

VIDAR CARLSEN DAN TEDROS VINDENES KANDAL SUPERVISOR: ANDREEA-LAURA COJOCARU

The Future of Norwegian Deep-Sea Mining

Impacts on the Sustainability Pillars

Master's Thesis, 2024 Industrial Economics Department of Safety, Planning, and Economics Faculty of Science and Technology

Acknowledgments

First and foremost, we would like to express our deepest gratitude to our wonderful supervisor, Andreea. Her support, insightful guidance, and encouragement have been invaluable throughout the process of researching and writing this thesis. Her expertise and availability to answer our questions, provide contact information, and suggest literature have significantly enhanced the quality of our work. We are profoundly thankful for her patience, constructive feedback, and dedication to our academic growth.

We also want to extend our thanks to Chiara Morfea, Håvard Carlsen, and our families. Their support, understanding, and encouragement have been our pillars of strength. They have been patient and accommodating, offering emotional and practical support that has enabled us to stay focused and motivated.

Additionally, we are deeply grateful to our classmates and A-laget for their camaraderie, assistance, and motivation throughout the semester. Their collaborative spirit, shared knowledge, and moral support have made this journey both enriching and enjoyable. The lively discussions, study sessions, and collective problem-solving efforts have greatly contributed to our learning experience. We are thankful for the sense of community and the friendships that have developed, making this academic endeavor a truly memorable one.

Abstract

The increasing demand for critical minerals, driven by the global shift towards low-carbon technologies, has intensified interest in deep-sea mining (DSM). This emerging industry presents both opportunities and challenges for Norway, which has identified valuable resources on its continental shelf. However, significant knowledge gaps exist regarding DSM's environmental, social, and economic impacts. This thesis seeks to address these gaps by answering the research questions: *What are the challenges and opportunities of deep-sea mining on the Norwegian continental shelf on the three sustainability pillars? Additionally, what management strategies can be employed to ensure viability for stakeholders?*

Previous research has highlighted some potential positive and negative risks of DSM in other parts of the world, but there remains a lack of scientific studies focusing on the Norwegian context. This thesis aims to address this gap by providing a balanced assessment of DSM's impacts, thus enabling evidence-based decision-making. To achieve this, the thesis employs a mixed-methods approach, including a cost-benefit analysis, and the development of a triple bottom line tool. This tool provides a range of metrics with relevant information for different stakeholders, such as research communities, regulators, and industry professionals. The major findings indicate that while DSM could offer benefits across all sustainability pillars, the expected costs are deemed too high, especially in the long-term and largely unknown environmental impacts. By addressing the interconnected economic, environmental, and social dimensions, the study highlights the need for sustainable practices to ensure long-term viability for all stakeholders involved.

Sammendrag

Den økende etterspørselen etter kritiske mineraler, drevet av det globale skiftet mot lavkarbonteknologi, har økt interessen for dyphavsgruvedrift. Denne fremvoksende industrien byr på både muligheter og utfordringer for Norge, som har identifisert ressurser på kontinentalsokkelen. Det er imidlertid store kunnskapshull når det gjelder de miljømessige, sosiale og økonomiske konsekvensene av dyphavsgruvedrift. Denne oppgaven ønsker å tette disse hullene ved å besvare forskningsspørsmålene: *Hvilke utfordringer og muligheter gir dyphavsgruvedrift på norsk sokkel med hensyn til bærekraftpilarene? Hvilke forvaltningsstrategier kan brukes for å sikre levedyktighet for interessentene?*

Tidligere forskning har belyst noen potensielle positive og negative risikoer ved dyphavsgruvedrift i andre deler av verden, men det mangler fortsatt forskningsstudier som fokuserer på den norske konteksten. Denne oppgaven har som mål å bidra til å tette dette gapet ved å gi en balansert vurdering av konsekvensene av dyphavsgruvedrift, slik at det blir mulig å ta evidensbaserte beslutninger. For å oppnå dette benytter oppgaven en blandet metodisk tilnærming, inkludert en kost-nytte-analyse og utviklingen av et trippel bunnlinjeverktøy. Verktøyet inneholder en rekke måleparametere med relevant informasjon for ulike interessenter, som forskningsmiljøer, myndigheter og fagfolk i bransjen. De viktigste funnene tyder på at selv om dyphavsgruvedrift kan gi fordeler på tvers av alle bærekraftpilarene, anses de forventede kostnadene å være for høye, særlig når det gjelder de langsiktige og stort sett ukjente miljøkonsekvensene. Ved å ta for seg de sammenkoblede økonomiske, miljømessige og sosiale dimensjonene understreker studien behovet for bærekraftig praksis for å sikre langsiktig levedyktighet for alle involverte.

Contents

1 Introduction	1
2 Background	3
2.1 The Main Types of Deep-Sea Mineral Deposits	3
2.2 History and Technological Development of Deep-Sea Mining	5
3 Literature review	8
3.1 Environmental	8
3.2 Economic	10
3.3 Social	12
3.4 Triple Bottom Line Within the DSM Industry	14
4 Theory	15
4.1 Fundamental Definitions in Risk Science	15
4.2 Cost-Benefit Analysis	16
4.2.1 Risk Concerns	16
4.2.2 Qualitative Cost-Benefit Analysis	16
6 Methodology	20
6.1 Qualitative Cost-Benefit Analysis	20
6.2 Performance Indicators	25
Indicators and Dimensions	26
6.3 Limitations of the CBA	30
7 Results	32
7.1 Cost-Benefit Analysis	32
7.1.1 Benefits	32
7.1.2 Costs	37
7.1.3 Summary of the Relationship Between Benefits and Costs	42
7.2 Deep-Sea Mining Performance Indicators	42
8 Discussion	44
СВА	44
DSMPI	46
9 Conclusion	48
AI Disclosure	49
References	50
Appendices	59
Appendix A.1	59
Definitions of Deep-Sea Mining	59
Appendix A.2	59
Formation and Distribution of Polymetallic Nodules	59

Formation and Distribution of Cobalt-Rich Crusts	60
Formation and Distribution of Seafloor Massive Sulfide Deposits	61
Appendix B.1	64
Full tables CBA	64
Appendix C.1	97
Explanation of DSM Performance Indicator Diagram Metrics	97

List of Figures

Figure 1 – Polymetallic nodule (Lavinsky, 2010)	. 3
Figure 2 – An SMS where the escaping water has been colored by the minerals it contains,	,
giving it a characterizing black "smoke". These deposits are commonly called black smoker	s
(World Ocean Review, 2014a)	. 4
Figure 3 – Cross section of a CRC, easily recognizable on top of the volcanic rock (World	
Ocean Review, 2014b)	. 4
Figure 4 – Concept figure of the CLB system (Masuda et al., 1971)	. 5
Figure 5 – Extraction methods for the three different deep-sea deposit types (Priyanka, 202	23)
	. 7
Figure 6 – MPA network with a 10 km buffer zone and the proposed area for DSM (Legrand	t
et al., 2024)	10
Figure 7 – Minerals used in cars, excluding steel and aluminum (International Energy	
Agency, 2021a)	11
Figure 8 – DSM Performance Indicators	43
Figure 9 – Formation process of CRCs (GEOMAR)	61
Figure 10 – Formation process of SMSs (World Ocean Review, 2014c, p. 83)	63

List of Tables

Table 1 – The expected production steps for a DSM venture on the Norwegian continental shelf	6
Table 2 – Several challenges in terrestrial mining. (International Energy Agency, 2021b, p.	
40)	13
Table 3 – General steps for performing CBA (Stevens et al., 2008, p. 8)	17
Table 4 – Defining benefits and costs in the CBA (Stevens et al., 2008, p. 8)	17
Table 5 – Indicators for Benefits and Costs in the CBA	21
Table 6 – Weight of indicators and risk levels in CBA	24
Table 7 – Risk score intervals for positive and negative risk	25
Table 8 – Potential environmental benefits	32
Table 9 – Potential economic benefits	33
Table 10 – Potential social benefits	35
Table 11 – Potential environmental costs	37
Table 12 – Potential economic costs	39
Table 13 – Potential social costs	40

Abbreviations

CBA	Cost-Benefit Analysis
CCZ	Clarion Clipperton Zone
CLB	Continuous line bucket
CRC	Cobalt rich crust
DSM	Deep-sea mining
DSMPI	Deep-sea mining performance indicators
EEZ	Exclusive economic zone
EU	European Union
EV	Electric vehicles
GWP	Global Warming Potential
IEA	International Energy Agency
ISA	International Seabed Authority
NCS	Norwegian continental shelf
SMS	Seafloor massive sulfides
TBL	Triple bottom line
UNCLOS	United Nations Convention on the Law of the Seas

1 Introduction

As the demand for minerals used in low-carbon technologies and modern mass-produced electronics such as electric vehicle (EV) batteries, wind turbines, solar panels, and smartphones is expected to increase in response to the green shift (IPCC, 2023), new frontiers to obtain these minerals are being explored. The deep seabed once thought to be devoid of life, has been found to contain vast mineral deposits of copper, cobalt, nickel, zinc, silver, gold, and rare earth elements (Ashford et al., 2023, p. 2). However, scientists are sounding the alarm that extracting these minerals from the ocean depths could cause irreversible harm to the deep-sea biodiversity, marine life, and the ocean's carbon cycle (Ashford et al., 2023).

In January 2024, Norway passed a bill accelerating the hunt for precious metals, making it the first country in the world to advance with the controversial practice of deep-sea mining (DSM) (Normannsen, 2024; Stallard, 2024). The Norwegian government argues that current mineral extraction is largely concentrated in a few countries and companies with lower environmental and worker rights standards than Norway. Therefore, the government should examine the possibility of Norway contributing to the global mineral supply in a responsible manner (Energidepartementet, 2024b). However, there are also plans for DSM activities outside of Norway.

In the international waters of the Pacific Ocean, the Clarion Clipperton Zone (CCZ) is an area of active debate. Here some nations are already applying to the United Nations' International Seabed Authority (ISA), also known as the Authority, for permits to begin exploration (Ashford et al., 2023). Although the ISA planned to reach an agreement on the DSM regulations in July 2023, it failed to do so (Ashford et al., 2023; Pickens et al., 2024, p. 2). The situation was further complicated by the small island state of Nauru issuing a letter notifying their intent to apply for an exploitation contract, triggering a two-year countdown for the ISA to finalize relevant regulations. The regulations serve as guidelines on how countries should pursue DSM activities in international waters (Pickens et al., 2024, pp. 1-2). These regulations will also apply to sovereign states wanting to conduct DSM activities within their waters, as national laws should be *"no less effective"* than international laws (Levin et al., 2016, p. 246). What happens before 2025 when the ISA has to finalize the regulations remains unclear (Ashford et al., 2023).

If the Norwegian government allows DSM activities in its waters based on the current impact assessment, it will likely have unforeseen impacts on the country with spillover effects on the rest of the Arctic Ocean (WWF Global Arctic Programme, 2023). Therefore, this thesis explores the potential consequences and how various stakeholders may be affected. Specifically, the study investigates the challenges and opportunities of initiating DSM activities in Norway, focusing on the three pillars of sustainability: economic, environmental, and social. This is done

with an in-depth Cost-Benefit Analysis (CBA), aiming to provide transparency about what we know and what we do not know regarding the impacts of DSM.

Examining these pillars ensures a balanced approach that supports informed decision-making (Gibson, 2006, p. 260). Understanding the trade-offs and synergies between different sustainability aspects allows stakeholders to gain a clear view of the possible implications. Moreover, focusing on the sustainability pillars is crucial for the long-term viability of the DSM industry, supporting economic growth, protecting the environment, and promoting social well-being. The thesis also provides a tool for evaluating the industry's performance based on selected indicators within the sustainability pillars. This tool is designed to promote responsible management as the industry evolves.

The structure of this thesis is as follows. First, we provide background information on DSM, bringing the reader up to speed with the current state of the industry. Next, we present the current literature on DSM in Norway, identifying research gaps. Following this, we describe the methods used to address these gaps. We then present the results derived from our methodologies, and finally, we discuss the implications of our findings before concluding.

2 Background

2.1 The Main Types of Deep-Sea Mineral Deposits

This section provides a quick introduction to the different types of deep-sea mineral deposits and provides the reader with a basic understanding for the subsequent chapters. A more detailed description of these deposits and definitions of DSM can be found in Appendix A.1 and Appendix A.2.

The mineral deposits that are of commercial interest to deep-sea mining can be divided into three types: polymetallic nodules, seafloor massive sulfides (SMS), and cobalt-rich crusts (CRC). These all occur globally but are more frequent in areas with certain geological features and conditions (Childs, 2019, p. 2).

Polymetallic nodules, also known as manganese nodules, are mineral concretions typically with a diameter between 1 - 12 cm and grow by an accumulation of manganese and iron oxides around a nucleus (Hein et al., 2013, pp. 4,7). They are commonly found on sediment-covered abyssal plains at water depths of about 3,000 - 6,000 m, where sedimentation rates are less than 20 mm per thousand years (Petersen et al., 2016, p. 176). Usually, they are found within the top 20 - 30 cm of the seabed (MIDAS).

Figure 1 – Polymetallic nodule (Lavinsky, 2010)

Seafloor massive sulfides deposits form on and below the seabed from high-temperature hydrothermal water emitted by volcanoes along ridges, island arcs, and in rifted back-arc basins behind active subduction zones (Petersen et al., 2016, p. 180). Here the superheated water contains high levels of dissolved minerals, and when it encounters a physical or chemical barrier, such as cold seawater, the fluid precipitates and forms sulfide deposited on the seabed. Chimney-like structures can build up which collapse at irregular intervals and form cone-like or mound-like deposits of minerals (Meld. St. 25 (2022-2023), p. 20). Reliable size estimates of SMSs are rare because they require drilling information to judge (Petersen et al., 2016, p. 183). However, estimates range from a few tons to over 20 megatons (Hannington et al., 2011, p. 1157).

Figure 2 – An SMS where the escaping water has been colored by the minerals it contains, giving it a characterizing black "smoke". These deposits are commonly called black smokers (World Ocean Review, 2014a)

Cobalt-rich crusts, or co-rich ferromanganese crusts, are formed when dissolved metal compounds that occur naturally in seawater build up a crust directly on underwater rock formations under given conditions (Meld. St. 25 (2022-2023), p. 20). This is a slow process, where the crusts accumulate at a rate of 1 - 6 mm per million years and can reach thicknesses of up to 25 cm (MIDAS).

Figure 3 – Cross section of a CRC, easily recognizable on top of the volcanic rock (World Ocean Review, 2014b)

2.2 History and Technological Development of Deep-Sea Mining

The discovery of mineral deposits on the seabed is not a recent discovery. Polymetallic nodules were first found during the Challenger expedition over 140 years ago. The scientific mission took place in the 1870s and laid the foundation for modern oceanography (Scarminach, 2019). Discoveries of SMSs and CRCs happened later, with the first black smokers being discovered in 1979 in the East Pacific Rise and the presence of CRCs first being identified in 1980 in the Pacific Ocean by Germany and Britain on the "Sonne" ship (Ju et al., 2023, p. 2; World Ocean Review, 2014a). It took a long time from the discovery of polymetallic nodules to commercial interest in the resource. The first commercial interest was not seen until the mid-20th century (Scarminach, 2019).

The first trial of a polymetallic nodule mining system occurred in 1970 off the coast of Florida on the Blake Plateau. Here a 6,750 ton freighter, equipped with a derrick, lifted the nodules at a depth of 1,000 m using an airlift (International Seabed Authority, p. 5). Two years later, a Japanese vessel in a syndicate of 30 companies used a "continuous line bucket" (CLB) system (Figure 4) at a depth of 4,500 m. At this trial, an 8 km cable was equipped with buckets at regular intervals, which dredged the nodules (International Seabed Authority, p. 5; Kang & Liu, 2021, p. 2; Masuda et al., 1971).

Figure 4 – Concept figure of the CLB system (Masuda et al., 1971)

In the rest of the 1970s, several consortia were active in polymetallic nodule mining, investing an amount estimated to be around USD 1.4 billion (adjusted for inflation) in projects (Carboex, 2023, p. 41). These consortia combined technology and experience derived from dredging, deep water oil and gas, near-shore underwater mining, and ore and mineral process industries (Carboex, 2023, p. 29). Notably, The Ocean Management Inc. consortium completed the first successful nodule pilot mining test in 1978 using a hydraulic system of submerged pumps and an airlift to recover nearly 1,000 tons of nodules (Kang & Liu, 2021, p. 2; OMI).

Modern Technology

For polymetallic nodules, mining companies have steered away from the CLB system. While specific plans are proprietary, all companies today plan to use a (horizontal) seafloor component moving along the seabed to collect the nodules. Connected is a (vertical) component that lifts the nodules to the ship, while a ship-based component separates the nodules from the slurry (Cuyvers et al., 2018, p. 23). As it would be an expensive procedure to transport the slurry to a tailings dam or on-land stack, it is disposed of after it is separated. It is proposed that it should be disposed of at depths of 1,000 - 1,100 m to consider light penetration, ocean turbidity, alteration of the benthic habitat, and burial of aquatic organisms (Ma et al., 2017, p. 4).

The horizontal component will be remotely operated, funneling the nodules towards the vertical component, which consists of a pipe string or riser. The equipment needs to function effectively in the high-pressure, high-acidity waters found at such great depths without clogging or stirring up too much sediment (Cuyvers et al., 2018, p. 23). As retrieval and redeployment of the equipment will be time-consuming and costly, it will also need to remain on the seabed for long periods at a time (Cuyvers et al., 2018, p. 24).

DSM in the Norwegian context is somewhat different as polymetallic nodules are not present on the Norwegian continental shelf (Meld. St. 25 (2022-2023), p. 13). The Norwegian Ministry of Energy has summarized the expected production steps for the extraction of SMSs and CRCs, as shown in Table 1 (Meld. St. 25 (2022-2023), p. 41).

1.	Mining and collection of minerals on the seabed
2.	Vertical transport of the ore from the seabed to the production unit at sea level
3.	Storage and possibly dewatering of ore at the production unit
4.	Loading from production unit to transport ship/storage system, as well as disposal of waste materials/separated seawater
5.	Transport of ore to onshore facilities for treatment and/or further processing

Table 1 – The expected production steps for a DSM venture on the Norwegian continental shelf

The mining of the different types of deposits uses similar methods, but the equipment used for extracting the minerals will differ (Jones et al., 2020, p. 10). CRCs and SMSs are difficult to extract because they stick to the steep and uneven surfaces they form on (Priyanka, 2023). A challenge here is to not collect too much rock, diluting the deposit. The collecting vehicles for these deposits use a cut-and-crush principle where the crust is first peeled off and crushed into paper clip-size fragments (Priyanka, 2023). For SMSs, the equipment is similar to what is used for terrestrial mining today (Jones et al., 2020, p. 10). See Figure 5 for an illustration of methods.

Figure 5 – Extraction methods for the three different deep-sea deposit types (Priyanka, 2023)

3 Literature review

Sustainability involves using resources to meet current needs without compromising future generations' ability to do the same, considering environmental, social, and economic aspects (Brundtland, 1987). One way to understand sustainability is to see it as an interconnected hierarchy, where environmental sustainability forms the basis for social and economic sustainability, with social considerations underpinning economic viability (Purvis et al., 2019). This emphasizes the need to assess the effects on all these pillars before undertaking DSM. The concept of the triple bottom line (TBL) is useful for situations where companies should prioritize social and environmental concerns as much as profits (Miller, 2023).

Norway has conducted an impact assessment on the expected effect DSM can have on the environment, economy, and social relations (Sokkeldirektoratet, 2024). With this assessment as a basis, the government has opened part of the Norwegian continental shelf (NCS) to mineral exploration (Brembo et al., 2023). This assessment considered a wide range of positive impacts of DSM, but only briefly touched upon the negative ones, leading to criticism from several organizations including WWF, Naturvernforbundet, Spire, as well as the European Parliament (EJF Staff, 2024; NTB, 2023). Due to this and a general lack of research on DSM in Norway, the thesis relies on international research, where the majority has been conducted in the CCZ. The information has been assessed and translated into the Norwegian context.

3.1 Environmental

There are significant concerns about the environmental impacts of DSM mining due to large scientific gaps. Reliable baseline data are necessary for establishing the pre-mining environmental conditions, which can later be used to design effective monitoring programs to detect and measure environmental changes over time (Clark et al., 2020, p. 2).

A healthy and thriving deep-sea biodiversity brings ecosystem services to humanity's benefit and plays an intricate part in a complex ecosystem keeping the oceans healthy, as it helps regulate ocean acidity and produce oxygen (Niner et al., 2018, p. 2). New research is also increasingly recognizing the role of deep-sea species and ecosystems in carbon cycling and storage (Fauna & Flora, 2023, p. 10). In the daily migration of mesopelagic¹ fish and zooplankton, they play a major role in transporting carbon from the sunlit zone to the seabed, which contains dissolved carbon stocks on a magnitude larger than terrestrial soils (Hilmi et al., 2021, p. 4).

¹ Mesopelagic organisms live in the ocean at depths between 200 – 1000 meters (Institute of Marine Research, 2023)

To date, 230,000 species in the oceans have been scientifically described, but this is expected only to be a small fraction of the total. Even in seemingly inhospitable environments, like active SMSs, life forms have evolved to thrive in extreme conditions (Fauna & Flora International, 2020, pp. 7 - 8).

The environmental baseline for nodules in the CCZ is greater than for both inactive SMSs on the Mid-Atlantic ridge and CRCs (Amon et al., 2022, p. 4). Still, in the CCZ, approximately 70 – 90 % of species collected are new to science. Additionally, it is estimated that 25 - 75 % of total species remain to be collected from sites already sampled (Amon et al., 2022, p. 3). Scientific knowledge of active SMSs on the Mid-Atlantic ridge has the greatest environmental baseline. However, SMS mining will most likely target inactive ones (Amon et al., 2022, p. 5).

Additionally, research has indicated that these species will be significantly affected. While there is little scientific knowledge about the impacts of DSM conducted in the Atlantic, there are a few studies in the CCZ that can be used to draw parallels. (Amon et al., 2022, p. 4). In the Pacific Ocean in 1989, the largest environmental impact test performed on the deep-sea floor was conducted. Since the test was performed, scientists have reported that the site never recovered, and there has been little return of life (Heffernan, 2019, p. 466). Other tests have also come to similar results. In 2020, the first test on the environmental effects of mining CRCs took place. Here, a 120 m long strip of crust was excavated and studied the following year. It was found that the density of active swimming animals, like fish and shrimp, had dropped by 43 % in the area directly affected by the sediment plume and 56 % in adjacent areas (Gilbert, 2023).

If Norway wants to reduce biological loss, the designation of Marine Protected Areas (MPAs) could be a potential solution, as these have been considered effective tools for halting the continued loss of marine species. They could therefore be a crucial instrument in helping Norway achieve its commitment to protect 30 % of its marine area by 2030 (Legrand et al., 2024, p. 4). In 2024, a study by the Institute of Marine Research put forth a proposal for an MPA network attempting to best protect biodiversity and deep-sea benthic ecosystems in the Nordic Seas (Legrand et al., 2024, p. 17). Figure 6 shows the proposed MPA network covering 30 % of the Norwegian extended continental shelf and the proposed area for DSM, illustrating a clear overlap.

Figure 6 – MPA network with a 10 km buffer zone and the proposed area for DSM (Legrand et al., 2024)

Even though there are environmental concerns regarding DSM, the industry also brings opportunities for improvement. In 2021, the metals and mining industry accounted for approximately 4 - 7 % of worldwide greenhouse gas emissions (GlobalData). Studies have estimated that nodule mining could reduce emissions by 70 - 75 % compared to terrestrial mining (Chung et al., 2023; Paulikas et al., 2020, p. 11). It should be noted here that only three studies compare the nodule-to-commodity climate impact of nodules to terrestrial mining, showing great variation in the results (Planet Tracker, 2023, p. 3). In addition, the metallurgical processing of nodules is proposed to be similar to that of land ores. This is the biggest climate change contributor in the production process of minerals, accounting for 70 - 85 % of the total climate impact (Planet Tracker, 2023, p. 8).

3.2 Economic

In the production process of minerals, there are several challenges that DSM could help alleviate. One of these challenges is the high demand for minerals. The World Bank Group estimates that 3.5 billion tons of minerals will be required by 2050 to reach the Paris Agreement goal of keeping the global average temperatures well below 2°C compared to pre-industrial levels (UNFCCC; World Bank Group, 2020, p. 11). This legally binding treaty necessitates a complete restructuring of the energy sector (World Ocean Review, 2021, p. 151).

Wind turbines, photovoltaic systems, and energy storage units utilize several critical minerals² in their construction (World Ocean Review, 2021, p. 151). Demand for these minerals is expected to increase substantially, with the International Energy Agency (IEA) estimating a nearly fourfold increase by 2030 in its Net Zero Emissions by 2050 Scenario. Meeting this demand with terrestrial mining would require the development of 164 new mines for critical minerals (International Energy Agency, 2023, p. 11).

An example of a sector with a large demand for minerals is the transportation sector. In 2022 this sector was responsible for about 20 % of global emissions (Chung et al., 2023). For EVs, the total lifecycle greenhouse gas emissions are on average around half of internal combustion cars, with the potential for a further 25 % reduction with low-carbon technologies (International Energy Agency, 2021b, p. 15). However, producing an EV is a mineral-intensive process. Compared to a conventional car powered by an internal combustion engine, producing an EV requires six times more minerals, see Figure 7 (Chung et al., 2023).

Figure 7 – Minerals used in cars, excluding steel and aluminum (International Energy Agency, 2021a)

As these low-carbon technologies are mineral intensive, it is important to look at the status of resources and reserves³ in terrestrial mines. For both resources and reserves, there are generally no signs of shortages. Even though there has been an increase in production over the past decades, economically viable reserves for many minerals essential in the energy

² Critical minerals: Minerals with significant economic importance and supply risks. Source: (SINTEF, 2022, p. 3).

³ Resources are concentrations of metals with potential for economic extraction, while reserves are mineable resources under current conditions. Source: (International Energy Agency, 2021b, p. 130)

transition have been increasing. However, concerns about resources relate to quality rather than quantity (International Energy Agency, 2021b, p. 130). In recent years it has become increasingly difficult to mine many minerals. The ore grade⁴ has decreased for many commodities over the past decade (Chung et al., 2023). As a result of the dropping ore grades, mines need to be deeper to extract the same amount of minerals, which in turn leads to higher energy consumption, production costs, greenhouse gas emissions, and waste volumes (International Energy Agency, 2021b, p. 12).

Proponents of DSM argue that if states do not meet the increasing demand for resources, it will put their economic development and the prosperity of their citizens at risk (World Ocean Review, 2021, p. 161). To ensure this demand is met, supporters of DSM say that exploiting the seabed is central (Jones, 2023). On the NCS, it is estimated to be over 300 million tons of minerals (Oljedirektoratet, 2023, pp. 1-2). Furthermore, the CCZ, which covers about 1.3 % of the world's ocean floor, contains more nickel, cobalt, and manganese than all land-based deposits. For copper, the CCZ's deposits are about equal to those on land (Chung et al., 2023).

Another approach to closing the demand gap is considering other supply sources, which could be moving to a circular economic model or an increased degree of recycling. It is projected that technological development, circular economic strategies, and recycling could reduce cumulative mineral demand by 58 % between 2022 and 2050 (EJF, 2024, p. 4). End-of-life minerals from established waste streams and emerging waste streams could in this way play a significant role in the secondary supply of minerals (International Energy Agency, 2021b, p. 177). While economic strategies and technological advancements play crucial roles in addressing mineral demand, it is equally important to consider the social implications of mining activities.

3.3 Social

Social Impacts of Terrestrial Mining

Terrestrial mining activities have given rise to a range of social implications that must be addressed in order to ensure reliable mineral supplies for the energy transition. Failing to address the concern on social impacts may cause a backlash that questions the appropriateness of using mineral-intense low-carbon technologies (World Bank Group, 2020, p. 31). In a 2021 study by the IEA, several challenges with terrestrial mining are brought up. These challenges are shown in Table 2 below.

⁴ Ore grade: the percentage of minerals that can be extracted from each metric ton of rock. Source: (Chung et al., 2023)

Table 2 – Several challenges in terrestrial mining. (International Energy Agency, 2021b, p. 40)

	 Mineral revenues in resource-rich countries have not always been
Covernance	used to support economic and industrial growth and are often
Governance	diverted to finance armed conflict or for private gain.
	 Corruption and bribery pose major liability risks for companies
	 Workers face poor working conditions and workplace hazards (e.g.,
Health and	accidents, exposure to toxic chemicals)
Safety	 Workers at artisanal and small-scale mine (ASM) sites often work in
	unstable underground mines without access to safety equipment
	 Mineral exploitation may lead to adverse impacts on the local
Human	population such as child or forced labor (e.g. children have been
Pighto	found to be present at about 30% of cobalt ASM sites in the DRC)
Rights	 Changes in the community associated with mining may also have an
	unequal impact on women

Even though many international mining companies have pledged to make responsible and sustainable choices when it comes to preventing harm, there is still a disparity between the voiced *"commitments"* and the effect of the practices. For example, a study found 30 companies committed to providing safe working conditions, and yet 29 of them reported workplace fatalities (RMF, 2021, p. 39). Another study of 30 extractives companies that operated in Eastern Europe and Central Asia found that *"100 % of companies with human rights policies faced allegations of abuse"* (Business & Human Rights Resource Centre, 2021, p. 4). Human rights activists mention access to information as being one of the key issues for the poor conditions. This is enabled by systematic control from politicians, poor regulations, corruption, and a lack of oversight (Business & Human Rights Resource Centre, 2021, pp. 4). These circumstances underscore the need for regulations that guarantee social responsibility.

DSM Regulatory Framework

The rules governing mining activities in the ocean are determined by whether they occur within a country's Exclusive Economic Zone (EEZ). If they do, they must adhere to the national laws of that country. For seabed areas outside these zones (the Area), the ISA manages and regulates them, as established during the United Nations Convention on the Law of the Sea (UNCLOS) (Boschen et al., 2013, pp. 61-62). These laws are meant to set a precedence and a standard for nations that want to start DSM activities and ensure that nations exploring DSM in their jurisdiction have to follow no less stringent rules and regulations (Levin et al., 2016, p. 246).

However, these regulations are not yet adopted. At the end of June 2021, Nauru sent a letter to the ISA informing that it would sponsor a contractor with plans for nodule mining in the CCZ, intending to apply for approval for their plan of work. This triggered a two-year countdown for the ISA, where they had to facilitate the approval of the plan of work (Ardito & Rovere, 2022, pp. 1-2). However, two years later, the member council decided it needed more time before giving the green light. Currently, they are working towards adopting regulations in 2025 and say that exploitation should not be allowed until a mining code is agreed upon (McVeigh, 2023). Countries such as Norway, Mexico, UK, and Nauru have pushed for a more rapid adoption of the rules (Skelly, 2023).

In Norway, alongside the regulations set by the ISA, specific national legislation, such as the *Seabed Minerals Act*, has been enacted to govern mineral extraction activities. The *Seabed Minerals Act* regulates the exploration and extraction of mineral deposits on the NCS (Energidepartementet, 2024a). Furthermore, Norway is bound by the precautionary principle through international law agreements and national laws and regulations (Jakobsen, 2021; Myhre, 2024). This principle introduces a more proactive approach entailing taking actions at an earlier stage where there might not be conclusive evidence supporting the case for harmfulness, like the current situation with DSM (Jaeckel, 2017, p. 29).

3.4 Triple Bottom Line Within the DSM Industry

When reviewing the literature, no appropriate tool for measuring the performance of the DSM industry within all the aspects of the TBL framework was found. However, the thesis was able to draw parallels to the study called *"The Fishery Performance Indicators: A Management Tool for Triple Bottom Line Outcomes"* (Anderson et al., 2015). This study developed a tool for measuring the performance of fisheries on the three pillars of sustainability: economic, social, and environmental. Similar to the fishing industry, the DSM industry extracts natural resources and will have implications on all the sustainability pillars. The TBL framework's ability to integrate these pillars may be crucial for the DSM industry, as it offers a comprehensive view of potential barriers and opportunities associated with DSM for the industry and regulators. Additionally, it provides a ramp for addressing the existing gap in scientific literature.

4 Theory

4.1 Fundamental Definitions in Risk Science

Risk can be viewed in the context of some future activity, for example, a project that wants to undertake a DSM operation on the NCS (Society for Risk Analysis, p. 4). After determining the event or activity, the risk is defined with the potential consequences (effects, implications) this event or activity has on something of identified value (Society for Risk Analysis, p. 4).

Risk can also be described as the "consequences of the activity and associated uncertainties". Following this definition, there are two key aspects of risk description: consequences (C) and uncertainties (U). Using this denotation, risk can be simplified to (C, U). In the context of the previously stated example project about DSM, there are related uncertainties about the potential consequences of pursuing the project. The consequences of the project can yield both positive and negative outcomes, where the differentiation of them may be decided by the stakeholder (Aven & Thekdi, 2022b, p. 11).

There are other ways of writing the risk term, one of which is to denote it as (*A*, *C*, *U*). Here (*A*) indicates an event, *C* symbolizes the consequence of the event *A* has occurred, and *U* indicates the associated uncertainty (Aven & Thekdi, 2022b, p. 11). Event *A* can be defined as a *"hazard, threat or opportunity, as well as a risk source"* (Aven & Thekdi, 2022b, p. 12).

Risk Sources

Some of the most common forms of risk sources can be grouped as "*hazards, threats, and opportunities*". When risk sources are defined as hazards, the related potential consequences are injuries that can occur, both physical and psychological injuries. The term threat is often associated with security applications, while opportunities speak to something positive that stems from the risk source affecting the consequences (Aven & Thekdi, 2022b, p. 17). The likelihood of the risk source happening is given based on the probability of the event occurring.

Subjective Probability

The chosen way to judge the likelihood of an outcome is subjective probability, also known as *"knowledge-based or judgmental probability"*. Unlike the other forms of probabilities, a subjective probability can always be given as it expresses the evaluator's certainty and degree of belief for a statement to be true (Aven & Thekdi, 2022b, p. 28). If someone offers a subjective probability for an event *A* to occur, it can be compared to the probability of drawing a red ball from an urn containing X amount of red and white balls (Aven, 2021).

A subjective probability is always given with some background knowledge (K) that encompasses the assessors' information, beliefs, insight, and more about the given situation

or subject (Aven, 2021). The knowledge is often given as a prerequisite for the event to occur and the probability is often written as:

$$P(A|K) = P(A \text{ given } K)$$

5

Strength of Knowledge

An important factor in the risk assessment is the Strength of Knowledge (*SoK*). It is difficult to quantify meaningfully how much knowledge someone has on a subject. Therefore the *SoK* is often judged on an interval scale rather than a continuous scale. An example of such a scale can be *"weak knowledge, medium strong knowledge, and strong knowledge"* (Aven & Thekdi, 2022b, p. 35). Assessors who have a lot of information on a subject or are considered experts on it often possess a strong *SoK*. On the other hand, those without any prerequisite knowledge often have a weak *SoK* when assessing a situation (Aven & Thekdi, 2022b, p. 35).

Expert Judgment

Expert judgment involves the application of specialized knowledge and skills to assess and interpret data, in this thesis within the DSM context. This expertise has been sourced from available literature with the educational background and practical experience to offer valuable insights into the activity being performed. Utilizing expert judgment allows for a nuanced and informed perspective on potential outcomes, risks, and benefits associated with DSM activities (Szwed, 2016, pp. 2-3).

4.2 Cost-Benefit Analysis

4.2.1 Risk Concerns

When it comes to risk, there are two types of concerns: the need for development on one hand, and the need for protection on the other. In a quantitative Cost-Benefit Analysis (CBA), both risk and uncertainty considerations are given little attention beyond expected values. As a result, the focus is more on the development concern rather than protection (Aven & Thekdi, 2022a, pp. 220-221).

4.2.2 Qualitative Cost-Benefit Analysis

In contrast to a normal (quantitative) CBA, the qualitative CBA does not attach specific monetary values, as it is more about understanding the underlying advantages and disadvantages. This is especially useful when the cost and benefits are difficult to quantify (Alhurani, 2023).

Using a qualitative CBA helps in understanding the non-monetary effects of a decision and is particularly useful in the early stages of an assessment to identify potential costs or benefits

⁵ Source: (Aven, 2021)

(Alhurani, 2023). The method also has the benefit of producing a more comprehensive view of the overall costs and benefits in the short-term and longer-term (Rogers et al., 2009, p. 89).

Its limitations and disadvantages are that it may be perceived as too vague or subjective, lacking direct numerical comparisons. In decision-making, where stakeholders may want concrete figures, its influence will also be limited (Alhurani, 2023).

The process of performing both quantitative and qualitative CBAs involves three general steps, as shown in Table 3 (Stevens et al., 2008, p. 8):

Table 3 – General steps for performing CBA (Stevens et al., 2008, p. 8)

1.	Describing costs and benefits – identifying and describing costs and benefits						
2.	Attributing costs and benefits - analyzing the contribution of the intervention to						
	achieving the observed outcomes						
3.	Comparing costs and benefits - analyzing the relationships between costs and						
	benefits						

Step 1 - Describing Costs and Benefits

The CBA includes the expended resources (both financial and non-financial) and negative outcomes that result from the project as costs. On the other hand, the benefits include all the positive outcomes resulting from the project and the negative outcomes that are avoided as a result of undertaking the project, see Table 4. Usually, it is easier to get evidence for outcomes that have been achieved than negative outcomes avoided (Stevens et al., 2008, p. 8).

Table 4 – Defining benefits and costs in the CBA (Stevens et al., 2008, p. 8)

BENEFITS	COSTS
Positive outcomes	Resources expended
Negative outcomes avoided	Negative outcomes

Whose Benefits and Whose Costs?

A CBA is based on the perspective from whom the benefits and costs are considered. An example of this is a funding organization that receives working time from volunteers. For the organization, this is recognized as a benefit as it increases their available resources. However, for the volunteers, it is recognized as a cost, as their time cannot be used for other projects or activities. If the CBA does not recognize all costs, there is a risk of interpreting cost-shifting as if it were cost-saving (Stevens et al., 2008, p. 8).

Timeframe for Evidence of Benefits and Costs

Finding evidence of outcomes can be challenging, especially for a short-term evaluation of something whose benefits are expected to be realized over several years (Stevens et al., 2008, p. 9). Generally, the further into the future your predictions of outcomes are, the more difficult it is to make them accurate (Stobierski, 2019).

Opportunity Costs

Opportunity cost refers to the lost benefits, or opportunities, that arise when one strategy is chosen over another (Stobierski, 2019). Some CBAs consider opportunity costs. However, it might not be a valid assumption that the resources would be directed toward the specified lost opportunity (Stevens et al., 2008, p. 9).

Step 2 - Assessing the Contribution

When assessing the cost of a project, we are interested in the additional resources expended and the negative outcomes resulting from it. Similarly, for benefits, we are looking at the positive outcomes and resources leveraged as a result of undertaking the project. Separating the impacts that would have happened regardless of whether the project was initiated or not is rarely straightforward (Stevens et al., 2008, p. 9).

Step 3 - Summarizing the Relationship Between Benefits and Costs

As stated before, the qualitative CBA does not make a direct comparison in terms of monetary units. Therefore, rather than summarizing the ratio of benefits to costs, the relationships and trade-offs between different costs and benefits are analyzed (Stevens et al., 2008, p. 10).

5 Data

The data for this study were gathered from scientific literature, government reports, and international agreements and organizations. This approach provided a foundation for understanding the various aspects of DSM, including its economic viability, environmental impact, and social implications. The sources used for the CBA can be found in Appendix B.1.

6 Methodology

The CBA was selected for its ability to provide a systematic framework to compare the costs and benefits across the sustainability pillars (Abelson, 2015). This method has been applied to DSM in the Pacific Island region, as well as other extractive industries like coal mining (Cardno, 2016; NSW Government, 2015). By evaluating whether the costs outweigh the benefits, CBA offers a framework for informed decision-making. Additionally, the method provides insights into stakeholder-specific risks associated with starting DSM activities in Norway. The main objective is to offer decision-makers and stakeholders an understanding of potential economic, environmental, and social impacts.

Furthermore, the CBA is complemented by a deep-sea mining performance indicators (DSMPI) tool. This tool's setup follows the Fishery Performance Indicators (FPI), a tool used in the fishing industry (Anderson et al., 2015). Anderson et al. (2015) used this versatile tool to evaluate fisheries performance across the triple bottom line of economic, community and ecological sustainability. We chose this framework due to its comprehensive evaluation of sustainability, proven methodology, and relevance to resource extraction activities.

6.1 Qualitative Cost-Benefit Analysis

To address the issue in CBAs where the method tends to emphasize "development concern", this thesis incorporates several indicators into our analysis. The qualitative CBA aims to provide a more balanced assessment that accounts for both development and protection concerns. By incorporating risk and uncertainty considerations, the analysis better addresses the potential trade-offs for stakeholders. In the CBA the uncertainty is captured by the "certainty" indicator. The analysis also ensures that there is transparency in the SoK behind the potential benefits and costs, which in turn, helps in making evidence-based decision making.

As all the consequences in the benefits part of the CBA will be beneficial for the particular stakeholders, we have therefore chosen to differentiate between "positive risk" and "negative risk". The term "positive risk" might seem counterintuitive at first because risk is commonly associated with negative outcomes or adverse consequences. However, when the goal is identifying opportunities for favorable outcomes, it can be a useful concept. Thus, a high positive risk can be seen as beneficial because there is a high potential for the positive outcome to come to fruition (Hillson, 2003, p. 15). An outcome bearing a high positive risk can be the profits from taxes the government gains from DSM activity in Norway. The indicators looked at in the CBA are presented below (Table 5), and are inspired by Aven (Aven & Thekdi, 2022a, p. 287).

Table 5 – Indicators for Benefits and Costs in th	the CBA
---	---------

		Scale of	Duration		Positive/Negative	Strength of	Risk	Positive/Negative	
Stakeholder	Outcome	Outcome	of Outcome	Certainty	Consequence	Knowledge	Score	Risk	Comment

In the CBA, we have chosen to look at the perspectives of several stakeholders. Each **stakeholder** group has distinct interests, concerns, and priorities, which can influence what is considered a benefit or a cost (Aven & Thekdi, 2022b, p. 11). The stakeholder group perspectives chosen are as follows:

- *Harvest Sector:* The harvest sector stakeholders are directly involved in exploration and extraction activities. They are concerned with regulatory compliance, environmental impact mitigation, and securing investments.
- *Norwegian Government:* As the regulatory authority and policymaker, analyzing the government's perspective helps assess impacts in a political context. Key interests include national economic growth, job creation, environmental protection, and meeting international commitments.
- Norwegian Citizens: The perspectives of Norwegian citizens are essential for capturing societal values and concerns regarding the potential impacts of DSM on communities.
- Post-Harvest Sector: Post-harvest sector stakeholders are involved in processing, manufacturing, and utilizing DSM-derived products. Their priorities include securing a reliable supply of raw materials, maintaining competitive pricing, and adhering to sustainability standards.
- Competing Industries: Competing industries, such as terrestrial mining and DSM in other countries, compete for resources and market share. Their concerns include potential market disruptions, the implications for resource pricing, and the comparative environmental and social impacts. They may also be interested in technological advancements and regulatory changes that could affect their operations.
- International Governments: The impacts of DSM in Norway are likely to have transboundary implications; therefore, analyzing international governments' perspectives helps assess the geopolitical consequences.

The Outcome describes how the various stakeholders are expected to be

influenced/affected by the specific event that is being analyzed. This includes environmental impacts, such as changes in marine biodiversity due to mining activities, economic benefits from the extraction of valuable minerals, and social impacts, such as the creation of jobs in local communities.

The **Scale of Outcome** specifies the geographic area that the outcome would impact, and it is limited to *"Local"*, *"National"*, and *"International"* effects:

- *Local* effects refer to effects on Norwegian coastal communities and the immediate marine environment, such as job creation in the harvest sector, local government interventions, or prospecting and exploration costs.
- *National* impacts refer to the effects on a geographic area larger than a single community, such as effects on national revenue, or national regulatory frameworks.
- *International* refers to effects that will have transborder spillovers, such as the influence on international marine biodiversity or changes in international trade dynamics due to increased mineral supply.

The **Duration of Outcome** is used to specify the timeframe in which the outcome is expected to influence stakeholders. It is relevant for understanding if the outcome only applies during the program period (short term) or beyond it (long term). The program period is defined as the period beginning with exploration and lasting until the end of the decommissioning phase of the last project.

In several risk assessments, the **Certainty** is not quantified, and vague words, e.g. *"likely",* are used. Doing so allows for entirely different interpretations of certainty (Aven & Thekdi, 2022b, p. 275). To address this issue, we define a discrete range for the certainties of the outcomes. The certainties are then assessed based on subjective probability and expert knowledge.

- *Low certainty:* An event is deemed to have low certainty if the subjective probability of it occurring is less than 25 %. Such as the potential for a loss of tourism due to the threat of mining activities.
- *Medium certainty:* The event is given medium certainty if the likelihood of it occurring is between 25 % and 50 %. E.g. generated plumes can have an impact outside Norwegian borders.
- *High certainty:* An event is considered highly certain if it is more than 50 % likely to occur. An event that is judged with high certainty is that the spreading of plumes will have a negative impact on the environment.

We evaluate the severity of the impact if the given outcome occurs. This is done both for positive and negative **consequences** and is categorized as low, medium, or high, as follows:

- *Low consequence:* Minimal changes, such as slight increases in local employment or minor environmental disturbances.
- *Medium consequence:* Noticeable impacts, including moderate disruption to marine ecosystems or the increased need for logistic and supply chain services.
- *High consequence:* Significant changes, such as major ecological damage, substantial economic growth, or profound social changes in communities.

The **Strength of Knowledge** judges how reliable the existing knowledge is about a given outcome based on a broad consensus among experts or if sufficient data is available to analyze the event. This provides a structured and transparent framework for evaluating the reliability of information used in the assessments.

- *Weak (Low) SoK:* Limited data available, high uncertainty, and a lack of comprehensive studies, leading to low confidence in predictions. In the context of DSM, this might include the long-term social impacts on coastal communities or the cumulative environmental effects of multiple DSM operations. The weak strength of knowledge underscores the necessity for caution and the need for ongoing monitoring and research.
- Medium SoK: Here, the strength of knowledge is based on some data and expert opinions, but there are noticeable gaps that introduce moderate uncertainty. This category might apply to aspects of DSM where there are few studies and expert analyses, but also areas where data is sparse or conflicting. This moderate level of certainty requires careful consideration and highlights the need for further research to fill in the gaps.
- *Strong (High) SoK:* This category is characterized by extensive research, comprehensive data, and a broad consensus among experts, providing high confidence in predictions. For example, if numerous studies consistently show the same environmental impacts of DSM, the *SoK* is assessed as strong.

The **Risk Score** is used to give a consistent assessment of the positive and negative risks. The score is a weighted average of the indicators assessed in the CBA. Quantifying the differences among risks allows for them to be based on the severity of their impact and ensures transparency in the results (Halpern et al., 2007, p. 1302). Each indicator is assigned a specific weight, reflecting its perceived relative importance in determining the overall risk. The indicators and their respective weights are inspired by a study performed by Halpern, and then decided by the authors, utilizing expert judgment (Halpern et al., 2007).

In the analysis, the *SoK* is given the highest weight as it is the least subjective indicator and relies the most on scientific literature. Furthermore, long term outcomes are also given a higher weight as their impacts extend the scope of the program. Certainty is given a higher weight because it is influenced by how the facts are presented in scientific literature. However, the literature rarely states the certainty of outcomes, adding a layer of subjectivity to the evaluation. Finally, the consequence relies the most on subjective assessment of the indicators and is therefore not given a higher weight. *"Scale of Outcome"* is excluded as this indicator will not necessarily change the impact for the specific stakeholder. The weights used are shown in Table 6:

Certainty	1.3
Positive/Negative Consequence	1
Strength of Knowledge	1.75
Duration of Outcome: Program duration	1
Duration of Outcome: Long term	1.5
Low	1
Medium	2
High	3

Table 6 – Weight of indicators and risk levels in CBA

These values are then multiplied by their respective weights and summed to produce the final risk score. For example, if a beneficial outcome has a long term duration and a low value in all indicators, the following calculation is applied:

$$Risk \ Score = \frac{Long \ term \ + \ Certainty \ * \ Low \ + \ Consequence \ * \ Low \ + \ SoK \ * \ Low}{Number \ of \ indicators}$$
$$Risk \ Score = \frac{1.5 + 1.3 \ * \ 1 + 1 \ * \ 1 + 1.75 \ * \ 1}{4} \approx 1.4$$

As the score is below 2, the final *"Positive Risk"*, is assessed as low, in accordance with Table 7. The same process is repeated for each outcome.

Positive/Negative Risk:

Low positive or negative risk	Below a risk score of 2
Medium positive or negative	Between a risk score of 2 – 2.75
risk	
High positive or negative risk	Above a risk score of 2.75

Table 7 – Risk score intervals for positive and negative risk

The **comment** offers additional information and context to the result, providing further explanation or insights.

6.2 Performance Indicators

The DSMPIs diagram presented in this thesis draws inspiration from the study titled *"The Fishery Performance Indicators: A Management Tool for Triple Bottom Line Outcomes"* (Anderson et al., 2015). This study introduces a broadly applicable and flexible tool that can be used to assess the performance of fisheries on the three pillars of sustainability: economic, social, and environmental.

Through an iterative consultative process of extensive piloting and revision, the final Fishery Performance Indicators (FPI) tool consists of the TBL indicators which are captured by 14 different dimensions. These dimensions are again divided into 68 metrics of fishery performance, each coded in levels of 1 to 5, where 5 reflects better metric performance. This discrete scoring method allows experts to score the metrics – imprecisely but accurately, even when precise underlying data is not available. In the study, 61 case studies were looked at with the tool giving consistent scoring across them (Anderson et al., 2015, p. 4).

Recognizing that a lot of the indicators and metrics used to assess performance in the FPI study are also applicable in the context of DSM, we sought to adapt and extend these to specifically fit the characteristics of DSM. Our aim was to select indicators and metrics that give a comprehensive view of the industry. The chosen metrics are based on transferable metrics from the FPI study and reviewed literature.

Like in the FPIs study, rather than attempting to measure a few indicators with high precision, they are divided into dimensions of greatest interest. Following this are metrics that capture important aspects of the dimensions. Each dimension is captured by multiple metrics, ensuring robustness in scoring even when some metrics lack data or expert consensus (Anderson et al., 2015). Regular measurement of these metrics is important to track changes in DSM impacts over time.

The diagram includes four categories of people: executives, processing owners, crew, and processing workers. The executives and crew refer to the people who work in the harvesting sector, while the processing owners and workers are linked to the post-harvest sector.

The metrics presented aim to provide insights into the DSM industry's performance across environmental sustainability, economic viability, and social responsibility. By measuring and assessing these metrics, we believe the DSMPIs can offer a valuable indication of the industry's performance within the sustainability pillars. An in-depth explanation of each metric in Figure 8 can be found in Appendix C.1. All indicators, dimensions, and the insight they aim to provide are presented below.

Indicators and Dimensions

The TBL indicators on the left side of Figure 8 consist of the three sustainability pillars, after which the thesis is structured. On the right side of the figure are the Sector indicators, which are helpful for those interested in specific segments of the DSM industry. The sectors included in the figure are the environmental, the harvest, and the post-harvest sector.

TBL Indicators

To capture the *"Environmental Indicator"*, the DSMPI includes the dimension *"Ecological Health"*, which offers an overview of scientific concerns regarding environmental impacts. This guides efforts to minimize ecological disruption and conserve marine biodiversity. The *"Economic Indicator"* evaluates the financial viability and market dynamics of DSM operations through six dimensions that assess the industry's ability to generate market benefits effectively. The *"Social Indicator"* focuses on the well-being of communities and workforce dynamics, providing a comprehensive understanding of the prosperity and health of people in and around the DSM industry. Assessing the metrics will indicate the effectiveness of policies and programs aimed at improving the quality of life in affected communities. This may promote an industry where benefits and profits are equitably distributed.

Environmental Dimensions

DSM is likely to have severe impacts on the biodiversity of marine ecosystems and influence large areas (Niner et al., 2018). Therefore, five metrics are provided to capture the "Ecological Health" dimension. The first metric, "*Species Richness*", measures the biodiversity within the affected area by quantifying the number of species present. The second metric, "*Livestock Population Dynamics*", assesses the trends in species populations within the affected area, across pelagic zones such as the mesopelagic. It involves quantifying the abundance of these species and evaluating whether their populations are declining, stable, or rebuilding. Additionally, the metric "*Status of Critical Habitat*" evaluates the status of critical habitat within the affected area through expert judgment based on a critical habitat assessment. It assesses
the extent to which key habitats essential for the survival and reproduction of species are intact, degraded, or under threat, providing insights into the overall health and resilience of the ecosystem. The last metrics measure the areal impact of the DSM operations, as well as their associated carbon output.

Economic Dimensions

The *"Harvest"* dimension captures how effective DSM operations are at collecting materials, and if profits are lost through operational inefficiencies or material prices. The *"Harvest Yield"* and *"Operating Efficiency"* metrics measure how much material is brought to shore in a year and the ratio of operational days compared to the theoretical maximum, respectively. *"Price Variance"* assesses the ex-vessel price⁶ of harvested material by comparing it to the historical high.

The *"Harvest Assets"* dimension provides insights into the efficiency, stability, and productivity of the assets invested in harvesting activities. The metrics collectively offer an overview of how effectively capital is utilized in generating revenue, the stability of asset values, and the cost of capital. Ultimately, the dimension helps stakeholders understand the financial performance and investment attractiveness of harvesting assets.

The *"Risk"* dimension measures various sources of volatility and uncertainty that may affect the economic performance and stability of DSM. The metrics quantify the variability in revenue, landings, prices, and profitability over time, highlighting the level of uncertainty and financial risk associated with mining activities. Additionally, spatial price volatility evaluates the variability in prices across different locations, indicating the extent of market dependency and geographical risk factors. Overall, the dimension aids in understanding the economic risks inherent in DSM.

The *"Trade"* dimension offers insights into the market engagement, product value, and competitiveness of DSM operations. It comprises metrics that assess various aspects of trade and market performance, including international export value, final market wealth, and wholesale price competitiveness. These metrics quantify the value of goods exported internationally, the total value generated by products reaching end consumers, and the competitiveness of wholesale prices compared to similar products in the market (i.e., minerals from terrestrial mining). By evaluating trade dynamics, the dimension helps understand the extent of market reach and the economic contribution of DSM products.

⁶ Ex-vessel price – the price of goods where all costs are paid by the vessel until delivered at the designated port. Source: (Mindat)

The *"Product Form"* dimension offers insights into the effectiveness of the processing phase in transforming raw ore into final products. It encompasses metrics that assess various aspects of processing efficiency, including processing yield, product shrinkage, capacity utilization ratio, and value chain margins. These metrics quantify the proportion of raw material successfully transformed into usable products, the loss or shrinkage during processing, the utilization of production capacity, and the profitability at different stages of the value chain. The dimension helps to understand the efficiency of processing operations and optimize resource utilization.

The *"Post-Harvest Assets"* dimension looks at the management and performance of assets involved in the post-harvest phase of operations. Similarly to the "Harvest Assets" dimension, it helps stakeholders understand the financial performance and investment attractiveness of assets.

Social Dimensions

The *"Managerial Returns"* dimension gains insights into the compensation and returns received by managerial personnel within the industry. The metrics offer an understanding of the financial rewards and compensation levels for executives and processing owners within the industry. By evaluating managerial returns, it can gain insights into income distribution, and the attractiveness of executive positions within the industry. Additionally, this dimension helps identify any disparities in earnings relative to regional contexts.

Similar to the previous dimension, the *"Labor Returns"* dimension looks at compensation received, but for the labor force in the industry. Analyzing labor returns can provide insights into the distribution of profits, social equity, and job attractiveness.

The "*Health & Sanitation*" dimension assesses the health and safety conditions within the industry, focusing on the well-being of workers and sanitation standards. It encompasses metrics that evaluate various aspects related to health and sanitation, including harvest safety and accessibility to healthcare services for the workers. By evaluating health and sanitation standards, it can identify areas for improvement to ensure the safety, health, and well-being of all personnel involved in DSM.

The *"Community Services"* dimension evaluates how the industry interacts with and contributes to surrounding communities. The metrics provide insights into legal challenges faced and the accessibility of education opportunities for the workforce.

The *"Local Ownership"* dimension captures the level of representation and inclusion of locals in executive positions within the harvesting and post-harvest sectors. Evaluating this dimension can provide insights into how the benefits are distributed to local communities and the degree of control exercised by local stakeholders over key assets and decision-making processes.

The "*Local Labor*" metrics in this dimension evaluate different aspects related to the local labor force, such as the proportion of non-resident workers who are employed as crew members and processing workers. These metrics help understand the extent to which local workers are engaged in different positions, the reliance on non-resident labor, and the industry's contribution to local job creation over time.

The *"Career"* dimension provides insights into the workforce's experience and demographic composition. Measuring the metrics over time shows if the industry is generating stable, long-term employment for the labor force.

On the far right of Figure 8, the metrics for each indicator are classified into sector categories. These are *"Environmental Performance"*, *"Harvest Sector Performance"*, and *"Post-Harvest Sector Performance"*. This classification system helps to analyze distributional outcomes and is useful for those interested in specific segments of the DSM industry.

Sector Indicators

All the environmental metrics are mapped to the *"Environmental Performance"* indicator. The *"Harvest Sector Performance"* indicator draws metrics from both the *"Economic"* and *"Social"* indicators. Similarly, the *"Post-Harvest Performance"* indicator also draws its metrics from the *"Economic"* and *"Social"* indicators.

Environmental Performance Dimension

The metrics in this dimension offer insights into the extent to which DSM companies are reducing their environmental impact, preserving biodiversity, and mitigating effects on marine ecosystems.

Harvest Sector Dimensions

The "Harvest Performance" dimension assesses the operational effectiveness of the DSM harvesting process, incorporating metrics such as harvesting yield and operational efficiency to evaluate DSM companies' ability to maximize material output while minimizing wasteful practices. Financial viability and safety of assets in the harvesting sector are evaluated by the "Harvest Assets Performance" dimension. The "Risk Performance" dimension measures the various risks associated with the economic aspects of DSM harvesting activities. Additionally, it examines the contestability and legal challenges, which bring risks to the industry's

perception among potential investors. Ownership aspects, including executive compensation, access to healthcare for executives, and the proportion of non-resident executives, are covered in the "Owners" dimension. Like the previous dimension, the "Crew" dimension encompasses aspects related to compensation, access to healthcare, and the proportion of non-resident workers. In addition, it also examines the length of time the crew has worked in the industry in the "Crew Experience" metric, as well as analyzing the age structure of the crew. The metrics provide insight into the industry's retention rate and indicate whether the age of the crew leans towards a young or old labor force.

Post-Harvest Dimensions

The "Market Performance" dimension draws metrics from the trade, harvest, and product form dimensions to evaluate the competitiveness and economic success of DSM products in the marketplace. The "Post-Harvest, Processing & Support Industry Performance" dimension assesses the efficiency of processing activities in the post-harvest sector, while the "Post-Harvest Assets Performance" dimension examines the performance of assets used during this phase. Similar to the "Owners" dimension, the "Processing Owners & Managers" dimension evaluates aspects related to ownership, including processing owners' compensation, access to healthcare, and the involvement of non-resident owners in the DSM post-harvest sector. Lastly, the "Processing Workers" dimension mirrors the metrics used in the "Crew" dimension but applies them to the labor force in the post-harvest sector.

6.3 Limitations of the CBA

It is essential to recognize the limitations of the qualitative CBA methodology. One significant limitation is the subjective nature of the analysis. The qualitative assessment depends on expert judgment and data interpretation, which can introduce bias and variability in the results. Additionally, the *SoK* assessed in the method may be considered high relative to the available data, but it is essential to recognize that there may still be considerable uncertainty and gaps in understanding. The paucity and quality of data on certain aspects of DSM operations can limit the precision and reliability of the analysis, leading to potential overestimation or underestimation of costs and benefits.

Furthermore, the analysis does not encompass every stakeholder affected by the DSM industry. While efforts are made to include diverse perspectives, there may be stakeholders whose interests and concerns are not adequately represented in the analysis. This limitation highlights the need for ongoing stakeholder engagement and dialogue to ensure that relevant viewpoints are considered in decision-making processes related to DSM.

In our analysis, we have opted to include the outcomes only within the stakeholder group where we believe the potential benefits or costs would have the most significant impact. This is done to limit double counting. However, it is important to acknowledge the interconnectivity of the outcomes. Many of the identified outcomes are likely to influence multiple stakeholder groups to varying degrees. The result of the CBA for each stakeholder group will, therefore, vary from the result presented, which looks at the overall relationship of costs and benefits.

7 Results

7.1 Cost-Benefit Analysis

This chapter presents a selective version of the result tables, focusing on key segments of the CBA. We refer to the complete tables in Appendix B.1.

7.1.1 Benefits

Environmental Benefits

Despite widespread concerns about the environmental impacts of DSM, there are potentially beneficial outcomes. Table 8 outlines some potential outcomes and their associated positive risks. While many of the potential outcomes could have significant positive consequences for the stakeholders, the majority are characterized by low positive risk. This low positive risk assessment is largely due to the current low *SoK* and the generally low certainty of the outcomes. The only exception in the table is the outcome of *"Increased scientific research on the deep-sea ecosystems"*, which is given a high positive risk. This high positive risk assessment is based on the current research about deep-sea ecosystems, where several studies have been enabled due to the DSM industry, and the outcome is given both a high certainty and high positive consequence.

Stakeholders	Outcome	Positive Risk
Hanvost Soctor	The transition from terrestrial mining to DSM is projected to lower the overall Global Warming Potential (GWP).	Low
	Compared to nodule mining, CRC and SMS extraction plumes will be more localized.	Medium
Norwegian Government	Facilitates the transition to a low-emission society by increasing the availability of minerals essential for low-carbon technologies, thereby supporting the government in achieving its emissions goals.	Low
Norwegian Citizens	Shifting some mining activities to the seabed reduces the physical footprint and associated environmental degradation of terrestrial mining operations within Norway.	Low
	Easier access to minerals extracted with a low carbon output.	Low
Post-Harvest Sector	The increased availability of DSM-derived minerals could stimulate demand for metallurgical processing in countries prioritizing low-carbon industrial practices, such as Norway.	Low

Table 8 – Potential environmental benefits

	An increase in R&D can provide technologies that have lower	Low
	emissions, which could be applicable to other industries.	
	If Norway becomes a large-scale mineral exporter, it could set a	
Competing	precedent, encouraging the international terrestrial mining industry to	Low
Industries	adopt similar standards.	
	DSM could pressure the metallurgical processors to reduce their	
	GWP, as it is a major contributor to climate impact in the mineral value	Medium
	chain.	
	DSM activities necessitate further scientific research on deep-sea	
International	ecosystems, potentially advancing understanding and contributing	High
Governments	valuable knowledge to global environmental science.	
Governments	By decreasing the need for terrestrial mining, DSM can help reduce	
	deforestation and associated habitat destruction.	LOW

Economic Benefits

Table 9 presents the potential economic outcomes and associated positive risks. Notably, the economic outcomes are assessed with the highest positive risk across the three benefit tables, where most outcomes are given a medium or high positive risk. This indicates significant potential benefits, underscored by both high certainty and high positive consequences for many of the outcomes. As with the environmental outcomes, the outcomes bearing a low positive risk are generally given this assessment due to their low *SoK*. Moreover, it is important to note that almost all the benefits will only last as long as the industry operates.

Stakeholders	Outcome	Positive Risk
Harvest Sector	The initiation of the DSM industry in Norway is likely to attract foreign investments by offering new opportunities for resource extraction. Coupled with Norway's robust and stable financial market, these opportunities can appeal to international investors.	Medium
	Companies will operate in an environment with higher ore grades than terrestrial mining, possibly resulting in more efficient extraction processes and lower costs per unit of mineral.	Medium

Table 9 – Potential economic benefits

	By leveraging Norway's existing infrastructure from the maritime	
	industries, the capital expenditures for establishing a new industry can	High
	be significantly reduced.	
	With many firms facing resource scarcity, DSM could offer a solution	High
	by providing a fresh supply of critical minerals.	riigii
	Enables harvest companies, shareholders, and members of the	High
	supply chain to earn profits on the minerals sold.	riigii
	Leveraging the experienced local workforce accustomed to working	
	with the NCS minimizes the need for outsourcing and retains more	Medium
	economic value within the country.	
Norwegian	Revenues generated from taxes, royalties, and licenses on DSM	High
Government	activities can increase financing for the welfare state.	riigii
	Economic diversification resulting from DSM can provide the	
	government with additional revenue streams, enhancing financial	High
	stability.	
Nonvegian	An increase in jobs directly related to DSM can have a positive ripple	
Citizona	effect on the economy, stimulating demand for local services such as	Medium
Chizens	barbers and restaurants.	
Post Hanvost	Investments in the harvest sector can stimulate demand for logistics	
Post-i lai vest	and supply chain services, leading to increased investments and	High
Sector	employment opportunities in the post-harvest sector.	
Competing	Unsuccessful DSM ventures can make terrestrial mining appear as a	Low
Industries	safer investment.	LOW
	Increased supply of minerals may lead to lower mineral prices,	Low
International	benefiting global consumers.	LOW
Governments	Diversification of the mineral supply chain reduces the risk of price	Low
	squeeze providing stability and economic benefits on a global scale.	LOW

Social Benefits

The social pillar encompasses a wide range of potential benefits, as shown in Table 10, which outlines the outcomes and their associated positive risks. The analysis reveals that a notable proportion of these outcomes are characterized by high positive risk, indicating substantial potential benefits for stakeholders. Generally, the stakeholders with the highest assessed positive risk are the *"Harvest Sector"* and the *"Post-Harvest Sector"*. For the rest of the stakeholders, the outcomes are mostly assessed with a mix of low and medium positive risks. This variation underscores the inherent uncertainties surrounding DSM's societal implications rather than diminishing their significance.

Stakeholders	Outcome		
		NISK	
	The sector can leverage expertise from Norway's existing maritime	High	
	industry to enhance operational efficiency.	5	
	The industry can increase workplaces, providing job opportunities and	High	
	improving local employment rates.	riigii	
	Norway's sustainability standards provide an opportunity for workers		
Llam va at Ca atam	in the mineral industry as they can benefit from these standards,	Llink	
Harvest Sector	enjoying higher health and safety measures compared to those in	High	
	international terrestrial mining.		
	A stable regulatory framework in Norway ensures predictability for	Lliab	
	DSM companies.	пığrı	
	Norwegian companies can create an expertise in CRC and SMS	Low	
	extraction as the global focus has primarily been on nodules.	LOW	
Norwegian	The industry can contribute to increased knowledge of the deep sea	Modium	
Government	for research institutions and enhance scientific understanding.	Medium	
	A strategic establishment of facilities and research centers can be	Low	
	used to help towns and communities create a local industry.	LOW	
	It enables Norwegian companies to be at the forefront of research and	Medium	
Norwegian	development for technologies to be used in the industry and beyond.	Medium	
Citizens	The development of DSM in Norway has the potential to create		
	technical and skilled job opportunities for local communities, attracting	Llink	
	specialized workers and their families, while also incentivizing locals to	nign	
	stay.		

Table 10 – Potential social benefits

	Based on a history of successful and effective resource management	
	in Norway's oil and gas industry, the country is well-positioned to	Lline
	ensure that the financial benefits from the DSM industry are shared	High
	equitably among its citizens and preserved for the future.	
	More job opportunities and higher paygrades for regional support	
	businesses can increase monetary circulation and stimulate local	Medium
	businesses.	
	The industry can create a demand for relevant educational programs.	Medium
	Funds generated from DSM can be used to improve national	
	infrastructure, education, and healthcare services, thereby enhancing	High
	the overall quality of life in Norway.	
	The industry can increase the demand for local skills and expertise in	
	the post-harvest sector, providing job opportunities and fostering skill	High
	development.	
Post-Harvest	The post-harvest sector could gain easier access to high-value	High
Sector	minerals.	riigii
	Increased access to minerals harvested in a socially responsible	
	manner, reducing reliance on conflict minerals from politically unstable	High
	regions plagued by issues such as child labor and ethnic conflicts.	
	There is expected to be some technological overlap between DSM	Low
Competing	and terrestrial mining, with similar equipment being used.	Low
Industries	DSM can lead to an expertise shift and expansion of the mining	
madeliee	workforce, broadening the skillset and experience of workers in the	Medium
	mining sector.	
	DSM can mitigate dependence on a limited number of countries for	
	access to critical minerals, enhancing global supply chain stability and	High
International Governments	security.	
	The DSM industry is expected to have little direct impact on	Medium
	freshwater, unlike terrestrial mining.	Modiani
	The Norwegian framework can be used to create intergenerational	Low
	equity from non-renewable resources and avoid the resource curse.	Low
	Research associated with DSM can increase understanding of genetic	L OW
	resources with potential for pharmaceutical use.	

7.1.2 Costs

Environmental Costs

Table 11 presents the negative environmental outcomes associated with DSM on the NCS, such as the loss of biodiversity, long-lasting impacts on marine ecosystems, disruption of marine life behavior, and pollution from mining activities. Additionally, the table highlights the regulatory and compliance issues, such as non-compliance with UNCLOS obligations and premature industry initiation due to inadequate impact assessments.

In the Harvest Sector, there are significant negative outcomes, most of which are assessed as having a high negative risk. This is because there is relatively strong knowledge about the local impacts of DSM. The outcomes in this context are considered with high certainty and are predominantly seen as having a high negative consequence. On the other hand, the outcomes of international governments are mostly assessed as having a low negative risk. This is due to lower certainty and a lower level of knowledge.

Stakeholders	Outcome	Negative Risk
	Restoration efforts are unlikely to accurately replicate disrupted	High
	habitats, leading to a net loss of biodiversity.	-
	Removing CRCs over a large area will have significant and long-	
	lasting environmental impacts, affecting vulnerable hard-bottom fauna	High
	and local ecosystems.	
	Noise from DSM operations can disrupt marine life and lead to	
	changes in behavior. Most deep-sea species have yet to be	High
	described, and sensitivities to noise have not been studied, leaving a	
Harvest Sector	gap in our understanding of their responses.	
	Light pollution can occur where no natural light sources exist or where	
	natural light is much weaker, potentially having a negative impact on	High
	deep-sea life.	
	The mining of active SMS deposits will significantly impact unique	
	environments and lead to the loss of species that are dependent on	High
	these habitats.	
	Mining inactive SMS deposits can considerably impact unique	
	environments and lead to the loss of species that are dependent on	High
	these habitats.	

Table 11	1 – Potenti	al enviror	ımental	costs

	The spread of particles and toxic metals from DSM activities can have a negative environmental impact, harming marine life and	Medium
	ecosystems.	
	The spread of plumes can negatively impact marine life by creating a	
	"blanket" of sediments in areas around the mining field, potentially	High
	burying benthic organisms and clogging the respiratory surfaces of	
	filter feeders.	
	Disrupting benthic organisms and sediment-dwelling bacteria can	Lliab
	affect climate processes, potentially exacerbating climate change	High
	impacts.	
	Ineffective ecological compensation can lead to non-compliance with	High
	UNCLOS obligations.	
Nonwogion	The government's impact assessment lacks nuanced perspectives on	
Norwegian	negative risks. This can enable the industry to start prematurely and	High
Government	would breach the precautionary principle.	
	There could be an overlap between MPAs and the area opened for	Medium
	DSM activities.	Medium
	DSM activities could lead to a loss of transit routes and habitats for	
	slow-moving pelagic seabirds, potentially leading to declines in their	Medium
	populations.	
Norwegian	DSM could impact the migration patterns of fish.	Low
Citizens		LOW
Post-Harvest	No evidence was found supporting significant outcomes.	
Sector		
Competing	No evidence was found supporting significant outcomes.	
Industries		
	DSM can undermine the shift to a circular economy by reducing	
	incentives to invest in recycling and sustainable resource	Medium
	management.	
International	The impact assessment lacks sufficient attention to potential	Low
Governments	transnational impacts.	LOW
Coveninence	Carbon is sequestered and stored in seafloor sediment. Mining	
	operations could risk releasing this carbon back into the ocean and	Medium
	the atmosphere	

Economic Costs

Table 12 outlines the negative economic outcomes and challenges posed by DSM, such as high operational costs, potential obsolescence due to technological changes, and the possible need for environmental compensation funds. Additionally, the table highlights the financial risks for investors, the potential need for government subsidies, and the broader economic implications for competing industries and international markets.

		Negative
Stakeholders	Outcome	Risk
	An environmental compensation fund may be necessary to establish	Low
	to cover the fees of restoring deep-sea ecosystems.	
	Changes in technology could lower the demand for certain minerals	Low
	from DSM, impacting the economic viability of mining projects.	
	Prospecting and exploration costs.	Medium
	Development costs.	Medium
	Mining and extraction costs.	Medium
	Closure and reclamation costs.	Medium
Hanvaat Saatar	Higher recycling rates from various materials could decrease the	
Harvest Sector	demand for newly extracted minerals, thereby affecting the economic	Low
	viability of DSM projects.	
	Extracting the same minerals with DSM can come at a higher cost	Medium
	than terrestrial mining.	
	Several banks and financial institutions have distanced themselves	High
	and stated that they will not invest in the DSM industry.	
	There is expected to be a great variation in mineral content on the	Medium
	NCS, which can reduce the economic viability of projects.	
Norwogian	Several large companies have stated that they will not buy deep-sea	Hiah
	minerals themselves or allow them in their product value chain.	r ngn
	If the restoration costs of DSM are higher than the mining company can afford, the government may need to subsidize some of the costs.	Low
Government	Engaging in or regulating DSM operations that result in financial loss	
Government	or third-party harm can incur costs for the state.	Low

Table 12 – Potential economic costs

	Adopting the Norwegian Petroleum Tax System for DSM can impose a high tax burden, impacting projects' economic feasibility.	Low
Norwegian	Disruptions to fishing activities in proximity to mining sites can lead to losses for the fishing industry.	Low
Citizens	Investors can experience economic losses by investing in unsuccessful companies.	Medium
Post-Harvest Sector	The post-harvest sector could incur economic losses from relying on minerals from a new industry with a potentially unstable supply.	Low
	DSM could have a lower carbon output, deterring investments in terrestrial mining.	Low
Competing	Increased supply of metals from DSM could lead to lower prices and increased competition for land-based mining industries.	Low
Industries	There could be a lower incentive to invest in efforts to reduce terrestrial mining impacts.	Low
	The terrestrial mining industry may incur costs trying to adapt to the ethical standards set by DSM.	Low
International Governments	A focus on DSM could lead to a lack of investment in recycling and efforts for a circular economy.	Low

Social Costs

The outcomes in Table 13 present potential social challenges posed by DSM, such as public opposition, regulatory and reputational risks, cultural and economic disruptions, and international conflicts. Like the other tables, there is a common thread – a significant portion of the negative risks are assessed as low, attributed to the current *SoK* within the field. In the context of social costs, many of the negative risks are assessed as low due to this limited knowledge.

Table 13 – Potential social costs

Stakeholders	Outcome	Negative Risk
Harvest Sector	An uproar from protestors may hinder the implementation of the industry.	Medium
	Mapping and investigating deep-sea environments is challenging and costly, requiring resource allocation to protect critical areas.	High

Norwegian Government Norwegian Citizens	There is a need to develop and enforce legal and regulatory	
	frameworks to manage environmental impacts and stakeholder	High
	interests.	
	DSM activities in disputed waters introduce grounds for international conflicts.	High
	Norway could lose its role as co-chair of the Ocean Panel if it allows	Medium
	DSM in its territorial waters.	
	Exploration or possible exploitation licenses granted without regard to	Hiah
	the precautionary principle could cause reputational damages.	5
	Norwegian citizens may experience a loss of cultural or spiritual value	
	associated with a pristine ocean or a traditional sense of ownership of	Low
	or identification with the ocean and its resources.	
	Disruptions to fishing in proximity to the mine site may lead to a loss of	Low
	job opportunities for fishing communities.	LOW
	Introducing DSM and higher pay grades to communities can strain the	Low
	regional level of pay, creating income disparities.	LOW
	The seafood processing industry could face increased contamination	Medium
	risks from pollutants released during DSM activities.	Medidili
	The extraction of non-renewable minerals today reduces opportunities	Medium
	for the future by depleting finite resources.	Medidin
Post-Harvest	No evidence was found supporting significant outcomes.	
Sector		
Competing Industries	Increased recycling efforts could reduce the demand for virgin	Hiah
	minerals.	
	A successful DSM venture may divert workers from competing	Medium
	industries.	
International Governments	Norway could face international problems as the European Union (EU)	
	put forward a motion requesting a resolution against Norway's seabed	High
	mining activities in the Arctic.	
	Mining of seafloor substrates can have unknown impacts, hindering	Low
	the development of future industries.	
	There are countries that disagree with Norway's interpretation of the	
	Svalbard Treaty. If Norway allows exploration and exploitation	Medium
	activities in the areas surrounding Svalbard, it could lead to increased	
	friction and attention regarding Norway's stance.	

7.1.3 Summary of the Relationship Between Benefits and Costs

When comparing the benefits and costs presented in this study, it becomes evident that the risks associated with DSM are skewed toward higher costs than benefits. DSM promises several potential benefits, including providing critical minerals required for low-carbon technologies, economic opportunities for countries involved, and advancements in technology and research. These benefits could lead to significant economic growth and job creation, which are appealing to stakeholders. Despite the potential benefits that DSM offers to various stakeholders, the current *SoK* and the uncertainty surrounding the outcomes significantly diminish the perceived value of these positive risks. Furthermore, it is important to note that some of these benefits are contingent upon DSM effectively replacing terrestrial mining, an aspect with a low strength of knowledge in the study.

Based on our findings, it seems premature to start DSM at this stage. This is due to the scarcity of available data in the field, and the lack of a comprehensive understanding of the impacts the industry will cause in the context of the three pillars of sustainability. The limited data on the environmental, economic, and social effects of DSM operations make it challenging to fully assess the risks and benefits. This lack of data also hampers the development of effective mitigation and management strategies to address potential negative impacts.

Given the current lack of *SoK* and the high levels of uncertainty, the positive risks associated with DSM are insufficient to outweigh the potential negative risks. A cautious approach is recommended, emphasizing further research, establishing robust regulatory frameworks, and inclusive stakeholder consultations before initiating large-scale DSM operations.

7.2 Deep-Sea Mining Performance Indicators

The DSMPIs in Figure 8 shows the TBL indicators of environmental, economic, and social (on the far left), which are captured by 14 dimensions. On the right side of the diagram, the 11 dimensions are divided by whether they provide information on the environmental performance, the harvest sector performance, or the post-harvest sector performance. The braiding shows how the metrics are mapped to the dimensions.

The DSMPI tool is designed to offer flexibility in analysis, allowing stakeholders to read and interpret the data both from left to right and from right to left. When read from left to right, the tool provides a sequential view starting from the TBL indicators across the sustainability pillars, followed by a further subdivision of their dimension. Conversely, reading from right to left allows users to trace the metrics back to the sector indicators, offering insights into how specific metrics relate to sector performance.

Figure 8 – DSM Performance Indicators

8 Discussion

The CBA and DSMPI tool used in this study provide a comprehensive framework to evaluate the potential impacts of DSM across the pillars of economic, environmental, and social dimensions. It is important to remember that the thesis is centered around a complex and evolving topic, where the situation is dynamic and constantly changing. Therefore, it is important to keep in mind that what is presented in the thesis will change in the future once new scientific research, regulatory policies, technological improvements, or stakeholder opinions become available. A way to think about the presented information is as a snapshot of the situation at the time of writing.

By providing both the DSMPI tool and the CBA, stakeholders and decision-makers gain insight into relevant negative and positive risks associated with DSM today, as well as have a tool that aids sustainable management for the future. By combining these methods, stakeholders can assess some potential pitfalls for the entire industry or specific companies. Additionally, they can measure how it will impact relevant indicators. All in all, the thesis provides some groundwork for deciding if a DSM industry can be viable in Norway.

CBA

The CBA reveals a nuanced picture of DSM, characterized by substantial potential benefits and significant risks. Economically, the industry promises job creation, revenue generation, and investment, particularly in coastal regions with existing and relevant infrastructure. Environmentally, it could offer a lower greenhouse gas emissions alternative to terrestrial mining, contributing to global emissions reduction targets. DSM could also reduce the need for terrestrial mining and lower the associated deforestation, soil erosion, and habitat destruction. Socially, it has the potential to supply minerals from non-conflict areas, enhancing ethical sourcing and reducing the risk of human rights abuses associated with terrestrial mining.

However, the analysis also underscores the high levels of uncertainty and potential negative impacts associated with DSM. Economically, the high operational costs and the possible cost of environmental compensation funds pose substantial downsides. Environmental impacts include significant habitat degradation, biodiversity loss, and long-term disruptions to marine life. Socially, potential income disparities, cultural disruptions, and reputational damage are critical concerns. Some of the groundwork prepared for the Norwegian government's impact assessment has been used for the benefits of the CBA, but it has been critically assessed in this thesis.

A major drawback to the benefits of DSM is that it will not necessarily impact terrestrial mines significantly. Terrestrial mining operations might continue with business as usual due to the established infrastructure, extensive experience, and ongoing demand for minerals. The

existing market dynamics and the scale of terrestrial mining operations mean that DSM is unlikely to displace or substantially disrupt traditional mining activities (Gilbert, 2023; Priyanka, 2023). Instead, DSM may complement terrestrial mining by providing additional sources of critical minerals without altering the primary operations of established land-based mines (Ackerman, 2020). This undermines some of the anticipated environmental and economic benefits, as it might not reduce the worldwide mining environmental footprint or create a significant shift in the global supply chain dynamics.

The application of the precautionary principle, various international treaties, and designated safe zones presents challenges to the approval and implementation of DSM. Given the high levels of uncertainty and limited knowledge regarding the environmental and social impacts, regulators may impose stringent restrictions or bans to prevent potentially irreversible damage to marine ecosystems. Treaties such as the UNCLOS and the ISA Mining Code require rigorous environmental impact assessments and measures to minimize harm, aligning with the precautionary principle and potentially delaying or preventing DSM permits (Legrand et al., 2024, p. 22).

Moreover, designated safe zones like MPAs and areas of particular environmental interest further restrict available areas for DSM. These zones aim to preserve biodiversity and protect vulnerable marine habitats, adding regulatory complexity when DSM sites overlap with protected areas. The establishment of extensive MPAs, with buffer zones to protect ecosystems, highlights marine conservation commitments that could conflict with DSM interests (Legrand et al., 2024, pp. 7,24). As shown in Figure 6, there is a clear overlap between the proposed MPAs on the NCS and the area opened for DSM, an important challenge for policymakers to address.

The findings suggest that while DSM has potential, its successful implementation depends on addressing the high levels of uncertainty and negative risk. The limited *SoK* in many areas calls for comprehensive and long-term research to better understand the consequences on the economic, environmental, and social pillars. The current lack of data and high uncertainty make it difficult to adopt fully informed decisions. For future research, we recommend reassessing the risks of outcomes as new research in the field is added. In addition, the CBA assesses the risks with broad levels, aiming for accuracy in the analysis rather than precision. With more resources and data available, precision could be captured to a greater extent and could be complimented with a sensitivity analysis to find the most impactful outcomes.

DSMPI

While this thesis suggests that initiating DSM at the present time might be premature, it emphasizes the need to prepare for a future where the industry becomes operational. The thesis introduces the DSMPI tool, which offers guiding parameters for the industry. Measuring these parameters and metrics should give grounds for assessing the performance in all sustainability pillars of a DSM company/industry. Overall, DSMPIs could serve as a tool for measuring the performance of the DSM industry, both in Norway and worldwide. The metrics highlight aspects within the pillars that are viable for this emerging industry. It ensures that no single dimension is overlooked, offering an overview of the industry.

For policymakers, there is a clear need to develop robust regulatory frameworks that incorporate precautionary principles and adaptive regulations. These frameworks should be flexible enough to adjust to new information and changing conditions, ensuring sustainable growth for the industry. Continuous stakeholder engagement and transparent decision-making processes are necessary to gain broad acceptance and compliance (Menini et al., 2022, p. 1). Comprehensive environmental and social impact assessments have been shown to be promising tools for acknowledging the social and biophysical impacts of programs, and they could be crucial for the industry (Dendena & Corsi, 2015). Companies should prioritize sustainable practices and actively engage with local communities to address potential social disruptions and ensure equitable distribution of benefits.

The DSMPI can serve several roles and cater to various audiences. Harvesters and processors within DSM companies can utilize the indicators to compare their performance with similar companies globally, helping to identify specific sources of foregone wealth and establishing predicates for improvement. Suppliers and retailers engaged in international mineral trade can leverage the indicators to identify companies that are not only environmentally sustainable but also promote sustainable social practices. Additionally, the indicators offer a framework for investors and bankers to pinpoint companies with high potential for return and low risk associated with improper management or dysfunctional communities.

For international bodies, the indicators can help identify companies that are not meeting their potential, thereby providing insight useful for supporting local economic development. This support might improve standards of living or alleviate poverty. Research communities worldwide can use the tool to assess mining companies' impacts on the affected communities, environment, and economy.

One significant limitation is the lack of real-world case studies to test the tool on, as commercial DSM has not yet commenced. The robustness and applicability of the tool are, therefore, not validated. Given this, the initial application of the tool should be considered a preliminary step, requiring further testing and refinement. Moreover, this report does not look into input metrics, management approaches, and enabling factors due to time constraints. In the FPI study, these are included to help explain the variation among outcomes (Anderson et al., 2015, p. 2). Future research should focus on long-term environmental monitoring, detailed economic impact assessments, and thorough social evaluations. Furthermore, improvements can be made by examining the enabling factors of the industry. These factors can be utilized to connect different views of success with specific measures.

9 Conclusion

As of January 2024, the Norwegian government passed a bill to allow the exploration of minerals on the Norwegian continental shelf. The nascent DSM industry is expected to impact all three pillars of sustainability: environmental, economic, and social (Cardno, 2016). However, there remain large scientific gaps surrounding the field (Amon et al., 2022, p. 4).

In this thesis, a cost-benefit analysis is conducted to investigate the potential outcomes of DSM in Norway and to identify associated risks within these pillars. Our findings indicate that the negative risks of starting the DSM industry in Norway outweigh the positive risks. Although there are several positive outcomes linked to the industry, the current strength of knowledge is too weak. The uncertainty surrounding the potential benefits, due to limited real-world data and incomplete understanding of DSM's impacts, diminishes confidence in these positive outcomes. This highlights the need for further research to support more accurate risk assessments.

Furthermore, to ensure sustainable management within the pillars, we noted the dimensions that contribute insight into the effects of DSM on the triple bottom line. These dimensions were connected under the DSMPI tool, following a similar framework from another resource extractive industry, fisheries (Anderson et al., 2015).

Policymakers should consider the substantial uncertainties and potential environmental, economic, and social risks associated with DSM. Implementing the DSMPI tool could address some of these concerns by ensuring continuous monitoring of the industry, giving insights into their performance. Regulators could in this way adapt the regulatory frameworks to better ensure sustainable management.

The outcome of this study is constrained by the lack of relevant real-world DSM case studies. Future research should reassess the outcomes of the CBA as new data become available. If DSM operations commence, the reliability and accuracy of the DSMPI tool should be tested through practical case studies. This will allow testing the tool's robustness and determine whether it is a useful resource for evaluating the sustainability of DSM activities.

AI Disclosure

To write the thesis, we have utilized AI tools such as ChatGPT-4, Research Rabbit, and Grammarly for inspiration and writing suggestions. These tools have been used to refine the language, enhance clarity, and improve the overall structure of the document. AI was used critically as a tool, and we assessed all suggestions and made the final decisions regarding content.

References

- ABB. (2024). Circularity : No Time To Waste.
 - https://resources.news.e.abb.com/attachments/published/111923/en-US/B890993BA0E5/ABB-Circularity_No_Time_To_Waste_.pdf
- Abelson, P. (2015). Cost–Benefit Evaluation of Mining Projects. *Australian Economic Review*, 48(4), 442-452. <u>https://doi.org/10.1111/1467-8462.12132</u>
- Ackerman, D. (2020, 31.08.). *Deep-Sea Mining: How to Balance Need for Metals with Ecological Impacts*. Retrieved 07.06.2024 from <u>https://www.scientificamerican.com/article/deep-sea-mining-how-to-balance-need-for-metals-with-ecological-impacts1/</u>
- Advokatfirmaet Wikborg Rein. (2023, 02.05.). *Problemstillinger knyttet tul fremtidig gruvedrift på havbunnen*. WWF. Retrieved 08.06.2024 from <u>https://media.wwf.no/assets/attachments/Juridisk-notat-Problemstillinger-knyttet-til-fremtidig-gruvedrift-p%C3%A5-havbunnen.pdf</u>
- Alhurani, H. (2023, 24.06.). Cost Benefit Analysis Best Practices For 2024. Retrieved 30.04.2024 from https://jalebi.io/cost-benefit-analysis/
- Amadi, E., & Mosnier, F. (2023). *The Sky High Cost of Deep Sea Mining*. <u>https://planet-tracker.org/wp-content/uploads/2023/06/Deep-Sea-Mining.pdf</u>
- Amon, D. J., Gollner, S., Morato, T., Smith, C. R., Chen, C., Christiansen, S., Currie, B., Drazen, J. C., Fukushima, T., Gianni, M., Gjerde, K. M., Gooday, A. J., Grillo, G. G., Haeckel, M., Joyini, T., Ju, S.-J., Levin, L. A., Metaxas, A., Mianowicz, K., . . . Pickens, C. (2022). Assessment of scientific gaps related to the effective environmental management of deep-seabed mining. *Marine policy*, *138*, 105006. <u>https://doi.org/10.1016/j.marpol.2022.105006</u>
- Anderson, J. L., Anderson, C. M., Chu, J., Meredith, J., Asche, F., Sylvia, G., Smith, M. D., Anggraeni, D., Arthur, R., Guttormsen, A., McCluney, J. K., Ward, T., Akpalu, W., Eggert, H., Flores, J., Freeman, M. A., Holland, D. S., Knapp, G., Kobayashi, M., . . . Valderrama, D. (2015). The fishery performance indicators: a management tool for triple bottom line outcomes. *PLoS One*, *10*(5), e0122809. <u>https://doi.org/10.1371/journal.pone.0122809</u>
- Ardito, G., & Rovere, M. (2022). Racing the clock: Recent developments and open environmental regulatory issues at the International Seabed Authority on the eve of deep-sea mining. *Marine policy*, *140*, 105074. https://doi.org/10.1016/j.marpol.2022.105074
- Ashford, O., Baines, J., Barbanell, M., & Wang, K. (2023, 19.07.). *What We Know About Deep-sea Mining And What We Don't*. Retrieved 09.02.2024 from https://www.wri.org/insights/deep-sea-mining-explained
- Asplan Viak, Institutt for geovitenskap og petroleum på NTNU, & NTNU Samfunnsforskning. (2022). Økonomiske og sosiale virkninger av havbunnsmineralvirksomhet. <u>https://www.regjeringen.no/contentassets/dbf5144d0fbc42b5a4db5fc7eb4fa312/vedlegg-9.-asplanviak_ntnu.-okonomiske-og-sosiale-virkninger.pdf</u>
- Aven, T. (2021, 06.07.). Sannsynlighet. https://snl.no/sannsynlighet
- Aven, T., & Thekdi, S. (2022a). *Risk science : an introduction*. Routledge. https://doi.org/10.4324/9781003156864
- Aven, T., & Thekdi, S. (2022b). *Risk science: an introduction*. Routledge. https://doi.org/10.4324/9781003156864
- Bang, R. N., & Trellevik, L.-K. L. (2022). Perspectives on exploration and extraction of seafloor massive sulfide deposits in Norwegian waters. *Mineral Economics*. <u>https://doi.org/10.1007/s13563-022-00346-y</u>
- BankTrack. (2019, 01.11). Solwara 1 Deep Sea Mining Project. Retrieved 29.04.2024 from https://www.banktrack.org/project/solwara 1
- MOTION FOR A RESOLUTION on Norway's recent decision to advance seabed mining in the Arctic | B9-0095/2024 | European Parliament, (2024). https://www.europarl.europa.eu/doceo/document/B-9-2024-0095 EN.html

- Bogen, S. E., & Høyland, H. (2024, 26.03.2024). Enorme gruveplaner på Helleland i Rogaland skaper fortvilelse blant innbyggerne. *NRK*. <u>https://www.nrk.no/rogaland/enorme-gruveplaner-pa-helleland-i-rogaland-skaper-fortvilelse-blant-innbyggerne-1.16813406</u>
- Boschen, R. E., Rowden, A. A., Clark, M. R., & Gardner, J. P. A. (2013). Mining of deep-sea seafloor massive sulfides: A review of the deposits, their benthic communities, impacts from mining, regulatory frameworks and management strategies. *Ocean & Coastal Management*, *84*, 54-67. https://doi.org/https://doi.org/10.1016/j.ocecoaman.2013.07.005

Brembo, F., Skjelvik, S., & Molde, E. (2023, 05.12.). Flertall på Stortinget for å åpne for gruvedrift på havbunnen. *NRK*. <u>https://www.nrk.no/nordland/flertall-pa-stortinget-for-a-</u> apne-for-gruvedrift-pa-havbunnen-1.16663872

- Britannica. (2022, 24.12.). *Primary productivity*. Retrieved 06.05.2024 from https://www.britannica.com/science/primary-productivity
- Brundtland, G. H. (1987). *Report of the World Commission on Environment and Development: Our Common Future*. <u>https://www.are.admin.ch/are/en/home/medien-und-publikationen/publikationen/nachhaltige-entwicklung/brundtland-report.html</u>
- Business & Human Rights Resource Centre. (2021). Digging in the shadows: Eastern Europe and Central Asia's opaque extractives industry. <u>https://media.businesshumanrights.org/media/documents/2021 Company Profiles Key Takeaways EN v</u> <u>3.pdf</u>
- Carboex, Y. (2023). To the Deep End or Out of Their Depth? *BMGN Low Countries Historical Review*, *138*(4), 28-54. <u>https://doi.org/10.51769/bmgn-lchr.17447</u>
- Cardno. (2016). An Assessment of the Costs and Benefits of Mining Deep-sea Minerals in the Pacific Island Region: deep-sea Mining Cost-Benefit Analysis / Pacific Community. <u>https://www.sprep.org/attachments/VirLib/Regional/deep-sea-mining-cba-PICs-2016.pdf</u>
- Chen, W., Peters, K., Amon, D., Baker, M., Childs, J., Conde, M., Gollner, S., Magnussen, K., Mondre, A., Navrud, S., Singh, P. A., Steinberg, P., & Willaert, K. (2023). Assembling the Seabed: Pan-European and Interdisciplinary Advances in Understanding Seabed Mining. In (pp. 275-294). Springer International Publishing. https://doi.org/10.1007/978-3-031-20740-2 12
- Cherry, I. (2024, 28.05.). Deep Sea Mineral Mining: Impacts on Marine Ecosystems and Climate Change. *Berkeley Scientific Journal*. <u>https://bsj.studentorg.berkeley.edu/deep-sea-mineral-mining-impacts-on-marineecosystems-and-climate-change/</u>
- Childs, J. (2019). Greening the blue? Corporate strategies for legitimising deep sea mining. *Political geography*, 74, 102060. <u>https://doi.org/10.1016/j.polgeo.2019.102060</u>
- Chung, D., Scheyder, E., & Trainor, C. (2023, 2023/11/15/). The promise and risks of deepsea mining. *Reuters*. <u>https://www.reuters.com/graphics/MINING-</u> <u>DEEPSEA/CLIMATE/zjpqezqzlpx/</u>
- Clark, M. R., Durden, J. M., & Christiansen, S. (2020). Environmental Impact Assessments for deep-sea mining: Can we improve their future effectiveness? *Marine policy*, *114*. <u>https://doi.org/https://doi.org/10.1016/j.marpol.2018.11.026</u>
- Cuyvers, L., Berry, W., Gjerde, K., Thiele, T., & Wilhem, C. (2018). *Deep seabed mining: a rising environmental challenge.* https://portals.iucn.org/library/sites/library/files/documents/2018-029-En.pdf

Deep Sea Conservation Coalition. (2024). *Deep-sea mining: growing support for a moratorium*. <u>https://deep-sea-conservation.org/wp-content/uploads/2024/01/DSCC FactSheet3 DSM MORATORIUM 4pp OCT 23.pd f-2.pdf</u>

Dendena, B., & Corsi, S. (2015). The Environmental and Social Impact Assessment: a further step towards an integrated assessment process. *Journal of cleaner production*, *108*, 965-977. <u>https://doi.org/10.1016/j.jclepro.2015.07.110</u>

- DSM Observer. (2018, 17.01.). The writing is on the wall for Solwara 1 PNG should withdraw. DSM Observer. Retrieved 08.06.24 from https://dsmobserver.com/2018/01/solwara-1-png-withdraw/
- EJF. (2024). Critical minerals and the green transition; do we need to mine the deep seas? Environmental Justice Foundation. <u>https://ejfoundation.org/resources/downloads/EJF_critical-minerals-and-the-green-</u> transition.pdf
- EJF Staff. (2024, 07.02.). European Parliment responds to Norway's Decision to open the Arctic to deep-sea mining by calling for a global moratorium on the industry. Retrieved 07.06.2024 from <u>https://ejfoundation.org/news-media/european-parliament-responds-</u> to-norways-decision-to-open-the-arctic-to-deep-sea-mining-by-calling-for-a-globalmoratorium-on-the-industry
- Lov om mineralvirksomhet på kontinentalsokkelen, (2024a). https://lovdata.no/dokument/NL/lov/2019-03-22-7
- Energidepartementet. (2024b, 10.01). *Norge åpner opp for havbunnsmineraler* [Nyhet]. <u>https://www.regjeringen.no/no/aktuelt/norge-apner-opp-for-havbunnsmineraler/id3021433/</u>
- EY. (2022). Fremtidsmuligheter innen marine mineraler på norsk kontinentalsokkel. https://www.regjeringen.no/contentassets/dbf5144d0fbc42b5a4db5fc7eb4fa312/vedle gg-2.-ey.-fremtidsmuligheter-innen-marine-mineraler-pa-norsk-kontinentalsokkel.pdf
- Fauna & Flora. (2023). Update to 'An assessment of the risks and impacts of seabed mining on marine ecosystems'. <u>https://www.fauna-flora.org/wp-</u>content/uploads/2023/05/fauna-flora-deep-sea-mining-update-report-march-23.pdf
- Fauna & Flora International. (2020). An assessment of the risks and impacts of seabed mining on marine ecosystems. Fauna & Flora International. <u>https://www.fauna-flora.org/wp-content/uploads/2023/05/FFI_2020_The-risks-impacts-deep-seabed-mining_Report.pdf</u>
- Filho, W., Abubakar, I. R., Nunes, C., Platje, J., Ozuyar, P. G., Will, M., Nagy, G., Al-Amin, A., Hunt, J., Li, C., Li, C.-F., & Xue-Wei, X. (2021). Deep Seabed Mining: A Note on Some Potentials and Risks to the Sustainable Mineral Extraction from the Oceans. *Journal of Marine Science and Engineering*, 9. <u>https://doi.org/10.3390/jmse9050521</u>
- Finansdepartementet. (2022, 21.02). *Høring beskatningshjemmel for utenlandske personer* og selskap som deltar i mineralvirksomhet, utnytter fornybare energiressurser eller utøver karbonhåndtering på norsk kontinentalsokkel. Regjeringen. <u>https://www.regjeringen.no/no/dokumenter/beskatningshjemmel-for-utenlandske-</u> personer-og-selskap-som-deltar-i-mineralvirksomhet-mm/id2901520/
- Frik, E. (2024, 05.01.). Blade runners: how LFP batteries brought EV metal markets back to earth. *Mining*. <u>https://www.mining.com/blade-runners-how-lfp-batteries-brought-ev-metal-markets-back-to-earth/</u>
- Frimanslund, E. K. T. (2016). *Feasibility of Deep-Sea Mining Operation Within Norwegian Jurisdiction* [Master's thesis, NTNU]. <u>https://ntnuopen.ntnu.no/ntnu-</u> <u>xmlui/handle/11250/2410761</u>
- GEOMAR. (2020). Cobalt-rich Crusts Ore Treasue on the Slope Of Seamounts. https://www.geomar.de/en/discover/marine-resources/cobalt-rich-crusts
- Gibson, R. B. (2006). Beyond the Pillars: Sustainability Assessment as a Framework for Effective Economic and Ecological Considerations in Decision-Making. *Journal of Environmental Assessment Policy and Management*, 08(03), 259-280. https://doi.org/10.1142/S1464333206002517
- Gilbert, N. (2023). Deep-sea mining could soon be approved how bad is it? *Nature*, 619(7971), 684-684. <u>https://doi.org/10.1038/d41586-023-02290-5</u>
- GlobalData. Total GHG Emissions of Major Metals and Mining Companies Worldwide by Revenue in 2021. Retrieved 01.03.2024 from <u>https://www.globaldata.com/datainsights/mining/total-ghg-emissions-of-major-metals-and-mining-companiesworldwide-by-revenue-2090961/</u>

- Green Minerals. *Forside Green Minerals*. Retrieved 06.06.2024 from <u>https://greenminerals.no/</u>
- Greenpeace International. (2024). "Stop deep sea mining, not protests", Greenpeace demands regulator. Retrieved 18.03. from <u>https://www.greenpeace.org/international/press-release/65866/stop-deep-sea-mining-not-protests-greenpeace-demands-regulator/</u>
- Halpern, B. S., Selkoe, K. A., Micheli, F., & Kappel, C. V. (2007). Evaluating and Ranking the Vulnerability of Global Marine Ecosystems to Anthropogenic Threats. *Conservation Biology*, *21*(5), 1301-1315. <u>https://doi.org/10.1111/j.1523-1739.2007.00752.x</u>
- Hannington, M., Jamieson, J., Monecke, T., Petersen, S., & Beaulieu, S. (2011). The abundance of seafloor massive sulfide deposits. *Geology*, *39*(12), 1155-1158. https://doi.org/10.1130/g32468.1
- Heffernan, O. (2019). Deep-sea dilemma: Mining the ocean floor could solve mineral shortages – and lead to epic extinctions in some of the most remote ecosystems on Earth. *Nature*, *571*(Springer Nature Limited). <u>https://doi.org/10.1038/d41586-019-02242-y</u>
- Hein, J. (2013). The Geology of Cobalt-rich Ferromanganese Crusts. In (pp. 7-14).
- Hein, J. R., Mizell, K., Koschinsky, A., & Conrad, T. A. (2013). Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: Comparison with land-based resources. 1-14. https://doi.org/10.1016/j.oregeorev.2012.12.001
- Hillson, D. (2003). Effective Opportunity Management for Projects. https://doi.org/10.1201/9780203913246
- Hilmi, N., Chami, R., Sutherland, M. D., Hall-Spencer, J. M., Lebleu, L., Benitez, M. B., & Levin, L. A. (2021). The Role of Blue Carbon in Climate Change Mitigation and Carbon Stock Conservation. *Frontiers in Climate*, *3*. <u>https://doi.org/10.3389/fclim.2021.710546</u>
- Institute of Marine Research. (2023, 30.10.). *Mesopelagic resources*. Retrieved 08.06.2024 from <u>https://www.hi.no/en/hi/temasider/ocean-and-coast/nye-marine-ressurser-til-mat-og-for/mesopelagic-resources</u>
- International Energy Agency. (2021a, 5.5.). *Minerals used in electric cars compared to conventional cars*. Retrieved 01.03.2024 from <u>https://www.iea.org/reports/the-role-of-critical-minerals-in-clean-energy-transitions/executive-summary</u>
- International Energy Agency. (2021b). *The Role of Critical World Energy Outlook Special Report Minerals in Clean Energy Transitions*. <u>https://www.iea.org/reports/the-role-of-</u> <u>critical-minerals-in-clean-energy-transitions</u>
- International Energy Agency. (2023). Sustainable and Responsible Critical Mineral Supply Chains. <u>https://www.iea.org/reports/sustainable-and-responsible-critical-mineral-</u> <u>supply-chains</u>
- International Seabed Authority. *Polymetallic Nodules* [Brochures]. <u>https://www.isa.org.jm/wp-content/uploads/2022/06/eng7.pdf</u>
- IPCC. (2023). Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero]. https://www.ipcc.ch/report/ar6/syr/
- IUCN. (2022). *Deep-Sea Mining*. IUCN. Retrieved 12.Jan.2024 from https://iucn.org/resources/issues-brief/deep-sea-mining
- Jaeckel, A. L. (2017). The International Seabed Authority and the Precautionary Principle: Balancing Deep Seabed Mineral Mining and Marine Environmental Protection (Vol. 83). https://doi.org/10.1163/9789004332287
- Jakobsen, I. U. (2021, 04.01.). *Grunnlovens miljøparagraf*. <u>https://snl.no/Grunnlovens_milj%C3%B8paragraf</u>
- Jones, D., Amon, D., & Chapman, A. (2020). *Deep-Sea Mining: Processes and Impacts*. <u>https://nhm.openrepository.com/bitstream/handle/10141/622833/NATCAP%20Draft%</u>

20Mining%20Chapter%20Sept%202019%20Reviewed.pdf?sequence=3&isAllowed=

- Jones, F. (2023, 09.06). *Norway set to become one of the first countries to start deep-sea mining*. Mining Technology. Retrieved 27.11.2023 from <u>https://www.mining-</u> <u>technology.com/news/norway-set-to-join-the-first-countries-starting-deep-sea</u> <u>mining/?cf-view&cf-closed</u>
- Jonsbråten, Å., & Minge, F. F. (2023). Assessing the effect of potential tax regimes on investment incentives in future marine minerals projects on the Norwegian continental shelf from a corporate and a regulatory perspective [Master thesis, NTNU]. <u>https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/3105110</u>
- Ju, J., Feng, Y., Li, H., Xue, Z., Ma, R., & Li, Y. (2023). Research advances, challenges and perspectives for recovering valuable metals from deep-sea ferromanganese minerals: A comprehensive review. 123626. <u>https://doi.org/10.1016/j.seppur.2023.123626</u>
- Kang, Y., & Liu, S. (2021). The Development History and Latest Progress of Deep-Sea Polymetallic Nodule Mining Technology. *Minerals*, *11*(10), 1132. <u>https://doi.org/10.3390/min11101132</u>
- Koschinsky, A., Heinrich, L., Boehnke, K., Cohrs, C. J., Till, M., Shani, M., Singh, P., Stegen, K. S., & Werner, W. (2018). Deep-sea mining: Interdisciplinary research on potential environmental, legal, economic, and societal implications. *Integrated Environmental Assessment and Management*, 14(6), 672-691. <u>https://doi.org/10.1002/ieam.4071</u>
- Lavinsky, R. M. (2010). *Manganese Oxides*. https://commons.wikimedia.org/wiki/File:Manganese-Oxides-242669.jpg
- Leal Filho, W., Abubakar, I. R., Nunes, C., Platje, J., Ozuyar, P. G., Will, M., Nagy, G. J., Al-Amin, A. Q., Hunt, J. D., & Li, C. (2021). Deep Seabed Mining: A Note on Some Potentials and Risks to the Sustainable Mineral Extraction from the Oceans. *Journal* of Marine Science and Engineering, 9(5), 521. <u>https://www.mdpi.com/2077-1312/9/5/521</u>
- Legrand, E., Boulard, M., O'Connor, J., & Kutti, T. (2024). *Identifying priorities for the protection of deep-sea species and habitats in the Nordic Seas*. https://www.hi.no/templates/reporteditor/report-pdf?id=82876&13683534
- Levin, L. A., Amon, D. J., & Lily, H. (2020). Challenges to the sustainability of deep-seabed mining. *Nature Sustainability*, *3*(10), 784-794. <u>https://doi.org/10.1038/s41893-020-0558-x</u>
- Levin, L. A., Mengerink, K., Gjerde, K. M., Rowden, A. A., Dover, C. L. V., Clark, M. R., Ramirez-Llodra, E., Currie, B., Smith, C. R., Sato, K. N., Gallo, N., Sweetman, A. K., Lily, H., Armstrong, C. W., & Brider, J. (2016). Defining "serious harm" to the marine environment in the context of deep-seabed mining. *Marine policy*, 74, 245-259. <u>https://doi.org/10.1016/j.marpol.2016.09.032</u>
- Lorentsen, H. M. (2020, 20.11). *Mener mineraler på havbunnen kan gi opp mot 180 milliarder kroner i året*. Retrieved 08.06.2024 from <u>https://www.nrk.no/nordland/ny-rapport-om-mineraler-pa-havbunnen -kan-gi-opp-mot-180-milliarder-kroner-i-arlige-inntekter-1.15253641</u>
- Lyle, D. (2023, 05.12.2023). *Deep sea mining could be worse for the climate than land ores*. Planet Tracker. Retrieved 30.05.24 from <u>https://planet-tracker.org/deep-sea-mining-could-be-worse-for-the-climate-than-land-ores/</u>
- Ma, W., Schott, D., & Lodewijks, G. (2017). A New Procedure for Deep Sea Mining Tailings Disposal. *Minerals*, 7(4), 47. <u>https://doi.org/10.3390/min7040047</u>
- Ma, W., Zhang, K., Du, Y., Liu, X., & Shen, Y. (2022). Status of Sustainability Development of Deep-Sea Mining Activities. *Journal of Marine Science and Engineering*, *10*(10), 1508. <u>https://doi.org/10.3390/jmse10101508</u>
- Masuda, Y., Cruickshank, M. J., & Mero, J. L. (1971). *Continuous Bucket-Line Dredging at 12,000 Feet*. <u>https://store.pangaea.de/Projects/NOAA-MMS/OTC-1410-MS.pdf</u>
- Matthijsen, J., Dammers, E., & Elzenga, H. (2018). *The Future of the North Sea. The North Sea in 2030 and 2050: a scenario study*. P. N. E. A. Agency.

https://www.pbl.nl/sites/default/files/downloads/pbl-2018-the-future-of-the-north-sea-3193.pdf

- McVeigh, K. (2023, 29.07). International talks end without go-ahead for deep-sea mining. *The Guardian*. <u>https://www.theguardian.com/environment/2023/jul/29/deep-sea-mining-international-talks-isa-jamaica</u>
- Meld. St. 25 (2012–2013). Dele for å skape Demokrati, rettferdig fordeling og vekst i utviklingspolitikken. Retrieved from <u>https://www.regjeringen.no/contentassets/4a44b0028c5b43d5845c2e84247136cf/no/</u> pdfs/stm201220130025000dddpdfs.pdf
- Meld. St. 25 (2022-2023). *Mineralverksemd på norsk kontinentalsokkel opning av areal og strategi for forvaltning av ressursane*. Retrieved from <u>https://www.regjeringen.no/no/dokumenter/meld.-st.-25-20222023/id2985856/</u>
- Menini, E., Chakraborty, A., & Roady, S. E. (2022). Public participation in seabed mining in areas beyond national jurisdiction: Lessons learned from national regulators in the terrestrial mining sector. *Marine policy*, *146*, 105308. <u>https://doi.org/https://doi.org/10.1016/j.marpol.2022.105308</u>
- MIDAS. *Biodiversity of seamounts with cobalt-rich crust* [Phamplet]. <u>https://www.eu-</u> midas.net/sites/default/files/downloads/Briefs/MIDAS_brief_seamounts_Lowres.pdf
- MIDAS. *Deep-sea mining: An introduction* [Phamplet]. <u>https://oceanfdn.org/sites/default/files/MIDAS_brief_Introduction.compressed.pdf</u>
- Miljødirektoratet. (2023). Høring Konsekvensutredning for mineralvirksomhet på norsk kontinentalsokkel og utkast til beslutning om åpning av område. <u>https://www.regjeringen.no/contentassets/613111b7e02c464ca95b3e5bb364cc14/miljodirektoratet.pdf?uid=Milj%C3%B8direktoratet</u>
- Miller, K. (2023, 16.08). *The Triple Bottom Line: What It Is & Why It's Important*. Harvard Business School Online. Retrieved 11.06.2024 from https://online.hbs.edu/blog/post/what-is-the-triple-bottom-line
- Mindat. *Definition of ex-vessel*. Retrieved 11.05.2024 from https://www.mindat.org/glossary/ex_vessel
- Myhre, T. (2024, 19.04.). naturmangfoldloven. https://snl.no/naturmangfoldloven
- Nature. (2024). Norway's approval of sea-bed mining undermines efforts to protect the ocean. *Nature*, *625*(7995), 424-424. <u>https://doi.org/10.1038/d41586-024-00104-w</u>
- Niner, H. J., Ardron, J. A., Escobar, E. G., Gianni, M., Jaeckel, A., Jones, D. O. B., Levin, L. A., Craig R. Smith, Thiele, T., Turner, P. J., Dover, C. L. V., Watling, L., & Gjerde, K. M. (2018). Deep-Sea Mining With No Net Loss of Biodiversity—An Impossible Aim. *Frontiers in Marine Science*, 5. <u>https://doi.org/10.3389/fmars.2018.00053</u>
- Normannsen, S. (2024, 08.01.). *Norway will be the first in the world to approve seabed mining. Is it a good idea?* <u>https://norwegianscitechnews.com/2024/01/norway-will-be-</u> <u>the-first-in-the-world-to-approve-seabed-mining-is-it-a-good-idea/</u>
- Norwegian Ministry of Trade, Industry and Fisheries,. (2023). *Norwegian Mineral Strategy*. I. a. F. Norwegian Ministry of Trade. <u>https://www.regjeringen.no/contentassets/1614eb7b10cd4a7cb58fa6245159a547/nor</u> ges-mineralstrategi engelsk uu.pdf
- NSW Government. (2015). Guidelines for the economic assessment of mining and coal seam gas proposals. <u>https://www.planning.nsw.gov.au/sites/default/files/2023-03/guidelines-for-the-economic-assessment-of-mining-and-coal-seam-gas-proposals.pdf</u>
- NTB. (2023, 27.01.). *Miljøorganisasjoner ut mot regjeringens mineralforslag: Strider mot all fornuft*. Retrieved 04.06.2024 from https://kommunikasjon.ntb.no/pressemelding/17954262/miljoorganisasjoner-ut-mot-regjeringens-mineralforslag-strider-mot-all-fornuft?publisherId=17847174
- Oljedirektoratet. (2023). *Ressursvurdering havbunnsmineraler*. Retrieved from <u>https://www.regjeringen.no/contentassets/e0d0706a51274b598e4ef832545e59d3/nn-no/sved/vedlegg2.pdf</u>

- OMI. 5-MINUTE BRIEFING: OCEAN MINING. Retrieved 25.04.2024 from https://oceanminingintel.com/insights/5-minute-briefing-ocean-mining
- Ovesen, V., Hackett, R., Burns, L., Mullins, P., & Roger, S. (2018). Managing deep sea mining revenues for the public good- ensuring transparency and distribution equity. *Marine policy*, *95*, 332-336. <u>https://doi.org/10.1016/j.marpol.2017.02.010</u>
- Paulikas, D., Katona, S., Ilves, E., & Ali, S. H. (2020). Life cycle climate change impacts of producing battery metals from land ores versus deep-sea polymetallic nodules. *Journal of cleaner production*, 275, 123822. https://doi.org/10.1016/j.jclepro.2020.123822
- Petersen, S., Krätschell, A., Augustin, N., Jamieson, J., Hein, J. R., & Hannington, M. D. (2016). News from the seabed – Geological characteristics and resource potential of deep-sea mineral resources. 175-187. <u>https://doi.org/10.1016/j.marpol.2016.03.012</u>
- Pickens, C., Lily, H., Harrould-Kolieb, E., Blanchard, C., & Chakraborty, A. (2024). From what-if to what-now: Status of the deep-sea mining regulations and underlying drivers for outstanding issues. *Marine policy*, 105967. https://www.sciencedirect.com/science/article/pii/S0308597X23005006?via%3Dihub
- Planet Tracker. (2023). *The climate myth of deep sea mining*. <u>https://planet-tracker.org/wp-</u> content/uploads/2023/12/The-Climate-Myth-of-Deep-Sea-Mining.pdf
- Priyanka, R. (2023, 09.10.). The deep-sea mining dilemma. *Chemical & Engineering News*. https://cen.acs.org/environment/water/deep-sea-mining-dilemma/101/i33
- Purvis, B., Mao, Y., & Robinson, D. (2019). Three pillars of sustainability: in search of conceptual origins. *Sustainability Science*, *14*(3), 681-695. https://doi.org/10.1007/s11625-018-0627-5
- RMF. (2021). Harmful Impacts of Mining When extraction harms people, environments, and economies.

https://www.responsibleminingfoundation.org/app/uploads/RMF Harmful Impacts R eport EN.pdf

- Rogers, P. J., Stevens, K., & Boymal, J. (2009). Qualitative cost–benefit evaluation of complex, emergent programs. *Evaluation and Program Planning*, 32(1), 83-90. <u>https://doi.org/10.1016/j.evalprogplan.2008.08.005</u>
- Rystad Energy. (2020). *Marine minerals: Norwegian value creation potential*. <u>https://www.offshorenorge.no/contentassets/f7a40b81236149ea898b87ff2e43a0e3/2</u> 0201120-marine-minerals---norwegian-value-creation-potential.pdf
- Scarminach, S. (2019). Diving into the History of Seabed Mining. *Edge Effects*. <u>https://edgeeffects.net/seabed-mining/</u>
- SINTEF. (2022). *The Future is Circular*. <u>https://sintef.brage.unit.no/sintef-</u> xmlui/bitstream/handle/11250/3032049/CircularEconomyAndCriticalMineralsReport.p <u>df?sequence=7&isAllowed=y</u>
- Skelly, S. (2023, 09.08.). Wins & Outcomes of July Meetings at the International Seabed Authority. Sustainable Ocean Alliance. <u>https://www.soalliance.org/soablog/recap-isa-july-23</u>
- Society for Risk Analysis. (2018). Society for Risk Analysis Glossary. https://www.sra.org/risk-analysis-introduction/risk-analysis-glossary/
- Sokkeldirektoratet. (2024, 05.04.). *Konsekvensutredning*. Sokkeldirektoratet. Retrieved 04.06.2024 from https://www.sodir.no/fakta/havbunnsmineraler/konsekvensutredning/
- Sousa, E. D. (2021, 20.09.). Ocean mining's energy potential could put global fisheries at risk - Responsible Seafood Advocate. Retrieved 07.06.2024 from <u>https://www.globalseafood.org/advocate/ocean-minings-energy-potential-could-put-global-fisheries-at-risk/</u>
- SPC. (2013). Deep Sea Minerals: Sea-Floor Massive Sulphides, a physical, biological, environmental, and technical review.

https://dsm.gsd.spc.int/public/files/meetings/TrainingWorkshop4/UNEP_vol1A.pdf

Stallard, E. (2024, 09.01.). *Deep-sea mining: Norway approves controversial practice*. <u>https://www.bbc.com/news/science-environment-67893808</u>

- Statsministerens kontor. (2022, 03.11.). *Nytt norsk klimamål på minst 55 prosent*. Retrieved 06.06.2024 from <u>https://www.regjeringen.no/en/aktuelt/norways-new-climate-target-emissions-to-be-cut-by-at-least-55-/id2944876/</u>
- Stevens, M., Rogers, P., & Boymal, J. (2008). Evaluation of the stronger families and communities strategy 2000-2004. Qualitative cost benefit analysis. https://www.betterevaluation.org/sites/default/files/phhpu3ty2nm5.pdf
- Stobierski, T. (2019, 05.09.). Cost-Benefit Analysis: What It Is & How to Do It. Retrieved 03.11.2024 from https://online.hbs.edu/blog/post/cost-benefit-analysis
- Strøm, H., Merkel, B., Tarroux, A., & Lorentzen, E. (2021). *Sjøfugl i havområdene rundt Jan Mayen og langs den midtatlantiske rygg*. <u>https://www.sodir.no/globalassets/1-sodir/fakta/havbunnsmineraler/norskpolarinstititutt-kortrapport-sjoefugl-havbunnsmineraler.pdf</u>
- Szwed, P. S. (2016). Expert judgment in project management: narrowing the theory-practice gap. Project Management Institute, Inc. <u>https://www.pmi.org/-</u> /media/pmi/documents/public/pdf/research/expertjudgement.pdf?rev=b42a6e52f1334e7c85f6cb3e600d4582
- Tilot, V., Guilloux, B. G., Willaert, K., Mulalap, C. Y., Bambridge, T., Gaulme, F., Kacenelenbogen, E., Jeudy de Grissac, A., Moreno Navas, J., & Dahl, A. L. (2021). Traditional and Socio-Ecological Dimensions of Seabed Resource Management and Applicable Legal Frameworks in the Pacific Island States. In (pp. 613-659). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-87982-2_22
- UNFCCC. *The Paris Agreement*. Retrieved 04.05.2021 from <u>https://unfccc.int/process-and-meetings/the-paris-agreement</u>
- United Nations Environment Programme Finance Initiative. (2022). *Harmful Marine Extractives: Understanding the risks & impacts of financing non-renewable extractive industries.* <u>https://www.unepfi.org/wordpress/wp-content/uploads/2022/05/Harmful-</u> <u>Marine-Extractives-Deep-Sea-Mining.pdf</u>
- Verlaan, P. A., & Cronan, D. S. (2022). Origin and variability of resource-grade marine ferromanganese nodules and crusts in the Pacific Ocean: A review of biogeochemical and physical controls. *Chemie der Erde* = *Geochemistry.*, *82*(1), 125741. https://doi.org/10.1016/j.chemer.2021.125741
- Williams, R., Erbe, C., Duncan, A., Nielsen, K., Washburn, T., & Smith, C. (2022). Noise from deep-sea mining may span vast ocean areas. *Science*, *377*(6602), 157-158. https://doi.org/10.1126/science.abo2804
- World Bank Group. (2020). *Minerals for Climate Action: The Mineral Intensity of the Clean Energy Transition*. <u>https://pubdocs.worldbank.org/en/961711588875536384/Minerals-for-Climate-Action-The-Mineral-Intensity-of-the-Clean-Energy-Transition.pdf</u>
- World Ocean Review. (2014a). *Mineral resources: Massive sulphides in smoky depths*. Retrieved 05.02.2024 from <u>https://worldoceanreview.com/en/wor-3/mineral-resources/massive-sulphides/</u>
- World Ocean Review. (2014b). *Mineral resources: Metal-rich crusts*. Retrieved 05.02.2024 from <u>https://worldoceanreview.com/en/wor-3/mineral-resources/cobalt-crusts/</u>
- World Ocean Review. (2014c). *Sea-floor mining*. <u>https://worldoceanreview.com/wp-content/downloads/wor3/WOR3_en_chapter_2.pdf</u>
- World Ocean Review. (2021). The Ocean, Guarantor of Life Sustainable Use, Effective Protection. https://worldoceanreview.com/wp-content/downloads/wor7/WOR7_en.pdf
- WWF Global Arctic Programme. (2023). *Norwegian parliament advances deep seabed mining: A catastrophe for the ocean*. WWF. Retrieved 06.06.24 from <u>https://www.arcticwwf.org/newsroom/news/norwegian-parliament-advances-deep-seabed-mining-a-catastrophe-for-the-ocean/</u>
- Yirka, B. (2023). Deep sea mining plans could interfere with fish populations forced to move due to climate change. <u>https://phys.org/news/2023-07-deep-sea-fish-populations-</u> <u>due.html</u>
- Young, N. (2023, 29.11.). Deep sea miners take Greenpeace to court for peaceful protest at sea in the Pacific. Retrieved 08.06.2024 from

https://www.greenpeace.org/aotearoa/press-release/deep-sea-miners-takegreenpeace-to-court-for-peaceful-protest-at-sea-in-the-pacific/

Appendices

Appendix A.1

Definitions of Deep-Sea Mining

Sea mining is the process of extracting resources from the ocean floor. The mining happens at the surface layer of the seabed which can be rich in mineral deposits (Chen et al., 2023, p. 276). In the literature, there is a vast range of terms used for underwater mining operations. There are several terms used to refer to mining activities in the ocean, including subsea mining, seafloor mining, seabed mining, ocean mining, offshore mining, and marine mining. However, there is a difference between these terms and deep-sea mining, as subsea mining may occur at any depth (Frimanslund, 2016, p. 1). For example, explorations and exploitations off the coast of Namibia are described as seabed mining and exist within the territorial sea (12 nautical miles) and in the Exclusive Economic Zone (EEZ, up to 200 nautical miles) from the West African country's coast – but these deposits are not deep (Chen et al., 2023, p. 276). Deep-sea mining refers to retrieving mineral deposits from the deep sea – the ocean below 200 m (IUCN, 2022).

Appendix A.2

Formation and Distribution of Polymetallic Nodules

Distribution

Polymetallic nodules cover vast areas of the seabed in several marine regions across the world, where occurrences of economic interest are found in deep basins of 3,500 to 6,500 m. Nodules can be found in all oceans, but only four regions have a great enough nodule density for industrial exploitation (World Ocean Review, 2014c, p. 67). The four regions are the CCZ, Peru basin, Penrhyn basin, and the Indian Ocean (World Ocean Review, 2014c, p. 67).

Formation

Polymetallic nodules are created in specific sedimentary and chemical processes that typically take place in the abyssal plains. In this environment the sedimentation rate is slow, in part because of its distance from land, and in part because of the low primary productivity⁷.

The structure of a polymetallic nodule is typically layered like an onion (World Ocean Review, 2021, p. 155). Layers start to form when precipitation occurs concentrically around a preexisting hard nucleus (e.g. shark tooth or lithic fragment) (Tilot et al., 2021, p. 620; World Ocean Review, 2021, p. 155). Nodules can be divided into three different groups depending on the origin of their materials. The precipitation of their constituent materials occurs from two

⁷ Primary productivity measures how fast photosynthetic producers convert energy (from the sun) to organic substances. Source: (Britannica, 2022)

sources: the water column above, or the interstitial (pore) water that circulates through the upper sediments of the seabed. Nodules formed by the overlying seawater are considered hydrogenetic nodules, while the latter is considered diagenetic (Verlaan & Cronan, 2022, pp. 6,7; World Ocean Review, 2021, p. 153). The third group, and the most common, is called *"mixed nodules"* or *"mixed hydrogenetic-diagenetic nodules"*, and originate from both formation types (Cuyvers et al., 2018, p. 8; Verlaan & Cronan, 2022, p. 3). The different groups of nodules have different chemical compositions and accretion rates. Hydrogenetic nodules accrete at a rate of 1 - 10 mm per million years, while diagenetic nodules at 1 - 300 mm per million years (Tilot et al., 2021, p. 620; World Ocean Review, 2014c, p. 68).

Formation and Distribution of Cobalt-Rich Crusts

Distribution

Cobalt-rich crusts that have sufficient mineral content to have economic interest occur at depths between 800 - 2,500 m on seamounts and are estimated to cover an area of 1.7 million km² (Amon et al., 2022, p. 7; Hein, 2013, p. 8). About two-thirds of occurrences significant for mining are in the Pacific Ocean, 23 % in the Atlantic Ocean, and 11 % in the Indian Ocean (World Ocean Review, 2021, p. 155).

In the Norwegian context, suitable rock formations for CRCs are found in the majority of the deep-sea area of the NCS. These underwater formations can be found for 200 - 300 km on both flanks of the mid-Atlantic ridge. In addition, there are also prominent structures in the Vøring-ridge and the Jan Mayen-ridge (Meld. St. 25 (2022-2023), p. 24). The Norwegian government has estimated there to be over 226 megatons of metals in CRCs, with over 80 % of this being manganese, within their area of exploration for seabed minerals (Meld. St. 25 (2022-2023), p. 24).

Formation

CRCs form in a similar way to hydrogenetic polymetallic nodules, gaining most of their metals from the surrounding seawater column. However, unlike in the deep-sea flat plains, no sediments are deposited on the slopes of the seamounts (World Ocean Review, 2021, p. 154). A defining feature is the presence of strong currents carrying away the fine sediments and keeping the rock exposed (Hein, 2013, p. 9; MIDAS; World Ocean Review, 2014c, p. 76; 2021, p. 154).

CRCs are formed when metal ions in the water react with oxygen to create oxides, which get deposited on the surface of seamounts. These crusts can only form in areas where there's sufficient oxygen in the water (GEOMAR; World Ocean Review, 2014c, p. 76). However, there's a contradiction since the thickest CRCs are found in the water zone that has the least amount of oxygen. The oxygen minimum zone is at around 1,000 m depth with a range of

several hundred meters (World Ocean Review, 2014c, p. 76). The zone is a result of bacterial breakdown of sinking dead biomass, a process that consumes oxygen. Because the water at this depth is not mixed by storms and waves, very little oxygen reaches it (Fauna & Flora International, 2020, p. 107; World Ocean Review, 2014c, p. 76).

The reason behind the formation is that in the oxygen minimum zone, the free metal ions tend to accumulate in the oxygen-poor water. However, at seamounts, oxygen-rich water flows up from the seabed, creating a mixing zone where metal oxides can form. Over time, these metal oxides precipitate on the rock surfaces and form crusts (GEOMAR; World Ocean Review, 2014c, p. 76). See Figure 9 for illustration of formation process.

Figure 9 – Formation process of CRCs (GEOMAR)

Formation and Distribution of Seafloor Massive Sulfide Deposits

Distribution

Most seafloor massive sulfides can be found near mid-ocean ridges and back-arc basins, in water depths of 1,600 - 4,000 m (World Ocean Review, 2021, p. 155). Based on the current understanding of the formation of SMS deposits, two major regions have been identified as having the potential for commercially viable deposits. These areas are the western Pacific, which has many back-arc basins, and the slow-spreading Mid-Atlantic Ridge (Cuyvers et al., 2018, p. 12). Mining exploration contracts targeting sulfides have been granted in both of these regions (Amon et al., 2022, p. 5; Cuyvers et al., 2018, p. 12).

On the Norwegian continental shelf, several locations are prospective for SMSs. These include the Knipovich-ridge, Mohns-ridge, and the northern part of the Kolbeinsey-ridge (Oljedirektoratet, 2023, p. 28). There are nine proven occurrences of SMSs in the Mohns-ridge, however, there is expected to be twice the amount along this ridge (Oljedirektoratet, 2023, p. 39).

SMSs are generated at active hydrothermal vents and are retained at inactive or extinct vents after hydrothermal activity ends. At extinct vents, hydrothermal activity has permanently stopped, whereas at inactive vents the cease in activity is temporary. It can be difficult to classify these vents, as conclusions of inactivity can be premature (Amon et al., 2022, p. 5). Worldwide, it is believed to be more inactive sites than active sites, but these are much more difficult to find (SPC, 2013, p. 11; World Ocean Review, 2021, p. 156).

Formation

There are conflicting views on the formation rate of SMSs in scientific literature. Some researchers state that SMS deposits require a hydrothermal system ranging in timescales from several million to several hundred million years to form (Tilot et al., 2021, p. 623). Others claim that the lifespan of hydrothermal systems that form SMSs is around 50,000 years, after which the magmatic heat-source migrates or the deposition field is covered by a lava-flow (Bang & Trellevik, 2022, p. 6).

They form as the result of seawater circulating through the upper three kilometers of the seabed. The seawater is then heated by a heat source, such as a magma chamber, and transformed into a hot (around 400 °C), acidic, and highly concentrated solution. This solution then dissolves metals from the volcanic rocks surrounding it. Due to the lower density of the now metal-enriched water, it rises rapidly to the sea floor. Most of it is expelled into the water column above as a focused flow at chimney vent sites. When the water eventually reacts with the cold seawater, the dissolved metals are precipitated as metal sulfides, producing black and white smoker chimneys (SPC, 2013, p. 8; World Ocean Review, 2021, pp. 155,156). Figure 10 below illustrates the formation process of SMSs.

When the chimneys reach a certain height, at times more than 30 meters, it collapses over itself. Another chimney then starts to form, and the process is repeated. As a result, sulfide mounds are formed at the seafloor, sometimes several hundred meters wide and several tens of meters thick (Cuyvers et al., 2018, pp. 11-12; World Ocean Review, 2021, p. 156).

Figure 10 – Formation process of SMSs (World Ocean Review, 2014c, p. 83)

Appendix B.1 Full tables CBA

Environmental Benefits

	ENVIRONMENTAL												
Stakeholders	Outcome	Scale of Outcome	Duration of Outcome	Certainty	Positive Consequence	Strength of Knowledge	Positive Risk	Risk Score	Comment	Sources			
Harvest Sector	The transition from terrestrial mining to DSM is projected to lower the overall GWP.	International	Long term	Low	High	Low	Low	1.14	It is estimated that the CO2- equivalent emissions related to extracting minerals from DSM can be as low as ¹ / ₄ compared to terrestrial mining. However, there are few estimates and large discrepancies among them.	(Paulikas et al., 2020, pp. 10 -11; Planet Tracker, 2023)			
	Compared to nodule mining, CRC and SMS extraction plumes will be more localized.	National	Program duration	Medium	High	Medium	Medium	2.28	Studies suggest the horizontal spread of plumes from SMS and CRC mining will be less extensive.	(Fauna & Flora, 2023)			
Norwegian Government	Facilitates the transition to a low-emission society by increasing the availability of minerals essential for low- carbon technologies, thereby supporting the Government in achieving its emissions goals.	National	Long term	Medium	High	Low	Low	1.96	Norway's target is to reduce emissions by at least 55% by 2030. The increase in mineral supply can further boost the production of low-carbon technologies, making them more accessible to Norwegian citizens and aiding the transition to a low-emission society	(Statsministerens kontor, 2022).			

Norwegian Citizens	Shifting some mining activities to the seabed reduces the physical footprint and associated environmental degradation of terrestrial mining operations within Norway.	National	Program duration	Low	Medium	Low	Low	1.01	If the minerals can be extracted from DSM, it may reduce the demand for terrestrial mines on land in Norway. An example could be the planned "Norge Mineraler" mine in Rogaland, covering over 32 square kilometers and affecting 204 landowners. Several more mines are proposed on Norwegian land, some mining the same minerals targeted with DSM.	(Bogen & Høyland, 2024)
	Easier access to minerals extracted with a low carbon output.	International	Program duration	Medium	High	Low	Low	1.84	As stated, it is estimated DSM may have a lower carbon output than terrestrial mining. If DSM starts, it enables the post-harvest sector to buy minerals with a lower carbon output.	(Chung et al., 2023; Paulikas et al., 2020; Planet Tracker, 2023)
Post-Harvest Sector	The increased availability of DSM-derived minerals could stimulate demand for metallurgical processing in countries prioritizing low- carbon industrial practices, such as Norway.	International	Program duration	Low	High	Low	Low	1.01	70 – 85 % of the total climate impact from the value chain of metals comes from metallurgical processing which is the same for both terrestrial and DSM. Initiating DSM in Norway, which has a relatively large focus on low-carbon solutions, might increase the demand for metallurgical processing with lower emissions. Currently, there is little evidence for this.	(Planet Tracker, 2023) (Lyle, 2023)
Competing Industries	An increase in R&D can provide technologies that have lower emissions, which could be	International	Long term	Low	High	Low	Low	1.14	R&D in DSM might produce technologies with a lower carbon output that could be applicable for terrestrial mining.	(Levin et al., 2020)

	applicable to other industries.									
	If Norway becomes a large-scale mineral exporter, it could set a precedent, encouraging the international terrestrial mining industry to adopt similar standards.	International	Long term	Medium	High	Low	Low	1.96	If Norway become a large- scale mineral exporter, it could pressure the international mining sector to adopt more environmentally friendly practices. Either directly by offering reduced emissions linked to mineral extraction or indirectly by setting regulatory precedence for emission	(EY, 2022)
	DSM could pressure the of metallurgical processors to reduce their GWP, as it is a major contributor in the mineral value chain.	International	Long term	Low	High	Low	Low	1.14		Authors judgment
International Governments	DSM activities necessitate further scientific research on deep-sea ecosystems, potentially advancing understanding and contributing valuable knowledge to global environmental science.	International	Long term	High	High	Low	Medium	2.53	A representative for the Norwegian government states that DSM at this stage involves research and exploration of deep-sea habitats, that will increase our understanding of them. The plan is to get more information before exploration commences	(Brembo et al., 2023)

By decreasing the need for terrestrial mining, DSM can help reduce deforestation and associated habitat destruction.	International	Program duration	Low	High	Low	Low	1.01	If terrestrial mining is replaced with DSM, it will reduce deforestation from terrestrial mining-related activities. There is little evidence to suggest this will happen.	(Amadi & Mosnier, 2023)
--	---------------	---------------------	-----	------	-----	-----	------	---	----------------------------

					ECO	NOMIC				
Stakeholder s	Outcome	Scale of Outcome	Duration of outcome	Certainty	Positive Consequ ence	Strength of Knowledge	Positive Risk	Risk Score	Comment	Sources
Harvest Sector	The initiation of the DSM industry in Norway is likely to attract foreign investments by offering new opportunities for resource extraction. Coupled with Norway's robust and stable financial market, these opportunities can appeal to international investors.	National	Program duration	Medium	High	Medium	Medium	2.23	Access to capital is necessary for any project and Norway has different public funding schemes for the industrial sector. This in combination with robust and liquid financial institutions can lower the barrier of entry for possible companies.	(Norwegian Ministry of Trade, 2023, p. 45)
	Companies will operate in an environment with higher ore grades than terrestrial mining, resulting in more efficient extraction processes and lower costs per unit of mineral.	National	Program duration	Medium	Medium	High	Medium	2.71	The ore grades in the deep sea are measured to be much higher than that of terrestrial mining today.	(Green Minerals, 2020; Rystad Energy, 2020, p. 21

Economic Benefits

	By leveraging Norway's existing infrastructure from the maritime industries, the capital expenditures for establishing a new industry can be significantly reduced.	Local	Program duration	High	High	Medium	High	2.85	The oil and gas, shipping, and fishing industries all have existing infrastructure and a workforce with extensive experience from the NCS allocated along the coast. This could significantly reduce the capital expenditures of establishing a new industry. EY had talks with various technology and innovation clusters spread out in Norway who were very positive about facilitating the industry.	(EY, 2022, pp. 19 - 21) (Asplan Viak, 2022, p. 39).
	With many firms facing resource scarcity, DSM could offer a solution by providing a fresh supply of critical minerals.	Internationa I	Program duration	High	High	High	High	3.29	ABB did a survey with 3, 304 respondents around the globe, where 91 % said they are experiencing resource scarcity.	(ABB, 2024, p. 6).
	Enables harvest companies, shareholders, and members of the supply chain to earn profits on the minerals sold.	Local	Program duration	High	High	High	High	3.29		(Levin et al., 2020)
Norwegian Government	Leveraging the experienced local workforce accustomed to working with the NCS minimizes the need for outsourcing and retains more	National	Long term	High	Low	Low	Medium	2.04	The oil and gas, shipping, and fishing industries all have existing infrastructure and a workforce with extensive experience from the NCS allocated along the coast. This could significantly reduce the capital expenditures of establishing a new industry. EY had talks with various	(EY, 2022, pp. 19 - 21; Rystad Energy, 2020, p. 39)

	economic value within the country.								technology and innovation clusters spread out in Norway who were very positive about facilitating the industry	
	Revenues generated from taxes, royalties, and licenses on DSM activities can increase financing for the welfare state.	National	Program duration	High	High	High	High	3.29		(Levin et al., 2020)
	Economic diversification resulting from DSM can provide the government with additional revenue streams, enhancing financial stability.	National	Program duration	High	Medium	High	High	3.29		(Levin et al., 2020, p. 7)
Norwegian Citizens	An increase in jobs directly related to DSM can have a positive ripple effect on the economy, stimulating demand for local services such as barbers and restaurants.	National	Program duration	Medium	High	Medium	Medium	2.3	Financial investments in an industry are bound to have an economic multiplier effect, where the DSM industry can stimulate economic growth in related sectors such as equipment supply and increase demand for local services such as barbers	(Asplan Viak et al., 2022, p. 38; Cardno, 2016).
Post- Harvest Sector	Investments in the harvest sector can stimulate demand for logistics and supply chain services, leading	Internationa I	Program duration	High	Medium	Medium	High	2.85		(Asplan Viak et al., 2022; Levin et al., 2020)

	to increased investments and employment opportunities in the post-harvest sector.									
Competing Industries	Unsuccessful DSM ventures can make terrestrial mining appear as a safer investment.	Internationa I	Program duration	Medium	High	Low	Low	1.84	An example of an unsuccessful venture is the Solwara 1. Similar projects can deter investments from DSM, and investors might look at other investment opportunities more favorably. The source advocates that financial institutions should stay away from experimental DSM projects.	(BankTrack)
	Increased supply of minerals may lead to lower mineral prices, benefiting global consumers.	Internationa I	Program duration	Medium	High	Low	Low	1.84	With demand being the same and with increased supply the expected effect on price is that it will be lower.	Authors judgment
International Government s	Diversification of the mineral supply chain reduces the risk of price squeeze providing stability and economic benefits on a global scale.	Internationa I	Program duration	Medium	High	Low	Low	1.84	If Norway can provide a steady and enhanced supply of critical materials it can undermine the global pressure preventing or blocking access to materials. Major countries and the EU are trying to position themselves strategically to deal with uncertainty relating to access to raw materials	(Norwegian Ministry of Trade, 2023, p. 19)

Social Benefits

					SO	CIAL				
Stakeholders	Outcome	Scale of Outcome	Duration of outcom e	Certaint y	Positive Consequen ce	Strength of Knowledg e	Positiv e Risk	Risk Scor e	Comment	Sources
	The sector can leverage expertise from Norway's existing maritime industry to enhance operational efficiency.	National	Progra m duration	High	High	Medium	High	2.85	As stated under economic benefits, Norway can build on its extensive experience in the maritime industry, particularly in oil and gas, fishing, and shipping. These industries can provide a solid foundation with their established coastal facilities, supply bases, and workers	(EY, 2022, pp. 19 - 21) (Rystad Energy, 2020, p. 39).
Harvest Sector	The industry can increase workplaces, providing job opportunities and improving local employment rates.	National	Long term	High	High	High	High	3.41	There are expected to be 21,000 new jobs related to the DSM industry	(Lorentsen, 2020)
	Norway's sustainability standards provide an opportunity for workers in the mineral industry as they can benefit from these standards, enjoying higher health and safety measures compared to	Internation al	Progra m duration	High	High	Medium	High	2.85		(Norwegian Ministry of Trade, 2023)

	those in international terrestrial mining.									
	A stable regulatory framework in Norway ensures predictability for DSM companies.	National	Progra m duration	High	High	Medium	High	2.85	Norway has extensive experience in deepwater operations acquired over decades of offshore activity, coupled with a stable regulatory framework. These factors position the NCS as a globally competitive area for DSM.	(Green Minerals)
	Norwegian companies can create an expertise in CRC and SMS extraction as the global focus has primarily been on nodules.	Internation al	Long term	Medium	High	Low	Low	1.96	Among the three types of mineral deposits considered for deep-sea mining, CRCs have received the least attention in terms of scientific study. Globally, only a small percentage of total large seamounts (over 1,000 m in height) have been directly sampled for scientific purposes, with the range falling between $0.4 - 4$ % (or 200 - 300 globally) (Amon et al., 2022, p. 7). In the NCS the expected mineral deposits are SMS and CRC. Globally, the technology for extracting these deposits is underdeveloped, as the world has focused on nodules. This could provide possibilities for Norway to develop expertise that could be valuable around the world	(Asplan Viak et al., 2022, pp. 55 - 58). (Amon et al., 2022, p. 7).
Norwegian Government	The industry can contribute to increased knowledge of the deep sea for research institutions and	National	Long term	High	High	Low	Mediu m	2.54	This can be achieved through research centers, technology clusters, and specialized university programs, strengthening Norway's position in the global maritime and mining industries	Authors judgment

	enhance scientific understanding.									
	A strategic establishment of facilities and research centers can be used to help towns and communities create a local industry.	Local	Progra m duration	Low	Low	Low	Low	1.26	Establishing facilities related to DSM and research centers can be used strategically to help local towns and communities become hubs for innovation and development	(Asplan Viak et al., 2022, pp. 21 - 23).
Norwegian Citizens	It enables Norwegian companies to be at the forefront of research and development for technologies to be used in the industry and beyond.	National	Long term	High	Medium	Low	Mediu m	2.54	In the NCS the expected mineral deposits are SMS and CRC. Globally, the technology for extracting these deposits is underdeveloped, as the world has focused on nodules. This could provide possibilities for Norway to develop expertise that could be valuable around the world	(Asplan Viak et al., 2022, pp. 55 - 58).
	The development of DSM in Norway has the potential to create technical and skilled job opportunities for local communities, attracting specialized workers and their families, while also incentivizing locals to stay.	National	Progra m duration	High	Medium	Medium	High	2.85	This approach can help in attracting specialized workers and their families, while also providing incentives for locals to remain in the communities. This can lead to direct benefits, as individuals will experience greater purchasing power, as well as indirect benefits through the increased demand for supplies from subcontractors. Additionally, this can also lead to consumer effects, as people will use their salaries to purchase goods and services.	(Asplan Viak et al., 2022, pp. 21 - 23).

Based a history of successful and effective resource management from Norway's oil and gas industry, the country is well- positioned to ensure that the financial benefits from the DSM industry are shared equitably among its citizens and preserved for the future.								Norway have previously avoided the "resource curse" with Oil and Gas, and using the existing framework for equitable distribution of wealth can benefit the industry. The source speaks to the problem of the resource curse.	(Levin et al., 2020; Meld. St. 25 (2012–2013))
More job opportunities and higher paygrades for regional support businesses can increase monetary circulation and stimulate local businesses.	Local	Progra m duration	High	High	Low	Mediu m	2.41	This can attract specialized workers and their families while also incentivizing locals to stay. This can lead to direct impacts as people experience a higher purchasing power, and indirect impacts by an increased demand for supplies from subcontractors. All of which can have ripple effects on the economy and have a positive effect on areas that might otherwise face decline	(Asplan Viak et al., 2022, pp. 21 - 23).
The industry can create a demand for relevant educational programs.	Internation al	Long term	High	Medium	Low	Mediu m	2.53		Authors judgment
Funds generated from DSM can be used to improve national	National	Long term	High	High	Low	Mediu m	2.41		Authors judgment

	infrastructure, education, and healthcare services, thereby enhancing the overall quality of life in Norway.									
	The industry can increase the demand for local skills and expertise in the post-harvest sector, providing job opportunities and fostering skill development.	National	Progra m duration	High	High	Medium	High	2.85		(EY, 2022)
Post-Harvest	The post-harvest sector could gain easier access to high-value minerals	Internation al	Progra m duration	High	High	Medium	High	2.85		Authors judgment
Sector	Increased access to minerals harvested in a socially responsible manner, reducing reliance on conflict minerals from politically unstable regions plagued by issues such as child labor and ethnic conflicts.	Internation al	Progra m duration	High	High	Medium	High	2.85	The world's largest suppliers of cobalt and copper face significant ethical and humanitarian challenges. By developing its own DSM industry, Norway could provide a stable and ethical supply of these critical minerals, supporting global sustainability and ethical practices DSM can provide materials needed for renewable energy infrastructure, reducing reliance on conflict minerals from politically unstable regions plagued by issues like child labor and ethnic conflicts.	(Rystad Energy, 2020, pp. 17 - 21). (Norwegian Ministry of Trade, 2023)

Competing	There is expected to be some technological overlap between DSM and terrestrial mining, with similar equipment being used.	Internation al	Progra m duration	Low	Medium	Low	Low	1.01	There can be an overlap of subcontractors and special equipment previously used for terrestrial mining, whereby terrestrial mining companies can sell equipment and have an available workforce for both, at least in the short term.	(Jones, 2023, p. 10)
musues	DSM can lead to an expertise shift and expansion of the mining workforce, broadening the skillset and experience of workers in the mining sector.	Internation al	Long term	High	High	Low	Mediu m	2.54		Authors judgment
International Government s	DSM can mitigate dependence on a limited number of countries for access to critical minerals, enhancing global supply chain stability and security.	Internation al	Progra m duration	High	High	High	High	3.29	Norway could provide a supply of these minerals, reducing reliance on a few current countries	(Rystad Energy, 2020, pp. 17 - 21). (Norwegian Ministry of Trade, 2023)
	The DSM industry is expected to have little direct impact on freshwater,	Internation al	Progra m duration	High	High	Low	Mediu m	2.41		(Paulikas et al., 2020, p. 4)

unlike terrestrial mining.									
The Norwegian framework can be used to create intergenerational equity from non- renewable resources and avoid the resource curse.	Internation al	Long term	Low	High	Low	Low	1.14	The ISA can use the Norwegian model of a sovereign wealth fund to ensure that the non-renewable resources can benefit future generations as well. Propper and sustainable managed wealth can improve living standards and create economic opportunities for both current and future generations. The source speaks to the importance of sustainable and transparent management of a sovereign wealth fund and the complexities of implementing it.	(Ovesen et al., 2018)
Research associated with DSM can increase understanding of genetic resources with potential for pharmaceutical use.	Internation al	Long term	Low	High	Low	Low	1.14		(Levin et al., 2020)

Environmental Costs

	ENVIRONMENTAL												
Stakeholders	Outcome	Scale of Outcome	Duration of outcome	Certaint y	Negative Consequen ce	Strength of Knowledg e	Negati ve Risk	Risk Scor e	Comment	Source			
	Restoration efforts are unlikely to accurately replicate disrupted habitats, leading to a net loss of biodiversity.	National	Long term	High	High	Medium	High	2.97	Given the complexity of deep-sea ecosystems and our limited understanding of the interdependencies between species, achieving "like for like habitat restoration" can be difficult. This challenge is compounded by a lack of data and proven methods for effective restoration. Efforts to restore biodiversity might not accurately replicate the ecological characteristics and functions of habitats disrupted by DSM, leading to irreversible damage and a net loss of biodiversity.	(Niner et al., 2018, p. 7)			
Harvest Sector	Removing CRCs over a large area will have significant and long-lasting environmental impacts, affecting vulnerable hard- bottom fauna and local ecosystems.	National	Long term	High	High	High	High	3.41		(Koschinsky et al., 2018, p. 677; Miljødirektoratet, 2023, pp. 7 - 8)			
	Noise from DSM operations can disrupt marine life and lead to changes in	Internationa I	Program duration	High	High	High	High	3.03	Many species rely on sound and vibrations in the absence of sunlight, making them potentially vulnerable to noise from human activities.	(Williams et al., 2022)			

	behavior. Most deep-sea species have yet to be described, and sensitivities to noise have not been studied,									
	leaving a gap in our understanding of their									
-	Light pollution can occur where no natural light sources exist or where natural light is much weaker, potentially having a negative impact on deep-sea life.	Internationa I	Program duration	High	High	High	High	3.03	Light pollution occurs where no natural light sources exist or where natural light is much weaker. There can be taken steps to reduce the light emission, but it is unlikely to be completely avoided. The impact this will have on marine life is unclear	(Leal Filho et al., 2021)
	The mining of active SMS deposits will significantly impact unique environments and lead to the loss of species that are dependent on these habitats.	National	Long term	High	High	High	High	3.41	Mining will most likely not occur at these deposits.	(Koschinsky et al., 2018, pp. 677 - 678; Miljødirektoratet, 2023, pp. 7 - 8)
-	Mining inactive SMS deposits can considerably	National	Long term	High	Medium	High	High	3.41	Inactive SMSs are considered less critical to the local ecosystem, especially if they only host soft bottom fauna. Recently, however,	(Koschinsky et al., 2018, pp. 677 - 678;

	impact unique environments and lead to the loss of species that are dependent on these habitats.								inactive vents have been considered to host a different set of sediments and need to be assessed closer to understand the potential impact they might have on life around them. Assessing the difference between inactive vents and dormant vents is considered to be quite a challenge.	Miljødirektoratet, 2023, pp. 7 - 8)
	The spread of particles and toxic metals from DSM activities can have a negative environmental impact, harming marine life and ecosystems.	Internationa I	Program duration	High	High	Medium	Mediu m	2.6		(Filho et al., 2021; Miljødirektoratet, 2023, pp. 7 - 8; Niner et al., 2018, p. 4)
	The spread of plumes can negatively impact marine life by creating a "blanket" of sediments in areas around the mining field, potentially burying benthic organisms and clogging the respiratory surfaces of filter feeders.	Internationa I	Long term	High	High	Medium	High	3.03	Environmental concerns regarding sediment removal and discharges from DSM are centered on the re- deposition of these sediments from the plume, as it can create a cover of sediments in areas surrounding the mining field. This can bury benthic organisms and clog the respiratory surfaces of filter feeders. The plumes could contain toxic substances, reduced metals, and unstable organic matter, leading to oxygen depletion. Furthermore, there are concerns about their effects on midwater fauna.	(Fauna & Flora International, 2020; Filho et al., 2021)
Norwegian Government	Disrupting benthic organisms and	Internationa I	Long term	High	High	Medium	High	2.97	Some deep-sea sediments act as a carbon sink. Certain benthic organisms regulate organic	(Cardno, 2016; United Nations Environment

se dv af pr po e: cl in	ediment- welling acteria can ffect climate rocesses, otentially xacerbating limate change npacts.								decomposition, influencing CO2 sequestration and water purification.	Programme Finance Initiative, 2022)
In ec ca ca U U	heffective cological ompensation an lead to non- ompliance with NCLOS bligations.	Internationa I	Long term	Medium	High	High	High	2.83	The UNCLOS states that nations exploring DSM in their jurisdiction have to follow no less stringent rules and regulations, than they provide	(Advokatfirmaet Wikborg Rein, 2023) (Levin et al., 2016)
T as pe th is ne ne T th st st p u p p p p p	he impact ssessment erformed by he government a lacking uanced erspectives on egative risks. his can enable he premature tart of the adustry and rould be in reach with the recautionary rinciple.	National	Program duration	High	High	High	High	3.03	The Norwegian Environment Agency states that allowing for exploitation of minerals based on the current impact assessment would breach with the precautionary principle	(Miljødirektoratet, 2023)
Ti ai bi ai oj ai	here could be n overlap etween MPAs nd the area pened for DSM ctivities.	National	Program duration	High	High	Medium	Mediu m	2.6		(Legrand et al., 2024)

	DSM activities could lead to a loss of transit routes and habitats for slow-moving pelagic seabirds, potentially leading to declines in their populations.	National	Program duration	Medium	Medium	Low	Low	1.58	There could be established resource bases on land that could disturb the habitats of the birds, furthermore some of their transit routes are expected to overlap with the proposed area	(Rystad Energy, 2020; Strøm et al., 2021)
Norwegian Citizens	DSM could impact the migration patterns of fish.	Internationa I	Program duration	Medium	High	Low	Low	1.58	Due to increased sea temperatures, species are migrating northwards. In the CCZ, new migration patterns for fish have been reported, driving them into the deeper part of the CCZ, which overlaps with the proposed mining area, possibly affecting the fishing industry.	(Matthijsen et al., 2018) (Yirka, 2023).
Post-Harvest Sector	No evidence was found supporting significant outcomes.									
Competing Industries	No evidence was found supporting significant outcomes.									
International Government s	DSM can undermine the shift to a circular economy by reducing	Internationa I	Program duration	High	High	Medium	Mediu m	2.6	Supporting the transition toward a circular economy Promoting efforts toward a circular economy such as increased recycling and the reuse of components from products at the end of their life cycle, ensuring that raw materials are fed back into the	(United Nations Environment Programme Finance Initiative, 2022) (EJF, 2024)

incentives to invest in recycling and sustainable resource management.								economy. Can lead to reducing current mineral demand and setting us on a path to a sustainable, circular resource economy.	
The impact assessment lacks sufficient attention to potential transnational impacts.	Internationa I	Program duration	Medium	Medium	Low	Low	1.58	Norway is required to notify neighboring states about possible transboundary impacts through certain conventions. Giving notification based on a lacking impact assessment can be in conflict with the conventions intention.	(Advokatfirmaet Wikborg Rein, 2023)
Carbon is sequestered and stored in seafloor sediment. Mining operations could risk releasing this carbon back into the ocean and the atmosphere.	Internationa I	Long term	Medium	High	Low	Low	1.96	DSM activity can disturb the carbon sequestering process, negatively affect climate change, and increase ocean acidification.	(Cherry, 2024)

Economic Costs

Outcome	Scale of Outcome	Duration of outcome	Certaint y	Negative Consequen ce	Strength of Knowledg e	Negati ve Risk	Risk Scor e	Comment	Sources		
An environmental compensation fund can be necessary to establish to cover the fees of restoring deep- sea ecosystems.	National	Long term	Medium	Medium	Low	Low	1.96	If Norway empose a similar approach as the ISA to govrenannce, they could implement an environmental compensationfund to restore potential disturbances caused. It is however, unlikely that the fund as proposed by the ISA will actually cover the restoration costs. There has been assessments made on restoring nodule sites with artificial nodules, that have estimated a higher cost of restoration than expected revenue per km^2 If implemented it would impose financial burdens on the harvest sector due to contributions required for the fund.	(Amadi & Mosnier, 2023)		
Changes in technology could lower the demand for certain minerals from DSM, impacting the economic viability of mining projects. Prospecting and exploration	National	Program duration Program duration	Medium	High High	Low	Low Mediu m	2.6	Changes in technology could reduce demand for certain DSM minerals. An example is the change to LFP EV batteries, which do not require expensive cobalt and nickel.	(EJF, 2024; Frik, 2024) (Ma et al., 2022)		
	Outcome An environmental compensation fund can be necessary to establish to cover the fees of restoring deep- sea ecosystems. Changes in technology could lower the demand for certain minerals from DSM, impacting the economic viability of mining projects. Prospecting and exploration costs.	OutcomeScale of OutcomeAn environmental compensation fund can be necessary to establish to cover the fees of restoring deep- sea ecosystems.NationalChanges in technology could lower the demand for certain minerals from DSM, impacting the economic viability of mining projects.NationalChanges in technology could lower the demand for certain minerals from DSM, impacting the economic viability of mining projects.National	OutcomeScale of OutcomeDuration of outcomeAn environmental compensation fund can be necessary to establish to cover the fees of restoring deep- sea ecosystems.NationalLong termChanges in technology could lower the demand for certain minerals from DSM, impacting the economic viability of mining projects.NationalProgram durationProspecting and exploration costs.LocalProgram duration	OutcomeScale of OutcomeDuration of outcomeCertaint yAn environmental compensation fund can be necessary to establish to cover the fees of restoring deep- sea ecosystems.NationalLong termMediumChanges in technology could lower the demand for certain minerals from DSM, impacting the economic viability of mining projects.NationalProgram durationMediumProspecting and exploration costs.LocalProgram durationHigh	OutcomeScale of OutcomeDuration of outcomeCertaint yNegative Consequen ceAn environmental compensation fund can be necessary to establish to cover the fees of restoring deep- sea ecosystems.NationalLong termMediumMediumChanges in technology could lower the 	OutcomeScale of OutcomeDuration of outcomeCertaint yNegative Consequen ceStrength of Knowledg eAn environmental compensation fund can be necessary to establish to cover the fees of restoring deep- sea ecosystems.NationalLong termMediumMediumLowChanges in technology could lower the demand for certain minerals from DSM, impacting the economicNationalProgram durationMediumHighLowProspecting and explorationLocalProgram durationMediumHighMedium	OutcomeScale of OutcomeDuration of outcomeCertaint yNegative Consequen ceStrength of Knowledg eNegati ve RiskAn environmental compensation fund can be necessary to establish to cover the fees of restoring deep- sea ecosystems.NationalLong termMediumMediumLowLowChanges in technology could lower the demand for certain minerals from DSM, impacting the economicNationalProgram durationMediumHighLowLowProspecting and explorationLocalProgram durationHighHighMediumMedium m	OutcomeScale of OutcomeDuration of outcomeCertaint yNegative Consequen ceStrength of Knowledg eNegative RiskRisk Scor eAn environmental compensation fund can be necessary to establish to cover the fees of restoring deep- sea ecosystems.NationalLong termMediumMediumLowLow1.96Changes in technology could lower the demand for certain minerals from DSM, impacting the economicNationalProgram durationMediumHighLowLow1.58Prospecting and exploration costs.LocalProgram durationHighHighMedium mMediu m2.6	OutcomeScale of OutcomeDuration of outcomeCertaint yNegati ceRisk ve RiskComment Scor eCommentAn environmental compensation fund can be necessary to establish to cover the fees of restoring deep- sea ecosystems.National termLong termMediumMediumLowLow1.96I Norway empose a similar approach as the ISA to governance, they could implement an environmental compensation(nd to restore potential disturbances caused. It is however, unlikely that the fund as proposed by the ISA will actually cover the restoration costs. There has been assessments made on restoring nodule sites with artificial nodules, that have estimated a higher cost of restoration than expected revenue per km*2Changes in technology could lower the demand for certain minerals risman for could lower the demand for certain minerals risman for certain minerals risman for certain minerals risman for certain minerals risman for certain minerals risman for certain minerals risman for certain mineralsNational technology restoring durationProgram HighHigh HighLowLow1.58Changes in technology could reduce demand for certain DSM minerals. An example is the change to LFP EV batteries, which do not require expensive cobalt and nickel.Changes in technology could lower the demand for certain minerals risming projects.LocalProgram durationHighHighMediumMedium mining2.6USD 20 million		

Development costs.	Local	Program duration	High	High	Medium	Mediu m	2.6	USD 1 billion to manufacture (capital cost)	(Ma et al., 2022)
Mining and extraction costs.	Local	Program duration	High	High	Medium	Mediu m	2.6	<usd (operation="" 1="" billion="" cost)<="" per="" td="" year=""><td>(Ma et al., 2022)</td></usd>	(Ma et al., 2022)
Closure and reclamation costs.	Local	Program duration	High	High	Low	Mediu m	2.16	Unknown economic costs	(Ma et al., 2022)
Higher recycling rates from various materials could decrease the demand for newly extracted minerals, thereby affecting the economic viability of DSM projects.	Internationa I	Program duration	Medium	High	Medium	Mediu m	2.05	Point N in the EU resolution argues that we should be less dependent on raw materials and we can meet demand through other forms, such as substitution of materials, recycling, and various circular economy measures. Another approach to closing the demand gap is considering other supply sources, which could be moving to a circular economic model or an increased degree of recycling. It is projected that technological development, circular economic strategies, and recycling could reduce cumulative mineral demand by 58 % between 2022 and 2050	(Bentele et al., 2024; EJF, 2024)
Extracting the same minerals with DSM can come at a higher cost than terrestrial mining.	Internationa I	Program duration	High	High	Medium	Mediu m	2.6	The Norwegian Environmental Agency says that minerals. The future cost landscape is uncertain and will depend on technological advancements. Consequently, substantial investment will likely be required to develop adequate extraction technology, a topic that is only briefly touched upon in the impact assessment.	(Miljødirektoratet, 2023)

	Several banks and financial institutions have distanced themselves and stated that they will not invest in the DSM industry.	Internationa I	Program duration	High	High	High	High	3.03	Outside the automotive industry, some financial institutions have expressed their support for a DSM moratorium or have explicitly distanced themselves from investing in the DSM industry. This includes banks and financial institutions such as Storebrand, ABN AMRO, BBVA, Cooperative Bank, Lloyds Banking Group, NatWest (previously Bank of Scotland), Standard Chartered Bank, Triodos Bank, and the European Investment Bank.	(Deep Sea Conservation Coalition, 2024)
--	--	-------------------	---------------------	------	------	------	------	------	--	---

There is expected to be great variation in mineral contents on the NCS which can reduce the economic viability of projects.	National	Program duration	Medium	Medium	Medium	Mediu m	2.02	By looking at analysis made by the Norwegian Petroleum Directorate, Swedish, and Russian researchers on SMS and CRC shows that there is a high variation in minerals, and some samples suggests that it is lower metal content than what is considered viable for terrestrial mines.	(Miljødirektoratet, 2023)

	Several large companies have stated that they will not buy deep-sea minerals themselves or allow them in their product value chain.	Internationa I	Program duration	High	High	High	High	3.03	A strong signal that DSM is unnecessary comes from the sector that is expected to need a surge in metals. EV manufacturers such as BMW Group, Renault Group, Rivian and Volkswagen Group have all committed not to use Deep Sea Metals in their production chain and have stated their support for a DSM moratorium There are also companies that have expressed their support for a DSM moratorium or have explicitly distanced themselves from deep- sea metals. These include tech companies like Google, Samsung SDI, and Philips.	(Deep Sea Conservation Coalition, 2024)
Norwegian Government	If the restoration costs of DSM are higher than the mining company can afford, the government may need to subsidize some of the costs.	National	Program duration	Low	High	Low	Low	0.76	Linked to an earlier point, maybe the government has to provide subsidies to achieve a worthy restoration.	(Amadi & Mosnier, 2023)
	engaging in or regulating DSM operations that results in financial loss or third-party harm can incur costs for the state.	National	duration	weaium	Hign	LOW	LOW	1.58	unlikely that their joint venture in Solwara 1 project was set to turn out net positive for the government, as Nautilus Minerals went bankrupt	2018)

	Adopting the Norwegian Petroleum Tax System for DSM can impose a high tax burden, impacting projects' economic feasibility.	National	Program duration	Medium	Medium	Low	Low	1.58	The Norwegian Government has proposed to use a similar tax regime to that of the petroleum industry. Which can impact the profitability of mining operations	(Finansdepartem entet, 2022) (Jonsbråten & Minge, 2023)
Norwegian	Disruptions to fishing in proximity to the mining site can lead to losses for the fishing industry	National	Program duration	Medium	High	Low	Low	1.58		(Koschinsky et al., 2018)
GillZens	Investors can experience economic losses by investing in unsuccessful companies.	Internationa I	Program duration	High	Medium	Low	Mediu m	2.16	As Nautilus Minerals went into administration, there are expected to be some financial losses for its investors, such as the Papua New Guinea government	(DSM Observer, 2018) (BankTrack)
Post-Harvest Sector	The post- harvest sector could incur economic losses from relying on minerals from a new industry with a potentially unstable supply.	Internationa I	Program duration	Low	High	Low	Low	0.76		Authors judgment
Competing Industries	DSM could have a lower carbon output, deterring investments in terrestrial mining.	Internationa I	Program duration	Medium	High	Low	Low	1.58	The source shows some examples for GWP for terrestrial and deep sea mining	(Paulikas et al., 2020)

	Increased supply of metals from DSM could lead to lower prices and increased competition for land-based mining industries.	Internationa I	Program duration	Medium	High	Low	Low	1.58		Authors judgment
	There can be a lower incentive to invest in efforts to reduce terrestrial mining impacts.	Internationa I	Program duration	Medium	High	Low	Low	1.58		Authors judgment
	The terrestrial mining industry may incur costs trying to adapt to the ethical standards set by DSM	Internationa I	Long term	Low	Low	Low	Low	1.38		Authors judgment
International Government s	A focus on DSM could lead to a lack of investment in recycling and efforts for a circular economy.	Internationa I	Program duration	Medium	Medium	Low	Low	1.58	Investing in efforts to close the lifecycle loop for minerals is an effective way to address the growing demand. Specifically, investing in circular economy initiatives offers a practical and viable solution.	(United Nations Environment Programme Finance Initiative, 2022)

Social Costs

SOCIAL										
Stakeholders	Outcome	Scale of Outcome	Duration of Outcom e	Certaint y	Negative Consequen ce	SoK	Negati ve Risk	Risk Scor e	Comment	Source
	An uproar from protestors may hinder the implementation of the industry.	National	Program duration	High	High	Low	Mediu m	2.16	Currently, over 2 million people are calling governments to vote for a moratorium on the industry. Protesters have already been taken to court for delaying DSM operations.	(Greenpeace International; Young)
Harvest Sector	Mapping and investigating deep-sea environments is challenging and costly, requiring resource allocation to protect critical areas.	Local	Program duration	High	Medium	High	High	3.03	Mapping deep-sea areas is difficult and expensive, and it is important to obtain sufficient knowledge to protect vulnerable areas. MAREANO is recommended to be given national responsibility for the mapping, with the necessary resources prioritized corresponding to those used for investigations of mineral resources.	(Miljødirektor atet, 2023, p. 14)
Norwegian Government	There is a need to develop and enforce legal and regulatory frameworks to manage environmental impacts and stakeholder interests.	National	Program duration	High	High	High	High	3.03	The need to develop and enforce robust legal and regulatory frameworks to manage environmental impacts and stakeholder interests (Source 3: Levin).	(Levin et al., 2020)
	DSM activities in disputed waters introduce grounds for international conflicts.	Internationa I	Long term	High	High	Medium	High	2.97	The resolution argues that the water column on the extended continental shelf is considered the High Sea which limits Norway's sovereignty	(Advokatfirma et Wikborg Rein, 2023; Bentele et al., 2024)

	Norway could lose its role as co-chair of the Ocean Panel if it allows DSM in its territorial waters.	Internationa I	Program duration	High	Medium	Medium	Mediu m	2.6	The ocean panel aims to manage EEZ sustainably, and allowing DSM activities goes against this. The ocean panel scientists say they know too little about the possible impact to support this decision.	(Nature, 2024)
	Exploration or possible exploitation licenses granted without regard to the precautionary principle could cause reputational damages.	Internationa I	Long term	High	High	Medium	High	2.97	DSM does introduce reputational risks. The Norwegian Environment Agency believes that the draft decision does not have a sufficient professional and legal basis because the principles of knowledge base, precaution, and overall burden in the Natural Diversity Act §§ 8-10 have not been followed, which is necessary according to the Natural Diversity Act § 7 and the Seabed Minerals Act § 2- 2.	(Amadi & Mosnier, 2023; Miljødirektora tet, 2023)
Norwegian Citizens	Norwegian citizens may experience a loss of cultural or spiritual value associated with a pristine ocean or a traditional sense of ownership of or identification with the ocean and its resources.	Local	Long term	Low	Low	Low	Low	1.38	There may be a degradation of cultural values recognized by communities because of the development of a possibly destructive industry.	(United Nations Environment Programme Finance Initiative, 2022)
	Disruptions to fishing in proximity to the mine site may lead to a loss of	Local	Program duration	Medium	High	Low	Low	1.58	Noise, light, sediment plumes, and contaminants can pose a threat to both commercial and subsistence fisheries.	(Cardno, 2016; Levin et al., 2020)

	job opportunities for fishing communities.									
	Introducing DSM and higher paygrades to communities can strain the regional level of pay, creating income disparities	Local	Program duration	Low	Medium	Low	Low	0.76	High unemployment locally indicates a good supply of labor in the short term, and if many unemployed people have relevant skills, the region can meet increased demand for labor, but this can in the long run lead to a labor shortage and wage pressure.	(Asplan Viak et al., 2022)
	The seafood processing industry could face increased contamination risks from pollutants released during DSM activities	National	Long term	Medium	High	Medium	Mediu m	2.4	This can lead to higher costs for ensuring product safety and a potential loss of market confidence in Norwegian seafood.	(Levin et al., 2020; Sousa, 2021)
	The extraction of non- renewable minerals today reduces opportunities for the future by depleting finite resources	National	Long term	High	Medium	Low	Mediu m	2.53		Authors judgment
Post-Harvest Sector	No evidence was found supporting significant outcomes.									

Competing Industries	A successful DSM venture may divert workers from competing industries	Internationa I	Program duration	High	Medium	Low	Mediu m	2.16	If DSM becomes successful in Norway, it could entice workers to start in this industry rather than competing ones.	Authors judgment
International Government s	Norway could face international problems as the EU put forward a motion requesting a resolution against Norway's seabed mining activities in the Arctic.	Internationa I	Long term	High	High	High	High	3.41	The EU proposed a resolution expressing its concerns against the opening decision, they further claim that Norway has obligations as a signatory to various treaties that they could be in conflict with.	(Bentele et al., 2024)
	Mining of seafloor substrates can have unknown impacts, hindering the development of future industries.	National	Long term	Low	High	Low	Low	1.13	It is also possible that mining could prevent future use of the mining site for other purposes. Seafloor substrates targeted for mining may hold genetic resources that could be lost.	(Levin et al., 2020)
	There are countries that disagree with Norway's interpretation of the Svalbard Treaty. If Norway allows exploration and exploitation activities in the areas	Internationa I	Long term	Medium	High	Medium	Mediu m	2.4	Part of the area opened for exploration are located under the fishery protection zone of Svalbard. There has been a case surrounding crab fishing, where the Norwegian supreme court concluded that the Svalbard treaty only applies on land and no further out than the territorial sea. However, not all states and international expert communities agree with Norway's interpretation and application of the Treaty.	(Jones, 2023) (Advokatfirma et Wikborg Rein, 2023; Bentele et al., 2024)

surrounding			
Svalbard, it			
could lead to			
increased			
friction and			
attention			
regarding			
Norway's			
stance.			

Appendix C.1

Explanation of DSM Performance Indicator Diagram Metrics

Environmental Metrics

Dimension: Ecological Health

Metric:	Explanation:	Suggestion for scoring:
Species Richness	Measures the biodiversity	5 – Same as baseline level
	within the affected area by	4 – Below 10% difference
	quantifying the number of	from baseline
	species present.	3 – Between 10 – 30%
		below baseline
		2 – Between 30 – 50%
		below baseline
		1 – More than 50% below
		baseline
Livestock Population	Assesses the trends in	5 – Livestock populations
Dynamics	species populations within	are rapidly rebuilding
	the affected area, across	4 – Livestock populations
	various pelagic zones. It	are rebuilding
	involves quantifying the	3 – Livestock populations
	abundance of these species	are stable
	and evaluating whether their	2 – Livestock populations
	populations are declining,	are declining
	stable, or showing signs of	1 – Livestock populations
	recovery.	are rapidly declining
Status of Critical Habitat	Evaluates the status of	5 – Critical habitat is healthy
	critical habitat within the	4 – Critical habitat is less
	affected area through expert	than 25% degraded
	judgment based on a critical	3 – Critical habitat is less
	habitat assessment. It	than 50%
	assesses the extent to	degraded/destroyed
	which key habitats essential	2 – Critical habitat is less
	for the survival and	than 75% destroyed
	reproduction of species are	1 – Nearly all critical habitat
	intact, degraded, or under	is destroyed
	threat, providing insights into	
	the overall health and	
	resilience of the ecosystem.	
Carbon Footprint	Assess the CO ₂ -equivalent	No suggestion given
	emissions from DSM	
	operations.	
Areal Impact	Measures the areal impact	No suggestion given
	of DSM operations.	

Economic Metrics

Dimension: Harvest

Metric:	Explanation:	Suggestion for scoring:
Harvest Yield	Quantifies the amount of sellable material brought to shore, reflecting the landings level within the harvest indicator, comparing it to the historical high in the past 10 years.	No suggestion given
Operational Efficiency	Measures the efficiency of operations by comparing the actual days at sea (operating days) with the theoretical maximum of operation. It provides insight into the utilization of time and resources in harvesting activities.	5 – Over 95 % operational days compared to the theoretical maximum 4 - 95 - 85 % 3 - 85 - 50 % 2 - 50 - 25 % 1 - Less than 25 %
Price Variance	Assesses the ex-vessel price of harvested material by comparing it to the historical high in the past 10 years. It quantifies the deviation ratio from the historical price benchmarks, indicating market performance and potential economic fluctuations.	5 – Above 95 % 4 – 95 – 85 % 3 – 85 – 70 % 2 – 70 – 50 % 1 – Below 50 %

Dimension: Harvest Assets

Metric:	Explanation:	Suggestion for scoring:
Ratio of Asset Value to	Assesses the efficiency of	No suggestion given
Gross Earnings	harvest assets by	
	calculating the ratio of asset	
	value to gross earnings. It	
	quantifies the productivity of	
	invested assets in	
	generating revenue within	
	the harvest assets indicator.	
Total Revenue cf. Historic	Compares the total revenue	5 – Above 95 %
-------------------------------	---------------------------------	---------------------------------
High	generated from harvesting	4 - 95 - 85 %
	activities to historical highs.	3 - 85 - 70 % 2 - 70 - 50 %
	It provides insight into the	1 – Below 50 %
	deviation from past revenue	
	benchmarks, indicating the	
	performance of the harvest	
	assets in generating income.	
Asset Value cf. Historic High	Evaluates the fluctuation of	5 – Above 95 %
	asset value by comparing it	4 - 95 - 85 %
	to historical highs. It	3 - 85 - 70 %
	quantifies the deviation from	2 – 70 – 50 % 1 – Below 50 %
	past asset value	
	benchmarks, providing an	
	indication of asset stability.	
Borrowing Rate cf. Risk-	Compares the borrowing	5 – Less than 1.75
Free Rate	rate associated with harvest	4 – Less than 2.5
	operations to the risk-free	3 – Less than 4
	rate (US 10-vear Treasurv	2 – Less than 7
	Bill might be an appropriate	1 – Greater than 7
	comparison). It assesses the	
	cost of capital relative to a	
	risk-free investment.	
	providing insights into the	
	financial risk and investment	
	attractiveness of harvest	
	assets	
Source of Capital	Evaluates where the funding	5 – Unsecured loans from
	for the harvest assets is	banks or venture capital
	coming from. This indicator	4 – Secured loans or public
	gives an insight into the risk	stock offerings
	profile and gives insights	3 – Loans secured by
	into potential control	personal assets
	dynamics for the harvest	2 – Family/Community loans
	assets.	1 – No available capital

Functionality of Harvest	Measures the proportion of	No suggestion given
Capital	harvested material that is	
	usable or sellable. It	
	quantifies the efficiency of	
	which resources are	
	managed and converted to	
	sellable material. A higher	
	score indicates better	
	resource utilization and	
	reduced waste.	

Dimension: Risk

Metric:	Explanation	Suggestion for scoring:
Annual Total Revenue	Measures the variability or	5 – Less than 10 %
Volatility	fluctuations in total revenue	4 - 10 - 20 %
	on an annual basis,	3 – 20 – 35 %
	providing insights into the	2 – 35 – 50 %
	stability or risk associated	1 – Over 50 %
	with revenue generation.	
	The ratio is the standard	
	deviation from the mean in	
	the last 10 years.	
	Maggurag the verichility in	$E_{\rm Lass then 4E_{\rm I}}$
Annual Landings Volatility	Measures the variability in	5 – Less than 15 %
	annual landings, indicating	4 – 15 – 25 %
	the level of uncertainty in	3 – 25 – 40 %
	harvested quantities and its	2 – 40 – 100 %
	impact on economic	1 – Over 100 %
	performance. The ratio is	
	the standard deviation from	
	the mean in the last 10	
	years.	
Intra-annual Landings	Assesses the variability in	5 – Less than 15 %
Volatility	landings within a single year,	4 – 15 – 25 %

	providing insights into	3 – 25 – 40 %
	seasonal fluctuations and	2 - 40 - 100 %
	their implications for	1 – Over 100 %
	economic risk.	
Annual Price Volatility	Quantifies the variability in	5 – Less than 15 %
	prices of harvested material	4 – 15 – 25 %
	on an annual basis,	3 – 25 – 40 %
	reflecting market fluctuations	2 – 40 – 100 %
	and their influence on	1 – Over 100 %
	economic outcomes. The	
	ratio is the standard	
	deviation from the mean in	
	the last 10 years.	
Intra-annual Price Volatility	Evaluates the variability in	5 – Less than 15 %
	prices of harvested material	4 - 15 – 25 %
	within a single year,	3 – 25 – 40 %
	providing insights into short-	2 – 40 – 100 %
	term market dynamics and	1 – Over 100 %
	their impact on economic	
	their impact on economic risk.	
EBIT Volatility	their impact on economic risk. Measures the volatility of	5 – Less than 15 %
EBIT Volatility	their impact on economic risk. Measures the volatility of earnings before interest and	5 – Less than 15 % 4 - 15 – 25 %
EBIT Volatility	their impact on economic risk. Measures the volatility of earnings before interest and taxes (EBIT), reflecting	5 – Less than 15 % 4 - 15 – 25 % 3 – 25 – 40 %
EBIT Volatility	their impact on economic risk. Measures the volatility of earnings before interest and taxes (EBIT), reflecting fluctuations in profitability	5 – Less than 15 % 4 - 15 – 25 % 3 – 25 – 40 % 2 – 40 – 100 %
EBIT Volatility	their impact on economic risk. Measures the volatility of earnings before interest and taxes (EBIT), reflecting fluctuations in profitability and their implications for	5 – Less than 15 % 4 - 15 – 25 % 3 – 25 – 40 % 2 – 40 – 100 % 1 – Over 100 %
EBIT Volatility	their impact on economic risk. Measures the volatility of earnings before interest and taxes (EBIT), reflecting fluctuations in profitability and their implications for economic risk management.	5 – Less than 15 % 4 - 15 – 25 % 3 – 25 – 40 % 2 – 40 – 100 % 1 – Over 100 %
EBIT Volatility	their impact on economic risk. Measures the volatility of earnings before interest and taxes (EBIT), reflecting fluctuations in profitability and their implications for economic risk management. The ratio is the standard	5 – Less than 15 % 4 - 15 – 25 % 3 – 25 – 40 % 2 – 40 – 100 % 1 – Over 100 %
EBIT Volatility	their impact on economic risk. Measures the volatility of earnings before interest and taxes (EBIT), reflecting fluctuations in profitability and their implications for economic risk management. The ratio is the standard deviation from the mean in	5 – Less than 15 % 4 - 15 – 25 % 3 – 25 – 40 % 2 – 40 – 100 % 1 – Over 100 %
EBIT Volatility	their impact on economic risk. Measures the volatility of earnings before interest and taxes (EBIT), reflecting fluctuations in profitability and their implications for economic risk management. The ratio is the standard deviation from the mean in the last 10 years.	5 – Less than 15 % 4 - 15 – 25 % 3 – 25 – 40 % 2 – 40 – 100 % 1 – Over 100 %
EBIT Volatility Spatial Price Volatility	their impact on economic risk. Measures the volatility of earnings before interest and taxes (EBIT), reflecting fluctuations in profitability and their implications for economic risk management. The ratio is the standard deviation from the mean in the last 10 years. Assesses the variability in	5 – Less than 15 % 4 - 15 – 25 % 3 – 25 – 40 % 2 – 40 – 100 % 1 – Over 100 % 5 – Less than 15 %
EBIT Volatility Spatial Price Volatility	their impact on economic risk. Measures the volatility of earnings before interest and taxes (EBIT), reflecting fluctuations in profitability and their implications for economic risk management. The ratio is the standard deviation from the mean in the last 10 years. Assesses the variability in prices of harvested material	5 – Less than 15 % 4 - 15 – 25 % 3 – 25 – 40 % 2 – 40 – 100 % 1 – Over 100 % 5 – Less than 15 % 4 - 15 – 25 %
EBIT Volatility Spatial Price Volatility	their impact on economic risk. Measures the volatility of earnings before interest and taxes (EBIT), reflecting fluctuations in profitability and their implications for economic risk management. The ratio is the standard deviation from the mean in the last 10 years. Assesses the variability in prices of harvested material across different locations,	5 - Less than 15 % $4 - 15 - 25 %$ $3 - 25 - 40 %$ $2 - 40 - 100 %$ $1 - Over 100 %$ $5 - Less than 15 %$ $4 - 15 - 25 %$ $3 - 25 - 40 %$
EBIT Volatility Spatial Price Volatility	their impact on economic risk. Measures the volatility of earnings before interest and taxes (EBIT), reflecting fluctuations in profitability and their implications for economic risk management. The ratio is the standard deviation from the mean in the last 10 years. Assesses the variability in prices of harvested material across different locations, indicating the extent of	5 - Less than 15 % $4 - 15 - 25 %$ $3 - 25 - 40 %$ $2 - 40 - 100 %$ $1 - Over 100 %$ $5 - Less than 15 %$ $4 - 15 - 25 %$ $3 - 25 - 40 %$ $2 - 40 - 100 %$
EBIT Volatility Spatial Price Volatility	their impact on economic risk. Measures the volatility of earnings before interest and taxes (EBIT), reflecting fluctuations in profitability and their implications for economic risk management. The ratio is the standard deviation from the mean in the last 10 years. Assesses the variability in prices of harvested material across different locations, indicating the extent of location dependency in	5 - Less than 15 % $4 - 15 - 25 %$ $3 - 25 - 40 %$ $2 - 40 - 100 %$ $1 - Over 100 %$ $5 - Less than 15 %$ $4 - 15 - 25 %$ $3 - 25 - 40 %$ $2 - 40 - 100 %$ $1 - Over 100 %$
EBIT Volatility Spatial Price Volatility	their impact on economic risk. Measures the volatility of earnings before interest and taxes (EBIT), reflecting fluctuations in profitability and their implications for economic risk management. The ratio is the standard deviation from the mean in the last 10 years. Assesses the variability in prices of harvested material across different locations, indicating the extent of location dependency in market dynamics and its	5 - Less than 15 % $4 - 15 - 25 %$ $3 - 25 - 40 %$ $2 - 40 - 100 %$ $1 - Over 100 %$ $5 - Less than 15 %$ $4 - 15 - 25 %$ $3 - 25 - 40 %$ $2 - 40 - 100 %$ $1 - Over 100 %$

The ratio is the standard	
deviation from the mean in	
the last 10 years.	

Dimension: Trade

Metric:	Explanation	Suggestion for scoring:
International Export Value	Quantifies the value of	No suggestion given.
	goods or materials exported	
	internationally to higher-	
	value markets.	
Final Market Wealth	Measures the total value or	No suggestion given.
	wealth generated by a	
	product or service once it	
	reaches the end consumer	
	in the market. It provides	
	insights into the economic	
	contribution of the product	
	throughout the supply chain.	
Wholesale Price cf. Similar	Compares the wholesale	5 – Above 20 % of global
Products	price of the product to	average
	similar products in the	4 - Between 10 – 20 %
	market, i.e. metals from	above global average.
	terrestrial mining. It	3 – Within 10 % of global
	assesses the pricing	average
	competitiveness and market	2 – Between 10 – 50 %
	positioning of the product	below global average
	relative to its counterparts,	1 – Less than half of global
	providing insights into	average
	economic performance	
	within the trade indicator.	
	Compared to the global	
	average price.	

Dimension: Product Form

Metric:ExplanationSuggestion for scoring:

Processing Yield Ass	sesses the efficiency of	5 – Over 95 %
con	overting raw ore at	4 - 95 - 80 %
land	dings to final product	3 - 80 - 50 %
thro	ough processing. It	2 - 50 - 25 %
qua	antifies the proportion of	1 – Less than 25 %
raw	/ material successfully	
tran	nsformed into usable	
pro	ducts, providing insights	
into	the economic efficiency	
ofp	production within the	
pro	duct form indicator.	
Product Shrinkage Mea	asures the shrinkage or	5 – Less than 5 %
loss	s of usable products	4 - 5 – 10 %
duri	ing processing. It	3 – 10 – 25 %
qua	antifies the proportion of	2 – 25 – 50 %
mat	terial that becomes	1 – Over 50 %
unu	usable or is lost during	
the	production process,	
refle	ecting the efficiency of	
reso	ource utilization and	
pote	ential economic losses.	
Capacity Utilization Ratio Eva	aluates the utilization of	No suggestion given.
pro	duction capacity within	
the	processing facilities. It	
con	npares the actual output	
of u	usable products to the	
max	ximum capacity of the	
faci	ilities, providing insights	
into	o operational efficiency	
and	resource optimization	
with	nin the product form	
indi	icator.	
Value Chain Margins Exa	amines the margins at	No suggestion given.
eac		
	ch step of the value chain,	
fron	ch step of the value chain, n ex-vessel to wholesale	

profitability and value-added	
contributions at different	
stages of product	
distribution, providing	
insights into economic	
performance and market	
dynamics within the product	
form indicator.	
	1

Dimension: Post-Harvest Assets Performance

Metric:	Explanation	Suggestion for scoring:
Borrowing Rate cf. Risk-free	Compares the borrowing	5 – Less than 1.75
rate	rate associated with post-	4 – Less than 2.5
	harvest assets to the risk-	3 – Less than 4
	free rate. It assesses the	2 – Less than 7
	cost of capital relative to a	1 – Greater than 7
	risk-free investment,	
	providing insights into the	
	financial risk and investment	
	attractiveness of post-	
	harvest assets within the	
	economic dimension.	
Source of Capital	Evaluates where the funding	5 - Unsecured loans from
	for the post-harvest assets	banks or venture capital
	is coming from. This	4 - Secured loans or public
	indicator gives an insight	stock offerings
	into the risk profile and gives	3 - Loans secured by
	insights into potential control	personal assets
	dynamics for the harvest	2 - Family/Community loans
	assets.	1 – No available capital
Age of Facilities	Measures the age of post-	5 – In the first quarter of the
	harvest facilities, reflecting	expected life of the facility
	the longevity and potential	4 – Second quarter
	depreciation of infrastructure	3 – Third quarter
	assets. It provides insights	2 – Fourth quarter
	into the maintenance	1 – Exceeding expected life

requirements, technological	
obsolescence, and overall	
performance of post-harvest	
assets over time.	

Social Metrics

Dimension: Managerial Returns

Metric:	Explanation	Suggestion for scoring:
Executive Wages cf. Non-	Compares the wages of	5 – More than 50 % above
DSM Wages	executives in DSM to those	alternative industry wage
	in other industries. It	4 - Between 50 – 10 %
	assesses the level of	3 - Within 10 %
	executive compensation	2 – Below 10 - 50 %
	relative to comparable	1 – Below 50 %
	positions in different sectors,	
	providing insights into social	
	equity and managerial	
	returns within the social	
	dimension.	
Executive Earnings cf.	Evaluates the earnings of	5 – More than 50 % above
Regional Average Earnings	executives in DSM	regional average earning
	compared to the regional	4 - Between 50 – 10 %
	average earnings. It	3 - Within 10 %
	highlights any disparities in	2 – Below 10 - 50 %
	executive compensation	1 – Below 50 %
	relative to the broader	
	regional socioeconomic	
	context, offering insights into	
	income equality and social	
	justice.	
Processing Owners Wages	Compares the wages of	5 – More than 50 % above
cf. Non-DSM Wages	processing owners in DSM	alternative industry wage
	to wages in other industries.	4 - Between 50 – 10 %
	It assesses the level of	3 - Within 10 %
	compensation for	2 – Below 10 - 50 %
	processing owners relative	1 – Below 50 %

	to comparable positions	
	outside of the industry,	
	providing insights into wage	
	fairness and social mobility.	
Processing Owners	Compares the earnings of	5 – More than 50 % above
Earnings cf. Regional	processing owners in DSM	regional average earning
Average Earnings	to regional average	4 – Between 50 – 10 %
	earnings. It identifies any	3 – Within 10 %
	discrepancies in earnings	2 – Below 10 - 50 %
	among processing owners	1 – Below 50 %-
	relative to the regional	
	socioeconomic context,	
	shedding light on income	
	disparities and social	
	inclusivity within the	
	industry.	

Dimension: Labor Returns

Metric:	Explanation	Suggestion for scoring:
Crew Wages cf. Non-DSM	Compares the wages of	5 – More than 50 % above
Wages	crew members in the DSM	alternative industry wage
	industry to those in other	4 – Between 50 – 10 %
	industries. It provides	3 – Within 10 %
	insights into the relative	2 – Below 10 - 50 %
	compensation levels and	1 – Below 50 %
	equity considerations within	
	the social dimension of labor	
	returns.	
Crew Earnings cf. Regional	Assesses crew earnings in	5 – More than 50 % above
Average Earnings	relation to the regional	regional average earning
	average earning level. It	4 - Between 50 – 10 %
	provides insights into	3 - Within 10 %
	income distribution and	2 – Below 10 - 50 %
	fairness considerations	1 – Below 50 %
	within the regional context.	

Processing Workers Wages	Compares the wages of	5 – More than 50 % above
cf. Non-DSM Wages	processing workers in the	alternative industry wage
	DSM industry to those in	4 - Between 50 – 10 %
	other industries. It provides	3 - Within 10 %
	insights into the relative	2 – Below 10 - 50 %
	compensation levels and	1 – Below 50 %
	equity considerations within	
	the social dimension of labor	
	returns.	
Processing Workers	Compares the earnings of	5 – More than 50 % above
Earnings cf. Regional	processing workers to the	regional average earning
Average Earnings	regional average earning	4 - Between 50 – 10 %
	level. It provides insights	3 - Within 10 %
	into income distribution and	2 – Below 10 - 50 %
	equity considerations within	1 – Below 50 %
	the regional context.	

Dimension: Health & Sanitation

Metric:	Explanation	Suggestion for scoring:
Harvest Safety	Assesses the safety record	5 - Less than 0.1 deaths per
	within harvesting operations,	thousand per year
	considering incidents of loss	4 - Less than 0.5 deaths
	of life. It provides insights	3 - Less than 1
	into the effectiveness of	2 - Less than 5
	safety protocols and	1 – More than 5 deaths per
	practices within the	thousand per year
	harvesting process.	
Executive Health Care	Evaluates the access to	5 - Global standard
Access	healthcare services for	treatment for illness is
	executives within the DSM	accessible
	industry. It considers factors	4 – Licensed practitioners
	such as availability,	provide surgical and drug
	affordability, and quality of	treatments
	healthcare services to	3 – Emergency treatment is
	ensure the well-being of	available
	executives.	

		2 – Basic medical treatment
		is available
		1 – No medical treatment is
		available
Crew Health Care Access	Assesses the access to	5 - Global standard
	healthcare services for crew	treatment for illness is
	members involved in	accessible
	harvesting operations. It	4 – Licensed practitioners
	evaluates factors such as	provide surgical and drug
	medical facilities availability,	treatments
	emergency response	3 – Emergency treatment is
	systems, and healthcare	available
	coverage to promote the	2 – Basic medical treatment
	health and safety of crew	is available
	members.	1 – No medical treatment is
		available
Processing Owners Health	Evaluates the access to	5 - Global standard
Care Access	healthcare services for	treatment for illness is
	processing owners within	accessible
	the DSM industry. It	4 – Licensed practitioners
	considers factors such as	provide surgical and drug
	healthcare infrastructure,	treatments
	medical insurance coverage,	3 – Emergency treatment is
	and preventive healthcare	available
	programs to support the	2 – Basic medical treatment
	health and well-being of	is available
	processing owners.	1 – No medical treatment is
		available
Processing Workers' Health	The access to healthcare	5 - Global standard
Care Access	services for workers	treatment for illness is
	involved in processing	accessible
	activities. It evaluates	4 – Licensed practitioners
	factors such as healthcare	provide surgical and drug
	facility proximity,	treatments
	occupational health	3 – Emergency treatment is
	services, and health	available

	insurance coverage to	2 – Basic medical treatment
	ensure the health and safety	is available
	of processing workers.	1 – No medical treatment is
		available
Sanitation	Measures the sanitation	5 – Sanitation meets global
	conditions in the harvest	health standards
	areas. This measure is	4 – Basic sanitation needs
	scored relative to global	met
	standards, not local	3 – Inadequate sanitation,
	standards.	workers are exposed to
		some lack of sanitation
		2 – Workers are exposed to
		considerable lack of
		sanitation
		1 – No measures for
		sanitation implemented

Dimension: Community Services

Metric:	Explanation	Suggestion for scoring:
Contestability & Legal	Evaluates the extent of	5 - No significant legal
Challenges	contestability and legal	challenges, civil actions, or
	challenges faced by the	protests regarding industry.
	DSM industry, and to which	4 - Minor legal challenges
	degree they limit the ability	that slow implementation.
	to implement effective	3 - Legal challenges, civil
	regulations for the industry.	actions, or protests that
	It considers factors such as	impede some management
	legal disputes, regulatory	measures.
	compliance, and stakeholder	2 - Legal challenges, civil
	engagement, providing	actions, or protests that
	insights into the industry's	suspend major elements of
	legal and social impact on	the management system.
	the community.	1 - Legal challenges, civil
		actions, or protests that
		suspend or prohibit
		implementation of key

		management reforms and
		regulation certification.
Education Accessibility for	Measures the accessibility	5 – Higher education is
Crew	of education opportunities	available
	for crew members involved	4 - High school and
	in DSM operations. It	technical education are
	considers the availability of	available
	educational institutions and	3 – Middle school education
	availability of technical	is available
	training programs.	2 – Basic literacy and
		mathematics education is
		available
		1 – No formal education is
		available
Education Accessibility for	Evaluates the accessibility	5 – Higher education is
Processing Workers	of education opportunities	available
	for processing workers	4 - High school and
	employed in DSM facilities.	technical education are
	It considers the availability	available
	of educational institutions	3 – Middle school education
	and availability of technical	is available
	training programs.	2 – Basic literacy and
		mathematics education is
		available
		1 – No formal education is
		available
Regional Support	Support businesses are	5 - All types of support are
Businesses	businesses that provide	readily available
	critical inputs (e.g. vessel	4 - Some types of support
	maintenance) or post-	are limited by capacity or
	harvest functions (e.g.	unavailable
	brokering, logistics).	3 - Most types of support are
		limited by capacity or
		unavailable
		2 - Support is limited to
		variable inputs

	1 - Industry support is not
	available locally

Dimension: Local Ownership

Metric:	Explanation	Suggestion for scoring:
Non-Resident Employment	Quantifies the proportion of	5 – Above 70 % local
as Executives	executives in DSM	executives
	operations who are non-	4 – 70 – 50 %
	residents. It provides	3 – 50 – 30 %
	insights into the level of local	2 – Below 30 %
	representation and inclusion	1 – No local executives
	in executive positions within	
	the social dimension of local	
	ownership.	
Non-Resident Employment	Measures the extent of	5 – Above 70 % local
as Processing Owners	nonresident ownership of	ownership
	processing capacity within	4 – 70 – 50 %
	the DSM industry. It	3 – 50 – 30 %
	provides insights into the	2 – Below 30 %
	distribution of ownership and	1 – No local ownership
	control over critical	
	infrastructure assets,	
	highlighting potential	
	implications for local	
	economic development and	
	social dynamics.	

Dimension: Local Labor

Metric:	Explanation	Suggestion for scoring:
Non-Resident Employment	Quantifies the proportion of	5 – Above 70 % local
as Crew	nonresident workers	employment
	employed as crew members	4 – 70 – 50 %
	within the local labor	3 – 50 – 30 %
	context. It provides insights	2 – Below 30 %
	into the extent of reliance on	1 – No local employment
	nonresident labor in DSM	

	operations, contributing to	
	the understanding of social	
	dynamics and labor	
	practices	
Non-Resident Employment	Quantifies the proportion of	5 – Above 70 % local
as Processing Workers	processing workers	employment
	employed in deep sea	4 - 70 - 50 %
	mining operations who are	3 – 50 – 30 %
	nonresidents. It provides	2 – Below 30 %
	insights into the extent to	1 – No local employment
	which local labor is engaged	
	in processing positions	
	within the social dimension	
	of local labor.	

Dimension: Career

Metric:	Explanation	Suggestion for scoring:
Crew Experience	Evaluates the work	5 – Above 7 years of
	experience of the crew	experience
	involved in harvesting	4 - 7 – 5 years
	operations. Measures	3 – 5 – 2 years
	average years of	2 – 2 – 1 years
	experience.	1 – Below 1 year
Age Structure of Crew	Examines the age structure	5 - All working ages are
	of harvesters, providing	represented
	insights into the	4 – Slight skewed older or
	demographic composition of	younger
	the workforce. It analyzes	3 - Skewed older or younger
	the distribution of workers	2 – Considerable skew
	across different age groups,	towards older or younger
	identifying trends and	1 – Almost entirely skewed
	potential implications for	younger or older
	workforce management.	
Processing Workers	Evaluates the work	5 – Above 7 years of
Experience	experience of processing	experience
		4 - 7 – 5 years

	workers. Measures average	3 – 5 – 2 years
	years of experience.	2 – 2 – 1 years
		1 – Below 1 year
Age Structure of Processing	Examines the age structure	5 - All working ages are
Workers	of processing workers,	represented
	providing insights into the	4 – Slight skewed older or
	demographic composition of	younger
	the workforce. It analyzes	3 - Skewed older or younger
	the distribution of workers	2 – Considerable skew
	across different age groups,	towards older or younger
	identifying trends and	1 – Almost entirely skewed
	potential implications for	younger or older
	workforce management.	

4036 Stavanger Tel: +47 51 83 10 00 E-mail: post@uis.no <u>www.uis.no</u>

©2024 Vidar Carlsen and Dan Tedros Vindenes Kandal