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Preface 

I became interested in hydropower during the Hans flood in Norway in 2023. The idea that 

empty reservoirs could have prevented this event stuck with me and guided my choice for a 

master's thesis. I discovered an abundance of data on water levels, reservoir volumes, and 

water flow in Norway's reservoirs, making this topic not only fascinating but also rich in open 

data. My prior interest in decision-making, decision support, and decision analysis at UiS 

further solidified my choice. After substantial preliminary work, I decided on this project. 

The journey proved more challenging than anticipated, a thought likely shared by many who 

undertake a master's thesis. I aimed to keep things simple, believing that the foundation for 

assessing risk doesn't necessarily require the latest in computing power and statistical 

analysis. Consequently, I developed a decision-support formula to serve as a preliminary risk 

assessment tool based on given water levels during specific seasons. The principles of 

reservoir management have remained largely unchanged over the past century, despite the 

absence of modern computing power back then. This endeavor has highlighted the complexity 

of reservoir management and the multitude of factors that influence it. My attempt to simplify 

the process has often been incredibly challenging, revealing the necessity for complex 

solutions involving substantial data processing and simulation. 

I would like to extend my gratitude to Atle Øglend from UiS for his guidance and to the 

Norwegian Water Resources and Energy Directorate (NVE) for their help. 

Abstract 

This thesis develops a decision-support formula for water resource management in the 

Drammensvassdraget region, aimed at balancing electricity generation and flood risk 

mitigation. By leveraging historical data and statistical analyses, the formula quantifies flood 

and energy shortage risks without relying on predictive forecasting. Sensitivity analyses 

reveal that flood risk is highly sensitive to seasonal and density adjustments, while energy 

shortage risk is moderately sensitive, especially to seasonal factors. 

Key findings indicate the formula's practical utility in real-world scenarios, particularly in 

helping operators make informed water resource management decisions. By providing a 

quantitative basis for balancing electricity generation and flood risk. 
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The research underscores the formula's strengths, including its robust statistical foundation 

and practical applicability. However, limitations such as reliance on historical data and the 

exclusion of immediate weather forecasts are acknowledged. The research emphasizes the 

need for expert judgment in interpreting the risk values produced by the formula, particularly 

under extreme conditions. 

Overall, this thesis is yet another tool to the field of water resource management, offering a 

comprehensive decision-support tool that integrates historical data, regulatory constraints, and 

seasonal variations.  
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1. Introduction 

Hydropower has been a pillar of renewable energy, its legacy spanning centuries and 

continuously evolving with technological advancements. In Norway, hydropower has played 

a pivotal role since the late 19th century, shaping the country´s industrial and economic 

landscape. The nation's abundant water resources have made Norway a global leader in 

hydropower development, contributing significantly to the energy security and sustainability 

(International Hydropower Association, 2023). Globally, the history of hydropower is rich 

with milestones that highlight its transformative impact. Early developments, such as the 

invention of the Francis and Kaplan turbines, paved the way for large-scale projects like the 

Hoover Dam and the Three Gorges Dam, underscoring hydropower's capacity to meet 

substantial energy demands while fostering economic growth (Hydropower, 2024). 

 

Norwegian hydropower historical evolution, from its starting stages in the late 1800s to its 

current sophisticated state, mirrors global advancements in the field. Projects like Norway's 

initial hydroelectric plants set a precedent for future developments, showcasing how 

technological innovation and natural resource management can work together to create robust 

energy systems (Regjeringen.no, 2016). 

 

The Drammensvassdraget region, encompassing the interconnected lakes of Tyrifjorden, 

Randsfjorden, and Sperillen, is a critical area where the balance between water management 

and energy production is paramount. This balance was dramatically highlighted during 

"Ekstremværet Hans" in August 2023, an extreme weather event that brought record-breaking 

rainfall and severe flooding to the region. The storm caused extensive damage, leading to 

thousands of evacuations and significant disruptions to infrastructure and daily life 

(Ekstremværet Hans, 2024) 

 

The thesis, “Risk-Based Decisions for Water Resource Management in 

Drammensvassdraget”, aims to develop a framework to assist in navigating these complex 

challenges. By integrating daily hydrology data from the Norwegian Water Resource and 

Energy Directorate, the framework will enable decision-makers to evaluate trade-offs between 

maximizing electricity generation and minimizing flood risks effectively. The research will 

develop into a framework displayed as a formula or a decision model. In developing this 

decision framework, research draws on the lessons from the past and recent climatic events 
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like “Ekstremværet Hans”. It will incorporate extensive statistical analysis and various 

techniques to provide a robust framework for decision-making.  

 

Ultimately, this thesis seeks to pioneer a path forward, a starting point for a computational and 

AI driven management practice. It aims to be a starting point for a machine learning and data-

driven approach to the challenges of energy security and environmental sustainability, 

ensuring that regions like Drammensvassdraget can thrive amidst the challenges posed by 

climate change and evolving resource demands. Through this novel approach, the research 

aspires to be a possibility study for the future of water management. 

 

Importance of risk management in Water and Energy Management 

Effective water and energy management is a cornerstone of sustainable development, 

especially in regions heavily reliant on hydropower like Norway. Decision models are 

indispensable tools in this context, providing a robust framework for optimizing resource use, 

enhancing sustainability, and mitigating risks associated with extreme weather events. These 

models empower policymakers and resource managers to make informed decisions based on 

comprehensive data analysis and predictive simulations. 

In Norway, the history and evolution of hydropower underscore the critical role of decision 

models. The Norwegian Water Resources and Energy Directorate (NVE) uses sophisticated 

decision models to manage the country's extensive hydropower resources. These models 

integrate hydrological, climatological, and operational data to predict optimal water release 

schedules, ensuring that energy production is maximized during periods of high demand 

without compromising flood protection measures (Vassdragsregulanters ansvar og muligheter, 

2023). 

 

The practical application of decision models in Norwegian hydropower management provides 

a compelling case study. During the spring, when the risk of flooding increases due to 

snowmelt, decision models predict the timing and volume of snowmelt and coordinate the 

release of water from reservoirs to prevent downstream flooding. These models help maintain 

a delicate balance, ensuring that reservoirs do not overflow while preserving enough water for 

energy production (NVE - Vårflom, 2020). 
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In conclusion, decision models are essential for modern water and energy management. They 

provide the analytical foundation necessary for optimizing resource use, enhancing 

sustainability, and mitigating the risks associated with extreme weather events. The 

integration of these models into Norway’s hydropower management exemplifies their critical 

role in ensuring the safe, efficient, and sustainable utilization of natural resources. 

 

Research Objective and Scope 

The objective of this thesis is to develop a novel decision-support framework for the 

management of water resources in the Drammensvassdraget, particularly focusing on 

Tyrifjorden, Randsfjord, and Sperillen. The research will be based on quantitative measures 

generated from historical statistics, excluding the use of weather forecasts and potential snow 

melting predictions. This exclusion means the model will not consider immediate weather 

warnings. 

 

The goal is not to provide definitive decisions but to offer decision-support, recognizing that 

expert judgment, large computational models and qualitative assessments will always play a 

role. The model aims to assist decision-makers before the final decision stage, avoiding 

predictions. It can be viewed as a tool that aggregates knowledge and quantifies it, providing a 

procedure that converts history and statistics into numerical data. 

By focusing on historical data, the research aims to provide a reliable framework for 

evaluating these trade-offs, ultimately aiding the operators in controlling the outflow of the 

lakes. 

 

 

Introduction to Drammensvassdraget Region 

Drammensvassdraget, one of Norway's most significant river systems, it encompasses a 

rainfall area of approximately 17,000 square kilometers, making it the country's third-largest 

watershed. Originating in the highlands and flowing through diverse landscapes, it integrates 

several major tributaries and lakes, including Tyrifjorden, Randsfjorden, and Sperillen, before 

emptying into Drammensfjorden (Thorsnæs, 2023). 

 

The river system is renowned for its hydropower potential, with numerous dams and 

reservoirs harnessing the energy of water to produce a substantial portion of Norway's 
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electricity. Drammensvassdragets regulation capacity is significant, reflecting its crucial role 

in both energy production and flood management. Hydropower plants along the river, such as 

those at Tyrifjorden and Randsfjorden, are integral to the region's energy infrastructure, 

providing a reliable and renewable energy source while also contributing to flood control 

efforts (Drammensvassdraget, 2024). 

 

Flood management in Drammensvassdraget is a vital aspect of its regulation, especially given 

the historical occurrences of severe flooding. Notable flood events, like those in 1927, 1967, 

and more recently, have demonstrated the importance of proactive and strategic water 

management. The river's regulation involves careful monitoring and control of water levels in 

its reservoirs to mitigate the risk of downstream flooding, particularly in densely populated 

areas. These measures are essential for protecting both human lives and property from the 

devastating impacts of floods. 

 

In summary, Drammensvassdraget is a multifaceted river system with significant implications 

for energy production, flood management, and ecological conservation in Norway. The 

careful and integrated management of this river system is essential for ensuring its continued 

contribution to the region's sustainable development and environmental health.  

 

Key Reservoirs 

Tyrifjorden 

Tyrifjorden, Norway’s fifth-largest lake, is part of the Drammensvassdraget system, serving 

as a natural regulator for downstream flow and a significant resource for hydropower 

generation. This lake, situated in the municipalities of Ringerike, Hole, Lier, and Modum in 

the county of Viken, spans nearly 137 square kilometers and has a reservoir volume of 134 

million cubic meters (Tyrifjorden, 2024). 

 

LRW 62 m.a.s.l. 

HRW 63 m.a.s.l. 

Area at HRW 136,56 km2 

Reservoir Volume 134 million m3 

Number of Hydropower plants 3 

Mean Flood 64,2 m  

5-Year Flood 64,7 m 
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10-Year Flood 64,9 m  

20-Year Flood 65,1 m  

50- Year Flood 65,2 m 

Table 1-1 Tyrifjorden Factsheet (NVE Atlas, u.d.) 

The water levels in Tyrifjorden are minorly regulated, with a low reference water level of 62 

meters and a high reference water level of 63 meters (Holmqvist, 2000). This slight regulation 

helps maintain a balance between water conservation and flood prevention, crucial for both 

ecological stability and human activities. Tyrifjordens importance is highlighted by its use for 

hydropower, with three power plants: Geithusfoss, Gravfoss 1, and Gravfoss 2, which 

contribute significantly to the region's energy production (NVE - Tyrifjorden, 2024). 

 

Sperillen 

Sperillen, is within the Ådal valley in Ringerike municipality, Viken county, is a notable lake 

in Norway. Covering an area of about 37 square kilometers and stretching approximately 26 

kilometers in length, Sperillen ranks as the 33rd largest lake in Norway. It lies at an elevation 

of 159 meters above sea level and is fed by the Begna and Urula rivers from the north, which 

contribute significantly to its volume and ecosystem (Lauritzen, 2023). 

 

LRW 147,95 m.a.s.l. 

HRW 150,25 m.a.s.l. 

Area at HRW 37,32 km2 

Reservoir Volume 86,8 million m3 

Number of Hydropower plants 4 

Mean Flood 151,1276 m 

5-Year Flood 151,6132 m  

10-Year Flood 152,0137 m 

20-Year Flood 152,4 m  

50-Year Flood 152,9034 m 

Table 1-2 Sperillen Factsheet (NVE Atlas, u.d.) 

The lake plays a crucial role within the Begnavassdraget, part of the larger 

Drammensvassdraget water system. With a substantial volume of 86.8 million cubic meters, 

Sperillen is integral to the region's regulated energy production. This is highlighted by its 

connection to four hydropower plants: Hensfoss, Begna, Hofsfoss, and Hønefoss, which 

utilize its waters for electricity generation. The careful regulation of Sperillens water levels, 
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maintained between 147.95 meters and 150.25 meters, ensures optimal conditions for both 

power production and flood management 

 

Randsfjorden 

Randsfjorden, the fourth largest lake in Norway, is a freshwater body spanning approximately 

140 square kilometers at its highest regulated water level. Positioned within the counties of 

Innlandet and Viken, this lake plays a vital role in the local ecosystem and hydroelectric 

production. Randsfjorden has a substantial volume of more than 400 million cubic meters, 

making it an essential resource for energy generation and storage. The lake supports five 

hydropower plants: Bergerfoss, Kistefoss 1 and 2, Askerudfoss, and Viulfoss (Thorsnæs, 

Randsfjorden, 2023). 

 

LRW 131,3 m.a.s.l. 

HRW 134,5 m.a.s.l. 

Area at HRW 140,75 km2 

Reservoir Volume 408,6 million m3 

Number of Hydropower plants 5 

Mean flood 134,689 m 

5-year flood 134,9159 m 

10-year flood 135,1058 m  

20-year flood 135,2902 m  

50-year flood 135,5321 m 

Table 1-3 Randsfjorden Factsheet (NVE Atlas, u.d.) 

Randsfjordens hydrological significance is underscored by its contributions to the 

Drammensvassdraget system. The lake is fed by several rivers, including Etna, Dokka, Vigga, 

and Fallselva, and drains into Randselva at its southern end. This connectivity facilitates the 

management of water flow and energy production, highlighting the lake's integral role in 

regional water resource management (Randsfjorden, 2024). 

 

Powerplants in Drammensvassdraget 

The Drammensvassdraget system is home to several hydropower plants that play a vital role 

in Norway's renewable energy production. These plants harness the flow of water from 

significant lakes within the system, including Tyrifjorden, Sperillen, and Randsfjorden, each 

contributing to the region's energy supply and flood management capabilities. 
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These powerplants collectively underscore the Drammensvassdraget system's significance in 

Norway's renewable energy landscape, highlighting the integration of natural resources and 

technological advancements to meet energy demands sustainably. 

 

Tyrifjorden 

Plant Name Geithusfoss Gravfoss 1 Gravfoss 2 

Max Effect 13,5 MW 18,6 MW 30,2 MW 

Gross Head 9,19 m 19,7 m 20 m 

Energyequivelant 0,025 kWh/m3 0,044 kWh/m3 0,048 kWh/m3 

Sperillen 

Plant Name Hensfoss Begna Hofsfoss Hønefoss 

Max Effect 18,3 MW 5,6 MW 27 MW 29,4 MW 

Gross Head 24,4 m 8 m 26,79 m 21,5 m 

Energyequivelant 0,055 kWh/m3 0,018 kWh/m3 0,061 kWh/m3 0,051 kWh/m3 

Randsfjorden 

Plant Name Bergerfoss Kistefoss 1 Kistefoss 2 Askerudfoss Viulfoss 

Max Effect 3,3 MW 1,4 MW 4,2 MW 13,2 MW 12,5 MW 

Gross Head 5,4 m 9 m 10,5 m 20,6 m 17,29 m 

Energyequivelant 0,013 kWh/m3 0,018 kWh/m3 0,025 

kWh/m3 

0,048 

kWh/m3 

0,042 

kWh/m3 

Table 1-4 Powerplants in key reservoirs (Vannkraftdatabase, 2024). 
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2. Theoretical Framework 

Kernel Density Estimation (KDE): 

Kernel Density Estimation (KDE) is a non-parametric way to estimate the probability density 

function (PDF) of a random variable. Unlike parametric methods, KDE does not assume a 

specific distribution model for the data. Instead, it uses a smooth function (kernel) to create a 

continuous estimate of the data’s distribution. 

Mathematical Representation:  

The KDE estimate f(x) at point x is given by: 

𝑓(𝑥) =
1

𝑛ℎ
∑ 𝐾

𝑛

𝑖=1

(
𝑥 − 𝑥𝑖

ℎ
) 

Where: 

- n is the number of data points. 

- h is the bandwidth parameter, controlling the smoothness of the estimate. 

- K(⋅) is the kernel function, commonly a Gaussian function: 

 

𝐾(𝑢) =
1

√2𝜋
𝑒𝑥𝑝 (−

𝑢2

2
) 

KDE is particularly useful for visualizing the underlying distribution of data, identifying 

modes, and detecting the presence of multimodal distributions. In hydrology, it is used to 

analyze the distribution of water levels, helping in understanding the patterns and estimating 

probabilities of extreme events. 

Volatility: 

Volatility is best known as a statistical measure of the dispersion of returns for a given 

security or market index. It indicates the degree of variation of a financial instrument's price 

over time. In the context of hydrology, volatility can describe the variability in water levels, 

over time. 
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Mathematical Representation:  

Volatility is often quantified using the standard deviation of returns σ: 

𝜎 = √
1

𝑁 − 1
∑(𝑥𝑖 − 𝑥̅)2

𝑁

𝑖=1

 

where xi represents individual observations, xˉ is the mean of the observations, and N is the 

number of observations. 

In hydrological studies, understanding the volatility of water levels helps in assessing the risks 

associated with high variability, which is crucial for flood risk management and reservoir 

operation strategies. 

Energyequivelant: 

The Energy Equivalent is the amount of energy that can be generated from a unit of water. It 

is a critical concept in hydropower engineering, linking reservoir levels to energy potential. 

Each Hydropower power plant has its own Energyequivelant, which can be seen in table 1-4. 

This equivalent can be multiplied by the reservoir volume to get the amount of energy that 

volume represents. 

Hydropower Regulation and Operation: 

Hydropower Regulation and Operation involve the rules, practices, and technical measures 

used to manage water flow and reservoir levels. This includes maintaining reservoir levels, 

controlling water discharge, and optimizing energy production while minimizing flood risks. 

Key Elements: 

• Regulatory Guidelines: Standards and rules set by authorities (NVE in Norway). 

• Operational Strategies: Techniques for reservoir management, including flood 

control and energy production. 

• Technical Measures: Use of gates, turbines, and other equipment to control water 

flow. 
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Manøvreringsreglementet (Norwegian Regulation): 

o Description: Norwegian regulations governing the operation and management 

of hydropower plants. 

o Relevance: Sets the legal and operational boundaries within which the 

decision-support model operates. 

Kruskal-Wallis Test: 

The Kruskal-Wallis Test is a non-parametric method for testing whether samples originate 

from the same distribution. It extends the Mann-Whitney U test to multiple groups. This test 

does not assume a normal distribution of the data, making it suitable for comparing more than 

two groups. 

Mathematical Representation 

𝐻 =
12

𝑁(𝑁 + 1)
∑

𝑅𝑖
2

𝑛𝑖
− 3(𝑁 + 1)

𝑘

𝑖=1

 

where: 

• N is the total number of observations. 

• k is the number of groups. 

• Ni is the number of observations in the i-th group. 

• Ri is the sum of ranks for the i-th group. 

The Kruskal-Wallis Test is used to compare water levels across different seasons, identifying 

significant differences. This helps in understanding seasonal variations and their impact on 

water resource management. 

P-Value: 

The P-Value is the probability of obtaining test results at least as extreme as the observed 

results, assuming that the null hypothesis is correct. It provides a measure of the evidence 

against the null hypothesis. The P-Value is calculated based on the test statistic from a 

hypothesis test. For example, in the context of the Kruskal-Wallis Test, the P-Value is derived 

from the chi-square distribution. 
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In the context of the Kruskal-Wallis Test, the P-Value is used to determine the statistical 

significance of the observed differences between groups. A low P-Value indicates strong 

evidence against the null hypothesis, confirming significant seasonal differences in water 

levels. 

Sensitivity Testing: 

Sensitivity Testing involves analyzing how different values of an independent variable affect 

a particular dependent variable under a given set of assumptions. It assesses the impact of 

varying input parameters on model outputs. 

Sensitivity Testing is essential for assessing the robustness of the decision-support 

framework. It identifies which parameters significantly influence the model's outcomes, 

guiding improvements and ensuring reliable predictions under varying conditions. 

Global and Local Variables: 

Global Variables are parameters that affect the entire model universally, while Local 

Variables impact specific instances or parts of the model. This distinction helps in managing 

the complexity and scope of the model. 

Differentiating between global and local variables is important for defining the scope and 

impact of different parameters within the decision-support model. This helps in managing the 

model efficiently and ensuring accurate predictions related to the dual objectives of energy 

production and flood risk management. 
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3. Research Design 

This chapter is meant as an overview of the research, with the methodology for the decision 

framework presented in chapter 5. The reason for this separation is the nature of the research. 

Before any method and choices for the framework can be made, the data and statistical 

properties must be evaluated. The first step in the method will therefore be choice of path 

moving forward in the decision framework. 

The research employs a quantitative approach, focusing on a thorough analysis of the 

statistical characteristics. It assumes that the reservoirs show strong seasonality and 

correlation in reservoir volume, water level and waterflow in each unique lake. This 

assumption is tested in the start of the Exploratory Data Analysis (EDA). By confirming the 

assumption, the statistical analysis can be done on water level, and not all the different types 

of water statistics. The primary steps of the research are: 

 

1. Data Collection: 

o Gathering historical water data from Norwegian Water Resources and Energy 

Directorate. 

2. Data Cleaning and Preparation 

o Ensuring the consistency and reliability of the data by aligning time series, 

removing inconsistencies such as zero-values, and ensuring all datasets cover 

the same period. 

3. Exploratory Data Analysis 

o Correlation Analysis: 

• Analyze the correlation in water levels and reservoir levels to confirm 

assumption and to validate that water level data is a reliable indicator. 

• High correlations confirm the strong positive relationship, allowing 

the use of water level data for further analysis. 

o Descriptive Statistics: 

• Calculating key statistical measures (mean, standard deviation, 

skewness, kurtosis, etc.) to understand the central tendencies and 

variability of the water level. 

• Visualize the data in histograms, time-series and boxplots. 

o Seasonal Analysis: 
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• Segmenting the data by seasons to capture the impact of seasonal 

variations. 

• Analyzing trends and cycles. Identify variability in a single season. 

o Seasonal Analysis: 

• Using histograms, Kernel Density Estimates (KDE), and the Kruskal-

Wallis test to identify distinct seasonal modes in the water level data. 

• Confirming significant seasonal differences due to seasonal impacts. 

4. Decision Framework Development 

o Methodology choice based on the insights from the EDA 

o Developing risk scores for flood and water shortage. 

5. Analysis 

o Testing the robustness and responsiveness to various inputs to ensure it 

reliably responds to variations in water levels and seasonal factors. 

o Evaluating the performance and identifying areas for improvement by 

comparing the risk scores against historical events and expert assessments. 
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4. Exploratory Data Analysis 

Dataset 

The datasets are gathered from the Norwegian Water Resources and Energy Directorate 

(Sildre NVE, 2024). By using open-source data, the daily datapoints for Tyrifjorden, Sperillen 

and Randsfjorden were downloaded. This data was uncleaned, and not processed to fit with 

the study. The first action was to conduct a cleaning and preparation for the forthcoming 

research. The cleaning was done with python program Data_Cleaner.py, which can be found 

in appendix 1. The cleaning is intended to have the datasets align in time and datapoints. 

Below is the result of the cleaning of the daily waterlevels.   

 

Tyrifjorden 

Uncleaned 

Range 1994 – 2024 

Datapoints 10888 

Cleaned 

Range 2004 – 2023 

Datapoints 7305 

Sperillen 

Uncleaned 

Range 1947 – 2024 

Datapoints 28252 

Cleaned 

Range 2004 - 2023 

Datapoints 7305 

Sperillen 

Uncleaned 

Range 1947 – 2024 

Datapoints 28252 

Cleaned 

Range 2004 - 2023 

Datapoints 7305 

Table 4-1 Cleaned Datasets 
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As we can see from the uncleaned data, Sperillen had a significant larger dataset for daily 

waterlevels. Moreover, due to changes in Randsfjord regulations of water, the data was best 

suited with the range 2004 throughout 2023 (Olje- og energidepartementet, 2022). 

 

Additionally, the occurrences of zero-values were investigated in the cleaned data. If this 

occurred more research into the integrity of the data would have to be conducted. In the 

cleaned data there were no occurrences of zero-values. After the initial cleaning this is what 

the top and bottom of the dataset looks like, Tyrifjorden is used as example.  

 

 

Figure 4-1 Python Printout of the Cleaned Tyrifjorden Dataset 

As showed in the printout above all datasets will have two columns, one for Date and one for 

Water level, Reservoir Volume or Waterflow. All datasets can be downloaded from NVE, see 

chapter 13 – Dataset Downloading. 

 

Correlation 

The first step of the EDA is to analyze the correlation between the possible datasets. As 

mentioned previously the assumption is that the datasets are highly correlated. Reservoir and 

Waterlevel almost or exactly perfect correlation, with waterflow possibly lagging slightly. 

The reason for the lag can be because of immediate weather changes, or the capacity. A 

watershed only has the possibility to let out that much water. At HRW the hatchets are open 

max, so the excess over there is the max waterflow. Therefore, there is a maximum the 



24 
 

waterflow can go, even though the water might still be rising. This is what causes a flood, and 

the overall theme of these research. 

 

By doing this first step, the data analysis will be less extensive then if the thesis will need 

more than one statistical analysis. Given that if there is a good correlation the analysis and 

framework can rely on only one of the datasets for the most part. Below are the correlation 

matrices given from the correlation analysis. 

 

Tyrifjorden 
 

Waterlevel Waterflow Reservoir 

Waterlevel 1 0,89595 0,999935 

Waterflow 0,89595 1 0,89906 

Reservoir 0,999935 0,89906 1 

Sperillen 
 

Waterlevel Waterflow Reservoir 

Waterlevel 1 0,707879 0,999633 

Waterflow 0,707879 1 0,721373 

Reservoir 0,999633 0,721373 1 

Randsfjord 
 

Waterlevel Waterflow Reservoir 

Waterlevel 1 0,287398 0,999956 

Waterflow 0,287398 1 0,289755 

Reservoir 0,999956 0,289755 1 

Table 4-2 Correlation Analysis of all Reservoirs 

As the table shows the assumption was correct, and there is correlation enough to rely on only 

waterlevel in the statistical analysis. The waterflow was slightly lower correlated, and even 

more in Randsfjord, this is assumed to be because of the mentioned capacities of the 

watersheds. Randsfjord stands out with a lower correlation on waterflow.  

 

After the waterlevel datasets had shown to be a reliable set to analyze, the study moved on to 

perform a correlation analysis on the waterlevels across the three reservoirs. This is done to 

get an early indication of interconnection and gives the research more reliability that there can 

be made one framework that works sufficient across the three reservoirs. The correlation 

matrix is shown below.  
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Tyrifjorden Sperillen Randsfjord 

Tyrifjorden 1 0,761035 0,633054 

Sperillen 0,761035 1 0,775634 

Randsfjord 0,633054 0,775634 1 

Table 4-3 Correlation Analysis of all Reservoirs 

All lakes show significant positive correlation in water levels, indicating that changes in one 

lake's water level are likely to impact each other or have connecting events. The matrix 

implies that the relationship between water levels across these lakes is connected, where 

increases or decreases in one are reflected in the others. 

 

The correlation analysis was done using Correlation.py, Appendix 3, and the complete 

analysis with heatmaps can be seen in Appendix 2. 

 

Descriptive Statistics 

The first step of this research is to get a general overview of the statistics for the three 

reservoirs. This section uses multiple python programs that will be included in the appendix. 

The second assumption made in this research is the seasonality plays a major part. For that 

reason, the analysis is divided into three parts, Statistical Analysis, Seasonal Analysis and a 

Multimodal Analysis. 

 

Statistical Analysis 

The statistical analysis seeks to understand the distribution of waterlevels across the range. 

Analyzing outliers, general statistical measurements, and variability.  

 

The next sections provide a statistical overview of the waterlevels in Tyrifjorden, Sperillen 

and Randsfjord, employing data from the Python program, Statistical_Analysis.py, Appendix 

4. The datasets comprise of 7305 datapoints for Sperillen and Tyrifjorden, and 7298 for 

Randsfjord, offering a robust basis for evaluating the waterlevel dynamics in the three 

reservoirs.  

 

The complete statistical analysis for all reservoirs can be found in the appendix 5-8. 
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Tyrifjorden 

Tyrifjorden is the last lake in the system, with Sperillen and Randsfjorden being upstream of 

Tyrifjorden, connected by Randselva and Begnavassdraget. The mean waterlevel across the 

dataset is recorded at approximately 62,92 meters, which is quite high in the regulation zone. 

That zone being between 62 and 63 meters, LRW and HRW respectively. With a standard 

deviation of 0,38 meters, indicating moderate variability around the mean. Suggesting that the 

waterlevel occasionally goes above HRW but not often closing in on LRW. Since the mean-

flood level for Tyrifjorden is 64,2 meters, going slightly above HRW is not dramatic.  

 

Statistic Value 

Mean 62,9181 

Standard 

Deviation 

0,377319 

Min 62,02999 

25th percentile 62,75689 

Median 62,8723 

75th percentile 62,99604 

90th percentile 63,31896 

95th percentile 63,63215 

99th percentile 64,35287 

Max 65,40757 

Table 4-4 Tyrifjorden Descriptive Statistics 

From the table above it can be noted that 75% of the waterlevels are below HRW of 63 

meters.  

 

Table 4-5 Tyrifjorden Histogram Distribution of Waterlevels 
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There is a notable decrease in waterlevels directly above HRW, which corresponds closely to 

the 75th percentile. The distribution also highlights the rarity of extreme waterlevels, on either 

side. Below 62,5 meters and above approximately 63,3 meters there are not many recorded 

waterlevels.  

 

Time-Series Analysis 

A time series analysis over more than two decades shows consistent seasonal fluctuations, 

underscoring the assumed seasonality in the waterlevels.  

 

Figure 4-2 Time-Series Chart Tyrifjorden 

The water levels generally remain within a defined range, with occasional spikes that exceed 

the flooding thresholds marked by the red dashed lines in the analysis. 

 

Statistical Measures and Flood Incidence 

78.81% of observed waterlevels fall within one standard deviation from the mean. This tight 

clustering is more pronounced than in a standard normal distribution, suggesting predictability 

in water level behaviors. 

 

Frequency Standard Deviation Analysis 

Condition Days Percent Number of Std Devs Percentage Within Range 

Regulation Zone 5512 75,45517 1 78,80903 

Caution Zone 1653 22,62834 2 90,63655 

Mean to 5-Year Flood 86 1,177276 3 95,6742 
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5 to 10-Year Flood 2 0,027379 4 98,38467 

10 to 20-Year Flood 6 0,082136 5 99,28816 

20 to 50-Year Flood 4 0,054757 6 99,58932 

50-Year Flood 15 0,205339 7 100 

Total Flood Days 113 1,546886 8 100 

Table 4-6 Frequency and Standard Deviation Analysis Tyrifjorden 

The data categorizes 1.547% of the observation period as flood days, emphasizing the low but 

non-negligible risk of flooding. The 15 days of 50-Year Flood is the extreme weather in 2023. 

As we have seen in the former statistics a certain amount of the water level is recorded above 

HRW for Tyrifjorden. Tyrifjorden can probably do this due to the relatively big margin from 

HRW to mean-flood. 

 

Sperillen 

The mean water level in Sperillen is approximately 149.63 meters with a standard deviation of 

0.71 meters, reflecting a moderate level of variability. Although, a significant increase from 

the variability in Tyrifjorden. 

 

Statistic Value 

Mean 149,6315 

Standard 

Deviation 

0,71156 

Min 148,1312 

25% 149,0202 

Median 149,7027 

75% 150,1673 

90% 150,3899 

95% 150,5535 

99% 151,6396 

Max 154,023 

Table 4-7 Sperillen Descriptive Statistics 

The data is mainly centralized; the histogram below illustrates that most water levels are 

tightly clustered around the mean and median (149.70 meters). Moreover, there are sharper 

declines after one standard deviation from the mean. 
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Figure 4-3 Sperillen Histogram Distribution of Waterlevels 

Notably, the frequency of occurrences diminishes significantly for water levels above the 75th 

percentile, highlighting the infrequency of extremely high-water levels, which peak at a 

maximum of 154.02 meters. Much like Tyrifjorden. 

 

Time-Series Analysis 

The time-series for Sperillen resembles Tyrifjorden and reveals a pattern of season water level 

fluctuations. 

 

Figure 4-4 Time-Series Graph Sperillen 

The water levels oscillate within the regulated range (LRW/HRW), marked by yellow dashed 

lines, suggesting consistent management and predictable behavior of the lake over time. 

Notably, critical flooding thresholds indicated by red dashed lines are seldom exceeded.  
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Statistical Measures and Flood Incidence 

Much like Tyrifjorden, Sperillen shows approximately 73.85% of the data points are within 

one standard deviation from the mean, indicating less variability than a normal distribution 

might suggest.  

Frequency Standard Deviation Analysis 

Condition Days Percent Number of Std Devs Percentage Within Range 

Regulation Zone 5919 81,02669 1 73,85352 

Caution Zone 1233 16,87885 2 95,50992 

Mean to 5-Year Flood 74 1,013005 3 98,4668 

5 to 10-Year Flood 38 0,520192 4 99,56194 

10 to 20-Year Flood 21 0,287474 5 99,86311 

20 to 50-Year Flood 13 0,17796 6 99,97262 

50-Year Flood 5 0,068446 7 100 

Total Flood Days 151 2,067077 8 100 

Table 4-8 Frequency and Standard Deviation Analysis Sperillen 

The data also shows that 2.07% of the observation days fall under various flood conditions, 

underscoring the occasional but important flood risk. 

 

Randsfjorden 

The average water level of Randsfjord stands at approximately 133.50 meters with a standard 

deviation of 0.87 meters. This level of deviation suggests a moderate fluctuation around the 

mean, primarily staying within a predictable range. 

Statistic Value 

Mean 133,5049 

Standard 

Deviation 

0,871948 

Min 131,43 

25% 132,84 

Median 133,9 

75% 134,15 

90% 134,35 

95% 134,4618 

99% 134,66 

Max 136,07 

Table 4-9 Randsfjorden Descriptive Statistics 
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Most water levels are clustered around the median of 133.9 meters, and the frequency 

distribution decreases for levels beyond the 75th percentile, culminating at a maximum of 

136.07 meters. 

 

 

Figure 4-5 Randsfjorden Histogram Distribution of Waterlevels 

Notably, there looks to be a higher frequency in the lower range toward LRW, than with the 

two other reservoirs. 

 

Time-Series Analysis 

The time series analysis spanning over two decades shows that Randsfjord maintains a stable 

water level with regular seasonal variations. These variations are well-contained within the 

established regulatory thresholds.  

 

Figure 4-6 Time-Series Graph Randsfjorden 
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Statistical Measures and Flood Incidence  

An impressive 82.65% of the data points lie within one standard deviation from the mean, 

emphasizing the lake's stability, uniformity and predictability. 

 

Frequency  Standard Deviation Analysis 

Condition Days Percent Number of Std Devs Percentage Within Range 

Regulation Zone 7063 96,77994 1 82,65278 

Caution Zone 146 2,000548 2 99,26007 

Mean to 5-Year Flood 34 0,465881 3 100 

5 to 10-Year Flood 2 0,027405 4 100 

10 to 20-Year Flood 2 0,027405 5 100 

20 to 50-Year Flood 5 0,068512 6 100 

50-Year Flood 21 0,28775 7 100 

Total Flood Days 64 0,876953 8 100 

Table 4-10 Frequency and Standard Deviation Analysis 

The occurrence of days with flooding conditions is remarkably low (less than 1%), which 

reinforces the effectiveness of the existing water management strategies to handle high-water 

events. Randsfjorden stands out with its low flooding and highly regulated waterlevels 

between LRW and HRW. 

 

Summary 

The statistical analyses of water levels in Tyrifjorden, Sperillen, and Randsfjord provide 

insights into the hydrological stability and variability of these lakes. Each analysis, grounded 

in robust datasets and comprehensive statistical metrics, underscores both the individual 

characteristics and shared behaviors of these water reservoirs. 

 

Across all three lakes, the analyses highlight a strong tendency toward central clustering of 

water levels around the mean, with water levels falling within a predictable range. The 

frequency of floods is shown to be rare, but noticeable for Sperillen and Tyrifjorden. 

Randsfjorden stands out with an impressive flooding percent below 1. 

Despite similarities in management success, the reservoirs exhibit varying degrees of natural 

variability. For example, Randsfjord shows remarkable predictability with 82.65% of 

observations falling within one standard deviation from the mean, compared to 78.81% for 

Tyrifjorden and 73.85% for Sperillen.  
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The risk of flooding, while generally low across all reservoirs, is meticulously documented, 

with each lake experiencing rare but notable high-water. Randsfjord displays a very low 

incidence of flood days (0.88%). 

 

Seasonal Analysis 

Based on the statistical analysis the study observed seasonal patterns that needs to be 

analyzed. The seasonal analysis will separate the datasets in seasons, and perform the same 

statistical analysis done before. Furthermore, the trends for the seasons will be analyzed. The 

complete seasonal analysis can be found in the appendix 9-11. The analysis is done in the 

python program Seasonal_Analysis_Waterlevel.py, appendix 8. For the datasets to start at the 

start of a season, the datasets will be filtered to start 1st March 2004. The first season will then 

be spring 2004. 

 

Tyrifjorden 

The seasonal statistics table provides a comprehensive overview of the mean, standard 

deviation, minimum, and maximum water levels for each season. The data reveals that 

autumn has the highest mean water level, indicating generally stable conditions with 

occasional peaks. Spring, on the other hand, shows the lowest mean but the highest standard 

deviation, reflecting significant variability. 

 

Season mean std min 25% 50% 75% max SVI 

Autumn 63,02 0,32 62,48 62,83 62,94 63,04 65,25 0,007203 

Spring 62,79 0,45 62,03 62,48 62,73 62,97 64,61 0,006588 

Summer 63,06 0,42 62,27 62,82 62,92 63,12 65,41 0,005076 

Winter 62,81 0,17 62,33 62,66 62,84 62,94 63,61 0,00273 

Table 4-11 Tyrifjorden Seasonal Statistics 

Summer's water levels are comparable to autumn's, with considerable variability suggesting 

extreme weather events. Winter displays the lowest variability, indicating more consistent 

water levels likely due to freezing conditions. 
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Figure 4-7 Tyrifjorden Seasonal Histograms 

The seasonal changes are quite apparent with winter having no floods and stable waterlevels, 

before the waterlevel increase when spring comes. There are incidents of flood in the spring. 

As summer histogram shows the higher waterlevels seem to come from an increasing level 

throughout spring. The year ending with a declining waterlevel in autumn, moving into 

winter. 
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Figure 4-8 Yearly Plot Example All lakes 
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What we can take out from the time-series above, from 2013, is the seasonal changes 

connecting with the histogram. 2013 is taken as an example, and this graph is for all 

reservoirs. It will not be shown in the other reservoirs seasonal analysis. The plots can be 

made using python and the python program Yearly_plots.py. The graph shows and increasing 

waterlevel in spring, and large outflow during summer. Summer and autumn displaying more 

volatility due to changing weather. The spring smelt is what makes the higher waterlevels in 

summer. 

 

Time-Series and Seasonal Fluctuations 

The decomposed time-series analysis offers a clear visualization of the waterlevels over two 

decades, capturing both the observed values and the seasonal components. The actual 

observed water levels exhibit sharp peaks and downs, highlighting significant fluctuations and 

extreme events. 

 

 

Figure 4-9 Decomposed Time Series with fluctuations 

This pattern is particularly pronounced in spring and summer, where climatic factors such as 

precipitation and snowmelt probably contribute to the variability. The seasonal component of 

the time-series shows a consistent cyclical pattern, underscoring the strong influence of 

seasonal changes on water levels. This regular cycle suggests that despite yearly variations, 

the underlying seasonal trends remain stable, driven by predictable factors. 

 

Flood Incidence 

Spring and summer are marked by higher variability and a greater incidence of flood days.  

Summer experiences a high frequency of flood days. Autumn shows a reduction in flood days 

compared to summer, reflecting a transition to more stable water levels. Winter, with its low 

variability and absence of flood days, presents the most stable scenario, likely due to freezing 

conditions that limit water level fluctuations. 
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Spring Summer Autumn Winter 

Below 62 0 0 0 0 

62 to 63 1381 1123 1147 1633 

63 to 64.2 329 578 535 131 

64.2 to 64.7 38 26 22 0 

64.7 to 64.9 0 0 2 0 

64.9 to 65.1 0 4 2 0 

65.1 to 65.2 0 3 1 0 

Above 65.2 0 14 1 0 

Total Flood Days 38 47 28 0 

Table 4-12 Flood Frequencies Tyrifjorden 

Box plots for each season provide additional insights into the distribution and spread of water 

levels. These plots reveal not only the central tendencies but also the range and presence of 

outliers. Spring and summer show higher mean levels and more pronounced spreads, as 

evidenced by the interquartile ranges, suggesting more substantial fluctuations in water levels 

during these periods. The box plots can be seen in the Seasonal Analysis Tyrifjorden 

appendix. 

 

Seasonal Trend 

The trend analysis across different seasons reveals distinct patterns in waterlevel changes. 

Spring shows a positive slope, suggesting an overall increase in water levels as the season 

progresses, which may be due to snowmelt and increased rainfall. This trend highlights the 

potential for increased flooding risks in spring, necessitating proactive water management 

strategies. In contrast, summer, autumn, and winter exhibit negative slopes, indicating a 

general decline in water levels throughout these seasons.  
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Figure 4-10 Seasonal Trend Tyrifjorden 

The statistical significance of these trends is confirmed by p-values, found in appendix, well 

below the 0.05 threshold, indicating that these patterns are not due to random chance. 

However, the practical implications of these trends require careful consideration. Given that 

the trends, while significant, are possibly not practical, the trend is not large. The trend is not 

from a certain water level to a flooding level. 

 

Sperillen 

Autumn shows relatively stable water levels with a modest variability, indicating a balanced 

hydrological state. In contrast, spring displays the highest variability 

 

Season mean std min 25% 50% 75% max 

Autumn 149,96 0,5 148,15 149,74 150,09 150,28 151,87 

Spring 149,27 0,81 148,13 148,69 148,98 149,6 152,79 

Summer 149,95 0,69 148,17 149,62 150,01 150,31 154,02 

Winter 149,36 0,5 148,44 148,92 149,29 149,81 150,42 

Table 4-13 Seasonal Statistics Sperillen 
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Summer's water levels are like those in autumn but with increased variability. Winter, with 

the lowest variability, indicates consistent water levels. The histograms of seasonal water 

levels provide insights into the distribution across different times of the year.  

 

Figure 4-11 Seasonal Histograms Sperillen 

Spring's histogram highlights a significant increase in water levels within the 149 to 150.25-

meter range. 

 

Time-Series and Seasonal Fluctuations 

The decomposed time-series analysis of Sperillens water levels reveals significant seasonal 

fluctuations, characterized by peaks and downs. The actual observed water levels show 

substantial variability, particularly during spring and summer. 
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Figure 4-12 Time-Series with seasonal fluctuations Sperillen 

The seasonal component of the time-series analysis showcases a predictable and repetitive 

pattern, underlining a seasonal effect on water levels. This consistent cycle indicates that 

despite inter-annual variations, the underlying seasonal trends remain stable, influenced by 

predictable climatic factors. 

 

Variation and Flood Incidence 

Like Tyrifjorden, spring and summer are marked by higher variability and a greater incidence 

of flood days. 

Waterlevel Spring Summer Autumn Winter 

Below 147.95 0 0 0 0 

147.95 to 150.25 1494 1234 1216 1694 

150.25 to 151.1276 188 452 474 70 

151.1276 to 151.6132 29 26 16 0 

151.6132 to 152.0137 23 11 4 0 

152.0137 to 152.4 11 10 0 0 

152.4 to 152.9034 3 10 0 0 

Above 152.9034 0 5 0 0 

Total Flood Days 66 62 20 0 

Table 4-14 Frequency Sperillen 

Summer experiences a high frequency of flood days. Autumn shows a reduction in flood days 

compared to summer, reflecting a transition to more stable water levels. Winter, with its low 

variability and absence of flood days, presents the most stable scenario. 
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Seasonal Trend 

The trend analysis reveals distinct patterns in water level changes across different seasons. 

Spring shows a positive slope, suggesting an overall increase in water levels as the season 

progresses.  

 

 

Figure 4-13 Seasonal Trend Sperillen 

  

In contrast, summer, autumn, and winter exhibit negative slopes, indicating a general decline 

in water levels. 

 

Randsfjorden 

The seasonal statistics table for Randsfjord reveals a consistent pattern in water levels across 

different seasons. Autumn displays relatively stable water levels, evidenced by a low standard 

deviation, indicating less variability and fewer extreme fluctuations. In contrast, spring 

exhibits increased variability. 

Season mean std min 25% 50% 75% max 

Autumn 134,17 0,26 132,95 134,03 134,15 134,35 135,66 

Spring 132,55 0,88 131,43 131,9 132,18 133,14 134,82 
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Summer 134,04 0,39 132,35 133,95 134,08 134,21 136,07 

Winter 133,27 0,61 132,03 132,77 133,29 133,74 134,5 

Table 4-15 Seasonal Statistics Randsfjorden 

The histogram analysis highlights significant seasonal variance in water levels. Spring and 

summer show elevated water levels reaching into higher flood-risk categories, with spring 

having 12 and summer 33 total flood days, respectively. 

 

 

Figure 4-14 Seasonal Histograms Randsfjorden 

Autumn's distribution, with negative skewness, suggests a tail of lower water levels, while the 

high kurtosis indicates a peaked distribution with potential for extreme high-water levels. 

Winter's symmetric distribution, with fewer outliers, aligns with no recorded flood days, 

reflecting stable water levels during this season. 

 

Time-Series and Seasonal Fluctuations 

The decomposed time-series analysis of Randsfjord waterlevels indicates a cyclical seasonal 

pattern with noticeable peaks, reflecting substantial fluctuations driven by environmental and 

climatic influences. 
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Figure 4-15 Time-Series and Seasonal Fluctuations Randsfjorden 

The regularity in the seasonal component suggests that the lake's response to seasonal changes 

is consistent over the years. This pattern underscores the predictable nature of seasonal 

variations. 

 

Flood Incidence 

As with the two other reservoirs, Randsfjorden experience flooding in 3 out of 4 seasons. 

With summer with the highest frequency of flood. 

 

Waterlevel Spring Summer Autumn Winter 

Below 131.3 0 0 0 0 

131.3 to 134.5 1702 1686 1608 1757 

134.5 to 134.689 34 29 83 0 

134.689 to 134.9159 12 10 12 0 

134.9159 to 135.1058 0 0 2 0 

135.1058 to 135.2902 0 0 2 0 

135.2902 to 135.5321 0 4 1 0 

Above 135.5321 0 19 2 0 

Total Flood Days 12 33 19 0 

Table 4-16 Frequency Randsfjorden 

Seasonal Trend 

The trend analysis reveals distinct patterns in water level changes across different seasons. 

Spring shows a significant increase in water levels 
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Figure 4-16 Seasonal Trend Randsfjorden 

 

Winter shows a remarkable decline in waterlevels before going on to the increase in spring. 

 

Multimodal Analysis 

The multimodal analysis of water levels in three lakes, Tyrifjorden, Sperillen, and Randsfjord, 

was conducted to understand the impact of seasonal variations. Using histograms, Kernel 

Density Estimates (KDE), and the Kruskal-Wallis test, the analysis identified distinct seasonal 

modes in the water level data. The python program used for the multimodal analysis is 

multimodal_analysis.py, appendix 14. The complete multimodal analysis can be found in 

appendix 12. 

 

In Tyrifjorden, the histograms and KDE plots showed varied peaks and distributions for 

different seasons, suggesting distinct modes. Monthly averages revealed water levels were 

lowest in early spring, peaked in June, and slightly declined towards autumn. The Kruskal-

Wallis test, with an H-statistic of 1074.35 and a p-value near zero, confirmed significant 

differences across seasons, supporting the multimodal distribution due to seasonal variations. 
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Figure 4-17 Multimodal Histogram Tyrifjorden 

Sperillens water levels displayed similar seasonal fluctuations. Histograms and KDE plots 

indicated multiple modes corresponding to different times of the year. Monthly averages 

showed levels rising in March, peaking in May and June, and remaining high until November. 

The Kruskal-Wallis test, with an H-statistic of 1757s, confirmed significant seasonal 

differences, reinforcing the multimodal nature of the data due to seasonal impacts. 
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Figure 4-18 Monthly Averages Sperillen 

Randsfjord exhibited distinct water level distributions for each season. Histograms and KDE 

plots indicated multiple modes, with levels rising dramatically from March to May, peaking in 

early summer, and stabilizing until a slight drop in December. The Kruskal-Wallis test, with 

an H-statistic of 3712.69 and a p-value of 0.0, confirmed significant seasonal differences, 

supporting the multimodal distribution driven by distinct environmental factors. 

 

In conclusion, the multimodal analysis demonstrated that seasonal variations significantly 

influence water levels in Tyrifjorden, Sperillen, and Randsfjorden. This understanding is 

crucial for effective water resource management and risk assessment, especially in 

anticipating seasonal water availability and addressing potential flooding or drought 

conditions. 

 

Summary of Exploratory Data Analysis 

The exploratory data analysis (EDA) conducted for Tyrifjorden, Sperillen, and Randsfjorden 

reveals critical insights essential for the development of the decision-support framework. 

The correlation analysis confirmed a strong positive correlation between water levels and 

reservoir levels across all three lakes. This validation allowed the focus to remain solely on 

water level data for further analysis. 
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Initial data cleaning ensured the removal of inconsistencies and alignment of time series, 

resulting in datasets free from zero-values and suitable for robust analysis. 

In Tyrifjorden, the mean water level is approximately 62.92 meters, with a standard deviation 

of 0.38 meters. This lake shows moderate variability with a pronounced central tendency 

around the mean. Seasonal fluctuations are notable, particularly in spring and summer, with 

occasional spikes exceeding flooding thresholds. 

 

Sperillen has a mean water level of 149.63 meters and a standard deviation of 0.71 meters, 

indicating moderate variability. The water levels cluster significantly around the mean, with 

higher variability observed in spring and summer due to snowmelt and precipitation. 

Randsfjordens mean water level is 133.50 meters, with a standard deviation of 0.87 meters. 

The data reflects moderate fluctuations around the mean, with a highly predictable range. The 

waterlevels are tightly regulated, and extreme values are infrequent. Seasonal analysis further 

demonstrates the hydrological dynamics of each lake. In Tyrifjorden, autumn presents the 

highest mean water level with stable conditions, while spring shows the lowest mean but the 

highest variability due to snowmelt and rainfall. Summer exhibits variability comparable to 

autumn, and winter shows the lowest variability, indicating consistent conditions. 

Sperillens seasonal data reveals stable water levels in autumn with modest variability, while 

spring displays the highest variability driven by transitional weather patterns. Summer 

continues this trend with high water levels and increased variability, whereas winter is marked 

by the lowest variability and stable conditions. 

Randsfjordens seasonal analysis highlights stable water levels in autumn, with low variability. 

Spring demonstrates increased variability and higher water levels, summer shows moderate 

spread and elevated flood risk, and winter remains stable with minimal extreme events. 

 

The multimodal analysis, employing Kernel Density Estimates (KDE), identified distinct 

seasonal modes in the water level data for all three lakes. Significant seasonal differences 

were confirmed, highlighting the influence of seasonal impacts on water resource 

management. 

 

In conclusion, the EDA provides a comprehensive understanding of the hydrological stability 

and variability of Tyrifjorden, Sperillen, and Randsfjorden. Each lake exhibits unique 

characteristics influenced by seasonal changes. These insights will inform the development of 
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a robust decision-support framework to enhance the management of water resources in 

Drammensvassdraget, aligning with the research objectives and scope. 
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5. Methodology 

 

This chapter outlines the method used to develop the framework for risk-based decisions for 

managing water in Tyrifjorden, Randsfjorden and Sperillen. As mentioned, the primary goal 

is to add simplicity to the balancing of electricity generation and flood risk management by 

leveraging historical waterlevel data. This approach leans on the analysis already conducted in 

the former chapters. This chapter will outline the development and analysis of the 

performance. 

 

Understanding the decision-support framework. 

The framework developed in this study is a decision-support tool designed to convert 

historical quantitative data into a risk score for either flood or energy shortage. It focuses on 

historical data and statistical methods to provide a dimensionless risk score based on the 

current water level. The model is intended to support decision-making by quantifying the risk, 

but it is essential to understand its limitations and scope.  

Before any development can be done it is imperative to choose what it should be able to do, 

and what is it not able to do. The question arises then to the design of a formula or a model. 

This is an important choice, given the advantages and constraints of both. Below is a table 

outlining the differences.  

Aspect Decision Formula Decision Model 

Complexity Simple, direct calculations Complex, involves multiple 

variables and scenarios 

Flexibility Rigid, fixed relationships Flexible, can adapt to 

changes and incorporate 

uncertainty 

Scope Limited to specific well-

defined situations 

Broad, used for complex and 

strategic decisions 

Nature Deterministic Often probabilistic and 

analytical 
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Tools Used Basic mathematical 

expressions 

Advanced tools like decision 

trees, simulations and 

optimization 

Figure 5-1 Decision Formula vs. Decision Model 

This model is not cut in stone, as there is grey area in between. The framework to be 

developed will use this grey area. As mentioned, numerous times, the complexity will be kept 

to a minimum. The scope is also well-defined flooding and waterlevels. This leans the 

framework toward a Decision Formula. However, the analysis done in the EDA will be used. 

Therefore, there are probabilistic and analytical elements to it. The use of probability forces 

the study to acknowledge the uncertainty in both probability and analysis. Finally, due to the 

simplicity and the lack of prediction in this framework, the choice is to make a formula rather 

than a model. This will enable the decision-support to not be time-sensitive and abstain from 

prediction. Formulas enables further development, and it might be included in a model on 

later stages. The lack of prediction and probability in the three decisions to be made, increase, 

decrease or maintain outflow is the biggest reason for choosing a formula.  

• What the framework is: 

o Decision-Support Tool: It aids decision-makers by translating historical water 

level data into a risk score. 

o Quantitative Focus: The model relies on historical data and statistical methods 

to provide risk assessments. 

o Non-Time binding Risk: The risk score provided is dimensionless and not tied 

to a specific timeline. It indicates the current level of risk without predicting 

the exact timing of a flood or water shortage. 

• What the framework is Not: 

o Dynamic Predictor: The model does not predict future events or provide a 

dynamic forecast. It updates based on historical data but does not account for 

real-time changes or future conditions. 

o Definitive Decision-Maker: While it provides valuable risk quantification, it 

does not replace expert judgment or operational decisions. The model 

highlights the risk, but the final decisions should consider qualitative 

assessments and other operational factors and methods. 
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Understanding these aspects ensures that operators can effectively integrate it into their 

decision-making processes, recognizing its strengths and limitations. 

Formula 

The formula will be designed to give the operator a baseline understanding of the risks 

associated with the current waterlevel in the reservoir. The formula integrates several factors 

from the EDA. It will use seasonal historical waterlevel density, seasonal trends, reservoir 

capacity and regulatory constraints to adjust the risk scores. While there are several more 

statistics that can be included in the formula, the EDA gave a thorough insight into the 

distribution of waterlevel and the frequency of outliers. This will all be included through the 

density and the trends. Aswell, the seasonal trends will encompass more of the analysis. The 

factors let out will represent some of the uncertainty of the formula and will be discussed in 

the appropriate chapter. 

 

The formula will be split in to, Energy Shortage Risk and Flood Risk. The general formulas 

will look like this: 

 

Energy Shortage Risk (ESR): 

 

𝐸𝑆𝑅 = 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐸𝑆𝑅 × 𝐷𝐸𝑛𝑒𝑟𝑔𝑦 × 𝐶𝐸𝑛𝑒𝑟𝑔𝑦 × 𝑅𝐸𝑛𝑒𝑟𝑔𝑦 × 𝑆𝐸𝑛𝑒𝑟𝑔𝑦  

Equation 5-1 Energy Shortage Risk Formula 

Flood Risk (FR): 

𝐹𝑅 = 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐹𝑅 × 𝐷𝐹𝑙𝑜𝑜𝑑 × 𝐶𝐹𝑙𝑜𝑜𝑑 × 𝑅𝐹𝑙𝑜𝑜𝑑 × 𝑆𝐹𝑙𝑜𝑜𝑑  

Equation 5-2 Flood Risk Formula 

• Components: 

o Each of the components (H, C, R, S) represents a different adjustment factor: 

▪ Baseline: Initial estimate of risk based on observed waterlevel 

▪ D: Density Adjustment 

▪ C: Current Reservoir Capacity Adjustment 

▪ R: Regulatory Constraints Adjustment 

▪ S: Seasonal Trends Adjustment 

• These components will be thoroughly explained in the model development chapter, 

detailing how each factor is derived and integrated into the final risk score. 
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The model will require two inputs, apart from which lake the operator is analyzing. This will 

be the observed waterlevel and which season is current. This will be the starting point for the 

python program. The formula will then use seasonal waterlevel data to acquire the necessary 

statistics and regulations.  

 

The final framework will in general be as the figure below. 

 

Figure 5-2 General Overview of Decision Framework 

After the formula has calculated the risks at a certain waterlevel, a decision factor will be 

included to account for the adjustment based on what the operator will decide. This enables 

the operator to see what effect each decision will have on the risk. 

 

Formula Preparation 

For the formula python program to have the necessary data, several steps must be taken to 

prepare the datasets to work with a decision formula. The following python programs will be 

used to prepare for the formula: 

- Reservoir_to_DailyEnergy.py 

- Data_Preperation.py 

- States_constructor.py 

All these can be found in appendix. 

 

Inputs Formula

Increase

Flood Risk

Energy Risk

Maintain

Flood Risk

Energy Risk

Decrease

Flood Risk

Energy Risk
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Since the analysis has shown clear seasonality, the datasets will be categorized into seasons. 

This will ensure the formula only use waterlevels that have been present in the season that is 

current. Furthermore, waterflow, waterlevel, reservoir volume and energy has been combined 

into one set. The reason for this is the next step in the preparation, which is construction of 

waterlevel states. The reason for this is the probability density function which will be used in 

the density factors, this does not allow for one single point of density. As theory state, a 

continuous probability function does not have single definite probabilities. Only ranges. These 

ranges are the states. The states are constructed with percentiles, LRW, HRW, etc. The list 

can be seen in the picture below: 

 

 

Figure 5-3 State Limits for Randsfjord 

These points are used to construct the states. However, the states above mean-flood are 

merged. Since the formula does not account for the flooding levels above mean flood. Given 

that if the waterlevel surpasses mean flood the reservoir is in a flooding state.  
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Table 5-1 Sperillen Waterlevel States 

Table 5-1 shows the states that have been defined. There will always be small fluctuations in 

the waterlevel, this is another positive point for the definition of states to be more useful. 

Figure 5-4 shows the state 6 highlighted and the densities on either side. These are the 

densities that will be used in that factor of the formula. 

 

 

Figure 5-4 Example of States and Densities 

To sum up, this methodology chapter has outlined the approach taken to develop a decision-

support formula for water resource management in the Drammensvassdraget region. By 

leveraging historical data and statistical analysis, the development and formula aims to 

provide a tool for supporting the operators in the balancing of electricity generation and flood 

risk. The subsequent chapters will discuss the application of the model, its analysis, and the 

implications of the findings in detail. 

 

 

State Lower Bound Upper Bound 

State 0 147,431 148,1312 

State 1 148,1312 148,3988 

State 2 148,3988 148,6157 

State 3 148,6157 148,7402 

State 4 148,7402 148,9442 

State 5 148,9442 149,6315 

State 6 149,6315 150,25 

State 7 150,25 151,1276 

State 8 151,1276 162,4594 
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6. Development and Design of the Formula 

 

The formula is scripted in python, there are two python programs used for calculating the 

formula, Single_Decision.py and Decision_for_loop.py. The last one is made mostly for the 

analysis, which iterates over each waterlevel with a set increment. This enables a solid 

analysis of the formula’s performance and limitations. 

 

Before the risk values can be calculated, all the factors need to be produced. As shown before 

the two formulas and their factors looks like this. Equation 5-1 and 5-2. 

 

Energy Shortage Risk (ESR): 

 

𝐸𝑆𝑅 = 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐸𝑆𝑅 × 𝐷𝐸𝑛𝑒𝑟𝑔𝑦 × 𝐶𝐸𝑛𝑒𝑟𝑔𝑦 × 𝑅𝐸𝑛𝑒𝑟𝑔𝑦 × 𝑆𝐸𝑛𝑒𝑟𝑔𝑦  

 

Flood Risk (FR): 

𝐹𝑅 = 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐹𝑅 × 𝐷𝐹𝑙𝑜𝑜𝑑 × 𝐶𝐹𝑙𝑜𝑜𝑑 × 𝑅𝐹𝑙𝑜𝑜𝑑 × 𝑆𝐹𝑙𝑜𝑜𝑑  

 

 

Historical and Extended Density Adjustment (D) 

The historical density adjustment factor uses Kernel Density Estimation to smooth historical 

data and consider unobserved events. It combines historical and extended data; the extended 

data is made to provide a lower low and higher high. This combination ensures a 

comprehensive coverage of the complete range of waterlevels. The KDE will use a bandwidth 

of 0,2, this is a qualitative judgement, but provides enough smoothing to encompass 

unobserved events. While not destroying the integrity of the dataset. This component of the 

formula uses two python programs: Historic_Risk_Factor.py and Extended_Risk_Factor.py, 

appendix 18 and 19. 

 

The extended data is generated through simulation. The start is by calculating the minimum 

and maximum observed waterlevel, and the standard deviation. This python program will then 

generate a set of synthetic waterlevels below minimum and above maximum. These values 

are uniformly distributed between: 
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[(𝑀𝑖𝑛 𝑊𝑎𝑡𝑒𝑟𝑙𝑒𝑣𝑒𝑙 − (3 × 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑠))       , 𝑀𝑖𝑛  𝑊𝑎𝑡𝑒𝑟𝑙𝑒𝑣𝑒𝑙] 

 

[𝑀𝑎𝑥 𝑊𝑎𝑡𝑒𝑟𝑙𝑒𝑣𝑒𝑙        , (𝑀𝑎𝑥 𝑊𝑎𝑡𝑒𝑟𝑙𝑒𝑣𝑒𝑙 + (3 × 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛))] 

Equation 6-1 Extension Range Waterlevels 

These simulated datapoints are then added into the original dataset, thus extending the low 

and high of the historical dataset. 

 

 

Figure 6-1 Histogram and KDE of Tyrifjorden Historic Waterlevels 

The plot above shows the red line as the KDE, with bandwidth 0,2, for the historical 

waterlevels. The plot below shows the KDE for the extended waterlevels, here it is obvious 

that the waterlevels have lower and higher observations. 

 

 

Figure 6-2 KDE plot for Extended waterlevels Tyrifjorden 
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The next table shows the product of the two python programs. The historic and extended 

densities for the current season are shown. The extension alters the densities in a way that the 

formula will account for possible unobserved events below and above highest and lowest 

historic. 

 

   Historic Extended 

State Lower 

Bound 

Upper 

Bound 

Energy 

Density 

Flood 

Density 

Energy 

Density 

Flood 

Density 

State 0 61,6587 62,02999 0 0,993353 0,046527 0,906176 

State 1 62,0299

9 

62,1965 0 0,958392 0,076414 0,892932 

State 2 62,1965 62,3788 0,034961 0,840824 0,089658 0,873002 

State 3 62,3788 62,5273 0,152529 0,693116 0,109588 0,836318 

State 4 62,5273 62,7795 0,300237 0,438424 0,146273 0,676999 

State 5 62,7795 62,8956 0,554928 0,32169 0,305591 0,566333 

State 6 62,8956 63 0,671663 0,231252 0,416257 0,46545 

State 7 63 64,2 0,7621 0,018614 0,51714 0,122296 

State 8 64,2 69,06785 0,974739 0 0,860294 0 

Table 6-1 Densities Tyrifjorden 

Since the formula is using two densities, and the extended has the sole purpose of extending 

the data outside of the original range there were chosen weights for the historical and the 

extended. 

 

 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 (𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑡𝑎𝑡𝑒) =  𝑤1 × 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝐻𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙 + 𝑤2 × 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝐸𝑥𝑡𝑒𝑛𝑑𝑒𝑑 

Equation 6-2 Density (Current State) Formula 

 

Where: 

- w1 and w2 are weights for the historical and extended, respectively. 

 

The research will put a definite weight to both. The density factor for the formula will look 

like the formula below.  

 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 𝐹𝑎𝑐𝑡𝑜𝑟 (𝐻) = 1 + 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 (𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑆𝑡𝑎𝑡𝑒) 

Equation 6-3 Density Adjustment Factor (H) 
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Current Reservoir Capacity (C) 

The reservoir capacity is used to further incur a penalty if the waterlevel reach the lower part 

of the regulated zone, or the higher part of the regulated zone. This is to ensure the risks are 

properly shown when the waterlevel is at the ends of the regulated zone, between LRW and 

HRW. 

This factor will represent the impact of the current reservoir capacity. This factor uses 

normalized reservoir levels, reservoir level are in cubic meters. 

 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑅𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝐿𝑒𝑣𝑒𝑙 =  
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑅𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝐿𝑒𝑣𝑒𝑙

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑅𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
 

Equation 6-4 Normalized Reservoir Level 

The maximum is calculated as the reservoir max at mean flood. The regulated zone is 

between LRW and HRW, the mean flood is used to further penalize a higher waterlevel than 

HRW. 

 

The penalty will incur from L on the lower range, and from H at the higher range. The 

capacity adjustment is determined as: 

 

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟𝐸𝑛𝑒𝑟𝑔𝑦 = 1 + 𝛼 × (𝐿 − 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑅𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝐿𝑒𝑣𝑒𝑙)  

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟𝐹𝑙𝑜𝑜𝑑 = 1 + 𝛽 × (𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑅𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝐿𝑒𝑣𝑒𝑙 − 𝐻) 

Equation 6-5 Capacity Factors (C) 

Where: 

-  and  are the scaling factors chosen. 

- L and H are thresholds chosen to where the penalties will incur. 

 

Regulatory Constraints (R) 

There are several regulatory constraints that affect the risk. Regulatory constraints are made 

as mitigating measures to have a secure supply of energy, and low risk of severe flood. This 

factor will impose penalties if these thresholds are broken, or the waterlevel is closing in on 

them. 

 

These thresholds are if the waterlevel goes above HRW there must be maximum output on the 

outflow. This will be a risk reducing act above HRW. Also, the rivers flowing out, Begna, 
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Randselva and Drammensvassdraget are not allowed to be dry, meaning that some outflow 

must always be on. 

The regulatory factor is defined using various thresholds and zones. 

 

𝑅𝑒𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑍𝑜𝑛𝑒 (𝑅𝑍) = 𝐻𝑅𝑊 − 𝐿𝑅𝑊 

𝑃𝑟𝑒 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (𝑃𝑇) = 0,2 

𝐿𝑜𝑤𝑒𝑟 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (𝐿𝑇) = 𝐿𝑅𝑊 + 𝑃𝑇 × 𝑅𝑍 

𝑈𝑝𝑝𝑒𝑟 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (𝑈𝑇) = 𝐻𝑅𝑊 − 𝑃𝑇 × 𝑅𝑍 

Equation 6-6 Regulatory Thresholds and Zones 

The upper threshold is where there is an imposed penalty for closing in on the HRW, when 

the HRW is passed the reservoir must have maximum outflow, regardless of energy need or 

weather. This is risk reducing from a statistical standpoint, but from a decision standpoint it 

might not be the optimal choice. For that reason, a penalty is imposed up until HRW, after 

that a flood risk reduction will be seen due to the maximum outflow. 

 

 

Figure 6-3 Example of Risk Reduction After HRW 

Season Factor (S)  

Given the big impact from seasons a seasonal factor is implemented. This is ensuring 

adjustments for variations in seasons, including deviation, trends and volatility. 

 

𝑆𝑓𝑙𝑜𝑜𝑑 = 1 + 𝑘 × (𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 + 𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙 𝑇𝑟𝑒𝑛𝑑 + 𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦)

𝑆𝑒𝑛𝑒𝑟𝑔𝑦 = 1 + 𝑘 × (𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 − 𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙 𝑇𝑟𝑒𝑛𝑑 − 𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛)
 

Equation 6-7 Seasonal Factors (S) 

Risk Reduction 

Observed on flood 

risk at HRW 
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Where: 

- k is a scaling factor for seasonal adjustments 

 

The seasonal adjustment factor (k) is to adjust the seasonal to a value that fits the other factors 

in the formula. For a seasonal adjustment of 1 the seasonality is the biggest contributor to the 

final risk formula. Although seasonality is a big factor, the adjustment is to have the 

possibility to adjust it down. For the formula at this stage, it is set to 0,8.  

Below are the formulas for Seasonal Deviation and Volatility. The trend is calculated using 

python, and the numbers will be the average start and end waterlevel over the dataset in the 

current season.  

 

𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =  
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑊𝑎𝑡𝑒𝑟𝑙𝑒𝑣𝑒𝑙 − 𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙 𝐴𝑣𝑒𝑟𝑎𝑔𝑒

𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑀𝑒𝑎𝑛
 

Equation 6-8 Seasonal Deviation 

𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 =  𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑀𝑒𝑎𝑛 

Equation 6-9 Seasonal Volatility 

Baseline Flood and Energy Shortage Score and Final Risk Scores 

The baseline score are the initial estimates for flood risk (FR) and energy shortage risk (ESR) 

based on the observed waterlevel. It is an exponential formula developed through trial to get a 

meaningful baseline for the risks at a certain observed waterlevel. 

 

 

Figure 6-4 Example Baseline Flood and Energy Shortage Risk 
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The formula is made with certain conditions, it is based on the observed waterlevel (OWL), 

lowest regulated waterlevel (LRW) and mean flood level for the current reservoir (MF). 

 

Condition 1: Observed Waterlevel below Lowest Regulated Waterlevel 

 

𝑖𝑓 𝑂𝑊𝐿 < 𝐿𝑅𝑊 ∶ 𝐸𝑛𝑒𝑟𝑔𝑦 𝑆𝑐𝑜𝑟𝑒 = 1 

Equation 6-10 Condition 1 Baseline Risks 

 

Condition 2: Observed Waterlevel above Mean Flood Level 

𝑖𝑓 𝑂𝑊𝐿 > 𝑀𝐹 ∶ 𝐹𝑙𝑜𝑜𝑑 𝑆𝑐𝑜𝑟𝑒 = 1 

Equation 6-11 Condition 2 Baseline Risks 

Between LRW and MF the scores will be calculated using exponential formulas and a 

normalized waterlevel between 0 and 1. 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑊𝑎𝑡𝑒𝑟𝑙𝑒𝑣𝑒𝑙 =  
𝑂𝑊𝐿 − 𝐿𝑅𝑊

𝑀𝐹 − 𝐿𝑅𝑊
 

Equation 6-12 Normalized Waterlevel 

𝐹𝑙𝑜𝑜𝑑 𝑆𝑐𝑜𝑟𝑒 = 1 −  𝑒−10 ∗  𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑤𝑎𝑡𝑒𝑟 𝑙𝑒𝑣𝑒𝑙5
 

Equation 6-13 Baseline flood score 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑆𝑐𝑜𝑟𝑒 =  𝑒−10 ∗  𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑤𝑎𝑡𝑒𝑟 𝑙𝑒𝑣𝑒𝑙2
  

Equation 6-14 Baseline energy score 

The calculation is done in python, to automate and iterate over multiple waterlevels. 
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Figure 6-5 Python print Baseline Risk Scores 

The complete baseline ESR and FR then becomes: 

 

𝐹𝑅 =  {
0
1

1 − 𝑒−10∗𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑤𝑎𝑡𝑒𝑟𝑙𝑒𝑣𝑒𝑙5  

𝑂𝑊𝐿 < 𝐿𝑅𝑊
𝑂𝑊𝐿 > 𝑀𝐹

𝐿𝑅𝑊 ≤ 𝑂𝑊𝐿 ≤ 𝑀𝐹
 

Figure 6-6 Baseline Flood Risk Compete 

𝐸𝑆𝑅 =  {
1
0

1 − 𝑒−10∗𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑤𝑎𝑡𝑒𝑟𝑙𝑒𝑣𝑒𝑙2  

𝑂𝑊𝐿 < 𝐿𝑅𝑊
𝑂𝑊𝐿 > 𝑀𝐹

𝐿𝑅𝑊 ≤ 𝑂𝑊𝐿 ≤ 𝑀𝐹
 

Figure 6-7 Baseline Energy Shortage Risk Complete 

Decision Factor 

 

The last part of the formula, after the final risk scores have been calculated using the formula. 

Is to account for the possible decisions the operator will have. This is where the decision 

factor comes in. These factors adjust the scores based on the impact of increasing, decreasing 

or maintaining the outflow. 

 

𝐸𝑆𝑅 = 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐸𝑆𝑅 × 𝐷𝐸𝑛𝑒𝑟𝑔𝑦 × 𝐶𝐸𝑛𝑒𝑟𝑔𝑦 × 𝑅𝐸𝑛𝑒𝑟𝑔𝑦 × 𝑆𝐸𝑛𝑒𝑟𝑔𝑦  

𝐸𝑆𝑅𝐹𝑖𝑛𝑎𝑙 = 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟𝐸𝑛𝑒𝑟𝑔𝑦 ×  𝐸𝑆𝑅 

Equation 6-15 Final Energy Shortage Risk 

𝐹𝑅 = 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐹𝑅 × 𝐷𝐹𝑙𝑜𝑜𝑑 × 𝐶𝐹𝑙𝑜𝑜𝑑 × 𝑅𝐹𝑙𝑜𝑜𝑑 × 𝑆𝐹𝑙𝑜𝑜𝑑  
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𝐹𝑅𝐹𝑖𝑛𝑎𝑙 = 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟𝐹𝑙𝑜𝑜𝑑 × 𝐹𝑅 

Equation 6-16 Final Flood Risk 

The decision factor can take three values, increase, decrease or maintain outflow. Each of 

these will alter the risks from the formula. 

 

 

Figure 6-8 Decision Factor Value 

This factor will then multiply by the factor corresponding to the decision of interest. This 

enables the operator to look at all possible actions before moving on to other evaluations. 

However, after HRW is passed regulation demands max outflow, so the possibility of increase 

is removed after HRW. 

 

The multiplication factors are based on this: 

1. Increase Outflow: 

- Adjusts risks when outflow is increased 

- Typically decreases flood risk and increases energy shortage risk 

 

2. Decrease Outflow: 

- Adjusts risks when outflow is decreased 

- Typically increases flood risk and decreases shortage risk 

 

3. Maintain Current Outflow: 

- No change in the final risk scores. 

 

Below is a printout of the python program Single_Decision.py. This is the entire calculation 

for Tyrifjorden at 62,99 meters during spring. A possible scaling of the factors, for example 

between 0 and 1 will be addressed in the coming chapters.  
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Figure 6-9 Printout from Tyrifjorden Final Risk 
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Priming the variables 

There are several flexible values that can be altered to enhance the presentation of the 

decisions. This comes at a cost; the approach must make sure that the data and presentation is 

not compromised. Also, the weights between the factors needs to be at a suitable level.  

 

This part does not need a for-loop, but testing, trial and an assumption based on a qualitative 

assessment. For example: at 64,1 meters in Tyrifjorden the flood risk should be quite high. 

 

There is no definitive solution to how the factors should be “weighted”. However, the 

research has shown strong seasonality, therefore the seasons should be quite high compared to 

the others. Also, history should be respected and therefore, density should not be neglected. 

Based on these two assumptions the following variables and weights were used for the model. 

These are subject for changing, if necessary, after sensitivity analysis, and will be discussed at 

the end of the research. 

 

Factor Variable Value 

Density (H) Historic Density w1 0,7 

Extended Density w2 0,3 

Capacity (C) L 0,2 

H 0,7 

Alpha 2 

Beta 3 

Seasonal (S) Seasonal k 0,8 

Table 6-2 Variables for formula 

These variables will be used in the continuing analysis and the final decision support formula, 

chapter 8. 

 

Test runs 

This section will go through two runs of the program, one with a single decision and finally 

run the for-loop python program to see the distribution of the risk scores, normalized between 

0 and 1. 
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Single_Decision.py 

Inputs: 

Reservoir: Tyrifjorden 

Season: Spring 

Observed Waterlevel: 62,95 meters 

 

 

Figure 6-10 Test Run Single Decision 
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Observed Waterlevel 62.95 

Baseline Flood Risk 1.1394149571039434 

Baseline Energy Shortage Risk 1.154947423708174 

Density Adjustment Factors (H) 

Energy Density Adjustment 1.6549818439996866 

Flood Density Adjustment 1.2541100078154495 

Capacity Factor (C) 

Flood Capacity Factor 1 

Energy Capacity Factor 1 

Regulatory Constraints Factor (R) 

Flood Penalty Factor for Tyrifjorden 1.7500000000000178 

Energy Penalty Factor for Tyrifjorden 1 

Seasonal Adjustment (S) 

Seasonal Adjustment Factor for Flood  

 

1.5534804302075078 

 

Seasonal Adjustment Factor for Energy 1.5412711771643386 

Final Scores 

Final ESR, before decision factor 2.946011955860864 

Final FR, before decision factor 3.8847348799706047 

Decision Risk Score 

Increase 

Energy Shortage Risk 3.5352 

Flood Risk 3.1078 

Decrease 

Energy Shortage Risk  2.3568 

Flood Risk  4.6617 

Maintain 

Energy Shortage Risk  2.9460 

Flood Risk 3.8847 

Table 6-3 Test Run Factors Table 
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While the risk values make sense magnitude wise in this presentation, the need for a scaling is 

apparent. The formula lacks the ability to represent “how high” the risk is, or low. This will 

be handled in the for-loop program. With a scaling between 0 and 1 on risks. 

 

Decision_for_loop.py 

In this script the risk values have been normalized between 0 and 1. 1 will then represent the 

highest risk. This script is designed to iterate over waterlevels and calculate the risk. This will 

then be visualized in different plots.  

 

 

Figure 6-11 Complete Histogram and Risk Scores of Waterlevels 

 

Inputs:

Tyrifjorden

Spring

62,95 meters

Formula

Increase

Decision Factor ESR: 1,2

Decision Factor FR: 0,8

Flood Risk

3.1078

Energy Risk

3.5352

Maintain

Decision Factor ESR: 1

Decision Factor FR: 1

Flood Risk

3.8847

Energy Risk

2.9460

Decrease

Decision Factor ESR: 0,8

Decision Factor FR: 1,2

Flood Risk

4.6617

Energy Risk

2.3568
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This is the most fulfilling plot the python program provides. The normalization has turned the 

values into a more suitable presentation, on the right y-axis. The script will also take one input 

of what the current water level is. This will then present the decision scores corresponding to 

that waterlevel. 

 

 

Figure 6-12 Script example Complete Formula 

 

 

Figure 6-13 Printout Decisions Factors Complete Formula 

 

From the plot we can see that the regulation works quite efficiently, with the histogram in the 

background showing the most density in “low risk” territory. 

 

Complete risk values can be found in appendix 22. 
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7. Sensitivity Analysis 

In the context of water resource management, sensitivity analysis plays a crucial role in 

understanding how various factors influence the risk assessments of flood and energy 

shortages. This chapter delves into the sensitivity analysis of the decision-support framework, 

focusing on three key stages: seasonal adjustment factors, density adjustments, and global 

sensitivity analysis. The reason for choosing only these two factors is that the other is quite 

constant. Regulative changes are fairly set, as the mentioned Randsfjord adjustments have 

been going on since 1995, and the capacity is what it is. 

 

The primary objective of this sensitivity analysis is to evaluate how changes in critical 

parameters impact the final risk scores for both flood and energy shortage scenarios. Aswell 

as the python program Sensitivity_Analysis.py in appendix. 

 

Seasonal Adjustment 

The plot provided shows the sensitivity analysis of risk factors focusing on seasonal 

adjustment factors for flood risk (FR) and energy shortage risk (ESR). Here is a detailed 

interpretation: 

Axes 

- X-Axis (Factor Value): Represents the varying values of the seasonal adjustment 

factors. 

- Y-Axis (Average Risk): Represents the average risk values for flood and energy 

shortage. 

Lines and Markers 

- Blue Line (Average ESR - Seasonal Adjustment Factor for Flood): Shows how the 

average energy shortage risk changes with varying seasonal adjustment factors for 

flood. 

- Orange Line (Average FR - Seasonal Adjustment Factor for Flood): Shows how the 

average flood risk changes with varying seasonal adjustment factors for flood. 

- Green Line (Average ESR - Seasonal Adjustment Factor for Energy): Shows how the 

average energy shortage risk changes with varying seasonal adjustment factors for 

energy. 

- Red Line (Average FR - Seasonal Adjustment Factor for Energy): Shows how the 

average flood risk changes with varying seasonal adjustment factors for energy. 
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Figure 7-1 Sensitivity Analysis Seasonal Adjustment 

Observations 

The impact of the seasonal adjustment factor on flood risk, as represented by the orange line, 

shows a direct relationship where flood risk increases with an increase in the seasonal 

adjustment factor for flood. The steep slope of the orange line indicates that flood risk is 

highly sensitive to these changes. 

In contrast, the impact on energy shortage risk, represented by the green line, also 

demonstrates a direct relationship with its respective seasonal adjustment factor. However, the 

green line's upward trend is less steep than the orange line, indicating a moderate sensitivity to 

changes in the seasonal adjustment factor for energy. 

When examining the impact on flood risk for energy, depicted by the red line, the trend 

remains relatively flat. This flat trend suggests that the flood risk does not significantly vary 

with changes in the seasonal adjustment factor for energy, indicating low sensitivity. 

Similarly, the blue line representing the impact on energy shortage risk for flood also shows a 

relatively flat trend. This indicates that energy shortage risk is not significantly influenced by 

variations in the seasonal adjustment factor for flood, suggesting low sensitivity. 

In conclusion, flood risk is highly sensitive to changes in the seasonal adjustment factor for 

flood, while energy shortage risk shows moderate sensitivity to changes in the seasonal 

adjustment factor for energy. However, both flood risk and energy shortage risk are not 

significantly affected by changes in the seasonal adjustment factors for the other risk type. 
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Density Adjustment 

This plot shows the sensitivity analysis of risk factors focusing on density adjustments for 

flood risk (FR) and energy shortage risk (ESR). A detailed interpretation: 

 

Lines and Markers 

- Blue Line (Average ESR - Flood Density Adjustment): Shows how the average energy 

shortage risk changes with varying density adjustment factors for flood. 

- Orange Line (Average FR - Flood Density Adjustment): Shows how the average flood 

risk changes with varying density adjustment factors for flood. 

- Green Line (Average ESR - Energy Density Adjustment): Shows how the average 

energy shortage risk changes with varying density adjustment factors for energy. 

- Red Line (Average FR – Energy Density Adjustment): Shows how the average flood 

risk changes with varying density adjustment factors for energy. 

 

 

Figure 7-2 Sensitivity Analysis Density Adjustments 

 

Observations 

The impact of the density adjustment factor on flood risk, illustrated by the orange line, shows 

a direct relationship where flood risk increases as the density adjustment factor for flood rises. 

The steep slope of the orange line indicates that flood risk is highly sensitive to these changes. 

In contrast, the effect on energy shortage risk, depicted by the green line, also reveals a direct 

relationship with its respective density adjustment factor. The green line shows an upward 
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trend, although it is less steep than the orange line, suggesting moderate sensitivity to changes 

in the density adjustment factor for energy. 

Regarding the impact on flood risk for energy, represented by the red line, the trend remains 

relatively flat. This flat trend indicates that flood risk does not significantly change with 

varying density adjustment factors for energy, indicating low sensitivity. 

Similarly, the blue line representing the impact on energy shortage risk for flood also shows a 

relatively flat trend. This suggests that energy shortage risk is not significantly influenced by 

changes in the density adjustment factor for flood, indicating low sensitivity. 

In conclusion, flood risk is highly sensitive to changes in the density adjustment factor for 

flood, while energy shortage risk demonstrates moderate sensitivity to changes in the density 

adjustment factor for energy. Both flood risk and energy shortage risk are not significantly 

affected by changes in the density adjustment factors for the other risk type. 

 

Global Sensitivity 

This plot provides a global sensitivity analysis of the risk factors by varying multiple 

parameters simultaneously and displaying their impact on the average risk with standard 

deviation (Std Dev) error bars. 

Axes 

- X-Axis (Parameter Value): Represents the varying values of the parameters (seasonal 

adjustment factors and density adjustments). 

- Y-Axis (Average Risk with Std Dev): Represents the average risk values for flood and 

energy shortage, along with the standard deviation. 

Lines and Markers 

- Blue Markers (ESR - Seasonal Adjustment Factor for Flood): Shows how the average 

energy shortage risk changes with varying seasonal adjustment factors for flood. 

- Orange Markers (ESR - Seasonal Adjustment Factor for Energy): Shows how the 

average energy shortage risk changes with varying seasonal adjustment factors for 

energy. 

- Green Markers (FR - Density Adjustment for Flood): Shows how the average flood 

risk changes with varying density adjustments for flood. 
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- Red Markers (FR – Density Adjustment for Energy): Shows how the average flood 

risk changes with varying density adjustments for energy. 

Error Bars 

- Error bars represent the standard deviation of the risk scores, indicating the variability 

in the risk assessments for each parameter value. 

 

 

Figure 7-3 Global Sensitivity Analysis 

Observations 

The analysis of seasonal adjustment factors shows that the average flood risk, indicated by 

blue markers, varies significantly across different parameter values. This high variability and 

standard deviation suggest a high sensitivity and variability in flood risk. Conversely, the 

average energy shortage risk, shown by orange markers, exhibits moderate changes with 

increasing parameter values, and its variability is relatively low compared to flood risk. 

In terms of density adjustments, the average flood risk, represented by green markers, 

significantly increases with parameter values. The error bars indicate substantial variability, 

implying high sensitivity. On the other hand, the average energy shortage risk, depicted by red 

markers, remains relatively constant across different parameter values, and its variability is 

lower compared to the density adjustment for flood. 

The global sensitivity plot reveals that flood risk is generally more sensitive to changes in 

both seasonal adjustment factors and density adjustments compared to energy shortage risk. 

Energy shortage risk exhibits lower variability and sensitivity to these parameter changes. 
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In conclusion, flood risk is highly sensitive to changes in both seasonal adjustment factors and 

density adjustments, as indicated by the high variability and significant changes in average 

risk with different parameter values. In contrast, energy shortage risk is less sensitive to these 

parameters, particularly for density adjustments related to flood risk, with lower variability in 

risk scores indicating more stable risk assessments. 

Key Findings 

The sensitivity analysis reveals critical insights into the behavior of the risk model under 

different conditions: 

• Flood Risk: Demonstrates high sensitivity to both seasonal adjustment factors and 

density adjustments, indicating a need for precise calibration in these areas. 

• Energy Shortage Risk: Shows moderate sensitivity, particularly to seasonal factors, 

suggesting that energy risk assessments are relatively stable but still influenced by 

seasonal variations. 
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8. Final Decision-Support Formula 

 

This chapter sum up the insights and methodologies developed in the previous chapters to 

present the final decision-support formula for managing water resources in the 

Drammensvassdraget region. The formula integrates various risk factors and adjustment 

parameters to provide a comprehensive tool for balancing electricity generation and flood risk 

management. 

 

Summary of Development and Design 

 

In Chapter 6, we detailed the creation and calibration of the decision-support formula. This 

formula was designed to convert historical water level data into risk scores for both flood and 

energy shortage scenarios. The key components of the formula include: 

- Historical and Extended Density Adjustment (D): This component uses Kernel 

Density Estimation (KDE) to account for both observed and unobserved events, 

extending the range of historical data to cover extreme water levels. 

- Current Reservoir Capacity (C): This factor adjusts risk scores based on the current 

reservoir level relative to its capacity, with penalties for levels near the lower and 

upper bounds of the regulated zone. 

- Regulatory Constraints (R): This component imposes penalties based on regulatory 

thresholds, such as mandatory outflows when water levels exceed the highest 

regulated water level (HRW). 

- Seasonal Factors (S): These factors account for seasonal variations in water levels, 

incorporating seasonal deviation, trends, and volatility into the risk assessments. 

 

Final Risk Scores 

The formula calculates two primary risk scores: 

1. Energy Shortage Risk (ESR): 

 

𝐸𝑆𝑅 = 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐸𝑆𝑅 ×  𝐷𝐸𝑛𝑒𝑟𝑔𝑦 × 𝐶𝐸𝑛𝑒𝑟𝑔𝑦 × 𝑅𝐸𝑛𝑒𝑟𝑔𝑦 × 𝑆𝐸𝑛𝑒𝑟𝑔𝑦 

 

2. Flood Risk (FR): 

𝐹𝑅 = 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐹𝑅 × 𝐷𝐹𝑙𝑜𝑜𝑑 × 𝐶𝐹𝑙𝑜𝑜𝑑 × 𝑅𝐹𝑙𝑜𝑜𝑑 × 𝑆𝐹𝑙𝑜𝑜𝑑 
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Decision Factors 

To provide actionable insights, the formula includes decision factors that adjust the risk scores 

based on potential management actions: 

1. Increase Outflow: Typically decreases flood risk but increases energy shortage risk. 

2. Decrease Outflow: Typically increases flood risk but decreases energy shortage risk. 

3. Maintain Current Outflow: Maintains the current risk levels. 

The final risk scores, incorporating decision factors, are given by: 

𝐸𝑆𝑅𝐹𝑖𝑛𝑎𝑙 = 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟𝐸𝑛𝑒𝑟𝑔𝑦 × 𝐸𝑆𝑅 

𝐹𝑅𝐹𝑖𝑛𝑎𝑙 = 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟𝐹𝑙𝑜𝑜𝑑 × 𝐹𝑅 

 

Sensitivity Analysis 

In Chapter 7, we conducted a comprehensive sensitivity analysis to evaluate the impact of 

different factors on the risk scores. The analysis included: 

 

3. Seasonal Adjustment Factors: Examined the sensitivity of risk scores to variations 

in seasonal factors. 

4. Density Adjustments: Assessed how changes in the density adjustment factors affect 

the risk scores. 

5. Global Sensitivity Analysis: Evaluated the combined impact of varying multiple 

parameters simultaneously on the risk scores. 

 

The sensitivity analysis demonstrated that flood risk is highly sensitive to changes in both 

seasonal adjustment factors and density adjustments, while energy shortage risk shows 

moderate sensitivity, particularly to seasonal factors. 

 

Implementation and Application 

The final decision-support formula provides a tool for managing water resources in the 

Drammensvassdraget region. By integrating historical data, regulatory constraints, and 

seasonal variations, the formula offers a quantitative basis for balancing electricity generation 

and flood risk. The decision factors further enhance its practical utility, allowing operators to 
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assess the impact of different management actions on risk levels. The formula culminates in 

the plot shown the final test run, from Decision_for_loop.py. 

 

Figure 8-1 Final Decision Formula Result from for-loop 

All seasons and all reservoirs can be found in appendix 22. 
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9. Summary and Discussion 

The primary findings of this research highlight the challenges in water resource management 

and flood risk mitigation. The decision-support formula developed provides a valuable tool 

for managing water resources in the Drammensvassdraget region. By leveraging historical 

data and statistical analysis, the formula accurately quantifies flood and energy shortage risks, 

facilitating informed decision-making. The development of a dimensionless risk score based 

on historical water levels avoids the pitfalls of early-stage predictive guessing. Extensive 

sensitivity analyses demonstrated that flood risk is highly sensitive to seasonal and density 

adjustments, while energy shortage risk is moderately sensitive, particularly to seasonal 

factors. Furthermore, the formula's ability to integrate historical data, regulatory constraints, 

and seasonal variations provides a quantitative basis for balancing electricity generation and 

flood risk, with practical decision factors enhancing its applicability. 

The formula's practical utility lies in its ability to help operators make informed decisions 

about water resource management by quantifying risks associated with both floods and energy 

shortages. Additionally, the inclusion of decision factors allows for adjustments based on 

potential management actions, enabling dynamic responses to changing water levels. 

One of the key strengths of this study is the robust statistical analysis underlying the formula, 

ensuring reliability and robustness in risk assessment. Detailed sensitivity analyses provide 

insights into the formula's performance under various conditions, ensuring its reliability. 

However, the formula's reliance on historical data may limit its accuracy in scenarios where 

past patterns do not reflect future conditions. Additionally, the exclusion of immediate 

weather warnings means the formula does not account for real-time weather changes, making 

it less responsive to immediate risks. The timeless risk values also require expert 

interpretation and judgment, particularly under extreme conditions. 

The sensitivity and robustness analysis conducted in this research provided crucial insights 

into the behavior of the decision-support formula under different conditions. The formula 

showed high sensitivity to seasonal adjustment factors, particularly for flood risk, highlighting 

the need for precise calibration of seasonal parameters to ensure accurate risk assessments. 

Changes in density adjustment factors significantly influenced flood risk scores, 

demonstrating the importance of incorporating density variations into the formula. The 
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formula's robustness was confirmed through various scenarios and parameter changes, 

ensuring its reliability in diverse conditions. 

As this research reaches its conclusion, we reflect on the development of this robust decision-

support formula for managing water resources in the Drammensvassdraget region. Designed 

to balance the objectives of electricity generation and flood risk mitigation. 

The formula's cornerstone is its ability to accurately quantify flood and energy shortage risks 

by using historical data. This foundation ensures robust risk assessments grounded in past 

events, offering a dimensionless risk score that facilitates informed decision-making without 

predicting specific future occurrences. The formula's novelty is its biggest strength; it 

quantifies the current situation without trying to predict the future. This key distinction 

emphasized throughout the thesis allows the formula and its operator to use the risk values at 

their discretion. The use of densities is central, and apart from seasonal adjustments, the 

sensitivity analysis showed densities to be impactful. However, this reliance on densities can 

produce some intriguing results. 

 

Figure 9-1 Printout from Python, Density Adjustment factor 

Examining the Python printout, the density factor is a significant mitigating factor when 

nearing a flood level. At an observed water level of 63.95 meters in Tyrifjorden, close to a 

flooding level of 64.2 meters, the energy density adjustment is high, increasing the energy 

risk, but mitigating the flood risk. This is because, at 63.95 meters, most of the density is 

below this level. This implies that, historically, water levels are likely to decrease from this 

point, indicating a lower probability of flooding. However, this also reveals a potential 

weakness in the formula. Firstly, the formula lacks a component to adjust for immediate risks, 

such as sudden weather changes. This design choice makes the risk values dependent on 

expert judgment and additional analysis at both higher and lower levels. 
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The Energy Density Adjustment results in a higher Energy Shortage Risk at extreme water 

levels. At 63.95 meters, the energy risk is practically zero, but a time-independent risk value 

cannot be zero, although it is quite low. 

The risk values are timeless; the primary goal was to quantify the risk at certain levels. This 

timelessness and avoidance of prediction mean the formula does not account for typical water 

level changes over a day, week, or month. The probabilities of weekly changes, while not part 

of the thesis, illustrate a major consequence of the chosen formula: 

- Probability of no significant change (±5 cm): 0.8334 

- Probability of decrease (> 5 cm): 0.0943 

- Probability of increase (> 5 cm): 0.0723 

These probabilities show the limitations of the formula's design. By not incorporating 

probability and prediction, the ability to account for expected changes over a week is lost. 

While the formula retains value, it misses some advantages offered by a model, decision tree, 

or a compounded decision-making process. For example, a 10% chance of the water level 

changing by 10 centimeters can nullify many risk values over a week. However, the risk 

values produced by the formula are time-independent, meaning the risk score at the highest 

regulated water level (HRW) should not be zero, even if flooding or energy shortage is not 

"expected" in the coming weeks. Although this represents limitations, it also grounds the 

formula in its reliance on long-term seasonal changes rather than short-term fluctuations. 

The formula's performance is intrinsically linked to the quality and scope of historical data 

used. Assumptions, such as ignoring immediate weather forecasts, aim to streamline the focus 

on long-term trends rather than short-term fluctuations. Focusing on historical data and 

statistical measures helps avoid the noise of short-term weather variations, providing a clearer 

picture of current water levels. However, ignoring immediate weather forecasts may limit the 

framework's real-time responsiveness, potentially impacting its effectiveness in sudden 

change scenarios. Therefore, the formula is not standalone; expert judgment and other 

predictors are vital for the formula to account for fluctuations. 

The inclusion of extended density estimations to account for unobserved events enhances the 

formula's comprehensiveness, addressing potential risks beyond the immediate scope of 
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historical data. This approach bridges gaps in historical data, offering a more holistic risk 

assessment. 

Adaptability to future climatic changes is crucial, with rising temperatures and changing 

precipitation patterns potentially impacting water levels and necessitating adjustments to 

current strategies. The formula's framework allows for incorporating new data and trends, 

ensuring its continued relevance. Continuous monitoring and real-time data integration will be 

essential to address evolving climatic conditions and maintain the formula's effectiveness. 

Balancing quantitative formula outputs with qualitative expert judgments is vital. While the 

formula provides a strong quantitative foundation, expert input is crucial for interpreting 

results and making final decisions. Integrating expert judgment contextualizes formula 

outputs within the broader decision-making framework, enhancing practical utility. In 

complex or ambiguous situations, expert judgment is indispensable, underscoring the need for 

a collaborative approach. 

To sum up, the research has shown stable water levels, and the need for a formula might not 

be immediately apparent. However, the quantification of history, knowledge, and statistics 

provides valuable insights into current risks. For example, winter, across all reservoirs, shows 

no need for a flood risk formula, although it provides insights into energy shortage risks. 

While there are no flooding risks in winter, a dry spring with low winter water levels will 

affect energy production moving into spring. The much-mentioned time-independence offers 

insights into the magnitude of risk associated with a given water level. A very low winter 

water level with little snow, a dry spring, and a warm summer will impact the following year's 

water levels. This is the value of the timelessness approach. 

Final thoughts and Future Directions 

 

The decision-support formula has mostly shown the stability in the waterlevels, while still 

addressing the occurrences of extreme lows and highs. Analysis has shown that waterlevels 

mostly are regulated between low risk levels.  

 

Its development reflects a meticulous and comprehensive approach, integrating historical 

data, regulatory requirements, and seasonal trends. Future research should focus on 

incorporating real-time weather data and expanding the formula into a model. Continuous 
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validation and updates will be crucial to maintaining the formulas relevance and effectiveness 

amidst dynamic and evolving climatic conditions. 
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ChatGPT was used in the start as a helper and “companion” in the definition of the thesis 

proposal and scope. ChatGPT has been used to proofread and provide a certain flow to the 

text where I felt this was needed.  

ChatGPT has been used as a coding expert. While python programming is not a new thing to 

me, certain errors in the code cannot be effectively found and fixed with the extent of the 

programming code and number of lines in this coding amount. ChatGPT programming help 

enabled the master thesis to be more extensive, more thorough. Since I did not have to use 

half my time finding spelling errors in the python code. 

 

Simen Askeland, 14. June 2024. 

12. Python Note 

Python version used: 5.5.1 

Necessary modules are represented at the top of each python script. 

 

For the python programs to work it is important to look at the file imports and file savings for 

the program to work. The file path is important to change to get it working on your computer. 

Also, be careful when naming the downloaded csv files, they have to match the name in the 

script. For help I advise asking ChatGPT.  
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13. Dataset Downloading 

The datasets can be downloaded on: 

 

Tyrifjorden: https://sildre.nve.no/station/12.65.0 

Sperillen: https://sildre.nve.no/station/12.83.0 

Randsfjorden: https://sildre.nve.no/station/12.69.0 

 

14. Appendix 

1. Data_Cleaner.py 

2. Correlation Analysis 

3. Correlation.py 

4. Statistical_Analysis.py 

5. Statistical Analysis Tyrifjorden 

6. Statistical Analysis Sperillen 

7. Statistical Analysis Randsfjorden 

8. Seasonal_Analysis.py 

9. Seasonal Analysis Tyrifjorden 

10. Seasonal Analysis Sperillen 

11. Seasonal Analysis Randsfjorden 

12. Complete Multimodal Analysis 

13. Yearly_plots.py 

14. Multimodal_analysis.py 

15. Reservoir_to_DailyEnergy.py 

16. Data_Preperation.py 

17. States_constructor.py 

18. Historic_Risk_Factor.py  

19. Extended_Risk_Factor.py 

20. Decision_Single.py 

21. Decision_for_loop.py 

22. Complete Risk Values 

23. Sensitivity_Analysis.py 

24. External Reports and Sources  



88 
 

Appendix 1: 

Data_Cleaner.py 

 

import pandas as pd 

import sys 

import matplotlib.pyplot as plt 

import numpy as np 

import warnings 

import matplotlib.dates as mdates 

warnings.simplefilter("ignore", category=UserWarning) 

warnings.simplefilter("ignore", category=FutureWarning) 

# Path to the CSV file 

name = "Randsfjord" 

data_type = "Waterflow" 

# Input complete local filepath 

file_path = f'/Users/simen/Desktop/Complete Master/01 Data/Uncleaned Data/{name}_{data_type}_Daily.csv' 

df = pd.read_csv(file_path, delimiter=';',header=1) 

print("First 15 Rows before cleaning") 

print(df.head(15)) 

print("-----------------------------------------------------------------------") 

print("\nLast 15 Rows before cleaning") 

print(df.tail(15)) 

# Option to exit or move on 

continue_choice = input("Move on? (yes/no): ").lower() 

if continue_choice != 'yes': 

    print("Exiting.") 

    sys.exit() 

Remove_1 = 'Korrigert' 

Remove_2 = 'Kontrollert' 

df = df.drop([Remove_1, Remove_2], axis=1) 

Rename_1 = 'Tidspunkt' 

if data_type == 'Waterlevel': 

    Rename_2 = 'Vannstand (m)' 

elif data_type == 'Reservoir': 

    Rename_2 = 'Magasinvolum (millioner m³)' 

else: 

    Rename_2 = 'Vannføring (m³/s)'           

df = df.rename(columns={Rename_1: 'Date', Rename_2: data_type}) 

df['Date'] = pd.to_datetime(df['Date']).dt.date 

df = df.dropna() 

# Replace commas with dots in the entire column 

df[data_type] = df[data_type].str.replace(',', '.') 

# Convert the column to numeric 

df[data_type] = pd.to_numeric(df[data_type]) 
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# Convert 'data_type' column to numeric (assuming 'data_type' is a column name) 

df[data_type] = pd.to_numeric(df[data_type], errors='coerce') 

# Reset index after manipulation 

df.reset_index(drop=True, inplace=True) 

# Convert 'Date' column to datetime objects 

df['Date'] = pd.to_datetime(df['Date']) 

# Define the date range to keep 

start_date = '2004-01-01' 

end_date = '2023-12-31' 

# Create a boolean mask to filter rows based on the date range 

mask = (df['Date'] >= start_date) & (df['Date'] <= end_date) 

# Apply the mask to filter rows within the specified date range 

filtered_df = df[mask] 

# Keep rows based on the boolean mask 

df = df[mask] 

# Reset the index 

df.reset_index(drop=True, inplace=True) 

# Filter rows where Waterlevel is 0 

zero_data_type_rows = df[df[data_type] <= 0] 

print('number of rows below 0 : ',len(zero_data_type_rows)) 

#print(zero_data_type_rows)  # Print rows where Waterlevel is 0 

df.loc[zero_data_type_rows.index, data_type] = 0 

# Filter rows where Waterlevel is 0 

zero_data_type_rows = df[df[data_type] < 0] 

print('Zero-Removal') 

print('number of rows below 0 : ',len(zero_data_type_rows)) 

#print(zero_data_type_rows)  # Print rows where Waterlevel is 0 

print(len(df[df[data_type] < 0])) 

print('Final Statistics') 

print(df.describe()) 

# Option to exit or move on 

continue_choice = input("Move on? (yes/no): ").lower() 

if continue_choice != 'yes': 

    print("Exiting.") 

    sys.exit() 

# Calculate statistical values 

mean_value = df.mean() 

std_dev = df[data_type].std() 

min_value = df[data_type].min() 

max_value = df[data_type].max() 

# Histogram 

plt.figure(figsize=(10, 6)) 

plt.hist(df[data_type], bins=50, alpha=0.7, color='blue') 

# Mean 

plt.axvline(x=mean_value[data_type], color='g', linestyle='-', label='Mean') 
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# Standard Deviation (both sides) 

plt.axvline(x=mean_value[data_type] - std_dev, color='c', linestyle='--', label='Standard Deviation') 

plt.axvline(x=mean_value[data_type] + std_dev, color='c', linestyle='--') 

# Min 

plt.axvline(x=min_value, color='m', linestyle='-.', label='Min Value') 

# Max 

plt.axvline(x=max_value, color='m', linestyle='-.', label='Max Value') 

plt.title(f'Histogram of mean and standard deviation for {data_type} in {name}') 

plt.xlabel(data_type) 

plt.ylabel('Frequency') 

plt.legend() 

plt.savefig(f'/Users/simen/Desktop/Complete Master/04 Plots/{name}_{data_type}_histogram_plot.png') 

plt.show() 

# Set 'Date' as the DataFrame index 

df.set_index('Date', inplace=True) 

# Time-series plot 

plt.figure(figsize=(10, 6)) 

plt.plot(df.index, df[data_type], label=data_type)   

# Format the x-axis to show years and months/dates 

plt.gca().xaxis.set_major_locator(mdates.YearLocator()) 

plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%Y')) 

plt.gcf().autofmt_xdate()  # Auto-rotate dates for better spacing 

# Add vertical lines for each year 

for year in pd.date_range(start=df.index.min(), end=df.index.max(), freq='YS'): 

    plt.axvline(x=year, color='gray', linestyle=':', linewidth=0.5) 

plt.title(f'Daily Time Series of {data_type} in {name}') 

plt.xlabel('Date') 

plt.ylabel(data_type) 

plt.legend() 

plt.tight_layout() 

plt.savefig(f'/Users/simen/Desktop/Complete Master/04 Plots/{name}_{data_type}_time_series_plot.png') 

plt.show() 

# Reset index after manipulation 

df.reset_index(inplace=True) 

print() 

print('Top of Cleaned Dataset') 

print(df.head()) 

print() 

print('Bottom of Cleaned Dataset') 

print(df.tail()) 

# Option to exit or Save 

continue_choice = input("Save? (yes/no): ").lower() 

if continue_choice != 'yes': 

    print("Exiting.") 

    sys.exit()   
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# Where to save the cleaned dataset 

output_file_path = '/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/' 

filename_csv = f'Cleaned_{name}_{data_type}.csv' 

# Save the cleaned DataFrame to the new CSV file 

df.to_csv(output_file_path + filename_csv, index=False) 

# Save the cleaned DataFrame to excel file for Appendix. 

df.to_excel(f'/Users/simen/Desktop/Complete Master/03 Excel Products/02 

Lakes/{name}/Cleaned_{name}_{data_type}.xlsx', index=False) 
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Appendix 2: 

Correlation Analysis 

All Lakes: 
 

Tyrifjorden Sperillen Randsfjord 

Tyrifjorden 1 0,761035 0,633054 

Sperillen 0,761035 1 0,775634 

Randsfjord 0,633054 0,775634 1 

 

 

Tyrifjorden: 
 

Waterlevel Waterflow Reservoir 

Waterlevel 1 0,89595 0,999935 

Waterflow 0,89595 1 0,89906 

Reservoir 0,999935 0,89906 1 
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Appendix 2: 

Correlation Analysis 

 

Sperillen: 
 

Waterlevel Waterflow Reservoir 

Waterlevel 1 0,707879 0,999633 

Waterflow 0,707879 1 0,721373 

Reservoir 0,999633 0,721373 1 

 

 

Randsfjorden: 

 
 

Waterlevel Waterflow Reservoir 

Waterlevel 1 0,287398 0,999956 

Waterflow 0,287398 1 0,289755 

Reservoir 0,999956 0,289755 1 
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Appendix 3: 

Correlation.py 

import pandas as pd 

import seaborn as sns 

import matplotlib.pyplot as plt 

import matplotlib.dates as mdates 

from sklearn.preprocessing import MinMaxScaler 

import matplotlib.gridspec as gridspec 

lake_names = ["Tyrifjorden", "Sperillen", "Randsfjord"] 

for name in lake_names: 

    # Load the datasets with complete local filepath 

    waterlevel_data = pd.read_csv(f"/Users/simen/Desktop/Complete Master/01 Data/Cleaned 

Data/Cleaned_{name}_Waterlevel.csv") 

    waterflow_data = pd.read_csv(f"/Users/simen/Desktop/Complete Master/01 Data/Cleaned 

Data/Cleaned_{name}_Waterflow.csv") 

    reservoirlevel_data = pd.read_csv(f"/Users/simen/Desktop/Complete Master/01 Data/Cleaned 

Data/Cleaned_{name}_Reservoir.csv") 

    # Merge the datasets on 'Date' 

    merged_data = pd.merge(waterlevel_data, waterflow_data, on='Date') 

    merged_data = pd.merge(merged_data, reservoirlevel_data, on='Date') 

    # Ensures the 'Date' column is a datetime type 

    merged_data['Date'] = pd.to_datetime(merged_data['Date']) 

    merged_data_without_date = merged_data.drop(columns=['Date']) 

    # Calculate the correlation 

    correlation_matrix = merged_data_without_date.corr() 

    # Normalize the data 

    scaler = MinMaxScaler() 

    merged_data[['Waterlevel', 'Waterflow', 'Reservoir']] = scaler.fit_transform( 

        merged_data[['Waterlevel', 'Waterflow', 'Reservoir']]) 

    fig = plt.figure(figsize=(13, 5)) 

    gs = gridspec.GridSpec(3, 2, width_ratios=[3, 1]) 

    # Create time-series subplots in the first column of the grid 

    time_series_axes = [] 

    for i in range(3): 

        ax = fig.add_subplot(gs[i, 0]) 

        time_series_axes.append(ax) 

        ax.plot(merged_data['Date'], merged_data.iloc[:, i+1], label=merged_data.columns[i+1]) 

        ax.legend() 

        ax.set_title(f"{merged_data.columns[i+1]} Time Series for {name}") 

    heatmap_ax = fig.add_subplot(gs[:, 1]) 

    # Plot the heatmap 

    sns.heatmap(correlation_matrix, ax=heatmap_ax, annot=True, cmap='coolwarm', fmt=".2f") 

    heatmap_ax.set_title(f'{name} Correlation Heatmap') 

    heatmap_ax.set_aspect('auto') 
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    for label in heatmap_ax.get_xticklabels(): 

        label.set_rotation(45)  # Rotate labels to 45 degrees 

        label.set_ha('right')  

    plt.tight_layout() 

    plt.savefig(f'/Users/simen/Desktop/Complete Master/04 Plots/{name}_correlation_heatmap.png') 

    plt.show() 

    correlation_matrix_save = correlation_matrix 

    correlation_matrix_save.to_excel(f"/Users/simen/Desktop/Complete Master/03 Excel Products/01 

Correlation/correlation_matrix_{name}.xlsx") 

# Load the datasets for Waterlevel for all lakes 

tyrifjorden_data = pd.read_csv('/Users/simen/Desktop/Complete Master/01 Data/Cleaned 

Data/Cleaned_Tyrifjorden_Waterlevel.csv') 

sperillen_data = pd.read_csv('/Users/simen/Desktop/Complete Master/01 Data/Cleaned 

Data/Cleaned_Sperillen_Waterlevel.csv') 

randsfjord_data = pd.read_csv('/Users/simen/Desktop/Complete Master/01 Data/Cleaned 

Data/Cleaned_Randsfjord_Waterlevel.csv') 

tyrifjorden_data['Date'] = pd.to_datetime(tyrifjorden_data['Date']) 

sperillen_data['Date'] = pd.to_datetime(sperillen_data['Date']) 

randsfjord_data['Date'] = pd.to_datetime(randsfjord_data['Date']) 

# Normalize the datasets 

scaler = MinMaxScaler() 

tyrifjorden_data['Normalized'] = scaler.fit_transform(tyrifjorden_data[['Waterlevel']]) 

sperillen_data['Normalized'] = scaler.fit_transform(sperillen_data[['Waterlevel']]) 

randsfjord_data['Normalized'] = scaler.fit_transform(randsfjord_data[['Waterlevel']]) 

# Merge the datasets on a common date column 

combined_data = pd.DataFrame() 

combined_data['Date'] = tyrifjorden_data['Date']  # Assuming all datasets have the same date range 

combined_data = combined_data.merge(tyrifjorden_data[['Date', 'Normalized']], on='Date', how='left') 

combined_data = combined_data.merge(sperillen_data[['Date', 'Normalized']], on='Date', how='left', suffixes=(' Tyrifjorden', ' 

Sperillen')) 

combined_data = combined_data.merge(randsfjord_data[['Date', 'Normalized']], on='Date', how='left') 

combined_data.rename(columns={'Normalized': 'Randsfjord'}, inplace=True) 

combined_data.rename(columns={'Normalized Tyrifjorden': 'Tyrifjorden'}, inplace=True) 

combined_data.rename(columns={'Normalized Sperillen': 'Sperillen'}, inplace=True) 

combined_data_without_date = combined_data.drop(columns=['Date']) 

# Calculate the correlation 

correlation_matrix = combined_data_without_date.corr() 

plt.figure(figsize=(8, 6)) 

sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f") 

plt.title('Correlation Heatmap of Normalized Waterlevels') 

plt.savefig('/Users/simen/Desktop/Complete Master/04 Plots/all_lakes_correlation_heatmap.png') 

plt.show() 

# Save the correlation matrix to an Excel file 

correlation_matrix.to_excel("/Users/simen/Desktop/Complete Master/03 Excel Products/01 

Correlation/correlation_matrix_all.xlsx")  
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Appendix 4: 

Statistical_Analysis.py 

import pandas as pd 

import matplotlib.pyplot as plt 

import numpy as np 

import matplotlib.dates as mdates 

# Path to the CSV file 

name = "Randsfjord"  

data_type = "Waterlevel" 

file_path = f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/Cleaned_{name}_Waterlevel.csv' 

# Read the CSV file 

df = pd.read_csv(file_path) 

df[data_type] = pd.to_numeric(df[data_type], errors='coerce') # Convert data to numeric 

df.reset_index(drop=True, inplace=True) 

if name == 'Randsfjord': 

    if data_type == 'Waterlevel': 

        # Define flooding levels 

        mean_flood = 134.689 

        five_year_flood = 134.9159 

        ten_year_flood = 135.1058 

        twenty_year_flood = 135.2902 

        fifty_year_flood = 135.5321 

        LRV = 131.3 

        HRV = 134.5 

        LRV_HRV = [LRV, HRV] 

        flooding_levels = [mean_flood, five_year_flood, ten_year_flood, twenty_year_flood, fifty_year_flood] 

    else: 

        # Handle the case when data_type is not 'Waterlevel' 

        flooding_levels = None 

elif name == 'Tyrifjorden': 

    if data_type == 'Waterlevel': 

        # Define flooding levels 

        mean_flood = 64.2 

        five_year_flood = 64.7 

        ten_year_flood = 64.9 

        twenty_year_flood = 65.1 

        fifty_year_flood = 65.2 

        LRV = 62 

        HRV = 63 

        LRV_HRV = [LRV, HRV] 

        flooding_levels = [mean_flood, five_year_flood, ten_year_flood, twenty_year_flood, fifty_year_flood] 

    else: 

        # Handle the case when data_type is not 'Waterlevel' 

        flooding_levels = None 
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elif name == 'Sperillen': 

    if data_type == 'Waterlevel': 

        # Define flooding levels 

        mean_flood = 151.1276 

        five_year_flood = 151.6132 

        ten_year_flood = 152.0137 

        twenty_year_flood = 152.4 

        fifty_year_flood = 152.9034 

        LRV = 147.95 

        HRV = 150.25 

        LRV_HRV = [LRV, HRV] 

        flooding_levels = [mean_flood, five_year_flood, ten_year_flood, twenty_year_flood, fifty_year_flood] 

    else: 

        # Handle the case when data_type is not 'Waterlevel' 

        flooding_levels = None  

# Calculate and print basic statistics 

mean_value = df[data_type].mean() 

std_dev = df[data_type].std() 

min_value = df[data_type].min() 

quantile_25 = df[data_type].quantile(0.25) 

median_value = df[data_type].median() 

quantile_75 = df[data_type].quantile(0.75) 

quantile_90 = df[data_type].quantile(0.90) 

quantile_95 = df[data_type].quantile(0.95) 

quantile_99 = df[data_type].quantile(0.99) 

max_value = df[data_type].max() 

total_data_points = len(df[data_type]) 

print('Total Data Points =', total_data_points) 

print('Mean Value =', mean_value) 

print('Standard Deviation =', std_dev) 

print('Min Value =', min_value) 

print('50% / Median =', median_value) 

print('75% =', quantile_75) 

print('90% =', quantile_90) 

print('95% =', quantile_95) 

print('99% =', quantile_99) 

print('Max Value =', quantile_90) 

# Save statistics into a DataFrame 

statistics_df = pd.DataFrame({ 

    'Statistic': ['Total Data Points', 'Mean', 'Standard Deviation', 'Min', '25%', 'Median', '75%', '90%', '95%', '99%', 'Max'], 

    'Value': [total_data_points, mean_value, std_dev, min_value, quantile_25, median_value, quantile_75, quantile_90, 

quantile_95, quantile_99, max_value] 

}) 

print(df.head()) 

print(statistics_df.head()) 
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# Histogram 

plt.figure(figsize=(10, 6)) 

plt.hist(df[data_type], bins=100, alpha=0.7, color='blue') 

# Mean 

plt.axvline(x=mean_value, color='g', linestyle='-', label='Mean') 

# Standard Deviation (both sides) 

plt.axvline(x=mean_value - std_dev, color='c', linestyle='--', label='Standard Deviation') 

plt.axvline(x=mean_value + std_dev, color='c', linestyle='--') 

# Min 

plt.axvline(x=min_value, color='m', linestyle='-.', label='Min Value') 

# Max 

plt.axvline(x=max_value, color='m', linestyle='-.', label='Max Value') 

plt.title(f'Histogram of mean and standard deviation for {data_type} in {name}') 

plt.xlabel(data_type) 

plt.ylabel('Frequency') 

plt.legend() 

plt.show() 

# Histogram 

plt.figure(figsize=(10, 6)) 

plt.hist(df[data_type], bins=100, alpha=0.7, color='blue') 

# 25th Percentile 

plt.axvline(x=quantile_25, color='y', linestyle=':', label='25% Percentile') 

# Median 

plt.axvline(x=median_value, color='k', linestyle='-', label='Median (50% Percentile)') 

# 75th Percentile 

plt.axvline(x=quantile_75, color='y', linestyle=':', label='75% Percentile') 

# 90th Percentile 

plt.axvline(x=quantile_90, color='y', linestyle=':', label='90% Percentile') 

# 95th Percentile 

plt.axvline(x=quantile_95, color='y', linestyle=':', label='95% Percentile') 

# 99th Percentile 

plt.axvline(x=quantile_99, color='y', linestyle=':', label='99% Percentile') 

plt.title(f'Histogram of percentiles for {data_type} in {name}') 

plt.xlabel(data_type) 

plt.ylabel('Frequency') 

plt.legend() 

plt.show() 

# Histogram 

plt.figure(figsize=(10, 6)) 

plt.hist(df[data_type], bins=100, alpha=0.7, color='blue') 

for value in flooding_levels: 

    plt.axvline(x=value, color='r', linestyle='--', label='Flooding Level' if 'Flooding Level' not in 

plt.gca().get_legend_handles_labels()[1] else "_nolegend_") 

for value in LRV_HRV: 
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    plt.axvline(x=value, color='y', linestyle='--', label='LRW/HRW' if 'LRW/HRW' not in 

plt.gca().get_legend_handles_labels()[1] else "_nolegend_") 

plt.title(f'Histogram of {data_type} in {name}') 

plt.xlabel(data_type) 

plt.ylabel('Frequency') 

plt.legend() 

if data_type == 'Waterlevel': 

    # Add vertical lines at specified x-axis values 

    for value in flooding_levels: 

        plt.axvline(x=value, color='r', linestyle='--') 

else: 

    # Handle the case when data_type is not 'Waterlevel' 

    # For example, set flooding_levels to None or print a message 

    flooding_levels = None 

if data_type == 'Waterlevel': 

    # Add vertical lines at specified x-axis values 

    for value in LRV_HRV: 

        plt.axvline(x=value, color='y', linestyle='--') 

else: 

    # Handle the case when data_type is not 'Waterlevel' 

    # For example, set flooding_levels to None or print a message 

    LRV_HRV = None 

plt.show() 

df['Date'] = pd.to_datetime(df['Date']) 

df.set_index('Date', inplace=True) 

# Time-series plot setup 

plt.figure(figsize=(10, 6)) 

plt.plot(df.index, df[data_type], label=data_type)   

# Format the x-axis to show years 

plt.gca().xaxis.set_major_locator(mdates.YearLocator()) 

plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%Y')) 

plt.gcf().autofmt_xdate()  # Auto-rotate dates for better spacing 

plt.title(f'Daily Time Series of {data_type} in {name}') 

plt.xlabel('Date') 

plt.ylabel(data_type) 

# Plotting flooding levels with labels 

if data_type == 'Waterlevel': 

    for index, level in enumerate(flooding_levels): 

        plt.axhline(y=level, color='r', linestyle='--', label=f'Flooding Level {index + 1}') 

# Plotting LRV_HRV levels with labels 

if data_type == 'Waterlevel': 

    for index, level in enumerate(LRV_HRV): 

        plt.axhline(y=level, color='y', linestyle='--', label=f'LRV_HRV Level {index + 1}') 

plt.legend() 

plt.tight_layout() 
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plt.show() 

# Number of days within the regulation zone 62-63 meters 

regulation_zone_days = len(df[(df[data_type] > LRV) & (df[data_type] < HRV)]) 

regulation_zone_percent = (regulation_zone_days / total_data_points) * 100 

print(f"Number of days within the regulation zone 62-63 meters: {regulation_zone_days} 

({regulation_zone_percent:.2f}%)") 

# Number of days within the caution zone, above HRV and below mean-flood 

caution_zone_days = len(df[(df[data_type] > HRV) & (df[data_type] < mean_flood)]) 

caution_zone_percent = (caution_zone_days / total_data_points) * 100 

print(f"Number of days within the caution zone HRW to mean-flood: {caution_zone_days} ({caution_zone_percent:.2f}%)") 

# Number of days with mean flood to 5-year flood 

meanflood_5year_days = len(df[(df[data_type] > mean_flood) & (df[data_type] < five_year_flood)]) 

meanflood_5year_percent = (meanflood_5year_days / total_data_points) * 100 

print(f"Number of days with mean-flood to 5-year flood: {meanflood_5year_days} ({meanflood_5year_percent:.2f}%)") 

# Number of days with 5 to 10-year flood 

five_10year_days = len(df[(df[data_type] > five_year_flood) & (df[data_type] < ten_year_flood)]) 

five_10year_percent = (five_10year_days / total_data_points) * 100 

print(f"Number of days with 5 to 10-year flood: {five_10year_days} ({five_10year_percent:.2f}%)") 

# Number of days with 10 to 20-year flood 

ten_20year_days = len(df[(df[data_type] > ten_year_flood) & (df[data_type] < twenty_year_flood)]) 

ten_20year_percent = (ten_20year_days / total_data_points) * 100 

print(f"Number of days with 10 to 20-year flood: {ten_20year_days} ({ten_20year_percent:.2f}%)") 

# Number of days with 20 to 50-year flood 

twenty_50year_days = len(df[(df[data_type] > twenty_year_flood) & (df[data_type] < fifty_year_flood)]) 

twenty_50year_percent = (twenty_50year_days / total_data_points) * 100 

print(f"Number of days with 20 to 50-year flood: {twenty_50year_days} ({twenty_50year_percent:.2f}%)") 

# Number of days with 50-year flood 

fifty_year_days = len(df[df[data_type] > fifty_year_flood]) 

fifty_year_percent = (fifty_year_days / total_data_points) * 100 

print(f"Number of days with 50-year flood: {fifty_year_days} ({fifty_year_percent:.2f}%)") 

# Total number of days with flood 

total_flood_days = len(df[df[data_type] > mean_flood]) 

total_flood_percent = (total_flood_days / total_data_points) * 100 

print(f"Number of days with flood: {total_flood_days} ({total_flood_percent:.2f}%)") 

# Save to DataFrame 

frequency_days_df = pd.DataFrame({ 

    'Condition': ['Regulation Zone', 'Caution Zone', 'Mean to 5-Year Flood', '5 to 10-Year Flood', '10 to 20-Year Flood', '20 to 

50-Year Flood', '50-Year Flood', 'Total Flood Days'], 

    'Days': [regulation_zone_days, caution_zone_days, meanflood_5year_days, five_10year_days, ten_20year_days, 

twenty_50year_days, fifty_year_days, total_flood_days], 

    'Percent': [regulation_zone_percent, caution_zone_percent, meanflood_5year_percent, five_10year_percent, 

ten_20year_percent, twenty_50year_percent, fifty_year_percent, total_flood_percent] 

}) 

# Assuming mean_value, std_dev, df, data_type, and total_data_points are already defined 

# Example of std_devs, which needs to be defined: 
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std_devs = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 

# Calculate probabilities for values greater than or equal to the specified number of standard deviations from the mean 

probabilities = [] 

percentage_within_ranges = [] 

for num_std_devs in std_devs: 

    # Calculate the value at the given number of standard deviations from the mean 

    value_at_std_devs = mean_value + num_std_devs * std_dev 

    # Calculate the probability of observing a value at least as extreme as value_at_std_devs 

    probability = len(df[df[data_type] >= value_at_std_devs]) / total_data_points 

    # For both sides of the distribution, multiply the probability by 2 

    # This accounts for both tails assuming a normal distribution 

    adjusted_probability = min(probability * 2, 1)  # Ensure probability does not exceed 100% 

    probabilities.append(adjusted_probability) 

    # Calculate the percentage falling within the range of the specified number of standard deviations from the mean 

    percentage_within_range = (1 - adjusted_probability) * 100 

    percentage_within_ranges.append(percentage_within_range) 

    print(f"{percentage_within_range:.2f}% falls within {num_std_devs} standard deviation{'s' if num_std_devs > 1 else ''} 

from the mean.") 

 

# Save to DataFrame 

std_dev_analysis_df = pd.DataFrame({ 

    'Number of Std Devs': std_devs, 

    'Percentage Within Range': percentage_within_ranges 

}) 

level_names = ['Mean', 'Five-year', 'Ten-year', 'Twenty-year', 'Fifty-year'] 

# Calculate how many standard deviations each flooding level is from the mean 

std_devs_from_mean = {} 

std_dev_data = [] 

for level_name, level_value in zip(level_names, flooding_levels): 

    num_std_devs_from_mean = (level_value - mean_value) / std_dev 

    std_devs_from_mean[level_name] = num_std_devs_from_mean 

    std_dev_data.append(num_std_devs_from_mean)  # This line was missing; now it appends each computed std dev 

# Print the results for each flood level's standard deviations from the mean 

for level_name, num_std_devs_from_mean in std_devs_from_mean.items(): 

    print(f"{level_name} flooding level is {num_std_devs_from_mean:.2f} standard deviations from the mean.") 

# Printing to verify the content and length of std_dev_data 

print(std_dev_data)  # This will show the list of standard deviations computed 

print(len(level_names))  # This prints the length of level_names, which should be 5 

print(len(std_dev_data))  # This now should also print 5, confirming entries are made to the list 

# Create DataFrame 

flood_levels_std_dev_df = pd.DataFrame({ 

    'Flood Level': level_names, 

    'Std Devs from Mean': std_dev_data 

}) 

# Reset the index to make sure 'Date' is a column, not the index, to avoid issues 
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df.reset_index(inplace=True) 

# Ensure 'Date' column is in datetime format 

df['Date'] = pd.to_datetime(df['Date']) 

# Now, set 'Date' as the index again, this time for the purpose of resampling 

df.set_index('Date', inplace=True) 

# Resample the data to get annual statistics. 'A' stands for 'Annual'. 

annual_data = df.resample('A').agg(['mean', 'std']) 

# Calculate the Yearly Variability Index for each year 

# YVI = standard deviation / mean for each year 

annual_data['YVI'] = annual_data[(data_type, 'std')] / annual_data[(data_type, 'mean')] 

# Calculate the average of the Yearly Variability Index across all years 

average_yvi = annual_data['YVI'].mean() 

print("Yearly Variability Index (YVI) for each year:\n", annual_data['YVI']) 

print("\nAverage Yearly Variability Index (YVI) across all years:", average_yvi) 

# Creating DataFrame to hold this information 

yearly_variability_index_df = annual_data[[('YVI', '')]].copy() 

yearly_variability_index_df.columns = ['Yearly Variability Index']  # Rename the columns for clarity 

print() 

print(statistics_df) 

print() 

print(frequency_days_df) 

print() 

print(std_dev_analysis_df) 

print() 

print(flood_levels_std_dev_df) 

print() 

print(yearly_variability_index_df) 

# Define the save path 

save_path = f'/Users/simen/Desktop/Complete Master/03 Excel Products/02 Lakes/{name}/'   

# File name based on a variable 'name' 

file_name = f'Combined_Statistical_Data_{name}.xlsx' 

full_path = save_path + file_name 

# Save all DataFrames to an Excel file with each DataFrame as a separate sheet 

with pd.ExcelWriter(full_path, engine='xlsxwriter') as writer: 

    statistics_df.to_excel(writer, sheet_name='Statistics', index=False) 

    frequency_days_df.to_excel(writer, sheet_name='Frequency Days', index=False) 

    std_dev_analysis_df.to_excel(writer, sheet_name='Standard Deviation Analysis', index=False) 

    flood_levels_std_dev_df.to_excel(writer, sheet_name='Flood Levels Std Dev', index=False) 

    yearly_variability_index_df.to_excel(writer, sheet_name='Yearly Variability Index', index=False) 

print(f"All DataFrames have been saved as an excel file at {full_path}.") 

df.reset_index(inplace=True) 

df.set_index('Date', inplace=True) 

plt.figure(figsize=(10, 6)) 

plt.boxplot(df[data_type].dropna(), vert=True)  # Ensure there are no NaN values 

plt.title(f'Boxplot of {data_type} for {name}') 



103 
 

plt.ylabel(data_type) 

plt.xticks([1], [data_type])  # Set a custom x-axis label 

plt.grid(True) 

plt.show() 
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Appendix 5: 

Statistical Analysis Tyrifjorden 

Statistic Value 

Total Data Points 7305 

Mean 62,9181 

Standard 

Deviation 

0,377319 

Min 62,02999 

25% 62,75689 

Median 62,8723 

75% 62,99604 

90% 63,31896 

95% 63,63215 

99% 64,35287 

Max 65,40757 

 

Condition Days Percent 

Regulation Zone 5512 75,45517 

Caution Zone 1653 22,62834 

Mean to 5-Year Flood 86 1,177276 

5 to 10-Year Flood 2 0,027379 

10 to 20-Year Flood 6 0,082136 

20 to 50-Year Flood 4 0,054757 

50-Year Flood 15 0,205339 

Total Flood Days 113 1,546886 
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Appendix 5: 

Statistical Analysis Tyrifjorden 

Flood 

Level 

Std Devs from 

Mean 

Number of Std 

Devs 

Percentage Within 

Range 

Mean 3,39738879 1 78,80903491 

Five-year 4,722526974 2 90,63655031 

Ten-year 5,252582248 3 95,67419576 

Twenty-

year 

5,782637522 4 98,38466804 

Fifty-year 6,047665158 5 99,2881588 
  

6 99,58932238 
  

7 100 
  

8 100 
  

9 100 
  

10 100 
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Appendix 6: 

Statistical Analysis Sperillen 

 

 

 

Statistic Value 

Total Data Points 7305 

Mean 149,6315 

Standard 

Deviation 

0,71156 

Min 148,1312 

25% 149,0202 

Median 149,7027 

75% 150,1673 

90% 150,3899 

95% 150,5535 

99% 151,6396 

Max 154,023 

Condition Days Percent 

Regulation Zone 5919 81,02669 

Caution Zone 1233 16,87885 

Mean to 5-Year Flood 74 1,013005 

5 to 10-Year Flood 38 0,520192 

10 to 20-Year Flood 21 0,287474 

20 to 50-Year Flood 13 0,17796 

50-Year Flood 5 0,068446 

Total Flood Days 151 2,067077 
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Appendix 6: 

Statistical Analysis Sperillen 

Flood Level Std Devs from Mean Number of Std Devs Percentage Within Range 

Mean 2,102542 1 73,85352 

Five-year 2,784986 2 95,50992 

Ten-year 3,347834 3 98,4668 

Twenty-year 3,890726 4 99,56194 

Fifty-year 4,598186 5 99,86311 
  

6 99,97262 
  

7 100 
  

8 100 
  

9 100 
  

10 100 
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Appendix 7 

Statistical Analysis Randsfjorden 

 

 

 

 

 

Statistic Value 

Total Data Points 7298 

Mean 133,5049 

Standard Deviation 0,871948 

Min 131,43 

25% 132,84 

Median 133,9 

75% 134,15 

90% 134,35 

95% 134,4618 

99% 134,66 

Max 136,07 

Condition Days Percent 

Regulation Zone 7063 96,77994 

Caution Zone 146 2,000548 

Mean to 5-Year Flood 34 0,465881 

5 to 10-Year Flood 2 0,027405 

10 to 20-Year Flood 2 0,027405 

20 to 50-Year Flood 5 0,068512 

50-Year Flood 21 0,28775 

Total Flood Days 64 0,876953 
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Appendix 7 

Statistical Analysis Randsfjorden 

Flood Level Std Devs from Mean Number of Std Devs Percentage Within Range 

Mean 1,358027 1 82,65278 

Five-year 1,618249 2 99,26007 

Ten-year 1,836038 3 100 

Twenty-year 2,047518 4 100 

Fifty-year 2,324943 5 100 
  

6 100 
  

7 100 
  

8 100 
  

9 100 
  

10 100 

 

 

 



110 
 

Appendix 8: 

Seasonal_Analysis.py 

import pandas as pd 

import matplotlib.pyplot as plt 

import numpy as np 

from statsmodels.tsa.seasonal import seasonal_decompose 

from sklearn.linear_model import LinearRegression 

import statsmodels.api as sm 

from datetime import datetime 

import sys 

# Path to the CSV file 

name = "Randsfjord" 

data_type = "Waterlevel" 

file_path = f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/Cleaned_{name}_Waterlevel.csv' 

# Read the CSV file 

df = pd.read_csv(file_path) 

df[data_type] = pd.to_numeric(df[data_type], errors='coerce')  # Convert data to numeric, ensuring all data is correctly 

formatted 

df['Date'] = pd.to_datetime(df['Date'])  # Ensure the Date column is in datetime format 

# Define the date range to keep. The Range has been altered to match the start of a season. Given that the dataset begins mid 

Winter season, originally. 

start_date = '2004-12-01' 

end_date = '2023-12-31' 

# Create a boolean mask to filter rows based on the date range 

mask = (df['Date'] >= start_date) & (df['Date'] <= end_date) 

# Apply the mask to filter rows within the specified date range 

filtered_df = df[mask] 

# Keep rows based on the boolean mask 

df = df[mask] 

df.set_index('Date', inplace=True)  # Set the Date column as the index for easier time series analysis 

if name == 'Randsfjord': 

    if data_type == 'Waterlevel': 

        # Define flooding levels 

        mean_flood = 134.689 

        five_year_flood = 134.9159 

        ten_year_flood = 135.1058 

        twenty_year_flood = 135.2902 

        fifty_year_flood = 135.5321 

        LRV = 131.3 

        HRV = 134.5 

        LRV_HRV = [LRV, HRV] 

        flooding_levels = [mean_flood, five_year_flood, ten_year_flood, twenty_year_flood, fifty_year_flood] 

    else: 
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        # Handle the case when data_type is not 'Waterlevel' 

        flooding_levels = None 

elif name == 'Tyrifjorden': 

    if data_type == 'Waterlevel': 

        # Define flooding levels 

        mean_flood = 64.2 

        five_year_flood = 64.7 

        ten_year_flood = 64.9 

        twenty_year_flood = 65.1 

        fifty_year_flood = 65.2 

        LRV = 62 

        HRV = 63 

        LRV_HRV = [LRV, HRV] 

        flooding_levels = [mean_flood, five_year_flood, ten_year_flood, twenty_year_flood, fifty_year_flood] 

    else: 

        # Handle the case when data_type is not 'Waterlevel' 

        flooding_levels = None 

elif name == 'Sperillen': 

    if data_type == 'Waterlevel': 

        # Define flooding levels 

        mean_flood = 151.1276 

        five_year_flood = 151.6132 

        ten_year_flood = 152.0137 

        twenty_year_flood = 152.4 

        fifty_year_flood = 152.9034 

        LRV = 147.95 

        HRV = 150.25 

        LRV_HRV = [LRV, HRV] 

        flooding_levels = [mean_flood, five_year_flood, ten_year_flood, twenty_year_flood, fifty_year_flood] 

df_reset = df.reset_index(inplace=False) 

df_reset['Date'] = pd.to_datetime(df_reset['Date']) 

df_reset['Date'] = df_reset['Date'].dt.strftime('%m/%d/%Y') 

df_reset.to_excel(f'/Users/simen/Desktop/Complete Master/03 Excel Products/02 

Lakes/{name}/{name}_season_grouped.xlsx', index=True) 

df_reset.to_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/{name}_season_grouped.csv', index=True) 

decomposition = seasonal_decompose(df[data_type], model='additive', period=365)  # Using a period of 365 to account for 

yearly seasonality 

# Plotting the decomposition results 

plt.figure(figsize=(14, 8)) 

plt.subplot(412) 

plt.plot(decomposition.observed, label='Observed') 

plt.legend(loc='upper right') 

plt.subplot(413) 

plt.plot(decomposition.seasonal,label='Seasonal') 

plt.legend(loc='upper right') 
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plt.tight_layout() 

plt.show() 

# Define a function to assign seasons and handle crossover for winter 

def assign_season(date): 

    year = date.year 

    spring_start = pd.Timestamp(year=year, month=3, day=1) 

    summer_start = pd.Timestamp(year=year, month=6, day=1) 

    autumn_start = pd.Timestamp(year=year, month=9, day=1) 

    winter_start = pd.Timestamp(year=year, month=11, day=30) 

    if date >= spring_start and date < summer_start: 

        return 'Spring' 

    elif date >= summer_start and date < autumn_start: 

        return 'Summer' 

    elif date >= autumn_start and date < winter_start: 

        return 'Autumn' 

    else: 

        return 'Winter' 

# Apply the season function to each date 

df['Season'] = df.index.map(assign_season) 

# Handle winter crossover: If it's January or February, assign it to the previous year's winter 

df['Year'] = df.index.year 

# Define the start of the winter season 

winter_start_month = 12 

winter_start_day = 1 

# Custom function to calculate DayOfSeason 

def calculate_day_of_season(row): 

    # If the month is December, January, or February, it's winter 

    if row.name.month == 12 or row.name.month <= 2: 

        # Winter starts on December 1st 

        season_start = pd.Timestamp(year=row.name.year if row.name.month == 12 else row.name.year-1, 

                                    month=winter_start_month, day=winter_start_day) 

    elif row.name.month >= 3 and row.name.month <= 5: 

        # Spring starts on March 1st 

        season_start = pd.Timestamp(year=row.name.year, month=3, day=1) 

    elif row.name.month >= 6 and row.name.month <= 8: 

        # Summer starts on June 1st 

        season_start = pd.Timestamp(year=row.name.year, month=6, day=1) 

    else: 

        # Autumn starts on September 1st 

        season_start = pd.Timestamp(year=row.name.year, month=9, day=1) 

    # Calculate the DayOfSeason 

    return (row.name - season_start).days + 1 

# Apply the custom function to calculate DayOfSeason 

df['DayOfSeason'] = df.apply(calculate_day_of_season, axis=1) 

# Continue with the rest of your analysis... 
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# Print the first few rows of the dataframe to verify 

print(df.head()) 

# Option to exit or move on 

continue_choice = input("Move on? (yes/no): ").lower() 

if continue_choice != 'yes': 

    print("Exiting.") 

    sys.exit() 

# Group by season and calculate statistical summaries 

statistics_seasonal_df = df.groupby('Season')['Waterlevel'].describe() 

# If you want to round the statistics for cleaner presentation 

statistics_seasonal_df = statistics_seasonal_df.round(2) 

df['Season'] = df.index.map(assign_season) 

# Plot histograms for each season with LRW, HRW, and flooding levels 

fig, axes = plt.subplots(2, 2, figsize=(14, 10), tight_layout=True) 

seasons = ['Spring', 'Summer', 'Autumn', 'Winter'] 

for ax, season in zip(axes.flatten(), seasons): 

    season_data = df[df['Season'] == season][data_type] 

    ax.hist(season_data, bins=40, alpha=0.7, label=f'{season} Distribution') 

    ax.axvline(LRV, color='r', linestyle='dashed', linewidth=2, label='LRW') 

    ax.axvline(HRV, color='g', linestyle='dashed', linewidth=2, label='HRW') 

    # Add flooding levels 

    for level in flooding_levels: 

        ax.axvline(level, color='b', linestyle='dotted', linewidth=1) 

    ax.set_title(f'{season} Water Level Distribution') 

    ax.set_xlabel(data_type) 

    ax.set_ylabel('Frequency') 

    ax.legend() 

plt.show() 

# Define a function to calculate skewness and kurtosis 

def calculate_skewness_kurtosis(data): 

    skewness = data.skew() 

    kurtosis = data.kurtosis() 

    return pd.Series({'Skewness': skewness, 'Kurtosis': kurtosis}) 

# Calculate skewness and kurtosis for each season 

skewness_kurtosis_seasonal = df.groupby('Season')['Waterlevel'].apply(calculate_skewness_kurtosis) 

def count_days_within_ranges(df, season, levels, LRV): 

    # Filter the dataframe for the specified season 

    season_data = df[df['Season'] == season]     

    # Initialize a dictionary to store counts 

    counts = {}     

    # Count days below the Lowest Reference Value (LRV) 

    count_below_LRV = season_data[season_data[data_type] < LRV].shape[0] 

    counts[f'Below {LRV}'] = count_below_LRV 

    # Loop through the levels and count days within each range and above the last specified level 

    for i in range(len(levels) - 1): 
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        lower_bound = levels[i] 

        upper_bound = levels[i + 1] 

        count = season_data[(season_data[data_type] > lower_bound) & (season_data[data_type] <= upper_bound)].shape[0] 

        counts[f'{lower_bound} to {upper_bound}'] = count 

     

    # Add count for days above the highest level specified 

    highest_level = levels[-1] 

    count_above_highest = season_data[season_data[data_type] > highest_level].shape[0] 

    counts[f'Above {highest_level}'] = count_above_highest     

    # Count total days above the first flood level (mean flood level) 

    total_flood_days = season_data[season_data[data_type] > levels[2]].shape[0]  # Assuming levels[0] is the mean flood level 

    counts['Total Flood Days'] = total_flood_days     

    return counts 

# Levels including HRW and flooding levels, ordered from lowest to highest criticality 

levels = LRV_HRV + flooding_levels 

levels.sort() 

# Use the function 

season_counts = {season: count_days_within_ranges(df, season, levels, LRV) for season in seasons} 

# Convert the dictionary to a DataFrame for display 

frequency_seasonal_df = pd.DataFrame(season_counts)  # Transpose for better readability 

print(frequency_seasonal_df) 

# Add a function to calculate the Seasonal Variability Index for each season 

def calculate_SVI(season_data): 

    mean_level = season_data.mean() 

    std_dev = season_data.std() 

    svi = std_dev / mean_level 

    return svi     

# Calculate the SVI for each season 

risk_indicators_by_season = {} 

for season in seasons: 

    season_data = df[df['Season'] == season][data_type] 

    svi = calculate_SVI(season_data) 

    risk_indicators_by_season[season] = svi 

# Convert the risk indicators dictionary to a DataFrame 

SVI_df = pd.DataFrame(list(risk_indicators_by_season.items()), columns=['Season', 'SVI']) 

# Create a boxplot for each season 

plt.figure(figsize=(14, 6))  # Set the figure size (width, height) as desired 

for i, season in enumerate(seasons): 

    plt.subplot(1, len(seasons), i+1)  # Create subplots for each season 

    seasonal_data = df[df['Season'] == season] 

    plt.boxplot(seasonal_data[data_type]) 

    plt.title(season) 

    plt.xlabel('Season') 

    plt.ylabel(data_type) 

plt.tight_layout()  # Adjust subplots to fit in the figure area 
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plt.show() 

# Ensure the index is in datetime format, if it's not already 

df.index = pd.to_datetime(df.index) 

# Add a column for the year directly from the index 

df['Year'] = df.index.year 

# Initialize a linear regression model 

model = LinearRegression() 

seasons = df['Season'].unique() 

# List to store the slope for each season 

slopes = [] 

for season in seasons: 

    # Extract all data points for the season across all years 

    seasonal_data = df[df['Season'] == season] 

    # The independent variable is the day of the season 

    X = seasonal_data['DayOfSeason'].values.reshape(-1, 1) 

    # The dependent variable is the water level 

    y = seasonal_data['Waterlevel'].values 

    # Fit the regression model 

    model.fit(X, y) 

    # Calculate the slope (coefficient) 

    slope = model.coef_[0] 

    slopes.append((season, slope)) 

    # Generate a sequence of day numbers for predictions 

    X_pred = np.arange(1, seasonal_data['DayOfSeason'].max() + 1).reshape(-1, 1) 

    y_pred = model.predict(X_pred) 

 

 

# Initialize your model outside the loop 

model = LinearRegression() 

# Create a figure and a grid of subplots 

fig, axs = plt.subplots(2, 2, figsize=(15, 10)) 

# Flatten the array of axes, for easy iteration 

axs = axs.flatten() 

# Iterate through each season and plot 

for i, season in enumerate(['Winter', 'Spring', 'Summer', 'Autumn']): 

    # Select the subplot where you want to plot the current season's trend 

    ax = axs[i] 

    # Extract all data points for the season across all years 

    seasonal_data = df[df['Season'] == season] 

    # The independent variable is the day of the season 

    X = seasonal_data['DayOfSeason'].values.reshape(-1, 1) 

    # The dependent variable is the water level 

    y = seasonal_data['Waterlevel'].values 

    # Fit the regression model 

    model.fit(X, y) 
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    # Calculate the slope (coefficient) 

    slope = model.coef_[0] 

    # Generate a sequence of day numbers for predictions 

    X_pred = np.arange(1, seasonal_data['DayOfSeason'].max() + 1).reshape(-1, 1) 

    y_pred = model.predict(X_pred) 

    # Plot the actual data points and the regression line on the current subplot 

    ax.scatter(seasonal_data['DayOfSeason'], y, alpha=0.5, label='Actual Data') 

    ax.plot(X_pred, y_pred, color='black', label=f'Trend Line (slope: {slope:.5f})') 

    ax.set_title(f'Trend for {season} Across All Years') 

    ax.set_xlabel('Day of Season') 

    ax.set_ylabel('Water Level') 

    ax.legend() 

 

# Adjust the layout so that all subplots fit into the figure neatly 

plt.tight_layout() 

plt.show() 

# Convert the list of slopes to a DataFrame 

slope_df = pd.DataFrame(slopes, columns=['Season', 'Slope']) 

# Assuming 'DayOfSeason' and 'Waterlevel' are columns in your DataFrame, df. 

seasons = df['Season'].unique() 

slope_results = [] 

for season in seasons: 

    # Extract all data points for the season across all years 

    seasonal_data = df[df['Season'] == season]     

    # The independent variable is the day of the season (add a constant term for intercept) 

    X = sm.add_constant(seasonal_data['DayOfSeason'].values) 

    # The dependent variable is the water level 

    y = seasonal_data['Waterlevel'].values 

    # Fit the regression model using OLS (Ordinary Least Squares) 

    model = sm.OLS(y, X).fit()    

    # Store the season, slope, p-value, and whether it's significant at alpha=0.05 

    slope, p_value = model.params[1], model.pvalues[1] 

    slope_results.append({ 

        'Season': season, 

        'Slope': slope, 

        'p-value': p_value, 

        'Significant (p<0.05)': p_value < 0.05 

    }) 

# Convert the results to a DataFrame 

slope_results_df = pd.DataFrame(slope_results) 

print(statistics_seasonal_df) 

print(frequency_seasonal_df) 

print(SVI_df) 

print(slope_results_df) 

print(skewness_kurtosis_seasonal) 
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print() 

# Define the save path 

save_path = f'/Users/simen/Desktop/Complete Master/03 Excel Products/02 Lakes/{name}/'  # Update this path as needed 

# File name based on a variable 'name' 

file_name = f'Combined__Seasonal_Statistical_Data_{name}.xlsx' 

# Full path including file name 

full_path = save_path + file_name 

# Save all DataFrames to an Excel file with each DataFrame as a separate sheet 

with pd.ExcelWriter(full_path, engine='xlsxwriter') as writer: 

    statistics_seasonal_df.to_excel(writer, sheet_name='Statistics', index=True) 

    frequency_seasonal_df.to_excel(writer, sheet_name='Frequency Days', index=True) 

    SVI_df.to_excel(writer, sheet_name='SVI', index=False) 

    slope_results_df.to_excel(writer, sheet_name='Theortical Significance', index=False) 

    skewness_kurtosis_seasonal.to_excel(writer, sheet_name='Skewness and Kurtosis', index=True) 

print("All DataFrames have been saved as an excel file.") 

# Save the statistical summary as CSV 

statistics_seasonal_df.to_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned 

Data/{name}_seasonal_statistics.csv', index=True) 

# Save the frequency of flooding days as CSV 

frequency_seasonal_df.to_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned 

Data/{name}_seasonal_flooding_frequency.csv', index=True) 

# Save the Seasonal Variability Index as CSV 

SVI_df.to_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/{name}_seasonal_SVI.csv', index=False) 

# Save the slopes of the trend analysis as CSV 

slope_results_df.to_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/{name}_seasonal_trend_slopes.csv', 

index=False) 

# Save the skewness and kurtosis as CSV 

skewness_kurtosis_seasonal.to_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned 

Data/{name}_seasonal_skewness_kurtosis.csv', index=True) 

# Print a message to confirm that files are saved 

print("CSV files have been saved.") 
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Appendix 9 

Seasonal Analysis Tyrifjorden 

Season count mean std min 25% 50% 75% max SVI 

Autumn 1710 63,02 0,33 62,48 62,83 62,94 63,05 65,25 0,005196 

Spring 1748 62,79 0,45 62,03 62,47 62,73 62,97 64,61 0,007219 

Summer 1748 63,07 0,42 62,27 62,82 62,92 63,14 65,41 0,006715 

Winter 1764 62,81 0,17 62,33 62,66 62,84 62,94 63,61 0,002731 
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Appendix 9 

Seasonal Analysis Tyrifjorden 

Season   Waterlevel  Spring Summer Autumn Winter 

Autumn Skewness 2,409307 Below 62 0 0 0 0 

Kurtosis 7,880773 62 to 63 1381 1123 1147 1633 

Spring Skewness 1,460868 63 to 64.2 329 578 535 131 

Kurtosis 2,754842 64.2 to 64.7 38 26 22 0 

Summer Skewness 2,546273 64.7 to 64.9 0 0 2 0 

Kurtosis 8,420227 64.9 to 65.1 0 4 2 0 

Winter Skewness 0,090666 65.1 to 65.2 0 3 1 0 

Kurtosis 0,906967 Above 65.2 0 14 1 0 

   Total Flood Days 38 47 28 0 
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Season Slope p-value Significant (p<0.05) 

Winter -0,00198 3,08E-39 TRUE 

Spring 0,007381 1,18E-80 TRUE 

Summer -0,00088 0,02041 TRUE 

Autumn -0,0011 0,00029 TRUE 
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Appendix 10 

Seasonal Analysis Sperillen 

Season count mean std min 25% 50% 75% max SVI 

Autumn 1710 149,96 0,5 148,15 149,74 150,09 150,28 151,87 0,003343 

Spring 1748 149,27 0,81 148,13 148,69 148,98 149,6 152,79 0,005432 

Summer 1748 149,95 0,69 148,17 149,62 150,01 150,31 154,02 0,004573 

Winter 1764 149,36 0,5 148,44 148,92 149,29 149,81 150,42 0,003361 

 

 

 

Season   Waterlevel 

Autumn Skewness -0,75645 

Kurtosis 1,499028 

Spring Skewness 1,397661 

Kurtosis 1,703976 

Summer Skewness 0,512221 

Kurtosis 4,160338 

Winter Skewness 0,335115 

Kurtosis -1,09509 
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Appendix 10 

Seasonal Analysis Sperillen 

 

 
Spring Summer Autumn Winter 

Below 147.95 0 0 0 0 

147.95 to 150.25 1494 1234 1216 1694 

150.25 to 151.1276 188 452 474 70 

151.1276 to 151.6132 29 26 16 0 

151.6132 to 152.0137 23 11 4 0 

152.0137 to 152.4 11 10 0 0 

152.4 to 152.9034 3 10 0 0 

Above 152.9034 0 5 0 0 

Total Flood Days 66 62 20 0 

 

 

Season Slope p-value Significant 

(p<0.05) 

Winter -0,01154 2,1E-178 TRUE 

Spring 0,019665 1,3E-205 TRUE 

Summer -0,00262 2,18E-05 TRUE 

Autumn 0,002967 1,62E-10 TRUE 
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Appendix 11 

Seasonal Analysis Randsfjorden 

Season count mean std min 25% 50% 75% max SVI 

Autumn 1710 134,17 0,26 132,95 134,03 134,15 134,35 135,66 0,001963 

Spring 1748 132,55 0,88 131,43 131,9 132,18 133,14 134,82 0,00664 

Summer 1748 134,04 0,39 132,35 133,95 134,08 134,21 136,07 0,002912 

Winter 1757 133,27 0,61 132,03 132,77 133,29 133,74 134,5 0,004553 

 

 

Season   Waterlevel 

Autumn Skewness -0,70886 

Kurtosis 5,481842 

Spring Skewness 0,954235 

Kurtosis -0,31941 

Summer Skewness -0,36848 

Kurtosis 7,803884 

Winter Skewness -0,00381 

Kurtosis -0,9609 
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Appendix 11 

Seasonal Analysis Randsfjorden 

 

 
Spring Summer Autumn Winter 

Below 131.3 0 0 0 0 

131.3 to 134.5 1702 1686 1608 1757 

134.5 to 134.689 34 29 83 0 

134.689 to 134.9159 12 10 12 0 

134.9159 to 135.1058 0 0 2 0 

135.1058 to 135.2902 0 0 2 0 

135.2902 to 135.5321 0 4 1 0 

Above 135.5321 0 19 2 0 

Total Flood Days 12 33 19 0 

 

Season Slope p-value Significant (p<0.05) 

Winter -0,01985 0 TRUE 

Spring 0,025381 0 TRUE 

Summer 0,000814 0,020487 TRUE 

Autumn 0,001929 2,12E-15 TRUE 
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Appendix 14 

Complete Multimodal Analysis 

Randsfjorden: 

Month Waterlevel 

1 133,2422 

2 132,5779 

3 131,9997 

4 132,0852 

5 133,5997 

6 134,0334 

7 133,9904 

8 134,0827 

9 134,0835 

10 134,216 

11 134,2108 

12 133,8706 
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Appendix 14 

Complete Multimodal Analysis 

Sperillen: 

Month Waterlevel 

1 149,297111 

2 148,985516 

3 148,787791 

4 148,987182 

5 150,029516 

6 150,068158 

7 149,870261 

8 149,89644 

9 149,86087 

10 149,97837 

11 150,038774 

12 149,734727 
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Appendix 14 

Complete Multimodal Analysis 

Tyrifjorden: 

Month Waterlevel 

1 62,7961491 

2 62,7383216 

3 62,631753 

4 62,6368141 

5 63,0976748 

6 63,1046604 

7 63,0116149 

8 63,0613906 

9 63,0729041 

10 62,980334 

11 63,0050141 

12 62,8693652 
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Appendix 13: 

Yearly_plots.py 

import pandas as pd 

import matplotlib.pyplot as plt 

# Load the CSV files 

file1 = '/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/Cleaned_Randsfjord_Waterlevel.csv' 

file2 = '/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/Cleaned_Tyrifjorden_Waterlevel.csv' 

file3 = '/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/Cleaned_Sperillen_Waterlevel.csv' 

# Importing CSV files 

df1 = pd.read_csv(file1, parse_dates=['Date']) 

df2 = pd.read_csv(file2, parse_dates=['Date']) 

df3 = pd.read_csv(file3, parse_dates=['Date']) 

# Extracting the year from the Date column 

df1['Year'] = df1['Date'].dt.year 

df2['Year'] = df2['Date'].dt.year 

df3['Year'] = df3['Date'].dt.year 

# Extracting unique years for plotting 

years = sorted(set(df1['Year']).union(set(df2['Year'])).union(set(df3['Year']))) 

# Creating plots for each year 

for year in years: 

    fig, axes = plt.subplots(3, 1, figsize=(10, 15), sharex=True) 

    # Plot for lake1 

    lake1_data = df1[df1['Year'] == year] 

    axes[0].plot(lake1_data['Date'], lake1_data['Waterlevel']) 

    axes[0].set_title(f'Randsfjorden Water Level in Year {year}') 

    axes[0].set_ylabel('Water Level') 

    # Plot for lake2 

    lake2_data = df2[df2['Year'] == year] 

    axes[1].plot(lake2_data['Date'], lake2_data['Waterlevel']) 

    axes[1].set_title(f'Tyrifjorden Water Level in Year {year}') 

    axes[1].set_ylabel('Water Level') 

    # Plot for lake3 

    lake3_data = df3[df3['Year'] == year] 

    axes[2].plot(lake3_data['Date'], lake3_data['Waterlevel']) 

    axes[2].set_title(f'Sperillen Water Level in Year {year}') 

    axes[2].set_ylabel('Water Level') 

    axes[2].set_xlabel('Date')     

    dates_to_mark = [f'{year}-11-30', f'{year}-03-01', f'{year}-06-01', f'{year}-09-01'] 

    for ax in axes: 

        for date in dates_to_mark: 

            ax.axvline(pd.to_datetime(date), color='r', linestyle='--') 

    plt.tight_layout() 

    plt.show() 
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Appendix 14 

Multimodal_analysis.py 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

import seaborn as sns 

from scipy.stats import kruskal 

from sklearn.mixture import GaussianMixture 

import warnings 

from scipy.stats import gaussian_kde 

from scipy.integrate import quad 

# Suppress specific sklearn UserWarnings 

warnings.simplefilter("ignore", category=UserWarning) 

warnings.simplefilter("ignore", category=FutureWarning) 

name = 'Randsfjord' 

# Modify this line to match the exact file name shown in the uploaded.keys() 

file_path =  f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/Cleaned_{name}_Waterlevel.csv'  

data = pd.read_csv(file_path) 

# Convert the 'Date' column to datetime format for easier manipulation 

data['Date'] = pd.to_datetime(data['Date']) 

print("Date column converted to datetime.") 

# Create additional columns for analysis 

data['Month'] = data['Date'].dt.month 

data['Season'] = data['Month'].apply(lambda x: 'Winter' if x in [12, 1, 2] else 

                                                    'Spring' if x in [3, 4, 5] else 

                                                    'Summer' if x in [6, 7, 8] else 'Autumn') 

# Calculate monthly average water levels to see seasonal variations 

monthly_averages = data.groupby('Month')['Waterlevel'].mean() 

print("Monthly averages of water levels:") 

print(monthly_averages) 

# Compute descriptive statistics for each season 

seasonal_stats = data.groupby('Season')['Waterlevel'].describe() 

# Convert the descriptive statistics into a DataFrame 

stats_df = pd.DataFrame(seasonal_stats) 

# Save the statistics DataFrame to an Excel file 

excel_path = f'/Users/simen/Desktop/Complete Master/03 Excel Products/02 

Lakes/{name}/{name}_Seasonal_Waterlevel_Stats.xlsx' 

stats_df.to_excel(excel_path) 

# Make sure monthly_averages is a DataFrame 

monthly_averages_df = pd.DataFrame(monthly_averages).reset_index() 

# Save the monthly averages DataFrame to an Excel file 

monthly_averages_excel_path = f'/Users/simen/Desktop/Complete Master/03 Excel Products/02 

Lakes/{name}/{name}_Monthly_Averages_Waterlevel.xlsx' 
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monthly_averages_df.to_excel(monthly_averages_excel_path, index=False) 

# Assuming you already have monthly_averages calculated from your groupby operation 

monthly_averages_df = pd.DataFrame(monthly_averages).reset_index() 

# Plot the monthly averages 

plt.figure(figsize=(10, 5)) 

plt.plot(monthly_averages_df['Month'], monthly_averages_df['Waterlevel'], marker='o', linestyle='-', color='b') 

plt.title('Monthly Average Water Levels') 

plt.xlabel('Month') 

plt.ylabel('Average Water Level') 

plt.xticks(monthly_averages_df['Month'], ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']) 

plt.grid(True) 

plt.savefig(f'/Users/simen/Desktop/Complete Master/04 Plots/{name}_monthly_avg.png') 

plt.show() 

# Define colors for each season for consistency 

season_colors = { 

    'Winter': 'blue', 

    'Spring': 'green', 

    'Summer': 'red', 

    'Autumn': 'orange' 

} 

# Plot histogram using Seaborn 

plt.figure(figsize=(12, 8)) 

for season, color in season_colors.items(): 

    # Select the season 

    season_data = data[data['Season'] == season] 

    # Plot the data with the season-specific color 

    sns.histplot(season_data, x="Waterlevel", stat="density", kde=True, color=color, label=season) 

plt.title('Seasonal Water Level Distribution') 

plt.xlabel('Water Level') 

plt.ylabel('Density') 

# Create the legend with the defined colors 

plt.legend(title='Season') 

plt.grid(True) 

plt.savefig(f'/Users/simen/Desktop/Complete Master/04 Plots/{name}_multimodal_histogram.png') 

plt.show() 

# Kruskal-Wallis Test across seasons 

winter_levels = data[data['Season'] == 'Winter']['Waterlevel'] 

spring_levels = data[data['Season'] == 'Spring']['Waterlevel'] 

summer_levels = data[data['Season'] == 'Summer']['Waterlevel'] 

autumn_levels = data[data['Season'] == 'Autumn']['Waterlevel'] 

kruskal_result = kruskal(winter_levels, spring_levels, summer_levels, autumn_levels) 

print(f"Kruskal-Wallis test result: H-statistic = {kruskal_result.statistic}, p-value = {kruskal_result.pvalue}") 
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Appendix 15: 

Reservoir_to_DailyEnergy.py 

import pandas as pd 

import matplotlib.pyplot as plt 

# Define the energy equivalents for each power station (in kWh/m^3). 

energy_equivalents = { 

    'Tyrifjorden_Geithusfoss': 0.025,   

    'Tyrifjorden_Gravfoss_one': 0.044, 

    'Tyrifjorden_Gravfoss_two': 0.048, 

    'Sperillen_Hensfoss': 0.055,  

    'Sperillen_Begna': 0.018, 

    'Sperillen_Hofsfoss': 0.061, 

    'Sperillen_Hoenefoss': 0.051, 

    'Randsfjord_Bergerfoss': 0.013, 

    'Randsfjord_Kistefoss_one': 0.018, 

    'Randsfjord_Kistefoss_two': 0.025, 

    'Randsfjord_Askerudfoss': 0.048, 

    'Randsfjord_Viulfoss': 0.042 

} 

 

def read_and_prepare_data(file_path): 

    df = pd.read_csv(file_path) 

    df['Reservoir'] = pd.to_numeric(df['Reservoir'], errors='coerce') 

    df['Date'] = pd.to_datetime(df['Date']) 

     

    # Count the number of negative values 

    negative_count = (df['Reservoir'] < 0).sum() 

     

    # Remove negative 'Reservoir' values or set them to zero 

    df.loc[df['Reservoir'] < 0, 'Reservoir'] = 0 

     

    df.dropna(subset=['Reservoir'], inplace=True) 

    df.reset_index(drop=True, inplace=True) 

     

    return df, negative_count 

# File paths, has to be adjust if another computer is used. 

file_paths = { 

    'Tyrifjorden': '/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/Cleaned_Tyrifjorden_Reservoir.csv', 

    'Sperillen': '/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/Cleaned_Sperillen_Reservoir.csv', 

    'Randsfjord': '/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/Cleaned_Randsfjord_Reservoir.csv', 

} 

# Process each dataset and plot 

for title, path in file_paths.items(): 



132 
 

    df, negative_count = read_and_prepare_data(path) 

    print(f"Number of negative entries removed/set to zero for {title}: {negative_count}") 

# Process the Randsfjord dataset and create a new dataframe with daily energy equivalent calculations 

df_Tyrifjorden, _ = read_and_prepare_data(file_paths['Tyrifjorden']) 

# Calculate the daily energy equivalent for all Energy in Randsfjord 

df_energy_Tyrifjorden_calc = df_Tyrifjorden.copy() 

df_energy_Tyrifjorden_calc['Geithusfoss [GWh]'] = df_energy_Tyrifjorden_calc['Reservoir'] * 

energy_equivalents['Tyrifjorden_Geithusfoss'] 

df_energy_Tyrifjorden_calc['Gravfoss 1 [GWh]'] = df_energy_Tyrifjorden_calc['Reservoir'] * 

energy_equivalents['Tyrifjorden_Gravfoss_one'] 

df_energy_Tyrifjorden_calc['Gravfoss 2 [GWh]'] = df_energy_Tyrifjorden_calc['Reservoir'] * 

energy_equivalents['Tyrifjorden_Gravfoss_two'] 

df_energy_Tyrifjorden_calc['DailyEnergy [GWh]'] = df_energy_Tyrifjorden_calc['Geithusfoss [GWh]'] + 

df_energy_Tyrifjorden_calc['Gravfoss 1 [GWh]'] + df_energy_Tyrifjorden_calc['Gravfoss 2 [GWh]'] 

# Process the Tyrifjorden dataset and create a new dataframe with daily energy equivalent calculations 

df_Tyrifjorden, _ = read_and_prepare_data(file_paths['Tyrifjorden']) 

# Calculate the daily energy equivalent for Tyrifjorden / Geithusfoss Kraftverk 

df_energy_Tyrifjorden = df_Tyrifjorden.copy() 

df_energy_Tyrifjorden['DailyEnergy [GWh]'] = df_energy_Tyrifjorden_calc['DailyEnergy [GWh]'] 

# Process the Randsfjord dataset and create a new dataframe with daily energy equivalent calculations 

df_Sperillen, _ = read_and_prepare_data(file_paths['Sperillen']) 

# Calculate the daily energy equivalent for all Energy in Randsfjord 

df_energy_Sperillen_calc = df_Sperillen.copy() 

df_energy_Sperillen_calc['Hensfoss [GWh]'] = df_energy_Sperillen_calc['Reservoir'] * 

energy_equivalents['Sperillen_Hensfoss'] 

df_energy_Sperillen_calc['Begna [GWh]'] = df_energy_Sperillen_calc['Reservoir'] * energy_equivalents['Sperillen_Begna'] 

df_energy_Sperillen_calc['Hofsfoss [GWh]'] = df_energy_Sperillen_calc['Reservoir'] * 

energy_equivalents['Sperillen_Hofsfoss'] 

df_energy_Sperillen_calc['Hoenefoss [GWh]'] = df_energy_Sperillen_calc['Reservoir'] * 

energy_equivalents['Sperillen_Hoenefoss'] 

df_energy_Sperillen_calc['DailyEnergy [GWh]'] = df_energy_Sperillen_calc['Hensfoss [GWh]'] + 

df_energy_Sperillen_calc['Begna [GWh]'] + df_energy_Sperillen_calc['Hofsfoss [GWh]'] + 

df_energy_Sperillen_calc['Hoenefoss [GWh]'] 

# Process the Sperillen dataset and create a new dataframe with daily energy equivalent calculations 

df_Sperillen, _ = read_and_prepare_data(file_paths['Sperillen']) 

# Calculate the daily energy equivalent for Sperillen / Hensfoss Kraftverk 

df_energy_Sperillen = df_Sperillen.copy() 

df_energy_Sperillen['DailyEnergy [GWh]'] = df_energy_Sperillen_calc['DailyEnergy [GWh]'] 

# Process the Randsfjord dataset and create a new dataframe with daily energy equivalent calculations 

df_Randsfjord, _ = read_and_prepare_data(file_paths['Randsfjord']) 

# Calculate the daily energy equivalent for all Energy in Randsfjord 

df_energy_Randsfjord_calc = df_Randsfjord.copy() 

df_energy_Randsfjord_calc['Bergerfoss [GWh]'] = df_energy_Randsfjord_calc['Reservoir'] * 

energy_equivalents['Randsfjord_Bergerfoss'] 
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df_energy_Randsfjord_calc['Kistefoss 1 [GWh]'] = df_energy_Randsfjord_calc['Reservoir'] * 

energy_equivalents['Randsfjord_Kistefoss_one'] 

df_energy_Randsfjord_calc['Kistefoss 2 [GWh]'] = df_energy_Randsfjord_calc['Reservoir'] * 

energy_equivalents['Randsfjord_Kistefoss_two'] 

df_energy_Randsfjord_calc['Askerudfoss [GWh]'] = df_energy_Randsfjord_calc['Reservoir'] * 

energy_equivalents['Randsfjord_Askerudfoss'] 

df_energy_Randsfjord_calc['Viulfoss [GWh]'] = df_energy_Randsfjord_calc['Reservoir'] * 

energy_equivalents['Randsfjord_Viulfoss'] 

df_energy_Randsfjord_calc['DailyEnergy [GWh]'] = df_energy_Randsfjord_calc['Viulfoss [GWh]'] + 

df_energy_Randsfjord_calc['Askerudfoss [GWh]'] + df_energy_Randsfjord_calc['Kistefoss 2 [GWh]'] + 

df_energy_Randsfjord_calc['Kistefoss 1 [GWh]'] + df_energy_Randsfjord_calc['Bergerfoss [GWh]']  

# Process the Sperillen dataset and create a new dataframe with daily energy equivalent calculations 

df_Randsfjord, _ = read_and_prepare_data(file_paths['Randsfjord']) 

# Calculate the daily energy equivalent for all Energy in Randsfjord 

df_energy_Randsfjord = df_Randsfjord.copy() 

df_energy_Randsfjord['DailyEnergy [GWh]'] = df_energy_Randsfjord_calc['DailyEnergy [GWh]'] 

print(df_energy_Randsfjord.head()) 

print(df_energy_Sperillen.head()) 

print(df_energy_Tyrifjorden.head()) 

# Drop 'Reservoir' column and rename 'DailyEnergy [GWh]' to 'Energy_GWh' for df_energy_Randsfjord 

df_energy_Randsfjord = df_energy_Randsfjord.drop(['Reservoir'], axis=1) 

df_energy_Randsfjord = df_energy_Randsfjord.rename(columns={'DailyEnergy [GWh]': 'Energy'}) 

print('-------------------------') 

print(df_energy_Randsfjord.head()) 

df_energy_Randsfjord.to_csv('/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/Randsfjord_Energy_Daily.csv', 

index=False)   

# Drop 'Reservoir' column and rename 'DailyEnergy [GWh]' to 'Energy_GWh' for df_energy_Sperillen 

df_energy_Sperillen = df_energy_Sperillen.drop(['Reservoir'], axis=1) 

df_energy_Sperillen = df_energy_Sperillen.rename(columns={'DailyEnergy [GWh]': 'Energy'}) 

print('-------------------------') 

print(df_energy_Sperillen.head()) 

df_energy_Sperillen.to_csv('/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/Sperillen_Energy_Daily.csv', 

index=False) 

# Drop 'Reservoir' column and rename 'DailyEnergy [GWh]' to 'Energy_GWh' for df_energy_Tyrifjorden 

df_energy_Tyrifjorden = df_energy_Tyrifjorden.drop(['Reservoir'], axis=1) 

df_energy_Tyrifjorden = df_energy_Tyrifjorden.rename(columns={'DailyEnergy [GWh]': 'Energy'}) 

print('-------------------------') 

print(df_energy_Tyrifjorden.head()) 

df_energy_Tyrifjorden.to_csv('/Users/simen/Desktop/Complete Master/01 Data/Cleaned 

Data/Tyrifjorden_Energy_Daily.csv', index=False) 
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Appendix 16: 

Data_Preperation.py 

import pandas as pd 

import pandas as pd 

# Path to your CSV files 

name = "Randsfjord" 

file_path_reservoirlevel = f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/Cleaned_{name}_Reservoir.csv' 

file_path_waterlevel = f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/Cleaned_{name}_Waterlevel.csv' 

file_path_energy = f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/{name}_Energy_Daily.csv' 

file_path_waterflow = f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/Cleaned_{name}_Waterflow.csv' 

 

# Read the CSV files 

df_reservoirlevel = pd.read_csv(file_path_reservoirlevel, delimiter=',', header=0, parse_dates=['Date']) 

df_waterlevel = pd.read_csv(file_path_waterlevel, delimiter=',', header=0, parse_dates=['Date']) 

df_energy = pd.read_csv(file_path_energy, delimiter=',', header=0, parse_dates=['Date']) 

df_waterflow = pd.read_csv(file_path_waterflow, delimiter=',', header=0, parse_dates=['Date']) 

 

print(df_reservoirlevel.head()) 

print(df_energy.head()) 

print(df_waterlevel.head()) 

print(df_waterflow.head()) 

 

# Merge df_reservoirlevel and df_waterlevel 

combined_df = pd.merge(df_reservoirlevel, df_waterlevel, on='Date', how='outer', suffixes=('_reservoir', '_water')) 

# Merge the result with df_energy 

combined_df = pd.merge(combined_df, df_energy, on='Date', how='outer') 

combined_df = pd.merge(combined_df, df_waterflow, on='Date', how='outer') 

df_total = combined_df 

 

# Now, combined_df contains all the combined information. You can print the head to check 

print(df_total.head()) 

print(df_total.tail()) 

df_total.to_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/{name}_Total_Daily.csv', index=False) 

 

# Load your dataset 

df = pd.read_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/Cleaned_{name}_Waterlevel.csv') 

 

# Ensure the 'Date' column is in datetime format 

df['Date'] = pd.to_datetime(df['Date']) 

 

# Define your start date for the dataset, in order to get full seasons. the dataset starts mid winter, january 1st 

start_date = '2004-03-01' 

# Filter the dataset to start from the first spring season of 2004 
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df_filtered = df[df['Date'] >= pd.to_datetime(start_date)] 

df = df_filtered 

 

# Define a function to categorize dates into seasons 

def get_season(date): 

    if date.month in [12, 1, 2]: 

        return 'Winter' 

    elif date.month in [3, 4, 5]: 

        return 'Spring' 

    elif date.month in [6, 7, 8]: 

        return 'Summer' 

    elif date.month in [9, 10, 11]: 

        return 'Autumn' 

 

# Apply the function to create a 'Season' column 

df['Season'] = df['Date'].apply(get_season) 

 

# Split the data into seasons 

winter_df = df[df['Season'] == 'Winter'] 

spring_df = df[df['Season'] == 'Spring'] 

summer_df = df[df['Season'] == 'Summer'] 

autumn_df = df[df['Season'] == 'Autumn'] 

 

# Save each season's data to a new CSV file 

winter_df.to_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/{name}_winter_waterlevel_df.csv', 

index=False) 

spring_df.to_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/{name}_spring_waterlevel_df.csv', 

index=False) 

summer_df.to_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/{name}_summer_waterlevel_df.csv', 

index=False) 

autumn_df.to_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/{name}_autumn_waterlevel_df.csv', 

index=False) 

print("Datasets have been split into seasons and saved as separate CSV files.") 

slope_file_path = f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/{name}_seasonal_adjustment.csv' 

# Read the CSV file 

df_slope = pd.read_csv(slope_file_path) 

df_slope = df_slope.drop(['Skewness', 'Kurtosis','SVI'], axis=1) 

# Save the slopes of the trend analysis as CSV 

df_slope.to_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/{name}_seasonal_trend.csv', index=False)  
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Appendix 17: 

States_Constructor.py 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

import seaborn as sns 

import warnings 

# Suppress specific sklearn UserWarnings 

warnings.simplefilter("ignore", category=UserWarning) 

# Load the dataset 

name = 'Tyrifjorden' 

df = pd.read_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/{name}_Total_Daily.csv') 

print(df.head()) 

df.dropna(inplace=True)  # Drop NA values 

df['Waterlevel'] = pd.to_numeric(df['Waterlevel'], errors='coerce')  

# Convert 'Date' to datetime if needed 

df['Date'] = pd.to_datetime(df['Date']) 

# Setting the 'Date' column as the index for easier plotting 

df.set_index('Date', inplace=True) 

print(name) 

if name == 'Randsfjord': 

    water_levels = [ 

        130.5718,  # Extended Low Water 

        131.51356985708998,  # Extended Low Energy 

        131.43,  # Low Observed Water 

        131.6159,  # Low Observed Energy 

        131.6623,  # Extended 1st percentile Energy 

        131.68,  # 1st percentile Energy 

        131.8302,  # Extended 5th percentile Energy 

        131.88,  # 5th percentile Energy 

        132.0365,  # Extended 10th percentile Energy 

        132.08,  # 10th percentile Energy 

        132.7427,  # Extended 25th percentile Energy 

        132.85,  # 25th percentile Energy 

        133.5323,  # Mean Energy 

        133.5048011787279,  # Mean Water 

        134.5,  # HRV 

        134.689,  # Mean Flood 

        134.9159,  # 5-Year Flood 

        135.1058,  # 10-Year Flood 

        135.2902,  # 20-Year Flood 

        135.5321,  # 50-Year Flood 

        136.07,  # High Observed Water 
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        136.9281,  # Extended High Water 

    ] 

elif name == 'Tyrifjorden': 

    water_levels = [ 

        61.6587,  # Extended Low Water 

        62.016221473098916,  # Extended Low Energy 

        62.02999,  # Low Observed Water 

        62.1460,  # Low Observed Energy 

        62.1965,  # Extended 1st percentile Energy 

        62.29,  # 1st percentile Energy 

        62.3788,  # Extended 5th percentile Energy 

        62.46,  # 5th percentile Energy 

        62.5273,  # Extended 10th percentile Energy 

        62.57,  # 10th percentile Energy 

        62.7795,  # Extended 25th percentile Energy 

        62.80,  # 25th percentile Energy 

        62.8956,  # Mean Energy 

        62.9181001834363,  # Mean Water 

        63.00,  # HRV 

        64.2,  # Mean Flood 

        64.7,  # 5-Year Flood 

        64.9,  # 10-Year Flood 

        65.1,  # 20-Year Flood 

        65.2,  # 50-Year Flood 

        65.40757,  # High Observed Water 

        65.7789,  # Extended High Water 

    ] 

elif name == 'Sperillen': 

    water_levels = [ 

        147.4310,  # Extended Low Water 

        148.0985862129438,  # Extended Low Energy 

        148.1312,  # Low Observed Water 

        148.3388,  # Low Observed Energy 

        148.3988,  # Extended 1st percentile Energy 

        148.47,  # 1st percentile Energy 

        148.6157,  # Extended 5th percentile Energy 

        148.67,  # 5th percentile Energy 

        148.7402,  # Extended 10th percentile Energy 

        148.76,  # 10th percentile Energy 

        148.9442,  # Extended 25th percentile Energy 

        148.98,  # 25th percentile Energy 

        149.6641,  # Mean Energy 

        149.63151556468176,  # Mean Water 

        150.25,  # HRV 

        151.1276,  # Mean Flood 
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        151.6132,  # 5-Year Flood 

        152.0137,  # 10-Year Flood 

        152.4,  # 20-Year Flood 

        152.9034,  # 50-Year Flood 

        154.023,  # High Observed Water 

        154.7232,  # Extended High Water 

    ] 

# Sort the water levels in ascending order 

water_levels = sorted(water_levels) 

# Initialize an empty list to hold the state definitions 

states = [] 

# Iterate over the sorted water levels to create states 

for i in range(len(water_levels)-1): 

    lower_bound = water_levels[i] 

    upper_bound = water_levels[i+1] 

    states.append((f"State {i}", lower_bound, upper_bound)) 

# Add a final state for the upper bound 

upper_bound = water_levels[21]*1.05 # 5% increase from extended high, allows integration. 

if name == 'Randsfjord': 

    chosen_upper_level = upper_bound # to allow integration a sensible upper level is chosen 

elif name == 'Tyrifjorden': 

    chosen_upper_level = upper_bound # to allow integration a sensible upper level is chosen 

elif name == 'Sperillen': 

    chosen_upper_level = upper_bound # to allow integration a sensible upper level is chosen 

states.append((f"State {len(water_levels)}", water_levels[-1], chosen_upper_level))  

 

# Convert the states list into a DataFrame 

states_df = pd.DataFrame(states, columns=['State', 'Lower_Bound', 'Upper_Bound']) 

print(states_df.head(30)) 

# Choose a specific state to highlight 

# Replace 'state_number' with the actual number of the state you want to highlight 

state_number = 5  # for example, to highlight State 5 

# Set the range to +/- 1m on each side of the bounds for the KDE plot 

plot_lower_bound = lower_bound - 0.5 

plot_upper_bound = upper_bound + 0.5 if upper_bound else lower_bound + 2  # Add 2m to the upper bound if it's the last 

state 

# Filter the DataFrame for the water levels within the specified plot range 

filtered_df = df[(df['Waterlevel'] >= plot_lower_bound) & (df['Waterlevel'] <= plot_upper_bound)] 

# Calculate the meter range within each state 

states_df['Range_Meters'] = states_df['Upper_Bound'] - states_df['Lower_Bound'] 

def merge_multiple_states(states_df, merge_pairs): 

    new_states_list = [] 

    skip_indices = [] 

    # Sort the merge pairs to ensure we process them in order 

    merge_pairs.sort(key=lambda x: x[0]) 
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    for i, row in states_df.iterrows(): 

        # Check if this index is part of a pair to merge 

        merge_pair = next((pair for pair in merge_pairs if i in pair), None) 

        if merge_pair: 

            # Skip if this index is the second part of a merge pair, as it's already processed 

            if i == merge_pair[1] or i in skip_indices: 

                continue 

            first_state_idx, second_state_idx = merge_pair 

            new_lower_bound = states_df.iloc[first_state_idx]['Lower_Bound'] 

            new_upper_bound = states_df.iloc[second_state_idx]['Upper_Bound'] 

            new_states_list.append([f"Merged State {first_state_idx}-{second_state_idx}", new_lower_bound, 

new_upper_bound]) 

            # Mark indices to skip in the next iteration 

            skip_indices.extend([first_state_idx, second_state_idx]) 

        else: 

            # Add the state as is if it's not part of a merge pair 

            new_states_list.append([row['State'], row['Lower_Bound'], row['Upper_Bound']])    

    # Create a new DataFrame from the list of new and merged states 

    merged_states_df = pd.DataFrame(new_states_list, columns=['State', 'Lower_Bound', 'Upper_Bound']) 

    # Optional: Reset state names to reflect their new order 

    merged_states_df['State'] = merged_states_df.index.map(lambda x: f"State {x}") 

    return merged_states_df 

# Define the pairs of state indices to merge 

merge_pairs = [(0, 1), (2, 3), (4,5),(6,7),(8,9),(10,11),(12,13)]  # Example: Merge states at indices 0 and 1, and states at 

indices 3 and 4 

# Create the new DataFrame with merged states 

merged_states_df = merge_multiple_states(states_df, merge_pairs) 

# Calculate the meter range within each state 

merged_states_df['Range_Meters'] = states_df['Upper_Bound'] - states_df['Lower_Bound'] 

directory = '' 

# Display the updated 

print() 

print('merged states df') 

print(merged_states_df) 

# Save the Merged States DataFrame 

merged_states_df.to_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/{name}_merged_States.csv', 

index=False) 

merged_states_df.to_excel(f'/Users/simen/Desktop/Complete Master/03 Excel Products/02 

Lakes/{name}/{name}_merged_States.xlsx', index=False) 
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Appendix 18: 

Histric_Risk_Factor.py 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

import seaborn as sns 

import warnings 

from scipy.stats import gaussian_kde 

from scipy.integrate import quad 

# Suppress specific sklearn UserWarnings 

warnings.simplefilter("ignore", category=UserWarning) 

warnings.simplefilter("ignore", category=FutureWarning) 

# Load the dataset 

name = 'Tyrifjorden' 

season = 'Spring' 

df = pd.read_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/{name}_{season}_waterlevel_df.csv') 

df.dropna(inplace=True) 

observed_waterlevel = 63 

bandwidth = 0.2 

df['Waterlevel'] = pd.to_numeric(df['Waterlevel'], errors='coerce')  

# Convert 'Date' to datetime if needed 

df['Date'] = pd.to_datetime(df['Date']) 

# Setting the 'Date' column as the index for easier plotting 

df.set_index('Date', inplace=True) 

df_states = pd.read_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/{name}_merged_States.csv') 

df_states = df_states.drop(['Range_Meters'], axis=1) 

current_state = df_states[(df_states['Lower_Bound'] <= observed_waterlevel) & (df_states['Upper_Bound'] >= 

observed_waterlevel)] 

if not current_state.empty: 

    print("Current State based on the observed water level:") 

    print(current_state[['State']]) 

else: 

    print("The observed water level does not match any defined state.") 

 

# Assuming 'df' is your DataFrame 

data = { 

    'State': ['State 8-14'], 

    'Lower_Bound': [df_states.loc[8, 'Lower_Bound']],  # Lower bound from State 8 

    'Upper_Bound': [df_states.loc[14, 'Upper_Bound']]  # Upper bound from State 14 

} 

# Creating a new DataFrame with the combined information 

new_df = pd.DataFrame(data) 

result = pd.concat([df_states, new_df], ignore_index=True) 
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# Indices of rows to remove (you need to adjust these based on your DataFrame) 

indices_to_remove = list(range(8, 15))  # This would remove rows for State 8 to State 14 

# Removing the specified rows 

df_final = result.drop(indices_to_remove) 

df_final = df_final.reset_index(drop=True) 

# Rename 'State 8-14' to 'State 8' at index 8 

df_final.at[8, 'State'] = 'State 8' 

df_states = df_final 

print(df_states) 

df_states.to_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/{name}_final_states.csv', index=False) 

df_states.to_excel(f'/Users/simen/Desktop/Complete Master/03 Excel Products/02 Lakes/{name}/{name}_final_states.xlsx', 

index=False) 

# KDE and Histogram Water Levels with custom bandwidth 

plt.figure(figsize=(10, 6)) 

# Plot histogram with kernel density estimation 

sns.histplot(df['Waterlevel'], color='blue', stat='density', linewidth=0, bins=40) 

# Calculate KDE with custom bandwidth 

# Calculate the KDE for the water levels 

water_level_kde = gaussian_kde(df['Waterlevel'], bw_method=bandwidth) 

# Plot KDE curve 

x_grid = np.linspace(df['Waterlevel'].min(), df['Waterlevel'].max(), 1000) 

plt.plot(x_grid, water_level_kde(x_grid), color='red') 

plt.title(f'Kernel Density Estimation (KDE) and Histogram Plot for Water Levels during {season} in {name}') 

plt.xlabel('Water Level') 

plt.ylabel('Density') 

plt.legend(['KDE', 'Histogram']) 

plt.show() 

risk_values_df = pd.DataFrame(columns=['State', 'Energy_Shortage_Risk', 'Flood_Risk']) 

# Loop through each state to calculate and plot 

for index, state_row in df_states.iterrows(): 

    plt.figure(figsize=(10, 6)) 

    # Calculate the KDE for the water levels 

    x_grid = np.linspace(df['Waterlevel'].min(), df['Waterlevel'].max(), 1000) 

    y_dens = water_level_kde(x_grid) 

    plt.plot(x_grid, y_dens, label='Overall KDE', color='blue') 

    # Energy Shortage Risk: integrate from min water level to the lower bound 

    energy_shortage_risk = quad(water_level_kde, df['Waterlevel'].min(), state_row['Lower_Bound'])[0] 

    energy_shortage_risk = max(energy_shortage_risk, 0)  # Ensure non-negative 

    # Flood Risk: integrate from the upper bound to max water level 

    flood_risk = quad(water_level_kde, state_row['Upper_Bound'], df['Waterlevel'].max())[0] 

    flood_risk = max(flood_risk, 0)  # Ensure non-negative 

    # Append the risks to the DataFrame 

    new_row = pd.DataFrame({ 

        'State': [state_row['State']], 

        'Energy_Shortage_Risk': [energy_shortage_risk], 
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        'Flood_Risk': [flood_risk] 

    }) 

    risk_values_df = pd.concat([risk_values_df, new_row], ignore_index=True) 

    # Shade outside the state's range 

    plt.fill_between(x_grid, y_dens, where=(x_grid < state_row['Lower_Bound']), color='orange', alpha=0.5) 

    plt.fill_between(x_grid, y_dens, where=(x_grid > state_row['Upper_Bound']), color='red', alpha=0.5) 

    # Highlight the state range 

    plt.axvline(x=state_row['Lower_Bound'], color='black', linestyle='--') 

    plt.axvline(x=state_row['Upper_Bound'], color='black', linestyle='--') 

    # Adding title and labels 

    plt.title(f'KDE Plot for Water Levels in {name} -{season}- Highlighting State {index}') 

    plt.xlabel('Water Level (m)') 

    plt.ylabel('Density') 

    plt.legend() 

    plt.show() 

# Merging the dataframes on the "State" column 

historic_factor_df = pd.merge(df_states, risk_values_df, on="State") 

historic_factor_df = historic_factor_df.rename(columns={'Lower_Bound': 'Lower Bound', 'Upper_Bound': 'Upper Bound', 

'Energy_Shortage_Risk':'Energy Density','Flood_Risk':'Flood Density'}) 

print(historic_factor_df) 

historic_factor_df.to_excel(f'/Users/simen/Desktop/Complete Master/03 Excel Products/02 

Lakes/{name}/{name}_{season}_historic_factor.xlsx', index=False) 

# Save the DataFrame to a CSV file 

historic_factor_df.to_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned 

Data/{name}_{season}_historic_factor.csv', index=False) 
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Appendix 19: 

Extended_Risk_Factor.py 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

import seaborn as sns 

import warnings 

from scipy.stats import gaussian_kde 

from scipy.integrate import quad 

# Suppress specific sklearn UserWarnings 

warnings.simplefilter("ignore", category=UserWarning) 

warnings.simplefilter("ignore", category=FutureWarning) 

# Load the dataset 

name = 'Tyrifjorden' 

season = 'summer' 

df = pd.read_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/{name}_{season}_waterlevel_df.csv') 

df.dropna(inplace=True) 

observed_waterlevel = 63 

df['Waterlevel'] = pd.to_numeric(df['Waterlevel'], errors='coerce')  

df['Date'] = pd.to_datetime(df['Date']) 

df.set_index('Date', inplace=True) 

df_states = pd.read_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/{name}_merged_States.csv') 

df_states = df_states.drop(['Range_Meters'], axis=1) 

current_state = df_states[(df_states['Lower_Bound'] <= observed_waterlevel) & (df_states['Upper_Bound'] >= 

observed_waterlevel)] 

if not current_state.empty: 

    print("Current State based on the observed water level:") 

    print(current_state[['State']]) 

else: 

    print("The observed water level does not match any defined state.") 

 

data = { 

    'State': ['State 8-14'], 

    'Lower_Bound': [df_states.loc[8, 'Lower_Bound']],  # Lower bound from State 8 

    'Upper_Bound': [df_states.loc[14, 'Upper_Bound']]  # Upper bound from State 14 

} 

 

new_df = pd.DataFrame(data) 

result = pd.concat([df_states, new_df], ignore_index=True) 

indices_to_remove = list(range(8, 15))  # This would remove rows for State 8 to State 14 

df_final = result.drop(indices_to_remove) 

df_final = df_final.reset_index(drop=True) 

df_final.at[8, 'State'] = 'State 8' 
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df_states = df_final 

min_value = df['Waterlevel'].min() 

max_value = df['Waterlevel'].max() 

min_std = df['Waterlevel'].std() 

max_std = min_std   

synthetic_lower = np.random.uniform(min_value - 3*min_std, min_value, 250) 

synthetic_higher = np.random.uniform(max_value, max_value + 3*max_std, 250) 

combined_data = np.concatenate([synthetic_lower, df['Waterlevel'].values, synthetic_higher]) 

# Set the bandwidth here 

bandwidth = 0.2 

# Calculate extended KDE with custom bandwidth 

kde_extended = gaussian_kde(combined_data, bw_method=bandwidth) 

x_dens = np.linspace(combined_data.min(), combined_data.max(), 1000) 

y_dens = kde_extended(x_dens) 

risk_values_extended_df = pd.DataFrame(columns=['State', 'Energy_Shortage_Risk', 'Flood_Risk']) 

plt.figure(figsize=(10, 6)) 

plt.plot(x_dens, y_dens, label='Extended KDE', color='blue') 

# Fill the area under the KDE curve 

plt.fill_between(x_dens, y_dens, color='lightblue') 

plt.title(f'Extended KDE Plot for Water Levels in {name} ') 

plt.xlabel('Water Level (m)') 

plt.ylabel('Density') 

plt.legend() 

plt.show() 

for index, state_row in df_states.iterrows(): 

    energy_shortage_risk = quad(kde_extended, combined_data.min(), state_row['Lower_Bound'])[0] 

    flood_risk = quad(kde_extended, state_row['Upper_Bound'], combined_data.max())[0] 

 

    energy_shortage_risk = max(energy_shortage_risk, 0) 

    flood_risk = max(flood_risk, 0) 

 

    new_row = pd.DataFrame({ 

        'State': [state_row['State']], 

        'Energy_Shortage_Risk': [energy_shortage_risk], 

        'Flood_Risk': [flood_risk] 

    }) 

    risk_values_extended_df = pd.concat([risk_values_extended_df, new_row], ignore_index=True) 

    plt.figure(figsize=(10, 6)) 

    plt.plot(x_dens, y_dens, label='Extended KDE', color='blue') 

    plt.fill_between(x_dens, y_dens, where=(x_dens < state_row['Lower_Bound']), color='orange', alpha=0.5, label='Energy 

Shortage Risk') 

    plt.fill_between(x_dens, y_dens, where=(x_dens > state_row['Upper_Bound']), color='red', alpha=0.5, label='Flood Risk') 

    plt.axvline(state_row['Lower_Bound'], color='black', linestyle='--') 

    plt.axvline(state_row['Upper_Bound'], color='black', linestyle='--') 

    plt.title(f'Extended KDE Plot for Water Levels in {name} - Highlighting State {index}') 
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    plt.xlabel('Water Level (m)') 

    plt.ylabel('Density') 

    plt.legend() 

    plt.show() 

extended_factor_df = pd.merge(df_states, risk_values_extended_df, on="State") 

extended_factor_df = extended_factor_df.rename(columns={'Lower_Bound': 'Lower Bound', 'Upper_Bound': 'Upper Bound', 

'Energy_Shortage_Risk':'Energy Density','Flood_Risk':'Flood Density'}) 

print(extended_factor_df) 

extended_factor_df.to_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned 

Data/{name}_{season}_extended_factor.csv', index=False) 

extended_factor_df.to_excel(f'/Users/simen/Desktop/Complete Master/03 Excel Products/02 

Lakes/{name}/{name}_{season}_extended_factor.xlsx', index=False)  
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Appendix 20: 

Decision_Single.py 

import pandas as pd 

from sklearn.preprocessing import MinMaxScaler 

import numpy as np 

import matplotlib.pyplot as plt 

import seaborn as sns 

import warnings 

from scipy.stats import gaussian_kde 

from scipy.integrate import quad 

import sys 

import math 

# Path to the CSV file 

name = "Tyrifjorden"  

season = "Spring" #Capital First letter 

season_water = pd.read_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned 

Data/{name}_{season}_waterlevel_df.csv') 

observed_waterlevel = 63.95 

print(f'Observed Waterlevel : {observed_waterlevel}') 

print() 

if name == 'Randsfjord': 

    mean_flood = 134.689 

    LRW = 131.3 

    HRW = 134.5 

elif name == 'Tyrifjorden': 

    mean_flood = 64.2 

    LRW = 62 

    HRW = 63 

elif name == 'Sperillen': 

    mean_flood = 151.1276 

    LRW = 147.95 

    HRW = 150.25 

if observed_waterlevel > mean_flood: 

    print('We are already in a flood state above Mean Flood') 

    sys.exit() 

if observed_waterlevel < LRW: 

    print('We are already in a Water Shortage state below Lowest Regulated Water Level') 

    sys.exit() 

# Define the function to calculate risk scores with adjusted exponential scalings 

def calculate_risk_scores(observed_waterlevel, LRW, mean_flood): 

    # Initialize scores 

    flood_score = 0 

    energy_score = 0 
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    if observed_waterlevel < LRW: 

        # Maximum water shortage risk when below LRW 

        energy_score = 1  # Max water shortage risk 

    elif observed_waterlevel > mean_flood: 

        # Maximum flood risk when above Mean Flood 

        flood_score = 1  # Max flood risk 

    else: 

        # Between LRW and Mean Flood: separate exponential scaling of risks 

        normalized_level = (observed_waterlevel - LRW) / (mean_flood - LRW) 

        flood_score = 1 - np.exp(-10 * (normalized_level**5)) 

        energy_score =  np.exp(-10 * (normalized_level**2)) 

    return flood_score, energy_score 

# Baseline Risk Scores (Baseline ESR/FRS): 

baseline_FR, baseline_ESR = calculate_risk_scores(observed_waterlevel, LRW, mean_flood) 

baseline_ESR =  1 + baseline_ESR 

baseline_FR =  1 + baseline_FR 

print('Baseline Flood Risk:') #Flood Risk Score 

print(baseline_FR) 

print() 

print('Baseline Energy Shortage Risk:') # Energy Shortage Risk Score 

print(baseline_ESR) 

print() 

# Historical Seasonal Density Adjustment (H): 

Rename_1 = 'Energy Risk' 

Rename_2 = 'Flood Risk' 

# Historical Density 

historic_df = pd.read_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned 

Data/{name}_{season}_historic_factor.csv') 

historic_df = historic_df.rename(columns={Rename_1: 'Energy Density', Rename_2: 'Flood Density'}) 

current_state_historic = historic_df[(historic_df['Lower Bound'] <= observed_waterlevel) & (historic_df['Upper Bound'] >= 

observed_waterlevel)] 

w_historic = 0.7 

historic_energy_density = current_state_historic['Energy Density'].values[0] 

historic_flood_density = current_state_historic['Flood Density'].values[0] 

# Extended Density 

extended_df = pd.read_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned 

Data/{name}_{season}_extended_factor.csv') 

extended_df = extended_df.rename(columns={Rename_1: 'Energy Density', Rename_2: 'Flood Density'}) 

current_state_extended = extended_df[(extended_df['Lower Bound'] <= observed_waterlevel) & (extended_df['Upper 

Bound'] >= observed_waterlevel)] 

w_extended = 0.3 

extended_energy_density = current_state_extended['Energy Density'].values[0] 

extended_flood_density = current_state_extended['Flood Density'].values[0] 

# Density Adjustment Factor calculation (H): 

seasonal_density_adjustment_energy = 1 + w_historic * historic_energy_density + w_extended * extended_energy_density 
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seasonal_density_adjustment_flood = 1 + w_historic * historic_flood_density + w_extended * extended_flood_density 

print('Density Adjustment Factors (H):') 

print(f'Energy Density Adjustment : {seasonal_density_adjustment_energy}') 

print(f'Flood Density Adjustment : {seasonal_density_adjustment_flood}') 

# Current Reservoir Capacity (C) 

Remove_1 = 'Waterflow' 

print("\nCapacity Factor (C):") 

# Load capacity data 

capacity_df = pd.read_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/{name}_Total_Daily.csv') 

capacity_df = capacity_df.drop([Remove_1], axis=1) 

# Filter the dataset between water levels 62 meters and 64.2 meters 

filtered_df = capacity_df[(capacity_df['Waterlevel'] >= LRW) & (capacity_df['Waterlevel'] <= mean_flood)] 

# Calculate Normalized Reservoir Level 

# Find the maximum value 

max_reservoir_value = filtered_df['Reservoir'].max() 

# Print the entire row(s) where the reservoir is at its maximum capacity 

max_reservoir_rows = filtered_df[filtered_df['Reservoir'] == max_reservoir_value] 

# Print the entire row(s) where the reservoir is at its minimum capacity 

min_reservoir_value = filtered_df['Reservoir'].min() 

min_reservoir_rows = filtered_df[filtered_df['Reservoir'] == min_reservoir_value] 

# Find the row corresponding most closely to the observed water level 

closest_row = filtered_df.iloc[(filtered_df['Waterlevel'] - observed_waterlevel).abs().argsort()[:1]] 

# Calculate normalized reservoir level for the closest row 

normalized_reservoir = closest_row['Reservoir'].values[0] / max_reservoir_value 

# Define thresholds and scaling factors 

L = 0.2  # Low threshold approx 5% percentile 

H = 0.7  # High threshold approx 95% percentile 

alpha = 2  # Scaling factor for low reservoir levels 

beta = 3  # Scaling factor for high reservoir levels 

# Calculate the capacity adjustment factors for flood and energy risks 

def calculate_capacity_factors(normalized_reservoir, L, H, alpha, beta): 

    if normalized_reservoir <= L: 

        energy_capacity_factor = 1 + alpha * (L - normalized_reservoir) 

    else: 

        energy_capacity_factor = 1 

    if normalized_reservoir >= H: 

        flood_capacity_factor = 1 + beta * (normalized_reservoir - H) 

    else: 

        flood_capacity_factor = 1 

    return flood_capacity_factor, energy_capacity_factor 

flood_capacity_factor, energy_capacity_factor = calculate_capacity_factors(normalized_reservoir, L, H, alpha, beta) 

# Print results 

print(f"Flood Capacity Factor: {flood_capacity_factor}") 

print(f"Energy Capacity Factor: {energy_capacity_factor}") 

# Regulatory Constraints (R): 
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print() 

print('Regulatory Constraints Factor') 

# Define a function to calculate the penalty factors for flood and energy risks with pre-threshold adjustments 

def calculate_penalty_factors(observed_level, HRW, LRW, pre_threshold=0.2): 

    flood_penalty_factor = 1 

    energy_penalty_factor = 1 

    regulation_zone = HRW - LRW 

    lower_threshold = LRW + pre_threshold * regulation_zone 

    upper_threshold = HRW - pre_threshold * regulation_zone 

    # Energy penalty factor increases as the water level gets closer to LRW 

    if observed_level < lower_threshold: 

        energy_penalty_factor += (lower_threshold - observed_level) / (lower_threshold - LRW) 

    # Flood penalty factor increases as the water level exceeds upper threshold 

    if observed_level > HRW: 

        flood_penalty_factor = 1  # Regulatory measures mitigate flood risk above HRW 

    elif observed_level > upper_threshold: 

        flood_penalty_factor += (observed_level - upper_threshold) / (HRW - upper_threshold) 

    return flood_penalty_factor, energy_penalty_factor 

# Calculate the penalty factors 

flood_penalty_factor, energy_penalty_factor = calculate_penalty_factors(observed_waterlevel, HRW, LRW) 

# Print results 

print(f"Flood Penalty Factor for {name}: {flood_penalty_factor}") 

print(f"Energy Penalty Factor for {name}: {energy_penalty_factor}") 

# Seasonal Trends  (S): 

# Load seasonal trend data 

trend_analysis_df = pd.read_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned 

Data/{name}_seasonal_trend.csv') 

seasonal_trend = trend_analysis_df.loc[trend_analysis_df['Season'] == season, 'Slope'].values[0] 

# Calculate Seasonal Deviation 

mean_water_season = season_water['Waterlevel'].mean() 

std_water_season = season_water['Waterlevel'].std() 

seasonal_deviation = (observed_waterlevel - mean_water_season) / std_water_season 

# Calculate Seasonal Volatility 

# Convert Date column to datetime 

season_water['Date'] = pd.to_datetime(season_water['Date']) 

# Extract year from the Date column 

season_water['Year'] = season_water['Date'].dt.year 

# Calculate the standard deviation for each year 

yearly_volatility = season_water.groupby('Year')['Waterlevel'].std() 

# Calculate the average volatility across all years 

seasonal_volatility = yearly_volatility.mean() 

# Seasonal Scaling Factor 

seasonal_k = 0.8 

# Calculate the Seasonal Adjustment Factors 

def calculate_seasonal_adjustment_factor(seasonal_deviation, seasonal_trend, seasonal_volatility, seasonal_k, type='flood'): 
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    if type == 'flood': 

        adjustment_factor = 1 + seasonal_k * (seasonal_deviation + seasonal_trend + seasonal_volatility) 

        adjustment_factor = max(adjustment_factor, 1.1)  # Set a minimum value to avoid negative risks 

    elif type == 'energy': 

        # Ensure the adjustment factor remains positive by using an absolute value 

        adjustment_factor = 1 + seasonal_k * (seasonal_deviation - seasonal_trend + seasonal_volatility) 

        adjustment_factor = max(adjustment_factor, 1.1)  # Set a minimum value to avoid negative risks 

    return adjustment_factor 

seasonal_adjustment_factor_flood = calculate_seasonal_adjustment_factor(seasonal_deviation, seasonal_trend, 

seasonal_volatility, seasonal_k, type='flood') 

seasonal_adjustment_factor_energy = calculate_seasonal_adjustment_factor(seasonal_deviation, seasonal_trend, 

seasonal_volatility, seasonal_k, type='energy') 

# Print results 

print() 

print('Seasonal Adjustment Factor for Flood (S_flood):') 

print(seasonal_adjustment_factor_flood) 

print('Seasonal Adjustment Factor for Energy (S_energy):') 

print(seasonal_adjustment_factor_energy) 

# Final Risk before decision factor 

print() 

print('Final Scores') 

final_ESR = baseline_ESR * seasonal_density_adjustment_energy * energy_capacity_factor  * energy_penalty_factor * 

seasonal_adjustment_factor_energy 

print(f'Final ESR, before decision factor : {final_ESR}') 

 

final_FR = baseline_FR * seasonal_density_adjustment_flood * flood_capacity_factor * flood_penalty_factor * 

seasonal_adjustment_factor_flood 

print(f'Final FR, before decision factor : {final_FR}') 

# Decision Risk Score (D): 

print() 

print('Decision Risk Score') 

# Energy Shortage Factors 

ESR_increase = 1.2  # Increase outflow gives a 20% increase in Energy Shortage Risk 

ESR_decrease = 0.8  # Decrease outflow gives 20% decrease in Energy Shortage Risk 

ESR_maintain = 1    # Maintain outflow gives no change in final risk 

# Flood Factors 

FR_increase = 0.8  # Increase outflow gives a 20% decrease in Flood Risk 

FR_decrease = 1.2  # Decrease outflow gives a 20% increase in Flood Risk 

FR_maintain = 1    # Maintain outflow gives no change in final risk 

# Calculate final risks 

def calculate_decision_risks(final_ESR, final_FR): 

    # Increase 

    ESR_increase_risk = ESR_increase * final_ESR 

    FR_increase_risk = FR_increase * final_FR 
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    # Decrease 

    ESR_decrease_risk = ESR_decrease * final_ESR 

    FR_decrease_risk = FR_decrease * final_FR 

 

    # Maintain 

    ESR_maintain_risk = ESR_maintain * final_ESR 

    FR_maintain_risk = FR_maintain * final_FR 

    return { 

        'Increase': {'ESR': ESR_increase_risk, 'FR': FR_increase_risk}, 

        'Decrease': {'ESR': ESR_decrease_risk, 'FR': FR_decrease_risk}, 

        'Maintain': {'ESR': ESR_maintain_risk, 'FR': FR_maintain_risk} 

    } 

# Get the decision risks 

decision_risks = calculate_decision_risks(final_ESR, final_FR) 

if observed_waterlevel < HRW: 

    print(f'Observed Waterlevel : {observed_waterlevel}m in {season}') 

    # Print the results with 4 decimal places 

    print('Increase:') 

    print(f'Energy Shortage Rrisk : {decision_risks["Increase"]["ESR"]:.4f}') 

    print(f'Flood Risk : {decision_risks["Increase"]["FR"]:.4f}') 

    print('Decrease:') 

    print(f'Energy Shortage Risk : {decision_risks["Decrease"]["ESR"]:.4f}') 

    print(f'Flood Risk : {decision_risks["Decrease"]["FR"]:.4f}') 

    print('Maintain:') 

    print(f'Energy Shortage Risk : {decision_risks["Maintain"]["ESR"]:.4f}') 

    print(f'Flood Risk : {decision_risks["Maintain"]["FR"]:.4f}') 

else: 

    print(f'Observed Waterlevel : {observed_waterlevel}m in {season}') 

    # Print the results with 4 decimal places 

    print('Decrease:') 

    print(f'Energy Shortage Risk : {decision_risks["Decrease"]["ESR"]:.4f}') 

    print(f'Flood Risk : {decision_risks["Decrease"]["FR"]:.4f}') 

    print('Maintain:') 

    print(f'Energy Shortage Risk : {decision_risks["Maintain"]["ESR"]:.4f}') 

    print(f'Flood Risk : {decision_risks["Maintain"]["FR"]:.4f}') 

 

 

# Calculate KDE for the water levels 

water_level_kde = gaussian_kde(season_water['Waterlevel']) 

x_dens = np.linspace(season_water['Waterlevel'].min(), season_water['Waterlevel'].max(), 100) 

y_dens = water_level_kde(x_dens) 

 

# Extract lower and upper bounds from current_state_historic 

lower_bound = current_state_historic['Lower Bound'].values[0] 

upper_bound = current_state_historic['Upper Bound'].values[0] 
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# Create arrays for lower and upper bounds with the same length as x_dens 

lower_bound_array = np.full_like(x_dens, lower_bound) 

upper_bound_array = np.full_like(x_dens, upper_bound) 

 

# KDE plot for the entire range 

plt.figure(figsize=(10, 6)) 

plt.plot(x_dens, y_dens, label='KDE') 

 

# Shade the outside of the selected state 

plt.fill_between(x_dens, y_dens, where=(x_dens <= lower_bound_array), alpha=0.5, color='orange', label='Energy Shortage 

Risk') 

plt.fill_between(x_dens, y_dens, where=(x_dens >= upper_bound_array), alpha=0.5, color='red', label='Flood Risk') 

 

# Highlight the selected state (leave it unshaded) 

plt.axvline(lower_bound, color='black', linestyle='--') 

plt.axvline(upper_bound, color='black', linestyle='--') 

plt.axvline(observed_waterlevel, color='blue', label='Observed Waterlevel') 

plt.title(f'KDE Plot for Water Levels in {name} in {season}') 

plt.xlabel('Water Level (m)') 

plt.ylabel('Density') 

plt.legend() 

plt.show() 

 

if observed_waterlevel < HRW: 

 

    # Decision points and their corresponding risk scores 

    decision_points = ['Increase', 'Decrease', 'Maintain'] 

    ESR_scores = [decision_risks[point]['ESR'] for point in decision_points] 

    FR_scores = [decision_risks[point]['FR'] for point in decision_points] 

     

    # Plot the decision points on the KDE plot 

    plt.scatter(ESR_scores, FR_scores, color='black', label='Decision Points') 

     

    # Annotate the decision points with text 

    for point, ESR, FR in zip(decision_points, ESR_scores, FR_scores): 

        plt.text(ESR, FR, point, ha='left') 

     

    plt.xlabel('Energy Shortage Risk') 

    plt.ylabel('Flood Risk') 

     

    plt.show() 

 

else: 

    # Decision points and their corresponding risk scores 
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    decision_points = ['Decrease', 'Maintain'] 

    ESR_scores = [decision_risks[point]['ESR'] for point in decision_points] 

    FR_scores = [decision_risks[point]['FR'] for point in decision_points] 

     

    # Plot the decision points on the KDE plot 

    plt.scatter(ESR_scores, FR_scores, color='black', label='Decision Points') 

     

    # Annotate the decision points with text 

    for point, ESR, FR in zip(decision_points, ESR_scores, FR_scores): 

        plt.text(ESR, FR, point, ha='left') 

     

    plt.xlabel('Energy Shortage Risk') 

    plt.ylabel('Flood Risk') 

     

    plt.show() 
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Appendix 21: 

Decision_for_loop.py 

 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

import numpy as np 

import matplotlib.pyplot as plt 

import warnings 

import matplotlib.pyplot as plt 

import numpy as np 

from sklearn.preprocessing import MinMaxScaler 

# Suppress specific sklearn UserWarnings 

warnings.simplefilter("ignore", category=UserWarning) 

warnings.simplefilter("ignore", category=FutureWarning) 

# Example lake name and current conditions 

lake_name = "Sperillen" 

season = "Summer" 

current_waterlevel = 151 

# Load seasonal trend data 

trend_analysis_df = pd.read_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned 

Data/{lake_name}_seasonal_trend.csv') 

seasonal_trend = trend_analysis_df.loc[trend_analysis_df['Season'] == season, 'Slope'].values[0] 

# Load seasonal water level data 

season_water = pd.read_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned 

Data/{lake_name}_{season}_waterlevel_df.csv') 

# Load density data 

historic_df = pd.read_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned 

Data/{lake_name}_{season}_historic_factor.csv') 

extended_df = pd.read_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned 

Data/{lake_name}_{season}_extended_factor.csv') 

historic_df = historic_df.rename(columns={'Energy Risk': 'Energy Density', 'Flood Risk': 'Flood Density'}) 

extended_df = extended_df.rename(columns={'Energy Risk': 'Energy Density', 'Flood Risk': 'Flood Density'}) 

 

# Load capacity data 

capacity_df = pd.read_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/{lake_name}_Total_Daily.csv') 

capacity_df = capacity_df.drop(['Waterflow'], axis=1) 

 

# Define thresholds and scaling factors 

L = 0.2  # Low threshold approx 5% percentile 

H = 0.7  # High threshold approx 95% percentile 

alpha = 2  # Scaling factor for low reservoir levels 

beta = 3  # Scaling factor for high reservoir levels 
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# Define reservoir regulation parameters 

if lake_name == 'Randsfjord': 

    mean_flood = 134.689 

    LRW = 131.3 

    HRW = 134.5 

elif lake_name == 'Tyrifjorden': 

    mean_flood = 64.2 

    LRW = 62 

    HRW = 63 

elif lake_name == 'Sperillen': 

    mean_flood = 151.1276 

    LRW = 147.95 

    HRW = 150.25 

 

# Define the function to calculate risk scores with adjusted exponential scalings 

def calculate_risk_scores(observed_waterlevel, LRW, mean_flood): 

    # Initialize scores 

    flood_score = 0 

    energy_score = 0 

 

    if observed_waterlevel < LRW: 

        # Maximum water shortage risk when below LRW 

        energy_score = 1  # Max water shortage risk 

    elif observed_waterlevel > mean_flood: 

        # Maximum flood risk when above Mean Flood 

        flood_score = 1  # Max flood risk 

    else: 

        # Between LRW and Mean Flood: separate exponential scaling of risks 

        normalized_level = (observed_waterlevel - LRW) / (mean_flood - LRW) 

 

         

        flood_score = 1 - np.exp(-10 * (normalized_level**5)) 

        energy_score =  np.exp(-10 * (normalized_level**2)) 

    return flood_score, energy_score 

 

# Define the parameters 

water_levels = np.linspace(LRW, mean_flood, 3000) 

 

# Calculate the scores for each water level 

flood_scores = [] 

energy_scores = [] 

 

for level in water_levels: 

    flood_score, energy_score = calculate_risk_scores(level, LRW, mean_flood) 

    flood_scores.append(flood_score) 
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    energy_scores.append(energy_score) 

 

# Plotting the results 

plt.figure(figsize=(10, 6)) 

plt.plot(water_levels, flood_scores, label='Flood Risk Score', color='blue') 

plt.plot(water_levels, energy_scores, label='Energy Shortage Risk Score', color='red') 

plt.axvline(LRW, color='green', linestyle='--', label='LRW') 

plt.axvline(mean_flood, color='purple', linestyle='--', label='Mean Flood') 

plt.xlabel('Observed Water Level') 

plt.ylabel('Risk Score') 

plt.title('Exponential Risk Scores for Flood and Energy Shortage') 

plt.legend() 

plt.grid(True) 

plt.show() 

 

# Function to calculate capacity factors 

def calculate_capacity_factors(normalized_reservoir, L, H, alpha, beta): 

    if normalized_reservoir <= L: 

        energy_capacity_factor = 1 + alpha * (L - normalized_reservoir) 

    else: 

        energy_capacity_factor = 1 

 

    if normalized_reservoir >= H: 

        flood_capacity_factor = 1 + beta * (normalized_reservoir - H) 

    else: 

        flood_capacity_factor = 1 

 

    return flood_capacity_factor, energy_capacity_factor 

 

# Function to calculate penalty factors 

def calculate_penalty_factors(observed_level, HRW, LRW, pre_threshold=0.2): 

    flood_penalty_factor = 1 

    energy_penalty_factor = 1 

    regulation_zone = HRW - LRW 

    lower_threshold = LRW + pre_threshold * regulation_zone 

    upper_threshold = HRW - pre_threshold * regulation_zone 

 

    if observed_level < lower_threshold: 

        energy_penalty_factor += (lower_threshold - observed_level) / (lower_threshold - LRW) 

 

    if observed_level > HRW: 

        flood_penalty_factor = 1 

    elif observed_level > upper_threshold: 

        flood_penalty_factor += (observed_level - upper_threshold) / (HRW - upper_threshold) 
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    return flood_penalty_factor, energy_penalty_factor 

 

# Function to calculate seasonal adjustment factors 

def calculate_seasonal_adjustment_factor(seasonal_deviation, seasonal_trend, seasonal_volatility, seasonal_k, type='flood'): 

    if type == 'flood': 

        adjustment_factor = 1 + seasonal_k * (seasonal_deviation + seasonal_trend + seasonal_volatility) 

        adjustment_factor = max(adjustment_factor, 1)  # Set a minimum value to avoid negative risks 

    elif type == 'energy': 

        adjustment_factor = 1 + seasonal_k * (-1*seasonal_deviation - seasonal_trend + seasonal_volatility) 

        adjustment_factor = max(adjustment_factor, 1) 

    return adjustment_factor 

 

# Define decision factors 

ESR_increase = 1.2  # Increase outflow gives a 20% increase in Energy Shortage Risk 

ESR_decrease = 0.8  # Decrease outflow gives 20% decrease in Energy Shortage Risk 

ESR_maintain = 1  # Maintain outflow gives no change in final risk 

FR_increase = 0.8  # Increase outflow gives a 20% decrease in Flood Risk 

FR_decrease = 1.2  # Decrease outflow gives a 20% increase in Flood Risk 

FR_maintain = 1  # Maintain outflow gives no change in final risk 

# Iterate through observed water levels from 62 to 64.2 in increments of 0.05 

results = [] 

combined = [] 

decision_scores = [] 

for observed_waterlevel in np.arange(LRW, mean_flood, 0.05): 

    baseline_FR, baseline_ESR = calculate_risk_scores(observed_waterlevel, LRW, mean_flood) 

    baseline_FR = 1 + baseline_FR 

    baseline_ESR = 1 + baseline_ESR 

    # Historical Density 

    current_state_historic = historic_df[(historic_df['Lower Bound'] <= observed_waterlevel) & (historic_df['Upper Bound'] 

>= observed_waterlevel)] 

    historic_energy_density = current_state_historic['Energy Density'].values[0] 

    historic_flood_density = current_state_historic['Flood Density'].values[0] 

    # Extended Density 

    current_state_extended = extended_df[(extended_df['Lower Bound'] <= observed_waterlevel) & (extended_df['Upper 

Bound'] >= observed_waterlevel)] 

    extended_energy_density = current_state_extended['Energy Density'].values[0] 

    extended_flood_density = current_state_extended['Flood Density'].values[0] 

    # Density Adjustment Factor calculation (H) 

    w_historic = 0.7 

    w_extended = 0.3 

    seasonal_density_adjustment_energy = 1 + w_historic * historic_energy_density + w_extended * 

extended_energy_density 

    seasonal_density_adjustment_flood = 1 + w_historic * historic_flood_density + w_extended * extended_flood_density 

    # Capacity Factor (C) 

    filtered_df = capacity_df[(capacity_df['Waterlevel'] >= LRW) & (capacity_df['Waterlevel'] <= mean_flood)] 
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    max_reservoir_value = filtered_df['Reservoir'].max() 

    closest_row = filtered_df.iloc[(filtered_df['Waterlevel'] - observed_waterlevel).abs().argsort()[:1]] 

    normalized_reservoir = closest_row['Reservoir'].values[0] / max_reservoir_value 

    flood_capacity_factor, energy_capacity_factor = calculate_capacity_factors(normalized_reservoir, L, H, alpha, beta) 

    # Regulatory Constraints (R) 

    flood_penalty_factor, energy_penalty_factor = calculate_penalty_factors(observed_waterlevel, HRW, LRW) 

    # Seasonal Trends (S) 

    mean_water_season = season_water['Waterlevel'].mean() 

    std_water_season = season_water['Waterlevel'].std() 

    seasonal_deviation = (observed_waterlevel - mean_water_season) / std_water_season 

    # Convert Date column to datetime 

    season_water['Date'] = pd.to_datetime(season_water['Date']) 

    # Extract year from the Date column 

    season_water['Year'] = season_water['Date'].dt.year 

    yearly_volatility = season_water.groupby('Year')['Waterlevel'].std() 

    seasonal_volatility = yearly_volatility.mean() 

    seasonal_k = 0.8 

    seasonal_adjustment_factor_flood = calculate_seasonal_adjustment_factor(seasonal_deviation, seasonal_trend, 

seasonal_volatility, seasonal_k, type='flood') 

    seasonal_adjustment_factor_energy = calculate_seasonal_adjustment_factor(seasonal_deviation, seasonal_trend, 

seasonal_volatility, seasonal_k, type='energy') 

    # Final Risk 

    final_ESR = baseline_ESR * seasonal_density_adjustment_energy * energy_capacity_factor * energy_penalty_factor * 

seasonal_adjustment_factor_energy 

    final_FR = baseline_FR * seasonal_density_adjustment_flood * flood_capacity_factor * flood_penalty_factor * 

seasonal_adjustment_factor_flood 

        # Decision Risk Score (D) 

    ESR_increase_risk = ESR_increase * final_ESR 

    FR_increase_risk = FR_increase * final_FR 

 

    ESR_decrease_risk = ESR_decrease * final_ESR 

    FR_decrease_risk = FR_decrease * final_FR 

 

    ESR_maintain_risk = ESR_maintain * final_ESR 

    FR_maintain_risk = FR_maintain * final_FR 

 

    # Append the decision scores 

    decision_scores.append({ 

        'Observed Water Level': observed_waterlevel, 

        'ESR Increase Risk': ESR_increase_risk, 

        'FR Increase Risk': FR_increase_risk, 

        'ESR Decrease Risk': ESR_decrease_risk, 

        'FR Decrease Risk': FR_decrease_risk, 

        'ESR Maintain Risk': ESR_maintain_risk, 

        'FR Maintain Risk': FR_maintain_risk 
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    }) 

    # Store results 

    results.append({ 

        'Observed Water Level': observed_waterlevel, 

        'Final Energy Shortage Risk (ESR)': final_ESR, 

        'Final Flood Risk (FR)': final_FR 

    }) 

     

    # Append the results to the results list 

    combined.append({ 

        'Observed Water Level': observed_waterlevel, 

        'Baseline Flood Risk': baseline_FR, 

        'Baseline Energy Shortage Risk': baseline_ESR, 

        'Energy Density Adjustment (H)': seasonal_density_adjustment_energy, 

        'Flood Density Adjustment (H)': seasonal_density_adjustment_flood, 

        'Flood Capacity Factor (C)': flood_capacity_factor, 

        'Energy Capacity Factor (C)': energy_capacity_factor, 

        'Flood Penalty Factor (R)': flood_penalty_factor, 

        'Energy Penalty Factor (R)': energy_penalty_factor, 

        'Seasonal Adjustment Factor for Flood (S_flood)': seasonal_adjustment_factor_flood, 

        'Seasonal Adjustment Factor for Energy (S_energy)': seasonal_adjustment_factor_energy, 

        'Final Energy Shortage Risk (ESR)': final_ESR, 

        'Final Flood Risk (FR)': final_FR, 

    }) 

combined_df = pd.DataFrame(combined) 

# Save the slopes of the trend analysis as CSV 

combined_df.to_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned 

Data/combined_df_{lake_name}_{season}.csv', index=False) 

combined_df.to_excel(f'/Users/simen/Desktop/Complete Master/03 Excel Products/02 

Lakes/{lake_name}/combined_df_{lake_name}_{season}.xlsx', index=False) 

# Convert results to DataFrame for further analysis or plotting 

results_df = pd.DataFrame(results) 

print(results_df) 

# Plotting the results 

plt.figure(figsize=(12, 6)) 

plt.plot(results_df['Observed Water Level'], results_df['Final Energy Shortage Risk (ESR)'], label='Energy Shortage Risk 

(ESR)', color='b', marker='o') 

plt.plot(results_df['Observed Water Level'], results_df['Final Flood Risk (FR)'], label='Flood Risk (FR)', color='r', marker='x') 

# Adding vertical lines for LRW, HRW, and mean_flood 

plt.axvline(x=LRW, color='yellow', linestyle='--', label='LRW') 

plt.axvline(x=HRW, color='black', linestyle='--', label='HRW') 

plt.axvline(x=mean_flood, color='purple', linestyle='--', label='Mean Flood Level') 

plt.xlabel('Observed Water Level (m)') 

plt.ylabel('Final Risk') 

plt.title(f'Final Risk Scores vs. Observed Water Level for {season}') 
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plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left') 

plt.grid(True) 

plt.show() 

decision_scores_df = pd.DataFrame(decision_scores) 

print(decision_scores_df) 

# Convert decision scores to DataFrame 

decision_scores_df = pd.DataFrame(decision_scores) 

decision_scores_df.to_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned 

Data/decision_risk_df_{lake_name}_{season}.csv', index=False) 

x_cutoff = HRW  # Replace this with the desired x-axis value 

# Create masks for the points up to the cutoff 

esr_mask = np.where(decision_scores_df['Observed Water Level'] <= x_cutoff, decision_scores_df['ESR Increase Risk'], 

np.nan) 

fr_mask = np.where(decision_scores_df['Observed Water Level'] <= x_cutoff, decision_scores_df['FR Increase Risk'], 

np.nan) 

# Plotting decision scores 

plt.figure(figsize=(12, 6)) 

plt.plot(decision_scores_df['Observed Water Level'], esr_mask, label='ESR Increase Risk', color='b', marker='o') 

plt.plot(decision_scores_df['Observed Water Level'], fr_mask, label='FR Increase Risk', color='r', marker='x') 

plt.plot(decision_scores_df['Observed Water Level'], decision_scores_df['ESR Decrease Risk'], label='ESR Decrease Risk', 

color='g', marker='s') 

plt.plot(decision_scores_df['Observed Water Level'], decision_scores_df['FR Decrease Risk'], label='FR Decrease Risk', 

color='c', marker='^') 

plt.plot(decision_scores_df['Observed Water Level'], decision_scores_df['ESR Maintain Risk'], label='ESR Maintain Risk', 

color='m', marker='d') 

plt.plot(decision_scores_df['Observed Water Level'], decision_scores_df['FR Maintain Risk'], label='FR Maintain Risk', 

color='y', marker='v') 

# Adding vertical lines for LRW, HRW, and mean_flood 

plt.axvline(x=LRW, color='yellow', linestyle='--', label='LRW') 

plt.axvline(x=HRW, color='black', linestyle='--', label='HRW') 

plt.axvline(x=mean_flood, color='purple', linestyle='--', label='Mean Flood Level') 

plt.xlabel('Observed Water Level (m)') 

plt.ylabel('Risk') 

plt.title(f'Decision Risk Scores vs. Observed Water Level for {season}') 

plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left') 

plt.grid(True) 

plt.show() 

# Plotting decision scores with histogram in the background 

fig, ax1 = plt.subplots(figsize=(12, 6)) 

# Plot the histogram of the seasonal water level data 

ax1.hist(season_water['Waterlevel'], bins=30, color='gray', alpha=0.6, edgecolor='black') 

ax1.set_xlabel('Observed Water Level (m)') 

ax1.set_ylabel('Frequency') 

ax1.set_title(f'Decision Risk Scores vs. Observed Water Level for {season}') 

# Create a secondary y-axis for the risk scores 
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ax2 = ax1.twinx() 

# Plot the decision risk scores 

ax2.plot(decision_scores_df['Observed Water Level'], decision_scores_df['ESR Increase Risk'], label='ESR Increase Risk', 

color='b', marker='o') 

ax2.plot(decision_scores_df['Observed Water Level'], decision_scores_df['FR Increase Risk'], label='FR Increase Risk', 

color='r', marker='x') 

ax2.plot(decision_scores_df['Observed Water Level'], decision_scores_df['ESR Decrease Risk'], label='ESR Decrease Risk', 

color='g', marker='s') 

ax2.plot(decision_scores_df['Observed Water Level'], decision_scores_df['FR Decrease Risk'], label='FR Decrease Risk', 

color='c', marker='^') 

ax2.plot(decision_scores_df['Observed Water Level'], decision_scores_df['ESR Maintain Risk'], label='ESR Maintain Risk', 

color='m', marker='d') 

ax2.plot(decision_scores_df['Observed Water Level'], decision_scores_df['FR Maintain Risk'], label='FR Maintain Risk', 

color='y', marker='v') 

# Adding vertical lines for LRW, HRW, and mean_flood 

ax2.axvline(x=LRW, color='yellow', linestyle='--', label='LRW') 

ax2.axvline(x=HRW, color='black', linestyle='--', label='HRW') 

ax2.axvline(x=mean_flood, color='purple', linestyle='--', label='Mean Flood Level') 

ax2.set_ylabel('Risk') 

# Combine legends from both axes 

lines, labels = ax1.get_legend_handles_labels() 

lines2, labels2 = ax2.get_legend_handles_labels() 

ax2.legend(lines + lines2, labels + labels2, bbox_to_anchor=(1.05, 1), loc='upper left') 

plt.grid(True) 

plt.show() 

# Function to normalize a single column in a DataFrame 

def normalize_column(df, column_name): 

    scaler = MinMaxScaler() 

    df[column_name] = scaler.fit_transform(df[[column_name]]) 

    return df 

# Function to normalize selected columns in a DataFrame together 

def normalize_columns_together(df, columns): 

    min_val = df[columns].min().min() 

    max_val = df[columns].max().max() 

    df[columns] = (df[columns] - min_val) / (max_val - min_val) 

    return df 

# List of columns to normalize in each DataFrame 

results_columns_to_normalize = ['Final Energy Shortage Risk (ESR)', 'Final Flood Risk (FR)'] 

# Normalize each column in results_df individually 

for col in results_columns_to_normalize: 

    results_df = normalize_column(results_df, col) 

# List of columns to normalize together in decision_scores_df 

esr_columns_to_normalize = ['ESR Increase Risk', 'ESR Decrease Risk', 'ESR Maintain Risk'] 

fr_columns_to_normalize = ['FR Increase Risk', 'FR Decrease Risk', 'FR Maintain Risk'] 

# Normalize each set of columns in decision_scores_df together 
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decision_scores_df = normalize_columns_together(decision_scores_df, esr_columns_to_normalize) 

decision_scores_df = normalize_columns_together(decision_scores_df, fr_columns_to_normalize) 

# Verify normalization 

print("Normalized decision_scores_df:") 

for col_set in [esr_columns_to_normalize, fr_columns_to_normalize]: 

    for col in col_set: 

        print(f"{col}: min = {decision_scores_df[col].min()}, max = {decision_scores_df[col].max()}") 

# Plotting the results 

plt.figure(figsize=(12, 6)) 

plt.plot(results_df['Observed Water Level'], results_df['Final Energy Shortage Risk (ESR)'], label='Energy Shortage Risk 

(ESR)', color='b', marker='o') 

plt.plot(results_df['Observed Water Level'], results_df['Final Flood Risk (FR)'], label='Flood Risk (FR)', color='r', marker='x') 

# Adding vertical lines for LRW, HRW, and mean_flood 

plt.axvline(x=LRW, color='yellow', linestyle='--', label='LRW') 

plt.axvline(x=HRW, color='black', linestyle='--', label='HRW') 

plt.axvline(x=mean_flood, color='purple', linestyle='--', label='Mean Flood Level') 

plt.xlabel('Observed Water Level (m)') 

plt.ylabel('Final Risk') 

plt.title(f'Final Risk Scores vs. Observed Water Level for {season}') 

plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left') 

plt.grid(True) 

plt.show() 

# Mask the data points for ESR and FR increase risks beyond HRW 

x_cutoff = HRW  # Replace this with the desired x-axis value 

esr_mask = np.where(decision_scores_df['Observed Water Level'] <= x_cutoff, decision_scores_df['ESR Increase Risk'], 

np.nan) 

fr_mask = np.where(decision_scores_df['Observed Water Level'] <= x_cutoff, decision_scores_df['FR Increase Risk'], 

np.nan) 

# Plotting decision scores 

plt.figure(figsize=(12, 6)) 

plt.plot(decision_scores_df['Observed Water Level'], esr_mask, label='ESR Increase Risk', color='b', marker='o') 

plt.plot(decision_scores_df['Observed Water Level'], fr_mask, label='FR Increase Risk', color='r', marker='x') 

plt.plot(decision_scores_df['Observed Water Level'], decision_scores_df['ESR Decrease Risk'], label='ESR Decrease Risk', 

color='g', marker='s') 

plt.plot(decision_scores_df['Observed Water Level'], decision_scores_df['FR Decrease Risk'], label='FR Decrease Risk', 

color='c', marker='^') 

plt.plot(decision_scores_df['Observed Water Level'], decision_scores_df['ESR Maintain Risk'], label='ESR Maintain Risk', 

color='m', marker='d') 

plt.plot(decision_scores_df['Observed Water Level'], decision_scores_df['FR Maintain Risk'], label='FR Maintain Risk', 

color='y', marker='v') 

# Adding vertical lines for LRW, HRW, and mean_flood 

plt.axvline(x=LRW, color='yellow', linestyle='--', label='LRW') 

plt.axvline(x=HRW, color='black', linestyle='--', label='HRW') 

plt.axvline(x=mean_flood, color='purple', linestyle='--', label='Mean Flood Level') 

plt.xlabel('Observed Water Level (m)') 
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plt.ylabel('Risk') 

plt.title(f'Decision Risk Scores vs. Observed Water Level for {season}') 

plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left') 

plt.grid(True) 

plt.show() 

# Plotting decision scores with histogram in the background 

fig, ax1 = plt.subplots(figsize=(12, 6)) 

# Plot the histogram of the seasonal water level data 

ax1.hist(season_water['Waterlevel'], bins=30, color='gray', alpha=0.6, edgecolor='black') 

ax1.set_xlabel('Observed Water Level (m)') 

ax1.set_ylabel('Frequency') 

ax1.set_title(f'Decision Risk Scores vs. Observed Water Level for {season}') 

# Create a secondary y-axis for the risk scores 

ax2 = ax1.twinx() 

# Plot the decision risk scores 

ax2.plot(decision_scores_df['Observed Water Level'], esr_mask, label='ESR Increase Risk', color='b', marker='o') 

ax2.plot(decision_scores_df['Observed Water Level'], fr_mask, label='FR Increase Risk', color='r', marker='x') 

ax2.plot(decision_scores_df['Observed Water Level'], decision_scores_df['ESR Decrease Risk'], label='ESR Decrease Risk', 

color='g', marker='s') 

ax2.plot(decision_scores_df['Observed Water Level'], decision_scores_df['FR Decrease Risk'], label='FR Decrease Risk', 

color='c', marker='^') 

ax2.plot(decision_scores_df['Observed Water Level'], decision_scores_df['ESR Maintain Risk'], label='ESR Maintain Risk', 

color='m', marker='d') 

ax2.plot(decision_scores_df['Observed Water Level'], decision_scores_df['FR Maintain Risk'], label='FR Maintain Risk', 

color='y', marker='v') 

# Adding vertical lines for LRW, HRW, and mean_flood 

ax2.axvline(x=LRW, color='yellow', linestyle='--', label='LRW') 

ax2.axvline(x=HRW, color='black', linestyle='--', label='HRW') 

ax2.axvline(x=mean_flood, color='purple', linestyle='--', label='Mean Flood Level') 

ax2.set_ylabel('Risk') 

ax2.set_xlim(left=ax1.get_xlim()[0], right=mean_flood + 0.2)  

# Combine legends from both axes 

lines, labels = ax1.get_legend_handles_labels() 

lines2, labels2 = ax2.get_legend_handles_labels() 

ax2.legend(lines + lines2, labels + labels2, bbox_to_anchor=(1.05, 1), loc='upper left') 

plt.grid(True) 

plt.show() 

print() 

print() 

norm_decision_scores = decision_scores_df 

norm_results = results_df 

norm_decision_scores.to_excel(f'/Users/simen/Desktop/Complete Master/03 Excel Products/02 

Lakes/{lake_name}/norm_risk_dec_values_{lake_name}_{season}.xlsx', index=False) 

#results_df.to_excel(f'/Users/simen/Desktop/Complete Master/03 Excel Products/02 

Lakes/{lake_name}/norm_results_values_{lake_name}_{season}.xlsx', index=False) 
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# Find the row with the closest observed water level to the current water level 

closest_row = decision_scores_df.iloc[(decision_scores_df['Observed Water Level'] - current_waterlevel).abs().argmin()] 

# Print the decision scores for the closest observed water level 

print(f"Closest decision scores for observed water level {closest_row['Observed Water Level']}:") 

print(closest_row) 
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Appendix 22: 

Complete Risk Values 

Tyrifjorden: 
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Sperillen: 

 



167 
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Randsfjorden: 
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Appendix 23: 

Sensitivity_Analysis.py 

 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

# Example lake name and current conditions 

lake_name = "Randsfjord" 

season = "Autumn" 

# Load combined dataset 

combined_df = pd.read_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned 

Data/combined_df_{lake_name}_{season}.csv') 

seasonal_adjustment_flood_range = np.linspace(combined_df['Seasonal Adjustment Factor for Flood (S_flood)'].mean() * 

0.9, 

                                              combined_df['Seasonal Adjustment Factor for Flood (S_flood)'].mean() * 1.1, 5) 

seasonal_adjustment_energy_range = np.linspace(combined_df['Seasonal Adjustment Factor for Energy (S_energy)'].mean() 

* 0.9, 

                                               combined_df['Seasonal Adjustment Factor for Energy (S_energy)'].mean() * 1.1, 5) 

density_adjustment_flood_range = np.linspace(combined_df['Flood Density Adjustment (H)'].mean() * 0.9, 

                                             combined_df['Flood Density Adjustment (H)'].mean() * 1.1, 5) 

density_adjustment_energy_range = np.linspace(combined_df['Energy Density Adjustment (H)'].mean() * 0.9, 

                                              combined_df['Energy Density Adjustment (H)'].mean() * 1.1, 5) 

 

# Initialize results list 

sensitivity_results = [] 

 

# Perform sensitivity analysis 

for seasonal_adjustment_flood in seasonal_adjustment_flood_range: 

    for seasonal_adjustment_energy in seasonal_adjustment_energy_range: 

        for density_adjustment_flood in density_adjustment_flood_range: 

            for density_adjustment_energy in density_adjustment_energy_range: 

                for index, row in combined_df.iterrows(): 

                    # Extract baseline values 

                    baseline_ESR = row['Baseline Energy Shortage Risk'] 

                    baseline_FR = row['Baseline Flood Risk'] 

                    energy_density_adjustment = density_adjustment_energy 

                    flood_density_adjustment = density_adjustment_flood 

                    energy_capacity_factor = row['Energy Capacity Factor (C)'] 

                    flood_capacity_factor = row['Flood Capacity Factor (C)'] 

                    energy_penalty_factor = row['Energy Penalty Factor (R)'] 

                    flood_penalty_factor = row['Flood Penalty Factor (R)'] 

                    seasonal_adjustment_factor_energy = seasonal_adjustment_energy 

                    seasonal_adjustment_factor_flood = seasonal_adjustment_flood 
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                    # Calculate final risk scores 

                    final_ESR = baseline_ESR * energy_density_adjustment * energy_capacity_factor * energy_penalty_factor * 

seasonal_adjustment_factor_energy 

                    final_FR = baseline_FR * flood_density_adjustment * flood_capacity_factor * flood_penalty_factor * 

seasonal_adjustment_factor_flood 

 

                    sensitivity_results.append({ 

                        'Observed Water Level': row['Observed Water Level'], 

                        'Seasonal Adjustment Factor for Flood': seasonal_adjustment_flood, 

                        'Seasonal Adjustment Factor for Energy': seasonal_adjustment_energy, 

                        'Flood Density Adjustment': density_adjustment_flood, 

                        'Energy Density Adjustment': density_adjustment_energy, 

                        'Final Energy Shortage Risk (ESR)': final_ESR, 

                        'Final Flood Risk (FR)': final_FR 

                    }) 

 

# Convert results to DataFrame 

sensitivity_df = pd.DataFrame(sensitivity_results) 

# Plot sensitivity analysis results for seasonal adjustment factors 

plt.figure(figsize=(12, 6)) 

for factor in ['Seasonal Adjustment Factor for Flood', 'Seasonal Adjustment Factor for Energy']: 

    factor_df = sensitivity_df.groupby(factor).mean().reset_index() 

    plt.plot(factor_df[factor], factor_df['Final Energy Shortage Risk (ESR)'], label=f'Average ESR - {factor}', marker='o') 

    plt.plot(factor_df[factor], factor_df['Final Flood Risk (FR)'], label=f'Average FR - {factor}', marker='x') 

plt.xlabel('Factor Value') 

plt.ylabel('Average Risk') 

plt.title('Sensitivity Analysis of Risk Factors: Seasonal Adjustment Factors') 

plt.legend() 

plt.grid(True) 

plt.show() 

# Plot sensitivity analysis results for density adjustments 

plt.figure(figsize=(12, 6)) 

for factor in ['Flood Density Adjustment', 'Energy Density Adjustment']: 

    factor_df = sensitivity_df.groupby(factor).mean().reset_index() 

    plt.plot(factor_df[factor], factor_df['Final Energy Shortage Risk (ESR)'], label=f'Average ESR - {factor}', marker='o') 

    plt.plot(factor_df[factor], factor_df['Final Flood Risk (FR)'], label=f'Average FR - {factor}', marker='x') 

plt.xlabel('Factor Value') 

plt.ylabel('Average Risk') 

plt.title('Sensitivity Analysis of Risk Factors: Density Adjustments') 

plt.legend() 

plt.grid(True) 

plt.show() 

# Local Sensitivity Analysis: Plot each factor separately 

for factor in ['Seasonal Adjustment Factor for Flood', 'Seasonal Adjustment Factor for Energy', 'Flood Density Adjustment', 

'Energy Density Adjustment']: 
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    plt.figure(figsize=(12, 6)) 

    factor_df = sensitivity_df.groupby(factor).mean().reset_index() 

    plt.plot(factor_df[factor], factor_df['Final Energy Shortage Risk (ESR)'], label=f'Average ESR - {factor}', marker='o') 

    plt.plot(factor_df[factor], factor_df['Final Flood Risk (FR)'], label=f'Average FR - {factor}', marker='x') 

    plt.xlabel(f'{factor} Value') 

    plt.ylabel('Average Risk') 

    plt.title(f'Local Sensitivity Analysis of {factor}') 

    plt.legend() 

    plt.grid(True) 

    plt.show() 

# Global Sensitivity Analysis: Simultaneously vary multiple parameters 

# Compute mean and standard deviation of final risks for each combination 

grouped_sensitivity_df = sensitivity_df.groupby(['Seasonal Adjustment Factor for Flood', 'Seasonal Adjustment Factor for 

Energy', 'Flood Density Adjustment', 'Energy Density Adjustment']).agg({'Final Energy Shortage Risk (ESR)': ['mean', 'std'], 

'Final Flood Risk (FR)': ['mean', 'std']}).reset_index() 

# Plot global sensitivity analysis results 

plt.figure(figsize=(12, 6)) 

plt.errorbar(grouped_sensitivity_df['Seasonal Adjustment Factor for Flood'], grouped_sensitivity_df['Final Energy Shortage 

Risk (ESR)']['mean'], yerr=grouped_sensitivity_df['Final Energy Shortage Risk (ESR)']['std'], label='ESR - Seasonal 

Adjustment Factor for Flood', fmt='o') 

plt.errorbar(grouped_sensitivity_df['Seasonal Adjustment Factor for Energy'], grouped_sensitivity_df['Final Energy Shortage 

Risk (ESR)']['mean'], yerr=grouped_sensitivity_df['Final Energy Shortage Risk (ESR)']['std'], label='ESR - Seasonal 

Adjustment Factor for Energy', fmt='x') 

plt.errorbar(grouped_sensitivity_df['Flood Density Adjustment'], grouped_sensitivity_df['Final Flood Risk (FR)']['mean'], 

yerr=grouped_sensitivity_df['Final Flood Risk (FR)']['std'], label='FR - Density Adjustment for Flood', fmt='s') 

plt.errorbar(grouped_sensitivity_df['Energy Density Adjustment'], grouped_sensitivity_df['Final Flood Risk (FR)']['mean'], 

yerr=grouped_sensitivity_df['Final Flood Risk (FR)']['std'], label='FR - Density Adjustment for Energy', fmt='d') 

plt.xlabel('Parameter Value') 

plt.ylabel('Average Risk with Std Dev') 

plt.title('Global Sensitivity Analysis of Risk Factors') 

plt.legend() 

plt.grid(True) 

plt.show() 
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Appendix 24 External Reports and Sources 
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