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Abstract 

Machine learning (ML), a subset of artificial intelligence (AI), has gained significant traction 

in engineering due to its capacity to enhance the analysis, design, and operation of complex 

systems by learning from data, identifying patterns, and making decisions with minimal 

human intervention. This popularity surge is driven by advancements in computational power, 

allowing the training of sophisticated ML models on large datasets derived from simulations, 

sensors, and operational histories. 

This thesis uses a ML algorithm which predicts Gumbel parameters using statistical estimation 

and ML techniques. Initially, it reads data files containing significant wave height (Hs), 

spectral peak period (Tp), and a third structure-specific value, then selects subsets based on 

initial training points. Gumbel distributions are fitted to these subsets to estimate extreme 

values, with parameters validated with a stopping criterion. Using Gaussian Process 

Regression (GPR) and Kriging techniques, the algorithm predicts location and scale 

parameters for all sea states, iteratively updating based on convergence criteria to ensure 

accuracy and quantify prediction uncertainty. The process involves training the GPR model on 

initial data, making predictions, and evaluating these against a stopping criterion, iterating as 

necessary until reliable outputs are achieved. 

The ML algorithm was tested on three different offshore platforms. The aim of the thesis was 

to evaluate the accuracy of the ML algorithm for different datasets. It was used to predict the 

offset for a mobile offshore drilling unit, displacement for a tension leg platform and the stress 

on a specific joint on a jacket. The platforms operate under various environmental conditions, 

and the study aims to test how this will affect the ML algorithm’s efficiency and accuracy. 

For the mobile offshore drilling unit (MODU), the ML model shows good accuracy for location 

parameters but less so for scale parameters, with mean absolute percentage error (MAPE) 

stabilizing around 6% for scale and 2.4% for location after six iterations. For the tension leg 

platform (TLP)'s sway motion, the model predicts the location parameter accurately, with 

MAPE dropping to 0.19% after four iterations, while the scale parameter stabilizes at a higher 

MAPE of 9.38%. For the TLP's surge motion, the location parameter's MAPE drops to 0.49%, 

whereas the scale parameter remains high at 15.40% after ten iterations. The jacket's results 

show that scaling data to giga pascal (GPa) significantly improves accuracy, with MAPE for the 

location parameter at 0.13% and for the scale parameter at 12.80% after four iterations. The 

findings indicate that the ML algorithm generally predicts location parameters more accurately 

than scale parameters, and additional iterations beyond a certain point yield minimal 

improvement. 
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1 Introduction 

1.1 Background 

Over the years, ML, a type of AI, has become increasingly popular in various engineering 

disciplines due to its ability to improve complex systems analysis, design, and operation 

significantly. The core of ML lies in its ability to learn from data, identify patterns, and 

make decisions with minimal human intervention, which is particularly important in 

engineering, where precision and efficiency are critical. The rising popularity of ML in 

engineering can largely be attributed to several factors.  

Firstly, the exponential increase in computational power over recent years has made it 

feasible to train complex ML models that require large amounts of data and 

computational resources. This has been pivotal for applications ranging from fluid 

dynamics to structural analysis, where traditional methods would either be too slow or 

inadequate to handle modern dataset’s complexity and size. Secondly, the availability of 

large datasets has provided the ML algorithms with the necessary data to power them. 

In engineering, this data comes from extensive simulations, sensor outputs, and 

operation histories, which are crucial for developing accurate predictive models. For 

example, ML techniques have been employed to improve the accuracy of computational 

fluid dynamics simulations by learning from historical data, leading to more accurate 

predictions at a fraction of the computational cost. [1] 

ML has also become essential in overcoming the limitations of traditional engineering 

approaches by enabling the automation of routine design and analysis tasks. This 

automation speeds up the engineering process and reduces potential human error, which 

is beneficial in fields such as structural reliability [2]. Integrating ML techniques in 

structural reliability analysis can significantly reduce computational demands by 

approximating complex models and strategically expanding data points to increase 

prediction accuracy with minimal computational resources. [3] 

1.2 Previous Work 

A previous research paper by Garlid et al. [4] explores the use of the structural reliability 

analysis (SRA) method to determine marine riser disconnect criteria for a MODU. The 

SRA method offers advantages over the conventional frequency-domain method by 

allowing for more accurate consideration of non-linear effects and the coupling effects 

between different components. A further study by Garlid et al. [5] aimed to enhance the 
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SRA method by employing active learning for response surface generation, which could 

reduce computational efforts significantly. The active learning algorithm will iteratively 

sample data points to minimize prediction uncertainty, using the most relevant data 

points to model the response surface. The Kriging model was utilized for this purpose, 

along with the inclusion of stochastic noise in the sampling points to avoid potential 

overfitting. It was anticipated that this approach could bring the SRA method closer in 

performance to the conventional frequency domain while retaining the advantages of 

considering full-coupling and non-linear effects. 

1.3 Objective 

The primary objective of this thesis is to evaluate the efficiency and accuracy of the 

advanced ML algorithm presented in [5], which utilizes GPR and Gumbel distribution, 

to assess the applicability of the ML model. The ML model is in this thesis further tested 

on three different offshore platforms: MODU, a TLP, and a jacket. The platforms operate 

under various environmental conditions, and the study aims to test how this will affect 

the ML algorithm’s efficiency and accuracy.   
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2 Theory 

2.1 Machine Learning 

ML is a type of AI that enables machines to imitate human intelligence. It allows the 

machine to “think” independently, learn from the given data, and make its own 

predictions or decisions. It uses algorithms that are designed to automatically improve 

over time through experience and by the use of data. This ability for the machine to learn 

through data and improve itself over time makes ML very versatile and powerful and is 

behind a number of technologies being used today.  

ML can be categorized into many different learning processes, but it can be divided into 

three types: supervised, unsupervised, and reinforcement shown in Figure 1. The main 

difference between these learning processes is how they handle data.  

 

Figure 1 - Types of Machine learning 

Supervised learning, the most used type of ML, uses a labeled dataset to learn patterns. 

This allows the model to learn from the data and develop accuracy over time. There are 

two main types of supervised learning: classification and regression. The main difference 

between classification and regression is that classification predicts discrete responses, 
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such as whether an email is spam. Conversely, regression predicts continuous responses, 

such as financial assets, which can be difficult to measure. [6] 

Unsupervised learning trains a model based on an unlabeled dataset. The model will look 

through the data and find patterns or trends that can be difficult for a human to see. The 

most used type of unsupervised learning is clustering and dimensionality reduction. 

Clustering will discover data and group the data that look similar. Dimensionality 

reduction will reduce data with high dimensional space to a lower space without having 

to sacrifice meaningful data [7].  

Reinforcement learning uses a reward system that forces the machine to make the best 

decision through trial and error. The machine will either be rewarded or penalized based 

on its action, and its goal is to maximize the reward. This type of learning can be used, 

for example, to teach a machine to play a game.  [8] 

This master thesis exclusively uses supervised learning, and more specifically, GPR, 

which will be discussed in more detail in section 2.1.1. 

2.1.1 Gaussian Process 

A Gaussian process (GP) is a versatile and straightforward model of functions. In 

essence, it refers to any function distribution where any group of finite function values, 

𝑓(𝑥1), 𝑓(𝑥2), … 𝑓(𝑥𝑁) have a joint Gaussian distribution. Before relying on data, a GP 

model is only specified by its mean function, 

 𝔼[𝑓(𝑥)] = 𝑚(𝑥) 
(2.1) 

and the kernel, which is also called the covariance function: 

 𝐶𝑜𝑣[𝑓(𝑥), 𝑓(𝑥′)] = 𝑘(𝑥, 𝑥′) 
(2.2) 

It is common to assume that the mean function is zero universally, as any uncertainty 

regarding the mean can be addressed by introducing an additional term into the kernel. 

Once the mean is accounted for, the kernel dictates the structure captured by a GP model. 

The kernel defines how the model extrapolates or generalizes to new data. [9] 

Various choices of covariance functions are available, allowing us to specify a diverse 

array of models by defining the GP kernel. Linear regression, splines, and Kalman filters 

are just a few instances of GPs with specific kernels. These are just a few examples of a 

fraction of the potential options. A significant challenge in employing GPs lies in devising 
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a kernel that effectively encapsulates the specific structure inherent in the data under 

examination. [9] 

GPs are well suited for regression models for several reasons, the first being analytical 

interference. A kernel function with observations enables the computation of the 

predictive posterior distribution precisely and in a closed form, which is rarely found in 

nonparametric models. GP models can also express a wide range of modeling 

assumptions. The ability to integrate precisely over various hypotheses using a fixed 

kernel for GP posterior implies that overfitting is less problematic than similar models. 

In contrast to neural networks, GP requires estimation of relatively fewer parameters, 

thereby reducing the necessity for intricate optimization techniques. This makes it 

possible to compute the marginal likelihood, which makes it possible to compare 

different models. [9] 

Despite several advantages, some issues can make GP models challenging to use. As the 

flexibility of the GP model increases, choosing a kernel for a given problem becomes 

more difficult. [9] 

Gaussian distribution 

The Gaussian distribution is a fundamental concept in statistics. It represents a 

continuous probability distribution that characterizes the tendency of data to cluster 

around a central value. Its probability density function (PDF) forms a symmetrical, bell-

shaped curve centered at the mean. This distribution holds significant importance due 

to its popularity in various fields such as statistics, natural science, and social sciences.  

Its popularity is partly attributed to the central limit theorem (CLT), which suggests that 

the averages of many independent and identically distributed random variables tend to 

follow a Gaussian distribution. In many cases, posterior distributions approach Gaussian 

behavior as the amount of data increases. Consequently, the Gaussian distribution is a 

fundamental model for various theoretical and practical problems across different 

disciplines.  

The probability density function for the Gaussian distribution shown in [10], can be 

written as, 

 
𝑓𝑋(𝑥) =

1

𝜎√2𝜋
𝑒

−
1
2

(
𝑥−𝜇

𝜎
)

2

 

 

(2.3) 
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where X is random variables, and x is the argument. 𝜇 is the mean or expectation, 𝜎 is 

the standard deviation, and 𝜎2 is the variance. The normal distribution of X is often 

represented as,  

 𝑃𝑋(𝑥) ~ 𝒩(𝜇, 𝜎2) 
(2.4) 

Kernels 

In Gaussian process modeling, a kernel also called a covariance function or kernel 

function, is a foundational element that quantifies the degree of similarity or correlation 

between two data points (x, x’). Even though these inputs are often vectors in Euclidean 

space, the concept of a kernel is versatile. It can extend to other data structures, like 

graphs, images, variables, or textual data. [9]  

The role of the kernel in the context of GP is pivotal. It establishes the prior covariance 

between any two values of the function being modeled. This implies that the kernel helps 

to construct a prior distribution that captures the expected degree of smoothness and 

variation in the function values before any data is observed. The choice of the kernel and 

its parameters is crucial as it significantly influences the GP model's behavior and 

flexibility. There are several different kernels, but this thesis predominately focuses on 

the radial basis function (RBF), which is also known as the squared exponential (SE) 

kernel, which is the most used kernel, and is, according to [10] defined as, 

 
𝑘(𝑥𝑖, 𝑥𝑗) = σ𝑓

2 exp (−
1

2𝑙2 (𝑥𝑖 − 𝑥𝑗)
𝑇

(𝑥𝑖 − 𝑥𝑗)) 

 

(2.5) 

where 𝜎𝑓 and l are defined as hyperparameters, which can be explained as optimization. 

𝜎𝑓 is the vertical scale and describes how much the function can span vertically. In 

contrast, l is the horizontal scale, which shows how the correlation relationship drops as 

the distance between two points increases. [10] [9] 

To better understand what kernels do, two plots have been generated. Figure 2(a) shows 

10 Gaussian vectors connected to 5 random sampled points with lines. The points have 

no correlation because they use an identity covariance function. In Figure 2(b) an RBF 

was used, which resulted in smoother lines.  
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Figure 2 - (a) 10-D Gaussian with 5 samples, (b) 10-D Gaussian with 5 samples and RBF kernel 

Incorporating covariance functions into the model results in smoother lines, and makes 

the lines look more like functions. Expanding the dimensionality of the multivariate 

normal distribution (MVN) becomes a natural consideration. Dimensionality refers to 

the number of variables within the MVN. As the MVN's dimensionality increases, the 

interest space becomes more populated with data points. Every conceivable input point 

can be represented in the scenario where the dimensionality reaches infinity. By using 

an MVN with an infinite number of dimensions, a function with an infinite number of 

parameters can be fit to perform regression tasks, allowing predictions to be made across 

the entire region of interest. In Figure 3, 100 samples from a hundred variate normal 

distributions to provide an insight into functions with infinite parameters. These 

functions called kernelized prior functions, represent random outcomes generated by the 

MVN model, incorporating kernel functions as prior knowledge before any observed data 

points are available. [10]  

 

Figure 3 - A hundred kernelized prior functions of a hundred variate normal distribution 
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2.2 Monte Carlo Simulation 

Monte Carlo simulation is a powerful mathematical tool that is used to estimate possible 

outcomes in situations where the results are uncertain. This technique was developed 

during World War II to improve decision-making under uncertain conditions, by John 

von Neumann and Stanislaw Ulam. Today, it is used in various fields such as finance, 

engineering, healthcare, and science. The name “Monte Carlo” comes from the well-

known casino town Monaco because of its similarity to games of chance such as roulette, 

where chance and randomness play a vital role [11]. Individuals can make informed 

decisions and manage risks in a complex and unpredictable world using Monte Carlo 

simulation.  

2.2.1 The Monte Carlo Method 

The expected value 𝐸(𝑋) of a random variable 𝑋, which is associated with a probability 

density function 𝑓, can be considered as the mean value that 𝑋 would assume if the 

experiment generating 𝑋 were repeated an infinite number of times. According to [12], 

this expected value can be expressed using an integral 

 
𝐸(𝑋) = ∫ 𝑥𝑓(𝑥)𝑑𝑥 

 

(2.6) 

where integration is performed over the entire range of possible values for 𝑋. For discrete 

random variables that have a probability mass function 𝑓. A summation substitutes this 

integration, but this does not fundamentally change the concept. Throughout this 

explanation, random variables are assumed to be continuous for simplicity of notation, 

although the same techniques can be readily adapted to discrete settings without any 

significant complications. [12] 

The Monte Carlo method is grounded in the strong law of large numbers, which provides 

a formal basis for this concept. Suppose 𝑋1, 𝑋2, … represent a sequence of independent 

and identically distributed random variables that share the same distribution 𝑓 and 𝜙 ∶

𝐸 → ℝ is a function with finite expectation, then the equation can be written as [12] 

 
lim

𝑛→∞

1

𝑛
∑ φ(𝑋𝑖)

∞

𝑖=1

= 𝐸(φ(𝑋)) 

 

(2.7) 

with probability 1.  
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This result can further be refined by applying the CLT if 𝐸(𝜑(𝑋)2) < ∞, according to [12] 

then 

 

lim
𝑛→∞

√𝑛 (
1

𝑛
∑ φ(𝑋𝑖)

∞

𝑖=1

− 𝐸(φ(𝑋))) → 𝒩(0, σ2) 

 

(2.8) 

The basic Monte Carlo method can be directly justified using these two theorems. To 

estimate the expectation 𝐸(𝜑(𝑋)), from a density function with a random variable 𝑋, 

where samples can be drawn, the empirical mean of 𝜑 derived from a large sample size 

is used as the estimator. When you have a series of identically and independently 

distributed random variables 𝑋1, 𝑋2, … , 𝑋𝑛, all sharing the common distribution 𝑓, the 

straightforward Monte Carlo estimator of 𝐸(𝜑(𝑋)) can be expressed as 

 1

𝑛
∑ 𝜑(𝑋𝑖

𝑛

𝑖=1

) 

 

(2.9) 

according to [12]. To help understand the concept, a visualization has been made in 

Figure 4. One typical example of how Monte Carlo simulation works is estimating the 

value of π (pi). This method uses random points to estimate the area of a circle quarter 

inside a unit square. The ratio of the number of points inside the circle to the total 

number of points can be used to approximate π.  

 

Figure 4 – Illustration of how Monte Carlo simulation works 



10 

 

Random points are generated in x and y between 0 and 1. Then, points are checked to see 

whether they lie inside the quarter circle defined by x squared plus y squared less than 

or equal to 1. In Figure 4, ten thousand points have been generated to see the quarter 

circle's shape easily. The ratio of points inside the circle to the total number of points is 

used to estimate π, as the area of the quarter circle relates to π. The script plots all the 

points, coloring those inside the circle differently from those outside. This visualization 

helps illustrate which points are being counted towards the π estimation. 

To use the simple Monte Carlo method effectively, it is crucial to sample from the target 

distribution. However, this isn’t always straightforward: Monte Carlo methods are often 

employed for complex distributions that lack simple analytic forms, making sampling 

challenging. A few methods for generating samples will be introduced. The methods 

enable the simple Monte Carlo method by providing necessary samples.  

The Fundamental Theorem of Sampling 

A broader strategy is inspired by the idea that sampling a set of random variables with a 

specific density is equivalent to uniform sampling from the space beneath the density 

curve while ignoring the extra dimension. For a continuous random variable 𝑋, having a 

density 𝑓 implies that the probability of 𝑋 falling within an interval 𝑥 and 𝑥 + 𝑑𝑥, where 

𝑑𝑥 is infinitely small, is 𝑓(𝑥)𝑑𝑥. By dividing the area between 𝑓(𝑥) and the x-axis into 

infinitely small squares, and randomly pick one, it can generate a sample for 𝑋 that 

follows the intended distribution since the count of rectangles in any segment reflects 

𝑓(𝑥). In technical terms, sampling uniformly from the set (𝑥, 𝑢): 0 ≤ 𝑢 < 𝑓(𝑥) and 

considering only the x-values is equivalent to sampling 𝑥 to the density 𝑓(𝑥). This is the 

concept of the fundamental theorem of sampling. [12] 

Importance Sampling 

Importance sampling uses a different distribution from the one being analyzed but is 

tailored from expectation calculations by assigning a weight to each sample. This weight 

reflects the sample’s relevance to the particular integral being estimated. To calculate the 

expectation of 𝜑 with 𝑓 as the density of interest, it can be written as 

 
𝐸(𝜑(𝑋)) = ∫ 𝜑(𝑥)

𝑓(𝑥)

𝑔(𝑥)
𝑔(𝑥)𝑑𝑥 

 

(2.10) 

according to [12] as long as 𝑓(𝑥)/𝑔(𝑥) < ∞.  To estimate the expected value of 𝜑 

according to the density 𝑓, importance sampling is applied by using the simple Monte 

Carlo estimate of 𝜑𝑓/𝑔 using samples 𝑋1, 𝑋2, … , 𝑋𝑛 drawn from 𝑔: 
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∫ 𝜑(𝑥)𝑓(𝑥)𝑑𝑥 ≈

1

𝑛
∑

𝑓(𝑋𝑖)

𝑔(𝑋𝑖)
𝜑(𝑋𝑖)

𝑛

𝑖=1

 

𝐸

 

 

(2.11) 

Importance sampling is advantageous because it does not need simulation from the 

target distribution and does not require a bounding constant for the ratio 𝑓(𝑥)/𝑔(𝑥). It 

can provide lower variance estimates with a well-chosen proposal distribution 𝑔. The 

ideal 𝑔(𝑥) proportional to 𝑓(𝑥)𝜑(𝑥) would yield perfect estimates from just one sample, 

which is usually unattainable in practice. Nevertheless, practical approximations to this 

ideal can still be effective. A key principle in selecting a proposal distribution is ensuring 

that it has bounded importance weights and tails at least as heavy as the target 

distributions. While not always necessary for finite variance estimates, it is a sufficient 

condition. [12]  

Markov Chain 

Markov chain Monte Carlo (MCMC) methods are extensively utilized for handling 

intricate distributions when other methods fall short. Instead of trying to acquire 

independent samples, these methods use appropriate sequences of dependent random 

variables to approximate the integrals in question. It has been demonstrated that such 

estimates are consistent and adhere to a central limit theorem, given certain standard 

conditions are met. [12] 

2.2.2 Advantages 

The use of Monte Carlo techniques has only become more popular due to its number of 

advantages. First, Monte Carlo algorithms are easy and efficient to use. Monte Carlo 

techniques can simplify complex models by breaking them down into basic events and 

interactions. This approach allows models to open the possibility of studying general 

models that are beyond analytic methods. Additionally, Monte Carlo algorithms are 

highly scalable, making simulation programs independent of the number of machines or 

repairers involved. They are also easily parallelizable, enabling various simulation parts 

to run on different computers or processors and significantly reducing computation time. 

Given these benefits, Monte Carlo techniques are essential for researchers and 

professionals seeking to make informed decisions in an unpredictable and complex 

world. [13] 

Monte Carlo simulation is a robust method for estimating outcomes in uncertain 

scenarios, but it offers much more than that. By leveraging randomness as a strength, 

Monte Carlo techniques enable algorithms to explore the search space and avoid local 
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optima naturally. Additionally, the method has significant didactic value by providing 

insight into the behavior of random systems and data. Furthermore, Monte Carlo 

techniques' mathematical and statistical foundation enables precise estimations and 

efficient algorithms. These advantages make Monte Carlo simulation an indispensable 

tool for researchers and professionals who need to make informed decisions in a complex 

and unpredictable world. With the help of Monte Carlo techniques, you can simplify 

complex models, manage risks, and gain insights that would be impossible with other 

methods. [13] 

2.3 Extreme Value Distribution 

Extreme value distribution (EVD) is utilized to model the behavior of a dataset's 

maximum and minimum (extreme) values. As sample sizes grow, the distribution of the 

data’s extreme values tends to converge to one of the three distinct types of EVD. These 

distributions are particularly useful for assessing risks in the tails of distributions, which 

is critical for calculating risk metrics like the value at risk, return levels, or expected 

shortfall. This is essential in various sectors like engineering, environmental studies, and 

oceanography, where predicting extreme wind speeds and wave heights is crucial for 

preventing disasters and risk management. Accurate parameter estimation for EVDs is 

vital for these analyses, leading to considerable research on the most effective methods 

for parameter estimation in EVD. [14] 

2.3.1 Extreme Value Theory 

Extreme value theory (EVT) is employed in the statistical modeling and analysis of rare 

events that occur with minimal probability. This theory is crucial in identifying and 

statistically characterizing the most extreme occurrences within a dataset. EVT is 

streamlined, utilizing just three types of distributions to model the extremes of random 

observations.   

Assume that 𝑋1, 𝑋2, … , 𝑋𝑁 are independent and identically distributed random variables 

with a cumulative distribution function (CDF) 𝐹 [15]. And 𝑀𝑁 = 𝑀𝑎𝑥{𝑋1, 𝑋2, … , 𝑋𝑁} 

denotes the maximum of n time units of observations. 𝑀𝑁 can, therefore be derived as 

seen in [14], as 

 𝑃{𝑀𝑁 ≤ 𝑥} = 𝑃{𝑋1 ≤ 𝑥, 𝑋2 ≤ 𝑥, … 𝑋𝑁 ≤ 𝑥} 
(2.12) 
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 𝑃{𝑀𝑁 ≤ 𝑥} = 𝑃(𝑋1 ≤ 𝑥) 𝑃(𝑋2 ≤ 𝑥) … 𝑃(𝑋𝑛 ≤ 𝑥) 
(2.13) 

 𝑃{𝑀𝑁 ≤ 𝑥} = [𝐹𝑋(𝑥)]𝑛 
(2.14) 

The PDF for EVD can therefore be derived as 

 𝑓𝑋(𝑥) = 𝑛[𝐹𝑋(𝑥)]𝑛−1𝑓𝑋(𝑥) 
(2.15) 

A problem as more and more data are collected, the pattern that is tried to be understood 

might get lost because the function is not known. To handle this problem, it is created 

approximate model families based on the function that relies on the most extreme pieces 

of data. According to the CLT, this could be estimated by looking at the average of the 

data, assuming it will roughly follow a normal distribution [14]. In classical EVT, the 

approach involves examining the behavior of 𝐹𝑋(𝑥) as 𝑛 approaches infinity, although 

with a modification. Clearly, for any 𝑥 where 𝐹𝑋(𝑥) < 1, 𝐹𝑋(𝑥)𝑛 goes to 0 as 𝑛 approaches 

infinity. This makes rescaling necessary, therefore rather than focusing solely on 𝑀𝑛, a 

normalized version is introduced in [16] as 

 
𝑀𝑛

∗ =
𝑀𝑛 − 𝑏𝑛

𝑎𝑛
  

 

(2.16) 

By selecting sequences of constants 𝑎𝑛 > 0 𝑎𝑛𝑑 𝑏𝑛, efforts are made to stabilize the 

position and spread of 𝑀𝑛
∗  as 𝑛 approaches infinity. It is then demonstrated that there are 

exclusively three categories of limiting distributions for this normalized 𝑀𝑛
∗ . This result 

is known as the Extremal Types Theorem [17]. If there are sequences that follow 𝑎𝑛 >

0 𝑎𝑛𝑑 𝑏𝑛, the theorem can be expressed as 

 
𝑃 (

𝑀𝑛 − 𝑏𝑛

𝑎𝑛
≤ 𝑥) → 𝐺(𝑥),  𝑛 → ∞ 

 

(2.17) 

𝐺(𝑥) is a nondegenerate distribution function and belongs to one of the three EVD 

families, Gumbel, Frechet, and Weibull. The distributions can be given as follows 

according to A. Naess [16], for parameters 𝑎 > 0, 𝑏 and 𝑐 > 0, for families II and III, and 

is shown in the following equations and is shown in Figure 5: 

I 
𝐺(𝑥) = exp {− 𝑒𝑥𝑝 [− (

𝑥 − 𝑏

𝑎
)]} ,  −∞ < 𝑥 < ∞; 

 

(2.18) 
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II 𝐺(𝑥) = {

0                                     ,         𝑥 ≤ 𝑏,

𝑒𝑥𝑝 {− (
𝑥 − 𝑏

𝑎
)

−𝑐

}    ,         𝑥 > 𝑏,
 

 

(2.19) 

 

III 𝐺(𝑥) = {
𝑒𝑥𝑝 {− (

𝑏 − 𝑥

𝑎
)

𝑐

}     ,         𝑥 < 𝑏,

1                                    , 𝑥 ≥ 𝑏,

   

 

(2.20) 

 

Figure 5 - Probability density functions of the generalized extreme value distributions 

It's important to note that the Weibull distribution described in this context is slightly 

different from the recognized Weibull distribution, which corresponds to the type III 

extreme value distribution for minima. Moreover, it's crucial to understand that even 

though the Weibull distribution is the only distribution with a finite upper limit, it 

doesn't necessarily mean that the extremes of limited data must follow this distribution. 

In such cases, the rescaling constants may tend towards 0 as the size of the data 

increases. Therefore, the Gumbel distribution might even be a suitable asymptotic limit 

for extreme values derived from bounded data. These distributions can be generalized to 

form one distribution, which is known as the generalized extreme value distribution 

(GEVD). [16] 
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Generalized Extreme Value Distribution 

In probability theory and statistics, the GEVD is a continuous probability distribution 

family developed within EVT. It combines the Gumbel, Frechet, and Weibull families. 

According to the EVT, the GEVD represents the only possible limit distribution of 

properly normalized maxima from a sequence of independent and identically distributed 

random variables [18]. It’s worth noting that the existence of a limited distribution 

necessitates regular conditions on the tail of the distribution. Despite this requirement, 

GEVD is frequently employed as an approximation for modeling the maxima of long and 

finite sequences of random variables.  

The common form for the GEVD, according to [16] can be written as 

 
𝐺(𝑥) = 𝑒𝑥𝑝 {− [1 + 𝛾 (

𝑥 − 𝜇

𝜎
)]

−
1
𝛾

} 

 

(2.21) 

where 𝜇 is the location parameter, 𝜎 is the scale parameter, and 𝛾 is the shape parameter. 

For 𝛾 > 0 corresponds to the type II distributions, while 𝛾 < 0 corresponds to the type 

III distributions. When the case is 𝛾 = 0, it must be treated as a limiting case where 𝛾 →

0, which leads to the Gumbel distribution, shown in eq. (2.18).  

In statistical inference on experimental data, the unified form of the GEVD offers the 

advantage of allowing the data itself to determine the appropriate distribution type, 

eliminating the need for subjective judgment about tail behavior. The uncertainty in 

estimating the shape parameter 𝛾 reflects uncertainty regarding the correct distribution 

of the data. In practice, this uncertainty may contain all three types of EVDs, requiring 

more meticulous data analysis. Since the data used for estimation are never truly 

asymptotic, there’s added uncertainty in identifying the correct asymptotic distribution. 

Given that extrapolation results for long return period design values rely on the chosen 

asymptotic EVD, accurate identification becomes important in such scenarios. [16] 

The Block Maxima Method 

In practice, when applying GEVDs to long time series of observed data, the approach 

involves assuming that the maximum observation within the sufficiently large segment 

of the time series follows a GEVD. Looking at eq. (2.17), this is recognized by assuming 

large 𝑛, and rewriting the formula, according to [16] as 

 
𝑃(𝑀𝑛 ≤ 𝑥) ≈ 𝐺 (

𝑥 − 𝑏𝑛

𝑎𝑛
) = 𝐺∗(𝑥), 

 

(2.22) 
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𝐺(𝑥) also belongs to the GEVD family. If the main theorem holds, as indicated in eq. 

(2.17), then eq. (2.16) will approximately conform to a GEVD.  

This approach, which is commonly known as the block maxima method, involves 

segmenting a sequence of independent observations 𝑥1, 𝑥2, … 𝑥𝑛 from a stationary time 

series into blocks of data, were 𝑛 is sufficiently large. This segmentation generates a 

series of 𝑚 block maxima, 𝑀𝑛,1, , … , 𝑀𝑛,𝑚, where a GEVD is preliminarily fitted. The block 

maxima method is typically used to analyze yearly extreme value observations of 

environmental parameters, such as wind speeds, often referred to as the annual maxima 

method. Extracting the maximum over one year is reasoned, as shorter periods might 

violate the assumption that the sampled maxima originate from a common distribution 

due to seasonal variations. However, it is acknowledged that the underlying assumption 

of extracting block maxima from a set of independent and identically distributed random 

variables is violated. Nonetheless, empirical evidence suggests that this limitation does 

not significantly hinder the practical utility of the block maxima. [16]  

Estimation of Parameters for the GEVD’s 

In the practical implementation of the block maxima method, determining how to 

partition the observed data into blocks is necessary. This decision-making process 

involves grappling with two conflicting considerations. There is a desire to have large 

blocks to ensure that the distribution of block maxima approximates a GEVD. Opting for 

larger blocks may result in a small sample size of block maxima, leading to significant 

uncertainties in statistical inference. However, increasing the number of block maxima 

by selecting smaller blocks may jeopardize the asymptotic approximation by assuming a 

GEVD for block maxima. The challenges are further compounded by issues of 

independence and stationarity, as mentioned in The Block Maxima Method. While 

establishing general guidelines for choosing block size relative to available data is 

challenging, accumulated experience has created a consensus in some practical 

scenarios. For example, opting for a one-year block size in wind engineering has become 

a standard practice. One key rationale for this choice is that the data can reasonably be 

assumed to belong to the same population, as yearly blocks mitigate seasonal effects. 

Once the sample of block maxima has been established, the next task involves estimating 

the parameters of the generalized extreme value (GEV) model. [16]  
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2.4 Maximum Likelihood Estimation 

Maximum likelihood is a popular statistical estimation method. There is some debate 

about who originally proposed this method, but it is generally acknowledged that Fisher 

is the one who named it “maximum likelihood” [19]. Maximum likelihood estimation 

(MLE) determines the parameters of a probability distribution that best fit a set of 

observed data. This involves finding the values for the parameters that maximize a 

likelihood function, which calculates the probability of the observed data under a specific 

model. The maximum likelihood estimates are the parameter values that achieve the 

highest likelihood. MLE is widely regarded as intuitive and versatile, making it a popular 

choice for statistical interference. [20] 

When the likelihood function is differentiable, the derivative test can be used to find the 

maxima. The conditions needed to maximize the likelihood function can be solved 

directly in specific scenarios, such as with the ordinary least square estimator in linear 

regression. This is particularly true when the model errors are normally distributed with 

constant variance. [21] 

If a dataset of 𝑋 = 𝑥1, 𝑥2, … , 𝑥𝑛 is assumed, where each example is drawn from an 

unknown but true probability distribution 𝑝𝑑𝑎𝑡𝑎(𝑥). Then a model is defined as 

𝑝𝑚𝑜𝑑𝑒𝑙(𝑥; 𝜃), which estimates the true probability of observing each data point 𝑥, given a 

set of parameters, 𝜃. The likelihood function is the probability of observing all the given 

parameters and is given by  

 
𝐿(𝜃; 𝑋) = ∏ 𝑝𝑚𝑜𝑑𝑒𝑙(𝑥𝑖; 𝜃)

𝑛

𝑖=1

 

 

(2.23) 

and calculates how likely it is to observe the given data if the model parameters 𝜃 are 

used. Then to find the best parameters, 𝜃, this likelihood function needs to be maximized. 

However, because multiplying many probabilities together can lead to very small 

numbers, it's common to use the logarithm of likelihood instead, shown in [22], as 

 
𝜃𝑀𝐿 = 𝑎𝑟𝑔 𝑚𝑎𝑥

𝜃
∑  

𝑛

𝑖=1

𝑙𝑜𝑔 𝑝model (𝑥𝑖; 𝜃) 

 

(2.24) 

By dividing the log-likelihood sum by the number of observations 𝑛, the maximization 

can be expressed as an expectation with respect to the empirical distribution 𝑝̂𝑑𝑎𝑡𝑎 of the 

training data [22], as 
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 𝜃ML = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝜃

𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎
𝑙𝑜𝑔 𝑝model (𝑥; 𝜃) 

(2.25) 

where 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎 denotes the expected value calculated over the distribution of data that 

have been observed.  

MLE can be viewed as an attempt to minimize the dissimilarity between the empirical 

and model distributions, measured by the Kullback-Leibler (KL) divergence. The KL 

divergence is a statistical measure for comparing two probability distributions and can 

be written as follows, according to [22]  

 𝐷𝐾𝐿(𝑝̂𝑑𝑎𝑡𝑎 ∥ 𝑝model) = 𝐸𝑋∼𝑝𝑑𝑎𝑡𝑎
[𝑙𝑜𝑔 𝑝̂𝑑𝑎𝑡𝑎 (𝑥) − 𝑙𝑜𝑔 𝑝model (𝑥)] 

(2.26) 

Since the left part of the equation is only a function of the data-generating process, it is 

only necessary to minimize the right part of the equation. Minimizing KL divergence is 

essentially equivalent to minimizing cross-entropy, a common method used to quantify 

the difference between the predicted and actual distributions. MLE is a statistical method 

used to determine the model parameters that best represent the observed data by 

maximizing the probability of observing the data given the model. This process can also 

be interpreted as minimizing the cross-entropy between the empirical distribution of the 

data and the model's distribution. Practically, whether it's maximizing likelihood or 

minimizing KL divergence, the ultimate objective remains the same, though the actual 

numerical values of these functions might differ. Typically, this optimization is 

implemented to minimize the negative log-likelihood, a standard approach in ML to 

make the model predictions closely align with the real data. [22] 

2.5 Wave Theory 

In nature, ocean waves are usually random, but within a sequence of random waves, it is 

possible to model the larger ones as regular waves using deterministic theory. Despite 

their simplified, idealistic nature, these theoretical models are indispensable for 

designing offshore structures. Several wave theories are essential to the engineering of 

offshore structures. These theories inherently consider regular waves, defined by their 

consistent periodicity, meaning that each wave cycle is identical to the next, allowing 

these theories to apply uniform properties across all cycles. To describe any wave theory, 

three fundamental parameters are required, period (T), height (H), and water depth (d) 

[23]. Figure 6 compares regular and irregular waves and shows the difference between 

the two.  
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Figure 6 - Visualization of regular and irregular waves 

2.5.1 Regular Wave Theory 

Regular wave theory, which is also known as Airy wave theory, is a theory based on 

potential flow. When this theory is applied to floating bodies on the water surface, the 

velocity potential 𝜙 must comply with the linearized boundary conditions at the surface 

[24].  

 𝜕2𝜙

𝜕𝑡2
+ 𝑔

𝜕𝜙

𝜕𝑧
= 0,      𝑧 = 0  

 

(2.27) 

The equation confirms that it meets both the linearized kinematic and dynamic 

conditions of the free surface. It indicates that the vertical velocities of the free surface 

and the fluid particles are synchronized and that the water pressure at the free surface is 

equal to the atmospheric pressure, which remains constant. By solving eq. (2.27) for the 

velocity potential, we can then calculate the free surface elevation 𝜁 at a given time 𝑡 and 

position 𝑥 as shown in eq. (2.28) 

 𝜁(𝑥, 𝑡) = 𝐴 ∗ 𝑠𝑖𝑛(𝜔𝑡 − 𝑘𝑥) 
(2.28) 

A is the wave amplitude, the wave frequency is 𝜔, and the wave number is 𝑘, which is 

defined as 𝑘 = 2𝜋/𝜆, where 𝜆 is the wavelength. A more in-depth explanation can be 

found in [23]. 
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2.5.2 Sea Spectrums 

Regular wave theories are typically applied in design scenarios that use a single wave 

approach, which is a common method in offshore structural design. Here, an extreme 

wave is depicted as a regular wave with a specific height and period. This approach 

simplifies the process of determining the maximum response of an offshore structure. In 

contrast, random ocean waves are characterized by an energy density spectrum, which 

outlines the wave’s energy and how it is distributed across various frequencies. Hence, 

employing the random wave design method can be particularly crucial for the 

development of floating structures, given that random waves are primarily defined by 

their statistical characteristics. [23] 

Several spectral formulas are applied in offshore structure design, each grounded in 

empirical observations of ocean wave behavior. The most commonly used spectral 

formulas are JONSWAP, Pierson-Moskowitz, ISSC, and the Bretschneider model. The 

characterization of these spectral models requires one or several parameters. These 

parameters are statistical representations of the storm profile encapsulated by the 

spectrum and are critical in defining both the total energy of the storm and the 

distribution of that energy across different frequencies. Both factors are pivotal in 

predicting how a structure will react. Even with identical energy content, different 

spectrum models will allocate energy differently within the frequency range. 

Consequently, the structural response to the same random wave energy, or the 

significant wave height, will vary according to the spectrum model employed. [23] 

The Pierson-Moskowitz Model 

The Pierson-Moskowitz (PM) spectrum was originally made for fully developed sea and 

developed using measurements from the North Atlantic Ocean. According to DNV [25] 

the formula describing the PM spectrum can be written as follows 

 
𝑆𝑃𝑀(ω) =

5

16
𝐻𝑠

2ω𝑝ω−5 exp (−
5

4
(

ω

ω𝑝
)

−4

) 

 

(2.29) 

where 𝜔𝑝 = 2𝜋/𝑇𝑃 is the angular spectral peak frequency.  

JONSWAP model 

The JONSWAP spectrum is a modified Pierson-Moskowitz spectrum for a developing sea 

state in a fetch-limited situation, and according to DNV [25] can be written as 
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𝑆𝐽(ω) = 𝐴γ𝑆𝑃𝑀(ω)γ𝑌 exp (−0.5 (

ω − ω𝑝

σω𝑝
)

2

) 

 

(2.30) 

where 𝐴𝛾 = 1 − 0.287𝑙𝑛(𝛾) is a normalizing factor, 𝛾 is a non-dimensional peak shape 

parameter, 𝜎 is a spectral width parameter.  

2.6 Computational Tools 

2.6.1 Python 

Python is an easy-to-read and write programming language that works on many different 

computer platforms and is free to use and share. It is particularly good for quickly 

creating applications because it has built-in data structures and supports dynamic typing 

and binding, which help connect different software components easily. Its clear syntax 

helps reduce the time needed to maintain a program. Python also supports organizing 

code into modules and packages, which makes it easier to reuse code across different 

projects. [26] 

Numpy 

NumPy serves as the foundation for scientific computing within Python, offering a 

versatile array object, various derived constructs like masked arrays and matrices, and 

an array of routines optimized for swift operations on arrays. These operations span 

mathematical functions, logical operations, shape manipulation, sorting selection, linear 

algebra, and more.  

At its core, NumPy revolves around the ndarray object, which encapsulates n-

dimensional arrays of homogeneous data types. Many operations performed on these 

arrays are executed in compiled code, ensuring high performance. NumPy offers 

noticeable differences compared to standard Python sequences. NumPy arrays possess a 

fixed upon creation, which can dynamically expand. Altering the size of a ndarray 

necessitates creating a new array and discarding the original. All elements within a 

NumPy array must adhere to the same data type, ensuring uniform memory size. The 

only exception is the capability to have arrays of Python objects, enabling arrays of 

varying element sizes. NumPy arrays facilitate sophisticated mathematical and other 

operations on extensive datasets. These operations are typically executed with greater 

efficiency and brevity compared to Python’s original sequence. [27] 

Given the prevalence of NumPy arrays across scientific and mathematical Python-based 

packages, proficiency in their usage is paramount. While these packages may accept 
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Python-sequence input, they often convert these inputs into NumPy arrays before 

processing and frequently produce NumPy arrays as outputs. Hence, proficiency in 

Python’s built-in sequence types alone is insufficient for efficient utilization of much of 

today’s scientific and mathematical Python-based software. [27] 

Pandas 

Pandas is an open-source library for data manipulation and analysis built on top of 

Python. It furnishes potent data structures and operations for data manipulation and 

analysis. By extending Python’s capabilities to handle spreadsheet-like data, Pandas 

facilitates swift loading, merging, alignment, and manipulation, along with other 

functions. Its strength lies in delivering highly optimized performance, especially when 

the underlying source code is crafted in C or Python.  

Pandas provides DataFrames, which are two-dimensional array-like data tables. Each 

column contains values of one variable, and each row contains a set of values from these 

columns. The data can be numeric, a factor, or character types. Pandas is popular for 

machine learning due to its DataFrame functionality. It facilitates importing/exporting 

data in various formats like CSV or JSON and offers extensive data manipulation 

capabilities, including selecting subsets, creating derived columns, sorting, joining, 

filling missing values, and plotting. [28] 

Matplotlib 

Matplotlib is a powerful plotting library in Python that facilitates the creation of static, 

animated, and interactive visualizations. Its main goal is to equip users with tools to 

represent data graphically, thereby enhancing analysis and comprehension.  

Data visualization plays several important roles. It simplifies the comprehension of 

complex datasets. Visual representation offers a clear and intuitive means of interpreting 

information, making it easier to grasp intricate data structures and relationships. 

Visualization can unveil patterns, trends, and relationships within the data that may not 

be clear from the numbers alone. It can also serve as a tool for communication, as charts 

and graphs can help digest complex information. Lastly, visualization can help detect 

anomalies, outliers, and irregularities in the data. [29] 

SciPy 

SciPy is a Python library designed for scientific and technical computing. It includes 

modules tailored for optimization, linear algebra, integration of Fourier transforms, and 

many other topics often used in science and engineering.  
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SciPy enhances Python sessions by providing high-level commands and classes for data 

manipulation and visualization, making it competitive with systems like MATLAB and 

Octave. Built on the NumPy extension, SciPy not only offers powerful mathematical 

capabilities but also supports the development of sophisticated applications through 

Python. This enables programmers to utilize additional modules for diverse applications 

such as parallel programming and web development. [30] 

Sklearn 

Sklearn, which is also known as Scikit-learn, is widely recognized as the standard for 

machine learning implementations due to its ease of use, interface, and strong 

community support. It offers several modules that facilitate the building, fitting, and 

evaluation of machine learning models. These include preprocessing tools for feature 

extraction and normalization, classification tools for categorizing data, and regression 

tools for modeling relationships in data. Additionally, Sklearn provides clustering tools 

for grouping similar data, dimensionality reduction techniques to simplify data analysis, 

and model selection tools that help in optimizing model parameters. It also includes 

utilities for constructing model workflows through its pipeline features and supports 

quick plotting and visual adjustments for machine learning. [31] 

2.6.2 TurbSim 

TurbSim is a stochastic inflow turbulence tool developed to simulate comprehensive field 

flow that includes coherent turbulence structures. These structures accurately represent 

the spatiotemporal turbulent velocity field relationships observed in nocturnal boundary 

layer flows, which IEC Normal Turbulence Models inadequately capture. The primary 

goal of TurbSim is to assist wind turbine designers by providing the capability to drive 

design code simulations of advanced turbine design with simulated inflow turbulence 

environments. These environments include critical fluid dynamics features known to 

negatively impact turbine aeroelastic response and loading. TurbSim uses significantly 

less CPU power and memory compared to its predecessors, making it more efficient [32]. 

Figure 7 shows an example of how a wind field created in Turbsim looks like.  
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Figure 7 - Example of a wind field created in Turbsim [33] 

2.6.3 OpenFAST 

OpenFAST is a comprehensive, multi-physics simulation program specifically designed 

for wind turbines. It serves as an integrated platform that links various computational 

modules, including aerodynamics, hydrodynamics for offshore structures, control and 

electrical system dynamics, and structural dynamics. This integration facilitates the 

execution of coupled nonlinear aero-hydro-servo-elastic simulations in the time domain. 

OpenFAST is versatile in its capability to analyze different wind turbine configurations, 

accommodating variations such as two or three-blade horizontal-axis rotors, pitch or 

stall mechanisms, rigid or flexible hubs, and positioning of rotors either upwind or 

downwind. Additionally, it supports various tower designs, from lattice to tubular 

structures. Wind turbines can be modeled in onshore or offshore settings, with the latter 

featuring either fixed-bottom or floating substructures. [34] 
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3 Numerical Models  

This section will provide a general description of the three models used in this thesis and 

a brief overview of the environmental conditions that were applied.  

3.1 Mobile Offshore Drilling Unit 

The data that has been used for this thesis is for the mobile offshore drilling unit (MODU) 

described in [4] that is based on Semi-C in [35]. This is a typical 4-column semi-

submersible MODU used on the North Continental Shelf. It is moored with an 8-line 

mooring system, which is evenly spread around the MODU. The basic properties of the 

MODU are given in Table 1. A more in-depth description of the model can be found in 

[35].  

Table 1 - MODU properties [4] 

Properties Values 

Columns 

Column dimensions 

Displacement 

Length of pontoons 

Breadth outside pontoons 

Draft 

4 

16x18 m 

54700 mT 

114.4 m 

76.7 m 

19.2 m 

The data used for the MODU was sampled during the work for a research paper by Garlid 

et al. [5]. The wind conditions were modeled with the NPD spectrum, with a wind velocity 

of 15 m/s. There was also a current with a velocity of 50 cm/s. The waves were modeled 

using the JONSWAP spectrum, making irregular surface elevation, with several 

combinations of Hs and Tp,  

𝐻𝑠 = [0.5,1.0, … ,10.5] 

𝑇𝑝 = [4.5,5.0, … ,20.5] 

making a total of 672 sea-state combinations. For each sea state, 300 1-hour time domain 

simulations were performed with the SIMO software. From this, the maximum offset was 

extracted for each seed, Hs, and Tp combination, making a total of 201,600 values. This 

is the data that was used in the ML algorithm.  
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3.2 Tension Leg Platform  

The tension leg platform (TLP) that has been used in the simulations for this thesis is a 

design by C. Tracy [36] which is from the Mechanical Engineering Department at MIT. 

This is used as the basis for the development of the FAST model. Tracy’s thesis includes 

a parametric optimization analysis of several floating platform designs for NREL’s 5MW 

baseline wind turbine, which is described below. The analysis identified designs 

displaying Pareto fronts that balance the mean-square acceleration of the turbine with 

various cost factors, such as platform displacement and total mooring line tension. The 

study highlights the TLP as the most favorable option due to its low root mean square 

accelerations and minimal heave and pitch movements. A more detailed description of 

how the TLP was designed can be read in [36]. The properties of the platform are listed 

in Table 2. 

Table 2 - TLP properties [36] 

Properties Value 

Platform diameter 

Platform draft 

Water depth 

Mooring system angle 

Average tension per line 

Ballast concrete mass 

Ballast concrete height 

Wind speed  

18 m 

47.89 m 

200 m 

90º 

3 931 kN 

8 216 000 kg 

12.6 m 

12 m/s 

3.2.1 NREL 5-MW Wind Turbine 

The offshore wind turbine used in this project is the NREL 5-MW baseline wind turbine. 

This is a state-of-the-art multi-megawatt turbine. This project will only provide the basic 

properties of the wind turbine given in Table 3. For a more detailed description, one can 

refer to Jonkman [37].  
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Table 3 - NREL 5MW reference wind turbine specifications [36] 

Properties Specification 

Rating 

Rotor orientation, Configuration 

Control 

Drivetrain 

Rotor, Hub diameter 

Hub height 

Cut in, Rated, Cut out wind speed 

Cut in, Rated rotor speed 

Rated tip speed  

Rotor mass 

Nacelle mass 

Tower mass 

5 MW 

Upwind, 3 blades 

Variable speed, Collective pitch 

High-speed, Multiple-stage gearbox 

126 m, 3 m 

90 m 

3 m/s, 11.4 m/s, 25 m/s 

6.9 rpm, 12.1 rpm 

80 m/s 

110 000 kg 

240 000 kg 

347 460 kg 

3.2.2 Mooring Lines 

The mooring system plays a crucial role in the stability of all floating platforms, especially 

for a TLP where taut mooring lines are vital. The system consists of cables that connect 

the platform to the seabed via fairlead attachments on the platform and anchors at the 

seabed. Anchor types can vary from simple dead-weight and traditional “mushroom” 

anchors to more sophisticated screw-in and suction anchors. This study considers the 

anchors to be rigidly attached to the seabed, and the mooring lines are considered to be 

composed of a single material with constant elasticity. The properties of the mooring 

system are given in Table 4, and the TLP with mooring lines and the NREL 5-MW wind 

turbine are shown in Figure 8. 
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Table 4 - Mooring line system properties [36] 

Properties Value 

Number of mooring lines 

Fairlead distance from centre 

Unstretched length of mooring line 

Line diameter 

Line mass per unit length 

Line extensional stiffness 

Steel density 

Concrete density 

Steel wall thickness 

8 

18 m 

151.73 m 

0.127 m 

116.03 kg/m 

1 500 000 kN 

7850 kg/m3 

2562.5 kg/m3 

0.015 m 

 

Figure 8 - The TLP with mooring lines and the 5-MW wind turbine [24] 
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3.2.3 Jacket 

The data for the jacket is from another master's thesis [38], which uses a generic jacket 

platform with an offshore substation on top. The study uses JONSWAP for the modeling 

of the irregular wave surface elevation with several sea states, and the wind velocity is set 

to 12 m/s. The sea states were carefully chosen from specific contour plots with varying 

Tp for each Hs, shown in Table 5. 

Table 5 - Sea state combinations for the jacket 

Hs [m] Tp [s] 

1 

2 

3 

4 

5 

6 

7 

5,10,15 

5,10,15,20 

5,10,15,20,25 

10,15,20,25 

10,15,20 

10,15,20 

10,15,20 

The data provided is stress results obtained from a local analysis in Ansys. The analysis 

was performed on a multiplanar TY joint of the jacket structure, which is located in the 

splash zone. The stresses obtained are the maximum equivalent von Mises stresses 

occurring at the different weld regions of the joint. The jacket is shown in Figure 9. 

 

Figure 9 – The jacket modeled and visualized in Ansys [38] 
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4 Machine Learning Algorithm 

The ML algorithm that has been used in this thesis utilizes statistical estimation and ML 

techniques to predict certain parameters and is based on the algorithm ALK-PE, 

presented in [1]. The algorithm uses Gumbel distribution to subsets of data to estimate 

extreme values. The parameters are then validated through Monte Carlo simulations. 

The core of the algorithm is GPR, specifically utilizing Kriging techniques to spatially 

interpolate and predict parameters. This approach is enhanced by an iterative updating 

mechanism based on convergence criteria, ensuring that the model adapts and improves 

its predictions, but also quantifies the uncertainty of these predictions. 

This thesis will discuss the algorithm more in-depth later, but first, the next subsection 

introduces the Kriging model. 

4.1 The Kriging Model 

The Kriging model was first introduced in the field of geostatistics by Kriege in 1951. It 

operates under the assumption that the response function is composed of both a 

regression model and a stochastic process, and from [1] it can be given as 

 𝐺(𝑥) = 𝑓(𝑥)𝑇 + 𝑧(𝑥) 
(4.1) 

𝑓(𝑥) is the basic function vector with 𝛽 being the regression coefficient vector, and 𝑧(𝑥) 

with zero mean representing a stationary Gaussian process. The covariance between any 

two points, 𝑥𝑖, 𝑥𝑘, is defined as 

 𝑐𝑜𝑣(𝑧(𝑥𝑖)𝑧(𝑥𝑘)) = 𝜎2𝑅𝜃(𝑥𝑖, 𝑥𝑘) 
(4.2) 

where 𝜎2 is the process variance and 𝑅𝜃(𝑥𝑖, 𝑥𝑘) is the Gaussian correlation function. A 

variety of correlation functions can be chosen for Kriging. The squared exponential 

correlation function will be presented, since the ALK-PE model uses this, and can be 

written as 

 
𝑅θ(𝑥𝑖, 𝑥𝑘) = ∏ exp (−𝜃𝑗(𝑥𝑖(𝑗) − 𝑥𝑘(𝑗))

2
)

𝑛

𝑗=1

 

 

(4.3) 

For the vectors 𝑥𝑖  𝑎𝑛𝑑 𝑥𝑘, 𝑥𝑖
(𝑗)

 and 𝑥𝑘
(𝑗)

 are the 𝑗𝑡ℎ values. The parameter 𝜃𝑗 acts as a scale 

factor that inversely relates to the correlation length along the 𝑗𝑡ℎdirection. The 

parameters of the Kriging model, (𝛽, 𝜃, 𝜎2), can be optimized by using MLE. When the 
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optimal values have been gained, the expected value 𝜇𝐺  and the variance 𝜎𝐺
2 at point 𝑥, 

with the following equations acquired from [1] 

 μ𝐺(𝑥) = β + 𝑟(𝑥)𝑇𝑅θ
−1(𝑌 − 1β) 

(4.4) 

 
𝜎𝐺

2(𝑥) = 𝜎2 (1 + 𝑢(𝑥)𝑇(1𝑇𝑅𝜃
−11)

−1
𝑢(𝑥) − 𝑟(𝑥)𝑇𝑅𝜃

−1𝑟(𝑥)) 

 

(4.5) 

𝑟(𝑥) = {𝑅(𝑥, 𝑥1), … , 𝑅(𝑥, 𝑥𝑛)} signifies the correlation vector between the unknown point 

𝑥 and all known experimental points. 𝑢(𝑥) can be defined as 𝑢(𝑥) = 1𝑇𝑅−1𝑟(𝑥) − 1. The 

quantity 𝜇̂(𝑥) is considered as the Kriging estimate for the prediction, while 𝜎̂𝐺
2 is the 

corresponding predicted error. [1]  

4.2 Gumbel Fitting Process 

4.2.1 Initial Training Points 

The ML algorithm initially starts with reading a given datafile; in this case, the files 

contain Hs, Tp, and third values, depending on the structure. Once this data is loaded, 

the algorithm proceeds to select specific subsets for analysis based on predefined values 

of Hs and Tp, which are the initial training points. For each combination of these initial 

training points, the algorithm reads through the main dataset to get the subset of data 

that matches these values. From each subset, the algorithm randomly samples through 

a predefined number of data points. This number varies depending on the number of 

seeds that are simulated and should be equal to the number of seeds. This random 

sampling ensures that the subset captures a representative variation of the sea state 

conditions and provides a robust basis for statistical analysis. The sampling is 

implemented using pandas, which randomly selects a specified number of rows from the 

dataset.  

4.2.2 Gumbel Fitting 

With the sampled data in hand for each initial sea state, the next step involves fitting a 

Gumbel distribution, particularly suited for modeling the maximum values observed in 

the dataset. The Gumbel distribution is characterized by its CDF: 

 𝐺(𝑥; 𝜇, 𝛽) = exp (− exp (−
𝑥 − 𝜇

𝛽
)) 

 
(4.6) 

where 𝜇 is the location parameter, and 𝛽 is the scale parameter. These parameters are 

estimated using the ‘GEV.fit’ function from the scipy library, which applies MLE to find 



32 

 

the best-fit parameters for the sampled data. The location parameter indicates the mode 

or the most likely extreme value in the distribution. For wave heights, 𝜇 represents the 

typical maximum wave height expected under certain conditions. The scale parameter 

measures the dispersion or variability of the distribution around the mode. A larger 𝛽 

indicates greater unpredictability and wider variation in extreme wave heights. These 

parameters provide valuable insight into the extreme values and the variability for each 

sea state.  

To assess the stability and reliability of the Gumbel parameters estimated from the 

sampled data, the algorithm uses Monte Carlo simulations. A large synthetic data pool is 

generated based on the initially estimated location and scale parameters. This pool 

performs a series of statistical experiments where subsets are repeatedly sampled, and 

the Gumbel distribution is refitted to these samples. Each experiment involves drawing 

a new subset, fitting the distribution, and recording the newly estimated parameters. 

This process is repeated a set number of times, allowing the algorithm to observe the 

variability and consistency of the parameter estimates across different samples.  

4.2.3 Check With Stopping Criterion 

The iterative Monte Carlo process is checked by a convergence criterion, ensuring that 

the parameters that is estimated are accurate and consistent. The sampling stop criterion 

is based on the inverse coefficient of variation (CoV) of the scale sampling statistics 

 
𝐶𝑜𝑉−1 =

𝛽̃

𝜎𝛽̃

 

 

(4.7) 

where 𝛽̃ is the estimated Gumbel scale parameter from a sample of N extreme values, 

and 𝜎𝛽̃ is the standard deviation of the estimate of the scale parameter. If the stopping 

criterion is not satisfied, it will repeatedly draw new samples to fit the Gumbel 

distribution to estimate new location and scale parameters until it is satisfied.  

These steps ensures that the algorithm has a firm foundation before proceeding with 

GPR to predict parameters for all the sea states.  
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4.3 Gaussian Process Regression 

The GPR part of the algorithm is utilized to predict the location and scale parameters for 

all the sea states from the read datafile, including those initially trained by Gumbel 

fitting.  

GPR is a non-parametric, kernel-based ML technique. It is suitable for regression 

problems where the goal is to predict continuous outcomes, such as the parameters from 

the Gumbel distribution for different sea states. This algorithm uses the RBF, which is 

one of the most common choices for GPR because of its properties of smoothness and 

flexibility. In GPR, RBF helps in defining the covariance structure of the data, dictating 

how points in the input space are correlated.  

4.3.1 Train the GPR Model 

Training the GPR involves fitting the GPR model using the initial training points with 

their corresponding location and scale parameters from the Gumbel distribution. The 

input features are the sea states, and the target outputs are the parameters estimated 

from the Gumbel distribution. During the training phase, the GPR model learns the 

underlying function that maps the input features to the outputs. This function is 

governed by the kernel parameters, which are optimized during training to best fit the 

data.  

When the GPR model is trained, it can make predictions at new input points, which is 

very useful for estimating parameters at sea states that were not initially trained.  

4.3.2 GPR Predictions 

The algorithm now uses the trained GPR model to predict new location and scale 

parameters for all the sea states from the given data set. This allows the model to estimate 

values within the range of the training data and values outside the range of the training 

data of the parameters. GPR provides a mean prediction for each input and quantifies 

the uncertainty of each prediction through the standard deviation, offering insight into 

the confidence of the model's estimates.  

 

 

 

 



34 

 

4.3.3 Check With Stopping Criterion 

After the predictions are made, the algorithm evaluates the uncertainty of these 

predictions against the stopping criterion, which can be written as 

 
𝑈𝐼(𝐻𝑠, 𝑇𝑝) =

|𝛽̂(𝐻𝑠, 𝑇𝑝)|

𝜎𝛽̂(𝐻𝑠, 𝑇𝑝)
≥ 𝑀𝐿𝑠𝑡𝑜𝑝 

 

(4.8) 

where 𝛽̂ is the GPR prediction of the Gumbel distribution scale parameter, and the 𝜎𝛽̂ is 

the GPR model standard deviation for the parameter 𝛽̂.  

If the criterion is not met, the GPR model will call for new scale and location parameters 

from the Gumbel distribution for the sea state, which had the lowest UI value for the 

parameters that failed. This iteration will continue until the criterion is satisfied, and the 

algorithm will provide outputs. These outputs contain the estimated location and scale 

parameters from both the Gumbel distribution and the GPR predictions, along with their 

uncertainties. The whole process is shown in Figure 10. 

 

Figure 10 - Flowchart of the Machine learning algorithm 
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Table 6 - Machine learning algorithm 

Machine learning algorithm 

Input: DataSet, lc, GEV, Hs0, Tp0 

N_int ← initial number of samples 

N_seastates ← total number of unique sea states 

while min(UI) < convergence_criteria do 

    1. For each initial sea state (Hs0, Tp0), sample N_int data points and estimate initial 

Gumbel parameters (scale, location). 

    2. Train separate GPR models for scale and location with the estimated parameters 

as targets. 

    3. Predict scale and location parameters for all sea states using the trained GPR 

models and calculate prediction errors. 

    4. Determine the sea state with the highest prediction error. 

    5. Sample additional data for the selected sea state and update the GPR model. 

    6. Recalculate the prediction and errors for all sea states with the updated GPR 

model. 

    7. If minimum UI is less than the convergence criteria, update the sea state with the 

highest prediction error and iterate. 

    8. Once convergence criteria are met or all sea states have been sampled, finalize the 

GPR model training. 

Output: Final estimated distribution parameters (scale and location) for all sea states.
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5 Methodology 

5.1 Project Description 

This project utilizes machine learning to predict different data for three distinct 

platforms: a TLP, a MODU, and a Jacket platform. The main objective is to evaluate the 

ML algorithm's performance for different applications and how different data influences 

the model.  

Utilizing advanced simulation tools like TurbSim and OpenFAST, developed by the 

National Renewable Energy Laboratory (NREL), realistic wind and wave conditions are 

generated to simulate the TLP’s responses. These tools facilitate a comprehensive 

analysis by creating detailed aerodynamic, hydrodynamic, and structural models of the 

turbine's behavior across different sea states. 

Machine learning algorithms are employed to predict the data generated from these 

simulations. Each platform type—TLP, MODU, and Jacket—has its unique set of 

simulation results. The machine learning model is trained on these data sets, with initial 

training points strategically selected to cover a broad range of scenarios to ensure robust 

predictions. 

The project focuses on investigating this machine learning model for accuracy and 

computational efficiency. By predicting the performance impacts of each platform type 

under various conditions, the project aims to provide valuable insights into the accuracy 

of this ML algorithm.  

5.2 TurbSim  

The first step of the project was to generate wind fields in TurbSim, configured to the 

desired conditions through an input file. This file contains model specifications and 

meteorological boundary conditions, which determine the grid’s dimensions, the 

spectral model, and mean wind speeds. These parameters are defined by IEC standards.  

The first section in the input file determines the shape and size of the wind field that is 

created. It also determines the analysis time and the frequency of the time series. To 

make sure that the accuracy and relevance of wind field data are sufficient, a simulation 

time of 4000 seconds was defined, along with a 0.05-second time step. A small time step 

along a 4000 second analysis time, will result in a more realistic representation of real-

world conditions, which is important for designing reliable and safe wind turbines.  
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When generating the wind field in TurbSim, it's crucial to ensure that the turbine's blade 

tips remain within the wind field at all times. This is particularly important for a floating 

offshore wind turbine, as it experiences significant movement. With a hub height of 90 

meters and a rotor diameter of 126 meters, the grid must exceed 153 meters in both 

directions. We set the grid width to 185.5 meters to accommodate expected horizontal 

displacement, and the grid height to 179.5 meters. 

The next section in the input file determines the meteorological boundary conditions. 

This implies setting the spectral model, mean wind speed, and the boundary conditions 

for the spectral models defined in the IEC standard. The spectral model was set to the 

Kaimal model, and the wind profile type was set to the Power law. A more in-depth 

description of these models and how TurbSim uses them can be read in [32]. Figure 11 

shows a flowchart of the modules in TurbSim. 

 

Figure 11 - Flowchart of the Turbsim process which ends in OpenFAST [33] 

To create several input files as quickly as possible, a script in MatLab was created to 

automatize the process. A looped script was created, which automatically changed the 

seed number.  

TurbSim was then run for 20 seeds to get results from different phases. This is needed 

for the ML algorithm because it uses regression. This means it needs several points to 

make a prediction, and in this case, the seeds are the points. This created 20 files, which 

were then put into OpenFAST for further simulations.  
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5.3 OpenFAST 

The next simulations were performed using OpenFAST, an open-source tool developed 

by the National Renewable Energy Laboratory (NREL). OpenFAST is comprehensive 

simulation software that enables the aerodynamic, hydrodynamic, elastic, and control 

system analysis of wind turbines. It is particularly well-suited for simulating offshore 

wind turbines like the one in this study.  

The subject of the simulations was NREL’s baseline 5-MW offshore wind turbine. the 

turbine features a three-bladed rotor with a diameter of 126 meters, mounted on a TLP. 

The TLP design is tailored to deep water operations, allowing the turbine to operate in a 

floating environment while maintaining stability through tensioned mooring lines 

connected to the seabed.  

The hydrodynamic loading conditions were defined by regular waves, which involved 

several sea states, 

𝐻𝑠 = [1,2, … ,5] 

𝑇𝑝 = [5,6, … ,15] 

making a total of 56 different sea states, representing a realistic range of operating 

conditions the turbine might encounter. With a total of 20 seeds, each simulation was 

run independently for each combination of Hs, Tp, and seed, making a total of 1100 cases, 

resulting in a comprehensive dataset. These settings were changed in the Hydrodyn file, 

which the Masterfile reads in OpenFAST. There is a separate file for each case, meaning 

1100 Hydrodyn files were needed. To create these files, a MatLab script was created to 

change sea states and seed numbers automatically.  

To ensure the capture of detailed dynamic interactions over a substantial period, each 

OpenFAST simulation was configured to run for a total of 4000 seconds. This extended 

simulation time is crucial for observing the long-term behavior of the structure under 

variable wind and wave conditions, providing a more comprehensive analysis of the 

turbine’s response. The timestep was set to 0.0125 seconds, a refined setting that 

enhances the resolution of the data.  

The dynamic simulations included hydrodynamic, aerodynamic, and structural analyses. 

The aerodynamic loads were calculated using the blade element momentum theory, 

hydrodynamic loads were calculated using Morison’s equation, and the structural 

dynamics of the TLP were modeled to capture its response to the loading conditions. 

OpenFAST uses these interactions to accurately determine the structure's response, in 
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this case, the displacement due to both surge and sway motions. Figure 12 shows the 

OpenFAST modules which the masterfile reads, including TurbSim and Hydrodyn. 

 

Figure 12 - Flowchart of the OpenFast modules [24] 

The masterfile is the main file in OpenFAST, which reads all the other files. Therefore, 

1100 masterfiles with corresponding sea states and seeds were also needed. A MatLab 

script was also created for the masterfiles.  

When running OpenFAST, it creates a file for each case with several different values for 

each timestep, resulting in 1100 files with values from 0 to 4000 seconds. The maximum 

displacement was then extracted for each case and put into a single file, which was later 

used in the ML algorithm.  

5.4 Machine Learning 

Before the data was run through the ML algorithm, a few settings in the script had to be 

determined to get the most accurate predictions at an efficient rate. This was done by 

determining the two stopping criteria, CV and UI. These two convergence criteria are set 

to precise values to balance computational efficiency and accuracy.  

The CV was set to 1, and the UI was set to 0.001. This resulted in the two values 

influencing the balance between computational cost and the accuracy of the results. A 

lower UI with a higher CV would have resulted in an earlier stop but most likely less 
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precision. In contrast, a lower CV and a higher UI would require more computational 

resources but potentially give more accurate results. The algorithm was also set to iterate 

for UI = [1,2,3,4,6,8,10]. This sets the algorithm to run through the process until the UI 

criteria are satisfied, and then the values from both the Gumbel fitting and the GPR 

process are printed out. It will then repeat this process ten times.   

5.4.1 Training Points 

To get the most precise predictions possible, the initial training points have to be 

carefully chosen with respect to the dataset. The initial training points should cover the 

full range of actual data points in the dataset. Ideally, the training points should also be 

spaced out evenly to help capture the overall trends from the dataset. The platforms have 

different sea state combinations, therefore different training points were chosen for each 

platform.  

MODU  

For the MODU, the following initial training points were chosen: 

𝐻𝑠 = [0.5,3.5,6.5,9.5] 

𝑇𝑝 = [4.5,9.5,14.5,19.5] 

It was important to try to capture the full range of the true dataset and have an even 

spacing between the data points. The MODU also has a significant number of sea state 

combinations, so it was chosen to have four points for both Hs and Tp.  

TLP 

The dataset for the TLP has fewer combinations than the MODU and also a smaller 

range. Therefore, it was only chosen three for Hs and Tp, as this should be enough to get 

accurate predictions. The initial training points were chosen as: 

𝐻𝑠 = [1.0,3.0,5.0] 

𝑇𝑝 = [5.0,10.0,15.0] 

Jacket 

The jacket has varying Tp depending on the Hs and was therefore difficult to select the 

initial training points. As there were only two numbers of Tp that was common in all Hs, 

these were the ones selected in the hope that the ML algorithm would do sufficiently in 

the predictions. The initial training points were:  

𝐻𝑠 = [1.0,3.0,5.0,7.0] 
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𝑇𝑝 = [10.0,15.0] 

5.5 True Gumbel Parameters 

The true Gumbel parameters were also calculated to compare the estimated values with 

the true values to see how accurate they are. This was done with the use of Python, where 

the mean and variance were calculated for each Hs and Tp combination, with the 

following formulas 

 
𝑥̅ =

∑ 𝑥𝑖

𝑛
 

 

(5.1) 

 
𝜎2 =

∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1

𝑁
 

 

(5.2) 

Where 𝑥𝑖 is each value in the dataset, and 𝑥̅ is the mean of all the values, and N is the 

number of values. These values were then used to calculate the true Gumbel scale and 

location parameters. 

 
𝛽 =

𝜎√6

𝜋
 

 

(5.3) 

 𝜇 = 𝑥̅ − 𝛾𝛽 
(5.4) 

Here, 𝛽 is the scale parameter, 𝜎 is the standard deviation, 𝜇 is the location parameter, 

and the 𝛾 is the Euler-Mascheroni constant, which is 𝛾 = 0.5772.  

5.6 Mean Absolute Percentage Error 

To compare the estimated parameters with the true parameters, MAPE was calculated, 

which is a measure of accuracy, with the use of the following formula 

 
MAPE = 100 ⋅

1

𝑛
∑ |

𝐴𝑡 − 𝑃𝑡

𝐴𝑡
|

𝑛

𝑡=1

 

 

(5.5) 

Where 𝐴𝑡 is the actual value, and 𝑃𝑡 is the predicted value, for this case the Gumbel 

parameters. This gives a clear indication of how accurate the predictions are.  
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6 Results and Discussion 

6.1 Mobile Offshore Drilling Unit 

This section will provide surface diagrams of the Gumbel parameters for the MODU's 

offset. It will compare the true location and scale parameters with the final estimations 

from the ML. Further, it will show the MAPE for all ten iterations to determine the 

accuracy.  

 

Figure 13 - True vs estimated Gumbel parameters for the MODU  

Figure 13 shows a comparison of the true Gumbel parameters versus the estimated 

Gumbel parameters. The upper pair represents the true Gumbel parameters, location on 

the left, and scale on the right. The lower pair represents the estimated Gumbel 

parameters from the ML algorithm.  
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The true location parameter shows two distinct peaks at Hs=10.5, Tp=10, and Hs=10.5, 

Tp=6. The estimated location parameter shows a similar trend. The similarity in the 

shapes and values of the estimations suggests that ML generally does a good job when 

predicting the location parameters. However, there are some dissimilarities between the 

two plots. The two peaks in the estimation are not as prominent as in the true parameter 

and lack a deeper dip between them. It is also noticed that the values for the two peaks 

are not as high as for the true values.  

The true scale parameter follows the same pattern as the estimation. The ML does a good 

job estimating the scale parameters' general shape but lacks accuracy regarding the peaks 

and dips.  

The MAPE was calculated for each iteration to understand the ML's accuracy better and 

see if this makes a difference.  

Table 7 - MAPE of the scale parameter for the MODU 

UI 1 2 3 4 6 8 10 

MAPE 18.27 % 10.08 % 10.30 % 10.23 % 6.37 %  6.31 % 6.04 % 

Table 7 shows that after one iteration, the MAPE for the scale parameter is quite high at 

18.27 %. This implies that the initial model predictions are significantly off from the 

actual values, possibly due to inadequate training, poor initial parameter settings, or 

insufficient understanding of the data patterns. Then, with just one more iteration, there 

is a significant improvement from 18.27% to 10.08 %. This proves that doing several 

iterations works and positively impacts the predictions. From UI = 2 through UI = 10, 

the MAPE values show smaller decrements and stabilize around 6% when UI reaches six 

and beyond. This plateau could suggest that the model is approaching its capability limit 

for accuracy based on the provided data and model configuration.  

Table 8 - MAPE of the location parameter for the MODU 

UI 1 2 3 4 6 8 10 

MAPE 10.42% 6.58 % 6.65 % 6.22 % 2.49 % 2.43 % 2.44 % 

Table 8 shows the MAPE for the location parameter. Again, it shows that as the UI 

increases, the MAPE decreases. This indicates that the model’s predictions for the 

location parameter become more accurate as it processes more iterations. Similarly, as 
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in Table 7, there is a significant improvement after just one iteration. This large decrease 

in MAPE could be due to the model adjusting better to the dataset after the initial 

learning phase, where it effectively captures the underlying patterns or relationships. 

Between two and four iterations, the change in MAPE is relatively small. This might 

suggest that the model continues to fine-tune its predictions after the significant initial 

adjustment. Still, the rate of improvement slows down as it approaches a certain level of 

accuracy. Then, after six iterations, another significant reduction in the MAPE was 

observed. The MAPE stabilizes around 2.4% to 2.5%, which might indicate that the 

model has reached a plateau in learning where additional updates do not significantly 

alter its predictive accuracy.  

The decreasing trend in MAPE for both parameters, followed by stabilization, suggests 

that the model is effectively learning and converging toward optimal predictive 

performance for the Gumbel parameters. The stabilization in MAPE values at higher UI 

levels suggests that the model has possibly reached its capability limit based on the 

existing configuration and dataset. Given that MAPE stabilizes after UI = 6, increasing 

UI beyond this point might not be cost-effective. This is a critical insight for operational 

efficiency, suggesting that extending the update interval beyond this point yields 

minimal improvement, which might not justify the additional computational resources 

or time.  

6.2 Tension Leg Platform 

The same process is repeated for the TLP. For the TLP, the displacement due to both 

sway and surge motion is being investigated. The true Gumbel parameters are compared 

to the estimated Gumbel parameters. The MAPE for both location and scale is calculated 

to understand the ML model's accuracy better.  

6.2.1 Displacement in Sway 

This section will provide surface diagrams for the Gumbel parameters for displacement 

due to sway motion. First, true location and scale parameters were compared with the 

estimated parameters after ten iterations, followed up with the MAPE for both 

parameters for all ten iterations.  
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Figure 14 - True vs estimated Gumbel parameters for the displacement of the TLP due to sway motion 

Figure 14 similarly to Figure 13 shows a comparison between the true Gumbel and 

estimated parameters, with the true being the upper pair and the estimations being the 

lower pair.  

Starting with the location parameter, the true and estimated surface plots are nearly 

identical. They both show four distinct peaks at Tp=[8,10.5,13,15] and Hs=5.0, which 

decrease as the Hs decreases. Only looking at the location parameter shows that the ML 

algorithm does a great job estimating it.  

The estimated scale parameter also looks quite similar to the true scale parameter, but 

there are a few dissimilarities. At Tp=15, the estimation shows a larger peak at Hs=5.0. 

It also shows that the estimated scale parameter falls as the Tp converges to 1 at Tp=15, 

but the true increases. At Tp=12, there are also a few dissimilarities. The true scale 

parameter slowly decreases as the Hs decreases before it increases into a small peak 

before it decreases again. The estimation, however, starts by decreasing, the same as the 
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true values, but starts increasing again much sooner than the true values. Comparing the 

rest of the estimated values with the true values, the ML algorithm generally does a good 

job estimating the scale parameter.  

In the following tables, Table 9 and Table 10, the MAPE of the scale and location 

parameter for the displacement due to sway motion for the TLP is presented and further 

discussed.  

Table 9 - MAPE of scale parameter for the displacement due to sway motion for the TLP 

UI 1 2 3 4 6 8 10 

MAPE 29.70 % 29.70 % 29.70% 9.38 % 9.38 % 9.38 % 9.38 % 

Starting with Table 9, it is shown that the MAPE is very high at 29.70 % after one 

iteration. This suggests that the initial model predictions differ significantly from the 

actual values, possibly due to inadequate training, poor initial parameter settings, or 

insufficient understanding of the data patterns. The MAPE stays the same for three more 

iterations before it significantly jumps to 9.38 % after four iterations. As seen before in 

the results for the MODU, there is a decrease in MAPE as the ML algorithms iterates. 

Again, this shows that doing iterations works as it is supposed to. After four iterations, 

the MAPE stays the same at 9.38 % until the model is done predicting. Ending at 9.38 % 

could imply that doing more iterations could be beneficial but could also mean it has 

reached its limit.  

Table 10 - MAPE of location parameter for the displacement due to sway motion for the TLP 

UI 1 2 3 4 6 8 10 

MAPE 14.28 % 14.28 % 14.28 % 0.19 % 0.19 % 0.19 % 0.19 % 

Table 10 shows the MAPE for the location parameter. Similarly to the results for the 

MODU it the first iteration has a quite high MAPE starting at 14.28 %. The MAPE then 

stays at the same percentage for another three iterations, the same as in Table 9, before 

it significantly decreases to 0.19 %. This large decrease in MAPE shows that the model is 

adjusting better to the dataset after the initial learning phase, where it starts to capture 

the underlying patterns or relationships effectively. After four iterations, the MAPE does 

not change. This means that the next iterations might indicate that the model has 
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reached a plateau in learning where additional updates do not significantly alter its 

predictive accuracy. 

As seen in the MODU results, the same decreasing trend in MAPE for both parameters, 

followed by stabilization, shows that the model is learning and improving through the 

iterations. The MAPE for the scale parameter stabilizing at such a high value could imply 

that having more iterations could be beneficial, but not necessarily cost-effective. The 

MAPE for the location parameter, however, stabilizes at nearly zero, which suggests that 

less iterations would be beneficial.  

6.2.2 Displacement in Surge 

This section will provide surface diagrams for the Gumbel parameters for the 

displacement due to surge motion. First, comparing true location and scale parameters 

with the estimated parameters after ten iterations, followed up with the MAPE for both 

parameters for all ten iterations.  

 

Figure 15 - True vs estimated Gumbel parameters for the displacement of the TLP due to surge motion 
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Figure 15 shows a comparison of the true Gumbel parameters and the estimated Gumbel 

parameters. The upper pair are the true parameters, and the lower pair are the estimated 

parameters.  

There is little to no difference in comparing the estimated location parameter with the 

true location parameter. Both plots show 3 distinct peaks at Tp=[13.0,10.5,8] and Hs=5, 

which decrease as Hs decrease, similarly to Figure 14. Looking very close at the two 

largest peaks, there are some minor differences in value. The peaks of the true location 

parameter are just a tiny bit larger than the estimation. Other than that, the ML 

algorithm does a good job estimating the location parameter, as seen earlier in the results 

for the MODU and in sway for the TLP. 

The estimated scale parameter however is not as accurate as the estimated location 

parameter. The general shape of the estimation is similar to the true values, but there are 

several dissimilarities. Looking at Tp=14-15 at Hs=5 the estimated scale parameter sits 

at a value right under 0.5 and stays there as the Hs decreases to 3.0. The true scale 

parameter does not reach 0.4. At Tp=15 and Hs=1, there is also a significant increase in 

value for the estimation, but the true values slightly increase. Overall, the true scale 

parameter looks more even, and the maximums are not that far off from the minimums. 

Compared with the estimated scale parameter which looks more uneven with larger 

differences between the maximums and minimums.  

The differences in the estimation for the location and scale parameters are quite 

substantial. This will be seen in the tables below, where the MAPE is calculated for both 

parameters for all ten iterations.  

Table 11 - MAPE of scale parameter for the displacement due to surge motion for the TLP 

UI 1 2 3 4 6 8 10 

MAPE 16.86 % 17.23 % 19.61 % 16.80 % 15.73 % 16.11 % 15.40 % 

Table 11 shows the MAPE for the scale parameter, and after one iteration the MAPE is 

16.86 %. Then looking at the MAPE for UI=[2,3], it shows that the MAPE increases. This 

is different from the earlier results.  In early iterations, the ML model may not be well-

informed due to the limited number of data points. This can result in poorer predictions 

until the model has seen enough data to accurately capture the underlying relationships. 

It might also suggest that the model is as close as it can get to the best prediction with 

the current configurations. Then after four iterations there is a decrease in MAPE, but 
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not a significant decrease compared to the first MAPE. After ten iterations the MAPE 

decreases to 15.40 %. This shows that having several iterations work, but in this case, 

there is not much of a difference between the first and the last MAPE. This shows that 

the ML algorithm is having trouble predicting more accurately. This could suggest that 

for this particular case, it could have been beneficial with more iterations, as the MAPE 

is 15.40 %, which is not a good accuracy. 

Table 12 - MAPE of location parameter for the displacement due to surge motion for the TLP 

UI 1 2 3 4 6 8 10 

MAPE 6.38 % 6.88 % 6.45 % 6.63 % 0.49 % 0.49 % 0.49 % 

In Table 12 the MAPE is 6.38 % after one iteration, which is the lowest after one iteration 

compared with the previous results. There is a slight increase in MAPE from UI 1 to UI 

2, followed by a decrease in UI 3 and a minor increase again in UI 4. This pattern suggests 

that the model may be in the phase of adjusting to the dataset's characteristics or the 

tuning of hyperparameters is being refined. These initial fluctuations are common in 

machine learning models as they start to learn the underlying patterns in the data. The 

MAPE drastically drops to 0.49% at UI 6 and remains consistent through UIs 8 and 10. 

This dramatic improvement indicates a potential breakthrough in the model's learning 

capability or an effective adaptation to the data. The stabilization of MAPE at an 

impressively low level from UI 6 onwards suggests that the model achieves a high level 

of accuracy and generalizes well to new data. This stability is desirable in machine 

learning models, as it indicates reliable performance and predictability in outputs. It also 

shows a repeating trend in the location parameter stabilizing and being more accurate 

earlier than the scale parameter, and potentially needing less iterations.  

The model demonstrates strong performance in estimating the location parameter with 

high accuracy and consistency from mid to later iterations. However, it struggles to 

achieve similar accuracy with the scale parameter, where the error rates are much higher 

and show less improvement. This is seen in the previous results, showing that the ML 

algorithm is consistent with the predictions.  
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6.3 Jacket 

A different approach when presenting the results for the jacket were selected. As the 

jacket has varying Tp depending on the Hs, a specific Hs were chosen when plotting the 

estimated and true values. Hs=3 was chosen as this is the Hs with the most Tp’s. The 

estimated values for the plots are gathered when UI=10, making it the final estimation. 

Two tables will also be presented with the MAPE for all ten iterations.  

 

Figure 16 - True vs estimated location parameter at Hs = 3.0 m for the stress on the jacket 

Figure 16 shows a comparison of the true and the estimated location parameter of a slice 

of the dataset. At Tp=5 the estimated and the true values are very close. But as the true 

location parameter decreases as the Tp increases, the estimated location parameter 

seems to stay constant. This is an unexpected outcome as the ML algorithm has proved 

to be accurate and consistent with its predictions in the previous results. The more 

obvious reason for this might be due to the values being trained in the ML model, are 

much larger in this dataset as it is stress in a specific joint on a jacket. Larger values often 

carry more noise and could interrupt with the ML. To further investigate if this is the 

case, the location parameter for the stress in scaled from pascal (Pa) to mega pascal 

(MPa). 
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Figure 17 - Scaled to MPa true vs estimated location parameter at Hs = 3.0 m for the stress on the jacket 

Figure 17 shows the true and the estimated location parameter when scaled to MPa at 

Hs=3. The estimated location parameter seems to stay constant, yet after scaling it. The 

estimated values are different than in Figure 16, but still far off from the true values. It is 

also concerning that there are no fluctuations in the estimated values. It is possible that 

the values are still to high for the ML algorithm to do sufficient estimations. Therefore, 

the values were scaled down to giga pascal (GPa), to see of this does any difference.  
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Figure 18 - Scaled to GPa true vs estimated location parameter at Hs = 3.0 m for the stress on the jacket 

Figure 18 shows the location parameter scaled to GPa, and there is a significant 

difference compared to the location parameter scaled in MPa and Pa. At Tp=5, the 

estimated values are slightly larger than the true values, but a very small amount. Then 

from Tp=5-10 the estimated values converge to the true values. From Tp=10-25, the 

estimated values are near identical to the true values. This shows that using smaller 

values in the ML algorithm makes a significant difference.  

To see if the ML algorithm follows the previous trend where it predicts location 

parameter more accurately than scale parameter. The same procedure is done when 

plotting the estimated and the true values. The true and the estimated scale parameter is 

plotted in the same plot to easily compare the accuracy. The same slice of the dataset as 

for the location parameter were chosen, which was Hs=3.  
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Figure 19 - Scaled to GPa true vs estimated scale parameter at Hs = 3.0 m for the stress on the jacket 

Figure 19 shows that at Tp=5 the estimated value is not accurate as the estimated value 

is between 0.012 and 0.014, and the true value is close to 0.008. But similarly to the 

location parameter it the estimation converge to the true value between Tp=5-10. From 

Hs=10-25, the estimated values are similar to the true values, and follows the shape of 

the true values. There are some minor differences in the values. To get a better 

understanding of the error the MAPE is calculated for both parameters for all iterations 

and shown in the tables below.  

Table 13 - MAPE of the location parameter for the stresses occurring at a weld region on a tubular joint 

UI 1 2 3 4 6 8 10 

MAPE 0.21 % 0.20 % 0.20 % 0.13 % 0.13 % 0.13 % 0.13 % 

Table 13 shows the lowest MAPE for all the iterations. It starts at 0.21 % after one 

iteration which is significantly lower than all the previous results. From UI 1 to 3 it stays 

almost constant, before it drops to 0.13 % at UI 4. From there it stays constant, as seen 

in the earlier results. This pattern seems to repeat itself, which makes the ML algorithm 

seem consistent with its predictions.  
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Table 14 - MAPE of the scale parameter for the stresses occurring at a weld region on a tubular joint 

UI 1 2 3 4 6 8 10 

MAPE 14.15 % 13.41 % 13.41 % 12.80 % 12.80 % 12.80 % 12.80 % 

Table 14 shows a high MAPE compared to the MAPE for the location parameter. After 

one iteration the MAPE is 14.15 %. It then decreases as the number of iterations 

increases, as seen in the earlier results. The last decrease happens after four iterations, 

the MAPE then stays constant. This is seen in the earlier results and could suggest that 

having more than four iterations is redundant.  
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7 Conclusion 

This thesis has investigated a comprehensive ML algorithm for predicting Gumbel 

parameters associated with the movement of two offshore structures, a MODU and a 

TLP, as well as stresses at the weld regions for a specific joint on a jacket structure. The 

primary goal was to evaluate the precision of this ML model for different applications. 

The results indicate that the ML model, across different scenarios, are generally effective 

in approximating the true Gumbel parameters. Significant findings from the iterative 

process show a clear trend of improvement in prediction accuracy with an increase in 

iterations up to a certain point, after which the gains in accuracy diminish. 

For both MODUs and TLPs, the ML model demonstrated an increasing trend in accuracy 

for the location parameters with each iteration. This was particularly notable in scenarios 

where the MAPE stabilized at a low percentage, indicating that the models could 

effectively capture and replicate the underlying patterns in the data. 

The scale parameters, while also showing improvement over iterations, did not reach the 

same level of accuracy as the location parameters, often stabilizing at higher MAPE 

values. This suggests inherent limitations in the models' capability to fully capture the 

variability represented by the scale parameter. 

The analysis of the jacket structure stress parameters highlighted the sensitivity of ML 

predictions to the scale of the data. Adjustments from Pa to GPa significantly enhanced 

the models' performance, underscoring the importance of appropriate data scaling in 

achieving accurate ML predictions.  

The location parameter consistently showed lower MAPE values compared to the scale 

parameter, reaffirming the trend observed in the MODU and TLP analyses. This could 

indicate a more robust model performance for location estimations across different 

structural analyses. 

The stabilization of MAPE values after a certain number of iterations (commonly around 

six iterations) suggests a diminishing return on additional iterations. This finding is 

crucial for operational efficiency, indicating that extending the update interval beyond 

this point yields minimal improvement, which may not justify the additional 

computational resources or time. 

 



56 

 

7.1 Further Work 

The ML algorithm is shown to be precise and effective, but not optimized. To further 

improve the ML algorithm there is several things to look at: 

• Further investigate the constant predictions issue with higher values, which could 

be due to more noise in datasets with larger values. 

• Use fewer iterations as it seemed to be redundant with ten.  

• Find the most optimal stopping criteria for both the Gumbel fitting process and 

the Gaussian process regression. 
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Appendix A – MatLab script for generating 

Hydrodyn files 

clear all; 
 
 
for k = 1:0.5:8     
    for h = 5:0.5:15 
 
fileName = sprintf('Hydrodynfile_WaveHs%0.1f_WaveTp%0.1f.dat',k,h); 
 
fileID = fopen(fileName,'w'); 
 
 
 
fprintf(fileID,'------- HydroDyn v2.03.* Input File -------------------------
-------------------\n'); 
fprintf(fileID,'NREL 5.0 MW offshore baseline floating platform HydroDyn 
input properties for the TLP.\n'); 
fprintf(fileID,'False            Echo           - Echo the input file data 
(flag)\n'); 
fprintf(fileID,'---------------------- ENVIRONMENTAL CONDITIONS -------------
-------------------\n'); 
fprintf(fileID,'     "default"   WtrDens        - Water density (kg/m^3)\n'); 
fprintf(fileID,'     "default"   WtrDpth        - Water depth (meters)\n'); 
fprintf(fileID,'     "default"   MSL2SWL        - Offset between still-water 
level and mean sea level (meters) [positive upward; unused when WaveMod = 6; 
must be zero if PotMod=1 or 2]\n'); 
fprintf(fileID,'---------------------- WAVES --------------------------------
-------------------\n'); 
fprintf(fileID,'             2   WaveMod        - Incident wave kinematics 
model {0: none=still water, 1: regular (periodic), 1P#: regular with user-
specified phase, 2: JONSWAP/Pierson-Moskowitz spectrum (irregular), 3: White 
noise spectrum (irregular), 4: user-defined spectrum from routine 
UserWaveSpctrm (irregular), 5: Externally generated wave-elevation time 
series, 6: Externally generated full wave-kinematics time series [option 6 is 
invalid for PotMod/=0]} (switch)\n'); 
fprintf(fileID,'             0   WaveStMod      - Model for stretching 
incident wave kinematics to instantaneous free surface {0: none=no 
stretching, 1: vertical stretching, 2: extrapolation stretching, 3: Wheeler 
stretching} (switch) [unused when WaveMod=0 or when PotMod/=0]\n'); 
fprintf(fileID,'          4000   WaveTMax       - Analysis time for incident 
wave calculations (sec) [unused when WaveMod=0; determines 
WaveDOmega=2Pi/WaveTMax in the IFFT]\n'); 
fprintf(fileID,'          0.25   WaveDT         - Time step for incident wave 
calculations     (sec) [unused when WaveMod=0; 0.1<=WaveDT<=1.0 recommended; 
determines WaveOmegaMax=Pi/WaveDT in the IFFT]\n'); 
fprintf(fileID,'             %0.1f   WaveHs         - Significant wave height 
of incident waves (meters) [used only when WaveMod=1, 2, or 3]\n',k); 
fprintf(fileID,'            %0.1f   WaveTp         - Peak-spectral period of 
incident waves       (sec) [used only when WaveMod=1 or 2]\n',h); 
fprintf(fileID,'"DEFAULT"        WavePkShp      - Peak-shape parameter of 
incident wave spectrum (-) or DEFAULT (string) [used only when WaveMod=2; use 
1.0 for Pierson-Moskowitz]\n'); 
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fprintf(fileID,'             0   WvLowCOff      - Low  cut-off frequency or 
lower frequency limit of the wave spectrum beyond which the wave spectrum is 
zeroed (rad/s) [unused when WaveMod=0, 1, or 6]\n'); 
fprintf(fileID,'           500   WvHiCOff       - High cut-off frequency or 
upper frequency limit of the wave spectrum beyond which the wave spectrum is 
zeroed (rad/s) [unused when WaveMod=0, 1, or 6]\n'); 
fprintf(fileID,'            15   WaveDir        - Incident wave propagation 
heading direction                         (degrees) [unused when WaveMod=0 or 
6]\n'); 
fprintf(fileID,'             1   WaveDirMod     - Directional spreading 
function {0: none, 1: COS2S}                  (-)       [only used when 
WaveMod=2,3, or 4]\n'); 
fprintf(fileID,'             1   WaveDirSpread  - Wave direction spreading 
coefficient ( > 0 )                        (-)       [only used when 
WaveMod=2,3, or 4 and WaveDirMod=1]\n'); 
fprintf(fileID,'            13   WaveNDir       - Number of wave directions                                           
(-)       [only used when WaveMod=2,3, or 4 and WaveDirMod=1; odd number 
only]\n'); 
fprintf(fileID,'            90   WaveDirRange   - Range of wave directions 
(full range: WaveDir +/- 1/2*WaveDirRange) (degrees) [only used when 
WaveMod=2,3,or 4 and WaveDirMod=1]\n'); 
fprintf(fileID,'     123456789   WaveSeed(1)    - First  random seed of 
incident waves [-2147483648 to 2147483647]    (-)       [unused when 
WaveMod=0, 5, or 6]\n'); 
fprintf(fileID,'       RANLUX   WaveSeed(2)    - Second random seed of 
incident waves [-2147483648 to 2147483647] for intrinsic pRNG, or an 
alternative pRNG: "RanLux"    (-)       [unused when WaveMod=0, 5, or 6]\n'); 
fprintf(fileID,'TRUE             WaveNDAmp      - Flag for normally 
distributed amplitudes                            (flag)    [only used when 
WaveMod=2, 3, or 4]\n'); 
fprintf(fileID,'""               WvKinFile      - Root name of externally 
generated wave data file(s)        (quoted string)    [used only when 
WaveMod=5 or 6]\n'); 
fprintf(fileID,'             1   NWaveElev      - Number of points where the 
incident wave elevations can be computed (-)       [maximum of 9 output 
locations]\n'); 
fprintf(fileID,'             0   WaveElevxi     - List of xi-coordinates for 
points where the incident wave elevations can be output (meters) [NWaveElev 
points, separated by commas or white space; usused if NWaveElev = 0]\n'); 
fprintf(fileID,'             0   WaveElevyi     - List of yi-coordinates for 
points where the incident wave elevations can be output (meters) [NWaveElev 
points, separated by commas or white space; usused if NWaveElev = 0]\n'); 
fprintf(fileID,'---------------------- 2ND-ORDER WAVES ----------------------
------------------- [unused with WaveMod=0 or 6]\n'); 
fprintf(fileID,'False            WvDiffQTF      - Full difference-frequency 
2nd-order wave kinematics (flag)\n'); 
fprintf(fileID,'False            WvSumQTF       - Full summation-frequency  
2nd-order wave kinematics (flag)\n'); 
fprintf(fileID,'             0   WvLowCOffD     - Low  frequency cutoff used 
in the difference-frequencies (rad/s) [Only used with a difference-frequency 
method]\n'); 
fprintf(fileID,'           3.5   WvHiCOffD      - High frequency cutoff used 
in the difference-frequencies (rad/s) [Only used with a difference-frequency 
method]\n'); 
fprintf(fileID,'           0.1   WvLowCOffS     - Low  frequency cutoff used 
in the summation-frequencies  (rad/s) [Only used with a summation-frequency  
method]\n'); 
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fprintf(fileID,'           3.5   WvHiCOffS      - High frequency cutoff used 
in the summation-frequencies  (rad/s) [Only used with a summation-frequency  
method]\n'); 
fprintf(fileID,'---------------------- CURRENT ------------------------------
------------------- [unused with WaveMod=6]\n'); 
fprintf(fileID,'             0   CurrMod        - Current profile model {0: 
none=no current, 1: standard, 2: user-defined from routine UserCurrent} 
(switch)\n'); 
fprintf(fileID,'             0   CurrSSV0       - Sub-surface current 
velocity at still water level  (m/s) [used only when CurrMod=1]\n'); 
fprintf(fileID,'"DEFAULT"        CurrSSDir      - Sub-surface current heading 
direction (degrees) or DEFAULT (string) [used only when CurrMod=1]\n'); 
fprintf(fileID,'            20   CurrNSRef      - Near-surface current 
reference depth            (meters) [used only when CurrMod=1]\n'); 
fprintf(fileID,'             0   CurrNSV0       - Near-surface current 
velocity at still water level (m/s) [used only when CurrMod=1]\n'); 
fprintf(fileID,'             0   CurrNSDir      - Near-surface current 
heading direction         (degrees) [used only when CurrMod=1]\n'); 
fprintf(fileID,'             0   CurrDIV        - Depth-independent current 
velocity                 (m/s) [used only when CurrMod=1]\n'); 
fprintf(fileID,'             0   CurrDIDir      - Depth-independent current 
heading direction    (degrees) [used only when CurrMod=1]\n'); 
fprintf(fileID,'---------------------- FLOATING PLATFORM --------------------
------------------- [unused with WaveMod=6]\n'); 
fprintf(fileID,'             1   PotMod         - Potential-flow model {0: 
none=no potential flow, 1: frequency-to-time-domain transforms based on WAMIT 
output, 2: fluid-impulse theory (FIT)} (switch)\n'); 
fprintf(fileID,'             1   ExctnMod       - Wave-excitation model {0: 
no wave-excitation calculation, 1: DFT, 2: state-space} (switch) [only used 
when PotMod=1; STATE-SPACE REQUIRES *.ssexctn INPUT FILE]\n'); 
fprintf(fileID,'             1   RdtnMod        - Radiation memory-effect 
model {0: no memory-effect calculation, 1: convolution, 2: state-space} 
(switch) [only used when PotMod=1; STATE-SPACE REQUIRES *.ss INPUT FILE]\n'); 
fprintf(fileID,'            60   RdtnTMax       - Analysis time for wave 
radiation kernel calculations (sec) [only used when PotMod=1 and RdtnMod>0; 
determines RdtnDOmega=Pi/RdtnTMax in the cosine transform; MAKE SURE THIS IS 
LONG ENOUGH FOR THE RADIATION IMPULSE RESPONSE FUNCTIONS TO DECAY TO NEAR-
ZERO FOR THE GIVEN PLATFORM!]\n'); 
fprintf(fileID,'"default"        RdtnDT         - Time step for wave 
radiation kernel calculations (sec) [only used when PotMod=1 and ExctnMod>0 
or RdtnMod>0; DT<=RdtnDT<=0.1 recommended; determines RdtnOmegaMax=Pi/RdtnDT 
in the cosine transform]\n'); 
fprintf(fileID,'             1   NBody          - Number of WAMIT bodies to 
be used (-) [>=1; only used when PotMod=1. If NBodyMod=1, the WAMIT data 
contains a vector of size 6*NBody x 1 and matrices of size 6*NBody x 6*NBody; 
if NBodyMod>1, there are NBody sets of WAMIT data each with a vector of size 
6 x 1 and matrices of size 6 x 6]\n'); 
fprintf(fileID,'             1   NBodyMod       - Body coupling model {1: 
include coupling terms between each body and NBody in HydroDyn equals NBODY 
in WAMIT, 2: neglect coupling terms between each body and NBODY=1 with 
XBODY=0 in WAMIT, 3: Neglect coupling terms between each body and NBODY=1 
with XBODY=/0 in WAMIT} (switch) [only used when PotMod=1]\n'); 
fprintf(fileID,'"../5MW_Baseline/HydroData/tlpmit"    PotFile       - Root 
name of potential-flow model data; WAMIT output files containing the linear, 
nondimensionalized, hydrostatic restoring matrix (.hst), frequency-dependent 
hydrodynamic added mass matrix and damping matrix (.1), and frequency- and 
direction-dependent wave excitation force vector per unit wave amplitude (.3) 
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(quoted string) [1 to NBody if NBodyMod>1] [MAKE SURE THE FREQUENCIES 
INHERENT IN THESE WAMIT FILES SPAN THE PHYSICALLY-SIGNIFICANT RANGE OF 
FREQUENCIES FOR THE GIVEN PLATFORM; THEY MUST CONTAIN THE ZERO- AND INFINITE-
FREQUENCY LIMITS!]\n'); 
fprintf(fileID,'             1   WAMITULEN      - Characteristic body length 
scale used to redimensionalize WAMIT output (meters) [1 to NBody if 
NBodyMod>1] [only used when PotMod=1]\n'); 
fprintf(fileID,'           0.0   PtfmRefxt      - The xt offset of the body 
reference point(s) from (0,0,0) (meters) [1 to NBody] [only used when 
PotMod=1]\n'); 
fprintf(fileID,'           0.0   PtfmRefyt      - The yt offset of the body 
reference point(s) from (0,0,0) (meters) [1 to NBody] [only used when 
PotMod=1]\n'); 
fprintf(fileID,'           0.0   PtfmRefzt      - The zt offset of the body 
reference point(s) from (0,0,0) (meters) [1 to NBody] [only used when 
PotMod=1. If NBodyMod=2,PtfmRefzt=0.0]\n'); 
fprintf(fileID,'           0.0   PtfmRefztRot   - The rotation about zt of 
the body reference frame(s) from xt/yt (degrees) [1 to NBody] [only used when 
PotMod=1]\n'); 
fprintf(fileID,'       12179.6   PtfmVol0       - Displaced volume of water 
when the body is in its undisplaced position (m^3) [1 to NBody] [only used 
when PotMod=1; USE THE SAME VALUE COMPUTED BY WAMIT AS OUTPUT IN THE .OUT 
FILE!]\n'); 
fprintf(fileID,'           0.0   PtfmCOBxt      - The xt offset of the center 
of buoyancy (COB) from (0,0) (meters) [1 to NBody] [only used when 
PotMod=1]\n'); 
fprintf(fileID,'           0.0   PtfmCOByt      - The yt offset of the center 
of buoyancy (COB) from (0,0) (meters) [1 to NBody] [only used when 
PotMod=1]\n'); 
fprintf(fileID,'---------------------- 2ND-ORDER FLOATING PLATFORM FORCES ---
------------------- [unused with WaveMod=0 or 6, or PotMod=0 or 2]\n'); 
fprintf(fileID,'             0   MnDrift        - Mean-drift 2nd-order forces 
computed                                       {0: None; [7, 8, 9, 10, 11, or 
12]: WAMIT file to use} [Only one of MnDrift, NewmanApp, or DiffQTF can be 
non-zero. If NBody>1, MnDrift  /=8]\n'); 
fprintf(fileID,'             0   NewmanApp      - Mean- and slow-drift 2nd-
order forces computed with Newmans approximation {0: None; [7, 8, 9, 10, 11, 
or 12]: WAMIT file to use} [Only one of MnDrift, NewmanApp, or DiffQTF can be 
non-zero. If NBody>1, NewmanApp/=8. Used only when WaveDirMod=0]\n'); 
fprintf(fileID,'             0   DiffQTF        - Full difference-frequency 
2nd-order forces computed with full QTF          {0: None; [10, 11, or 12]: 
WAMIT file to use}          [Only one of MnDrift, NewmanApp, or DiffQTF can 
be non-zero]\n'); 
fprintf(fileID,'             0   SumQTF         - Full summation -frequency 
2nd-order forces computed with full QTF          {0: None; [10, 11, or 12]: 
WAMIT file to use}\n'); 
fprintf(fileID,'---------------------- PLATFORM ADDITIONAL STIFFNESS AND 
DAMPING  -------------- [unused with PotMod=0 or 2]\n'); 
fprintf(fileID,'             0   AddF0    - Additional preload (N, N-m) [If 
NBodyMod=1, one size 6*NBody x 1 vector; if NBodyMod>1, NBody size 6 x 1 
vectors]\n'); 
fprintf(fileID,'             0\n'); 
fprintf(fileID,'             0\n'); 
fprintf(fileID,'             0\n'); 
fprintf(fileID,'             0\n'); 
fprintf(fileID,'             0\n'); 
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fprintf(fileID,'            0             0             0             0             
0             0   AddCLin  - Additional linear stiffness (N/m, N/rad, N-m/m, 
N-m/rad)                     [If NBodyMod=1, one size 6*NBody x 6*NBody 
matrix; if NBodyMod>1, NBody size 6 x 6 matrices]\n'); 
fprintf(fileID,'             0             0             0             0             
0             0\n'); 
fprintf(fileID,'             0             0             0             0             
0             0\n'); 
fprintf(fileID,'             0             0             0             0             
0             0\n'); 
fprintf(fileID,'             0             0             0             0             
0             0\n'); 
fprintf(fileID,'             0             0             0             0             
0             0\n'); 
fprintf(fileID,'             0             0             0             0             
0             0   AddBLin  - Additional linear damping(N/(m/s), N/(rad/s), N-
m/(m/s), N-m/(rad/s))        [If NBodyMod=1, one size 6*NBody x 6*NBody 
matrix; if NBodyMod>1, NBody size 6 x 6 matrices]\n'); 
fprintf(fileID,'             0             0             0             0             
0             0\n'); 
fprintf(fileID,'             0             0             0             0             
0             0\n'); 
fprintf(fileID,'             0             0             0             0             
0             0\n'); 
fprintf(fileID,'             0             0             0             0             
0             0\n'); 
fprintf(fileID,'             0             0             0             0             
0             0\n'); 
fprintf(fileID,'             0             0             0             0             
0             0   AddBQuad - Additional quadratic drag(N/(m/s)^2, 
N/(rad/s)^2, N-m(m/s)^2, N-m/(rad/s)^2) [If NBodyMod=1, one size 6*NBody x 
6*NBody matrix; if NBodyMod>1, NBody size 6 x 6 matrices]\n'); 
fprintf(fileID,'             0             0             0             0             
0             0\n'); 
fprintf(fileID,'             0             0             0             0             
0             0\n'); 
fprintf(fileID,'             0             0             0             0             
0             0\n'); 
fprintf(fileID,'             0             0             0             0             
0             0\n'); 
fprintf(fileID,'             0             0             0             0             
0             0\n'); 
fprintf(fileID,'---------------------- AXIAL COEFFICIENTS -------------------
-------------------\n'); 
fprintf(fileID,'             1   NAxCoef        - Number of axial 
coefficients (-)\n'); 
fprintf(fileID,'AxCoefID  AxCd     AxCa     AxCp\n'); 
fprintf(fileID,'   (-)    (-)      (-)      (-)\n'); 
fprintf(fileID,'    1     0.00     0.00     1.00\n'); 
fprintf(fileID,'---------------------- MEMBER JOINTS ------------------------
-------------------\n'); 
fprintf(fileID,'             2   NJoints        - Number of joints (-)   
[must be exactly 0 or at least 2]\n'); 
fprintf(fileID,'JointID   Jointxi     Jointyi     Jointzi  JointAxID   
JointOvrlp   [JointOvrlp= 0: do nothing at joint, 1: eliminate overlaps by 
calculating super member]\n'); 
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fprintf(fileID,'   (-)     (m)         (m)         (m)        (-)       
(switch)\n'); 
fprintf(fileID,'    1     0.00000     0.00000   -47.89000      1            
0\n'); 
fprintf(fileID,'    2     0.00000     0.00000     0.00000      1            
0\n'); 
fprintf(fileID,'---------------------- MEMBER CROSS-SECTION PROPERTIES ------
-------------------\n'); 
fprintf(fileID,'             1   NPropSets      - Number of member property 
sets (-)\n'); 
fprintf(fileID,'PropSetID    PropD         PropThck\n'); 
fprintf(fileID,'   (-)        (m)            (m)\n'); 
fprintf(fileID,'    1       18.00000        0.00100\n'); 
fprintf(fileID,'---------------------- SIMPLE HYDRODYNAMIC COEFFICIENTS 
(model 1) --------------\n'); 
fprintf(fileID,'     SimplCd    SimplCdMG    SimplCa    SimplCaMG    SimplCp    
SimplCpMG   SimplAxCd  SimplAxCdMG  SimplAxCa  SimplAxCaMG  SimplAxCp   
SimplAxCpMG\n'); 
fprintf(fileID,'       (-)         (-)         (-)         (-)         (-)         
(-)         (-)         (-)         (-)         (-)         (-)         (-
)\n'); 
fprintf(fileID,'       0.60        0.60        0.00        0.00        1.00        
1.00        1.00        1.00        1.00        1.00        1.00        1.00 
\n'); 
fprintf(fileID,'---------------------- DEPTH-BASED HYDRODYNAMIC COEFFICIENTS 
(model 2) ---------\n'); 
fprintf(fileID,'             0   NCoefDpth       - Number of depth-dependent 
coefficients (-)\n'); 
fprintf(fileID,'Dpth      DpthCd   DpthCdMG   DpthCa   DpthCaMG       DpthCp   
DpthCpMG   DpthAxCd   DpthAxCdMG   DpthAxCa   DpthAxCaMG   DpthAxCp   
DpthAxCpMG\n'); 
fprintf(fileID,'(m)       (-)      (-)        (-)      (-)            (-)      
(-)        (-)        (-)          (-)        (-)          (-)        (-
)\n'); 
fprintf(fileID,'---------------------- MEMBER-BASED HYDRODYNAMIC COEFFICIENTS 
(model 3) --------\n'); 
fprintf(fileID,'             0   NCoefMembers       - Number of member-based 
coefficients (-)\n'); 
fprintf(fileID,'MemberID    MemberCd1     MemberCd2    MemberCdMG1   
MemberCdMG2    MemberCa1     MemberCa2    MemberCaMG1   MemberCaMG2    
MemberCp1     MemberCp2    MemberCpMG1   MemberCpMG2   MemberAxCd1   
MemberAxCd2  MemberAxCdMG1 MemberAxCdMG2  MemberAxCa1   MemberAxCa2  
MemberAxCaMG1 MemberAxCaMG2  MemberAxCp1  MemberAxCp2   MemberAxCpMG1   
MemberAxCpMG2\n'); 
fprintf(fileID,'   (-)         (-)           (-)           (-)           (-)           
(-)           (-)           (-)           (-)           (-)           (-)           
(-)           (-)           (-)           (-)           (-)           (-)           
(-)           (-)           (-)           (-)           (-)           (-)           
(-)           (-)\n'); 
fprintf(fileID,'-------------------- MEMBERS --------------------------------
-----------------\n'); 
fprintf(fileID,'             1   NMembers       - Number of members (-)\n'); 
fprintf(fileID,'MemberID  MJointID1  MJointID2  MPropSetID1  MPropSetID2  
MDivSize   MCoefMod  PropPot   [MCoefMod=1: use simple coeff table, 2: use 
depth-based coeff table, 3: use member-based coeff table] [ PropPot/=0 if 
member is modeled with potential-flow theory]\n'); 
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fprintf(fileID,'  (-)        (-)        (-)         (-)          (-)        
(m)      (switch)   (flag)\n'); 
fprintf(fileID,'    1         1          2           1            1         
0.4789      1        TRUE\n'); 
fprintf(fileID,'---------------------- FILLED MEMBERS -----------------------
-------------------\n'); 
fprintf(fileID,'             0   NFillGroups     - Number of filled member 
groups (-) [If FillDens = DEFAULT, then FillDens = WtrDens; FillFSLoc is 
related to MSL2SWL]\n'); 
fprintf(fileID,'FillNumM FillMList             FillFSLoc     FillDens\n'); 
fprintf(fileID,'(-)      (-)                   (m)           (kg/m^3)\n'); 
fprintf(fileID,'---------------------- MARINE GROWTH ------------------------
-------------------\n'); 
fprintf(fileID,'             0   NMGDepths      - Number of marine-growth 
depths specified (-)\n'); 
fprintf(fileID,'MGDpth     MGThck       MGDens\n'); 
fprintf(fileID,'(m)        (m)         (kg/m^3)\n'); 
fprintf(fileID,'---------------------- MEMBER OUTPUT LIST -------------------
-------------------\n'); 
fprintf(fileID,'             0   NMOutputs      - Number of member outputs (-
) [must be < 10]\n'); 
fprintf(fileID,'MemberID   NOutLoc    NodeLocs [NOutLoc < 10; node locations 
are normalized distance from the start of the member, and must be >=0 and <= 
1] [unused if NMOutputs=0]\n'); 
fprintf(fileID,'  (-)        (-)        (-)\n'); 
fprintf(fileID,'---------------------- JOINT OUTPUT LIST --------------------
-------------------\n'); 
fprintf(fileID,'             0   NJOutputs      - Number of joint outputs 
[Must be < 10]\n'); 
fprintf(fileID,'   0           JOutLst        - List of JointIDs which are to 
be output (-)[unused if NJOutputs=0]\n'); 
fprintf(fileID,'---------------------- OUTPUT -------------------------------
-------------------\n'); 
fprintf(fileID,'True             HDSum          - Output a summary file 
[flag]\n'); 
fprintf(fileID,'False            OutAll         - Output all user-specified 
member and joint loads (only at each member end, not interior locations) 
[flag]\n'); 
fprintf(fileID,'             2   OutSwtch       - Output requested channels 
to: [1=Hydrodyn.out, 2=GlueCode.out, 3=both files]\n'); 
fprintf(fileID,'"E15.7e2"       OutFmt         - Output format for numerical 
results (quoted string) [not checked for validity!]\n'); 
fprintf(fileID,'"A11"            OutSFmt        - Output format for header 
strings (quoted string) [not checked for validity!]\n'); 
fprintf(fileID,'---------------------- OUTPUT CHANNELS ----------------------
-------------------\n'); 
fprintf(fileID,'"Wave1Elev"               - Wave elevation at the platform 
reference point (  0,  0)\n'); 
fprintf(fileID,'"HydroFxi"\n'); 
fprintf(fileID,'"HydroFyi"\n'); 
fprintf(fileID,'"HydroFzi"\n'); 
fprintf(fileID,'"HydroMxi"\n'); 
fprintf(fileID,'"HydroMyi"\n'); 
fprintf(fileID,'"HydroMzi"\n'); 
fprintf(fileID,'"B1Surge"\n'); 
fprintf(fileID,'"B1Sway"\n'); 
fprintf(fileID,'"B1Heave"\n'); 



68 

 

fprintf(fileID,'"B1Roll"\n'); 
fprintf(fileID,'"B1Pitch"\n'); 
fprintf(fileID,'"B1Yaw"\n'); 
fprintf(fileID,'"B1TVxi"\n'); 
fprintf(fileID,'"B1TVyi"\n'); 
fprintf(fileID,'"B1TVzi"\n'); 
fprintf(fileID,'"B1RVxi"\n'); 
fprintf(fileID,'"B1RVyi"\n'); 
fprintf(fileID,'"B1RVzi"\n'); 
fprintf(fileID,'"B1TAxi"\n'); 
fprintf(fileID,'"B1TAyi"\n'); 
fprintf(fileID,'"B1TAzi"\n'); 
fprintf(fileID,'"B1RAxi"\n'); 
fprintf(fileID,'"B1RAyi"\n'); 
fprintf(fileID,'"B1RAzi"\n'); 
fprintf(fileID,'"B1WvsFxi"\n'); 
fprintf(fileID,'"B1WvsFyi"\n'); 
fprintf(fileID,'"B1WvsFzi"\n'); 
fprintf(fileID,'"B1WvsMxi"\n'); 
fprintf(fileID,'"B1WvsMyi"\n'); 
fprintf(fileID,'"B1WvsMzi"\n'); 
fprintf(fileID,'"B1HDSFxi"\n'); 
fprintf(fileID,'"B1HDSFyi"\n'); 
fprintf(fileID,'"B1HDSFzi"\n'); 
fprintf(fileID,'"B1HDSMxi"\n'); 
fprintf(fileID,'"B1HDSMyi"\n'); 
fprintf(fileID,'"B1HDSMzi"\n'); 
fprintf(fileID,'"B1RdtFxi"\n'); 
fprintf(fileID,'"B1RdtFyi"\n'); 
fprintf(fileID,'"B1RdtFzi"\n'); 
fprintf(fileID,'"B1RdtMxi"\n'); 
fprintf(fileID,'"B1RdtMyi"\n'); 
fprintf(fileID,'"B1RdtMzi"\n'); 
fprintf(fileID,'END of output channels and end of file. (the word "END" must 
appear in the first 3 columns of this line)\n'); 
fclose(fileID); 
    end 
end 
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Appendix B – MatLab script for generating 

masterfiles 

clear all; 
 
 
for i = 4:2:24     
    for j = 1:20 
        for k= 1:0.5:8 
            for h= 5:0.5:15 
 
fileName = 
sprintf('Masterfile_Windspeed%0.2d_Seed%0.2d_WaveHs%0.1f_WaveTp%0.1f.fst',i,j
,k,h); 
 
fileID = fopen(fileName,'w'); 
 
 
fprintf(fileID,'------- OpenFAST EXAMPLE INPUT FILE -------------------------
------------------\n'); 
fprintf(fileID,'FAST Certification Test #23: NREL 5.0 MW Baseline Wind 
Turbine with MIT-NREL TLP Configuration, for use in offshore analysis\n'); 
fprintf(fileID,'---------------------- SIMULATION CONTROL -------------------
-------------------\n'); 
fprintf(fileID,'True          Echo            - Echo input data to 
<RootName>.ech (flag)\n'); 
fprintf(fileID,'"FATAL"       AbortLevel      - Error level when simulation 
should abort (string) {"WARNING", "SEVERE", "FATAL"}\n'); 
fprintf(fileID,'         4000   TMax            - Total run time (s)\n'); 
fprintf(fileID,'     0.1   DT              - Recommended module time step 
(s)\n'); 
fprintf(fileID,'          2   InterpOrder     - Interpolation order for 
input/output time history (-) {1=linear, 2=quadratic}\n'); 
fprintf(fileID,'          0   NumCrctn        - Number of correction 
iterations (-) {0=explicit calculation, i.e., no corrections}\n'); 
fprintf(fileID,'      99999   DT_UJac         - Time between calls to get 
Jacobians (s)\n'); 
fprintf(fileID,'      1E+06   UJacSclFact     - Scaling factor used in 
Jacobians (-)\n'); 
fprintf(fileID,'---------------------- FEATURE SWITCHES AND FLAGS -----------
-------------------\n'); 
fprintf(fileID,'          1   CompElast       - Compute structural dynamics 
(switch) {1=ElastoDyn; 2=ElastoDyn + BeamDyn for blades}\n'); 
fprintf(fileID,'          1   CompInflow      - Compute inflow wind 
velocities (switch) {0=still air; 1=InflowWind; 2=external from 
OpenFOAM}\n'); 
fprintf(fileID,'          2   CompAero        - Compute aerodynamic loads 
(switch) {0=None; 1=AeroDyn v14; 2=AeroDyn v15}\n'); 
fprintf(fileID,'         1   CompServo       - Compute control and 
electrical-drive dynamics (switch) {0=None; 1=ServoDyn}\n'); 
fprintf(fileID,'          1   CompHydro       - Compute hydrodynamic loads 
(switch) {0=None; 1=HydroDyn}\n'); 
fprintf(fileID,'          0   CompSub         - Compute sub-structural 
dynamics (switch) {0=None; 1=SubDyn; 2=External Platform MCKF}\n'); 
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fprintf(fileID,'          1   CompMooring     - Compute mooring system 
(switch) {0=None; 1=MAP++; 2=FEAMooring; 3=MoorDyn; 4=OrcaFlex}\n'); 
fprintf(fileID,'          0   CompIce         - Compute ice loads (switch) 
{0=None; 1=IceFloe; 2=IceDyn}\n'); 
fprintf(fileID,'          0   MHK             - MHK turbine type (switch) 
{0=Not an MHK turbine; 1=Fixed MHK turbine; 2=Floating MHK turbine}\n'); 
fprintf(fileID,'---------------------- ENVIRONMENTAL CONDITIONS -------------
-------------------\n'); 
fprintf(fileID,'    9.80665   Gravity         - Gravitational acceleration 
(m/s^2)\n'); 
fprintf(fileID,'      1.225   AirDens         - Air density (kg/m^3)\n'); 
fprintf(fileID,'       1025   WtrDens         - Water density (kg/m^3)\n'); 
fprintf(fileID,'  1.464E-05   KinVisc         - Kinematic viscosity of 
working fluid (m^2/s)\n'); 
fprintf(fileID,'        335   SpdSound        - Speed of sound in working 
fluid (m/s)\n'); 
fprintf(fileID,'     103500   Patm            - Atmospheric pressure (Pa) 
[used only for an MHK turbine cavitation check]\n'); 
fprintf(fileID,'       1700   Pvap            - Vapour pressure of working 
fluid (Pa) [used only for an MHK turbine cavitation check]\n'); 
fprintf(fileID,'        200   WtrDpth         - Water depth (m)\n'); 
fprintf(fileID,'          0   MSL2SWL         - Offset between still-water 
level and mean sea level (m) [positive upward]\n'); 
fprintf(fileID,'---------------------- INPUT FILES --------------------------
-------------------\n'); 
fprintf(fileID,'"NRELOffshrBsline5MW_MIT_NREL_TLP_ElastoDyn.dat"    EDFile          
- Name of file containing ElastoDyn input parameters (quoted string)\n'); 
fprintf(fileID,'"../5MW_Baseline/NRELOffshrBsline5MW_BeamDyn.dat"    
BDBldFile(1)    - Name of file containing BeamDyn input parameters for blade 
1 (quoted string)\n'); 
fprintf(fileID,'"../5MW_Baseline/NRELOffshrBsline5MW_BeamDyn.dat"    
BDBldFile(2)    - Name of file containing BeamDyn input parameters for blade 
2 (quoted string)\n'); 
fprintf(fileID,'"../5MW_Baseline/NRELOffshrBsline5MW_BeamDyn.dat"    
BDBldFile(3)    - Name of file containing BeamDyn input parameters for blade 
3 (quoted string)\n'); 
fprintf(fileID,'"../5MW_Baseline/Inflowwindfile_Windspeed%0.2d_Seed%0.2d.dat"    
InflowFile      - Name of file containing inflow wind input parameters 
(quoted string)\n',i,j); 
fprintf(fileID,'"NRELOffshrBsline5MW_Onshore_AeroDyn15.dat"    AeroFile        
- Name of file containing aerodynamic input parameters (quoted string)\n'); 
fprintf(fileID,'"NRELOffshrBsline5MW_MIT_NREL_TLP_ServoDyn.dat"    ServoFile       
- Name of file containing control and electrical-drive input parameters 
(quoted string)\n'); 
fprintf(fileID,'"Hydrodynfile_WaveHs%0.1f_WaveTp%0.1f.dat"    HydroFile       
- Name of file containing hydrodynamic input parameters (quoted 
string)\n',k,h); 
fprintf(fileID,'"unused"      SubFile         - Name of file containing sub-
structural input parameters (quoted string)\n'); 
fprintf(fileID,'"NRELOffshrBsline5MW_MIT_NREL_TLP_MAP.dat"    MooringFile     
- Name of file containing mooring system input parameters (quoted 
string)\n'); 
fprintf(fileID,'"unused"      IceFile         - Name of file containing ice 
input parameters (quoted string)\n'); 
fprintf(fileID,'---------------------- OUTPUT -------------------------------
-------------------\n'); 
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fprintf(fileID,'False          SumPrint        - Print summary data to 
"<RootName>.sum" (flag)\n'); 
fprintf(fileID,'          1   SttsTime        - Amount of time between screen 
status messages (s)\n'); 
fprintf(fileID,'       5000   ChkptTime       - Amount of time between 
creating checkpoint files for potential restart (s)\n'); 
fprintf(fileID,'     0.1   DT_Out          - Time step for tabular output (s) 
(or "default")\n'); 
fprintf(fileID,'          0   TStart          - Time to begin tabular output 
(s)\n'); 
fprintf(fileID,'          1   OutFileFmt      - Format for tabular (time-
marching) output file (switch) {0: uncompressed binary [<RootName>.outb], 1: 
text file [<RootName>.out], 2: binary file [<RootName>.outb], 3: both 1 and 
2}\n'); 
fprintf(fileID,'True          TabDelim        - Use tab delimiters in text 
tabular output file? (flag) {uses spaces if false}\n'); 
fprintf(fileID,'"ES15.7E2"    OutFmt          - Format used for text tabular 
output, excluding the time channel.  Resulting field should be 10 characters. 
(quoted string)\n'); 
fprintf(fileID,'---------------------- LINEARIZATION ------------------------
-------------------\n'); 
fprintf(fileID,'False         Linearize       - Linearization analysis 
(flag)\n'); 
fprintf(fileID,'False         CalcSteady      - Calculate a steady-state 
periodic operating point before linearization? [unused if Linearize=False] 
(flag)\n'); 
fprintf(fileID,'          3   TrimCase        - Controller parameter to be 
trimmed {1:yaw; 2:torque; 3:pitch} [used only if CalcSteady=True] (-)\n'); 
fprintf(fileID,'      0.001   TrimTol         - Tolerance for the rotational 
speed convergence [used only if CalcSteady=True] (-)\n'); 
fprintf(fileID,'       0.01   TrimGain        - Proportional gain for the 
rotational speed error (>0) [used only if CalcSteady=True] (rad/(rad/s) for 
yaw or pitch; Nm/(rad/s) for torque)\n'); 
fprintf(fileID,'          0   Twr_Kdmp        - Damping factor for the tower 
[used only if CalcSteady=True] (N/(m/s))\n'); 
fprintf(fileID,'          0   Bld_Kdmp        - Damping factor for the blades 
[used only if CalcSteady=True] (N/(m/s))\n'); 
fprintf(fileID,'          2   NLinTimes       - Number of times to linearize 
(-) [>=1] [unused if Linearize=False]\n'); 
fprintf(fileID,'         30,         60    LinTimes        - List of times at 
which to linearize (s) [1 to NLinTimes] [used only when Linearize=True and 
CalcSteady=False]\n'); 
fprintf(fileID,'          1   LinInputs       - Inputs included in 
linearization (switch) {0=none; 1=standard; 2=all module inputs (debug)} 
[unused if Linearize=False]\n'); 
fprintf(fileID,'          1   LinOutputs      - Outputs included in 
linearization (switch) {0=none; 1=from OutList(s); 2=all module outputs 
(debug)} [unused if Linearize=False]\n'); 
fprintf(fileID,'False         LinOutJac       - Include full Jacobians in 
linearization output (for debug) (flag) [unused if Linearize=False; used only 
if LinInputs=LinOutputs=2]\n'); 
fprintf(fileID,'False         LinOutMod       - Write module-level 
linearization output files in addition to output for full system? (flag) 
[unused if Linearize=False]\n'); 
fprintf(fileID,'---------------------- VISUALIZATION ------------------------
------------------\n'); 



72 

 

fprintf(fileID,'          0   WrVTK           - VTK visualization data 
output: (switch) {0=none; 1=initialization data only; 2=animation; 3=mode 
shapes}\n'); 
fprintf(fileID,'          2   VTK_type        - Type of VTK visualization 
data: (switch) {1=surfaces; 2=basic meshes (lines/points); 3=all meshes 
(debug)} [unused if WrVTK=0]\n'); 
fprintf(fileID,'false         VTK_fields      - Write mesh fields to VTK data 
files? (flag) {true/false} [unused if WrVTK=0]\n'); 
fprintf(fileID,'         15   VTK_fps         - Frame rate for VTK output 
(frames per second){will use closest integer multiple of DT} [used only if 
WrVTK=2 or WrVTK=3]\n'); 
fclose(fileID); 
            end 
        end 
    end 
end 
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Appendix C – MatLab script for generating 

turbsim input files  

clear all; 
 
 
for i = 4:2:24     
    for j = 1:20 
 
fileName = sprintf('Windspeed%0.2d_Seed%0.2d.inp',i,j); 
 
fileID = fopen(fileName,'w'); 
 
%fprintf(fileID,formatSpec,A1,...,An) 
 
 
%fprintf('TurbSim Input File. Valid for TurbSim v1.50; 17-May-2010; Example 
%file that can be used with simulations for the NREL 5MW Baseline Turbine; 
%note that UsableTime has been decreased in this file so that the file 
%distributed with the FAST CertTest isn't as large'); 
fprintf(fileID,'\n'); 
fprintf(fileID,'\n'); 
fprintf(fileID,'---------Runtime Options-----------------------------------
\n'); 
fprintf(fileID,'%d         RandSeed1       - First random seed  (-2147483648 
to 2147483647)\n',j); 
 
 
fprintf(fileID,'RANLUX         RandSeed2       - Second random seed (-
2147483648 to 2147483647) for intrinsic pRNG, or an alternative pRNG: 
"RanLux" or "RNSNLW"\n'); 
fprintf(fileID,'False          WrBHHTP         - Output hub-height turbulence 
parameters in binary form?  (Generates RootName.bin)\n'); 
fprintf(fileID,'False          WrFHHTP         - Output hub-height turbulence 
parameters in formatted form?  (Generates RootName.dat)\n'); 
fprintf(fileID,'False          WrADHH          - Output hub-height time-
series data in AeroDyn form?  (Generates RootName.hh)\n'); 
fprintf(fileID,'True           WrADFF          - Output full-field time-
series data in TurbSim/AeroDyn form? (Generates RootName.bts)\n'); 
fprintf(fileID,'True          WrBLFF          - Output full-field time-series 
data in BLADED/AeroDyn form?  (Generates RootName.wnd)\n'); 
fprintf(fileID,'Flase           WrADTWR         - Output tower time-series 
data? (Generates RootName.twr)\n'); 
fprintf(fileID,'False          WrFMTFF         - Output full-field time-
series data in formatted (readable) form?  (Generates RootName.u, RootName.v, 
RootName.w)\n'); 
fprintf(fileID,'False          WrACT           - Output coherent turbulence 
time steps in AeroDyn form? (Generates RootName.cts)\n'); 
fprintf(fileID,'True           Clockwise       - Clockwise rotation looking 
downwind? (used only for full-field binary files - not necessary for 
AeroDyn)\n'); 
fprintf(fileID,'0              ScaleIEC        - Scale IEC turbulence models 
to exact target standard deviation? [0=no additional scaling; 1=use hub scale 
uniformly; 2=use individual scales]\n'); 
fprintf(fileID,'\n'); 
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fprintf(fileID,'--------Turbine/Model Specifications-----------------------
\n'); 
fprintf(fileID,' 31            NumGrid_Z       - Vertical grid-point matrix 
dimension\n'); 
fprintf(fileID,' 31            NumGrid_Y       - Horizontal grid-point matrix 
dimension\n'); 
fprintf(fileID,' 0.05         TimeStep        - Time step [seconds]\n'); 
fprintf(fileID,'4000.0          AnalysisTime    - Length of analysis time 
series [seconds]\n'); 
fprintf(fileID,'4000.0          UsableTime      - Usable length of output 
time series [seconds] (program will add GridWidth/MeanHHWS seconds) [bjj: was 
630]\n'); 
fprintf(fileID,'90.0          HubHt           - Hub height [m] (should be > 
0.5*GridHeight)\n'); 
fprintf(fileID,'179.50          GridHeight      - Grid height [m]\n'); 
fprintf(fileID,'185.00          GridWidth       - Grid width [m] (should be 
>= 2*(RotorRadius+ShaftLength))\n'); 
fprintf(fileID,'  0            VFlowAng        - Vertical mean flow (uptilt) 
angle [degrees]\n'); 
fprintf(fileID,'  0            HFlowAng        - Horizontal mean flow (skew) 
angle [degrees]\n'); 
fprintf(fileID,'\n'); 
fprintf(fileID,'--------Meteorological Boundary Conditions-------------------
\n'); 
fprintf(fileID,'"IECKAI"         TurbModel       - Turbulence model 
("IECKAI"=Kaimal, "IECVKM"=von Karman, "GP_LLJ", "NWTCUP", "SMOOTH", 
"WF_UPW", "WF_07D", "WF_14D", or "NONE")\n'); 
fprintf(fileID,'"1-ed3"        IECstandard     - Number of IEC 61400-x 
standard (x=1,2, or 3 with optional 61400-1 edition number (i.e. "1-Ed2") 
)\n'); 
fprintf(fileID,'"B"            IECturbc        - IEC turbulence 
characteristic ("A", "B", "C" or the turbulence intensity in percent) 
("KHTEST" option with NWTCUP, not used for other models)\n'); 
fprintf(fileID,'"NTM"            IEC_WindType    - IEC turbulence type 
("NTM"=normal, "xETM"=extreme turbulence, "xEWM1"=extreme 1-year wind, 
"xEWM50"=extreme 50-year wind, where x=wind turbine class 1, 2, or 3)\n'); 
fprintf(fileID,'default        ETMc            - IEC Extreme turbulence model 
"c" parameter [m/s]\n'); 
fprintf(fileID,'"PL"             WindProfileType - Wind profile type 
("JET"=Low-level jet,"LOG"=Logarithmic,"PL"=Power law, or "default", or 
"USR"=User-defined)\n'); 
fprintf(fileID,'90           RefHt           - Height of the reference wind 
speed [m]\n'); 
fprintf(fileID,'%d          URef            - Mean (total) wind speed at the 
reference height [m/s]\n',i); 
fprintf(fileID,'default        ZJetMax         - Jet height [m] (used only 
for JET wind profile, valid 70-490 m)\n'); 
fprintf(fileID,'0.12        PLExp           - Power law exponent [-] (or 
"default")\n'); 
fprintf(fileID,'default            Z0              - Surface roughness length 
[m] (or "default")\n'); 
fprintf(fileID,'\n'); 
fprintf(fileID,'--------Non-IEC Meteorological Boundary Conditions-----------
-\n'); 
fprintf(fileID,'default        Latitude        - Site latitude [degrees] (or 
"default")\n'); 
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fprintf(fileID,'0.05           RICH_NO         - Gradient Richardson 
number\n'); 
fprintf(fileID,'default        UStar           - Friction or shear velocity 
[m/s] (or "default")\n'); 
fprintf(fileID,'default        ZI              - Mixing layer depth [m] (or 
"default")\n'); 
fprintf(fileID,'default        PC_UW           - Hub mean u w  Reynolds 
stress [(m/s)^2] (or "default")\n'); 
fprintf(fileID,'default        PC_UV           - Hub mean u v Reynolds stress 
[(m/s)^2] (or "default")\n'); 
fprintf(fileID,'default        PC_VW           - Hub mean v w Reynolds stress 
[(m/s)^2] (or "default")\n'); 
fprintf(fileID,'default        IncDec1         - u-component coherence 
parameters (e.g. "10.0  0.3e-3" in quotes) (or "default")\n'); 
fprintf(fileID,'default        IncDec2         - v-component coherence 
parameters (e.g. "10.0  0.3e-3" in quotes) (or "default")\n'); 
fprintf(fileID,'default        IncDec3         - w-component coherence 
parameters (e.g. "10.0  0.3e-3" in quotes) (or "default")\n'); 
fprintf(fileID,'default        CohExp          - Coherence exponent (or 
"default")\n'); 
fprintf(fileID,'\n'); 
fprintf(fileID,'--------Coherent Turbulence Scaling Parameters---------------
----\n'); 
%fprintf(fileID,'"M:\coh_events\eventdata"  CTEventPath     -   Name of the 
path where event data files are located\n'); 
fprintf(fileID,'"Random"       CTEventFile     - Type of event files 
("random", "les" or "dns")\n'); 
fprintf(fileID,'true           Randomize       - Randomize disturbance scale 
and location? (true/false)\n'); 
fprintf(fileID,' 1.0           DistScl         - Disturbance scale (ratio of 
dataset height to rotor disk).\n'); 
fprintf(fileID,' 0.5           CTLy            - Fractional location of tower 
centerline from right (looking downwind) to left side of the dataset.\n'); 
fprintf(fileID,' 0.5           CTLz            - Fractional location of hub 
height from the bottom of the dataset.\n'); 
fprintf(fileID,'10.0           CTStartTime     - Minimum start time for 
coherent structures in RootName.cts [seconds]\n'); 
fprintf(fileID,'\n'); 
fprintf(fileID,'==================================================\n'); 
fprintf(fileID,'NOTE: Do not add or remove any lines in this file!\n'); 
fprintf(fileID,'==================================================\n'); 
 
 
fclose(fileID); 
 
    end     
end 

 


