees]

end

Error using evalin
Unrecognized function or variable 'evaluateNRmethod'.

Published with MATLAB® R2023b
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function [solution, graph] = evaluateSSModel(S_input, sampling)
%{
*********************************************************
Purpose:
    Simulate a DC equivalent, expressed in state space,
    of a two bus system  and compare the output voltage
    and phase angle against a sinusoidal input.

Author:
    Kestutis Samulis, Mai 24, 2024
*********************************************************
%}

f = 50;                             % Frequency
w = 2*pi*f;                         % Angular frequency [rad/s]

% Specified base values
S_base = 1e6;                       % S_base [VA] is specified for a 3-phase 
system.
V_base = 12500;                     % V_base [V] is the RMS voltage 
specified for a 3-phase system.

% 3-phase RMS voltage
V_3phs_rms = V_base;                % Base voltage is the RMS value of a 
3-phase system
V_1phs_rms = V_3phs_rms/sqrt(3);    % Converting 3-phase rms voltage to 
single-phase voltage

% Converting 3-phase apparent power to single-phase
%S_pu = 0.1 + j*0.1;                  % Apparent power delivered to load in 
p.u. base.
S_pu = S_input;                     % Apparent power delivered to load in 
p.u. base.
S_3phs_actual = S_pu*S_base;        % Converting p.u. value to actual value 
for a 3-phase system.
S_1phs_actual = S_3phs_actual/3;    % Conveting the 3-phase apparent power 
to single-phase apparent power.

% Finding load impedance
Z_load = (V_1phs_rms^2)/S_1phs_actual;

% Specified values for circuit components
C1 = 1e-7;               % Capacitor in parallel with RS and RT
C2 = 1e-7;               % Capacitor in parallel with LT and RL
Rs = 0.01;               % Resistor in series with the voltage source
RT = 0.4688;             % Transmission line resistor
LT = 0.003;              % Transmission line inductor

1



RL = real(Z_load);       % Load resistor
LL = -imag(Z_load)/w;    % Load inductor

% State space model of the two bus system
A = [ -1/(C1*Rs)    -1/C1       0       0;
       1/LT         -(RT/LT)   -1/LT    0;
       0            1/C2        0       -1/C2;
       0            0           1/LL    -(RL/LL)];
B = [1/(C1*Rs); 0;  0;  0];
C = [0 0 1 0];
D = 0;

% Sampling time
Fs = sampling.Fs;  % Sampling frequency
t0 = sampling.t0;  % Initial time
tf = sampling.tf;  % Final time
dt = 1/Fs;         % Time step
ts = t0:dt:tf;     % Sampling time

% Voltage magnitude is converted to peak voltage for single-phase
V_3phs_peak = V_3phs_rms * sqrt(2);   % Peak voltage of a 3-phase system
V_1phs_peak = V_3phs_peak/sqrt(3);    % Converting peak voltage from 3-phase 
to single-phase

u = V_1phs_peak * sin(w*ts);          % Single-phase input voltage 
oscillating sinusoidally

sys = ss(A, B, C, D);

% State initial condition
x0 = [0;0;0;0];

% Simulate system's output behaviour to the applied input voltage
[y, t] = lsim(sys, u, ts, x0);

% Sinusoidal input and ouput voltages with V_peak_1phs as magnitude
graph.t = t;
graph.u = u;
graph.y = y;

% Finding the peaks of input, u, and ouput, y, signals
[~, locs_u] = findpeaks(u, t);
[pks_y, locs_y] = findpeaks(y, t);

% Making sure that the same number of peaks is used in each case
locs_u = locs_u(end);   % Peak at steady state for u
locs_y = locs_y(end);   % Peak at steady state for y

% Calculating the average time difference
time_diff = locs_u - locs_y;

% Make sure that the angle is not hire than 90 degrees

2



phase_shift_rad = (w*time_diff);
phase_shift_deg = rad2deg(phase_shift_rad);
if abs(phase_shift_deg) > 90
    if phase_shift_deg < 0
        phase_shift_deg = -1*(phase_shift_deg+180);
    else
        phase_shift_deg = -1*(phase_shift_deg-180);
    end
end

% Converting voltage back from single-phase to 3-phase value.
V_peak_1phs     = pks_y(end);
V_peak_3phs     = V_peak_1phs*sqrt(3);
V_rms_3phs      = V_peak_3phs/sqrt(2);
V_rms_3phs_kV   = V_rms_3phs*1e-3;       % [V] to [kV]

% Ouput voltage converted to 3-phase and [kV]
solution.V_rms_3phs_kV = V_rms_3phs_kV;
solution.phase_shift_deg = phase_shift_deg;
solution.RL = RL;
solution.LL = LL;

% DC step response values
%[stepResponse.y, stepResponse.t] = step(sys, ts);
%stepResponse.uDC= V_1phs_rms;

end

Not enough input arguments.
Error in evaluateSSModel (line 27)
S_pu = S_input;                     % Apparent power delivered to load in 
p.u. base.
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function [solution, graph] = evaluateSSModelDC(S_input, sampling)
%{
*********************************************************
Purpose:
    Simulate a DC equivalent, expressed in state space,
    of a two bus system  and compare the output voltage
    and phase angle against a sinusoidal input.

Author:
    Kestutis Samulis, Mai 24, 2024
*********************************************************
%}

f = 50;                             % Frequency
w = 2*pi*f;                         % Angular frequency [rad/s]

% Specified base values
S_base = 1e6;                       % S_base [VA] is specified for a 3-phase 
system.
V_base = 12500;                     % V_base [V] is the RMS voltage 
specified for a 3-phase system.

% 3-phase RMS voltage
V_3phs_rms = V_base;                % Base voltage is the RMS value of a 
3-phase system
V_1phs_rms = V_3phs_rms/sqrt(3);    % Converting 3-phase rms voltage to 
single-phase voltage

% Converting 3-phase apparent power to single-phase
%S_pu = 0.1 + j*0.1;                  % Apparent power delivered to load in 
p.u. base.
S_pu = S_input;                     % Apparent power delivered to load in 
p.u. base.
S_3phs_actual = S_pu*S_base;        % Converting p.u. value to actual value 
for a 3-phase system.
S_1phs_actual = S_3phs_actual/3;    % Conveting the 3-phase apparent power 
to single-phase apparent power.

% Finding load impedance
Z_load = (V_1phs_rms^2)/S_1phs_actual;

% Specified values for circuit components
C1 = 1e-7;               % Capacitor in parallel with RS and RT
C2 = 1e-7;               % Capacitor in parallel with LT and RL
Rs = 0.01;               % Resistor in series with the voltage source
RT = 0.4688;             % Transmission line resistor
LT = 0.003;              % Transmission line inductor
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RL = real(Z_load);       % Load resistor
LL = -imag(Z_load)/w;    % Load inductor

% State space model of the two bus system
A = [ -1/(C1*Rs)    -1/C1       0       0;
       1/LT         -(RT/LT)   -1/LT    0;
       0            1/C2        0       -1/C2;
       0            0           1/LL    -(RL/LL)];
B = [1/(C1*Rs); 0;  0;  0];
C = [0 0 1 0];
D = 0;

% Sampling time
Fs = sampling.Fs;  % Sampling frequency
t0 = sampling.t0;  % Initial time
tf = sampling.tf;  % Final time
dt = 1/Fs;         % Time step
ts = t0:dt:tf;     % Sampling time

u = V_1phs_rms*ones(size(ts));          % Single-phase input voltage 
oscillating sinusoidally

sys = ss(A, B, C, D);

% State initial condition
x0 = [0;0;0;0];

% Simulate system's output behaviour to the applied input voltage
[y, t] = lsim(sys, u, ts, x0);

% Sinusoidal input and ouput voltages with V_peak_1phs as magnitude
graph.t = t;
graph.u = u;
graph.y = y;

solution.V_phs_rms = V_1phs_rms;
solution.RL = RL;
solution.LL = LL;

end

Not enough input arguments.
Error in evaluateSSModelDC (line 27)
S_pu = S_input;                     % Apparent power delivered to load in 
p.u. base.
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function [solution,graph] = fourbusSystem(S_input,sampling)
%{
*********************************************************
Purpose:
    Simulate a DC equivalent, expressed in state space,
    of a two bus system  and compare the output voltage
    and phase angle against a sinusoidal input.

Author:
    Kestutis Samulis, Mai 24, 2024
*********************************************************
%}

solution = struct();    % Array of solutions for each bus
graph = struct();       % Graph for each bus

    % S_input = 0.4+j*0.2               % Used when testing
    f = 50;                             % Frequency
    w = 2*pi*f;                         % Angular frequency [rad/s]

    % Specified base values
    S_base = 1e6;                       % S_base [VA] is specified for a 3-
phase system.
    V_base = 12500;                     % V_base [V] is the RMS voltage 
specified for a 3-phase system.

    % 3-phase RMS voltage
    V_3phs_rms = V_base;                % Base voltage is the RMS value of a 
3-phase system
    V_1phs_rms = V_3phs_rms/sqrt(3);    % Converting 3-phase rms voltage to 
single-phase voltage
    % Voltage magnitude is converted to peak voltage for single-phase
    V_3phs_peak = V_3phs_rms * sqrt(2);   % Peak voltage of a 3-phase system
    V_1phs_peak = V_3phs_peak/sqrt(3);    % Converting peak voltage from 3-
phase to single-phase

    % Converting 3-phase apparent power to single-phase
    %S_pu = 0.1 + j*0.1;                  % Apparent power delivered to load 
in p.u. base.
    S_pu = S_input;                     % Apparent power delivered to load 
in p.u. base.
    S_3phs_actual = S_pu*S_base;        % Converting p.u. value to actual 
value for a 3-phase system.
    S_1phs_actual = S_3phs_actual/3;    % Conveting the 3-phase apparent 
power to single-phase apparent power.
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    % Finding load impedance
    Z_load = (V_1phs_rms^2)/S_1phs_actual;

    % Specified values for circuit components
    Rs = 0.01;               % Resistor in series with the voltage source
    CT2 = 1e-7;               % Capacitor in parallel with RS and RT
    CT3 = 1e-7;               % Capacitor in parallel with LT and RL
    CT4 = 1e-7;
    CT6 = 1e-7;
    %CT6 = 1e-14;
    RT2 = 0.4688;
    LT2 = 0.003;
    RL2 = 1.547;
    LL2 = 0.049243;
    RT3 = 0.4688;
    LT3 = 0.003;
    RL3 = 1.547;
    LL3 = 0.049243;
    RT4 = 0.4688;
    LT4 = 0.003;
    RL4 = real(Z_load);
    LL4 = -imag(Z_load)/w;

    % State space model of a four bus system
    A = [-RT2/LT2 -1/LT2 0 1/LT2 0 0 0 0 0 0;
         1/CT2 0 -1/CT2 0 0 0 0 0 0 0;
         0 1/LL2 -RL2/LL2 0 0 0 0 0 0 0;
         -1/CT3 0 0 -1/(Rs*CT3) -1/CT3 0 0 0 0 0;
         0 0 0 1/LT3 -RT3/LT3 -1/LT3 0 0 0 0;
         0 0 0 0 1/CT4 0 -1/CT4 -1/CT4 0 0;
         0 0 0 0 0 1/LL3 -RL3/LL3 0 0 0;
         0 0 0 0 0 1/LT4 0 -RT4/LT4 -1/LT4 0;
         0 0 0 0 0 0 0 1/CT6 0 -1/CT6;
         0 0 0 0 0 0 0 0 1/LL4 -RL4/LL4;];

    B = [0; 0; 0; 1/(Rs*CT3); 0; 0; 0; 0; 0; 0;];

    D = 0;

 %Output
 % V2 = voltage at bus 2
 % V3 = voltage at bus 1
 % V4 = voltage at bus 3
 % V6 = voltage at bus 4
    C = [0 1 0 0 0 0 0 0 0 0
         0 0 0 1 0 0 0 0 0 0
         0 0 0 0 0 1 0 0 0 0
         0 0 0 0 0 0 0 0 1 0];

    sys = ss(A, B, C, D);

    sampling.Fs = 1000000;    % Sampling frequency
    sampling.t0 = 0;          % Initial time
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    sampling.tf = 0.1;        % Final time

    % Sampling time
    Fs = sampling.Fs;  % Sampling frequency
    t0 = sampling.t0;  % Initial time
    tf = sampling.tf;  % Final time
    dt = 1/Fs;         % Time step
    ts = t0:dt:tf;     % Sampling time

    % Initial condition
    x0 = [0;0;0;0;0;0;0;0;0;0];

    % Input voltage
    u = V_1phs_peak * sin(w*ts);   % Single-phase input voltage oscillating 
sinusoidally

    % Simulate system's output behaviour to the applied input voltage
    [y, t] = lsim(sys, u, ts, x0);

    % Sinusoidal input and ouput voltages with V_peak_1phs as magnitude

    u = u';
    [pks_u_1phs, locs_u] = findpeaks(u(: ,1), t(:, 1));
    locs_end_u = locs_u(end);
    pks_end_u_1phs = pks_u_1phs(end); % u - 1 phase peak to peak

    [~, NumCol] = size(y);
    pks_y_1phs = cell(NumCol, 1);   % y - 1 phase peak to peak
    locs_y = cell(NumCol, 1);

    locs_end_y = cell(NumCol, 1);
    pks_end_y_1phs = cell(NumCol, 1); % y(end) - 1 phase peak to peak
    pks_end_y_3phs = cell(NumCol, 1); % y(end) - 3 phase peak to peak
    rms_y_3phs = cell(NumCol, 1); % y(end) - 3 phase rms

    time_diff = cell(NumCol, 1);
    phs_deg = cell(NumCol, 1);

    mag_diff_1phs = cell(NumCol, 1);
    mag_diff_percent_1phs = cell(NumCol, 1);

    mag_diff_3phs_peak = cell(NumCol, 1);
    mag_diff_3phs_rms = cell(NumCol, 1);

    for i=1:NumCol
      w = 360*f; % angular frequency in degrees

      % STEADY STATE
      [pks_y_1phs{i}, locs_y{i}] = findpeaks(y(:, i), t(:, 1));
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      % PHASE ANGLE
      locs_end_y{i} = locs_y{i}(end);
      time_diff{i} = locs_end_u-locs_end_y{i};
      phs_deg{i} = (w*time_diff{i});                       % PHASE ANGLE 
(OUTPUT)

      % 1 PHASE
      pks_end_y_1phs{i} = pks_y_1phs{i}(end);               % 1-phase 
MAGNITUDE (OUTPUT)
      mag_diff_1phs{i} = pks_end_u_1phs-pks_end_y_1phs{i};  % 1-phase 
MAGNITUDE Diff (OUTPUT)
      mag_diff_percent_1phs{i} = 1-(pks_end_y_1phs{i}/pks_end_u_1phs);   % 
y/u percent 1 phase

      % 3-PHASE (SCALING FROM 1 PHASE)
      pks_end_y_3phs{i} = pks_end_y_1phs{i}*sqrt(3);        % 1phase --> 
3phase
      mag_diff_3phs_peak{i} = (pks_end_u_1phs*sqrt(3)) - pks_end_y_3phs{i}; 
% 3-phase MAGNITUDE DIFF

      rms_y_3phs{i} = pks_end_y_3phs{i}/sqrt(2);            % 3-phase RMS 
MAGNITUDE (OUTPUT)
      mag_diff_3phs_rms{i} = mag_diff_3phs_peak{i}/sqrt(2);       % 3-phase 
RMS MAGNITUDE DIFF (OUTPUT)
    end

    % RETURN
    solution.phs_deg = phs_deg;
    solution.rms_y_3phs = rms_y_3phs;
    solution.mag_diff_3phs_rms = mag_diff_3phs_rms;

    % 3 PHASE RMS
    graph.t = t;
    graph.u = u * sqrt(3)/sqrt(2); % 3 PHASE RMS INPUT
    graph.y = y * sqrt(3)/sqrt(2);  % 3 PHASE RMS OUTPUTS

end

Not enough input arguments.
Error in fourBusSystem (line 35)
    S_pu = S_input;                     % Apparent power delivered to load 
in p.u. base.
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function [apparentPower] = inputGenerator(n, options)

rng(options.seed)

startVal = options.startVal;
endVal = options.endVal;

if options.keepReConst == true

real = options.const;
imag = startVal + (endVal-startVal) * rand(n,1);

elseif options.keepImConst == true

real = startVal + (endVal-startVal) * rand(n,1);
imag = options.const;

else

real = startVal + (endVal-startVal) * rand(n,1);
imag = startVal + (endVal-startVal) * rand(n,1);

end

apparentPower = sort(real) + i*sort(imag);

Not enough input arguments.
Error in inputGenerator (line 3)
rng(options.seed)
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clear all, clc; close all
%{
*********************************************************
Purpose:
    Simulate a DC equivalent, expressed in state space,
    of a two bus system  and compare the output voltage
    and phase angle against a sinusoidal input.

Author:
    Kestutis Samulis, Mai 24, 2024
*********************************************************
%}
programPara.showSolutionsInCmd = true;     % Show SS vs NR solutions graph
programPara.plotModelComparison = true;    % Show solutions in cmd window

Generate input data
%{
**************************************************************************
inputGenerator function generates random complex values from a uniform
distribution. The returned complex value array is sorted to be in increasing
order. Start and end values are spesified in a struct called 'options'.
n, specifies the total number of complex values to be generated.
**************************************************************************
%}

% Parameters
options.startVal = 0.1;
options.endVal = 2;
options.keepReConst = false;
options.keepImConst = false;
options.const = 0.2;
options.seed = 42;
n = 20;

% The function returns an array of randomized complex values in increasing
% order
SpowerArr = inputGenerator(n,options);
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Simulate State Space model (2 bus system)
degree_symbol = char(176);
phase_symbol = char(8736);

% Sampling time
sampling.Fs = 1000000;    % Sampling frequency
sampling.t0 = 0;          % Initial time
sampling.tf = 0.2;        % Final time

% Solution array for State Space method
solArrSS = {};

if programPara.showSolutionsInCmd % Displays the title if true
disp('STATE-SPACE MODEL SOLUTIONS')
fprintf('itr. |VLL_3phs|%sangl%s [kV]\tApparent power values (input)\n' ...
        ,phase_symbol, degree_symbol);
disp('-----------------------------------------------------------------')
end

for i = 1:n

Spu = SpowerArr(i); % input array
[solSS] = evaluateSSModel(Spu, sampling); % Two bus system

% Plot values for output, input and time
%y = graph.y;    % output voltage
%u = graph.u;    % input voltage
%t = graph.t;    % time

% Output voltage magnitude and angle converted to 3-phase
Vrms3phskV = solSS.V_rms_3phs_kV;       % Voltage at bus #2
phaseShiftDeg = solSS.phase_shift_deg;  % Phase at bus #2

if programPara.showSolutionsInCmd % Displays the results if true
fprintf('%d.\t',i)
fprintf(' %.2f %s %.2f %s [kV] \t', ...
    Vrms3phskV, phase_symbol, phaseShiftDeg, degree_symbol)
fprintf('S = %s \t[pu]\n',num2str(Spu))
end

% Solution array
solArrSS{end+1} = [Vrms3phskV, phaseShiftDeg];

end

STATE-SPACE MODEL SOLUTIONS
itr. |VLL_3phs|∠angl° [kV]    Apparent power values (input)
-----------------------------------------------------------------
1.     12.48 ∠ -0.02 ° [kV]     S = 0.13911+0.18826i     [pu]
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2.     12.48 ∠ -0.04 ° [kV]     S = 0.21036+0.2236i     [pu]
3.     12.46 ∠ -0.09 ° [kV]     S = 0.39639+0.28558i     [pu]
4.     12.46 ∠ -0.07 ° [kV]     S = 0.39644+0.36504i     [pu]
5.     12.45 ∠ -0.07 ° [kV]     S = 0.44547+0.424i     [pu]
6.     12.45 ∠ -0.07 ° [kV]     S = 0.44847+0.47938i     [pu]
7.     12.43 ∠ -0.05 ° [kV]     S = 0.50344+0.65507i     [pu]
8.     12.42 ∠ -0.11 ° [kV]     S = 0.65334+0.67877i     [pu]
9.     12.41 ∠ -0.09 ° [kV]     S = 0.67806+0.79609i     [pu]
10.     12.40 ∠ -0.11 ° [kV]     S = 0.81163+0.93629i     [pu]
11.     12.39 ∠ -0.14 ° [kV]     S = 0.9207+0.96653i     [pu]
12.     12.38 ∠ -0.20 ° [kV]     S = 1.097+1.077i     [pu]
13.     12.36 ∠ -0.22 ° [kV]     S = 1.2375+1.2256i     [pu]
14.     12.36 ∠ -0.22 ° [kV]     S = 1.2421+1.2543i     [pu]
15.     12.35 ∠ -0.27 ° [kV]     S = 1.4453+1.2625i     [pu]
16.     12.34 ∠ -0.27 ° [kV]     S = 1.4908+1.4i     [pu]
17.     12.32 ∠ -0.31 ° [kV]     S = 1.6816+1.5918i     [pu]
18.     12.31 ∠ -0.31 ° [kV]     S = 1.7457+1.636i     [pu]
19.     12.29 ∠ -0.32 ° [kV]     S = 1.9064+1.9029i     [pu]
20.     12.28 ∠ -0.32 ° [kV]     S = 1.9428+1.9347i     [pu]

Simulate Newton-Rhapson method (2 bus sys-
tem)
degree_symbol = char(176);
phase_symbol = char(8736);

% Solution array for Newton-Rhapson method
solArrNR = {};

if programPara.showSolutionsInCmd
disp('NEWTON-RAPHSON METHOD SOLUTIONS')
fprintf('itr. |VLL_3phs|%sangl%s [kV]\tApparent power values (input)\n' ...
        ,phase_symbol, degree_symbol);
disp('-----------------------------------------------------------------')
end

for i = 1:n

Spu = SpowerArr(i);
[solNR] = evaluateNRMethod(Spu);

% Output voltage magnitude and angle converted to 3-phase
Vrms3phskV = solNR.v2;                  % Voltage at bus #2
phaseShiftDeg = solNR.d2;               % Phase at bus #2

if programPara.showSolutionsInCmd   % Displays the results if true
%disp('3-phase VLL output voltage and phase angle is')
fprintf('%d.\t',i)
fprintf(' %.2f %s %.2f %s [kV] \t', ...
    Vrms3phskV, phase_symbol, phaseShiftDeg, degree_symbol)
fprintf('S = %s \t[pu]\n',num2str(Spu))
end
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% Solution array
solArrNR{end+1} = [Vrms3phskV, phaseShiftDeg];

end

NEWTON-RAPHSON METHOD SOLUTIONS
itr. |VLL_3phs|∠angl° [kV]    Apparent power values (input)
-----------------------------------------------------------------
1.     12.48 ∠ -0.02 ° [kV]     S = 0.13911+0.18826i     [pu]
2.     12.48 ∠ -0.03 ° [kV]     S = 0.21036+0.2236i     [pu]
3.     12.46 ∠ -0.09 ° [kV]     S = 0.39639+0.28558i     [pu]
4.     12.46 ∠ -0.07 ° [kV]     S = 0.39644+0.36504i     [pu]
5.     12.45 ∠ -0.08 ° [kV]     S = 0.44547+0.424i     [pu]
6.     12.45 ∠ -0.07 ° [kV]     S = 0.44847+0.47938i     [pu]
7.     12.43 ∠ -0.06 ° [kV]     S = 0.50344+0.65507i     [pu]
8.     12.42 ∠ -0.11 ° [kV]     S = 0.65334+0.67877i     [pu]
9.     12.41 ∠ -0.10 ° [kV]     S = 0.67806+0.79609i     [pu]
10.     12.40 ∠ -0.12 ° [kV]     S = 0.81163+0.93629i     [pu]
11.     12.39 ∠ -0.15 ° [kV]     S = 0.9207+0.96653i     [pu]
12.     12.38 ∠ -0.19 ° [kV]     S = 1.097+1.077i     [pu]
13.     12.36 ∠ -0.22 ° [kV]     S = 1.2375+1.2256i     [pu]
14.     12.36 ∠ -0.21 ° [kV]     S = 1.2421+1.2543i     [pu]
15.     12.35 ∠ -0.28 ° [kV]     S = 1.4453+1.2625i     [pu]
16.     12.34 ∠ -0.28 ° [kV]     S = 1.4908+1.4i     [pu]
17.     12.31 ∠ -0.31 ° [kV]     S = 1.6816+1.5918i     [pu]
18.     12.31 ∠ -0.32 ° [kV]     S = 1.7457+1.636i     [pu]
19.     12.28 ∠ -0.33 ° [kV]     S = 1.9064+1.9029i     [pu]
20.     12.28 ∠ -0.34 ° [kV]     S = 1.9428+1.9347i     [pu]

Plotting State-Space model comparison
against Newton-Raphson method (2 bus sys-
tem)
if programPara.plotModelComparison

    % Close all open figures if any exist
    figHandles = findobj('Type', 'figure');
    if ~isempty(figHandles)
        close(figHandles);
    end

    % Hold the values
    x = zeros(1, numel(solArrSS));
    y = zeros(1, numel(solArrSS));

    for i = 1:numel(solArrSS)
        % State Space
        xSS(i) = solArrSS{i}(1); % Voltage
        ySS(i) = solArrSS{i}(2); % Angle
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        % Newton-Raphson
        xNR(i) = solArrNR{i}(1); % Voltage
        yNR(i) = solArrNR{i}(2); % Angle
    end

    f1 = figure;
    f1.Position = [2500 300 540 400];
    %set(f1, 'WindowState', 'maximized');
    set(gcf, 'Units', 'Normalized', 'OuterPosition', [0.2, 0.3, 0.4, 0.46]);
    plot(xSS, ySS, '-.*', 'LineWidth', 1.5, 'MarkerSize', 5, 
'MarkerFaceColor', 'b');
    hold on
    plot(xNR, yNR, '-.^', 'LineWidth', 1.5, 'MarkerSize', 3, 
'MarkerFaceColor', 'r');
    grid on;
    title('State-Space Model Solutions vs Newton-Raphson Method Solutions');
    xlabel('Voltage magnitude [kV]');
    ylabel('Phase angle [deg]');
    legend('State Space model', 'Newton-Raphson method');

end

State space model DC vs AC response (2 bus
system)
%INPUT
Spu = 10 + 10i;

% Sampling time
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sampling.Fs = 1000000;    % Sampling frequency
sampling.t0 = 0;          % Initial time
sampling.tf = 0.1;        % Final time

% DC response
[solSSDC, graphDC] = evaluateSSModelDC(Spu, sampling);

% Plot values for output
yDC = graphDC.y;    % output voltage
uDC = graphDC.u;    % input voltage
tDC = graphDC.t;    % time

f2 = figure;
f2.Position = [2500 300 540 400];
subplot(2,1,1)
%set(f1, 'WindowState', 'maximized');
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0.2, 0.3, 0.4, 0.46]);
plot(tDC, yDC,'LineWidth',0.9)%, '-.*', 'LineWidth', 1.5, 'MarkerSize', 5, 
'MarkerFaceColor', 'b');
hold on
plot(tDC, uDC);
ytickformat('%.f');
ax1 = gca;
ax1.YAxis.Exponent = 0; % Disable scientific notation
legend('V_2', 'V_s{rms}');
text = 'Dynamic model response with DC input, $V_{rms}$';
font = title(text, 'Interpreter', 'latex', 'FontWeight','bold');
font.FontSize = 12;
xlabel('Time [s]');
ylabel('Voltage [V]');

% AC response
[solSSAC, graphAC] = evaluateSSModel(Spu, sampling);

% Plot values for output
yAC = graphAC.y;    % output voltage
uAC = graphAC.u;    % input voltage
tAC = graphAC.t;    % time

subplot(2,1,2)
%set(f1, 'WindowState', 'maximized');
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0.2, 0.3, 0.4, 0.46]);
plot(tAC, yAC,'LineWidth',0.9)%, '-.*', 'LineWidth', 1.5, 'MarkerSize', 5, 
'MarkerFaceColor', 'b');
hold on
plot(tAC, uAC);
ytickformat('%.f');
ax2 = gca;
ax2.YAxis.Exponent = 0; % Disable scientific notation
legend('V_2', 'V_s');
text = 'Dynamic model response with AC input, $V_{peak}\cdot\sin(\omega t)$';
font = title(text, 'Interpreter', 'latex', 'FontWeight','bold');
font.FontSize = 12;
xlabel('Time [s]');
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ylabel('Voltage [V]');

fprintf('\nSTATE-SPACE MODEL DC vs AC INPUT RESPONSE\n')
fprintf('RL = %.3f [\x2126] \nLL = %.3f [H]\n\n', solSSAC.RL,solSSAC.LL)

STATE-SPACE MODEL DC vs AC INPUT RESPONSE
RL = 7.813 [Ω] 
LL = 0.025 [H]

(4 bus system)
%INPUT
%Spu = 0.4 + j*0.2;
Spu = 0.8 + j*0.6;

% Sampling time
sampling.Fs = 1000000;    % Sampling frequency
sampling.t0 = 0;          % Initial time
sampling.tf = 0.1;        % Final time

% DC response
[solSS4, graph4] = fourBusSystem(Spu, sampling);

f2 = figure;
f2.Position = [2500 300 540 400];
%set(f1, 'WindowState', 'maximized');
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0.2, 0.1, 0.4, 0.8]); 
%[0.2, 0.3, 0.4, 0.46]);
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%set(gcf, 'DefaultAxesLooseInset', [20, 0.05, 10, 0.05]); % Modify as needed

n=1;
subplot(4,1,n)
plot(graph4.t(:,1) , graph4.y(:,n),'LineWidth',0.9)%, '-.*', 'LineWidth', 
1.5, 'MarkerSize', 5, 'MarkerFaceColor', 'b');
hold on
plot(graph4.t(:,1), graph4.u(:,1));
ytickformat('%.f');
ax1 = gca;
ax1.YAxis.Exponent = 0; % Disable scientific notation
legend('V_1', 'V_s');
xlabel('Time [s]');
ylabel('Voltage [V]');
text = 'Voltage at bus 1';
title(text);
%font.FontSize = 12;

n=2;
subplot(4,1,n)
plot(graph4.t(:,1) , graph4.y(:,n),'LineWidth',0.9)%, '-.*', 'LineWidth', 
1.5, 'MarkerSize', 5, 'MarkerFaceColor', 'b');
hold on
plot(graph4.t(:,1), graph4.u(:,1));
ytickformat('%.f');
ax1 = gca;
ax1.YAxis.Exponent = 0; % Disable scientific notation
legend('V_2', 'V_s');
xlabel('Time [s]');
ylabel('Voltage [V]');
text = 'Voltage at bus 2';
title(text);

n = 3;
subplot(4,1,n)
plot(graph4.t(:,1) , graph4.y(:,n),'LineWidth',0.9)%, '-.*', 'LineWidth', 
1.5, 'MarkerSize', 5, 'MarkerFaceColor', 'b');
hold on
plot(graph4.t(:,1), graph4.u(:,1));
ytickformat('%.f');
ax1 = gca;
ax1.YAxis.Exponent = 0; % Disable scientific notation
legend('V_3', 'V_s');
xlabel('Time [s]');
ylabel('Voltage [V]');
text = 'Voltage at bus 3';
title(text);

n=4;
subplot(4,1,n)
plot(graph4.t(:,1) , graph4.y(:,n),'LineWidth',0.9)%, '-.*', 'LineWidth', 
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1.5, 'MarkerSize', 5, 'MarkerFaceColor', 'b');
hold on
plot(graph4.t(:,1), graph4.u(:,1));
ytickformat('%.f');
ax1 = gca;
ax1.YAxis.Exponent = 0; % Disable scientific notation
legend('V_4', 'V_s');
xlabel('Time [s]');
ylabel('Voltage [V]');
text = 'Voltage at bus 4';
title(text);

solSS4.phs_deg
solSS4.rms_y_3phs
solSS4.mag_diff_3phs_rms

%fprintf('Bus\n')
%solSS4(1).V_rms_3phs_kV
%solSS4(2).V_rms_3phs_kV
%solSS4(3).V_rms_3phs_kV
%solSS4(4).V_rms_3phs_kV

ans =
  4×1 cell array
    {[1.368]}
    {[0.072]}
    {[1.224]}
    {[1.008]}
ans =
  4×1 cell array
    {[11741]}
    {[12497]}
    {[11676]}
    {[11606]}
ans =
  4×1 cell array
    {[759.39]}
    {[2.9724]}
    {[824.34]}
    {[893.99]}
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Log generated input data
%{
logFileName = 'workspace_log_A11.txt'
directory = 'C:\Users\kestu\OneDrive\Master\4. Semester\ELEMAS - 
Sensitivity analysis for optimal operation of power distribution 
networks\Programs\Matlab\Power flow model\MASTER\Log';
fullpath = fullfile(directory, logFileName);
logFile = fopen(fullpath, 'w');
for i = 1:length(SpowerArr)
    realPart = real(SpowerArr(i));
    imagPart = imag(SpowerArr(i));
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    fprintf(logFile, '%.6f + i*%.6f\n', realPart, imagPart);
end
fclose(logFile);
%}
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