
1

E2
SIMEN ASHEIM ASKELAND

SUPERVISOR: ATLE ØGLEND

Risk-Based Decisions for
Water Resource Management
in Drammensvassdraget

Master thesis 2024
Industrial Economics
Faculty of Science and Technology

2

Preface

I became interested in hydropower during the Hans flood in Norway in 2023. The idea that

empty reservoirs could have prevented this event stuck with me and guided my choice for a

master's thesis. I discovered an abundance of data on water levels, reservoir volumes, and

water flow in Norway's reservoirs, making this topic not only fascinating but also rich in open

data. My prior interest in decision-making, decision support, and decision analysis at UiS

further solidified my choice. After substantial preliminary work, I decided on this project.

The journey proved more challenging than anticipated, a thought likely shared by many who

undertake a master's thesis. I aimed to keep things simple, believing that the foundation for

assessing risk doesn't necessarily require the latest in computing power and statistical

analysis. Consequently, I developed a decision-support formula to serve as a preliminary risk

assessment tool based on given water levels during specific seasons. The principles of

reservoir management have remained largely unchanged over the past century, despite the

absence of modern computing power back then. This endeavor has highlighted the complexity

of reservoir management and the multitude of factors that influence it. My attempt to simplify

the process has often been incredibly challenging, revealing the necessity for complex

solutions involving substantial data processing and simulation.

I would like to extend my gratitude to Atle Øglend from UiS for his guidance and to the

Norwegian Water Resources and Energy Directorate (NVE) for their help.

Abstract

This thesis develops a decision-support formula for water resource management in the

Drammensvassdraget region, aimed at balancing electricity generation and flood risk

mitigation. By leveraging historical data and statistical analyses, the formula quantifies flood

and energy shortage risks without relying on predictive forecasting. Sensitivity analyses

reveal that flood risk is highly sensitive to seasonal and density adjustments, while energy

shortage risk is moderately sensitive, especially to seasonal factors.

Key findings indicate the formula's practical utility in real-world scenarios, particularly in

helping operators make informed water resource management decisions. By providing a

quantitative basis for balancing electricity generation and flood risk.

3

The research underscores the formula's strengths, including its robust statistical foundation

and practical applicability. However, limitations such as reliance on historical data and the

exclusion of immediate weather forecasts are acknowledged. The research emphasizes the

need for expert judgment in interpreting the risk values produced by the formula, particularly

under extreme conditions.

Overall, this thesis is yet another tool to the field of water resource management, offering a

comprehensive decision-support tool that integrates historical data, regulatory constraints, and

seasonal variations.

4

Table of Contents

1. Introduction ... 9

Importance of risk management in Water and Energy Management 10

Research Objective and Scope ... 11

Introduction to Drammensvassdraget Region.. 11
Key Reservoirs ... 12
Powerplants in Drammensvassdraget .. 14

2. Theoretical Framework .. 16

3. Research Design .. 20

4. Exploratory Data Analysis .. 22

Dataset .. 22

Correlation .. 23

Descriptive Statistics .. 25
Statistical Analysis ... 25
Seasonal Analysis .. 33

Multimodal Analysis .. 44

Summary of Exploratory Data Analysis .. 46

5. Methodology .. 49

Understanding the decision-support framework. ... 49

Formula ... 51

Formula Preparation ... 52

6. Development and Design of the Formula .. 55

Historical and Extended Density Adjustment (D) .. 55

Current Reservoir Capacity (C) .. 58

Regulatory Constraints (R).. 58

Season Factor (S) ... 59

Baseline Flood and Energy Shortage Score and Final Risk Scores... 60

Decision Factor .. 62

Priming the variables .. 65

Test runs.. 65
Single_Decision.py ... 66
Decision_for_loop.py ... 68

7. Sensitivity Analysis... 70

Seasonal Adjustment ... 70
Observations .. 71

5

Density Adjustment ... 72
Observations .. 72

Global Sensitivity .. 73
Observations .. 74

Key Findings ... 75

8. Final Decision-Support Formula.. 76

9. Summary and Discussion ... 79

Final thoughts and Future Directions .. 82

10. Bibliography ... 84

11. AI Disclosure .. 86

12. Python Note .. 86

13. Dataset Downloading .. 87

14. Appendix .. 87

Abbreviations

LRW: Lowest Regulated Waterlevel

HRW: Highest Regulated Waterlevel

NVE: Norwegian Water Resources and Energy Directorate

KDE: Kernel Density Estimation

PDF: Probability Density Function

SVI: Seasonal Variability Index

C: Current Reservoir Capacity Adjustment

R: Regulatory Constraints Adjustment

S: Seasonal Trends Adjustment

ESR: Energy Shortage Risk

FR: Flood Risk

OWL: Observed Waterlevel

6

MF: Mean Flood

PT: Pre-Threshold

LT: Lower Threshold

UT: Upper Threshold

D: Density Adjustment

m.a.s.l.: meters above sea level

α: Scaling Factor for Energy Capacity Adjustment

β: Scaling Factor for Flood Capacity Adjustment

List of tables

Table 1-1 Tyrifjorden Factsheet (NVE Atlas, u.d.) .. 13

Table 1-2 Sperillen Factsheet (NVE Atlas, u.d.) .. 13

Table 1-3 Randsfjorden Factsheet (NVE Atlas, u.d.)... 14

Table 1-4 Powerplants in key reservoirs (Vannkraftdatabase, 2024). 15

Table 4-1 Cleaned Datasets .. 22

Table 4-2 Correlation Analysis of all Reservoirs ... 24

Table 4-3 Correlation Analysis of all Reservoirs ... 25

Table 4-4 Tyrifjorden Descriptive Statistics .. 26

Table 4-5 Tyrifjorden Histogram Distribution of Waterlevels .. 26

Table 4-6 Frequency and Standard Deviation Analysis Tyrifjorden 28

Table 4-7 Sperillen Descriptive Statistics .. 28

Table 4-8 Frequency and Standard Deviation Analysis Sperillen ... 30

Table 4-9 Randsfjorden Descriptive Statistics ... 30

Table 4-10 Frequency and Standard Deviation Analysis ... 32

Table 4-11 Tyrifjorden Seasonal Statistics .. 33

Table 4-12 Flood Frequencies Tyrifjorden .. 37

Table 4-13 Seasonal Statistics Sperillen .. 38

Table 4-14 Frequency Sperillen ... 40

Table 4-15 Seasonal Statistics Randsfjorden ... 42

Table 4-16 Frequency Randsfjorden .. 43

7

Table 5-1 Sperillen Waterlevel States .. 54

Table 6-1 Densities Tyrifjorden ... 57

Table 6-2 Variables for formula ... 65

Table 6-3 Test Run Factors Table .. 67

List of figures

Figure 4-1 Python Printout of the Cleaned Tyrifjorden Dataset .. 23

Figure 4-2 Time-Series Chart Tyrifjorden ... 27

Figure 4-3 Sperillen Histogram Distribution of Waterlevels ... 29

Figure 4-4 Time-Series Graph Sperillen .. 29

Figure 4-5 Randsfjorden Histogram Distribution of Waterlevels .. 31

Figure 4-6 Time-Series Graph Randsfjorden ... 31

Figure 4-7 Tyrifjorden Seasonal Histograms ... 34

Figure 4-8 Yearly Plot Example All lakes ... 35

Figure 4-9 Decomposed Time Series with fluctuations ... 36

Figure 4-10 Seasonal Trend Tyrifjorden .. 38

Figure 4-11 Seasonal Histograms Sperillen ... 39

Figure 4-12 Time-Series with seasonal fluctuations Sperillen ... 40

Figure 4-13 Seasonal Trend Sperillen .. 41

Figure 4-14 Seasonal Histograms Randsfjorden .. 42

Figure 4-15 Time-Series and Seasonal Fluctuations Randsfjorden ... 43

Figure 4-16 Seasonal Trend Randsfjorden ... 44

Figure 4-17 Multimodal Histogram Tyrifjorden .. 45

Figure 4-18 Monthly Averages Sperillen ... 46

Figure 5-1 Decision Formula vs. Decision Model ... 50

Figure 5-2 General Overview of Decision Framework .. 52

Figure 5-3 State Limits for Randsfjord .. 53

Figure 5-4 Example of States and Densities .. 54

Figure 6-1 Histogram and KDE of Tyrifjorden Historic Waterlevels...................................... 56

Figure 6-2 KDE plot for Extended waterlevels Tyrifjorden .. 56

Figure 6-3 Example of Risk Reduction After HRW .. 59

Figure 6-4 Example Baseline Flood and Energy Shortage Risk .. 60

Figure 6-5 Python print Baseline Risk Scores.. 62

Figure 6-6 Baseline Flood Risk Compete .. 62

8

Figure 6-7 Baseline Energy Shortage Risk Complete .. 62

Figure 6-8 Decision Factor Value .. 63

Figure 6-9 Printout from Tyrifjorden Final Risk.. 64

Figure 6-10 Test Run Single Decision ... 66

Figure 6-11 Complete Histogram and Risk Scores of Waterlevels.. 68

Figure 6-12 Script example Complete Formula ... 69

Figure 6-13 Printout Decisions Factors Complete Formula ... 69

Figure 7-1 Sensitivity Analysis Seasonal Adjustment ... 71

Figure 7-2 Sensitivity Analysis Density Adjustments ... 72

Figure 7-3 Global Sensitivity Analysis .. 74

Figure 8-1 Final Decision Formula Result from for-loop .. 78

Figure 9-1 Printout from Python, Density Adjustment factor .. 80

List of equations

Equation 5-1 Energy Shortage Risk Formula... 51

Equation 5-2 Flood Risk Formula .. 51

Equation 6-1 Extension Range Waterlevels ... 56

Equation 6-2 Density (Current State) Formula .. 57

Equation 6-3 Density Adjustment Factor (H) .. 57

Equation 6-4 Normalized Reservoir Level ... 58

Equation 6-5 Capacity Factors (C) ... 58

Equation 6-6 Regulatory Thresholds and Zones .. 59

Equation 6-7 Seasonal Factors (S) ... 59

Equation 6-8 Seasonal Deviation ... 60

Equation 6-9 Seasonal Volatility .. 60

Equation 6-10 Condition 1 Baseline Risks... 61

Equation 6-11 Condition 2 Baseline Risks... 61

Equation 6-12 Normalized Waterlevel ... 61

Equation 6-13 Baseline flood score.. 61

Equation 6-14 Baseline energy score ... 61

Equation 6-15 Final Energy Shortage Risk .. 62

Equation 6-16 Final Flood Risk ... 63

9

1. Introduction

Hydropower has been a pillar of renewable energy, its legacy spanning centuries and

continuously evolving with technological advancements. In Norway, hydropower has played

a pivotal role since the late 19th century, shaping the country´s industrial and economic

landscape. The nation's abundant water resources have made Norway a global leader in

hydropower development, contributing significantly to the energy security and sustainability

(International Hydropower Association, 2023). Globally, the history of hydropower is rich

with milestones that highlight its transformative impact. Early developments, such as the

invention of the Francis and Kaplan turbines, paved the way for large-scale projects like the

Hoover Dam and the Three Gorges Dam, underscoring hydropower's capacity to meet

substantial energy demands while fostering economic growth (Hydropower, 2024).

Norwegian hydropower historical evolution, from its starting stages in the late 1800s to its

current sophisticated state, mirrors global advancements in the field. Projects like Norway's

initial hydroelectric plants set a precedent for future developments, showcasing how

technological innovation and natural resource management can work together to create robust

energy systems (Regjeringen.no, 2016).

The Drammensvassdraget region, encompassing the interconnected lakes of Tyrifjorden,

Randsfjorden, and Sperillen, is a critical area where the balance between water management

and energy production is paramount. This balance was dramatically highlighted during

"Ekstremværet Hans" in August 2023, an extreme weather event that brought record-breaking

rainfall and severe flooding to the region. The storm caused extensive damage, leading to

thousands of evacuations and significant disruptions to infrastructure and daily life

(Ekstremværet Hans, 2024)

The thesis, “Risk-Based Decisions for Water Resource Management in

Drammensvassdraget”, aims to develop a framework to assist in navigating these complex

challenges. By integrating daily hydrology data from the Norwegian Water Resource and

Energy Directorate, the framework will enable decision-makers to evaluate trade-offs between

maximizing electricity generation and minimizing flood risks effectively. The research will

develop into a framework displayed as a formula or a decision model. In developing this

decision framework, research draws on the lessons from the past and recent climatic events

10

like “Ekstremværet Hans”. It will incorporate extensive statistical analysis and various

techniques to provide a robust framework for decision-making.

Ultimately, this thesis seeks to pioneer a path forward, a starting point for a computational and

AI driven management practice. It aims to be a starting point for a machine learning and data-

driven approach to the challenges of energy security and environmental sustainability,

ensuring that regions like Drammensvassdraget can thrive amidst the challenges posed by

climate change and evolving resource demands. Through this novel approach, the research

aspires to be a possibility study for the future of water management.

Importance of risk management in Water and Energy Management

Effective water and energy management is a cornerstone of sustainable development,

especially in regions heavily reliant on hydropower like Norway. Decision models are

indispensable tools in this context, providing a robust framework for optimizing resource use,

enhancing sustainability, and mitigating risks associated with extreme weather events. These

models empower policymakers and resource managers to make informed decisions based on

comprehensive data analysis and predictive simulations.

In Norway, the history and evolution of hydropower underscore the critical role of decision

models. The Norwegian Water Resources and Energy Directorate (NVE) uses sophisticated

decision models to manage the country's extensive hydropower resources. These models

integrate hydrological, climatological, and operational data to predict optimal water release

schedules, ensuring that energy production is maximized during periods of high demand

without compromising flood protection measures (Vassdragsregulanters ansvar og muligheter,

2023).

The practical application of decision models in Norwegian hydropower management provides

a compelling case study. During the spring, when the risk of flooding increases due to

snowmelt, decision models predict the timing and volume of snowmelt and coordinate the

release of water from reservoirs to prevent downstream flooding. These models help maintain

a delicate balance, ensuring that reservoirs do not overflow while preserving enough water for

energy production (NVE - Vårflom, 2020).

11

In conclusion, decision models are essential for modern water and energy management. They

provide the analytical foundation necessary for optimizing resource use, enhancing

sustainability, and mitigating the risks associated with extreme weather events. The

integration of these models into Norway’s hydropower management exemplifies their critical

role in ensuring the safe, efficient, and sustainable utilization of natural resources.

Research Objective and Scope

The objective of this thesis is to develop a novel decision-support framework for the

management of water resources in the Drammensvassdraget, particularly focusing on

Tyrifjorden, Randsfjord, and Sperillen. The research will be based on quantitative measures

generated from historical statistics, excluding the use of weather forecasts and potential snow

melting predictions. This exclusion means the model will not consider immediate weather

warnings.

The goal is not to provide definitive decisions but to offer decision-support, recognizing that

expert judgment, large computational models and qualitative assessments will always play a

role. The model aims to assist decision-makers before the final decision stage, avoiding

predictions. It can be viewed as a tool that aggregates knowledge and quantifies it, providing a

procedure that converts history and statistics into numerical data.

By focusing on historical data, the research aims to provide a reliable framework for

evaluating these trade-offs, ultimately aiding the operators in controlling the outflow of the

lakes.

Introduction to Drammensvassdraget Region

Drammensvassdraget, one of Norway's most significant river systems, it encompasses a

rainfall area of approximately 17,000 square kilometers, making it the country's third-largest

watershed. Originating in the highlands and flowing through diverse landscapes, it integrates

several major tributaries and lakes, including Tyrifjorden, Randsfjorden, and Sperillen, before

emptying into Drammensfjorden (Thorsnæs, 2023).

The river system is renowned for its hydropower potential, with numerous dams and

reservoirs harnessing the energy of water to produce a substantial portion of Norway's

12

electricity. Drammensvassdragets regulation capacity is significant, reflecting its crucial role

in both energy production and flood management. Hydropower plants along the river, such as

those at Tyrifjorden and Randsfjorden, are integral to the region's energy infrastructure,

providing a reliable and renewable energy source while also contributing to flood control

efforts (Drammensvassdraget, 2024).

Flood management in Drammensvassdraget is a vital aspect of its regulation, especially given

the historical occurrences of severe flooding. Notable flood events, like those in 1927, 1967,

and more recently, have demonstrated the importance of proactive and strategic water

management. The river's regulation involves careful monitoring and control of water levels in

its reservoirs to mitigate the risk of downstream flooding, particularly in densely populated

areas. These measures are essential for protecting both human lives and property from the

devastating impacts of floods.

In summary, Drammensvassdraget is a multifaceted river system with significant implications

for energy production, flood management, and ecological conservation in Norway. The

careful and integrated management of this river system is essential for ensuring its continued

contribution to the region's sustainable development and environmental health.

Key Reservoirs

Tyrifjorden

Tyrifjorden, Norway’s fifth-largest lake, is part of the Drammensvassdraget system, serving

as a natural regulator for downstream flow and a significant resource for hydropower

generation. This lake, situated in the municipalities of Ringerike, Hole, Lier, and Modum in

the county of Viken, spans nearly 137 square kilometers and has a reservoir volume of 134

million cubic meters (Tyrifjorden, 2024).

LRW 62 m.a.s.l.

HRW 63 m.a.s.l.

Area at HRW 136,56 km2

Reservoir Volume 134 million m3

Number of Hydropower plants 3

Mean Flood 64,2 m

5-Year Flood 64,7 m

13

10-Year Flood 64,9 m

20-Year Flood 65,1 m

50- Year Flood 65,2 m

Table 1-1 Tyrifjorden Factsheet (NVE Atlas, u.d.)

The water levels in Tyrifjorden are minorly regulated, with a low reference water level of 62

meters and a high reference water level of 63 meters (Holmqvist, 2000). This slight regulation

helps maintain a balance between water conservation and flood prevention, crucial for both

ecological stability and human activities. Tyrifjordens importance is highlighted by its use for

hydropower, with three power plants: Geithusfoss, Gravfoss 1, and Gravfoss 2, which

contribute significantly to the region's energy production (NVE - Tyrifjorden, 2024).

Sperillen

Sperillen, is within the Ådal valley in Ringerike municipality, Viken county, is a notable lake

in Norway. Covering an area of about 37 square kilometers and stretching approximately 26

kilometers in length, Sperillen ranks as the 33rd largest lake in Norway. It lies at an elevation

of 159 meters above sea level and is fed by the Begna and Urula rivers from the north, which

contribute significantly to its volume and ecosystem (Lauritzen, 2023).

LRW 147,95 m.a.s.l.

HRW 150,25 m.a.s.l.

Area at HRW 37,32 km2

Reservoir Volume 86,8 million m3

Number of Hydropower plants 4

Mean Flood 151,1276 m

5-Year Flood 151,6132 m

10-Year Flood 152,0137 m

20-Year Flood 152,4 m

50-Year Flood 152,9034 m

Table 1-2 Sperillen Factsheet (NVE Atlas, u.d.)

The lake plays a crucial role within the Begnavassdraget, part of the larger

Drammensvassdraget water system. With a substantial volume of 86.8 million cubic meters,

Sperillen is integral to the region's regulated energy production. This is highlighted by its

connection to four hydropower plants: Hensfoss, Begna, Hofsfoss, and Hønefoss, which

utilize its waters for electricity generation. The careful regulation of Sperillens water levels,

14

maintained between 147.95 meters and 150.25 meters, ensures optimal conditions for both

power production and flood management

Randsfjorden

Randsfjorden, the fourth largest lake in Norway, is a freshwater body spanning approximately

140 square kilometers at its highest regulated water level. Positioned within the counties of

Innlandet and Viken, this lake plays a vital role in the local ecosystem and hydroelectric

production. Randsfjorden has a substantial volume of more than 400 million cubic meters,

making it an essential resource for energy generation and storage. The lake supports five

hydropower plants: Bergerfoss, Kistefoss 1 and 2, Askerudfoss, and Viulfoss (Thorsnæs,

Randsfjorden, 2023).

LRW 131,3 m.a.s.l.

HRW 134,5 m.a.s.l.

Area at HRW 140,75 km2

Reservoir Volume 408,6 million m3

Number of Hydropower plants 5

Mean flood 134,689 m

5-year flood 134,9159 m

10-year flood 135,1058 m

20-year flood 135,2902 m

50-year flood 135,5321 m

Table 1-3 Randsfjorden Factsheet (NVE Atlas, u.d.)

Randsfjordens hydrological significance is underscored by its contributions to the

Drammensvassdraget system. The lake is fed by several rivers, including Etna, Dokka, Vigga,

and Fallselva, and drains into Randselva at its southern end. This connectivity facilitates the

management of water flow and energy production, highlighting the lake's integral role in

regional water resource management (Randsfjorden, 2024).

Powerplants in Drammensvassdraget

The Drammensvassdraget system is home to several hydropower plants that play a vital role

in Norway's renewable energy production. These plants harness the flow of water from

significant lakes within the system, including Tyrifjorden, Sperillen, and Randsfjorden, each

contributing to the region's energy supply and flood management capabilities.

15

These powerplants collectively underscore the Drammensvassdraget system's significance in

Norway's renewable energy landscape, highlighting the integration of natural resources and

technological advancements to meet energy demands sustainably.

Tyrifjorden

Plant Name Geithusfoss Gravfoss 1 Gravfoss 2

Max Effect 13,5 MW 18,6 MW 30,2 MW

Gross Head 9,19 m 19,7 m 20 m

Energyequivelant 0,025 kWh/m3 0,044 kWh/m3 0,048 kWh/m3

Sperillen

Plant Name Hensfoss Begna Hofsfoss Hønefoss

Max Effect 18,3 MW 5,6 MW 27 MW 29,4 MW

Gross Head 24,4 m 8 m 26,79 m 21,5 m

Energyequivelant 0,055 kWh/m3 0,018 kWh/m3 0,061 kWh/m3 0,051 kWh/m3

Randsfjorden

Plant Name Bergerfoss Kistefoss 1 Kistefoss 2 Askerudfoss Viulfoss

Max Effect 3,3 MW 1,4 MW 4,2 MW 13,2 MW 12,5 MW

Gross Head 5,4 m 9 m 10,5 m 20,6 m 17,29 m

Energyequivelant 0,013 kWh/m3 0,018 kWh/m3 0,025

kWh/m3

0,048

kWh/m3

0,042

kWh/m3

Table 1-4 Powerplants in key reservoirs (Vannkraftdatabase, 2024).

16

2. Theoretical Framework

Kernel Density Estimation (KDE):

Kernel Density Estimation (KDE) is a non-parametric way to estimate the probability density

function (PDF) of a random variable. Unlike parametric methods, KDE does not assume a

specific distribution model for the data. Instead, it uses a smooth function (kernel) to create a

continuous estimate of the data’s distribution.

Mathematical Representation:

The KDE estimate f(x) at point x is given by:

𝑓(𝑥) =
1

𝑛ℎ
∑ 𝐾

𝑛

𝑖=1

(
𝑥 − 𝑥𝑖

ℎ
)

Where:

- n is the number of data points.

- h is the bandwidth parameter, controlling the smoothness of the estimate.

- K(⋅) is the kernel function, commonly a Gaussian function:

𝐾(𝑢) =
1

√2𝜋
𝑒𝑥𝑝 (−

𝑢2

2
)

KDE is particularly useful for visualizing the underlying distribution of data, identifying

modes, and detecting the presence of multimodal distributions. In hydrology, it is used to

analyze the distribution of water levels, helping in understanding the patterns and estimating

probabilities of extreme events.

Volatility:

Volatility is best known as a statistical measure of the dispersion of returns for a given

security or market index. It indicates the degree of variation of a financial instrument's price

over time. In the context of hydrology, volatility can describe the variability in water levels,

over time.

17

Mathematical Representation:

Volatility is often quantified using the standard deviation of returns σ:

𝜎 = √
1

𝑁 − 1
∑(𝑥𝑖 − �̅�)2

𝑁

𝑖=1

where xi represents individual observations, xˉ is the mean of the observations, and N is the

number of observations.

In hydrological studies, understanding the volatility of water levels helps in assessing the risks

associated with high variability, which is crucial for flood risk management and reservoir

operation strategies.

Energyequivelant:

The Energy Equivalent is the amount of energy that can be generated from a unit of water. It

is a critical concept in hydropower engineering, linking reservoir levels to energy potential.

Each Hydropower power plant has its own Energyequivelant, which can be seen in table 1-4.

This equivalent can be multiplied by the reservoir volume to get the amount of energy that

volume represents.

Hydropower Regulation and Operation:

Hydropower Regulation and Operation involve the rules, practices, and technical measures

used to manage water flow and reservoir levels. This includes maintaining reservoir levels,

controlling water discharge, and optimizing energy production while minimizing flood risks.

Key Elements:

• Regulatory Guidelines: Standards and rules set by authorities (NVE in Norway).

• Operational Strategies: Techniques for reservoir management, including flood

control and energy production.

• Technical Measures: Use of gates, turbines, and other equipment to control water

flow.

18

Manøvreringsreglementet (Norwegian Regulation):

o Description: Norwegian regulations governing the operation and management

of hydropower plants.

o Relevance: Sets the legal and operational boundaries within which the

decision-support model operates.

Kruskal-Wallis Test:

The Kruskal-Wallis Test is a non-parametric method for testing whether samples originate

from the same distribution. It extends the Mann-Whitney U test to multiple groups. This test

does not assume a normal distribution of the data, making it suitable for comparing more than

two groups.

Mathematical Representation

𝐻 =
12

𝑁(𝑁 + 1)
∑

𝑅𝑖
2

𝑛𝑖
− 3(𝑁 + 1)

𝑘

𝑖=1

where:

• N is the total number of observations.

• k is the number of groups.

• Ni is the number of observations in the i-th group.

• Ri is the sum of ranks for the i-th group.

The Kruskal-Wallis Test is used to compare water levels across different seasons, identifying

significant differences. This helps in understanding seasonal variations and their impact on

water resource management.

P-Value:

The P-Value is the probability of obtaining test results at least as extreme as the observed

results, assuming that the null hypothesis is correct. It provides a measure of the evidence

against the null hypothesis. The P-Value is calculated based on the test statistic from a

hypothesis test. For example, in the context of the Kruskal-Wallis Test, the P-Value is derived

from the chi-square distribution.

19

In the context of the Kruskal-Wallis Test, the P-Value is used to determine the statistical

significance of the observed differences between groups. A low P-Value indicates strong

evidence against the null hypothesis, confirming significant seasonal differences in water

levels.

Sensitivity Testing:

Sensitivity Testing involves analyzing how different values of an independent variable affect

a particular dependent variable under a given set of assumptions. It assesses the impact of

varying input parameters on model outputs.

Sensitivity Testing is essential for assessing the robustness of the decision-support

framework. It identifies which parameters significantly influence the model's outcomes,

guiding improvements and ensuring reliable predictions under varying conditions.

Global and Local Variables:

Global Variables are parameters that affect the entire model universally, while Local

Variables impact specific instances or parts of the model. This distinction helps in managing

the complexity and scope of the model.

Differentiating between global and local variables is important for defining the scope and

impact of different parameters within the decision-support model. This helps in managing the

model efficiently and ensuring accurate predictions related to the dual objectives of energy

production and flood risk management.

20

3. Research Design

This chapter is meant as an overview of the research, with the methodology for the decision

framework presented in chapter 5. The reason for this separation is the nature of the research.

Before any method and choices for the framework can be made, the data and statistical

properties must be evaluated. The first step in the method will therefore be choice of path

moving forward in the decision framework.

The research employs a quantitative approach, focusing on a thorough analysis of the

statistical characteristics. It assumes that the reservoirs show strong seasonality and

correlation in reservoir volume, water level and waterflow in each unique lake. This

assumption is tested in the start of the Exploratory Data Analysis (EDA). By confirming the

assumption, the statistical analysis can be done on water level, and not all the different types

of water statistics. The primary steps of the research are:

1. Data Collection:

o Gathering historical water data from Norwegian Water Resources and Energy

Directorate.

2. Data Cleaning and Preparation

o Ensuring the consistency and reliability of the data by aligning time series,

removing inconsistencies such as zero-values, and ensuring all datasets cover

the same period.

3. Exploratory Data Analysis

o Correlation Analysis:

• Analyze the correlation in water levels and reservoir levels to confirm

assumption and to validate that water level data is a reliable indicator.

• High correlations confirm the strong positive relationship, allowing

the use of water level data for further analysis.

o Descriptive Statistics:

• Calculating key statistical measures (mean, standard deviation,

skewness, kurtosis, etc.) to understand the central tendencies and

variability of the water level.

• Visualize the data in histograms, time-series and boxplots.

o Seasonal Analysis:

21

• Segmenting the data by seasons to capture the impact of seasonal

variations.

• Analyzing trends and cycles. Identify variability in a single season.

o Seasonal Analysis:

• Using histograms, Kernel Density Estimates (KDE), and the Kruskal-

Wallis test to identify distinct seasonal modes in the water level data.

• Confirming significant seasonal differences due to seasonal impacts.

4. Decision Framework Development

o Methodology choice based on the insights from the EDA

o Developing risk scores for flood and water shortage.

5. Analysis

o Testing the robustness and responsiveness to various inputs to ensure it

reliably responds to variations in water levels and seasonal factors.

o Evaluating the performance and identifying areas for improvement by

comparing the risk scores against historical events and expert assessments.

22

4. Exploratory Data Analysis

Dataset

The datasets are gathered from the Norwegian Water Resources and Energy Directorate

(Sildre NVE, 2024). By using open-source data, the daily datapoints for Tyrifjorden, Sperillen

and Randsfjorden were downloaded. This data was uncleaned, and not processed to fit with

the study. The first action was to conduct a cleaning and preparation for the forthcoming

research. The cleaning was done with python program Data_Cleaner.py, which can be found

in appendix 1. The cleaning is intended to have the datasets align in time and datapoints.

Below is the result of the cleaning of the daily waterlevels.

Tyrifjorden

Uncleaned

Range 1994 – 2024

Datapoints 10888

Cleaned

Range 2004 – 2023

Datapoints 7305

Sperillen

Uncleaned

Range 1947 – 2024

Datapoints 28252

Cleaned

Range 2004 - 2023

Datapoints 7305

Sperillen

Uncleaned

Range 1947 – 2024

Datapoints 28252

Cleaned

Range 2004 - 2023

Datapoints 7305

Table 4-1 Cleaned Datasets

23

As we can see from the uncleaned data, Sperillen had a significant larger dataset for daily

waterlevels. Moreover, due to changes in Randsfjord regulations of water, the data was best

suited with the range 2004 throughout 2023 (Olje- og energidepartementet, 2022).

Additionally, the occurrences of zero-values were investigated in the cleaned data. If this

occurred more research into the integrity of the data would have to be conducted. In the

cleaned data there were no occurrences of zero-values. After the initial cleaning this is what

the top and bottom of the dataset looks like, Tyrifjorden is used as example.

Figure 4-1 Python Printout of the Cleaned Tyrifjorden Dataset

As showed in the printout above all datasets will have two columns, one for Date and one for

Water level, Reservoir Volume or Waterflow. All datasets can be downloaded from NVE, see

chapter 13 – Dataset Downloading.

Correlation

The first step of the EDA is to analyze the correlation between the possible datasets. As

mentioned previously the assumption is that the datasets are highly correlated. Reservoir and

Waterlevel almost or exactly perfect correlation, with waterflow possibly lagging slightly.

The reason for the lag can be because of immediate weather changes, or the capacity. A

watershed only has the possibility to let out that much water. At HRW the hatchets are open

max, so the excess over there is the max waterflow. Therefore, there is a maximum the

24

waterflow can go, even though the water might still be rising. This is what causes a flood, and

the overall theme of these research.

By doing this first step, the data analysis will be less extensive then if the thesis will need

more than one statistical analysis. Given that if there is a good correlation the analysis and

framework can rely on only one of the datasets for the most part. Below are the correlation

matrices given from the correlation analysis.

Tyrifjorden

Waterlevel Waterflow Reservoir

Waterlevel 1 0,89595 0,999935

Waterflow 0,89595 1 0,89906

Reservoir 0,999935 0,89906 1

Sperillen

Waterlevel Waterflow Reservoir

Waterlevel 1 0,707879 0,999633

Waterflow 0,707879 1 0,721373

Reservoir 0,999633 0,721373 1

Randsfjord

Waterlevel Waterflow Reservoir

Waterlevel 1 0,287398 0,999956

Waterflow 0,287398 1 0,289755

Reservoir 0,999956 0,289755 1

Table 4-2 Correlation Analysis of all Reservoirs

As the table shows the assumption was correct, and there is correlation enough to rely on only

waterlevel in the statistical analysis. The waterflow was slightly lower correlated, and even

more in Randsfjord, this is assumed to be because of the mentioned capacities of the

watersheds. Randsfjord stands out with a lower correlation on waterflow.

After the waterlevel datasets had shown to be a reliable set to analyze, the study moved on to

perform a correlation analysis on the waterlevels across the three reservoirs. This is done to

get an early indication of interconnection and gives the research more reliability that there can

be made one framework that works sufficient across the three reservoirs. The correlation

matrix is shown below.

25

Tyrifjorden Sperillen Randsfjord

Tyrifjorden 1 0,761035 0,633054

Sperillen 0,761035 1 0,775634

Randsfjord 0,633054 0,775634 1

Table 4-3 Correlation Analysis of all Reservoirs

All lakes show significant positive correlation in water levels, indicating that changes in one

lake's water level are likely to impact each other or have connecting events. The matrix

implies that the relationship between water levels across these lakes is connected, where

increases or decreases in one are reflected in the others.

The correlation analysis was done using Correlation.py, Appendix 3, and the complete

analysis with heatmaps can be seen in Appendix 2.

Descriptive Statistics

The first step of this research is to get a general overview of the statistics for the three

reservoirs. This section uses multiple python programs that will be included in the appendix.

The second assumption made in this research is the seasonality plays a major part. For that

reason, the analysis is divided into three parts, Statistical Analysis, Seasonal Analysis and a

Multimodal Analysis.

Statistical Analysis

The statistical analysis seeks to understand the distribution of waterlevels across the range.

Analyzing outliers, general statistical measurements, and variability.

The next sections provide a statistical overview of the waterlevels in Tyrifjorden, Sperillen

and Randsfjord, employing data from the Python program, Statistical_Analysis.py, Appendix

4. The datasets comprise of 7305 datapoints for Sperillen and Tyrifjorden, and 7298 for

Randsfjord, offering a robust basis for evaluating the waterlevel dynamics in the three

reservoirs.

The complete statistical analysis for all reservoirs can be found in the appendix 5-8.

26

Tyrifjorden

Tyrifjorden is the last lake in the system, with Sperillen and Randsfjorden being upstream of

Tyrifjorden, connected by Randselva and Begnavassdraget. The mean waterlevel across the

dataset is recorded at approximately 62,92 meters, which is quite high in the regulation zone.

That zone being between 62 and 63 meters, LRW and HRW respectively. With a standard

deviation of 0,38 meters, indicating moderate variability around the mean. Suggesting that the

waterlevel occasionally goes above HRW but not often closing in on LRW. Since the mean-

flood level for Tyrifjorden is 64,2 meters, going slightly above HRW is not dramatic.

Statistic Value

Mean 62,9181

Standard

Deviation

0,377319

Min 62,02999

25th percentile 62,75689

Median 62,8723

75th percentile 62,99604

90th percentile 63,31896

95th percentile 63,63215

99th percentile 64,35287

Max 65,40757

Table 4-4 Tyrifjorden Descriptive Statistics

From the table above it can be noted that 75% of the waterlevels are below HRW of 63

meters.

Table 4-5 Tyrifjorden Histogram Distribution of Waterlevels

27

There is a notable decrease in waterlevels directly above HRW, which corresponds closely to

the 75th percentile. The distribution also highlights the rarity of extreme waterlevels, on either

side. Below 62,5 meters and above approximately 63,3 meters there are not many recorded

waterlevels.

Time-Series Analysis

A time series analysis over more than two decades shows consistent seasonal fluctuations,

underscoring the assumed seasonality in the waterlevels.

Figure 4-2 Time-Series Chart Tyrifjorden

The water levels generally remain within a defined range, with occasional spikes that exceed

the flooding thresholds marked by the red dashed lines in the analysis.

Statistical Measures and Flood Incidence

78.81% of observed waterlevels fall within one standard deviation from the mean. This tight

clustering is more pronounced than in a standard normal distribution, suggesting predictability

in water level behaviors.

Frequency Standard Deviation Analysis

Condition Days Percent Number of Std Devs Percentage Within Range

Regulation Zone 5512 75,45517 1 78,80903

Caution Zone 1653 22,62834 2 90,63655

Mean to 5-Year Flood 86 1,177276 3 95,6742

28

5 to 10-Year Flood 2 0,027379 4 98,38467

10 to 20-Year Flood 6 0,082136 5 99,28816

20 to 50-Year Flood 4 0,054757 6 99,58932

50-Year Flood 15 0,205339 7 100

Total Flood Days 113 1,546886 8 100

Table 4-6 Frequency and Standard Deviation Analysis Tyrifjorden

The data categorizes 1.547% of the observation period as flood days, emphasizing the low but

non-negligible risk of flooding. The 15 days of 50-Year Flood is the extreme weather in 2023.

As we have seen in the former statistics a certain amount of the water level is recorded above

HRW for Tyrifjorden. Tyrifjorden can probably do this due to the relatively big margin from

HRW to mean-flood.

Sperillen

The mean water level in Sperillen is approximately 149.63 meters with a standard deviation of

0.71 meters, reflecting a moderate level of variability. Although, a significant increase from

the variability in Tyrifjorden.

Statistic Value

Mean 149,6315

Standard

Deviation

0,71156

Min 148,1312

25% 149,0202

Median 149,7027

75% 150,1673

90% 150,3899

95% 150,5535

99% 151,6396

Max 154,023

Table 4-7 Sperillen Descriptive Statistics

The data is mainly centralized; the histogram below illustrates that most water levels are

tightly clustered around the mean and median (149.70 meters). Moreover, there are sharper

declines after one standard deviation from the mean.

29

Figure 4-3 Sperillen Histogram Distribution of Waterlevels

Notably, the frequency of occurrences diminishes significantly for water levels above the 75th

percentile, highlighting the infrequency of extremely high-water levels, which peak at a

maximum of 154.02 meters. Much like Tyrifjorden.

Time-Series Analysis

The time-series for Sperillen resembles Tyrifjorden and reveals a pattern of season water level

fluctuations.

Figure 4-4 Time-Series Graph Sperillen

The water levels oscillate within the regulated range (LRW/HRW), marked by yellow dashed

lines, suggesting consistent management and predictable behavior of the lake over time.

Notably, critical flooding thresholds indicated by red dashed lines are seldom exceeded.

30

Statistical Measures and Flood Incidence

Much like Tyrifjorden, Sperillen shows approximately 73.85% of the data points are within

one standard deviation from the mean, indicating less variability than a normal distribution

might suggest.

Frequency Standard Deviation Analysis

Condition Days Percent Number of Std Devs Percentage Within Range

Regulation Zone 5919 81,02669 1 73,85352

Caution Zone 1233 16,87885 2 95,50992

Mean to 5-Year Flood 74 1,013005 3 98,4668

5 to 10-Year Flood 38 0,520192 4 99,56194

10 to 20-Year Flood 21 0,287474 5 99,86311

20 to 50-Year Flood 13 0,17796 6 99,97262

50-Year Flood 5 0,068446 7 100

Total Flood Days 151 2,067077 8 100

Table 4-8 Frequency and Standard Deviation Analysis Sperillen

The data also shows that 2.07% of the observation days fall under various flood conditions,

underscoring the occasional but important flood risk.

Randsfjorden

The average water level of Randsfjord stands at approximately 133.50 meters with a standard

deviation of 0.87 meters. This level of deviation suggests a moderate fluctuation around the

mean, primarily staying within a predictable range.

Statistic Value

Mean 133,5049

Standard

Deviation

0,871948

Min 131,43

25% 132,84

Median 133,9

75% 134,15

90% 134,35

95% 134,4618

99% 134,66

Max 136,07

Table 4-9 Randsfjorden Descriptive Statistics

31

Most water levels are clustered around the median of 133.9 meters, and the frequency

distribution decreases for levels beyond the 75th percentile, culminating at a maximum of

136.07 meters.

Figure 4-5 Randsfjorden Histogram Distribution of Waterlevels

Notably, there looks to be a higher frequency in the lower range toward LRW, than with the

two other reservoirs.

Time-Series Analysis

The time series analysis spanning over two decades shows that Randsfjord maintains a stable

water level with regular seasonal variations. These variations are well-contained within the

established regulatory thresholds.

Figure 4-6 Time-Series Graph Randsfjorden

32

Statistical Measures and Flood Incidence

An impressive 82.65% of the data points lie within one standard deviation from the mean,

emphasizing the lake's stability, uniformity and predictability.

Frequency Standard Deviation Analysis

Condition Days Percent Number of Std Devs Percentage Within Range

Regulation Zone 7063 96,77994 1 82,65278

Caution Zone 146 2,000548 2 99,26007

Mean to 5-Year Flood 34 0,465881 3 100

5 to 10-Year Flood 2 0,027405 4 100

10 to 20-Year Flood 2 0,027405 5 100

20 to 50-Year Flood 5 0,068512 6 100

50-Year Flood 21 0,28775 7 100

Total Flood Days 64 0,876953 8 100

Table 4-10 Frequency and Standard Deviation Analysis

The occurrence of days with flooding conditions is remarkably low (less than 1%), which

reinforces the effectiveness of the existing water management strategies to handle high-water

events. Randsfjorden stands out with its low flooding and highly regulated waterlevels

between LRW and HRW.

Summary

The statistical analyses of water levels in Tyrifjorden, Sperillen, and Randsfjord provide

insights into the hydrological stability and variability of these lakes. Each analysis, grounded

in robust datasets and comprehensive statistical metrics, underscores both the individual

characteristics and shared behaviors of these water reservoirs.

Across all three lakes, the analyses highlight a strong tendency toward central clustering of

water levels around the mean, with water levels falling within a predictable range. The

frequency of floods is shown to be rare, but noticeable for Sperillen and Tyrifjorden.

Randsfjorden stands out with an impressive flooding percent below 1.

Despite similarities in management success, the reservoirs exhibit varying degrees of natural

variability. For example, Randsfjord shows remarkable predictability with 82.65% of

observations falling within one standard deviation from the mean, compared to 78.81% for

Tyrifjorden and 73.85% for Sperillen.

33

The risk of flooding, while generally low across all reservoirs, is meticulously documented,

with each lake experiencing rare but notable high-water. Randsfjord displays a very low

incidence of flood days (0.88%).

Seasonal Analysis

Based on the statistical analysis the study observed seasonal patterns that needs to be

analyzed. The seasonal analysis will separate the datasets in seasons, and perform the same

statistical analysis done before. Furthermore, the trends for the seasons will be analyzed. The

complete seasonal analysis can be found in the appendix 9-11. The analysis is done in the

python program Seasonal_Analysis_Waterlevel.py, appendix 8. For the datasets to start at the

start of a season, the datasets will be filtered to start 1st March 2004. The first season will then

be spring 2004.

Tyrifjorden

The seasonal statistics table provides a comprehensive overview of the mean, standard

deviation, minimum, and maximum water levels for each season. The data reveals that

autumn has the highest mean water level, indicating generally stable conditions with

occasional peaks. Spring, on the other hand, shows the lowest mean but the highest standard

deviation, reflecting significant variability.

Season mean std min 25% 50% 75% max SVI

Autumn 63,02 0,32 62,48 62,83 62,94 63,04 65,25 0,007203

Spring 62,79 0,45 62,03 62,48 62,73 62,97 64,61 0,006588

Summer 63,06 0,42 62,27 62,82 62,92 63,12 65,41 0,005076

Winter 62,81 0,17 62,33 62,66 62,84 62,94 63,61 0,00273

Table 4-11 Tyrifjorden Seasonal Statistics

Summer's water levels are comparable to autumn's, with considerable variability suggesting

extreme weather events. Winter displays the lowest variability, indicating more consistent

water levels likely due to freezing conditions.

34

Figure 4-7 Tyrifjorden Seasonal Histograms

The seasonal changes are quite apparent with winter having no floods and stable waterlevels,

before the waterlevel increase when spring comes. There are incidents of flood in the spring.

As summer histogram shows the higher waterlevels seem to come from an increasing level

throughout spring. The year ending with a declining waterlevel in autumn, moving into

winter.

35

Figure 4-8 Yearly Plot Example All lakes

36

What we can take out from the time-series above, from 2013, is the seasonal changes

connecting with the histogram. 2013 is taken as an example, and this graph is for all

reservoirs. It will not be shown in the other reservoirs seasonal analysis. The plots can be

made using python and the python program Yearly_plots.py. The graph shows and increasing

waterlevel in spring, and large outflow during summer. Summer and autumn displaying more

volatility due to changing weather. The spring smelt is what makes the higher waterlevels in

summer.

Time-Series and Seasonal Fluctuations

The decomposed time-series analysis offers a clear visualization of the waterlevels over two

decades, capturing both the observed values and the seasonal components. The actual

observed water levels exhibit sharp peaks and downs, highlighting significant fluctuations and

extreme events.

Figure 4-9 Decomposed Time Series with fluctuations

This pattern is particularly pronounced in spring and summer, where climatic factors such as

precipitation and snowmelt probably contribute to the variability. The seasonal component of

the time-series shows a consistent cyclical pattern, underscoring the strong influence of

seasonal changes on water levels. This regular cycle suggests that despite yearly variations,

the underlying seasonal trends remain stable, driven by predictable factors.

Flood Incidence

Spring and summer are marked by higher variability and a greater incidence of flood days.

Summer experiences a high frequency of flood days. Autumn shows a reduction in flood days

compared to summer, reflecting a transition to more stable water levels. Winter, with its low

variability and absence of flood days, presents the most stable scenario, likely due to freezing

conditions that limit water level fluctuations.

37

Spring Summer Autumn Winter

Below 62 0 0 0 0

62 to 63 1381 1123 1147 1633

63 to 64.2 329 578 535 131

64.2 to 64.7 38 26 22 0

64.7 to 64.9 0 0 2 0

64.9 to 65.1 0 4 2 0

65.1 to 65.2 0 3 1 0

Above 65.2 0 14 1 0

Total Flood Days 38 47 28 0

Table 4-12 Flood Frequencies Tyrifjorden

Box plots for each season provide additional insights into the distribution and spread of water

levels. These plots reveal not only the central tendencies but also the range and presence of

outliers. Spring and summer show higher mean levels and more pronounced spreads, as

evidenced by the interquartile ranges, suggesting more substantial fluctuations in water levels

during these periods. The box plots can be seen in the Seasonal Analysis Tyrifjorden

appendix.

Seasonal Trend

The trend analysis across different seasons reveals distinct patterns in waterlevel changes.

Spring shows a positive slope, suggesting an overall increase in water levels as the season

progresses, which may be due to snowmelt and increased rainfall. This trend highlights the

potential for increased flooding risks in spring, necessitating proactive water management

strategies. In contrast, summer, autumn, and winter exhibit negative slopes, indicating a

general decline in water levels throughout these seasons.

38

Figure 4-10 Seasonal Trend Tyrifjorden

The statistical significance of these trends is confirmed by p-values, found in appendix, well

below the 0.05 threshold, indicating that these patterns are not due to random chance.

However, the practical implications of these trends require careful consideration. Given that

the trends, while significant, are possibly not practical, the trend is not large. The trend is not

from a certain water level to a flooding level.

Sperillen

Autumn shows relatively stable water levels with a modest variability, indicating a balanced

hydrological state. In contrast, spring displays the highest variability

Season mean std min 25% 50% 75% max

Autumn 149,96 0,5 148,15 149,74 150,09 150,28 151,87

Spring 149,27 0,81 148,13 148,69 148,98 149,6 152,79

Summer 149,95 0,69 148,17 149,62 150,01 150,31 154,02

Winter 149,36 0,5 148,44 148,92 149,29 149,81 150,42

Table 4-13 Seasonal Statistics Sperillen

39

Summer's water levels are like those in autumn but with increased variability. Winter, with

the lowest variability, indicates consistent water levels. The histograms of seasonal water

levels provide insights into the distribution across different times of the year.

Figure 4-11 Seasonal Histograms Sperillen

Spring's histogram highlights a significant increase in water levels within the 149 to 150.25-

meter range.

Time-Series and Seasonal Fluctuations

The decomposed time-series analysis of Sperillens water levels reveals significant seasonal

fluctuations, characterized by peaks and downs. The actual observed water levels show

substantial variability, particularly during spring and summer.

40

Figure 4-12 Time-Series with seasonal fluctuations Sperillen

The seasonal component of the time-series analysis showcases a predictable and repetitive

pattern, underlining a seasonal effect on water levels. This consistent cycle indicates that

despite inter-annual variations, the underlying seasonal trends remain stable, influenced by

predictable climatic factors.

Variation and Flood Incidence

Like Tyrifjorden, spring and summer are marked by higher variability and a greater incidence

of flood days.

Waterlevel Spring Summer Autumn Winter

Below 147.95 0 0 0 0

147.95 to 150.25 1494 1234 1216 1694

150.25 to 151.1276 188 452 474 70

151.1276 to 151.6132 29 26 16 0

151.6132 to 152.0137 23 11 4 0

152.0137 to 152.4 11 10 0 0

152.4 to 152.9034 3 10 0 0

Above 152.9034 0 5 0 0

Total Flood Days 66 62 20 0

Table 4-14 Frequency Sperillen

Summer experiences a high frequency of flood days. Autumn shows a reduction in flood days

compared to summer, reflecting a transition to more stable water levels. Winter, with its low

variability and absence of flood days, presents the most stable scenario.

41

Seasonal Trend

The trend analysis reveals distinct patterns in water level changes across different seasons.

Spring shows a positive slope, suggesting an overall increase in water levels as the season

progresses.

Figure 4-13 Seasonal Trend Sperillen

In contrast, summer, autumn, and winter exhibit negative slopes, indicating a general decline

in water levels.

Randsfjorden

The seasonal statistics table for Randsfjord reveals a consistent pattern in water levels across

different seasons. Autumn displays relatively stable water levels, evidenced by a low standard

deviation, indicating less variability and fewer extreme fluctuations. In contrast, spring

exhibits increased variability.

Season mean std min 25% 50% 75% max

Autumn 134,17 0,26 132,95 134,03 134,15 134,35 135,66

Spring 132,55 0,88 131,43 131,9 132,18 133,14 134,82

42

Summer 134,04 0,39 132,35 133,95 134,08 134,21 136,07

Winter 133,27 0,61 132,03 132,77 133,29 133,74 134,5

Table 4-15 Seasonal Statistics Randsfjorden

The histogram analysis highlights significant seasonal variance in water levels. Spring and

summer show elevated water levels reaching into higher flood-risk categories, with spring

having 12 and summer 33 total flood days, respectively.

Figure 4-14 Seasonal Histograms Randsfjorden

Autumn's distribution, with negative skewness, suggests a tail of lower water levels, while the

high kurtosis indicates a peaked distribution with potential for extreme high-water levels.

Winter's symmetric distribution, with fewer outliers, aligns with no recorded flood days,

reflecting stable water levels during this season.

Time-Series and Seasonal Fluctuations

The decomposed time-series analysis of Randsfjord waterlevels indicates a cyclical seasonal

pattern with noticeable peaks, reflecting substantial fluctuations driven by environmental and

climatic influences.

43

Figure 4-15 Time-Series and Seasonal Fluctuations Randsfjorden

The regularity in the seasonal component suggests that the lake's response to seasonal changes

is consistent over the years. This pattern underscores the predictable nature of seasonal

variations.

Flood Incidence

As with the two other reservoirs, Randsfjorden experience flooding in 3 out of 4 seasons.

With summer with the highest frequency of flood.

Waterlevel Spring Summer Autumn Winter

Below 131.3 0 0 0 0

131.3 to 134.5 1702 1686 1608 1757

134.5 to 134.689 34 29 83 0

134.689 to 134.9159 12 10 12 0

134.9159 to 135.1058 0 0 2 0

135.1058 to 135.2902 0 0 2 0

135.2902 to 135.5321 0 4 1 0

Above 135.5321 0 19 2 0

Total Flood Days 12 33 19 0

Table 4-16 Frequency Randsfjorden

Seasonal Trend

The trend analysis reveals distinct patterns in water level changes across different seasons.

Spring shows a significant increase in water levels

44

Figure 4-16 Seasonal Trend Randsfjorden

Winter shows a remarkable decline in waterlevels before going on to the increase in spring.

Multimodal Analysis

The multimodal analysis of water levels in three lakes, Tyrifjorden, Sperillen, and Randsfjord,

was conducted to understand the impact of seasonal variations. Using histograms, Kernel

Density Estimates (KDE), and the Kruskal-Wallis test, the analysis identified distinct seasonal

modes in the water level data. The python program used for the multimodal analysis is

multimodal_analysis.py, appendix 14. The complete multimodal analysis can be found in

appendix 12.

In Tyrifjorden, the histograms and KDE plots showed varied peaks and distributions for

different seasons, suggesting distinct modes. Monthly averages revealed water levels were

lowest in early spring, peaked in June, and slightly declined towards autumn. The Kruskal-

Wallis test, with an H-statistic of 1074.35 and a p-value near zero, confirmed significant

differences across seasons, supporting the multimodal distribution due to seasonal variations.

45

Figure 4-17 Multimodal Histogram Tyrifjorden

Sperillens water levels displayed similar seasonal fluctuations. Histograms and KDE plots

indicated multiple modes corresponding to different times of the year. Monthly averages

showed levels rising in March, peaking in May and June, and remaining high until November.

The Kruskal-Wallis test, with an H-statistic of 1757s, confirmed significant seasonal

differences, reinforcing the multimodal nature of the data due to seasonal impacts.

46

Figure 4-18 Monthly Averages Sperillen

Randsfjord exhibited distinct water level distributions for each season. Histograms and KDE

plots indicated multiple modes, with levels rising dramatically from March to May, peaking in

early summer, and stabilizing until a slight drop in December. The Kruskal-Wallis test, with

an H-statistic of 3712.69 and a p-value of 0.0, confirmed significant seasonal differences,

supporting the multimodal distribution driven by distinct environmental factors.

In conclusion, the multimodal analysis demonstrated that seasonal variations significantly

influence water levels in Tyrifjorden, Sperillen, and Randsfjorden. This understanding is

crucial for effective water resource management and risk assessment, especially in

anticipating seasonal water availability and addressing potential flooding or drought

conditions.

Summary of Exploratory Data Analysis

The exploratory data analysis (EDA) conducted for Tyrifjorden, Sperillen, and Randsfjorden

reveals critical insights essential for the development of the decision-support framework.

The correlation analysis confirmed a strong positive correlation between water levels and

reservoir levels across all three lakes. This validation allowed the focus to remain solely on

water level data for further analysis.

47

Initial data cleaning ensured the removal of inconsistencies and alignment of time series,

resulting in datasets free from zero-values and suitable for robust analysis.

In Tyrifjorden, the mean water level is approximately 62.92 meters, with a standard deviation

of 0.38 meters. This lake shows moderate variability with a pronounced central tendency

around the mean. Seasonal fluctuations are notable, particularly in spring and summer, with

occasional spikes exceeding flooding thresholds.

Sperillen has a mean water level of 149.63 meters and a standard deviation of 0.71 meters,

indicating moderate variability. The water levels cluster significantly around the mean, with

higher variability observed in spring and summer due to snowmelt and precipitation.

Randsfjordens mean water level is 133.50 meters, with a standard deviation of 0.87 meters.

The data reflects moderate fluctuations around the mean, with a highly predictable range. The

waterlevels are tightly regulated, and extreme values are infrequent. Seasonal analysis further

demonstrates the hydrological dynamics of each lake. In Tyrifjorden, autumn presents the

highest mean water level with stable conditions, while spring shows the lowest mean but the

highest variability due to snowmelt and rainfall. Summer exhibits variability comparable to

autumn, and winter shows the lowest variability, indicating consistent conditions.

Sperillens seasonal data reveals stable water levels in autumn with modest variability, while

spring displays the highest variability driven by transitional weather patterns. Summer

continues this trend with high water levels and increased variability, whereas winter is marked

by the lowest variability and stable conditions.

Randsfjordens seasonal analysis highlights stable water levels in autumn, with low variability.

Spring demonstrates increased variability and higher water levels, summer shows moderate

spread and elevated flood risk, and winter remains stable with minimal extreme events.

The multimodal analysis, employing Kernel Density Estimates (KDE), identified distinct

seasonal modes in the water level data for all three lakes. Significant seasonal differences

were confirmed, highlighting the influence of seasonal impacts on water resource

management.

In conclusion, the EDA provides a comprehensive understanding of the hydrological stability

and variability of Tyrifjorden, Sperillen, and Randsfjorden. Each lake exhibits unique

characteristics influenced by seasonal changes. These insights will inform the development of

48

a robust decision-support framework to enhance the management of water resources in

Drammensvassdraget, aligning with the research objectives and scope.

49

5. Methodology

This chapter outlines the method used to develop the framework for risk-based decisions for

managing water in Tyrifjorden, Randsfjorden and Sperillen. As mentioned, the primary goal

is to add simplicity to the balancing of electricity generation and flood risk management by

leveraging historical waterlevel data. This approach leans on the analysis already conducted in

the former chapters. This chapter will outline the development and analysis of the

performance.

Understanding the decision-support framework.

The framework developed in this study is a decision-support tool designed to convert

historical quantitative data into a risk score for either flood or energy shortage. It focuses on

historical data and statistical methods to provide a dimensionless risk score based on the

current water level. The model is intended to support decision-making by quantifying the risk,

but it is essential to understand its limitations and scope.

Before any development can be done it is imperative to choose what it should be able to do,

and what is it not able to do. The question arises then to the design of a formula or a model.

This is an important choice, given the advantages and constraints of both. Below is a table

outlining the differences.

Aspect Decision Formula Decision Model

Complexity Simple, direct calculations Complex, involves multiple

variables and scenarios

Flexibility Rigid, fixed relationships Flexible, can adapt to

changes and incorporate

uncertainty

Scope Limited to specific well-

defined situations

Broad, used for complex and

strategic decisions

Nature Deterministic Often probabilistic and

analytical

50

Tools Used Basic mathematical

expressions

Advanced tools like decision

trees, simulations and

optimization

Figure 5-1 Decision Formula vs. Decision Model

This model is not cut in stone, as there is grey area in between. The framework to be

developed will use this grey area. As mentioned, numerous times, the complexity will be kept

to a minimum. The scope is also well-defined flooding and waterlevels. This leans the

framework toward a Decision Formula. However, the analysis done in the EDA will be used.

Therefore, there are probabilistic and analytical elements to it. The use of probability forces

the study to acknowledge the uncertainty in both probability and analysis. Finally, due to the

simplicity and the lack of prediction in this framework, the choice is to make a formula rather

than a model. This will enable the decision-support to not be time-sensitive and abstain from

prediction. Formulas enables further development, and it might be included in a model on

later stages. The lack of prediction and probability in the three decisions to be made, increase,

decrease or maintain outflow is the biggest reason for choosing a formula.

• What the framework is:

o Decision-Support Tool: It aids decision-makers by translating historical water

level data into a risk score.

o Quantitative Focus: The model relies on historical data and statistical methods

to provide risk assessments.

o Non-Time binding Risk: The risk score provided is dimensionless and not tied

to a specific timeline. It indicates the current level of risk without predicting

the exact timing of a flood or water shortage.

• What the framework is Not:

o Dynamic Predictor: The model does not predict future events or provide a

dynamic forecast. It updates based on historical data but does not account for

real-time changes or future conditions.

o Definitive Decision-Maker: While it provides valuable risk quantification, it

does not replace expert judgment or operational decisions. The model

highlights the risk, but the final decisions should consider qualitative

assessments and other operational factors and methods.

51

Understanding these aspects ensures that operators can effectively integrate it into their

decision-making processes, recognizing its strengths and limitations.

Formula

The formula will be designed to give the operator a baseline understanding of the risks

associated with the current waterlevel in the reservoir. The formula integrates several factors

from the EDA. It will use seasonal historical waterlevel density, seasonal trends, reservoir

capacity and regulatory constraints to adjust the risk scores. While there are several more

statistics that can be included in the formula, the EDA gave a thorough insight into the

distribution of waterlevel and the frequency of outliers. This will all be included through the

density and the trends. Aswell, the seasonal trends will encompass more of the analysis. The

factors let out will represent some of the uncertainty of the formula and will be discussed in

the appropriate chapter.

The formula will be split in to, Energy Shortage Risk and Flood Risk. The general formulas

will look like this:

Energy Shortage Risk (ESR):

𝐸𝑆𝑅 = 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐸𝑆𝑅 × 𝐷𝐸𝑛𝑒𝑟𝑔𝑦 × 𝐶𝐸𝑛𝑒𝑟𝑔𝑦 × 𝑅𝐸𝑛𝑒𝑟𝑔𝑦 × 𝑆𝐸𝑛𝑒𝑟𝑔𝑦

Equation 5-1 Energy Shortage Risk Formula

Flood Risk (FR):

𝐹𝑅 = 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐹𝑅 × 𝐷𝐹𝑙𝑜𝑜𝑑 × 𝐶𝐹𝑙𝑜𝑜𝑑 × 𝑅𝐹𝑙𝑜𝑜𝑑 × 𝑆𝐹𝑙𝑜𝑜𝑑

Equation 5-2 Flood Risk Formula

• Components:

o Each of the components (H, C, R, S) represents a different adjustment factor:

▪ Baseline: Initial estimate of risk based on observed waterlevel

▪ D: Density Adjustment

▪ C: Current Reservoir Capacity Adjustment

▪ R: Regulatory Constraints Adjustment

▪ S: Seasonal Trends Adjustment

• These components will be thoroughly explained in the model development chapter,

detailing how each factor is derived and integrated into the final risk score.

52

The model will require two inputs, apart from which lake the operator is analyzing. This will

be the observed waterlevel and which season is current. This will be the starting point for the

python program. The formula will then use seasonal waterlevel data to acquire the necessary

statistics and regulations.

The final framework will in general be as the figure below.

Figure 5-2 General Overview of Decision Framework

After the formula has calculated the risks at a certain waterlevel, a decision factor will be

included to account for the adjustment based on what the operator will decide. This enables

the operator to see what effect each decision will have on the risk.

Formula Preparation

For the formula python program to have the necessary data, several steps must be taken to

prepare the datasets to work with a decision formula. The following python programs will be

used to prepare for the formula:

- Reservoir_to_DailyEnergy.py

- Data_Preperation.py

- States_constructor.py

All these can be found in appendix.

Inputs Formula

Increase

Flood Risk

Energy Risk

Maintain

Flood Risk

Energy Risk

Decrease

Flood Risk

Energy Risk

53

Since the analysis has shown clear seasonality, the datasets will be categorized into seasons.

This will ensure the formula only use waterlevels that have been present in the season that is

current. Furthermore, waterflow, waterlevel, reservoir volume and energy has been combined

into one set. The reason for this is the next step in the preparation, which is construction of

waterlevel states. The reason for this is the probability density function which will be used in

the density factors, this does not allow for one single point of density. As theory state, a

continuous probability function does not have single definite probabilities. Only ranges. These

ranges are the states. The states are constructed with percentiles, LRW, HRW, etc. The list

can be seen in the picture below:

Figure 5-3 State Limits for Randsfjord

These points are used to construct the states. However, the states above mean-flood are

merged. Since the formula does not account for the flooding levels above mean flood. Given

that if the waterlevel surpasses mean flood the reservoir is in a flooding state.

54

Table 5-1 Sperillen Waterlevel States

Table 5-1 shows the states that have been defined. There will always be small fluctuations in

the waterlevel, this is another positive point for the definition of states to be more useful.

Figure 5-4 shows the state 6 highlighted and the densities on either side. These are the

densities that will be used in that factor of the formula.

Figure 5-4 Example of States and Densities

To sum up, this methodology chapter has outlined the approach taken to develop a decision-

support formula for water resource management in the Drammensvassdraget region. By

leveraging historical data and statistical analysis, the development and formula aims to

provide a tool for supporting the operators in the balancing of electricity generation and flood

risk. The subsequent chapters will discuss the application of the model, its analysis, and the

implications of the findings in detail.

State Lower Bound Upper Bound

State 0 147,431 148,1312

State 1 148,1312 148,3988

State 2 148,3988 148,6157

State 3 148,6157 148,7402

State 4 148,7402 148,9442

State 5 148,9442 149,6315

State 6 149,6315 150,25

State 7 150,25 151,1276

State 8 151,1276 162,4594

55

6. Development and Design of the Formula

The formula is scripted in python, there are two python programs used for calculating the

formula, Single_Decision.py and Decision_for_loop.py. The last one is made mostly for the

analysis, which iterates over each waterlevel with a set increment. This enables a solid

analysis of the formula’s performance and limitations.

Before the risk values can be calculated, all the factors need to be produced. As shown before

the two formulas and their factors looks like this. Equation 5-1 and 5-2.

Energy Shortage Risk (ESR):

𝐸𝑆𝑅 = 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐸𝑆𝑅 × 𝐷𝐸𝑛𝑒𝑟𝑔𝑦 × 𝐶𝐸𝑛𝑒𝑟𝑔𝑦 × 𝑅𝐸𝑛𝑒𝑟𝑔𝑦 × 𝑆𝐸𝑛𝑒𝑟𝑔𝑦

Flood Risk (FR):

𝐹𝑅 = 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐹𝑅 × 𝐷𝐹𝑙𝑜𝑜𝑑 × 𝐶𝐹𝑙𝑜𝑜𝑑 × 𝑅𝐹𝑙𝑜𝑜𝑑 × 𝑆𝐹𝑙𝑜𝑜𝑑

Historical and Extended Density Adjustment (D)

The historical density adjustment factor uses Kernel Density Estimation to smooth historical

data and consider unobserved events. It combines historical and extended data; the extended

data is made to provide a lower low and higher high. This combination ensures a

comprehensive coverage of the complete range of waterlevels. The KDE will use a bandwidth

of 0,2, this is a qualitative judgement, but provides enough smoothing to encompass

unobserved events. While not destroying the integrity of the dataset. This component of the

formula uses two python programs: Historic_Risk_Factor.py and Extended_Risk_Factor.py,

appendix 18 and 19.

The extended data is generated through simulation. The start is by calculating the minimum

and maximum observed waterlevel, and the standard deviation. This python program will then

generate a set of synthetic waterlevels below minimum and above maximum. These values

are uniformly distributed between:

56

[(𝑀𝑖𝑛 𝑊𝑎𝑡𝑒𝑟𝑙𝑒𝑣𝑒𝑙 − (3 × 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑠)) , 𝑀𝑖𝑛 𝑊𝑎𝑡𝑒𝑟𝑙𝑒𝑣𝑒𝑙]

[𝑀𝑎𝑥 𝑊𝑎𝑡𝑒𝑟𝑙𝑒𝑣𝑒𝑙 , (𝑀𝑎𝑥 𝑊𝑎𝑡𝑒𝑟𝑙𝑒𝑣𝑒𝑙 + (3 × 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛))]

Equation 6-1 Extension Range Waterlevels

These simulated datapoints are then added into the original dataset, thus extending the low

and high of the historical dataset.

Figure 6-1 Histogram and KDE of Tyrifjorden Historic Waterlevels

The plot above shows the red line as the KDE, with bandwidth 0,2, for the historical

waterlevels. The plot below shows the KDE for the extended waterlevels, here it is obvious

that the waterlevels have lower and higher observations.

Figure 6-2 KDE plot for Extended waterlevels Tyrifjorden

57

The next table shows the product of the two python programs. The historic and extended

densities for the current season are shown. The extension alters the densities in a way that the

formula will account for possible unobserved events below and above highest and lowest

historic.

 Historic Extended

State Lower

Bound

Upper

Bound

Energy

Density

Flood

Density

Energy

Density

Flood

Density

State 0 61,6587 62,02999 0 0,993353 0,046527 0,906176

State 1 62,0299

9

62,1965 0 0,958392 0,076414 0,892932

State 2 62,1965 62,3788 0,034961 0,840824 0,089658 0,873002

State 3 62,3788 62,5273 0,152529 0,693116 0,109588 0,836318

State 4 62,5273 62,7795 0,300237 0,438424 0,146273 0,676999

State 5 62,7795 62,8956 0,554928 0,32169 0,305591 0,566333

State 6 62,8956 63 0,671663 0,231252 0,416257 0,46545

State 7 63 64,2 0,7621 0,018614 0,51714 0,122296

State 8 64,2 69,06785 0,974739 0 0,860294 0

Table 6-1 Densities Tyrifjorden

Since the formula is using two densities, and the extended has the sole purpose of extending

the data outside of the original range there were chosen weights for the historical and the

extended.

 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 (𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑡𝑎𝑡𝑒) = 𝑤1 × 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝐻𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙 + 𝑤2 × 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝐸𝑥𝑡𝑒𝑛𝑑𝑒𝑑

Equation 6-2 Density (Current State) Formula

Where:

- w1 and w2 are weights for the historical and extended, respectively.

The research will put a definite weight to both. The density factor for the formula will look

like the formula below.

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 𝐹𝑎𝑐𝑡𝑜𝑟 (𝐻) = 1 + 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 (𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑆𝑡𝑎𝑡𝑒)

Equation 6-3 Density Adjustment Factor (H)

58

Current Reservoir Capacity (C)

The reservoir capacity is used to further incur a penalty if the waterlevel reach the lower part

of the regulated zone, or the higher part of the regulated zone. This is to ensure the risks are

properly shown when the waterlevel is at the ends of the regulated zone, between LRW and

HRW.

This factor will represent the impact of the current reservoir capacity. This factor uses

normalized reservoir levels, reservoir level are in cubic meters.

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑅𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝐿𝑒𝑣𝑒𝑙 =
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑅𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝐿𝑒𝑣𝑒𝑙

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑅𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

Equation 6-4 Normalized Reservoir Level

The maximum is calculated as the reservoir max at mean flood. The regulated zone is

between LRW and HRW, the mean flood is used to further penalize a higher waterlevel than

HRW.

The penalty will incur from L on the lower range, and from H at the higher range. The

capacity adjustment is determined as:

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟𝐸𝑛𝑒𝑟𝑔𝑦 = 1 + 𝛼 × (𝐿 − 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑅𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝐿𝑒𝑣𝑒𝑙)

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟𝐹𝑙𝑜𝑜𝑑 = 1 + 𝛽 × (𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑅𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝐿𝑒𝑣𝑒𝑙 − 𝐻)

Equation 6-5 Capacity Factors (C)

Where:

- and are the scaling factors chosen.

- L and H are thresholds chosen to where the penalties will incur.

Regulatory Constraints (R)

There are several regulatory constraints that affect the risk. Regulatory constraints are made

as mitigating measures to have a secure supply of energy, and low risk of severe flood. This

factor will impose penalties if these thresholds are broken, or the waterlevel is closing in on

them.

These thresholds are if the waterlevel goes above HRW there must be maximum output on the

outflow. This will be a risk reducing act above HRW. Also, the rivers flowing out, Begna,

59

Randselva and Drammensvassdraget are not allowed to be dry, meaning that some outflow

must always be on.

The regulatory factor is defined using various thresholds and zones.

𝑅𝑒𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑍𝑜𝑛𝑒 (𝑅𝑍) = 𝐻𝑅𝑊 − 𝐿𝑅𝑊

𝑃𝑟𝑒 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (𝑃𝑇) = 0,2

𝐿𝑜𝑤𝑒𝑟 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (𝐿𝑇) = 𝐿𝑅𝑊 + 𝑃𝑇 × 𝑅𝑍

𝑈𝑝𝑝𝑒𝑟 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (𝑈𝑇) = 𝐻𝑅𝑊 − 𝑃𝑇 × 𝑅𝑍

Equation 6-6 Regulatory Thresholds and Zones

The upper threshold is where there is an imposed penalty for closing in on the HRW, when

the HRW is passed the reservoir must have maximum outflow, regardless of energy need or

weather. This is risk reducing from a statistical standpoint, but from a decision standpoint it

might not be the optimal choice. For that reason, a penalty is imposed up until HRW, after

that a flood risk reduction will be seen due to the maximum outflow.

Figure 6-3 Example of Risk Reduction After HRW

Season Factor (S)

Given the big impact from seasons a seasonal factor is implemented. This is ensuring

adjustments for variations in seasons, including deviation, trends and volatility.

𝑆𝑓𝑙𝑜𝑜𝑑 = 1 + 𝑘 × (𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 + 𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙 𝑇𝑟𝑒𝑛𝑑 + 𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦)

𝑆𝑒𝑛𝑒𝑟𝑔𝑦 = 1 + 𝑘 × (𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 − 𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙 𝑇𝑟𝑒𝑛𝑑 − 𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛)

Equation 6-7 Seasonal Factors (S)

Risk Reduction

Observed on flood

risk at HRW

60

Where:

- k is a scaling factor for seasonal adjustments

The seasonal adjustment factor (k) is to adjust the seasonal to a value that fits the other factors

in the formula. For a seasonal adjustment of 1 the seasonality is the biggest contributor to the

final risk formula. Although seasonality is a big factor, the adjustment is to have the

possibility to adjust it down. For the formula at this stage, it is set to 0,8.

Below are the formulas for Seasonal Deviation and Volatility. The trend is calculated using

python, and the numbers will be the average start and end waterlevel over the dataset in the

current season.

𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑊𝑎𝑡𝑒𝑟𝑙𝑒𝑣𝑒𝑙 − 𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙 𝐴𝑣𝑒𝑟𝑎𝑔𝑒

𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑀𝑒𝑎𝑛

Equation 6-8 Seasonal Deviation

𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 = 𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑀𝑒𝑎𝑛

Equation 6-9 Seasonal Volatility

Baseline Flood and Energy Shortage Score and Final Risk Scores

The baseline score are the initial estimates for flood risk (FR) and energy shortage risk (ESR)

based on the observed waterlevel. It is an exponential formula developed through trial to get a

meaningful baseline for the risks at a certain observed waterlevel.

Figure 6-4 Example Baseline Flood and Energy Shortage Risk

61

The formula is made with certain conditions, it is based on the observed waterlevel (OWL),

lowest regulated waterlevel (LRW) and mean flood level for the current reservoir (MF).

Condition 1: Observed Waterlevel below Lowest Regulated Waterlevel

𝑖𝑓 𝑂𝑊𝐿 < 𝐿𝑅𝑊 ∶ 𝐸𝑛𝑒𝑟𝑔𝑦 𝑆𝑐𝑜𝑟𝑒 = 1

Equation 6-10 Condition 1 Baseline Risks

Condition 2: Observed Waterlevel above Mean Flood Level

𝑖𝑓 𝑂𝑊𝐿 > 𝑀𝐹 ∶ 𝐹𝑙𝑜𝑜𝑑 𝑆𝑐𝑜𝑟𝑒 = 1

Equation 6-11 Condition 2 Baseline Risks

Between LRW and MF the scores will be calculated using exponential formulas and a

normalized waterlevel between 0 and 1.

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑊𝑎𝑡𝑒𝑟𝑙𝑒𝑣𝑒𝑙 =
𝑂𝑊𝐿 − 𝐿𝑅𝑊

𝑀𝐹 − 𝐿𝑅𝑊

Equation 6-12 Normalized Waterlevel

𝐹𝑙𝑜𝑜𝑑 𝑆𝑐𝑜𝑟𝑒 = 1 − 𝑒−10 ∗ 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑤𝑎𝑡𝑒𝑟 𝑙𝑒𝑣𝑒𝑙5

Equation 6-13 Baseline flood score

𝐸𝑛𝑒𝑟𝑔𝑦 𝑆𝑐𝑜𝑟𝑒 = 𝑒−10 ∗ 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑤𝑎𝑡𝑒𝑟 𝑙𝑒𝑣𝑒𝑙2

Equation 6-14 Baseline energy score

The calculation is done in python, to automate and iterate over multiple waterlevels.

62

Figure 6-5 Python print Baseline Risk Scores

The complete baseline ESR and FR then becomes:

𝐹𝑅 = {
0
1

1 − 𝑒−10∗𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑤𝑎𝑡𝑒𝑟𝑙𝑒𝑣𝑒𝑙5

𝑂𝑊𝐿 < 𝐿𝑅𝑊
𝑂𝑊𝐿 > 𝑀𝐹

𝐿𝑅𝑊 ≤ 𝑂𝑊𝐿 ≤ 𝑀𝐹

Figure 6-6 Baseline Flood Risk Compete

𝐸𝑆𝑅 = {
1
0

1 − 𝑒−10∗𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑤𝑎𝑡𝑒𝑟𝑙𝑒𝑣𝑒𝑙2

𝑂𝑊𝐿 < 𝐿𝑅𝑊
𝑂𝑊𝐿 > 𝑀𝐹

𝐿𝑅𝑊 ≤ 𝑂𝑊𝐿 ≤ 𝑀𝐹

Figure 6-7 Baseline Energy Shortage Risk Complete

Decision Factor

The last part of the formula, after the final risk scores have been calculated using the formula.

Is to account for the possible decisions the operator will have. This is where the decision

factor comes in. These factors adjust the scores based on the impact of increasing, decreasing

or maintaining the outflow.

𝐸𝑆𝑅 = 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐸𝑆𝑅 × 𝐷𝐸𝑛𝑒𝑟𝑔𝑦 × 𝐶𝐸𝑛𝑒𝑟𝑔𝑦 × 𝑅𝐸𝑛𝑒𝑟𝑔𝑦 × 𝑆𝐸𝑛𝑒𝑟𝑔𝑦

𝐸𝑆𝑅𝐹𝑖𝑛𝑎𝑙 = 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟𝐸𝑛𝑒𝑟𝑔𝑦 × 𝐸𝑆𝑅

Equation 6-15 Final Energy Shortage Risk

𝐹𝑅 = 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐹𝑅 × 𝐷𝐹𝑙𝑜𝑜𝑑 × 𝐶𝐹𝑙𝑜𝑜𝑑 × 𝑅𝐹𝑙𝑜𝑜𝑑 × 𝑆𝐹𝑙𝑜𝑜𝑑

63

𝐹𝑅𝐹𝑖𝑛𝑎𝑙 = 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟𝐹𝑙𝑜𝑜𝑑 × 𝐹𝑅

Equation 6-16 Final Flood Risk

The decision factor can take three values, increase, decrease or maintain outflow. Each of

these will alter the risks from the formula.

Figure 6-8 Decision Factor Value

This factor will then multiply by the factor corresponding to the decision of interest. This

enables the operator to look at all possible actions before moving on to other evaluations.

However, after HRW is passed regulation demands max outflow, so the possibility of increase

is removed after HRW.

The multiplication factors are based on this:

1. Increase Outflow:

- Adjusts risks when outflow is increased

- Typically decreases flood risk and increases energy shortage risk

2. Decrease Outflow:

- Adjusts risks when outflow is decreased

- Typically increases flood risk and decreases shortage risk

3. Maintain Current Outflow:

- No change in the final risk scores.

Below is a printout of the python program Single_Decision.py. This is the entire calculation

for Tyrifjorden at 62,99 meters during spring. A possible scaling of the factors, for example

between 0 and 1 will be addressed in the coming chapters.

64

Figure 6-9 Printout from Tyrifjorden Final Risk

65

Priming the variables

There are several flexible values that can be altered to enhance the presentation of the

decisions. This comes at a cost; the approach must make sure that the data and presentation is

not compromised. Also, the weights between the factors needs to be at a suitable level.

This part does not need a for-loop, but testing, trial and an assumption based on a qualitative

assessment. For example: at 64,1 meters in Tyrifjorden the flood risk should be quite high.

There is no definitive solution to how the factors should be “weighted”. However, the

research has shown strong seasonality, therefore the seasons should be quite high compared to

the others. Also, history should be respected and therefore, density should not be neglected.

Based on these two assumptions the following variables and weights were used for the model.

These are subject for changing, if necessary, after sensitivity analysis, and will be discussed at

the end of the research.

Factor Variable Value

Density (H) Historic Density w1 0,7

Extended Density w2 0,3

Capacity (C) L 0,2

H 0,7

Alpha 2

Beta 3

Seasonal (S) Seasonal k 0,8

Table 6-2 Variables for formula

These variables will be used in the continuing analysis and the final decision support formula,

chapter 8.

Test runs

This section will go through two runs of the program, one with a single decision and finally

run the for-loop python program to see the distribution of the risk scores, normalized between

0 and 1.

66

Single_Decision.py

Inputs:

Reservoir: Tyrifjorden

Season: Spring

Observed Waterlevel: 62,95 meters

Figure 6-10 Test Run Single Decision

67

Observed Waterlevel 62.95

Baseline Flood Risk 1.1394149571039434

Baseline Energy Shortage Risk 1.154947423708174

Density Adjustment Factors (H)

Energy Density Adjustment 1.6549818439996866

Flood Density Adjustment 1.2541100078154495

Capacity Factor (C)

Flood Capacity Factor 1

Energy Capacity Factor 1

Regulatory Constraints Factor (R)

Flood Penalty Factor for Tyrifjorden 1.7500000000000178

Energy Penalty Factor for Tyrifjorden 1

Seasonal Adjustment (S)

Seasonal Adjustment Factor for Flood

1.5534804302075078

Seasonal Adjustment Factor for Energy 1.5412711771643386

Final Scores

Final ESR, before decision factor 2.946011955860864

Final FR, before decision factor 3.8847348799706047

Decision Risk Score

Increase

Energy Shortage Risk 3.5352

Flood Risk 3.1078

Decrease

Energy Shortage Risk 2.3568

Flood Risk 4.6617

Maintain

Energy Shortage Risk 2.9460

Flood Risk 3.8847

Table 6-3 Test Run Factors Table

68

While the risk values make sense magnitude wise in this presentation, the need for a scaling is

apparent. The formula lacks the ability to represent “how high” the risk is, or low. This will

be handled in the for-loop program. With a scaling between 0 and 1 on risks.

Decision_for_loop.py

In this script the risk values have been normalized between 0 and 1. 1 will then represent the

highest risk. This script is designed to iterate over waterlevels and calculate the risk. This will

then be visualized in different plots.

Figure 6-11 Complete Histogram and Risk Scores of Waterlevels

Inputs:

Tyrifjorden

Spring

62,95 meters

Formula

Increase

Decision Factor ESR: 1,2

Decision Factor FR: 0,8

Flood Risk

3.1078

Energy Risk

3.5352

Maintain

Decision Factor ESR: 1

Decision Factor FR: 1

Flood Risk

3.8847

Energy Risk

2.9460

Decrease

Decision Factor ESR: 0,8

Decision Factor FR: 1,2

Flood Risk

4.6617

Energy Risk

2.3568

69

This is the most fulfilling plot the python program provides. The normalization has turned the

values into a more suitable presentation, on the right y-axis. The script will also take one input

of what the current water level is. This will then present the decision scores corresponding to

that waterlevel.

Figure 6-12 Script example Complete Formula

Figure 6-13 Printout Decisions Factors Complete Formula

From the plot we can see that the regulation works quite efficiently, with the histogram in the

background showing the most density in “low risk” territory.

Complete risk values can be found in appendix 22.

70

7. Sensitivity Analysis

In the context of water resource management, sensitivity analysis plays a crucial role in

understanding how various factors influence the risk assessments of flood and energy

shortages. This chapter delves into the sensitivity analysis of the decision-support framework,

focusing on three key stages: seasonal adjustment factors, density adjustments, and global

sensitivity analysis. The reason for choosing only these two factors is that the other is quite

constant. Regulative changes are fairly set, as the mentioned Randsfjord adjustments have

been going on since 1995, and the capacity is what it is.

The primary objective of this sensitivity analysis is to evaluate how changes in critical

parameters impact the final risk scores for both flood and energy shortage scenarios. Aswell

as the python program Sensitivity_Analysis.py in appendix.

Seasonal Adjustment

The plot provided shows the sensitivity analysis of risk factors focusing on seasonal

adjustment factors for flood risk (FR) and energy shortage risk (ESR). Here is a detailed

interpretation:

Axes

- X-Axis (Factor Value): Represents the varying values of the seasonal adjustment

factors.

- Y-Axis (Average Risk): Represents the average risk values for flood and energy

shortage.

Lines and Markers

- Blue Line (Average ESR - Seasonal Adjustment Factor for Flood): Shows how the

average energy shortage risk changes with varying seasonal adjustment factors for

flood.

- Orange Line (Average FR - Seasonal Adjustment Factor for Flood): Shows how the

average flood risk changes with varying seasonal adjustment factors for flood.

- Green Line (Average ESR - Seasonal Adjustment Factor for Energy): Shows how the

average energy shortage risk changes with varying seasonal adjustment factors for

energy.

- Red Line (Average FR - Seasonal Adjustment Factor for Energy): Shows how the

average flood risk changes with varying seasonal adjustment factors for energy.

71

Figure 7-1 Sensitivity Analysis Seasonal Adjustment

Observations

The impact of the seasonal adjustment factor on flood risk, as represented by the orange line,

shows a direct relationship where flood risk increases with an increase in the seasonal

adjustment factor for flood. The steep slope of the orange line indicates that flood risk is

highly sensitive to these changes.

In contrast, the impact on energy shortage risk, represented by the green line, also

demonstrates a direct relationship with its respective seasonal adjustment factor. However, the

green line's upward trend is less steep than the orange line, indicating a moderate sensitivity to

changes in the seasonal adjustment factor for energy.

When examining the impact on flood risk for energy, depicted by the red line, the trend

remains relatively flat. This flat trend suggests that the flood risk does not significantly vary

with changes in the seasonal adjustment factor for energy, indicating low sensitivity.

Similarly, the blue line representing the impact on energy shortage risk for flood also shows a

relatively flat trend. This indicates that energy shortage risk is not significantly influenced by

variations in the seasonal adjustment factor for flood, suggesting low sensitivity.

In conclusion, flood risk is highly sensitive to changes in the seasonal adjustment factor for

flood, while energy shortage risk shows moderate sensitivity to changes in the seasonal

adjustment factor for energy. However, both flood risk and energy shortage risk are not

significantly affected by changes in the seasonal adjustment factors for the other risk type.

72

Density Adjustment

This plot shows the sensitivity analysis of risk factors focusing on density adjustments for

flood risk (FR) and energy shortage risk (ESR). A detailed interpretation:

Lines and Markers

- Blue Line (Average ESR - Flood Density Adjustment): Shows how the average energy

shortage risk changes with varying density adjustment factors for flood.

- Orange Line (Average FR - Flood Density Adjustment): Shows how the average flood

risk changes with varying density adjustment factors for flood.

- Green Line (Average ESR - Energy Density Adjustment): Shows how the average

energy shortage risk changes with varying density adjustment factors for energy.

- Red Line (Average FR – Energy Density Adjustment): Shows how the average flood

risk changes with varying density adjustment factors for energy.

Figure 7-2 Sensitivity Analysis Density Adjustments

Observations

The impact of the density adjustment factor on flood risk, illustrated by the orange line, shows

a direct relationship where flood risk increases as the density adjustment factor for flood rises.

The steep slope of the orange line indicates that flood risk is highly sensitive to these changes.

In contrast, the effect on energy shortage risk, depicted by the green line, also reveals a direct

relationship with its respective density adjustment factor. The green line shows an upward

73

trend, although it is less steep than the orange line, suggesting moderate sensitivity to changes

in the density adjustment factor for energy.

Regarding the impact on flood risk for energy, represented by the red line, the trend remains

relatively flat. This flat trend indicates that flood risk does not significantly change with

varying density adjustment factors for energy, indicating low sensitivity.

Similarly, the blue line representing the impact on energy shortage risk for flood also shows a

relatively flat trend. This suggests that energy shortage risk is not significantly influenced by

changes in the density adjustment factor for flood, indicating low sensitivity.

In conclusion, flood risk is highly sensitive to changes in the density adjustment factor for

flood, while energy shortage risk demonstrates moderate sensitivity to changes in the density

adjustment factor for energy. Both flood risk and energy shortage risk are not significantly

affected by changes in the density adjustment factors for the other risk type.

Global Sensitivity

This plot provides a global sensitivity analysis of the risk factors by varying multiple

parameters simultaneously and displaying their impact on the average risk with standard

deviation (Std Dev) error bars.

Axes

- X-Axis (Parameter Value): Represents the varying values of the parameters (seasonal

adjustment factors and density adjustments).

- Y-Axis (Average Risk with Std Dev): Represents the average risk values for flood and

energy shortage, along with the standard deviation.

Lines and Markers

- Blue Markers (ESR - Seasonal Adjustment Factor for Flood): Shows how the average

energy shortage risk changes with varying seasonal adjustment factors for flood.

- Orange Markers (ESR - Seasonal Adjustment Factor for Energy): Shows how the

average energy shortage risk changes with varying seasonal adjustment factors for

energy.

- Green Markers (FR - Density Adjustment for Flood): Shows how the average flood

risk changes with varying density adjustments for flood.

74

- Red Markers (FR – Density Adjustment for Energy): Shows how the average flood

risk changes with varying density adjustments for energy.

Error Bars

- Error bars represent the standard deviation of the risk scores, indicating the variability

in the risk assessments for each parameter value.

Figure 7-3 Global Sensitivity Analysis

Observations

The analysis of seasonal adjustment factors shows that the average flood risk, indicated by

blue markers, varies significantly across different parameter values. This high variability and

standard deviation suggest a high sensitivity and variability in flood risk. Conversely, the

average energy shortage risk, shown by orange markers, exhibits moderate changes with

increasing parameter values, and its variability is relatively low compared to flood risk.

In terms of density adjustments, the average flood risk, represented by green markers,

significantly increases with parameter values. The error bars indicate substantial variability,

implying high sensitivity. On the other hand, the average energy shortage risk, depicted by red

markers, remains relatively constant across different parameter values, and its variability is

lower compared to the density adjustment for flood.

The global sensitivity plot reveals that flood risk is generally more sensitive to changes in

both seasonal adjustment factors and density adjustments compared to energy shortage risk.

Energy shortage risk exhibits lower variability and sensitivity to these parameter changes.

75

In conclusion, flood risk is highly sensitive to changes in both seasonal adjustment factors and

density adjustments, as indicated by the high variability and significant changes in average

risk with different parameter values. In contrast, energy shortage risk is less sensitive to these

parameters, particularly for density adjustments related to flood risk, with lower variability in

risk scores indicating more stable risk assessments.

Key Findings

The sensitivity analysis reveals critical insights into the behavior of the risk model under

different conditions:

• Flood Risk: Demonstrates high sensitivity to both seasonal adjustment factors and

density adjustments, indicating a need for precise calibration in these areas.

• Energy Shortage Risk: Shows moderate sensitivity, particularly to seasonal factors,

suggesting that energy risk assessments are relatively stable but still influenced by

seasonal variations.

76

8. Final Decision-Support Formula

This chapter sum up the insights and methodologies developed in the previous chapters to

present the final decision-support formula for managing water resources in the

Drammensvassdraget region. The formula integrates various risk factors and adjustment

parameters to provide a comprehensive tool for balancing electricity generation and flood risk

management.

Summary of Development and Design

In Chapter 6, we detailed the creation and calibration of the decision-support formula. This

formula was designed to convert historical water level data into risk scores for both flood and

energy shortage scenarios. The key components of the formula include:

- Historical and Extended Density Adjustment (D): This component uses Kernel

Density Estimation (KDE) to account for both observed and unobserved events,

extending the range of historical data to cover extreme water levels.

- Current Reservoir Capacity (C): This factor adjusts risk scores based on the current

reservoir level relative to its capacity, with penalties for levels near the lower and

upper bounds of the regulated zone.

- Regulatory Constraints (R): This component imposes penalties based on regulatory

thresholds, such as mandatory outflows when water levels exceed the highest

regulated water level (HRW).

- Seasonal Factors (S): These factors account for seasonal variations in water levels,

incorporating seasonal deviation, trends, and volatility into the risk assessments.

Final Risk Scores

The formula calculates two primary risk scores:

1. Energy Shortage Risk (ESR):

𝐸𝑆𝑅 = 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐸𝑆𝑅 × 𝐷𝐸𝑛𝑒𝑟𝑔𝑦 × 𝐶𝐸𝑛𝑒𝑟𝑔𝑦 × 𝑅𝐸𝑛𝑒𝑟𝑔𝑦 × 𝑆𝐸𝑛𝑒𝑟𝑔𝑦

2. Flood Risk (FR):

𝐹𝑅 = 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐹𝑅 × 𝐷𝐹𝑙𝑜𝑜𝑑 × 𝐶𝐹𝑙𝑜𝑜𝑑 × 𝑅𝐹𝑙𝑜𝑜𝑑 × 𝑆𝐹𝑙𝑜𝑜𝑑

77

Decision Factors

To provide actionable insights, the formula includes decision factors that adjust the risk scores

based on potential management actions:

1. Increase Outflow: Typically decreases flood risk but increases energy shortage risk.

2. Decrease Outflow: Typically increases flood risk but decreases energy shortage risk.

3. Maintain Current Outflow: Maintains the current risk levels.

The final risk scores, incorporating decision factors, are given by:

𝐸𝑆𝑅𝐹𝑖𝑛𝑎𝑙 = 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟𝐸𝑛𝑒𝑟𝑔𝑦 × 𝐸𝑆𝑅

𝐹𝑅𝐹𝑖𝑛𝑎𝑙 = 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟𝐹𝑙𝑜𝑜𝑑 × 𝐹𝑅

Sensitivity Analysis

In Chapter 7, we conducted a comprehensive sensitivity analysis to evaluate the impact of

different factors on the risk scores. The analysis included:

3. Seasonal Adjustment Factors: Examined the sensitivity of risk scores to variations

in seasonal factors.

4. Density Adjustments: Assessed how changes in the density adjustment factors affect

the risk scores.

5. Global Sensitivity Analysis: Evaluated the combined impact of varying multiple

parameters simultaneously on the risk scores.

The sensitivity analysis demonstrated that flood risk is highly sensitive to changes in both

seasonal adjustment factors and density adjustments, while energy shortage risk shows

moderate sensitivity, particularly to seasonal factors.

Implementation and Application

The final decision-support formula provides a tool for managing water resources in the

Drammensvassdraget region. By integrating historical data, regulatory constraints, and

seasonal variations, the formula offers a quantitative basis for balancing electricity generation

and flood risk. The decision factors further enhance its practical utility, allowing operators to

78

assess the impact of different management actions on risk levels. The formula culminates in

the plot shown the final test run, from Decision_for_loop.py.

Figure 8-1 Final Decision Formula Result from for-loop

All seasons and all reservoirs can be found in appendix 22.

79

9. Summary and Discussion

The primary findings of this research highlight the challenges in water resource management

and flood risk mitigation. The decision-support formula developed provides a valuable tool

for managing water resources in the Drammensvassdraget region. By leveraging historical

data and statistical analysis, the formula accurately quantifies flood and energy shortage risks,

facilitating informed decision-making. The development of a dimensionless risk score based

on historical water levels avoids the pitfalls of early-stage predictive guessing. Extensive

sensitivity analyses demonstrated that flood risk is highly sensitive to seasonal and density

adjustments, while energy shortage risk is moderately sensitive, particularly to seasonal

factors. Furthermore, the formula's ability to integrate historical data, regulatory constraints,

and seasonal variations provides a quantitative basis for balancing electricity generation and

flood risk, with practical decision factors enhancing its applicability.

The formula's practical utility lies in its ability to help operators make informed decisions

about water resource management by quantifying risks associated with both floods and energy

shortages. Additionally, the inclusion of decision factors allows for adjustments based on

potential management actions, enabling dynamic responses to changing water levels.

One of the key strengths of this study is the robust statistical analysis underlying the formula,

ensuring reliability and robustness in risk assessment. Detailed sensitivity analyses provide

insights into the formula's performance under various conditions, ensuring its reliability.

However, the formula's reliance on historical data may limit its accuracy in scenarios where

past patterns do not reflect future conditions. Additionally, the exclusion of immediate

weather warnings means the formula does not account for real-time weather changes, making

it less responsive to immediate risks. The timeless risk values also require expert

interpretation and judgment, particularly under extreme conditions.

The sensitivity and robustness analysis conducted in this research provided crucial insights

into the behavior of the decision-support formula under different conditions. The formula

showed high sensitivity to seasonal adjustment factors, particularly for flood risk, highlighting

the need for precise calibration of seasonal parameters to ensure accurate risk assessments.

Changes in density adjustment factors significantly influenced flood risk scores,

demonstrating the importance of incorporating density variations into the formula. The

80

formula's robustness was confirmed through various scenarios and parameter changes,

ensuring its reliability in diverse conditions.

As this research reaches its conclusion, we reflect on the development of this robust decision-

support formula for managing water resources in the Drammensvassdraget region. Designed

to balance the objectives of electricity generation and flood risk mitigation.

The formula's cornerstone is its ability to accurately quantify flood and energy shortage risks

by using historical data. This foundation ensures robust risk assessments grounded in past

events, offering a dimensionless risk score that facilitates informed decision-making without

predicting specific future occurrences. The formula's novelty is its biggest strength; it

quantifies the current situation without trying to predict the future. This key distinction

emphasized throughout the thesis allows the formula and its operator to use the risk values at

their discretion. The use of densities is central, and apart from seasonal adjustments, the

sensitivity analysis showed densities to be impactful. However, this reliance on densities can

produce some intriguing results.

Figure 9-1 Printout from Python, Density Adjustment factor

Examining the Python printout, the density factor is a significant mitigating factor when

nearing a flood level. At an observed water level of 63.95 meters in Tyrifjorden, close to a

flooding level of 64.2 meters, the energy density adjustment is high, increasing the energy

risk, but mitigating the flood risk. This is because, at 63.95 meters, most of the density is

below this level. This implies that, historically, water levels are likely to decrease from this

point, indicating a lower probability of flooding. However, this also reveals a potential

weakness in the formula. Firstly, the formula lacks a component to adjust for immediate risks,

such as sudden weather changes. This design choice makes the risk values dependent on

expert judgment and additional analysis at both higher and lower levels.

81

The Energy Density Adjustment results in a higher Energy Shortage Risk at extreme water

levels. At 63.95 meters, the energy risk is practically zero, but a time-independent risk value

cannot be zero, although it is quite low.

The risk values are timeless; the primary goal was to quantify the risk at certain levels. This

timelessness and avoidance of prediction mean the formula does not account for typical water

level changes over a day, week, or month. The probabilities of weekly changes, while not part

of the thesis, illustrate a major consequence of the chosen formula:

- Probability of no significant change (±5 cm): 0.8334

- Probability of decrease (> 5 cm): 0.0943

- Probability of increase (> 5 cm): 0.0723

These probabilities show the limitations of the formula's design. By not incorporating

probability and prediction, the ability to account for expected changes over a week is lost.

While the formula retains value, it misses some advantages offered by a model, decision tree,

or a compounded decision-making process. For example, a 10% chance of the water level

changing by 10 centimeters can nullify many risk values over a week. However, the risk

values produced by the formula are time-independent, meaning the risk score at the highest

regulated water level (HRW) should not be zero, even if flooding or energy shortage is not

"expected" in the coming weeks. Although this represents limitations, it also grounds the

formula in its reliance on long-term seasonal changes rather than short-term fluctuations.

The formula's performance is intrinsically linked to the quality and scope of historical data

used. Assumptions, such as ignoring immediate weather forecasts, aim to streamline the focus

on long-term trends rather than short-term fluctuations. Focusing on historical data and

statistical measures helps avoid the noise of short-term weather variations, providing a clearer

picture of current water levels. However, ignoring immediate weather forecasts may limit the

framework's real-time responsiveness, potentially impacting its effectiveness in sudden

change scenarios. Therefore, the formula is not standalone; expert judgment and other

predictors are vital for the formula to account for fluctuations.

The inclusion of extended density estimations to account for unobserved events enhances the

formula's comprehensiveness, addressing potential risks beyond the immediate scope of

82

historical data. This approach bridges gaps in historical data, offering a more holistic risk

assessment.

Adaptability to future climatic changes is crucial, with rising temperatures and changing

precipitation patterns potentially impacting water levels and necessitating adjustments to

current strategies. The formula's framework allows for incorporating new data and trends,

ensuring its continued relevance. Continuous monitoring and real-time data integration will be

essential to address evolving climatic conditions and maintain the formula's effectiveness.

Balancing quantitative formula outputs with qualitative expert judgments is vital. While the

formula provides a strong quantitative foundation, expert input is crucial for interpreting

results and making final decisions. Integrating expert judgment contextualizes formula

outputs within the broader decision-making framework, enhancing practical utility. In

complex or ambiguous situations, expert judgment is indispensable, underscoring the need for

a collaborative approach.

To sum up, the research has shown stable water levels, and the need for a formula might not

be immediately apparent. However, the quantification of history, knowledge, and statistics

provides valuable insights into current risks. For example, winter, across all reservoirs, shows

no need for a flood risk formula, although it provides insights into energy shortage risks.

While there are no flooding risks in winter, a dry spring with low winter water levels will

affect energy production moving into spring. The much-mentioned time-independence offers

insights into the magnitude of risk associated with a given water level. A very low winter

water level with little snow, a dry spring, and a warm summer will impact the following year's

water levels. This is the value of the timelessness approach.

Final thoughts and Future Directions

The decision-support formula has mostly shown the stability in the waterlevels, while still

addressing the occurrences of extreme lows and highs. Analysis has shown that waterlevels

mostly are regulated between low risk levels.

Its development reflects a meticulous and comprehensive approach, integrating historical

data, regulatory requirements, and seasonal trends. Future research should focus on

incorporating real-time weather data and expanding the formula into a model. Continuous

83

validation and updates will be crucial to maintaining the formulas relevance and effectiveness

amidst dynamic and evolving climatic conditions.

84

10. Bibliography

Regjeringen.no. (2016, July 20). The History of Norwegian Hydropower in 5 Minutes.

Retrieved from https://www.regjeringen.no/en/topics/energy/renewable-energy/the-

history-of-norwegian-hydropower-in-5-minutes/id2346106/

International Hydropower Association. (2023). A Brief History of Hydropower. Retrieved

from https://www.hydropower.org/iha/discover-history-of-hydropower

Energy Facts Norway. (2023). Electricity Production. Retrieved from Energy Facts Norway:

https://energifaktanorge.no/en/norsk-energiforsyning/kraftproduksjon/#hydropower

Thorsnæs, G. (2023, December 31). Drammensvassdraget. Retrieved from Store Norske

Leksikon: https://snl.no/Drammensvassdraget

Holmqvist, E. (2000). Analyse av flomvannstander og tørrårstilsig i Tyrifjorden. Oslo:

Norwegian Water Resources and Energy Directorate.

Lauritzen, P. R. (2023, December 23). Sperillen. Retrieved from Store Norske Leksikon:

https://snl.no/Sperillen

Drammensvassdraget. (2024, February 14). Drammensvassdraget. Retrieved from

Wikipedia.org: https://no.wikipedia.org/wiki/Drammensvassdraget

Ekstremværet Hans. (2024, April 28). Ekstremværet Hans. Retrieved from

https://no.wikipedia.org/wiki/Ekstremværet_Hans

Hydropower. (2024, May 20). Hydropower. Retrieved from Wikipedia.org:

https://en.wikipedia.org/wiki/Hydropower

Randsfjorden. (2024, January 1). Randsfjorden. Retrieved from Wikipedia.org:

https://no.wikipedia.org/wiki/Randsfjorden

Sperillen. (2024, February 14). Sperillen. Retrieved from Wikipedia.org:

https://no.wikipedia.org/wiki/Sperillen

Tyrifjorden. (2024, January 1). Tyrifjorden. Retrieved from Wikipedia:

https://no.wikipedia.org/wiki/Tyrifjorden

NVE - Drammensvassdraget. (2024). Drammensvassdraget. Retrieved from NVE Varsom.no:

https://www.varsom.no/flom-og-jordskred/om-flom-og-jordskred/rad-og-

forebygging/vassdragsregulanters-ansvar-og-muligheter/drammensvassdraget/

NVE - Tyrifjorden. (2024). Tyrifjorden. Retrieved from Norwegian Water Resources and

Energy Directorate: https://www.nve.no/vann-og-

vassdrag/vassdragsforvaltning/verneplan-for-vassdrag/viken/012-14-tyrifjorden/

85

NVE - Vannkraft. (2023). Vannkraft. Retrieved from Norwegian Water Resources and Energy

Directorate: https://www.nve.no/energi/energisystem/vannkraft/

Vannkraftdatabase. (2024). Vannkraftdatabase. Retrieved from Norwegian Water Resources

and Energy Directorate:

https://www.nve.no/energi/energisystem/vannkraft/vannkraftdatabase/

Vassdragsregulanters ansvar og muligheter. (2023). Vassdragsregulanters ansvar og

muligheter. Retrieved from NVE Varsom.no: https://www.varsom.no/flom-og-

jordskred/om-flom-og-jordskred/rad-og-forebygging/vassdragsregulanters-ansvar-og-

muligheter/

NVE - Vårflom. (2020). Vårflom. Retrieved from NVE Varsom.no:

https://www.varsom.no/flom-og-jordskred/om-flom-og-jordskred/varflom/

NVE - Begnavassdraget med Sperillen. (2024). Begnavassdraget med Sperillen. Retrieved

from NVE Varsom.no: https://www.varsom.no/flom-og-jordskred/om-flom-og-

jordskred/rad-og-forebygging/vassdragsregulanters-ansvar-og-

muligheter/drammensvassdraget/begnavassdraget-med-sperillen/

Thorsnæs, G. (2023, October 3). Randsfjorden. Retrieved from Store norske leksikon:

https://snl.no/Randsfjorden

NVE Atlas. (n.d.). NVE Atlas. Retrieved from

https://atlas.nve.no/html5Viewer/?viewer=nveatlas

Sildre NVE. (2024). Sildre. Retrieved from Sildre:

https://sildre.nve.no/map?x=380400&y=7228000&zoom=4

Reservoar (Hydrologi). (2022, 09 1). Reservoar (Hydrologi). Retrieved from

https://no.wikipedia.org/w/index.php?title=Reservoar_(hydrologi)&oldid=22926530

NVE - Flom. (2022, 05 13). Flom. Retrieved from NVE: https://www.nve.no/naturfare/laer-

om-naturfare/flom/

NVE - Tørke. (2020, 01 14). Tørke. Retrieved from NVE.no:

https://www.nve.no/naturfare/laer-om-naturfare/toerke/

NVE - Regnflom. (2022, 05 13). Regnflom. Retrieved from NVE.no:

https://www.nve.no/naturfare/laer-om-naturfare/flom/regnflom/

NVE - Ordliste. (2024, 06 01). Ordliste for flom. Retrieved from NVE.no:

https://www.varsom.no/flom-og-jordskred/ordliste/ordliste-for-flom/

Rosvold, K. A. (2020, 06 9). Manøvreringsreglementet. Retrieved from Store Norske

Leksikon: https://snl.no/manøvreringsreglement

86

Energidepartementet. (2024, 06 07). Lov om regulering og kraftutbygging i vassdrag

(vassdragsreguleringsloven). Retrieved from Lovdata.no:

https://lovdata.no/dokument/NL/lov/1917-12-14-17

Sperillen. (1926). Manøvrerling av reguleringsdammen for Sperillen. Oslo: Norwegian State.

Olje- og energidepartementet. (2022). Endelig fastsettelse av manøvreringsreglement for

Randsfjorden. Oslo: Olje- og energidepartementet.

Nærings- og energidepartementet. (1995). Tillatelse for Foreningen av Randsfjord Regulering

til fortsatt regulering av Randsfjorden. Oslo: Nærings- og energidepartementet.

Nærings- og energidepartementet. (1994). Foreningen til Tyrifjords regulering. Revisjon av

manøvreringsregment for Tyrifjorden. Oslo: Nærings- og energidepartementet.

11. AI Disclosure

ChatGPT was used in the start as a helper and “companion” in the definition of the thesis

proposal and scope. ChatGPT has been used to proofread and provide a certain flow to the

text where I felt this was needed.

ChatGPT has been used as a coding expert. While python programming is not a new thing to

me, certain errors in the code cannot be effectively found and fixed with the extent of the

programming code and number of lines in this coding amount. ChatGPT programming help

enabled the master thesis to be more extensive, more thorough. Since I did not have to use

half my time finding spelling errors in the python code.

Simen Askeland, 14. June 2024.

12. Python Note

Python version used: 5.5.1

Necessary modules are represented at the top of each python script.

For the python programs to work it is important to look at the file imports and file savings for

the program to work. The file path is important to change to get it working on your computer.

Also, be careful when naming the downloaded csv files, they have to match the name in the

script. For help I advise asking ChatGPT.

87

13. Dataset Downloading

The datasets can be downloaded on:

Tyrifjorden: https://sildre.nve.no/station/12.65.0

Sperillen: https://sildre.nve.no/station/12.83.0

Randsfjorden: https://sildre.nve.no/station/12.69.0

14. Appendix

1. Data_Cleaner.py

2. Correlation Analysis

3. Correlation.py

4. Statistical_Analysis.py

5. Statistical Analysis Tyrifjorden

6. Statistical Analysis Sperillen

7. Statistical Analysis Randsfjorden

8. Seasonal_Analysis.py

9. Seasonal Analysis Tyrifjorden

10. Seasonal Analysis Sperillen

11. Seasonal Analysis Randsfjorden

12. Complete Multimodal Analysis

13. Yearly_plots.py

14. Multimodal_analysis.py

15. Reservoir_to_DailyEnergy.py

16. Data_Preperation.py

17. States_constructor.py

18. Historic_Risk_Factor.py

19. Extended_Risk_Factor.py

20. Decision_Single.py

21. Decision_for_loop.py

22. Complete Risk Values

23. Sensitivity_Analysis.py

24. External Reports and Sources

88

Appendix 1:

Data_Cleaner.py

import pandas as pd

import sys

import matplotlib.pyplot as plt

import numpy as np

import warnings

import matplotlib.dates as mdates

warnings.simplefilter("ignore", category=UserWarning)

warnings.simplefilter("ignore", category=FutureWarning)

Path to the CSV file

name = "Randsfjord"

data_type = "Waterflow"

Input complete local filepath

file_path = f'/Users/simen/Desktop/Complete Master/01 Data/Uncleaned Data/{name}_{data_type}_Daily.csv'

df = pd.read_csv(file_path, delimiter=';',header=1)

print("First 15 Rows before cleaning")

print(df.head(15))

print("---")

print("\nLast 15 Rows before cleaning")

print(df.tail(15))

Option to exit or move on

continue_choice = input("Move on? (yes/no): ").lower()

if continue_choice != 'yes':

 print("Exiting.")

 sys.exit()

Remove_1 = 'Korrigert'

Remove_2 = 'Kontrollert'

df = df.drop([Remove_1, Remove_2], axis=1)

Rename_1 = 'Tidspunkt'

if data_type == 'Waterlevel':

 Rename_2 = 'Vannstand (m)'

elif data_type == 'Reservoir':

 Rename_2 = 'Magasinvolum (millioner m³)'

else:

 Rename_2 = 'Vannføring (m³/s)'

df = df.rename(columns={Rename_1: 'Date', Rename_2: data_type})

df['Date'] = pd.to_datetime(df['Date']).dt.date

df = df.dropna()

Replace commas with dots in the entire column

df[data_type] = df[data_type].str.replace(',', '.')

Convert the column to numeric

df[data_type] = pd.to_numeric(df[data_type])

89

Convert 'data_type' column to numeric (assuming 'data_type' is a column name)

df[data_type] = pd.to_numeric(df[data_type], errors='coerce')

Reset index after manipulation

df.reset_index(drop=True, inplace=True)

Convert 'Date' column to datetime objects

df['Date'] = pd.to_datetime(df['Date'])

Define the date range to keep

start_date = '2004-01-01'

end_date = '2023-12-31'

Create a boolean mask to filter rows based on the date range

mask = (df['Date'] >= start_date) & (df['Date'] <= end_date)

Apply the mask to filter rows within the specified date range

filtered_df = df[mask]

Keep rows based on the boolean mask

df = df[mask]

Reset the index

df.reset_index(drop=True, inplace=True)

Filter rows where Waterlevel is 0

zero_data_type_rows = df[df[data_type] <= 0]

print('number of rows below 0 : ',len(zero_data_type_rows))

#print(zero_data_type_rows) # Print rows where Waterlevel is 0

df.loc[zero_data_type_rows.index, data_type] = 0

Filter rows where Waterlevel is 0

zero_data_type_rows = df[df[data_type] < 0]

print('Zero-Removal')

print('number of rows below 0 : ',len(zero_data_type_rows))

#print(zero_data_type_rows) # Print rows where Waterlevel is 0

print(len(df[df[data_type] < 0]))

print('Final Statistics')

print(df.describe())

Option to exit or move on

continue_choice = input("Move on? (yes/no): ").lower()

if continue_choice != 'yes':

 print("Exiting.")

 sys.exit()

Calculate statistical values

mean_value = df.mean()

std_dev = df[data_type].std()

min_value = df[data_type].min()

max_value = df[data_type].max()

Histogram

plt.figure(figsize=(10, 6))

plt.hist(df[data_type], bins=50, alpha=0.7, color='blue')

Mean

plt.axvline(x=mean_value[data_type], color='g', linestyle='-', label='Mean')

90

Standard Deviation (both sides)

plt.axvline(x=mean_value[data_type] - std_dev, color='c', linestyle='--', label='Standard Deviation')

plt.axvline(x=mean_value[data_type] + std_dev, color='c', linestyle='--')

Min

plt.axvline(x=min_value, color='m', linestyle='-.', label='Min Value')

Max

plt.axvline(x=max_value, color='m', linestyle='-.', label='Max Value')

plt.title(f'Histogram of mean and standard deviation for {data_type} in {name}')

plt.xlabel(data_type)

plt.ylabel('Frequency')

plt.legend()

plt.savefig(f'/Users/simen/Desktop/Complete Master/04 Plots/{name}_{data_type}_histogram_plot.png')

plt.show()

Set 'Date' as the DataFrame index

df.set_index('Date', inplace=True)

Time-series plot

plt.figure(figsize=(10, 6))

plt.plot(df.index, df[data_type], label=data_type)

Format the x-axis to show years and months/dates

plt.gca().xaxis.set_major_locator(mdates.YearLocator())

plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%Y'))

plt.gcf().autofmt_xdate() # Auto-rotate dates for better spacing

Add vertical lines for each year

for year in pd.date_range(start=df.index.min(), end=df.index.max(), freq='YS'):

 plt.axvline(x=year, color='gray', linestyle=':', linewidth=0.5)

plt.title(f'Daily Time Series of {data_type} in {name}')

plt.xlabel('Date')

plt.ylabel(data_type)

plt.legend()

plt.tight_layout()

plt.savefig(f'/Users/simen/Desktop/Complete Master/04 Plots/{name}_{data_type}_time_series_plot.png')

plt.show()

Reset index after manipulation

df.reset_index(inplace=True)

print()

print('Top of Cleaned Dataset')

print(df.head())

print()

print('Bottom of Cleaned Dataset')

print(df.tail())

Option to exit or Save

continue_choice = input("Save? (yes/no): ").lower()

if continue_choice != 'yes':

 print("Exiting.")

 sys.exit()

91

Where to save the cleaned dataset

output_file_path = '/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/'

filename_csv = f'Cleaned_{name}_{data_type}.csv'

Save the cleaned DataFrame to the new CSV file

df.to_csv(output_file_path + filename_csv, index=False)

Save the cleaned DataFrame to excel file for Appendix.

df.to_excel(f'/Users/simen/Desktop/Complete Master/03 Excel Products/02

Lakes/{name}/Cleaned_{name}_{data_type}.xlsx', index=False)

92

Appendix 2:

Correlation Analysis

All Lakes:

Tyrifjorden Sperillen Randsfjord

Tyrifjorden 1 0,761035 0,633054

Sperillen 0,761035 1 0,775634

Randsfjord 0,633054 0,775634 1

Tyrifjorden:

Waterlevel Waterflow Reservoir

Waterlevel 1 0,89595 0,999935

Waterflow 0,89595 1 0,89906

Reservoir 0,999935 0,89906 1

93

Appendix 2:

Correlation Analysis

Sperillen:

Waterlevel Waterflow Reservoir

Waterlevel 1 0,707879 0,999633

Waterflow 0,707879 1 0,721373

Reservoir 0,999633 0,721373 1

Randsfjorden:

Waterlevel Waterflow Reservoir

Waterlevel 1 0,287398 0,999956

Waterflow 0,287398 1 0,289755

Reservoir 0,999956 0,289755 1

94

Appendix 3:

Correlation.py

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

import matplotlib.dates as mdates

from sklearn.preprocessing import MinMaxScaler

import matplotlib.gridspec as gridspec

lake_names = ["Tyrifjorden", "Sperillen", "Randsfjord"]

for name in lake_names:

 # Load the datasets with complete local filepath

 waterlevel_data = pd.read_csv(f"/Users/simen/Desktop/Complete Master/01 Data/Cleaned

Data/Cleaned_{name}_Waterlevel.csv")

 waterflow_data = pd.read_csv(f"/Users/simen/Desktop/Complete Master/01 Data/Cleaned

Data/Cleaned_{name}_Waterflow.csv")

 reservoirlevel_data = pd.read_csv(f"/Users/simen/Desktop/Complete Master/01 Data/Cleaned

Data/Cleaned_{name}_Reservoir.csv")

 # Merge the datasets on 'Date'

 merged_data = pd.merge(waterlevel_data, waterflow_data, on='Date')

 merged_data = pd.merge(merged_data, reservoirlevel_data, on='Date')

 # Ensures the 'Date' column is a datetime type

 merged_data['Date'] = pd.to_datetime(merged_data['Date'])

 merged_data_without_date = merged_data.drop(columns=['Date'])

 # Calculate the correlation

 correlation_matrix = merged_data_without_date.corr()

 # Normalize the data

 scaler = MinMaxScaler()

 merged_data[['Waterlevel', 'Waterflow', 'Reservoir']] = scaler.fit_transform(

 merged_data[['Waterlevel', 'Waterflow', 'Reservoir']])

 fig = plt.figure(figsize=(13, 5))

 gs = gridspec.GridSpec(3, 2, width_ratios=[3, 1])

 # Create time-series subplots in the first column of the grid

 time_series_axes = []

 for i in range(3):

 ax = fig.add_subplot(gs[i, 0])

 time_series_axes.append(ax)

 ax.plot(merged_data['Date'], merged_data.iloc[:, i+1], label=merged_data.columns[i+1])

 ax.legend()

 ax.set_title(f"{merged_data.columns[i+1]} Time Series for {name}")

 heatmap_ax = fig.add_subplot(gs[:, 1])

 # Plot the heatmap

 sns.heatmap(correlation_matrix, ax=heatmap_ax, annot=True, cmap='coolwarm', fmt=".2f")

 heatmap_ax.set_title(f'{name} Correlation Heatmap')

 heatmap_ax.set_aspect('auto')

95

 for label in heatmap_ax.get_xticklabels():

 label.set_rotation(45) # Rotate labels to 45 degrees

 label.set_ha('right')

 plt.tight_layout()

 plt.savefig(f'/Users/simen/Desktop/Complete Master/04 Plots/{name}_correlation_heatmap.png')

 plt.show()

 correlation_matrix_save = correlation_matrix

 correlation_matrix_save.to_excel(f"/Users/simen/Desktop/Complete Master/03 Excel Products/01

Correlation/correlation_matrix_{name}.xlsx")

Load the datasets for Waterlevel for all lakes

tyrifjorden_data = pd.read_csv('/Users/simen/Desktop/Complete Master/01 Data/Cleaned

Data/Cleaned_Tyrifjorden_Waterlevel.csv')

sperillen_data = pd.read_csv('/Users/simen/Desktop/Complete Master/01 Data/Cleaned

Data/Cleaned_Sperillen_Waterlevel.csv')

randsfjord_data = pd.read_csv('/Users/simen/Desktop/Complete Master/01 Data/Cleaned

Data/Cleaned_Randsfjord_Waterlevel.csv')

tyrifjorden_data['Date'] = pd.to_datetime(tyrifjorden_data['Date'])

sperillen_data['Date'] = pd.to_datetime(sperillen_data['Date'])

randsfjord_data['Date'] = pd.to_datetime(randsfjord_data['Date'])

Normalize the datasets

scaler = MinMaxScaler()

tyrifjorden_data['Normalized'] = scaler.fit_transform(tyrifjorden_data[['Waterlevel']])

sperillen_data['Normalized'] = scaler.fit_transform(sperillen_data[['Waterlevel']])

randsfjord_data['Normalized'] = scaler.fit_transform(randsfjord_data[['Waterlevel']])

Merge the datasets on a common date column

combined_data = pd.DataFrame()

combined_data['Date'] = tyrifjorden_data['Date'] # Assuming all datasets have the same date range

combined_data = combined_data.merge(tyrifjorden_data[['Date', 'Normalized']], on='Date', how='left')

combined_data = combined_data.merge(sperillen_data[['Date', 'Normalized']], on='Date', how='left', suffixes=(' Tyrifjorden', '

Sperillen'))

combined_data = combined_data.merge(randsfjord_data[['Date', 'Normalized']], on='Date', how='left')

combined_data.rename(columns={'Normalized': 'Randsfjord'}, inplace=True)

combined_data.rename(columns={'Normalized Tyrifjorden': 'Tyrifjorden'}, inplace=True)

combined_data.rename(columns={'Normalized Sperillen': 'Sperillen'}, inplace=True)

combined_data_without_date = combined_data.drop(columns=['Date'])

Calculate the correlation

correlation_matrix = combined_data_without_date.corr()

plt.figure(figsize=(8, 6))

sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f")

plt.title('Correlation Heatmap of Normalized Waterlevels')

plt.savefig('/Users/simen/Desktop/Complete Master/04 Plots/all_lakes_correlation_heatmap.png')

plt.show()

Save the correlation matrix to an Excel file

correlation_matrix.to_excel("/Users/simen/Desktop/Complete Master/03 Excel Products/01

Correlation/correlation_matrix_all.xlsx")

96

Appendix 4:

Statistical_Analysis.py

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

import matplotlib.dates as mdates

Path to the CSV file

name = "Randsfjord"

data_type = "Waterlevel"

file_path = f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/Cleaned_{name}_Waterlevel.csv'

Read the CSV file

df = pd.read_csv(file_path)

df[data_type] = pd.to_numeric(df[data_type], errors='coerce') # Convert data to numeric

df.reset_index(drop=True, inplace=True)

if name == 'Randsfjord':

 if data_type == 'Waterlevel':

 # Define flooding levels

 mean_flood = 134.689

 five_year_flood = 134.9159

 ten_year_flood = 135.1058

 twenty_year_flood = 135.2902

 fifty_year_flood = 135.5321

 LRV = 131.3

 HRV = 134.5

 LRV_HRV = [LRV, HRV]

 flooding_levels = [mean_flood, five_year_flood, ten_year_flood, twenty_year_flood, fifty_year_flood]

 else:

 # Handle the case when data_type is not 'Waterlevel'

 flooding_levels = None

elif name == 'Tyrifjorden':

 if data_type == 'Waterlevel':

 # Define flooding levels

 mean_flood = 64.2

 five_year_flood = 64.7

 ten_year_flood = 64.9

 twenty_year_flood = 65.1

 fifty_year_flood = 65.2

 LRV = 62

 HRV = 63

 LRV_HRV = [LRV, HRV]

 flooding_levels = [mean_flood, five_year_flood, ten_year_flood, twenty_year_flood, fifty_year_flood]

 else:

 # Handle the case when data_type is not 'Waterlevel'

 flooding_levels = None

97

elif name == 'Sperillen':

 if data_type == 'Waterlevel':

 # Define flooding levels

 mean_flood = 151.1276

 five_year_flood = 151.6132

 ten_year_flood = 152.0137

 twenty_year_flood = 152.4

 fifty_year_flood = 152.9034

 LRV = 147.95

 HRV = 150.25

 LRV_HRV = [LRV, HRV]

 flooding_levels = [mean_flood, five_year_flood, ten_year_flood, twenty_year_flood, fifty_year_flood]

 else:

 # Handle the case when data_type is not 'Waterlevel'

 flooding_levels = None

Calculate and print basic statistics

mean_value = df[data_type].mean()

std_dev = df[data_type].std()

min_value = df[data_type].min()

quantile_25 = df[data_type].quantile(0.25)

median_value = df[data_type].median()

quantile_75 = df[data_type].quantile(0.75)

quantile_90 = df[data_type].quantile(0.90)

quantile_95 = df[data_type].quantile(0.95)

quantile_99 = df[data_type].quantile(0.99)

max_value = df[data_type].max()

total_data_points = len(df[data_type])

print('Total Data Points =', total_data_points)

print('Mean Value =', mean_value)

print('Standard Deviation =', std_dev)

print('Min Value =', min_value)

print('50% / Median =', median_value)

print('75% =', quantile_75)

print('90% =', quantile_90)

print('95% =', quantile_95)

print('99% =', quantile_99)

print('Max Value =', quantile_90)

Save statistics into a DataFrame

statistics_df = pd.DataFrame({

 'Statistic': ['Total Data Points', 'Mean', 'Standard Deviation', 'Min', '25%', 'Median', '75%', '90%', '95%', '99%', 'Max'],

 'Value': [total_data_points, mean_value, std_dev, min_value, quantile_25, median_value, quantile_75, quantile_90,

quantile_95, quantile_99, max_value]

})

print(df.head())

print(statistics_df.head())

98

Histogram

plt.figure(figsize=(10, 6))

plt.hist(df[data_type], bins=100, alpha=0.7, color='blue')

Mean

plt.axvline(x=mean_value, color='g', linestyle='-', label='Mean')

Standard Deviation (both sides)

plt.axvline(x=mean_value - std_dev, color='c', linestyle='--', label='Standard Deviation')

plt.axvline(x=mean_value + std_dev, color='c', linestyle='--')

Min

plt.axvline(x=min_value, color='m', linestyle='-.', label='Min Value')

Max

plt.axvline(x=max_value, color='m', linestyle='-.', label='Max Value')

plt.title(f'Histogram of mean and standard deviation for {data_type} in {name}')

plt.xlabel(data_type)

plt.ylabel('Frequency')

plt.legend()

plt.show()

Histogram

plt.figure(figsize=(10, 6))

plt.hist(df[data_type], bins=100, alpha=0.7, color='blue')

25th Percentile

plt.axvline(x=quantile_25, color='y', linestyle=':', label='25% Percentile')

Median

plt.axvline(x=median_value, color='k', linestyle='-', label='Median (50% Percentile)')

75th Percentile

plt.axvline(x=quantile_75, color='y', linestyle=':', label='75% Percentile')

90th Percentile

plt.axvline(x=quantile_90, color='y', linestyle=':', label='90% Percentile')

95th Percentile

plt.axvline(x=quantile_95, color='y', linestyle=':', label='95% Percentile')

99th Percentile

plt.axvline(x=quantile_99, color='y', linestyle=':', label='99% Percentile')

plt.title(f'Histogram of percentiles for {data_type} in {name}')

plt.xlabel(data_type)

plt.ylabel('Frequency')

plt.legend()

plt.show()

Histogram

plt.figure(figsize=(10, 6))

plt.hist(df[data_type], bins=100, alpha=0.7, color='blue')

for value in flooding_levels:

 plt.axvline(x=value, color='r', linestyle='--', label='Flooding Level' if 'Flooding Level' not in

plt.gca().get_legend_handles_labels()[1] else "_nolegend_")

for value in LRV_HRV:

99

 plt.axvline(x=value, color='y', linestyle='--', label='LRW/HRW' if 'LRW/HRW' not in

plt.gca().get_legend_handles_labels()[1] else "_nolegend_")

plt.title(f'Histogram of {data_type} in {name}')

plt.xlabel(data_type)

plt.ylabel('Frequency')

plt.legend()

if data_type == 'Waterlevel':

 # Add vertical lines at specified x-axis values

 for value in flooding_levels:

 plt.axvline(x=value, color='r', linestyle='--')

else:

 # Handle the case when data_type is not 'Waterlevel'

 # For example, set flooding_levels to None or print a message

 flooding_levels = None

if data_type == 'Waterlevel':

 # Add vertical lines at specified x-axis values

 for value in LRV_HRV:

 plt.axvline(x=value, color='y', linestyle='--')

else:

 # Handle the case when data_type is not 'Waterlevel'

 # For example, set flooding_levels to None or print a message

 LRV_HRV = None

plt.show()

df['Date'] = pd.to_datetime(df['Date'])

df.set_index('Date', inplace=True)

Time-series plot setup

plt.figure(figsize=(10, 6))

plt.plot(df.index, df[data_type], label=data_type)

Format the x-axis to show years

plt.gca().xaxis.set_major_locator(mdates.YearLocator())

plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%Y'))

plt.gcf().autofmt_xdate() # Auto-rotate dates for better spacing

plt.title(f'Daily Time Series of {data_type} in {name}')

plt.xlabel('Date')

plt.ylabel(data_type)

Plotting flooding levels with labels

if data_type == 'Waterlevel':

 for index, level in enumerate(flooding_levels):

 plt.axhline(y=level, color='r', linestyle='--', label=f'Flooding Level {index + 1}')

Plotting LRV_HRV levels with labels

if data_type == 'Waterlevel':

 for index, level in enumerate(LRV_HRV):

 plt.axhline(y=level, color='y', linestyle='--', label=f'LRV_HRV Level {index + 1}')

plt.legend()

plt.tight_layout()

100

plt.show()

Number of days within the regulation zone 62-63 meters

regulation_zone_days = len(df[(df[data_type] > LRV) & (df[data_type] < HRV)])

regulation_zone_percent = (regulation_zone_days / total_data_points) * 100

print(f"Number of days within the regulation zone 62-63 meters: {regulation_zone_days}

({regulation_zone_percent:.2f}%)")

Number of days within the caution zone, above HRV and below mean-flood

caution_zone_days = len(df[(df[data_type] > HRV) & (df[data_type] < mean_flood)])

caution_zone_percent = (caution_zone_days / total_data_points) * 100

print(f"Number of days within the caution zone HRW to mean-flood: {caution_zone_days} ({caution_zone_percent:.2f}%)")

Number of days with mean flood to 5-year flood

meanflood_5year_days = len(df[(df[data_type] > mean_flood) & (df[data_type] < five_year_flood)])

meanflood_5year_percent = (meanflood_5year_days / total_data_points) * 100

print(f"Number of days with mean-flood to 5-year flood: {meanflood_5year_days} ({meanflood_5year_percent:.2f}%)")

Number of days with 5 to 10-year flood

five_10year_days = len(df[(df[data_type] > five_year_flood) & (df[data_type] < ten_year_flood)])

five_10year_percent = (five_10year_days / total_data_points) * 100

print(f"Number of days with 5 to 10-year flood: {five_10year_days} ({five_10year_percent:.2f}%)")

Number of days with 10 to 20-year flood

ten_20year_days = len(df[(df[data_type] > ten_year_flood) & (df[data_type] < twenty_year_flood)])

ten_20year_percent = (ten_20year_days / total_data_points) * 100

print(f"Number of days with 10 to 20-year flood: {ten_20year_days} ({ten_20year_percent:.2f}%)")

Number of days with 20 to 50-year flood

twenty_50year_days = len(df[(df[data_type] > twenty_year_flood) & (df[data_type] < fifty_year_flood)])

twenty_50year_percent = (twenty_50year_days / total_data_points) * 100

print(f"Number of days with 20 to 50-year flood: {twenty_50year_days} ({twenty_50year_percent:.2f}%)")

Number of days with 50-year flood

fifty_year_days = len(df[df[data_type] > fifty_year_flood])

fifty_year_percent = (fifty_year_days / total_data_points) * 100

print(f"Number of days with 50-year flood: {fifty_year_days} ({fifty_year_percent:.2f}%)")

Total number of days with flood

total_flood_days = len(df[df[data_type] > mean_flood])

total_flood_percent = (total_flood_days / total_data_points) * 100

print(f"Number of days with flood: {total_flood_days} ({total_flood_percent:.2f}%)")

Save to DataFrame

frequency_days_df = pd.DataFrame({

 'Condition': ['Regulation Zone', 'Caution Zone', 'Mean to 5-Year Flood', '5 to 10-Year Flood', '10 to 20-Year Flood', '20 to

50-Year Flood', '50-Year Flood', 'Total Flood Days'],

 'Days': [regulation_zone_days, caution_zone_days, meanflood_5year_days, five_10year_days, ten_20year_days,

twenty_50year_days, fifty_year_days, total_flood_days],

 'Percent': [regulation_zone_percent, caution_zone_percent, meanflood_5year_percent, five_10year_percent,

ten_20year_percent, twenty_50year_percent, fifty_year_percent, total_flood_percent]

})

Assuming mean_value, std_dev, df, data_type, and total_data_points are already defined

Example of std_devs, which needs to be defined:

101

std_devs = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Calculate probabilities for values greater than or equal to the specified number of standard deviations from the mean

probabilities = []

percentage_within_ranges = []

for num_std_devs in std_devs:

 # Calculate the value at the given number of standard deviations from the mean

 value_at_std_devs = mean_value + num_std_devs * std_dev

 # Calculate the probability of observing a value at least as extreme as value_at_std_devs

 probability = len(df[df[data_type] >= value_at_std_devs]) / total_data_points

 # For both sides of the distribution, multiply the probability by 2

 # This accounts for both tails assuming a normal distribution

 adjusted_probability = min(probability * 2, 1) # Ensure probability does not exceed 100%

 probabilities.append(adjusted_probability)

 # Calculate the percentage falling within the range of the specified number of standard deviations from the mean

 percentage_within_range = (1 - adjusted_probability) * 100

 percentage_within_ranges.append(percentage_within_range)

 print(f"{percentage_within_range:.2f}% falls within {num_std_devs} standard deviation{'s' if num_std_devs > 1 else ''}

from the mean.")

Save to DataFrame

std_dev_analysis_df = pd.DataFrame({

 'Number of Std Devs': std_devs,

 'Percentage Within Range': percentage_within_ranges

})

level_names = ['Mean', 'Five-year', 'Ten-year', 'Twenty-year', 'Fifty-year']

Calculate how many standard deviations each flooding level is from the mean

std_devs_from_mean = {}

std_dev_data = []

for level_name, level_value in zip(level_names, flooding_levels):

 num_std_devs_from_mean = (level_value - mean_value) / std_dev

 std_devs_from_mean[level_name] = num_std_devs_from_mean

 std_dev_data.append(num_std_devs_from_mean) # This line was missing; now it appends each computed std dev

Print the results for each flood level's standard deviations from the mean

for level_name, num_std_devs_from_mean in std_devs_from_mean.items():

 print(f"{level_name} flooding level is {num_std_devs_from_mean:.2f} standard deviations from the mean.")

Printing to verify the content and length of std_dev_data

print(std_dev_data) # This will show the list of standard deviations computed

print(len(level_names)) # This prints the length of level_names, which should be 5

print(len(std_dev_data)) # This now should also print 5, confirming entries are made to the list

Create DataFrame

flood_levels_std_dev_df = pd.DataFrame({

 'Flood Level': level_names,

 'Std Devs from Mean': std_dev_data

})

Reset the index to make sure 'Date' is a column, not the index, to avoid issues

102

df.reset_index(inplace=True)

Ensure 'Date' column is in datetime format

df['Date'] = pd.to_datetime(df['Date'])

Now, set 'Date' as the index again, this time for the purpose of resampling

df.set_index('Date', inplace=True)

Resample the data to get annual statistics. 'A' stands for 'Annual'.

annual_data = df.resample('A').agg(['mean', 'std'])

Calculate the Yearly Variability Index for each year

YVI = standard deviation / mean for each year

annual_data['YVI'] = annual_data[(data_type, 'std')] / annual_data[(data_type, 'mean')]

Calculate the average of the Yearly Variability Index across all years

average_yvi = annual_data['YVI'].mean()

print("Yearly Variability Index (YVI) for each year:\n", annual_data['YVI'])

print("\nAverage Yearly Variability Index (YVI) across all years:", average_yvi)

Creating DataFrame to hold this information

yearly_variability_index_df = annual_data[[('YVI', '')]].copy()

yearly_variability_index_df.columns = ['Yearly Variability Index'] # Rename the columns for clarity

print()

print(statistics_df)

print()

print(frequency_days_df)

print()

print(std_dev_analysis_df)

print()

print(flood_levels_std_dev_df)

print()

print(yearly_variability_index_df)

Define the save path

save_path = f'/Users/simen/Desktop/Complete Master/03 Excel Products/02 Lakes/{name}/'

File name based on a variable 'name'

file_name = f'Combined_Statistical_Data_{name}.xlsx'

full_path = save_path + file_name

Save all DataFrames to an Excel file with each DataFrame as a separate sheet

with pd.ExcelWriter(full_path, engine='xlsxwriter') as writer:

 statistics_df.to_excel(writer, sheet_name='Statistics', index=False)

 frequency_days_df.to_excel(writer, sheet_name='Frequency Days', index=False)

 std_dev_analysis_df.to_excel(writer, sheet_name='Standard Deviation Analysis', index=False)

 flood_levels_std_dev_df.to_excel(writer, sheet_name='Flood Levels Std Dev', index=False)

 yearly_variability_index_df.to_excel(writer, sheet_name='Yearly Variability Index', index=False)

print(f"All DataFrames have been saved as an excel file at {full_path}.")

df.reset_index(inplace=True)

df.set_index('Date', inplace=True)

plt.figure(figsize=(10, 6))

plt.boxplot(df[data_type].dropna(), vert=True) # Ensure there are no NaN values

plt.title(f'Boxplot of {data_type} for {name}')

103

plt.ylabel(data_type)

plt.xticks([1], [data_type]) # Set a custom x-axis label

plt.grid(True)

plt.show()

104

Appendix 5:

Statistical Analysis Tyrifjorden

Statistic Value

Total Data Points 7305

Mean 62,9181

Standard

Deviation

0,377319

Min 62,02999

25% 62,75689

Median 62,8723

75% 62,99604

90% 63,31896

95% 63,63215

99% 64,35287

Max 65,40757

Condition Days Percent

Regulation Zone 5512 75,45517

Caution Zone 1653 22,62834

Mean to 5-Year Flood 86 1,177276

5 to 10-Year Flood 2 0,027379

10 to 20-Year Flood 6 0,082136

20 to 50-Year Flood 4 0,054757

50-Year Flood 15 0,205339

Total Flood Days 113 1,546886

105

Appendix 5:

Statistical Analysis Tyrifjorden

Flood

Level

Std Devs from

Mean

Number of Std

Devs

Percentage Within

Range

Mean 3,39738879 1 78,80903491

Five-year 4,722526974 2 90,63655031

Ten-year 5,252582248 3 95,67419576

Twenty-

year

5,782637522 4 98,38466804

Fifty-year 6,047665158 5 99,2881588

6 99,58932238

7 100

8 100

9 100

10 100

106

Appendix 6:

Statistical Analysis Sperillen

Statistic Value

Total Data Points 7305

Mean 149,6315

Standard

Deviation

0,71156

Min 148,1312

25% 149,0202

Median 149,7027

75% 150,1673

90% 150,3899

95% 150,5535

99% 151,6396

Max 154,023

Condition Days Percent

Regulation Zone 5919 81,02669

Caution Zone 1233 16,87885

Mean to 5-Year Flood 74 1,013005

5 to 10-Year Flood 38 0,520192

10 to 20-Year Flood 21 0,287474

20 to 50-Year Flood 13 0,17796

50-Year Flood 5 0,068446

Total Flood Days 151 2,067077

107

Appendix 6:

Statistical Analysis Sperillen

Flood Level Std Devs from Mean Number of Std Devs Percentage Within Range

Mean 2,102542 1 73,85352

Five-year 2,784986 2 95,50992

Ten-year 3,347834 3 98,4668

Twenty-year 3,890726 4 99,56194

Fifty-year 4,598186 5 99,86311

6 99,97262

7 100

8 100

9 100

10 100

108

Appendix 7

Statistical Analysis Randsfjorden

Statistic Value

Total Data Points 7298

Mean 133,5049

Standard Deviation 0,871948

Min 131,43

25% 132,84

Median 133,9

75% 134,15

90% 134,35

95% 134,4618

99% 134,66

Max 136,07

Condition Days Percent

Regulation Zone 7063 96,77994

Caution Zone 146 2,000548

Mean to 5-Year Flood 34 0,465881

5 to 10-Year Flood 2 0,027405

10 to 20-Year Flood 2 0,027405

20 to 50-Year Flood 5 0,068512

50-Year Flood 21 0,28775

Total Flood Days 64 0,876953

109

Appendix 7

Statistical Analysis Randsfjorden

Flood Level Std Devs from Mean Number of Std Devs Percentage Within Range

Mean 1,358027 1 82,65278

Five-year 1,618249 2 99,26007

Ten-year 1,836038 3 100

Twenty-year 2,047518 4 100

Fifty-year 2,324943 5 100

6 100

7 100

8 100

9 100

10 100

110

Appendix 8:

Seasonal_Analysis.py

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

from statsmodels.tsa.seasonal import seasonal_decompose

from sklearn.linear_model import LinearRegression

import statsmodels.api as sm

from datetime import datetime

import sys

Path to the CSV file

name = "Randsfjord"

data_type = "Waterlevel"

file_path = f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/Cleaned_{name}_Waterlevel.csv'

Read the CSV file

df = pd.read_csv(file_path)

df[data_type] = pd.to_numeric(df[data_type], errors='coerce') # Convert data to numeric, ensuring all data is correctly

formatted

df['Date'] = pd.to_datetime(df['Date']) # Ensure the Date column is in datetime format

Define the date range to keep. The Range has been altered to match the start of a season. Given that the dataset begins mid

Winter season, originally.

start_date = '2004-12-01'

end_date = '2023-12-31'

Create a boolean mask to filter rows based on the date range

mask = (df['Date'] >= start_date) & (df['Date'] <= end_date)

Apply the mask to filter rows within the specified date range

filtered_df = df[mask]

Keep rows based on the boolean mask

df = df[mask]

df.set_index('Date', inplace=True) # Set the Date column as the index for easier time series analysis

if name == 'Randsfjord':

 if data_type == 'Waterlevel':

 # Define flooding levels

 mean_flood = 134.689

 five_year_flood = 134.9159

 ten_year_flood = 135.1058

 twenty_year_flood = 135.2902

 fifty_year_flood = 135.5321

 LRV = 131.3

 HRV = 134.5

 LRV_HRV = [LRV, HRV]

 flooding_levels = [mean_flood, five_year_flood, ten_year_flood, twenty_year_flood, fifty_year_flood]

 else:

111

 # Handle the case when data_type is not 'Waterlevel'

 flooding_levels = None

elif name == 'Tyrifjorden':

 if data_type == 'Waterlevel':

 # Define flooding levels

 mean_flood = 64.2

 five_year_flood = 64.7

 ten_year_flood = 64.9

 twenty_year_flood = 65.1

 fifty_year_flood = 65.2

 LRV = 62

 HRV = 63

 LRV_HRV = [LRV, HRV]

 flooding_levels = [mean_flood, five_year_flood, ten_year_flood, twenty_year_flood, fifty_year_flood]

 else:

 # Handle the case when data_type is not 'Waterlevel'

 flooding_levels = None

elif name == 'Sperillen':

 if data_type == 'Waterlevel':

 # Define flooding levels

 mean_flood = 151.1276

 five_year_flood = 151.6132

 ten_year_flood = 152.0137

 twenty_year_flood = 152.4

 fifty_year_flood = 152.9034

 LRV = 147.95

 HRV = 150.25

 LRV_HRV = [LRV, HRV]

 flooding_levels = [mean_flood, five_year_flood, ten_year_flood, twenty_year_flood, fifty_year_flood]

df_reset = df.reset_index(inplace=False)

df_reset['Date'] = pd.to_datetime(df_reset['Date'])

df_reset['Date'] = df_reset['Date'].dt.strftime('%m/%d/%Y')

df_reset.to_excel(f'/Users/simen/Desktop/Complete Master/03 Excel Products/02

Lakes/{name}/{name}_season_grouped.xlsx', index=True)

df_reset.to_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/{name}_season_grouped.csv', index=True)

decomposition = seasonal_decompose(df[data_type], model='additive', period=365) # Using a period of 365 to account for

yearly seasonality

Plotting the decomposition results

plt.figure(figsize=(14, 8))

plt.subplot(412)

plt.plot(decomposition.observed, label='Observed')

plt.legend(loc='upper right')

plt.subplot(413)

plt.plot(decomposition.seasonal,label='Seasonal')

plt.legend(loc='upper right')

112

plt.tight_layout()

plt.show()

Define a function to assign seasons and handle crossover for winter

def assign_season(date):

 year = date.year

 spring_start = pd.Timestamp(year=year, month=3, day=1)

 summer_start = pd.Timestamp(year=year, month=6, day=1)

 autumn_start = pd.Timestamp(year=year, month=9, day=1)

 winter_start = pd.Timestamp(year=year, month=11, day=30)

 if date >= spring_start and date < summer_start:

 return 'Spring'

 elif date >= summer_start and date < autumn_start:

 return 'Summer'

 elif date >= autumn_start and date < winter_start:

 return 'Autumn'

 else:

 return 'Winter'

Apply the season function to each date

df['Season'] = df.index.map(assign_season)

Handle winter crossover: If it's January or February, assign it to the previous year's winter

df['Year'] = df.index.year

Define the start of the winter season

winter_start_month = 12

winter_start_day = 1

Custom function to calculate DayOfSeason

def calculate_day_of_season(row):

 # If the month is December, January, or February, it's winter

 if row.name.month == 12 or row.name.month <= 2:

 # Winter starts on December 1st

 season_start = pd.Timestamp(year=row.name.year if row.name.month == 12 else row.name.year-1,

 month=winter_start_month, day=winter_start_day)

 elif row.name.month >= 3 and row.name.month <= 5:

 # Spring starts on March 1st

 season_start = pd.Timestamp(year=row.name.year, month=3, day=1)

 elif row.name.month >= 6 and row.name.month <= 8:

 # Summer starts on June 1st

 season_start = pd.Timestamp(year=row.name.year, month=6, day=1)

 else:

 # Autumn starts on September 1st

 season_start = pd.Timestamp(year=row.name.year, month=9, day=1)

 # Calculate the DayOfSeason

 return (row.name - season_start).days + 1

Apply the custom function to calculate DayOfSeason

df['DayOfSeason'] = df.apply(calculate_day_of_season, axis=1)

Continue with the rest of your analysis...

113

Print the first few rows of the dataframe to verify

print(df.head())

Option to exit or move on

continue_choice = input("Move on? (yes/no): ").lower()

if continue_choice != 'yes':

 print("Exiting.")

 sys.exit()

Group by season and calculate statistical summaries

statistics_seasonal_df = df.groupby('Season')['Waterlevel'].describe()

If you want to round the statistics for cleaner presentation

statistics_seasonal_df = statistics_seasonal_df.round(2)

df['Season'] = df.index.map(assign_season)

Plot histograms for each season with LRW, HRW, and flooding levels

fig, axes = plt.subplots(2, 2, figsize=(14, 10), tight_layout=True)

seasons = ['Spring', 'Summer', 'Autumn', 'Winter']

for ax, season in zip(axes.flatten(), seasons):

 season_data = df[df['Season'] == season][data_type]

 ax.hist(season_data, bins=40, alpha=0.7, label=f'{season} Distribution')

 ax.axvline(LRV, color='r', linestyle='dashed', linewidth=2, label='LRW')

 ax.axvline(HRV, color='g', linestyle='dashed', linewidth=2, label='HRW')

 # Add flooding levels

 for level in flooding_levels:

 ax.axvline(level, color='b', linestyle='dotted', linewidth=1)

 ax.set_title(f'{season} Water Level Distribution')

 ax.set_xlabel(data_type)

 ax.set_ylabel('Frequency')

 ax.legend()

plt.show()

Define a function to calculate skewness and kurtosis

def calculate_skewness_kurtosis(data):

 skewness = data.skew()

 kurtosis = data.kurtosis()

 return pd.Series({'Skewness': skewness, 'Kurtosis': kurtosis})

Calculate skewness and kurtosis for each season

skewness_kurtosis_seasonal = df.groupby('Season')['Waterlevel'].apply(calculate_skewness_kurtosis)

def count_days_within_ranges(df, season, levels, LRV):

 # Filter the dataframe for the specified season

 season_data = df[df['Season'] == season]

 # Initialize a dictionary to store counts

 counts = {}

 # Count days below the Lowest Reference Value (LRV)

 count_below_LRV = season_data[season_data[data_type] < LRV].shape[0]

 counts[f'Below {LRV}'] = count_below_LRV

 # Loop through the levels and count days within each range and above the last specified level

 for i in range(len(levels) - 1):

114

 lower_bound = levels[i]

 upper_bound = levels[i + 1]

 count = season_data[(season_data[data_type] > lower_bound) & (season_data[data_type] <= upper_bound)].shape[0]

 counts[f'{lower_bound} to {upper_bound}'] = count

 # Add count for days above the highest level specified

 highest_level = levels[-1]

 count_above_highest = season_data[season_data[data_type] > highest_level].shape[0]

 counts[f'Above {highest_level}'] = count_above_highest

 # Count total days above the first flood level (mean flood level)

 total_flood_days = season_data[season_data[data_type] > levels[2]].shape[0] # Assuming levels[0] is the mean flood level

 counts['Total Flood Days'] = total_flood_days

 return counts

Levels including HRW and flooding levels, ordered from lowest to highest criticality

levels = LRV_HRV + flooding_levels

levels.sort()

Use the function

season_counts = {season: count_days_within_ranges(df, season, levels, LRV) for season in seasons}

Convert the dictionary to a DataFrame for display

frequency_seasonal_df = pd.DataFrame(season_counts) # Transpose for better readability

print(frequency_seasonal_df)

Add a function to calculate the Seasonal Variability Index for each season

def calculate_SVI(season_data):

 mean_level = season_data.mean()

 std_dev = season_data.std()

 svi = std_dev / mean_level

 return svi

Calculate the SVI for each season

risk_indicators_by_season = {}

for season in seasons:

 season_data = df[df['Season'] == season][data_type]

 svi = calculate_SVI(season_data)

 risk_indicators_by_season[season] = svi

Convert the risk indicators dictionary to a DataFrame

SVI_df = pd.DataFrame(list(risk_indicators_by_season.items()), columns=['Season', 'SVI'])

Create a boxplot for each season

plt.figure(figsize=(14, 6)) # Set the figure size (width, height) as desired

for i, season in enumerate(seasons):

 plt.subplot(1, len(seasons), i+1) # Create subplots for each season

 seasonal_data = df[df['Season'] == season]

 plt.boxplot(seasonal_data[data_type])

 plt.title(season)

 plt.xlabel('Season')

 plt.ylabel(data_type)

plt.tight_layout() # Adjust subplots to fit in the figure area

115

plt.show()

Ensure the index is in datetime format, if it's not already

df.index = pd.to_datetime(df.index)

Add a column for the year directly from the index

df['Year'] = df.index.year

Initialize a linear regression model

model = LinearRegression()

seasons = df['Season'].unique()

List to store the slope for each season

slopes = []

for season in seasons:

 # Extract all data points for the season across all years

 seasonal_data = df[df['Season'] == season]

 # The independent variable is the day of the season

 X = seasonal_data['DayOfSeason'].values.reshape(-1, 1)

 # The dependent variable is the water level

 y = seasonal_data['Waterlevel'].values

 # Fit the regression model

 model.fit(X, y)

 # Calculate the slope (coefficient)

 slope = model.coef_[0]

 slopes.append((season, slope))

 # Generate a sequence of day numbers for predictions

 X_pred = np.arange(1, seasonal_data['DayOfSeason'].max() + 1).reshape(-1, 1)

 y_pred = model.predict(X_pred)

Initialize your model outside the loop

model = LinearRegression()

Create a figure and a grid of subplots

fig, axs = plt.subplots(2, 2, figsize=(15, 10))

Flatten the array of axes, for easy iteration

axs = axs.flatten()

Iterate through each season and plot

for i, season in enumerate(['Winter', 'Spring', 'Summer', 'Autumn']):

 # Select the subplot where you want to plot the current season's trend

 ax = axs[i]

 # Extract all data points for the season across all years

 seasonal_data = df[df['Season'] == season]

 # The independent variable is the day of the season

 X = seasonal_data['DayOfSeason'].values.reshape(-1, 1)

 # The dependent variable is the water level

 y = seasonal_data['Waterlevel'].values

 # Fit the regression model

 model.fit(X, y)

116

 # Calculate the slope (coefficient)

 slope = model.coef_[0]

 # Generate a sequence of day numbers for predictions

 X_pred = np.arange(1, seasonal_data['DayOfSeason'].max() + 1).reshape(-1, 1)

 y_pred = model.predict(X_pred)

 # Plot the actual data points and the regression line on the current subplot

 ax.scatter(seasonal_data['DayOfSeason'], y, alpha=0.5, label='Actual Data')

 ax.plot(X_pred, y_pred, color='black', label=f'Trend Line (slope: {slope:.5f})')

 ax.set_title(f'Trend for {season} Across All Years')

 ax.set_xlabel('Day of Season')

 ax.set_ylabel('Water Level')

 ax.legend()

Adjust the layout so that all subplots fit into the figure neatly

plt.tight_layout()

plt.show()

Convert the list of slopes to a DataFrame

slope_df = pd.DataFrame(slopes, columns=['Season', 'Slope'])

Assuming 'DayOfSeason' and 'Waterlevel' are columns in your DataFrame, df.

seasons = df['Season'].unique()

slope_results = []

for season in seasons:

 # Extract all data points for the season across all years

 seasonal_data = df[df['Season'] == season]

 # The independent variable is the day of the season (add a constant term for intercept)

 X = sm.add_constant(seasonal_data['DayOfSeason'].values)

 # The dependent variable is the water level

 y = seasonal_data['Waterlevel'].values

 # Fit the regression model using OLS (Ordinary Least Squares)

 model = sm.OLS(y, X).fit()

 # Store the season, slope, p-value, and whether it's significant at alpha=0.05

 slope, p_value = model.params[1], model.pvalues[1]

 slope_results.append({

 'Season': season,

 'Slope': slope,

 'p-value': p_value,

 'Significant (p<0.05)': p_value < 0.05

 })

Convert the results to a DataFrame

slope_results_df = pd.DataFrame(slope_results)

print(statistics_seasonal_df)

print(frequency_seasonal_df)

print(SVI_df)

print(slope_results_df)

print(skewness_kurtosis_seasonal)

117

print()

Define the save path

save_path = f'/Users/simen/Desktop/Complete Master/03 Excel Products/02 Lakes/{name}/' # Update this path as needed

File name based on a variable 'name'

file_name = f'Combined__Seasonal_Statistical_Data_{name}.xlsx'

Full path including file name

full_path = save_path + file_name

Save all DataFrames to an Excel file with each DataFrame as a separate sheet

with pd.ExcelWriter(full_path, engine='xlsxwriter') as writer:

 statistics_seasonal_df.to_excel(writer, sheet_name='Statistics', index=True)

 frequency_seasonal_df.to_excel(writer, sheet_name='Frequency Days', index=True)

 SVI_df.to_excel(writer, sheet_name='SVI', index=False)

 slope_results_df.to_excel(writer, sheet_name='Theortical Significance', index=False)

 skewness_kurtosis_seasonal.to_excel(writer, sheet_name='Skewness and Kurtosis', index=True)

print("All DataFrames have been saved as an excel file.")

Save the statistical summary as CSV

statistics_seasonal_df.to_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned

Data/{name}_seasonal_statistics.csv', index=True)

Save the frequency of flooding days as CSV

frequency_seasonal_df.to_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned

Data/{name}_seasonal_flooding_frequency.csv', index=True)

Save the Seasonal Variability Index as CSV

SVI_df.to_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/{name}_seasonal_SVI.csv', index=False)

Save the slopes of the trend analysis as CSV

slope_results_df.to_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/{name}_seasonal_trend_slopes.csv',

index=False)

Save the skewness and kurtosis as CSV

skewness_kurtosis_seasonal.to_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned

Data/{name}_seasonal_skewness_kurtosis.csv', index=True)

Print a message to confirm that files are saved

print("CSV files have been saved.")

118

Appendix 9

Seasonal Analysis Tyrifjorden

Season count mean std min 25% 50% 75% max SVI

Autumn 1710 63,02 0,33 62,48 62,83 62,94 63,05 65,25 0,005196

Spring 1748 62,79 0,45 62,03 62,47 62,73 62,97 64,61 0,007219

Summer 1748 63,07 0,42 62,27 62,82 62,92 63,14 65,41 0,006715

Winter 1764 62,81 0,17 62,33 62,66 62,84 62,94 63,61 0,002731

119

Appendix 9

Seasonal Analysis Tyrifjorden

Season Waterlevel Spring Summer Autumn Winter

Autumn Skewness 2,409307 Below 62 0 0 0 0

Kurtosis 7,880773 62 to 63 1381 1123 1147 1633

Spring Skewness 1,460868 63 to 64.2 329 578 535 131

Kurtosis 2,754842 64.2 to 64.7 38 26 22 0

Summer Skewness 2,546273 64.7 to 64.9 0 0 2 0

Kurtosis 8,420227 64.9 to 65.1 0 4 2 0

Winter Skewness 0,090666 65.1 to 65.2 0 3 1 0

Kurtosis 0,906967 Above 65.2 0 14 1 0

 Total Flood Days 38 47 28 0

120

Season Slope p-value Significant (p<0.05)

Winter -0,00198 3,08E-39 TRUE

Spring 0,007381 1,18E-80 TRUE

Summer -0,00088 0,02041 TRUE

Autumn -0,0011 0,00029 TRUE

121

Appendix 10

Seasonal Analysis Sperillen

Season count mean std min 25% 50% 75% max SVI

Autumn 1710 149,96 0,5 148,15 149,74 150,09 150,28 151,87 0,003343

Spring 1748 149,27 0,81 148,13 148,69 148,98 149,6 152,79 0,005432

Summer 1748 149,95 0,69 148,17 149,62 150,01 150,31 154,02 0,004573

Winter 1764 149,36 0,5 148,44 148,92 149,29 149,81 150,42 0,003361

Season Waterlevel

Autumn Skewness -0,75645

Kurtosis 1,499028

Spring Skewness 1,397661

Kurtosis 1,703976

Summer Skewness 0,512221

Kurtosis 4,160338

Winter Skewness 0,335115

Kurtosis -1,09509

122

Appendix 10

Seasonal Analysis Sperillen

Spring Summer Autumn Winter

Below 147.95 0 0 0 0

147.95 to 150.25 1494 1234 1216 1694

150.25 to 151.1276 188 452 474 70

151.1276 to 151.6132 29 26 16 0

151.6132 to 152.0137 23 11 4 0

152.0137 to 152.4 11 10 0 0

152.4 to 152.9034 3 10 0 0

Above 152.9034 0 5 0 0

Total Flood Days 66 62 20 0

Season Slope p-value Significant

(p<0.05)

Winter -0,01154 2,1E-178 TRUE

Spring 0,019665 1,3E-205 TRUE

Summer -0,00262 2,18E-05 TRUE

Autumn 0,002967 1,62E-10 TRUE

123

Appendix 11

Seasonal Analysis Randsfjorden

Season count mean std min 25% 50% 75% max SVI

Autumn 1710 134,17 0,26 132,95 134,03 134,15 134,35 135,66 0,001963

Spring 1748 132,55 0,88 131,43 131,9 132,18 133,14 134,82 0,00664

Summer 1748 134,04 0,39 132,35 133,95 134,08 134,21 136,07 0,002912

Winter 1757 133,27 0,61 132,03 132,77 133,29 133,74 134,5 0,004553

Season Waterlevel

Autumn Skewness -0,70886

Kurtosis 5,481842

Spring Skewness 0,954235

Kurtosis -0,31941

Summer Skewness -0,36848

Kurtosis 7,803884

Winter Skewness -0,00381

Kurtosis -0,9609

124

Appendix 11

Seasonal Analysis Randsfjorden

Spring Summer Autumn Winter

Below 131.3 0 0 0 0

131.3 to 134.5 1702 1686 1608 1757

134.5 to 134.689 34 29 83 0

134.689 to 134.9159 12 10 12 0

134.9159 to 135.1058 0 0 2 0

135.1058 to 135.2902 0 0 2 0

135.2902 to 135.5321 0 4 1 0

Above 135.5321 0 19 2 0

Total Flood Days 12 33 19 0

Season Slope p-value Significant (p<0.05)

Winter -0,01985 0 TRUE

Spring 0,025381 0 TRUE

Summer 0,000814 0,020487 TRUE

Autumn 0,001929 2,12E-15 TRUE

125

Appendix 14

Complete Multimodal Analysis

Randsfjorden:

Month Waterlevel

1 133,2422

2 132,5779

3 131,9997

4 132,0852

5 133,5997

6 134,0334

7 133,9904

8 134,0827

9 134,0835

10 134,216

11 134,2108

12 133,8706

126

Appendix 14

Complete Multimodal Analysis

Sperillen:

Month Waterlevel

1 149,297111

2 148,985516

3 148,787791

4 148,987182

5 150,029516

6 150,068158

7 149,870261

8 149,89644

9 149,86087

10 149,97837

11 150,038774

12 149,734727

127

Appendix 14

Complete Multimodal Analysis

Tyrifjorden:

Month Waterlevel

1 62,7961491

2 62,7383216

3 62,631753

4 62,6368141

5 63,0976748

6 63,1046604

7 63,0116149

8 63,0613906

9 63,0729041

10 62,980334

11 63,0050141

12 62,8693652

128

Appendix 13:

Yearly_plots.py

import pandas as pd

import matplotlib.pyplot as plt

Load the CSV files

file1 = '/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/Cleaned_Randsfjord_Waterlevel.csv'

file2 = '/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/Cleaned_Tyrifjorden_Waterlevel.csv'

file3 = '/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/Cleaned_Sperillen_Waterlevel.csv'

Importing CSV files

df1 = pd.read_csv(file1, parse_dates=['Date'])

df2 = pd.read_csv(file2, parse_dates=['Date'])

df3 = pd.read_csv(file3, parse_dates=['Date'])

Extracting the year from the Date column

df1['Year'] = df1['Date'].dt.year

df2['Year'] = df2['Date'].dt.year

df3['Year'] = df3['Date'].dt.year

Extracting unique years for plotting

years = sorted(set(df1['Year']).union(set(df2['Year'])).union(set(df3['Year'])))

Creating plots for each year

for year in years:

 fig, axes = plt.subplots(3, 1, figsize=(10, 15), sharex=True)

 # Plot for lake1

 lake1_data = df1[df1['Year'] == year]

 axes[0].plot(lake1_data['Date'], lake1_data['Waterlevel'])

 axes[0].set_title(f'Randsfjorden Water Level in Year {year}')

 axes[0].set_ylabel('Water Level')

 # Plot for lake2

 lake2_data = df2[df2['Year'] == year]

 axes[1].plot(lake2_data['Date'], lake2_data['Waterlevel'])

 axes[1].set_title(f'Tyrifjorden Water Level in Year {year}')

 axes[1].set_ylabel('Water Level')

 # Plot for lake3

 lake3_data = df3[df3['Year'] == year]

 axes[2].plot(lake3_data['Date'], lake3_data['Waterlevel'])

 axes[2].set_title(f'Sperillen Water Level in Year {year}')

 axes[2].set_ylabel('Water Level')

 axes[2].set_xlabel('Date')

 dates_to_mark = [f'{year}-11-30', f'{year}-03-01', f'{year}-06-01', f'{year}-09-01']

 for ax in axes:

 for date in dates_to_mark:

 ax.axvline(pd.to_datetime(date), color='r', linestyle='--')

 plt.tight_layout()

 plt.show()

129

Appendix 14

Multimodal_analysis.py

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

from scipy.stats import kruskal

from sklearn.mixture import GaussianMixture

import warnings

from scipy.stats import gaussian_kde

from scipy.integrate import quad

Suppress specific sklearn UserWarnings

warnings.simplefilter("ignore", category=UserWarning)

warnings.simplefilter("ignore", category=FutureWarning)

name = 'Randsfjord'

Modify this line to match the exact file name shown in the uploaded.keys()

file_path = f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/Cleaned_{name}_Waterlevel.csv'

data = pd.read_csv(file_path)

Convert the 'Date' column to datetime format for easier manipulation

data['Date'] = pd.to_datetime(data['Date'])

print("Date column converted to datetime.")

Create additional columns for analysis

data['Month'] = data['Date'].dt.month

data['Season'] = data['Month'].apply(lambda x: 'Winter' if x in [12, 1, 2] else

 'Spring' if x in [3, 4, 5] else

 'Summer' if x in [6, 7, 8] else 'Autumn')

Calculate monthly average water levels to see seasonal variations

monthly_averages = data.groupby('Month')['Waterlevel'].mean()

print("Monthly averages of water levels:")

print(monthly_averages)

Compute descriptive statistics for each season

seasonal_stats = data.groupby('Season')['Waterlevel'].describe()

Convert the descriptive statistics into a DataFrame

stats_df = pd.DataFrame(seasonal_stats)

Save the statistics DataFrame to an Excel file

excel_path = f'/Users/simen/Desktop/Complete Master/03 Excel Products/02

Lakes/{name}/{name}_Seasonal_Waterlevel_Stats.xlsx'

stats_df.to_excel(excel_path)

Make sure monthly_averages is a DataFrame

monthly_averages_df = pd.DataFrame(monthly_averages).reset_index()

Save the monthly averages DataFrame to an Excel file

monthly_averages_excel_path = f'/Users/simen/Desktop/Complete Master/03 Excel Products/02

Lakes/{name}/{name}_Monthly_Averages_Waterlevel.xlsx'

130

monthly_averages_df.to_excel(monthly_averages_excel_path, index=False)

Assuming you already have monthly_averages calculated from your groupby operation

monthly_averages_df = pd.DataFrame(monthly_averages).reset_index()

Plot the monthly averages

plt.figure(figsize=(10, 5))

plt.plot(monthly_averages_df['Month'], monthly_averages_df['Waterlevel'], marker='o', linestyle='-', color='b')

plt.title('Monthly Average Water Levels')

plt.xlabel('Month')

plt.ylabel('Average Water Level')

plt.xticks(monthly_averages_df['Month'], ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'])

plt.grid(True)

plt.savefig(f'/Users/simen/Desktop/Complete Master/04 Plots/{name}_monthly_avg.png')

plt.show()

Define colors for each season for consistency

season_colors = {

 'Winter': 'blue',

 'Spring': 'green',

 'Summer': 'red',

 'Autumn': 'orange'

}

Plot histogram using Seaborn

plt.figure(figsize=(12, 8))

for season, color in season_colors.items():

 # Select the season

 season_data = data[data['Season'] == season]

 # Plot the data with the season-specific color

 sns.histplot(season_data, x="Waterlevel", stat="density", kde=True, color=color, label=season)

plt.title('Seasonal Water Level Distribution')

plt.xlabel('Water Level')

plt.ylabel('Density')

Create the legend with the defined colors

plt.legend(title='Season')

plt.grid(True)

plt.savefig(f'/Users/simen/Desktop/Complete Master/04 Plots/{name}_multimodal_histogram.png')

plt.show()

Kruskal-Wallis Test across seasons

winter_levels = data[data['Season'] == 'Winter']['Waterlevel']

spring_levels = data[data['Season'] == 'Spring']['Waterlevel']

summer_levels = data[data['Season'] == 'Summer']['Waterlevel']

autumn_levels = data[data['Season'] == 'Autumn']['Waterlevel']

kruskal_result = kruskal(winter_levels, spring_levels, summer_levels, autumn_levels)

print(f"Kruskal-Wallis test result: H-statistic = {kruskal_result.statistic}, p-value = {kruskal_result.pvalue}")

131

Appendix 15:

Reservoir_to_DailyEnergy.py

import pandas as pd

import matplotlib.pyplot as plt

Define the energy equivalents for each power station (in kWh/m^3).

energy_equivalents = {

 'Tyrifjorden_Geithusfoss': 0.025,

 'Tyrifjorden_Gravfoss_one': 0.044,

 'Tyrifjorden_Gravfoss_two': 0.048,

 'Sperillen_Hensfoss': 0.055,

 'Sperillen_Begna': 0.018,

 'Sperillen_Hofsfoss': 0.061,

 'Sperillen_Hoenefoss': 0.051,

 'Randsfjord_Bergerfoss': 0.013,

 'Randsfjord_Kistefoss_one': 0.018,

 'Randsfjord_Kistefoss_two': 0.025,

 'Randsfjord_Askerudfoss': 0.048,

 'Randsfjord_Viulfoss': 0.042

}

def read_and_prepare_data(file_path):

 df = pd.read_csv(file_path)

 df['Reservoir'] = pd.to_numeric(df['Reservoir'], errors='coerce')

 df['Date'] = pd.to_datetime(df['Date'])

 # Count the number of negative values

 negative_count = (df['Reservoir'] < 0).sum()

 # Remove negative 'Reservoir' values or set them to zero

 df.loc[df['Reservoir'] < 0, 'Reservoir'] = 0

 df.dropna(subset=['Reservoir'], inplace=True)

 df.reset_index(drop=True, inplace=True)

 return df, negative_count

File paths, has to be adjust if another computer is used.

file_paths = {

 'Tyrifjorden': '/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/Cleaned_Tyrifjorden_Reservoir.csv',

 'Sperillen': '/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/Cleaned_Sperillen_Reservoir.csv',

 'Randsfjord': '/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/Cleaned_Randsfjord_Reservoir.csv',

}

Process each dataset and plot

for title, path in file_paths.items():

132

 df, negative_count = read_and_prepare_data(path)

 print(f"Number of negative entries removed/set to zero for {title}: {negative_count}")

Process the Randsfjord dataset and create a new dataframe with daily energy equivalent calculations

df_Tyrifjorden, _ = read_and_prepare_data(file_paths['Tyrifjorden'])

Calculate the daily energy equivalent for all Energy in Randsfjord

df_energy_Tyrifjorden_calc = df_Tyrifjorden.copy()

df_energy_Tyrifjorden_calc['Geithusfoss [GWh]'] = df_energy_Tyrifjorden_calc['Reservoir'] *

energy_equivalents['Tyrifjorden_Geithusfoss']

df_energy_Tyrifjorden_calc['Gravfoss 1 [GWh]'] = df_energy_Tyrifjorden_calc['Reservoir'] *

energy_equivalents['Tyrifjorden_Gravfoss_one']

df_energy_Tyrifjorden_calc['Gravfoss 2 [GWh]'] = df_energy_Tyrifjorden_calc['Reservoir'] *

energy_equivalents['Tyrifjorden_Gravfoss_two']

df_energy_Tyrifjorden_calc['DailyEnergy [GWh]'] = df_energy_Tyrifjorden_calc['Geithusfoss [GWh]'] +

df_energy_Tyrifjorden_calc['Gravfoss 1 [GWh]'] + df_energy_Tyrifjorden_calc['Gravfoss 2 [GWh]']

Process the Tyrifjorden dataset and create a new dataframe with daily energy equivalent calculations

df_Tyrifjorden, _ = read_and_prepare_data(file_paths['Tyrifjorden'])

Calculate the daily energy equivalent for Tyrifjorden / Geithusfoss Kraftverk

df_energy_Tyrifjorden = df_Tyrifjorden.copy()

df_energy_Tyrifjorden['DailyEnergy [GWh]'] = df_energy_Tyrifjorden_calc['DailyEnergy [GWh]']

Process the Randsfjord dataset and create a new dataframe with daily energy equivalent calculations

df_Sperillen, _ = read_and_prepare_data(file_paths['Sperillen'])

Calculate the daily energy equivalent for all Energy in Randsfjord

df_energy_Sperillen_calc = df_Sperillen.copy()

df_energy_Sperillen_calc['Hensfoss [GWh]'] = df_energy_Sperillen_calc['Reservoir'] *

energy_equivalents['Sperillen_Hensfoss']

df_energy_Sperillen_calc['Begna [GWh]'] = df_energy_Sperillen_calc['Reservoir'] * energy_equivalents['Sperillen_Begna']

df_energy_Sperillen_calc['Hofsfoss [GWh]'] = df_energy_Sperillen_calc['Reservoir'] *

energy_equivalents['Sperillen_Hofsfoss']

df_energy_Sperillen_calc['Hoenefoss [GWh]'] = df_energy_Sperillen_calc['Reservoir'] *

energy_equivalents['Sperillen_Hoenefoss']

df_energy_Sperillen_calc['DailyEnergy [GWh]'] = df_energy_Sperillen_calc['Hensfoss [GWh]'] +

df_energy_Sperillen_calc['Begna [GWh]'] + df_energy_Sperillen_calc['Hofsfoss [GWh]'] +

df_energy_Sperillen_calc['Hoenefoss [GWh]']

Process the Sperillen dataset and create a new dataframe with daily energy equivalent calculations

df_Sperillen, _ = read_and_prepare_data(file_paths['Sperillen'])

Calculate the daily energy equivalent for Sperillen / Hensfoss Kraftverk

df_energy_Sperillen = df_Sperillen.copy()

df_energy_Sperillen['DailyEnergy [GWh]'] = df_energy_Sperillen_calc['DailyEnergy [GWh]']

Process the Randsfjord dataset and create a new dataframe with daily energy equivalent calculations

df_Randsfjord, _ = read_and_prepare_data(file_paths['Randsfjord'])

Calculate the daily energy equivalent for all Energy in Randsfjord

df_energy_Randsfjord_calc = df_Randsfjord.copy()

df_energy_Randsfjord_calc['Bergerfoss [GWh]'] = df_energy_Randsfjord_calc['Reservoir'] *

energy_equivalents['Randsfjord_Bergerfoss']

133

df_energy_Randsfjord_calc['Kistefoss 1 [GWh]'] = df_energy_Randsfjord_calc['Reservoir'] *

energy_equivalents['Randsfjord_Kistefoss_one']

df_energy_Randsfjord_calc['Kistefoss 2 [GWh]'] = df_energy_Randsfjord_calc['Reservoir'] *

energy_equivalents['Randsfjord_Kistefoss_two']

df_energy_Randsfjord_calc['Askerudfoss [GWh]'] = df_energy_Randsfjord_calc['Reservoir'] *

energy_equivalents['Randsfjord_Askerudfoss']

df_energy_Randsfjord_calc['Viulfoss [GWh]'] = df_energy_Randsfjord_calc['Reservoir'] *

energy_equivalents['Randsfjord_Viulfoss']

df_energy_Randsfjord_calc['DailyEnergy [GWh]'] = df_energy_Randsfjord_calc['Viulfoss [GWh]'] +

df_energy_Randsfjord_calc['Askerudfoss [GWh]'] + df_energy_Randsfjord_calc['Kistefoss 2 [GWh]'] +

df_energy_Randsfjord_calc['Kistefoss 1 [GWh]'] + df_energy_Randsfjord_calc['Bergerfoss [GWh]']

Process the Sperillen dataset and create a new dataframe with daily energy equivalent calculations

df_Randsfjord, _ = read_and_prepare_data(file_paths['Randsfjord'])

Calculate the daily energy equivalent for all Energy in Randsfjord

df_energy_Randsfjord = df_Randsfjord.copy()

df_energy_Randsfjord['DailyEnergy [GWh]'] = df_energy_Randsfjord_calc['DailyEnergy [GWh]']

print(df_energy_Randsfjord.head())

print(df_energy_Sperillen.head())

print(df_energy_Tyrifjorden.head())

Drop 'Reservoir' column and rename 'DailyEnergy [GWh]' to 'Energy_GWh' for df_energy_Randsfjord

df_energy_Randsfjord = df_energy_Randsfjord.drop(['Reservoir'], axis=1)

df_energy_Randsfjord = df_energy_Randsfjord.rename(columns={'DailyEnergy [GWh]': 'Energy'})

print('-------------------------')

print(df_energy_Randsfjord.head())

df_energy_Randsfjord.to_csv('/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/Randsfjord_Energy_Daily.csv',

index=False)

Drop 'Reservoir' column and rename 'DailyEnergy [GWh]' to 'Energy_GWh' for df_energy_Sperillen

df_energy_Sperillen = df_energy_Sperillen.drop(['Reservoir'], axis=1)

df_energy_Sperillen = df_energy_Sperillen.rename(columns={'DailyEnergy [GWh]': 'Energy'})

print('-------------------------')

print(df_energy_Sperillen.head())

df_energy_Sperillen.to_csv('/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/Sperillen_Energy_Daily.csv',

index=False)

Drop 'Reservoir' column and rename 'DailyEnergy [GWh]' to 'Energy_GWh' for df_energy_Tyrifjorden

df_energy_Tyrifjorden = df_energy_Tyrifjorden.drop(['Reservoir'], axis=1)

df_energy_Tyrifjorden = df_energy_Tyrifjorden.rename(columns={'DailyEnergy [GWh]': 'Energy'})

print('-------------------------')

print(df_energy_Tyrifjorden.head())

df_energy_Tyrifjorden.to_csv('/Users/simen/Desktop/Complete Master/01 Data/Cleaned

Data/Tyrifjorden_Energy_Daily.csv', index=False)

134

Appendix 16:

Data_Preperation.py

import pandas as pd

import pandas as pd

Path to your CSV files

name = "Randsfjord"

file_path_reservoirlevel = f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/Cleaned_{name}_Reservoir.csv'

file_path_waterlevel = f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/Cleaned_{name}_Waterlevel.csv'

file_path_energy = f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/{name}_Energy_Daily.csv'

file_path_waterflow = f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/Cleaned_{name}_Waterflow.csv'

Read the CSV files

df_reservoirlevel = pd.read_csv(file_path_reservoirlevel, delimiter=',', header=0, parse_dates=['Date'])

df_waterlevel = pd.read_csv(file_path_waterlevel, delimiter=',', header=0, parse_dates=['Date'])

df_energy = pd.read_csv(file_path_energy, delimiter=',', header=0, parse_dates=['Date'])

df_waterflow = pd.read_csv(file_path_waterflow, delimiter=',', header=0, parse_dates=['Date'])

print(df_reservoirlevel.head())

print(df_energy.head())

print(df_waterlevel.head())

print(df_waterflow.head())

Merge df_reservoirlevel and df_waterlevel

combined_df = pd.merge(df_reservoirlevel, df_waterlevel, on='Date', how='outer', suffixes=('_reservoir', '_water'))

Merge the result with df_energy

combined_df = pd.merge(combined_df, df_energy, on='Date', how='outer')

combined_df = pd.merge(combined_df, df_waterflow, on='Date', how='outer')

df_total = combined_df

Now, combined_df contains all the combined information. You can print the head to check

print(df_total.head())

print(df_total.tail())

df_total.to_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/{name}_Total_Daily.csv', index=False)

Load your dataset

df = pd.read_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/Cleaned_{name}_Waterlevel.csv')

Ensure the 'Date' column is in datetime format

df['Date'] = pd.to_datetime(df['Date'])

Define your start date for the dataset, in order to get full seasons. the dataset starts mid winter, january 1st

start_date = '2004-03-01'

Filter the dataset to start from the first spring season of 2004

135

df_filtered = df[df['Date'] >= pd.to_datetime(start_date)]

df = df_filtered

Define a function to categorize dates into seasons

def get_season(date):

 if date.month in [12, 1, 2]:

 return 'Winter'

 elif date.month in [3, 4, 5]:

 return 'Spring'

 elif date.month in [6, 7, 8]:

 return 'Summer'

 elif date.month in [9, 10, 11]:

 return 'Autumn'

Apply the function to create a 'Season' column

df['Season'] = df['Date'].apply(get_season)

Split the data into seasons

winter_df = df[df['Season'] == 'Winter']

spring_df = df[df['Season'] == 'Spring']

summer_df = df[df['Season'] == 'Summer']

autumn_df = df[df['Season'] == 'Autumn']

Save each season's data to a new CSV file

winter_df.to_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/{name}_winter_waterlevel_df.csv',

index=False)

spring_df.to_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/{name}_spring_waterlevel_df.csv',

index=False)

summer_df.to_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/{name}_summer_waterlevel_df.csv',

index=False)

autumn_df.to_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/{name}_autumn_waterlevel_df.csv',

index=False)

print("Datasets have been split into seasons and saved as separate CSV files.")

slope_file_path = f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/{name}_seasonal_adjustment.csv'

Read the CSV file

df_slope = pd.read_csv(slope_file_path)

df_slope = df_slope.drop(['Skewness', 'Kurtosis','SVI'], axis=1)

Save the slopes of the trend analysis as CSV

df_slope.to_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/{name}_seasonal_trend.csv', index=False)

136

Appendix 17:

States_Constructor.py

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

import warnings

Suppress specific sklearn UserWarnings

warnings.simplefilter("ignore", category=UserWarning)

Load the dataset

name = 'Tyrifjorden'

df = pd.read_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/{name}_Total_Daily.csv')

print(df.head())

df.dropna(inplace=True) # Drop NA values

df['Waterlevel'] = pd.to_numeric(df['Waterlevel'], errors='coerce')

Convert 'Date' to datetime if needed

df['Date'] = pd.to_datetime(df['Date'])

Setting the 'Date' column as the index for easier plotting

df.set_index('Date', inplace=True)

print(name)

if name == 'Randsfjord':

 water_levels = [

 130.5718, # Extended Low Water

 131.51356985708998, # Extended Low Energy

 131.43, # Low Observed Water

 131.6159, # Low Observed Energy

 131.6623, # Extended 1st percentile Energy

 131.68, # 1st percentile Energy

 131.8302, # Extended 5th percentile Energy

 131.88, # 5th percentile Energy

 132.0365, # Extended 10th percentile Energy

 132.08, # 10th percentile Energy

 132.7427, # Extended 25th percentile Energy

 132.85, # 25th percentile Energy

 133.5323, # Mean Energy

 133.5048011787279, # Mean Water

 134.5, # HRV

 134.689, # Mean Flood

 134.9159, # 5-Year Flood

 135.1058, # 10-Year Flood

 135.2902, # 20-Year Flood

 135.5321, # 50-Year Flood

 136.07, # High Observed Water

137

 136.9281, # Extended High Water

]

elif name == 'Tyrifjorden':

 water_levels = [

 61.6587, # Extended Low Water

 62.016221473098916, # Extended Low Energy

 62.02999, # Low Observed Water

 62.1460, # Low Observed Energy

 62.1965, # Extended 1st percentile Energy

 62.29, # 1st percentile Energy

 62.3788, # Extended 5th percentile Energy

 62.46, # 5th percentile Energy

 62.5273, # Extended 10th percentile Energy

 62.57, # 10th percentile Energy

 62.7795, # Extended 25th percentile Energy

 62.80, # 25th percentile Energy

 62.8956, # Mean Energy

 62.9181001834363, # Mean Water

 63.00, # HRV

 64.2, # Mean Flood

 64.7, # 5-Year Flood

 64.9, # 10-Year Flood

 65.1, # 20-Year Flood

 65.2, # 50-Year Flood

 65.40757, # High Observed Water

 65.7789, # Extended High Water

]

elif name == 'Sperillen':

 water_levels = [

 147.4310, # Extended Low Water

 148.0985862129438, # Extended Low Energy

 148.1312, # Low Observed Water

 148.3388, # Low Observed Energy

 148.3988, # Extended 1st percentile Energy

 148.47, # 1st percentile Energy

 148.6157, # Extended 5th percentile Energy

 148.67, # 5th percentile Energy

 148.7402, # Extended 10th percentile Energy

 148.76, # 10th percentile Energy

 148.9442, # Extended 25th percentile Energy

 148.98, # 25th percentile Energy

 149.6641, # Mean Energy

 149.63151556468176, # Mean Water

 150.25, # HRV

 151.1276, # Mean Flood

138

 151.6132, # 5-Year Flood

 152.0137, # 10-Year Flood

 152.4, # 20-Year Flood

 152.9034, # 50-Year Flood

 154.023, # High Observed Water

 154.7232, # Extended High Water

]

Sort the water levels in ascending order

water_levels = sorted(water_levels)

Initialize an empty list to hold the state definitions

states = []

Iterate over the sorted water levels to create states

for i in range(len(water_levels)-1):

 lower_bound = water_levels[i]

 upper_bound = water_levels[i+1]

 states.append((f"State {i}", lower_bound, upper_bound))

Add a final state for the upper bound

upper_bound = water_levels[21]*1.05 # 5% increase from extended high, allows integration.

if name == 'Randsfjord':

 chosen_upper_level = upper_bound # to allow integration a sensible upper level is chosen

elif name == 'Tyrifjorden':

 chosen_upper_level = upper_bound # to allow integration a sensible upper level is chosen

elif name == 'Sperillen':

 chosen_upper_level = upper_bound # to allow integration a sensible upper level is chosen

states.append((f"State {len(water_levels)}", water_levels[-1], chosen_upper_level))

Convert the states list into a DataFrame

states_df = pd.DataFrame(states, columns=['State', 'Lower_Bound', 'Upper_Bound'])

print(states_df.head(30))

Choose a specific state to highlight

Replace 'state_number' with the actual number of the state you want to highlight

state_number = 5 # for example, to highlight State 5

Set the range to +/- 1m on each side of the bounds for the KDE plot

plot_lower_bound = lower_bound - 0.5

plot_upper_bound = upper_bound + 0.5 if upper_bound else lower_bound + 2 # Add 2m to the upper bound if it's the last

state

Filter the DataFrame for the water levels within the specified plot range

filtered_df = df[(df['Waterlevel'] >= plot_lower_bound) & (df['Waterlevel'] <= plot_upper_bound)]

Calculate the meter range within each state

states_df['Range_Meters'] = states_df['Upper_Bound'] - states_df['Lower_Bound']

def merge_multiple_states(states_df, merge_pairs):

 new_states_list = []

 skip_indices = []

 # Sort the merge pairs to ensure we process them in order

 merge_pairs.sort(key=lambda x: x[0])

139

 for i, row in states_df.iterrows():

 # Check if this index is part of a pair to merge

 merge_pair = next((pair for pair in merge_pairs if i in pair), None)

 if merge_pair:

 # Skip if this index is the second part of a merge pair, as it's already processed

 if i == merge_pair[1] or i in skip_indices:

 continue

 first_state_idx, second_state_idx = merge_pair

 new_lower_bound = states_df.iloc[first_state_idx]['Lower_Bound']

 new_upper_bound = states_df.iloc[second_state_idx]['Upper_Bound']

 new_states_list.append([f"Merged State {first_state_idx}-{second_state_idx}", new_lower_bound,

new_upper_bound])

 # Mark indices to skip in the next iteration

 skip_indices.extend([first_state_idx, second_state_idx])

 else:

 # Add the state as is if it's not part of a merge pair

 new_states_list.append([row['State'], row['Lower_Bound'], row['Upper_Bound']])

 # Create a new DataFrame from the list of new and merged states

 merged_states_df = pd.DataFrame(new_states_list, columns=['State', 'Lower_Bound', 'Upper_Bound'])

 # Optional: Reset state names to reflect their new order

 merged_states_df['State'] = merged_states_df.index.map(lambda x: f"State {x}")

 return merged_states_df

Define the pairs of state indices to merge

merge_pairs = [(0, 1), (2, 3), (4,5),(6,7),(8,9),(10,11),(12,13)] # Example: Merge states at indices 0 and 1, and states at

indices 3 and 4

Create the new DataFrame with merged states

merged_states_df = merge_multiple_states(states_df, merge_pairs)

Calculate the meter range within each state

merged_states_df['Range_Meters'] = states_df['Upper_Bound'] - states_df['Lower_Bound']

directory = ''

Display the updated

print()

print('merged states df')

print(merged_states_df)

Save the Merged States DataFrame

merged_states_df.to_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/{name}_merged_States.csv',

index=False)

merged_states_df.to_excel(f'/Users/simen/Desktop/Complete Master/03 Excel Products/02

Lakes/{name}/{name}_merged_States.xlsx', index=False)

140

Appendix 18:

Histric_Risk_Factor.py

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

import warnings

from scipy.stats import gaussian_kde

from scipy.integrate import quad

Suppress specific sklearn UserWarnings

warnings.simplefilter("ignore", category=UserWarning)

warnings.simplefilter("ignore", category=FutureWarning)

Load the dataset

name = 'Tyrifjorden'

season = 'Spring'

df = pd.read_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/{name}_{season}_waterlevel_df.csv')

df.dropna(inplace=True)

observed_waterlevel = 63

bandwidth = 0.2

df['Waterlevel'] = pd.to_numeric(df['Waterlevel'], errors='coerce')

Convert 'Date' to datetime if needed

df['Date'] = pd.to_datetime(df['Date'])

Setting the 'Date' column as the index for easier plotting

df.set_index('Date', inplace=True)

df_states = pd.read_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/{name}_merged_States.csv')

df_states = df_states.drop(['Range_Meters'], axis=1)

current_state = df_states[(df_states['Lower_Bound'] <= observed_waterlevel) & (df_states['Upper_Bound'] >=

observed_waterlevel)]

if not current_state.empty:

 print("Current State based on the observed water level:")

 print(current_state[['State']])

else:

 print("The observed water level does not match any defined state.")

Assuming 'df' is your DataFrame

data = {

 'State': ['State 8-14'],

 'Lower_Bound': [df_states.loc[8, 'Lower_Bound']], # Lower bound from State 8

 'Upper_Bound': [df_states.loc[14, 'Upper_Bound']] # Upper bound from State 14

}

Creating a new DataFrame with the combined information

new_df = pd.DataFrame(data)

result = pd.concat([df_states, new_df], ignore_index=True)

141

Indices of rows to remove (you need to adjust these based on your DataFrame)

indices_to_remove = list(range(8, 15)) # This would remove rows for State 8 to State 14

Removing the specified rows

df_final = result.drop(indices_to_remove)

df_final = df_final.reset_index(drop=True)

Rename 'State 8-14' to 'State 8' at index 8

df_final.at[8, 'State'] = 'State 8'

df_states = df_final

print(df_states)

df_states.to_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/{name}_final_states.csv', index=False)

df_states.to_excel(f'/Users/simen/Desktop/Complete Master/03 Excel Products/02 Lakes/{name}/{name}_final_states.xlsx',

index=False)

KDE and Histogram Water Levels with custom bandwidth

plt.figure(figsize=(10, 6))

Plot histogram with kernel density estimation

sns.histplot(df['Waterlevel'], color='blue', stat='density', linewidth=0, bins=40)

Calculate KDE with custom bandwidth

Calculate the KDE for the water levels

water_level_kde = gaussian_kde(df['Waterlevel'], bw_method=bandwidth)

Plot KDE curve

x_grid = np.linspace(df['Waterlevel'].min(), df['Waterlevel'].max(), 1000)

plt.plot(x_grid, water_level_kde(x_grid), color='red')

plt.title(f'Kernel Density Estimation (KDE) and Histogram Plot for Water Levels during {season} in {name}')

plt.xlabel('Water Level')

plt.ylabel('Density')

plt.legend(['KDE', 'Histogram'])

plt.show()

risk_values_df = pd.DataFrame(columns=['State', 'Energy_Shortage_Risk', 'Flood_Risk'])

Loop through each state to calculate and plot

for index, state_row in df_states.iterrows():

 plt.figure(figsize=(10, 6))

 # Calculate the KDE for the water levels

 x_grid = np.linspace(df['Waterlevel'].min(), df['Waterlevel'].max(), 1000)

 y_dens = water_level_kde(x_grid)

 plt.plot(x_grid, y_dens, label='Overall KDE', color='blue')

 # Energy Shortage Risk: integrate from min water level to the lower bound

 energy_shortage_risk = quad(water_level_kde, df['Waterlevel'].min(), state_row['Lower_Bound'])[0]

 energy_shortage_risk = max(energy_shortage_risk, 0) # Ensure non-negative

 # Flood Risk: integrate from the upper bound to max water level

 flood_risk = quad(water_level_kde, state_row['Upper_Bound'], df['Waterlevel'].max())[0]

 flood_risk = max(flood_risk, 0) # Ensure non-negative

 # Append the risks to the DataFrame

 new_row = pd.DataFrame({

 'State': [state_row['State']],

 'Energy_Shortage_Risk': [energy_shortage_risk],

142

 'Flood_Risk': [flood_risk]

 })

 risk_values_df = pd.concat([risk_values_df, new_row], ignore_index=True)

 # Shade outside the state's range

 plt.fill_between(x_grid, y_dens, where=(x_grid < state_row['Lower_Bound']), color='orange', alpha=0.5)

 plt.fill_between(x_grid, y_dens, where=(x_grid > state_row['Upper_Bound']), color='red', alpha=0.5)

 # Highlight the state range

 plt.axvline(x=state_row['Lower_Bound'], color='black', linestyle='--')

 plt.axvline(x=state_row['Upper_Bound'], color='black', linestyle='--')

 # Adding title and labels

 plt.title(f'KDE Plot for Water Levels in {name} -{season}- Highlighting State {index}')

 plt.xlabel('Water Level (m)')

 plt.ylabel('Density')

 plt.legend()

 plt.show()

Merging the dataframes on the "State" column

historic_factor_df = pd.merge(df_states, risk_values_df, on="State")

historic_factor_df = historic_factor_df.rename(columns={'Lower_Bound': 'Lower Bound', 'Upper_Bound': 'Upper Bound',

'Energy_Shortage_Risk':'Energy Density','Flood_Risk':'Flood Density'})

print(historic_factor_df)

historic_factor_df.to_excel(f'/Users/simen/Desktop/Complete Master/03 Excel Products/02

Lakes/{name}/{name}_{season}_historic_factor.xlsx', index=False)

Save the DataFrame to a CSV file

historic_factor_df.to_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned

Data/{name}_{season}_historic_factor.csv', index=False)

143

Appendix 19:

Extended_Risk_Factor.py

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

import warnings

from scipy.stats import gaussian_kde

from scipy.integrate import quad

Suppress specific sklearn UserWarnings

warnings.simplefilter("ignore", category=UserWarning)

warnings.simplefilter("ignore", category=FutureWarning)

Load the dataset

name = 'Tyrifjorden'

season = 'summer'

df = pd.read_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/{name}_{season}_waterlevel_df.csv')

df.dropna(inplace=True)

observed_waterlevel = 63

df['Waterlevel'] = pd.to_numeric(df['Waterlevel'], errors='coerce')

df['Date'] = pd.to_datetime(df['Date'])

df.set_index('Date', inplace=True)

df_states = pd.read_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/{name}_merged_States.csv')

df_states = df_states.drop(['Range_Meters'], axis=1)

current_state = df_states[(df_states['Lower_Bound'] <= observed_waterlevel) & (df_states['Upper_Bound'] >=

observed_waterlevel)]

if not current_state.empty:

 print("Current State based on the observed water level:")

 print(current_state[['State']])

else:

 print("The observed water level does not match any defined state.")

data = {

 'State': ['State 8-14'],

 'Lower_Bound': [df_states.loc[8, 'Lower_Bound']], # Lower bound from State 8

 'Upper_Bound': [df_states.loc[14, 'Upper_Bound']] # Upper bound from State 14

}

new_df = pd.DataFrame(data)

result = pd.concat([df_states, new_df], ignore_index=True)

indices_to_remove = list(range(8, 15)) # This would remove rows for State 8 to State 14

df_final = result.drop(indices_to_remove)

df_final = df_final.reset_index(drop=True)

df_final.at[8, 'State'] = 'State 8'

144

df_states = df_final

min_value = df['Waterlevel'].min()

max_value = df['Waterlevel'].max()

min_std = df['Waterlevel'].std()

max_std = min_std

synthetic_lower = np.random.uniform(min_value - 3*min_std, min_value, 250)

synthetic_higher = np.random.uniform(max_value, max_value + 3*max_std, 250)

combined_data = np.concatenate([synthetic_lower, df['Waterlevel'].values, synthetic_higher])

Set the bandwidth here

bandwidth = 0.2

Calculate extended KDE with custom bandwidth

kde_extended = gaussian_kde(combined_data, bw_method=bandwidth)

x_dens = np.linspace(combined_data.min(), combined_data.max(), 1000)

y_dens = kde_extended(x_dens)

risk_values_extended_df = pd.DataFrame(columns=['State', 'Energy_Shortage_Risk', 'Flood_Risk'])

plt.figure(figsize=(10, 6))

plt.plot(x_dens, y_dens, label='Extended KDE', color='blue')

Fill the area under the KDE curve

plt.fill_between(x_dens, y_dens, color='lightblue')

plt.title(f'Extended KDE Plot for Water Levels in {name} ')

plt.xlabel('Water Level (m)')

plt.ylabel('Density')

plt.legend()

plt.show()

for index, state_row in df_states.iterrows():

 energy_shortage_risk = quad(kde_extended, combined_data.min(), state_row['Lower_Bound'])[0]

 flood_risk = quad(kde_extended, state_row['Upper_Bound'], combined_data.max())[0]

 energy_shortage_risk = max(energy_shortage_risk, 0)

 flood_risk = max(flood_risk, 0)

 new_row = pd.DataFrame({

 'State': [state_row['State']],

 'Energy_Shortage_Risk': [energy_shortage_risk],

 'Flood_Risk': [flood_risk]

 })

 risk_values_extended_df = pd.concat([risk_values_extended_df, new_row], ignore_index=True)

 plt.figure(figsize=(10, 6))

 plt.plot(x_dens, y_dens, label='Extended KDE', color='blue')

 plt.fill_between(x_dens, y_dens, where=(x_dens < state_row['Lower_Bound']), color='orange', alpha=0.5, label='Energy

Shortage Risk')

 plt.fill_between(x_dens, y_dens, where=(x_dens > state_row['Upper_Bound']), color='red', alpha=0.5, label='Flood Risk')

 plt.axvline(state_row['Lower_Bound'], color='black', linestyle='--')

 plt.axvline(state_row['Upper_Bound'], color='black', linestyle='--')

 plt.title(f'Extended KDE Plot for Water Levels in {name} - Highlighting State {index}')

145

 plt.xlabel('Water Level (m)')

 plt.ylabel('Density')

 plt.legend()

 plt.show()

extended_factor_df = pd.merge(df_states, risk_values_extended_df, on="State")

extended_factor_df = extended_factor_df.rename(columns={'Lower_Bound': 'Lower Bound', 'Upper_Bound': 'Upper Bound',

'Energy_Shortage_Risk':'Energy Density','Flood_Risk':'Flood Density'})

print(extended_factor_df)

extended_factor_df.to_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned

Data/{name}_{season}_extended_factor.csv', index=False)

extended_factor_df.to_excel(f'/Users/simen/Desktop/Complete Master/03 Excel Products/02

Lakes/{name}/{name}_{season}_extended_factor.xlsx', index=False)

146

Appendix 20:

Decision_Single.py

import pandas as pd

from sklearn.preprocessing import MinMaxScaler

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

import warnings

from scipy.stats import gaussian_kde

from scipy.integrate import quad

import sys

import math

Path to the CSV file

name = "Tyrifjorden"

season = "Spring" #Capital First letter

season_water = pd.read_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned

Data/{name}_{season}_waterlevel_df.csv')

observed_waterlevel = 63.95

print(f'Observed Waterlevel : {observed_waterlevel}')

print()

if name == 'Randsfjord':

 mean_flood = 134.689

 LRW = 131.3

 HRW = 134.5

elif name == 'Tyrifjorden':

 mean_flood = 64.2

 LRW = 62

 HRW = 63

elif name == 'Sperillen':

 mean_flood = 151.1276

 LRW = 147.95

 HRW = 150.25

if observed_waterlevel > mean_flood:

 print('We are already in a flood state above Mean Flood')

 sys.exit()

if observed_waterlevel < LRW:

 print('We are already in a Water Shortage state below Lowest Regulated Water Level')

 sys.exit()

Define the function to calculate risk scores with adjusted exponential scalings

def calculate_risk_scores(observed_waterlevel, LRW, mean_flood):

 # Initialize scores

 flood_score = 0

 energy_score = 0

147

 if observed_waterlevel < LRW:

 # Maximum water shortage risk when below LRW

 energy_score = 1 # Max water shortage risk

 elif observed_waterlevel > mean_flood:

 # Maximum flood risk when above Mean Flood

 flood_score = 1 # Max flood risk

 else:

 # Between LRW and Mean Flood: separate exponential scaling of risks

 normalized_level = (observed_waterlevel - LRW) / (mean_flood - LRW)

 flood_score = 1 - np.exp(-10 * (normalized_level**5))

 energy_score = np.exp(-10 * (normalized_level**2))

 return flood_score, energy_score

Baseline Risk Scores (Baseline ESR/FRS):

baseline_FR, baseline_ESR = calculate_risk_scores(observed_waterlevel, LRW, mean_flood)

baseline_ESR = 1 + baseline_ESR

baseline_FR = 1 + baseline_FR

print('Baseline Flood Risk:') #Flood Risk Score

print(baseline_FR)

print()

print('Baseline Energy Shortage Risk:') # Energy Shortage Risk Score

print(baseline_ESR)

print()

Historical Seasonal Density Adjustment (H):

Rename_1 = 'Energy Risk'

Rename_2 = 'Flood Risk'

Historical Density

historic_df = pd.read_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned

Data/{name}_{season}_historic_factor.csv')

historic_df = historic_df.rename(columns={Rename_1: 'Energy Density', Rename_2: 'Flood Density'})

current_state_historic = historic_df[(historic_df['Lower Bound'] <= observed_waterlevel) & (historic_df['Upper Bound'] >=

observed_waterlevel)]

w_historic = 0.7

historic_energy_density = current_state_historic['Energy Density'].values[0]

historic_flood_density = current_state_historic['Flood Density'].values[0]

Extended Density

extended_df = pd.read_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned

Data/{name}_{season}_extended_factor.csv')

extended_df = extended_df.rename(columns={Rename_1: 'Energy Density', Rename_2: 'Flood Density'})

current_state_extended = extended_df[(extended_df['Lower Bound'] <= observed_waterlevel) & (extended_df['Upper

Bound'] >= observed_waterlevel)]

w_extended = 0.3

extended_energy_density = current_state_extended['Energy Density'].values[0]

extended_flood_density = current_state_extended['Flood Density'].values[0]

Density Adjustment Factor calculation (H):

seasonal_density_adjustment_energy = 1 + w_historic * historic_energy_density + w_extended * extended_energy_density

148

seasonal_density_adjustment_flood = 1 + w_historic * historic_flood_density + w_extended * extended_flood_density

print('Density Adjustment Factors (H):')

print(f'Energy Density Adjustment : {seasonal_density_adjustment_energy}')

print(f'Flood Density Adjustment : {seasonal_density_adjustment_flood}')

Current Reservoir Capacity (C)

Remove_1 = 'Waterflow'

print("\nCapacity Factor (C):")

Load capacity data

capacity_df = pd.read_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/{name}_Total_Daily.csv')

capacity_df = capacity_df.drop([Remove_1], axis=1)

Filter the dataset between water levels 62 meters and 64.2 meters

filtered_df = capacity_df[(capacity_df['Waterlevel'] >= LRW) & (capacity_df['Waterlevel'] <= mean_flood)]

Calculate Normalized Reservoir Level

Find the maximum value

max_reservoir_value = filtered_df['Reservoir'].max()

Print the entire row(s) where the reservoir is at its maximum capacity

max_reservoir_rows = filtered_df[filtered_df['Reservoir'] == max_reservoir_value]

Print the entire row(s) where the reservoir is at its minimum capacity

min_reservoir_value = filtered_df['Reservoir'].min()

min_reservoir_rows = filtered_df[filtered_df['Reservoir'] == min_reservoir_value]

Find the row corresponding most closely to the observed water level

closest_row = filtered_df.iloc[(filtered_df['Waterlevel'] - observed_waterlevel).abs().argsort()[:1]]

Calculate normalized reservoir level for the closest row

normalized_reservoir = closest_row['Reservoir'].values[0] / max_reservoir_value

Define thresholds and scaling factors

L = 0.2 # Low threshold approx 5% percentile

H = 0.7 # High threshold approx 95% percentile

alpha = 2 # Scaling factor for low reservoir levels

beta = 3 # Scaling factor for high reservoir levels

Calculate the capacity adjustment factors for flood and energy risks

def calculate_capacity_factors(normalized_reservoir, L, H, alpha, beta):

 if normalized_reservoir <= L:

 energy_capacity_factor = 1 + alpha * (L - normalized_reservoir)

 else:

 energy_capacity_factor = 1

 if normalized_reservoir >= H:

 flood_capacity_factor = 1 + beta * (normalized_reservoir - H)

 else:

 flood_capacity_factor = 1

 return flood_capacity_factor, energy_capacity_factor

flood_capacity_factor, energy_capacity_factor = calculate_capacity_factors(normalized_reservoir, L, H, alpha, beta)

Print results

print(f"Flood Capacity Factor: {flood_capacity_factor}")

print(f"Energy Capacity Factor: {energy_capacity_factor}")

Regulatory Constraints (R):

149

print()

print('Regulatory Constraints Factor')

Define a function to calculate the penalty factors for flood and energy risks with pre-threshold adjustments

def calculate_penalty_factors(observed_level, HRW, LRW, pre_threshold=0.2):

 flood_penalty_factor = 1

 energy_penalty_factor = 1

 regulation_zone = HRW - LRW

 lower_threshold = LRW + pre_threshold * regulation_zone

 upper_threshold = HRW - pre_threshold * regulation_zone

 # Energy penalty factor increases as the water level gets closer to LRW

 if observed_level < lower_threshold:

 energy_penalty_factor += (lower_threshold - observed_level) / (lower_threshold - LRW)

 # Flood penalty factor increases as the water level exceeds upper threshold

 if observed_level > HRW:

 flood_penalty_factor = 1 # Regulatory measures mitigate flood risk above HRW

 elif observed_level > upper_threshold:

 flood_penalty_factor += (observed_level - upper_threshold) / (HRW - upper_threshold)

 return flood_penalty_factor, energy_penalty_factor

Calculate the penalty factors

flood_penalty_factor, energy_penalty_factor = calculate_penalty_factors(observed_waterlevel, HRW, LRW)

Print results

print(f"Flood Penalty Factor for {name}: {flood_penalty_factor}")

print(f"Energy Penalty Factor for {name}: {energy_penalty_factor}")

Seasonal Trends (S):

Load seasonal trend data

trend_analysis_df = pd.read_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned

Data/{name}_seasonal_trend.csv')

seasonal_trend = trend_analysis_df.loc[trend_analysis_df['Season'] == season, 'Slope'].values[0]

Calculate Seasonal Deviation

mean_water_season = season_water['Waterlevel'].mean()

std_water_season = season_water['Waterlevel'].std()

seasonal_deviation = (observed_waterlevel - mean_water_season) / std_water_season

Calculate Seasonal Volatility

Convert Date column to datetime

season_water['Date'] = pd.to_datetime(season_water['Date'])

Extract year from the Date column

season_water['Year'] = season_water['Date'].dt.year

Calculate the standard deviation for each year

yearly_volatility = season_water.groupby('Year')['Waterlevel'].std()

Calculate the average volatility across all years

seasonal_volatility = yearly_volatility.mean()

Seasonal Scaling Factor

seasonal_k = 0.8

Calculate the Seasonal Adjustment Factors

def calculate_seasonal_adjustment_factor(seasonal_deviation, seasonal_trend, seasonal_volatility, seasonal_k, type='flood'):

150

 if type == 'flood':

 adjustment_factor = 1 + seasonal_k * (seasonal_deviation + seasonal_trend + seasonal_volatility)

 adjustment_factor = max(adjustment_factor, 1.1) # Set a minimum value to avoid negative risks

 elif type == 'energy':

 # Ensure the adjustment factor remains positive by using an absolute value

 adjustment_factor = 1 + seasonal_k * (seasonal_deviation - seasonal_trend + seasonal_volatility)

 adjustment_factor = max(adjustment_factor, 1.1) # Set a minimum value to avoid negative risks

 return adjustment_factor

seasonal_adjustment_factor_flood = calculate_seasonal_adjustment_factor(seasonal_deviation, seasonal_trend,

seasonal_volatility, seasonal_k, type='flood')

seasonal_adjustment_factor_energy = calculate_seasonal_adjustment_factor(seasonal_deviation, seasonal_trend,

seasonal_volatility, seasonal_k, type='energy')

Print results

print()

print('Seasonal Adjustment Factor for Flood (S_flood):')

print(seasonal_adjustment_factor_flood)

print('Seasonal Adjustment Factor for Energy (S_energy):')

print(seasonal_adjustment_factor_energy)

Final Risk before decision factor

print()

print('Final Scores')

final_ESR = baseline_ESR * seasonal_density_adjustment_energy * energy_capacity_factor * energy_penalty_factor *

seasonal_adjustment_factor_energy

print(f'Final ESR, before decision factor : {final_ESR}')

final_FR = baseline_FR * seasonal_density_adjustment_flood * flood_capacity_factor * flood_penalty_factor *

seasonal_adjustment_factor_flood

print(f'Final FR, before decision factor : {final_FR}')

Decision Risk Score (D):

print()

print('Decision Risk Score')

Energy Shortage Factors

ESR_increase = 1.2 # Increase outflow gives a 20% increase in Energy Shortage Risk

ESR_decrease = 0.8 # Decrease outflow gives 20% decrease in Energy Shortage Risk

ESR_maintain = 1 # Maintain outflow gives no change in final risk

Flood Factors

FR_increase = 0.8 # Increase outflow gives a 20% decrease in Flood Risk

FR_decrease = 1.2 # Decrease outflow gives a 20% increase in Flood Risk

FR_maintain = 1 # Maintain outflow gives no change in final risk

Calculate final risks

def calculate_decision_risks(final_ESR, final_FR):

 # Increase

 ESR_increase_risk = ESR_increase * final_ESR

 FR_increase_risk = FR_increase * final_FR

151

 # Decrease

 ESR_decrease_risk = ESR_decrease * final_ESR

 FR_decrease_risk = FR_decrease * final_FR

 # Maintain

 ESR_maintain_risk = ESR_maintain * final_ESR

 FR_maintain_risk = FR_maintain * final_FR

 return {

 'Increase': {'ESR': ESR_increase_risk, 'FR': FR_increase_risk},

 'Decrease': {'ESR': ESR_decrease_risk, 'FR': FR_decrease_risk},

 'Maintain': {'ESR': ESR_maintain_risk, 'FR': FR_maintain_risk}

 }

Get the decision risks

decision_risks = calculate_decision_risks(final_ESR, final_FR)

if observed_waterlevel < HRW:

 print(f'Observed Waterlevel : {observed_waterlevel}m in {season}')

 # Print the results with 4 decimal places

 print('Increase:')

 print(f'Energy Shortage Rrisk : {decision_risks["Increase"]["ESR"]:.4f}')

 print(f'Flood Risk : {decision_risks["Increase"]["FR"]:.4f}')

 print('Decrease:')

 print(f'Energy Shortage Risk : {decision_risks["Decrease"]["ESR"]:.4f}')

 print(f'Flood Risk : {decision_risks["Decrease"]["FR"]:.4f}')

 print('Maintain:')

 print(f'Energy Shortage Risk : {decision_risks["Maintain"]["ESR"]:.4f}')

 print(f'Flood Risk : {decision_risks["Maintain"]["FR"]:.4f}')

else:

 print(f'Observed Waterlevel : {observed_waterlevel}m in {season}')

 # Print the results with 4 decimal places

 print('Decrease:')

 print(f'Energy Shortage Risk : {decision_risks["Decrease"]["ESR"]:.4f}')

 print(f'Flood Risk : {decision_risks["Decrease"]["FR"]:.4f}')

 print('Maintain:')

 print(f'Energy Shortage Risk : {decision_risks["Maintain"]["ESR"]:.4f}')

 print(f'Flood Risk : {decision_risks["Maintain"]["FR"]:.4f}')

Calculate KDE for the water levels

water_level_kde = gaussian_kde(season_water['Waterlevel'])

x_dens = np.linspace(season_water['Waterlevel'].min(), season_water['Waterlevel'].max(), 100)

y_dens = water_level_kde(x_dens)

Extract lower and upper bounds from current_state_historic

lower_bound = current_state_historic['Lower Bound'].values[0]

upper_bound = current_state_historic['Upper Bound'].values[0]

152

Create arrays for lower and upper bounds with the same length as x_dens

lower_bound_array = np.full_like(x_dens, lower_bound)

upper_bound_array = np.full_like(x_dens, upper_bound)

KDE plot for the entire range

plt.figure(figsize=(10, 6))

plt.plot(x_dens, y_dens, label='KDE')

Shade the outside of the selected state

plt.fill_between(x_dens, y_dens, where=(x_dens <= lower_bound_array), alpha=0.5, color='orange', label='Energy Shortage

Risk')

plt.fill_between(x_dens, y_dens, where=(x_dens >= upper_bound_array), alpha=0.5, color='red', label='Flood Risk')

Highlight the selected state (leave it unshaded)

plt.axvline(lower_bound, color='black', linestyle='--')

plt.axvline(upper_bound, color='black', linestyle='--')

plt.axvline(observed_waterlevel, color='blue', label='Observed Waterlevel')

plt.title(f'KDE Plot for Water Levels in {name} in {season}')

plt.xlabel('Water Level (m)')

plt.ylabel('Density')

plt.legend()

plt.show()

if observed_waterlevel < HRW:

 # Decision points and their corresponding risk scores

 decision_points = ['Increase', 'Decrease', 'Maintain']

 ESR_scores = [decision_risks[point]['ESR'] for point in decision_points]

 FR_scores = [decision_risks[point]['FR'] for point in decision_points]

 # Plot the decision points on the KDE plot

 plt.scatter(ESR_scores, FR_scores, color='black', label='Decision Points')

 # Annotate the decision points with text

 for point, ESR, FR in zip(decision_points, ESR_scores, FR_scores):

 plt.text(ESR, FR, point, ha='left')

 plt.xlabel('Energy Shortage Risk')

 plt.ylabel('Flood Risk')

 plt.show()

else:

 # Decision points and their corresponding risk scores

153

 decision_points = ['Decrease', 'Maintain']

 ESR_scores = [decision_risks[point]['ESR'] for point in decision_points]

 FR_scores = [decision_risks[point]['FR'] for point in decision_points]

 # Plot the decision points on the KDE plot

 plt.scatter(ESR_scores, FR_scores, color='black', label='Decision Points')

 # Annotate the decision points with text

 for point, ESR, FR in zip(decision_points, ESR_scores, FR_scores):

 plt.text(ESR, FR, point, ha='left')

 plt.xlabel('Energy Shortage Risk')

 plt.ylabel('Flood Risk')

 plt.show()

154

Appendix 21:

Decision_for_loop.py

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import numpy as np

import matplotlib.pyplot as plt

import warnings

import matplotlib.pyplot as plt

import numpy as np

from sklearn.preprocessing import MinMaxScaler

Suppress specific sklearn UserWarnings

warnings.simplefilter("ignore", category=UserWarning)

warnings.simplefilter("ignore", category=FutureWarning)

Example lake name and current conditions

lake_name = "Sperillen"

season = "Summer"

current_waterlevel = 151

Load seasonal trend data

trend_analysis_df = pd.read_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned

Data/{lake_name}_seasonal_trend.csv')

seasonal_trend = trend_analysis_df.loc[trend_analysis_df['Season'] == season, 'Slope'].values[0]

Load seasonal water level data

season_water = pd.read_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned

Data/{lake_name}_{season}_waterlevel_df.csv')

Load density data

historic_df = pd.read_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned

Data/{lake_name}_{season}_historic_factor.csv')

extended_df = pd.read_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned

Data/{lake_name}_{season}_extended_factor.csv')

historic_df = historic_df.rename(columns={'Energy Risk': 'Energy Density', 'Flood Risk': 'Flood Density'})

extended_df = extended_df.rename(columns={'Energy Risk': 'Energy Density', 'Flood Risk': 'Flood Density'})

Load capacity data

capacity_df = pd.read_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/{lake_name}_Total_Daily.csv')

capacity_df = capacity_df.drop(['Waterflow'], axis=1)

Define thresholds and scaling factors

L = 0.2 # Low threshold approx 5% percentile

H = 0.7 # High threshold approx 95% percentile

alpha = 2 # Scaling factor for low reservoir levels

beta = 3 # Scaling factor for high reservoir levels

155

Define reservoir regulation parameters

if lake_name == 'Randsfjord':

 mean_flood = 134.689

 LRW = 131.3

 HRW = 134.5

elif lake_name == 'Tyrifjorden':

 mean_flood = 64.2

 LRW = 62

 HRW = 63

elif lake_name == 'Sperillen':

 mean_flood = 151.1276

 LRW = 147.95

 HRW = 150.25

Define the function to calculate risk scores with adjusted exponential scalings

def calculate_risk_scores(observed_waterlevel, LRW, mean_flood):

 # Initialize scores

 flood_score = 0

 energy_score = 0

 if observed_waterlevel < LRW:

 # Maximum water shortage risk when below LRW

 energy_score = 1 # Max water shortage risk

 elif observed_waterlevel > mean_flood:

 # Maximum flood risk when above Mean Flood

 flood_score = 1 # Max flood risk

 else:

 # Between LRW and Mean Flood: separate exponential scaling of risks

 normalized_level = (observed_waterlevel - LRW) / (mean_flood - LRW)

 flood_score = 1 - np.exp(-10 * (normalized_level**5))

 energy_score = np.exp(-10 * (normalized_level**2))

 return flood_score, energy_score

Define the parameters

water_levels = np.linspace(LRW, mean_flood, 3000)

Calculate the scores for each water level

flood_scores = []

energy_scores = []

for level in water_levels:

 flood_score, energy_score = calculate_risk_scores(level, LRW, mean_flood)

 flood_scores.append(flood_score)

156

 energy_scores.append(energy_score)

Plotting the results

plt.figure(figsize=(10, 6))

plt.plot(water_levels, flood_scores, label='Flood Risk Score', color='blue')

plt.plot(water_levels, energy_scores, label='Energy Shortage Risk Score', color='red')

plt.axvline(LRW, color='green', linestyle='--', label='LRW')

plt.axvline(mean_flood, color='purple', linestyle='--', label='Mean Flood')

plt.xlabel('Observed Water Level')

plt.ylabel('Risk Score')

plt.title('Exponential Risk Scores for Flood and Energy Shortage')

plt.legend()

plt.grid(True)

plt.show()

Function to calculate capacity factors

def calculate_capacity_factors(normalized_reservoir, L, H, alpha, beta):

 if normalized_reservoir <= L:

 energy_capacity_factor = 1 + alpha * (L - normalized_reservoir)

 else:

 energy_capacity_factor = 1

 if normalized_reservoir >= H:

 flood_capacity_factor = 1 + beta * (normalized_reservoir - H)

 else:

 flood_capacity_factor = 1

 return flood_capacity_factor, energy_capacity_factor

Function to calculate penalty factors

def calculate_penalty_factors(observed_level, HRW, LRW, pre_threshold=0.2):

 flood_penalty_factor = 1

 energy_penalty_factor = 1

 regulation_zone = HRW - LRW

 lower_threshold = LRW + pre_threshold * regulation_zone

 upper_threshold = HRW - pre_threshold * regulation_zone

 if observed_level < lower_threshold:

 energy_penalty_factor += (lower_threshold - observed_level) / (lower_threshold - LRW)

 if observed_level > HRW:

 flood_penalty_factor = 1

 elif observed_level > upper_threshold:

 flood_penalty_factor += (observed_level - upper_threshold) / (HRW - upper_threshold)

157

 return flood_penalty_factor, energy_penalty_factor

Function to calculate seasonal adjustment factors

def calculate_seasonal_adjustment_factor(seasonal_deviation, seasonal_trend, seasonal_volatility, seasonal_k, type='flood'):

 if type == 'flood':

 adjustment_factor = 1 + seasonal_k * (seasonal_deviation + seasonal_trend + seasonal_volatility)

 adjustment_factor = max(adjustment_factor, 1) # Set a minimum value to avoid negative risks

 elif type == 'energy':

 adjustment_factor = 1 + seasonal_k * (-1*seasonal_deviation - seasonal_trend + seasonal_volatility)

 adjustment_factor = max(adjustment_factor, 1)

 return adjustment_factor

Define decision factors

ESR_increase = 1.2 # Increase outflow gives a 20% increase in Energy Shortage Risk

ESR_decrease = 0.8 # Decrease outflow gives 20% decrease in Energy Shortage Risk

ESR_maintain = 1 # Maintain outflow gives no change in final risk

FR_increase = 0.8 # Increase outflow gives a 20% decrease in Flood Risk

FR_decrease = 1.2 # Decrease outflow gives a 20% increase in Flood Risk

FR_maintain = 1 # Maintain outflow gives no change in final risk

Iterate through observed water levels from 62 to 64.2 in increments of 0.05

results = []

combined = []

decision_scores = []

for observed_waterlevel in np.arange(LRW, mean_flood, 0.05):

 baseline_FR, baseline_ESR = calculate_risk_scores(observed_waterlevel, LRW, mean_flood)

 baseline_FR = 1 + baseline_FR

 baseline_ESR = 1 + baseline_ESR

 # Historical Density

 current_state_historic = historic_df[(historic_df['Lower Bound'] <= observed_waterlevel) & (historic_df['Upper Bound']

>= observed_waterlevel)]

 historic_energy_density = current_state_historic['Energy Density'].values[0]

 historic_flood_density = current_state_historic['Flood Density'].values[0]

 # Extended Density

 current_state_extended = extended_df[(extended_df['Lower Bound'] <= observed_waterlevel) & (extended_df['Upper

Bound'] >= observed_waterlevel)]

 extended_energy_density = current_state_extended['Energy Density'].values[0]

 extended_flood_density = current_state_extended['Flood Density'].values[0]

 # Density Adjustment Factor calculation (H)

 w_historic = 0.7

 w_extended = 0.3

 seasonal_density_adjustment_energy = 1 + w_historic * historic_energy_density + w_extended *

extended_energy_density

 seasonal_density_adjustment_flood = 1 + w_historic * historic_flood_density + w_extended * extended_flood_density

 # Capacity Factor (C)

 filtered_df = capacity_df[(capacity_df['Waterlevel'] >= LRW) & (capacity_df['Waterlevel'] <= mean_flood)]

158

 max_reservoir_value = filtered_df['Reservoir'].max()

 closest_row = filtered_df.iloc[(filtered_df['Waterlevel'] - observed_waterlevel).abs().argsort()[:1]]

 normalized_reservoir = closest_row['Reservoir'].values[0] / max_reservoir_value

 flood_capacity_factor, energy_capacity_factor = calculate_capacity_factors(normalized_reservoir, L, H, alpha, beta)

 # Regulatory Constraints (R)

 flood_penalty_factor, energy_penalty_factor = calculate_penalty_factors(observed_waterlevel, HRW, LRW)

 # Seasonal Trends (S)

 mean_water_season = season_water['Waterlevel'].mean()

 std_water_season = season_water['Waterlevel'].std()

 seasonal_deviation = (observed_waterlevel - mean_water_season) / std_water_season

 # Convert Date column to datetime

 season_water['Date'] = pd.to_datetime(season_water['Date'])

 # Extract year from the Date column

 season_water['Year'] = season_water['Date'].dt.year

 yearly_volatility = season_water.groupby('Year')['Waterlevel'].std()

 seasonal_volatility = yearly_volatility.mean()

 seasonal_k = 0.8

 seasonal_adjustment_factor_flood = calculate_seasonal_adjustment_factor(seasonal_deviation, seasonal_trend,

seasonal_volatility, seasonal_k, type='flood')

 seasonal_adjustment_factor_energy = calculate_seasonal_adjustment_factor(seasonal_deviation, seasonal_trend,

seasonal_volatility, seasonal_k, type='energy')

 # Final Risk

 final_ESR = baseline_ESR * seasonal_density_adjustment_energy * energy_capacity_factor * energy_penalty_factor *

seasonal_adjustment_factor_energy

 final_FR = baseline_FR * seasonal_density_adjustment_flood * flood_capacity_factor * flood_penalty_factor *

seasonal_adjustment_factor_flood

 # Decision Risk Score (D)

 ESR_increase_risk = ESR_increase * final_ESR

 FR_increase_risk = FR_increase * final_FR

 ESR_decrease_risk = ESR_decrease * final_ESR

 FR_decrease_risk = FR_decrease * final_FR

 ESR_maintain_risk = ESR_maintain * final_ESR

 FR_maintain_risk = FR_maintain * final_FR

 # Append the decision scores

 decision_scores.append({

 'Observed Water Level': observed_waterlevel,

 'ESR Increase Risk': ESR_increase_risk,

 'FR Increase Risk': FR_increase_risk,

 'ESR Decrease Risk': ESR_decrease_risk,

 'FR Decrease Risk': FR_decrease_risk,

 'ESR Maintain Risk': ESR_maintain_risk,

 'FR Maintain Risk': FR_maintain_risk

159

 })

 # Store results

 results.append({

 'Observed Water Level': observed_waterlevel,

 'Final Energy Shortage Risk (ESR)': final_ESR,

 'Final Flood Risk (FR)': final_FR

 })

 # Append the results to the results list

 combined.append({

 'Observed Water Level': observed_waterlevel,

 'Baseline Flood Risk': baseline_FR,

 'Baseline Energy Shortage Risk': baseline_ESR,

 'Energy Density Adjustment (H)': seasonal_density_adjustment_energy,

 'Flood Density Adjustment (H)': seasonal_density_adjustment_flood,

 'Flood Capacity Factor (C)': flood_capacity_factor,

 'Energy Capacity Factor (C)': energy_capacity_factor,

 'Flood Penalty Factor (R)': flood_penalty_factor,

 'Energy Penalty Factor (R)': energy_penalty_factor,

 'Seasonal Adjustment Factor for Flood (S_flood)': seasonal_adjustment_factor_flood,

 'Seasonal Adjustment Factor for Energy (S_energy)': seasonal_adjustment_factor_energy,

 'Final Energy Shortage Risk (ESR)': final_ESR,

 'Final Flood Risk (FR)': final_FR,

 })

combined_df = pd.DataFrame(combined)

Save the slopes of the trend analysis as CSV

combined_df.to_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned

Data/combined_df_{lake_name}_{season}.csv', index=False)

combined_df.to_excel(f'/Users/simen/Desktop/Complete Master/03 Excel Products/02

Lakes/{lake_name}/combined_df_{lake_name}_{season}.xlsx', index=False)

Convert results to DataFrame for further analysis or plotting

results_df = pd.DataFrame(results)

print(results_df)

Plotting the results

plt.figure(figsize=(12, 6))

plt.plot(results_df['Observed Water Level'], results_df['Final Energy Shortage Risk (ESR)'], label='Energy Shortage Risk

(ESR)', color='b', marker='o')

plt.plot(results_df['Observed Water Level'], results_df['Final Flood Risk (FR)'], label='Flood Risk (FR)', color='r', marker='x')

Adding vertical lines for LRW, HRW, and mean_flood

plt.axvline(x=LRW, color='yellow', linestyle='--', label='LRW')

plt.axvline(x=HRW, color='black', linestyle='--', label='HRW')

plt.axvline(x=mean_flood, color='purple', linestyle='--', label='Mean Flood Level')

plt.xlabel('Observed Water Level (m)')

plt.ylabel('Final Risk')

plt.title(f'Final Risk Scores vs. Observed Water Level for {season}')

160

plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left')

plt.grid(True)

plt.show()

decision_scores_df = pd.DataFrame(decision_scores)

print(decision_scores_df)

Convert decision scores to DataFrame

decision_scores_df = pd.DataFrame(decision_scores)

decision_scores_df.to_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned

Data/decision_risk_df_{lake_name}_{season}.csv', index=False)

x_cutoff = HRW # Replace this with the desired x-axis value

Create masks for the points up to the cutoff

esr_mask = np.where(decision_scores_df['Observed Water Level'] <= x_cutoff, decision_scores_df['ESR Increase Risk'],

np.nan)

fr_mask = np.where(decision_scores_df['Observed Water Level'] <= x_cutoff, decision_scores_df['FR Increase Risk'],

np.nan)

Plotting decision scores

plt.figure(figsize=(12, 6))

plt.plot(decision_scores_df['Observed Water Level'], esr_mask, label='ESR Increase Risk', color='b', marker='o')

plt.plot(decision_scores_df['Observed Water Level'], fr_mask, label='FR Increase Risk', color='r', marker='x')

plt.plot(decision_scores_df['Observed Water Level'], decision_scores_df['ESR Decrease Risk'], label='ESR Decrease Risk',

color='g', marker='s')

plt.plot(decision_scores_df['Observed Water Level'], decision_scores_df['FR Decrease Risk'], label='FR Decrease Risk',

color='c', marker='^')

plt.plot(decision_scores_df['Observed Water Level'], decision_scores_df['ESR Maintain Risk'], label='ESR Maintain Risk',

color='m', marker='d')

plt.plot(decision_scores_df['Observed Water Level'], decision_scores_df['FR Maintain Risk'], label='FR Maintain Risk',

color='y', marker='v')

Adding vertical lines for LRW, HRW, and mean_flood

plt.axvline(x=LRW, color='yellow', linestyle='--', label='LRW')

plt.axvline(x=HRW, color='black', linestyle='--', label='HRW')

plt.axvline(x=mean_flood, color='purple', linestyle='--', label='Mean Flood Level')

plt.xlabel('Observed Water Level (m)')

plt.ylabel('Risk')

plt.title(f'Decision Risk Scores vs. Observed Water Level for {season}')

plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left')

plt.grid(True)

plt.show()

Plotting decision scores with histogram in the background

fig, ax1 = plt.subplots(figsize=(12, 6))

Plot the histogram of the seasonal water level data

ax1.hist(season_water['Waterlevel'], bins=30, color='gray', alpha=0.6, edgecolor='black')

ax1.set_xlabel('Observed Water Level (m)')

ax1.set_ylabel('Frequency')

ax1.set_title(f'Decision Risk Scores vs. Observed Water Level for {season}')

Create a secondary y-axis for the risk scores

161

ax2 = ax1.twinx()

Plot the decision risk scores

ax2.plot(decision_scores_df['Observed Water Level'], decision_scores_df['ESR Increase Risk'], label='ESR Increase Risk',

color='b', marker='o')

ax2.plot(decision_scores_df['Observed Water Level'], decision_scores_df['FR Increase Risk'], label='FR Increase Risk',

color='r', marker='x')

ax2.plot(decision_scores_df['Observed Water Level'], decision_scores_df['ESR Decrease Risk'], label='ESR Decrease Risk',

color='g', marker='s')

ax2.plot(decision_scores_df['Observed Water Level'], decision_scores_df['FR Decrease Risk'], label='FR Decrease Risk',

color='c', marker='^')

ax2.plot(decision_scores_df['Observed Water Level'], decision_scores_df['ESR Maintain Risk'], label='ESR Maintain Risk',

color='m', marker='d')

ax2.plot(decision_scores_df['Observed Water Level'], decision_scores_df['FR Maintain Risk'], label='FR Maintain Risk',

color='y', marker='v')

Adding vertical lines for LRW, HRW, and mean_flood

ax2.axvline(x=LRW, color='yellow', linestyle='--', label='LRW')

ax2.axvline(x=HRW, color='black', linestyle='--', label='HRW')

ax2.axvline(x=mean_flood, color='purple', linestyle='--', label='Mean Flood Level')

ax2.set_ylabel('Risk')

Combine legends from both axes

lines, labels = ax1.get_legend_handles_labels()

lines2, labels2 = ax2.get_legend_handles_labels()

ax2.legend(lines + lines2, labels + labels2, bbox_to_anchor=(1.05, 1), loc='upper left')

plt.grid(True)

plt.show()

Function to normalize a single column in a DataFrame

def normalize_column(df, column_name):

 scaler = MinMaxScaler()

 df[column_name] = scaler.fit_transform(df[[column_name]])

 return df

Function to normalize selected columns in a DataFrame together

def normalize_columns_together(df, columns):

 min_val = df[columns].min().min()

 max_val = df[columns].max().max()

 df[columns] = (df[columns] - min_val) / (max_val - min_val)

 return df

List of columns to normalize in each DataFrame

results_columns_to_normalize = ['Final Energy Shortage Risk (ESR)', 'Final Flood Risk (FR)']

Normalize each column in results_df individually

for col in results_columns_to_normalize:

 results_df = normalize_column(results_df, col)

List of columns to normalize together in decision_scores_df

esr_columns_to_normalize = ['ESR Increase Risk', 'ESR Decrease Risk', 'ESR Maintain Risk']

fr_columns_to_normalize = ['FR Increase Risk', 'FR Decrease Risk', 'FR Maintain Risk']

Normalize each set of columns in decision_scores_df together

162

decision_scores_df = normalize_columns_together(decision_scores_df, esr_columns_to_normalize)

decision_scores_df = normalize_columns_together(decision_scores_df, fr_columns_to_normalize)

Verify normalization

print("Normalized decision_scores_df:")

for col_set in [esr_columns_to_normalize, fr_columns_to_normalize]:

 for col in col_set:

 print(f"{col}: min = {decision_scores_df[col].min()}, max = {decision_scores_df[col].max()}")

Plotting the results

plt.figure(figsize=(12, 6))

plt.plot(results_df['Observed Water Level'], results_df['Final Energy Shortage Risk (ESR)'], label='Energy Shortage Risk

(ESR)', color='b', marker='o')

plt.plot(results_df['Observed Water Level'], results_df['Final Flood Risk (FR)'], label='Flood Risk (FR)', color='r', marker='x')

Adding vertical lines for LRW, HRW, and mean_flood

plt.axvline(x=LRW, color='yellow', linestyle='--', label='LRW')

plt.axvline(x=HRW, color='black', linestyle='--', label='HRW')

plt.axvline(x=mean_flood, color='purple', linestyle='--', label='Mean Flood Level')

plt.xlabel('Observed Water Level (m)')

plt.ylabel('Final Risk')

plt.title(f'Final Risk Scores vs. Observed Water Level for {season}')

plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left')

plt.grid(True)

plt.show()

Mask the data points for ESR and FR increase risks beyond HRW

x_cutoff = HRW # Replace this with the desired x-axis value

esr_mask = np.where(decision_scores_df['Observed Water Level'] <= x_cutoff, decision_scores_df['ESR Increase Risk'],

np.nan)

fr_mask = np.where(decision_scores_df['Observed Water Level'] <= x_cutoff, decision_scores_df['FR Increase Risk'],

np.nan)

Plotting decision scores

plt.figure(figsize=(12, 6))

plt.plot(decision_scores_df['Observed Water Level'], esr_mask, label='ESR Increase Risk', color='b', marker='o')

plt.plot(decision_scores_df['Observed Water Level'], fr_mask, label='FR Increase Risk', color='r', marker='x')

plt.plot(decision_scores_df['Observed Water Level'], decision_scores_df['ESR Decrease Risk'], label='ESR Decrease Risk',

color='g', marker='s')

plt.plot(decision_scores_df['Observed Water Level'], decision_scores_df['FR Decrease Risk'], label='FR Decrease Risk',

color='c', marker='^')

plt.plot(decision_scores_df['Observed Water Level'], decision_scores_df['ESR Maintain Risk'], label='ESR Maintain Risk',

color='m', marker='d')

plt.plot(decision_scores_df['Observed Water Level'], decision_scores_df['FR Maintain Risk'], label='FR Maintain Risk',

color='y', marker='v')

Adding vertical lines for LRW, HRW, and mean_flood

plt.axvline(x=LRW, color='yellow', linestyle='--', label='LRW')

plt.axvline(x=HRW, color='black', linestyle='--', label='HRW')

plt.axvline(x=mean_flood, color='purple', linestyle='--', label='Mean Flood Level')

plt.xlabel('Observed Water Level (m)')

163

plt.ylabel('Risk')

plt.title(f'Decision Risk Scores vs. Observed Water Level for {season}')

plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left')

plt.grid(True)

plt.show()

Plotting decision scores with histogram in the background

fig, ax1 = plt.subplots(figsize=(12, 6))

Plot the histogram of the seasonal water level data

ax1.hist(season_water['Waterlevel'], bins=30, color='gray', alpha=0.6, edgecolor='black')

ax1.set_xlabel('Observed Water Level (m)')

ax1.set_ylabel('Frequency')

ax1.set_title(f'Decision Risk Scores vs. Observed Water Level for {season}')

Create a secondary y-axis for the risk scores

ax2 = ax1.twinx()

Plot the decision risk scores

ax2.plot(decision_scores_df['Observed Water Level'], esr_mask, label='ESR Increase Risk', color='b', marker='o')

ax2.plot(decision_scores_df['Observed Water Level'], fr_mask, label='FR Increase Risk', color='r', marker='x')

ax2.plot(decision_scores_df['Observed Water Level'], decision_scores_df['ESR Decrease Risk'], label='ESR Decrease Risk',

color='g', marker='s')

ax2.plot(decision_scores_df['Observed Water Level'], decision_scores_df['FR Decrease Risk'], label='FR Decrease Risk',

color='c', marker='^')

ax2.plot(decision_scores_df['Observed Water Level'], decision_scores_df['ESR Maintain Risk'], label='ESR Maintain Risk',

color='m', marker='d')

ax2.plot(decision_scores_df['Observed Water Level'], decision_scores_df['FR Maintain Risk'], label='FR Maintain Risk',

color='y', marker='v')

Adding vertical lines for LRW, HRW, and mean_flood

ax2.axvline(x=LRW, color='yellow', linestyle='--', label='LRW')

ax2.axvline(x=HRW, color='black', linestyle='--', label='HRW')

ax2.axvline(x=mean_flood, color='purple', linestyle='--', label='Mean Flood Level')

ax2.set_ylabel('Risk')

ax2.set_xlim(left=ax1.get_xlim()[0], right=mean_flood + 0.2)

Combine legends from both axes

lines, labels = ax1.get_legend_handles_labels()

lines2, labels2 = ax2.get_legend_handles_labels()

ax2.legend(lines + lines2, labels + labels2, bbox_to_anchor=(1.05, 1), loc='upper left')

plt.grid(True)

plt.show()

print()

print()

norm_decision_scores = decision_scores_df

norm_results = results_df

norm_decision_scores.to_excel(f'/Users/simen/Desktop/Complete Master/03 Excel Products/02

Lakes/{lake_name}/norm_risk_dec_values_{lake_name}_{season}.xlsx', index=False)

#results_df.to_excel(f'/Users/simen/Desktop/Complete Master/03 Excel Products/02

Lakes/{lake_name}/norm_results_values_{lake_name}_{season}.xlsx', index=False)

164

Find the row with the closest observed water level to the current water level

closest_row = decision_scores_df.iloc[(decision_scores_df['Observed Water Level'] - current_waterlevel).abs().argmin()]

Print the decision scores for the closest observed water level

print(f"Closest decision scores for observed water level {closest_row['Observed Water Level']}:")

print(closest_row)

165

Appendix 22:

Complete Risk Values

Tyrifjorden:

166

Sperillen:

167

168

Randsfjorden:

169

170

Appendix 23:

Sensitivity_Analysis.py

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

Example lake name and current conditions

lake_name = "Randsfjord"

season = "Autumn"

Load combined dataset

combined_df = pd.read_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned

Data/combined_df_{lake_name}_{season}.csv')

seasonal_adjustment_flood_range = np.linspace(combined_df['Seasonal Adjustment Factor for Flood (S_flood)'].mean() *

0.9,

 combined_df['Seasonal Adjustment Factor for Flood (S_flood)'].mean() * 1.1, 5)

seasonal_adjustment_energy_range = np.linspace(combined_df['Seasonal Adjustment Factor for Energy (S_energy)'].mean()

* 0.9,

 combined_df['Seasonal Adjustment Factor for Energy (S_energy)'].mean() * 1.1, 5)

density_adjustment_flood_range = np.linspace(combined_df['Flood Density Adjustment (H)'].mean() * 0.9,

 combined_df['Flood Density Adjustment (H)'].mean() * 1.1, 5)

density_adjustment_energy_range = np.linspace(combined_df['Energy Density Adjustment (H)'].mean() * 0.9,

 combined_df['Energy Density Adjustment (H)'].mean() * 1.1, 5)

Initialize results list

sensitivity_results = []

Perform sensitivity analysis

for seasonal_adjustment_flood in seasonal_adjustment_flood_range:

 for seasonal_adjustment_energy in seasonal_adjustment_energy_range:

 for density_adjustment_flood in density_adjustment_flood_range:

 for density_adjustment_energy in density_adjustment_energy_range:

 for index, row in combined_df.iterrows():

 # Extract baseline values

 baseline_ESR = row['Baseline Energy Shortage Risk']

 baseline_FR = row['Baseline Flood Risk']

 energy_density_adjustment = density_adjustment_energy

 flood_density_adjustment = density_adjustment_flood

 energy_capacity_factor = row['Energy Capacity Factor (C)']

 flood_capacity_factor = row['Flood Capacity Factor (C)']

 energy_penalty_factor = row['Energy Penalty Factor (R)']

 flood_penalty_factor = row['Flood Penalty Factor (R)']

 seasonal_adjustment_factor_energy = seasonal_adjustment_energy

 seasonal_adjustment_factor_flood = seasonal_adjustment_flood

171

 # Calculate final risk scores

 final_ESR = baseline_ESR * energy_density_adjustment * energy_capacity_factor * energy_penalty_factor *

seasonal_adjustment_factor_energy

 final_FR = baseline_FR * flood_density_adjustment * flood_capacity_factor * flood_penalty_factor *

seasonal_adjustment_factor_flood

 sensitivity_results.append({

 'Observed Water Level': row['Observed Water Level'],

 'Seasonal Adjustment Factor for Flood': seasonal_adjustment_flood,

 'Seasonal Adjustment Factor for Energy': seasonal_adjustment_energy,

 'Flood Density Adjustment': density_adjustment_flood,

 'Energy Density Adjustment': density_adjustment_energy,

 'Final Energy Shortage Risk (ESR)': final_ESR,

 'Final Flood Risk (FR)': final_FR

 })

Convert results to DataFrame

sensitivity_df = pd.DataFrame(sensitivity_results)

Plot sensitivity analysis results for seasonal adjustment factors

plt.figure(figsize=(12, 6))

for factor in ['Seasonal Adjustment Factor for Flood', 'Seasonal Adjustment Factor for Energy']:

 factor_df = sensitivity_df.groupby(factor).mean().reset_index()

 plt.plot(factor_df[factor], factor_df['Final Energy Shortage Risk (ESR)'], label=f'Average ESR - {factor}', marker='o')

 plt.plot(factor_df[factor], factor_df['Final Flood Risk (FR)'], label=f'Average FR - {factor}', marker='x')

plt.xlabel('Factor Value')

plt.ylabel('Average Risk')

plt.title('Sensitivity Analysis of Risk Factors: Seasonal Adjustment Factors')

plt.legend()

plt.grid(True)

plt.show()

Plot sensitivity analysis results for density adjustments

plt.figure(figsize=(12, 6))

for factor in ['Flood Density Adjustment', 'Energy Density Adjustment']:

 factor_df = sensitivity_df.groupby(factor).mean().reset_index()

 plt.plot(factor_df[factor], factor_df['Final Energy Shortage Risk (ESR)'], label=f'Average ESR - {factor}', marker='o')

 plt.plot(factor_df[factor], factor_df['Final Flood Risk (FR)'], label=f'Average FR - {factor}', marker='x')

plt.xlabel('Factor Value')

plt.ylabel('Average Risk')

plt.title('Sensitivity Analysis of Risk Factors: Density Adjustments')

plt.legend()

plt.grid(True)

plt.show()

Local Sensitivity Analysis: Plot each factor separately

for factor in ['Seasonal Adjustment Factor for Flood', 'Seasonal Adjustment Factor for Energy', 'Flood Density Adjustment',

'Energy Density Adjustment']:

172

 plt.figure(figsize=(12, 6))

 factor_df = sensitivity_df.groupby(factor).mean().reset_index()

 plt.plot(factor_df[factor], factor_df['Final Energy Shortage Risk (ESR)'], label=f'Average ESR - {factor}', marker='o')

 plt.plot(factor_df[factor], factor_df['Final Flood Risk (FR)'], label=f'Average FR - {factor}', marker='x')

 plt.xlabel(f'{factor} Value')

 plt.ylabel('Average Risk')

 plt.title(f'Local Sensitivity Analysis of {factor}')

 plt.legend()

 plt.grid(True)

 plt.show()

Global Sensitivity Analysis: Simultaneously vary multiple parameters

Compute mean and standard deviation of final risks for each combination

grouped_sensitivity_df = sensitivity_df.groupby(['Seasonal Adjustment Factor for Flood', 'Seasonal Adjustment Factor for

Energy', 'Flood Density Adjustment', 'Energy Density Adjustment']).agg({'Final Energy Shortage Risk (ESR)': ['mean', 'std'],

'Final Flood Risk (FR)': ['mean', 'std']}).reset_index()

Plot global sensitivity analysis results

plt.figure(figsize=(12, 6))

plt.errorbar(grouped_sensitivity_df['Seasonal Adjustment Factor for Flood'], grouped_sensitivity_df['Final Energy Shortage

Risk (ESR)']['mean'], yerr=grouped_sensitivity_df['Final Energy Shortage Risk (ESR)']['std'], label='ESR - Seasonal

Adjustment Factor for Flood', fmt='o')

plt.errorbar(grouped_sensitivity_df['Seasonal Adjustment Factor for Energy'], grouped_sensitivity_df['Final Energy Shortage

Risk (ESR)']['mean'], yerr=grouped_sensitivity_df['Final Energy Shortage Risk (ESR)']['std'], label='ESR - Seasonal

Adjustment Factor for Energy', fmt='x')

plt.errorbar(grouped_sensitivity_df['Flood Density Adjustment'], grouped_sensitivity_df['Final Flood Risk (FR)']['mean'],

yerr=grouped_sensitivity_df['Final Flood Risk (FR)']['std'], label='FR - Density Adjustment for Flood', fmt='s')

plt.errorbar(grouped_sensitivity_df['Energy Density Adjustment'], grouped_sensitivity_df['Final Flood Risk (FR)']['mean'],

yerr=grouped_sensitivity_df['Final Flood Risk (FR)']['std'], label='FR - Density Adjustment for Energy', fmt='d')

plt.xlabel('Parameter Value')

plt.ylabel('Average Risk with Std Dev')

plt.title('Global Sensitivity Analysis of Risk Factors')

plt.legend()

plt.grid(True)

plt.show()

173

Appendix 24 External Reports and Sources

174

175

176

177

178

179

	1. Introduction
	Importance of risk management in Water and Energy Management
	Research Objective and Scope
	Introduction to Drammensvassdraget Region
	Key Reservoirs
	Tyrifjorden
	Sperillen
	Randsfjorden

	Powerplants in Drammensvassdraget

	2. Theoretical Framework
	3. Research Design
	4. Exploratory Data Analysis
	Dataset
	Correlation
	Descriptive Statistics
	Statistical Analysis
	Tyrifjorden
	Time-Series Analysis
	Statistical Measures and Flood Incidence

	Sperillen
	Time-Series Analysis
	Statistical Measures and Flood Incidence

	Randsfjorden
	Time-Series Analysis
	Statistical Measures and Flood Incidence

	Summary

	Seasonal Analysis
	Tyrifjorden
	Time-Series and Seasonal Fluctuations
	Flood Incidence
	Seasonal Trend

	Sperillen
	Time-Series and Seasonal Fluctuations
	Variation and Flood Incidence
	Seasonal Trend

	Randsfjorden
	Time-Series and Seasonal Fluctuations
	Flood Incidence
	Seasonal Trend

	Multimodal Analysis
	Summary of Exploratory Data Analysis

	5. Methodology
	Understanding the decision-support framework.
	Formula
	Formula Preparation

	6. Development and Design of the Formula
	Historical and Extended Density Adjustment (D)
	Current Reservoir Capacity (C)
	Regulatory Constraints (R)
	Season Factor (S)
	Baseline Flood and Energy Shortage Score and Final Risk Scores
	Decision Factor
	Priming the variables
	Test runs
	Single_Decision.py
	Decision_for_loop.py

	7. Sensitivity Analysis
	Seasonal Adjustment
	Observations

	Density Adjustment
	Observations

	Global Sensitivity
	Observations

	Key Findings

	8. Final Decision-Support Formula
	9. Summary and Discussion
	Final thoughts and Future Directions

	10. Bibliography
	11. AI Disclosure
	12. Python Note
	13. Dataset Downloading
	14. Appendix

