u

University

of Stavanger

SIMEN ASHEIM ASKELAND
SUPERVISOR: ATLE @GLEND

Risk-Based Decisions for
Water Resource Management
in Drammensvassdraget

Master thesis 2024

Industrial Economics
Faculty of Science and Technology

Preface

I became interested in hydropower during the Hans flood in Norway in 2023. The idea that
empty reservoirs could have prevented this event stuck with me and guided my choice for a
master's thesis. | discovered an abundance of data on water levels, reservoir volumes, and
water flow in Norway's reservoirs, making this topic not only fascinating but also rich in open
data. My prior interest in decision-making, decision support, and decision analysis at UiS

further solidified my choice. After substantial preliminary work, | decided on this project.

The journey proved more challenging than anticipated, a thought likely shared by many who
undertake a master's thesis. | aimed to keep things simple, believing that the foundation for
assessing risk doesn't necessarily require the latest in computing power and statistical
analysis. Consequently, | developed a decision-support formula to serve as a preliminary risk
assessment tool based on given water levels during specific seasons. The principles of
reservoir management have remained largely unchanged over the past century, despite the
absence of modern computing power back then. This endeavor has highlighted the complexity
of reservoir management and the multitude of factors that influence it. My attempt to simplify
the process has often been incredibly challenging, revealing the necessity for complex

solutions involving substantial data processing and simulation.

I would like to extend my gratitude to Atle @glend from UiS for his guidance and to the

Norwegian Water Resources and Energy Directorate (NVE) for their help.

Abstract

This thesis develops a decision-support formula for water resource management in the
Drammensvassdraget region, aimed at balancing electricity generation and flood risk
mitigation. By leveraging historical data and statistical analyses, the formula quantifies flood
and energy shortage risks without relying on predictive forecasting. Sensitivity analyses
reveal that flood risk is highly sensitive to seasonal and density adjustments, while energy

shortage risk is moderately sensitive, especially to seasonal factors.

Key findings indicate the formula’s practical utility in real-world scenarios, particularly in
helping operators make informed water resource management decisions. By providing a

quantitative basis for balancing electricity generation and flood risk.

The research underscores the formula's strengths, including its robust statistical foundation
and practical applicability. However, limitations such as reliance on historical data and the
exclusion of immediate weather forecasts are acknowledged. The research emphasizes the
need for expert judgment in interpreting the risk values produced by the formula, particularly

under extreme conditions.

Overall, this thesis is yet another tool to the field of water resource management, offering a
comprehensive decision-support tool that integrates historical data, regulatory constraints, and

seasonal variations.

Table of Contents

I 10110 [od £ o o N 9
Importance of risk management in Water and Energy Managementccoocceeevinineeenicsnnneens 10
Research ODJECtiVe and SCOPE ...cccvveeriiiritrriiiinttiissineesissses e s sssseessssssssesssssasessssssnsasssnes 11
Introduction to Drammensvassdraget RegION.ccvvveereiiiiiiiisnssnreeiiininisssesesssssssssssssssssssnes 11

KBY RESEIVOIIS ...ttt sttt sttt b et b e st b e st bt s b et bt e b et b et e b e e e b e st e b neebe st nentene 12
Powerplants in DrammeENSVASSUTAGETcververierierieieieteeteteteeseese e stesteseestes e saessessensessensesseneesessessessessenses 14

2. Theoretical FrameWOorK......coviceeerrrmeeereeiiiiiiiiiiiisiinnnresesinisssssssssssnsesessssssssssssssssssnsnns 16

3. RESEAICH DESION cevveeeerreriiiiriiiiiicssinnnrereteeiissessessssssnnnsssesssssssssssssssnsssssssssssssssssssssnnnns 20

4. EXploratory Data ANalYSIS....ccceeeeerrrsueereenrrrississssssssenneensssssssssssssssnssssssssssssssssssssnsnns 22
D 1 L1 22
L0 =] - 1[0 23
DESCIIPLIVE STALISTICS.ceerurerresrrrreriisrsneriiissnneissssressssssseessssssesssssssnessssssnsessssssssssssssssessssssanassssns 25

SEALISTICAL ANAIYSIS. ...ttt ettt h et b e b b bbb b et et et et et et et e bt e bt eaeeaeebenaeeee 25
SEASONAL ANAIYSIS ...ttt ettt et a ettt sttt e b st et e be s e et et et et e st et et e st eneeneeaeebeeaeene 33
MUITIMOAAL ANGIYSIS..uuuuerrrereriieeerrrrnrreereisieeessssnreeeesssssssssssnenessesssssssssnnesesssssssssssnnrsssssssssssns a4
Summary of Exploratory Data ANAIYSIS c.c.eeeeeeieiieeiiiiiieieeeeieerieeeeeeeeeeeeeeeeeeeeeeeeseeeeeseeeseessessenees 46

ST |V [=11 0 ToTo [o] 0o | VRO OPPPPPPPPPPN 49
Understanding the decision-support framewWorK.ccueeeeeeeeeeeieeeeeeeeeeeeeceeeseeeseseseseseseeeeeeeeeeenens 49
0] 10 0] N 51
FOrmula Preparation ... ccccscscsssesessesesesessesssssssssssssssesesssesesesesesesssssssenssssssssesssesassennsnens 52

6. Development and Design of the FOrmula......cccceevveeeeeeeeiiirieiccissssenerneeenissssscssssssnnenns 55
Historical and Extended Density AdJUStMENT (D)ccevivvueeriiiineeiiiiinneeiiinineeeiiinneessnnnneesssnee 55
Current Reservoir Capacity (C) ciiiiecccrrrcererereiisessrsnrereesssseesssssnnneesssssssssssnsssessssssssssssanssesssss 58
Regulatory Constraints (R)...ieieieieiiieieiiiiiiisisieissesesesssssssessssssssssesesssssssesssesesesssesssssssssssssssssssens 58
SEASON FACTON () eerrrererrrerersranreeersissessssssnnreeesssessssssnnresesssssessssssnnseessssssssssssnsanessssssssssssannsasasss 59
Baseline Flood and Energy Shortage Score and Final RiSK SCOIeS.....covvreeeerriccersrneeeeenenenennns 60
DECISION FACION cetiiiiiiieiiinnreteiiiiiessnnretetesesessssanttesssssessssssnnsesessssssssssssnssesssssesssssssnsssssssssssssss 62
Priming the VAriablseeeeceeeiiiccericeeeeeneisicccsrneereeeessesesssssnneseesssssessssnsnsessssssssssssnnsessssssssssnns 65
TTESE TUNS.ceeeeieeeeeeeneneeeeeneneneeesessnnsssnnssnssssnnne 65

Y Ta =4 LT D 1Yol 1Y T T o 18 VAPPSR 66
(DTl £y o Y o1 gl (oo 1Y o3V SRR 68

7. SeNSItIVILY ANAIYSIS..ccevrieiriiriiiiiiiriiniriirtniriiiniisisissinnnresessssssssssssssssnsssssssssssssssssssssnsnns 70

1T 0] F= LI | U] 0]) 70
ODSEIVALIONS ...ttt ettt et ea e aeeheebe s bt s bt e be e b e s bt se e e b e sbesh et et e e et enbenteneeneeneeneeneebeeaeeee 71

DENSItY AGJUSTMENT c.ueeeeeeeeeeerieeeenrnereeeeeeeseeessssnreessssesesssssnseseessssssssssssssesssssesssssssnnsssssssssassns
ODSEIVALIONS ...ttt ettt ettt eh e bbb b e bt st et et e e et et e e entenbenteneebeeseeseebeebesbesbesbesbeseans

GlODAI SENSITIVITY wevrererrieeerrrcnnreeeriiiiessssssnreeeesiesssssssseresssssessssssnnsesssssssssssssnsasessssssssssssansnasasss
ODSEBIVALIONS ...ttt ettt ettt ettt ettt et e et ev e et e ebeeateebe e st e sbeeneesbeenbesasesbeessesbeeasebeeaseetsenseeteenteeasenreeaes

KEY FINAINGS cetiiiiiiiiiiiiiniiiiiiiinerenessissesssensses s s e s sssnssesssssesssssssnssssssssssssssssnnssasssssssssnen

8. Final Decision-SUpPOrt FOrMUIA.....cceeeeerrriieeerrrrsnnnrrneeirissssscssssssnnnenesessssssssssssssnnnnns

9. SumMmMary and DiSCUSSION ceeeveseeeerruneererernssssssssssssssnnmmessssssssssssssssssnsssssssssssssssssssssnsnns

Final thoughts and FUTUIe DIreCtiONS .cceeeeieieieieieieeeiceeeeeeseeseresesereseseseseseseseseseseseeesesesssesssnnnnens

O =11 o] [0 o =1 o] 0|28 PRI
I O L I 0 T 1{0d [0 |
12, PYtNON NOTE...ueeeeieeiiriieiciccnneneeeeeteerssssiesssnnnnesesesssssssssssssssssssssssssssssssssssnsnsssssssnnes
13. Dataset DOWNIOAAING..cccceerrrrrmrrrererrrssssissssssnmnnensssssssssssssssnnmnssssssssssssssssssnssssssssnes

I A o 1< T | G

Abbreviations

LRW: Lowest Regulated Waterlevel
HRW: Highest Regulated Waterlevel
NVE: Norwegian Water Resources and Energy Directorate
KDE: Kernel Density Estimation

PDF: Probability Density Function

SVI: Seasonal Variability Index

C: Current Reservoir Capacity Adjustment
R: Regulatory Constraints Adjustment

S: Seasonal Trends Adjustment

ESR: Energy Shortage Risk

FR: Flood Risk

OWL.: Observed Waterlevel

MF: Mean Flood

PT: Pre-Threshold

LT: Lower Threshold

UT: Upper Threshold

D: Density Adjustment

m.a.s.l.: meters above sea level

o Scaling Factor for Energy Capacity Adjustment

B: Scaling Factor for Flood Capacity Adjustment

List of tables

Table 1-1 Tyrifjorden Factsheet (NVE Atlas, U.0.) ..o 13
Table 1-2 Sperillen Factsheet (NVE Atlas, U.d.) ..o 13
Table 1-3 Randsfjorden Factsheet (NVE AtIas, U.0.). ..o 14
Table 1-4 Powerplants in key reservoirs (Vannkraftdatabase, 2024).ccccccevveveiiieiieenne 15
Table 4-1 Cleaned DataSEIS........ccviueiierieiieieeie e se st e e st ste e sre e sneesreeneesreesseeneeas 22
Table 4-2 Correlation Analysis of all RESEIVOIISccccoveiieiiiiiciececc e 24
Table 4-3 Correlation Analysis Of all RESEIVOIIScccvcieiieiiiese e 25
Table 4-4 Tyrifjorden Descriptive STatiStiCSc.civveieiiiiieicce e 26
Table 4-5 Tyrifjorden Histogram Distribution of Waterlevelscccccooveiiiiiiiiiiieiee 26
Table 4-6 Frequency and Standard Deviation Analysis Tyrifjordenccccccoeevveieiieinenne 28
Table 4-7 Sperillen DeSCriptiVe STAtISTICSoceiiiiriiieieeee e 28
Table 4-8 Frequency and Standard Deviation Analysis Sperillencccccoevvieiiiviiieinenne 30
Table 4-9 Randsfjorden DesCriptive StatiStICScccuereiiriieisiesie e 30
Table 4-10 Frequency and Standard Deviation ANAIYSIS..........cccevveieiiienieeiese s ese e 32
Table 4-11 Tyrifjorden Seasonal STAtISTICScccveiieiiiieiiee e 33
Table 4-12 Flood Frequencies TYrfJOrden ..o 37
Table 4-13 Seasonal StatistiCs SPErieNncooviiiiiiiiie e 38
Table 4-14 Frequency SPErillen ... 40
Table 4-15 Seasonal Statistics RanNASTIOrdenccocveiiiiiic i 42
Table 4-16 Frequency RandSTJOIIENcooiiiiiiiiii e 43

Table 5-1 Sperillen WaterleVel STateScoovoiiiiiiiiie e 54

Table 6-1 DensitieS TYMTJOIUENooiiiiiiiie e 57
Table 6-2 Variables fOr FOrMUIA.........cooi e 65
Table 6-3 TSt RUN FACIONS Tueeieeieieteee ettt eeeeseennenennnnes 67

List of figures

Figure 4-1 Python Printout of the Cleaned Tyrifjorden Datasetcccooeviviveiveiieieseenne, 23
Figure 4-2 Time-Series Chart TYrfJOrden ... 27
Figure 4-3 Sperillen Histogram Distribution of Waterlevelsc.ccccooeviiiiie i, 29
Figure 4-4 Time-Series Graph SPerillen ... s 29
Figure 4-5 Randsfjorden Histogram Distribution of Waterlevels...........c.cccccoovevviivececieseennn. 31
Figure 4-6 Time-Series Graph RandSTjOrdenccooieiiiiiiieiice s 31
Figure 4-7 Tyrifjorden Seasonal HiStOgramsccccovveieiieiieie e se e 34
Figure 4-8 Yearly Plot Example Al 1aKESccooiiiiii i 35
Figure 4-9 Decomposed Time Series With FIUCtUALIONScccoiiiiiiiiiiieee e 36
Figure 4-10 Seasonal Trend Tyrifjorden ..o 38
Figure 4-11 Seasonal Histograms SPerillen ... 39
Figure 4-12 Time-Series with seasonal fluctuations Sperillen............cccccceviiiiiiiie e 40
Figure 4-13 Seasonal Trend SPerillen ... s 41
Figure 4-14 Seasonal Histograms Randsfjordenccooveviiiieiie e 42
Figure 4-15 Time-Series and Seasonal Fluctuations Randsfjordenccccceoeviiinciinnne. 43
Figure 4-16 Seasonal Trend RandsTjOrdenccovieeiiiciiece e 44
Figure 4-17 Multimodal Histogram Tyrifjorden ..o 45
Figure 4-18 Monthly Averages SPerillen ..o 46
Figure 5-1 Decision Formula vs. Decision MOdelccooeiiiiiiiiiiiicceee e 50
Figure 5-2 General Overview of Decision FrameworkK...........ccccocevveieiiiiie i 52
Figure 5-3 State Limits for RandSTJord ... 53
Figure 5-4 Example of States and DENSILIEScccccvevieiiiieii e 54
Figure 6-1 Histogram and KDE of Tyrifjorden Historic Waterlevels.............cccccooininnnnn. 56
Figure 6-2 KDE plot for Extended waterlevels Tyrifjordenccccooeveviiiivcicccciecce e, 56
Figure 6-3 Example of Risk Reduction After HRWcoooiiiiiiiiiic e 59
Figure 6-4 Example Baseline Flood and Energy Shortage RisSK..........cccccvvvveiiviieiveiecie s, 60
Figure 6-5 Python print Baseling RISK SCOIES........c.coviiiiiiiiiiice s 62
Figure 6-6 Baseline FIood RiSK COMPELEc.coveiiiiiiieecec e 62

Figure 6-7 Baseline Energy Shortage Risk COMPIEte..........ccovveeiiiie i 62

Figure 6-8 DeciSion FaCtOr ValUEccooiiiiiiiiii s 63
Figure 6-9 Printout from Tyrifjorden Final RISK...........ccccoceiiiiiiiiiiiccee e 64
Figure 6-10 Test RUN SiNGIE DECISIONc.coviiiiiiiiiieiiiseee s 66
Figure 6-11 Complete Histogram and Risk Scores of Waterlevels.............ccccccoevveieiiennennn. 68
Figure 6-12 Script example Complete FOrmula..........ooooiiiiiiiii 69
Figure 6-13 Printout Decisions Factors Complete Formula...........ccccooveveiiveivicc e, 69
Figure 7-1 Sensitivity Analysis Seasonal AdJUSIMENTcoeriiiiiiiieieeee s 71
Figure 7-2 Sensitivity Analysis Density AdjUSIMENLScccovveieiieie e 72
Figure 7-3 Global Sensitivity ANALYSIScoeiiiiiiiiiiiieee s 74
Figure 8-1 Final Decision Formula Result from for-loopccccevvviviieiiiiivecc e 78
Figure 9-1 Printout from Python, Density Adjustment factor...........ccccovevieiiiiienenece e, 80

List of equations

Equation 5-1 Energy Shortage RiSK FOrMUIA............ccooiiiiiiiiiiici s 51
Equation 5-2 FlIood RiSK FOrMUIA.........ccooiiiiiiiie e 51
Equation 6-1 Extension Range WaterleVels ... 56
Equation 6-2 Density (Current State) FOrmulacccooiveiiiiiic i 57
Equation 6-3 Density Adjustment FACtOr (H)cooooiiiiiiiiiesee s 57
Equation 6-4 Normalized ReServoir LEVEL........cccoooviiiiiiieie e 58
Equation 6-5 CapacCity FACLOrS (C)eiiiiriiieieiieiie st 58
Equation 6-6 Regulatory Thresholds and ZONESccceeieeiieie i s 59
Equation 6-7 Seasonal FACLOIS (S)uiviieiiiieieiesie s 59
Equation 6-8 Seasonal DEeVIALIONccccoieiieiiic et 60
Equation 6-9 Seasonal VoIatilityccoiiiiiiiiie s 60
Equation 6-10 Condition 1 Baseling RISKS..........cvciiiieiiiiiieiicce e 61
Equation 6-11 Condition 2 Baseling RISKS..........ccoiiiiiiiiieiiicrese s 61
Equation 6-12 Normalized WaterleVelccoooviiiiieiicc et 61
Equation 6-13 Baseline flood SCOTE...........cuiiiiiiiii s 61
Equation 6-14 Baseling ENEIrgY SCOTEvcuiiieieeieseesie ettt ee s se e ste e sre e snee e 61
Equation 6-15 Final Energy Shortage RISKccooiiiiiiiiiieiiee s 62
Equation 6-16 Final FIOOd RiSKccciiiiiiieiice e 63

1. Introduction

Hydropower has been a pillar of renewable energy, its legacy spanning centuries and
continuously evolving with technological advancements. In Norway, hydropower has played
a pivotal role since the late 191 century, shaping the country’s industrial and economic
landscape. The nation's abundant water resources have made Norway a global leader in
hydropower development, contributing significantly to the energy security and sustainability
(International Hydropower Association, 2023). Globally, the history of hydropower is rich
with milestones that highlight its transformative impact. Early developments, such as the
invention of the Francis and Kaplan turbines, paved the way for large-scale projects like the
Hoover Dam and the Three Gorges Dam, underscoring hydropower's capacity to meet

substantial energy demands while fostering economic growth (Hydropower, 2024).

Norwegian hydropower historical evolution, from its starting stages in the late 1800s to its
current sophisticated state, mirrors global advancements in the field. Projects like Norway's
initial hydroelectric plants set a precedent for future developments, showcasing how
technological innovation and natural resource management can work together to create robust

energy systems (Regjeringen.no, 2016).

The Drammensvassdraget region, encompassing the interconnected lakes of Tyrifjorden,
Randsfjorden, and Sperillen, is a critical area where the balance between water management
and energy production is paramount. This balance was dramatically highlighted during
"Ekstremvaeret Hans" in August 2023, an extreme weather event that brought record-breaking
rainfall and severe flooding to the region. The storm caused extensive damage, leading to
thousands of evacuations and significant disruptions to infrastructure and daily life
(Ekstremveeret Hans, 2024)

The thesis, “Risk-Based Decisions for Water Resource Management in
Drammensvassdraget”, aims to develop a framework to assist in navigating these complex
challenges. By integrating daily hydrology data from the Norwegian Water Resource and
Energy Directorate, the framework will enable decision-makers to evaluate trade-offs between
maximizing electricity generation and minimizing flood risks effectively. The research will
develop into a framework displayed as a formula or a decision model. In developing this

decision framework, research draws on the lessons from the past and recent climatic events

like “Ekstremveret Hans”. It will incorporate extensive statistical analysis and various

techniques to provide a robust framework for decision-making.

Ultimately, this thesis seeks to pioneer a path forward, a starting point for a computational and
Al driven management practice. It aims to be a starting point for a machine learning and data-
driven approach to the challenges of energy security and environmental sustainability,
ensuring that regions like Drammensvassdraget can thrive amidst the challenges posed by
climate change and evolving resource demands. Through this novel approach, the research

aspires to be a possibility study for the future of water management.

Importance of risk management in Water and Energy Management

Effective water and energy management is a cornerstone of sustainable development,
especially in regions heavily reliant on hydropower like Norway. Decision models are
indispensable tools in this context, providing a robust framework for optimizing resource use,
enhancing sustainability, and mitigating risks associated with extreme weather events. These
models empower policymakers and resource managers to make informed decisions based on
comprehensive data analysis and predictive simulations.

In Norway, the history and evolution of hydropower underscore the critical role of decision
models. The Norwegian Water Resources and Energy Directorate (NVE) uses sophisticated
decision models to manage the country's extensive hydropower resources. These models
integrate hydrological, climatological, and operational data to predict optimal water release
schedules, ensuring that energy production is maximized during periods of high demand
without compromising flood protection measures (Vassdragsregulanters ansvar og muligheter,
2023).

The practical application of decision models in Norwegian hydropower management provides
a compelling case study. During the spring, when the risk of flooding increases due to
snowmelt, decision models predict the timing and volume of snowmelt and coordinate the
release of water from reservoirs to prevent downstream flooding. These models help maintain
a delicate balance, ensuring that reservoirs do not overflow while preserving enough water for
energy production (NVE - Varflom, 2020).

10

In conclusion, decision models are essential for modern water and energy management. They
provide the analytical foundation necessary for optimizing resource use, enhancing
sustainability, and mitigating the risks associated with extreme weather events. The
integration of these models into Norway’s hydropower management exemplifies their critical

role in ensuring the safe, efficient, and sustainable utilization of natural resources.

Research Objective and Scope

The objective of this thesis is to develop a novel decision-support framework for the
management of water resources in the Drammensvassdraget, particularly focusing on
Tyrifjorden, Randsfjord, and Sperillen. The research will be based on quantitative measures
generated from historical statistics, excluding the use of weather forecasts and potential snow
melting predictions. This exclusion means the model will not consider immediate weather

warnings.

The goal is not to provide definitive decisions but to offer decision-support, recognizing that
expert judgment, large computational models and qualitative assessments will always play a
role. The model aims to assist decision-makers before the final decision stage, avoiding
predictions. It can be viewed as a tool that aggregates knowledge and quantifies it, providing a
procedure that converts history and statistics into numerical data.

By focusing on historical data, the research aims to provide a reliable framework for
evaluating these trade-offs, ultimately aiding the operators in controlling the outflow of the

lakes.

Introduction to Drammensvassdraget Region

Drammensvassdraget, one of Norway's most significant river systems, it encompasses a
rainfall area of approximately 17,000 square kilometers, making it the country's third-largest
watershed. Originating in the highlands and flowing through diverse landscapes, it integrates
several major tributaries and lakes, including Tyrifjorden, Randsfjorden, and Sperillen, before

emptying into Drammensfjorden (Thorsnas, 2023).

The river system is renowned for its hydropower potential, with numerous dams and

reservoirs harnessing the energy of water to produce a substantial portion of Norway's

11

electricity. Drammensvassdragets regulation capacity is significant, reflecting its crucial role
in both energy production and flood management. Hydropower plants along the river, such as
those at Tyrifjorden and Randsfjorden, are integral to the region's energy infrastructure,
providing a reliable and renewable energy source while also contributing to flood control

efforts (Drammensvassdraget, 2024).

Flood management in Drammensvassdraget is a vital aspect of its regulation, especially given
the historical occurrences of severe flooding. Notable flood events, like those in 1927, 1967,
and more recently, have demonstrated the importance of proactive and strategic water
management. The river's regulation involves careful monitoring and control of water levels in
its reservoirs to mitigate the risk of downstream flooding, particularly in densely populated
areas. These measures are essential for protecting both human lives and property from the

devastating impacts of floods.

In summary, Drammensvassdraget is a multifaceted river system with significant implications
for energy production, flood management, and ecological conservation in Norway. The
careful and integrated management of this river system is essential for ensuring its continued

contribution to the region's sustainable development and environmental health.

Key Reservoirs

Tyrifjorden

Tyrifjorden, Norway’s fifth-largest lake, is part of the Drammensvassdraget system, serving
as a natural regulator for downstream flow and a significant resource for hydropower
generation. This lake, situated in the municipalities of Ringerike, Hole, Lier, and Modum in
the county of Viken, spans nearly 137 square kilometers and has a reservoir volume of 134

million cubic meters (Tyrifjorden, 2024).

LRW 62 m.a.s.l.
HRW 63 m.a.s.l.
Area at HRW 136,56 km?

Reservoir Volume

134 million m?

Number of Hydropower plants 3
Mean Flood 64,2 m
5-Year Flood 64,7 m

12

10-Year Flood 64,9 m
20-Year Flood 65,1 m
50- Year Flood 65,2 m

Table 1-1 Tyrifjorden Factsheet (NVE Atlas, u.d.)

The water levels in Tyrifjorden are minorly regulated, with a low reference water level of 62
meters and a high reference water level of 63 meters (Holmqvist, 2000). This slight regulation
helps maintain a balance between water conservation and flood prevention, crucial for both
ecological stability and human activities. Tyrifjordens importance is highlighted by its use for
hydropower, with three power plants: Geithusfoss, Gravfoss 1, and Gravfoss 2, which

contribute significantly to the region's energy production (NVE - Tyrifjorden, 2024).

Sperillen

Sperillen, is within the Adal valley in Ringerike municipality, Viken county, is a notable lake
in Norway. Covering an area of about 37 square kilometers and stretching approximately 26
kilometers in length, Sperillen ranks as the 33rd largest lake in Norway. It lies at an elevation
of 159 meters above sea level and is fed by the Begna and Urula rivers from the north, which

contribute significantly to its volume and ecosystem (Lauritzen, 2023).

LRW 147,95 m.a.s.l.
HRW 150,25 m.a.s.1.
Area at HRW 37,32 km?
Reservoir Volume 86,8 million m?
Number of Hydropower plants 4

Mean Flood 151,1276 m
5-Year Flood 151,6132 m
10-Year Flood 152,0137 m
20-Year Flood 152,4m
50-Year Flood 152,9034 m

Table 1-2 Sperillen Factsheet (NVE Atlas, u.d.)

The lake plays a crucial role within the Begnavassdraget, part of the larger
Drammensvassdraget water system. With a substantial volume of 86.8 million cubic meters,
Sperillen is integral to the region's regulated energy production. This is highlighted by its
connection to four hydropower plants: Hensfoss, Begna, Hofsfoss, and Hgnefoss, which

utilize its waters for electricity generation. The careful regulation of Sperillens water levels,

13

maintained between 147.95 meters and 150.25 meters, ensures optimal conditions for both

power production and flood management

Randsfjorden

Randsfjorden, the fourth largest lake in Norway, is a freshwater body spanning approximately
140 square kilometers at its highest regulated water level. Positioned within the counties of
Innlandet and Viken, this lake plays a vital role in the local ecosystem and hydroelectric
production. Randsfjorden has a substantial volume of more than 400 million cubic meters,
making it an essential resource for energy generation and storage. The lake supports five
hydropower plants: Bergerfoss, Kistefoss 1 and 2, Askerudfoss, and Viulfoss (Thorsnas,
Randsfjorden, 2023).

LRW 131,3 m.a.s.l.
HRW 134,5 m.a.s.l.
Area at HRW 140,75 km?
Reservoir Volume 408,6 million m*
Number of Hydropower plants 5

Mean flood 134,689 m
5-year flood 134,9159 m
10-year flood 135,1058 m
20-year flood 135,2902 m
50-year flood 135,5321 m

Table 1-3 Randsfjorden Factsheet (NVE Atlas, u.d.)

Randsfjordens hydrological significance is underscored by its contributions to the
Drammensvassdraget system. The lake is fed by several rivers, including Etna, Dokka, Vigga,
and Fallselva, and drains into Randselva at its southern end. This connectivity facilitates the
management of water flow and energy production, highlighting the lake's integral role in

regional water resource management (Randsfjorden, 2024).

Powerplants in Drammensvassdraget

The Drammensvassdraget system is home to several hydropower plants that play a vital role
in Norway's renewable energy production. These plants harness the flow of water from
significant lakes within the system, including Tyrifjorden, Sperillen, and Randsfjorden, each

contributing to the region's energy supply and flood management capabilities.

14

These powerplants collectively underscore the Drammensvassdraget system's significance in

Norway's renewable energy landscape, highlighting the integration of natural resources and

technological advancements to meet energy demands sustainably.

Tyrifjorden
Plant Name Geithusfoss Gravfoss 1 Gravfoss 2
Max Effect 13,5 MW 18,6 MW 30,2 MW
Gross Head 9,19 m 19,7 m 20 m
Energyequivelant 0,025 kWh/m? 0,044 kWh/m? 0,048 kWh/m?
Sperillen
Plant Name Hensfoss Begna Hofsfoss Henefoss
Max Effect 18,3 MW 5,6 MW 27 MW 29,4 MW
Gross Head 24,4 m 8m 26,79 m 21,5m
Energyequivelant 0,055 kWh/m® | 0,018 kWh/m? 0,061 kWh/m® 0,051 kWh/m?
Randsfjorden

Plant Name Bergerfoss Kistefoss 1 Kistefoss 2 Askerudfoss | Viulfoss
Max Effect 3,3 MW 1,4 MW 4,2 MW 13,2 MW 12,5 MW
Gross Head 5,4m 9m 10,5 m 20,6 m 17,29 m
Energyequivelant | 0,013 kWh/m® | 0,018 kWh/m® | 0,025 0,048 0,042

kWh/m? kWh/m? kWh/m?

Table 1-4 Powerplants in key reservoirs (Vannkraftdatabase, 2024).

15

2. Theoretical Framework

Kernel Density Estimation (KDE):

Kernel Density Estimation (KDE) is a non-parametric way to estimate the probability density
function (PDF) of a random variable. Unlike parametric methods, KDE does not assume a
specific distribution model for the data. Instead, it uses a smooth function (kernel) to create a

continuous estimate of the data’s distribution.
Mathematical Representation:

The KDE estimate f(x) at point x is given by:

f(x) =%ZK(x;lxi)

Where:

- nis the number of data points.
- his the bandwidth parameter, controlling the smoothness of the estimate.

- K{(\) is the kernel function, commonly a Gaussian function:

= (-2)
u —mexp >

KDE is particularly useful for visualizing the underlying distribution of data, identifying
modes, and detecting the presence of multimodal distributions. In hydrology, it is used to
analyze the distribution of water levels, helping in understanding the patterns and estimating

probabilities of extreme events.

Volatility:

Volatility is best known as a statistical measure of the dispersion of returns for a given
security or market index. It indicates the degree of variation of a financial instrument's price
over time. In the context of hydrology, volatility can describe the variability in water levels,

over time.

16

Mathematical Representation:

Volatility is often quantified using the standard deviation of returns o:

N
1 Y
g = mZ(Xl - X)
=1
where Xxi represents individual observations, x is the mean of the observations, and N is the

number of observations.

In hydrological studies, understanding the volatility of water levels helps in assessing the risks
associated with high variability, which is crucial for flood risk management and reservoir

operation strategies.

Energyequivelant:

The Energy Equivalent is the amount of energy that can be generated from a unit of water. It
is a critical concept in hydropower engineering, linking reservoir levels to energy potential.
Each Hydropower power plant has its own Energyequivelant, which can be seen in table 1-4.
This equivalent can be multiplied by the reservoir volume to get the amount of energy that

volume represents.

Hydropower Requlation and Operation:

Hydropower Regulation and Operation involve the rules, practices, and technical measures
used to manage water flow and reservoir levels. This includes maintaining reservoir levels,

controlling water discharge, and optimizing energy production while minimizing flood risks.

Key Elements:

o Regulatory Guidelines: Standards and rules set by authorities (NVE in Norway).

e Operational Strategies: Techniques for reservoir management, including flood
control and energy production.

e Technical Measures: Use of gates, turbines, and other equipment to control water

flow.

17

Mangvreringsreglementet (Norwegian Regulation):

o Description: Norwegian regulations governing the operation and management
of hydropower plants.
o Relevance: Sets the legal and operational boundaries within which the

decision-support model operates.

Kruskal-Wallis Test:

The Kruskal-Wallis Test is a non-parametric method for testing whether samples originate
from the same distribution. It extends the Mann-Whitney U test to multiple groups. This test
does not assume a normal distribution of the data, making it suitable for comparing more than

two groups.

Mathematical Representation

k
o= ER‘Z 3(N+1
N+ D L (N+1)
1=
where:

e N is the total number of observations.
e ks the number of groups.
e N is the number of observations in the i-th group.

e Riis the sum of ranks for the i-th group.

The Kruskal-Wallis Test is used to compare water levels across different seasons, identifying
significant differences. This helps in understanding seasonal variations and their impact on

water resource management.
P-Value:

The P-Value is the probability of obtaining test results at least as extreme as the observed
results, assuming that the null hypothesis is correct. It provides a measure of the evidence
against the null hypothesis. The P-Value is calculated based on the test statistic from a
hypothesis test. For example, in the context of the Kruskal-Wallis Test, the P-Value is derived

from the chi-square distribution.

18

In the context of the Kruskal-Wallis Test, the P-Value is used to determine the statistical
significance of the observed differences between groups. A low P-Value indicates strong
evidence against the null hypothesis, confirming significant seasonal differences in water

levels.

Sensitivity Testing:

Sensitivity Testing involves analyzing how different values of an independent variable affect
a particular dependent variable under a given set of assumptions. It assesses the impact of

varying input parameters on model outputs.

Sensitivity Testing is essential for assessing the robustness of the decision-support
framework. It identifies which parameters significantly influence the model's outcomes,

guiding improvements and ensuring reliable predictions under varying conditions.
Global and Local Variables:

Global Variables are parameters that affect the entire model universally, while Local
Variables impact specific instances or parts of the model. This distinction helps in managing

the complexity and scope of the model.

Differentiating between global and local variables is important for defining the scope and
impact of different parameters within the decision-support model. This helps in managing the
model efficiently and ensuring accurate predictions related to the dual objectives of energy

production and flood risk management.

19

3. Research Design

This chapter is meant as an overview of the research, with the methodology for the decision
framework presented in chapter 5. The reason for this separation is the nature of the research.
Before any method and choices for the framework can be made, the data and statistical
properties must be evaluated. The first step in the method will therefore be choice of path
moving forward in the decision framework.

The research employs a quantitative approach, focusing on a thorough analysis of the
statistical characteristics. It assumes that the reservoirs show strong seasonality and
correlation in reservoir volume, water level and waterflow in each unique lake. This
assumption is tested in the start of the Exploratory Data Analysis (EDA). By confirming the
assumption, the statistical analysis can be done on water level, and not all the different types

of water statistics. The primary steps of the research are:

1. Data Collection:
o Gathering historical water data from Norwegian Water Resources and Energy
Directorate.
2. Data Cleaning and Preparation
o Ensuring the consistency and reliability of the data by aligning time series,
removing inconsistencies such as zero-values, and ensuring all datasets cover
the same period.
3. Exploratory Data Analysis
o Correlation Analysis:

e Analyze the correlation in water levels and reservoir levels to confirm
assumption and to validate that water level data is a reliable indicator.

¢ High correlations confirm the strong positive relationship, allowing
the use of water level data for further analysis.

o Descriptive Statistics:

e Calculating key statistical measures (mean, standard deviation,
skewness, kurtosis, etc.) to understand the central tendencies and
variability of the water level.

e Visualize the data in histograms, time-series and boxplots.

o Seasonal Analysis:

20

e Segmenting the data by seasons to capture the impact of seasonal
variations.
e Analyzing trends and cycles. Identify variability in a single season.
o Seasonal Analysis:
e Using histograms, Kernel Density Estimates (KDE), and the Kruskal-
Wallis test to identify distinct seasonal modes in the water level data.

e Confirming significant seasonal differences due to seasonal impacts.

4. Decision Framework Development
o Methodology choice based on the insights from the EDA
o Developing risk scores for flood and water shortage.
5. Analysis
o Testing the robustness and responsiveness to various inputs to ensure it
reliably responds to variations in water levels and seasonal factors.
o Evaluating the performance and identifying areas for improvement by

comparing the risk scores against historical events and expert assessments.

21

4. Exploratory Data Analysis

Dataset

The datasets are gathered from the Norwegian Water Resources and Energy Directorate

(Sildre NVE, 2024). By using open-source data, the daily datapoints for Tyrifjorden, Sperillen

and Randsfjorden were downloaded. This data was uncleaned, and not processed to fit with

the study. The first action was to conduct a cleaning and preparation for the forthcoming

research. The cleaning was done with python program Data_Cleaner.py, which can be found

in appendix 1. The cleaning is intended to have the datasets align in time and datapoints.

Below is the result of the cleaning of the daily waterlevels.

Tyrifjorden
Uncleaned
Range 1994 — 2024
Datapoints 10888
Cleaned
Range 2004 — 2023
Datapoints 7305
Sperillen
Uncleaned
Range 1947 — 2024
Datapoints 28252
Cleaned
Range 2004 - 2023
Datapoints 7305
Sperillen
Uncleaned
Range 1947 — 2024
Datapoints 28252
Cleaned
Range 2004 - 2023
Datapoints 7305

Table 4-1 Cleaned Datasets

22

As we can see from the uncleaned data, Sperillen had a significant larger dataset for daily
waterlevels. Moreover, due to changes in Randsfjord regulations of water, the data was best
suited with the range 2004 throughout 2023 (Olje- og energidepartementet, 2022).

Additionally, the occurrences of zero-values were investigated in the cleaned data. If this
occurred more research into the integrity of the data would have to be conducted. In the
cleaned data there were no occurrences of zero-values. After the initial cleaning this is what

the top and bottom of the dataset looks like, Tyrifjorden is used as example.

Top of Cleaned Dataset
Date Waterlevel
0 2004-01-01 62.59000
1 2004-01-02 62.57000
2 2004-01-03 62.56450
3 2004-01-04 62.54617
4 2004-01-05 62.53410

Bottom of Cleaned Dataset

Date Waterlevel
7300 2023-12-27 62.60221
7301 2023-12-28 62.58148
7302 2023-12-29 62.56809
7303 2023-12-30 62.55120
7304 2023-12-31 62.53333
Save? (yes/no): yes

Figure 4-1 Python Printout of the Cleaned Tyrifjorden Dataset

As showed in the printout above all datasets will have two columns, one for Date and one for
Water level, Reservoir Volume or Waterflow. All datasets can be downloaded from NVE, see

chapter 13 — Dataset Downloading.

Correlation

The first step of the EDA is to analyze the correlation between the possible datasets. As
mentioned previously the assumption is that the datasets are highly correlated. Reservoir and
Waterlevel almost or exactly perfect correlation, with waterflow possibly lagging slightly.
The reason for the lag can be because of immediate weather changes, or the capacity. A
watershed only has the possibility to let out that much water. At HRW the hatchets are open

max, so the excess over there is the max waterflow. Therefore, there is a maximum the

23

waterflow can go, even though the water might still be rising. This is what causes a flood, and

the overall theme of these research.

By doing this first step, the data analysis will be less extensive then if the thesis will need
more than one statistical analysis. Given that if there is a good correlation the analysis and
framework can rely on only one of the datasets for the most part. Below are the correlation

matrices given from the correlation analysis.

Tyrifjorden
Waterlevel | Waterflow | Reservoir
Waterlevel 1 0,89595 | 0,999935
Waterflow 0,89595 1| 0,89906
Reservoir 0,999935 0,89906 1
Sperillen
Waterlevel | Waterflow | Reservoir
Waterlevel 1| 0,707879 | 0,999633
Waterflow | 0,707879 1] 0,721373
Reservoir 0,999633 | 0,721373 1
Randsfjord
Waterlevel | Waterflow | Reservoir
Waterlevel 1| 0,287398 | 0,999956
Waterflow | 0,287398 1| 0,289755
Reservoir 0,999956 | 0,289755 1

Table 4-2 Correlation Analysis of all Reservoirs

As the table shows the assumption was correct, and there is correlation enough to rely on only
waterlevel in the statistical analysis. The waterflow was slightly lower correlated, and even
more in Randsfjord, this is assumed to be because of the mentioned capacities of the

watersheds. Randsfjord stands out with a lower correlation on waterflow.

After the waterlevel datasets had shown to be a reliable set to analyze, the study moved on to
perform a correlation analysis on the waterlevels across the three reservoirs. This is done to
get an early indication of interconnection and gives the research more reliability that there can
be made one framework that works sufficient across the three reservoirs. The correlation

matrix is shown below.

24

Tyrifjorden | Sperillen | Randsfjord

Tyrifjorden 11]0,761035 | 0,633054
Sperillen 0,761035 1| 0,775634
Randsfjord 0,633054 | 0,775634 1

Table 4-3 Correlation Analysis of all Reservoirs

All lakes show significant positive correlation in water levels, indicating that changes in one
lake's water level are likely to impact each other or have connecting events. The matrix
implies that the relationship between water levels across these lakes is connected, where

increases or decreases in one are reflected in the others.

The correlation analysis was done using Correlation.py, Appendix 3, and the complete

analysis with heatmaps can be seen in Appendix 2.

Descriptive Statistics

The first step of this research is to get a general overview of the statistics for the three
reservoirs. This section uses multiple python programs that will be included in the appendix.
The second assumption made in this research is the seasonality plays a major part. For that
reason, the analysis is divided into three parts, Statistical Analysis, Seasonal Analysis and a
Multimodal Analysis.

Statistical Analysis
The statistical analysis seeks to understand the distribution of waterlevels across the range.

Analyzing outliers, general statistical measurements, and variability.

The next sections provide a statistical overview of the waterlevels in Tyrifjorden, Sperillen
and Randsfjord, employing data from the Python program, Statistical_Analysis.py, Appendix
4. The datasets comprise of 7305 datapoints for Sperillen and Tyrifjorden, and 7298 for
Randsfjord, offering a robust basis for evaluating the waterlevel dynamics in the three

reservoirs.

The complete statistical analysis for all reservoirs can be found in the appendix 5-8.

25

Tyrifjorden

Tyrifjorden is the last lake in the system, with Sperillen and Randsfjorden being upstream of
Tyrifjorden, connected by Randselva and Begnavassdraget. The mean waterlevel across the
dataset is recorded at approximately 62,92 meters, which is quite high in the regulation zone.
That zone being between 62 and 63 meters, LRW and HRW respectively. With a standard
deviation of 0,38 meters, indicating moderate variability around the mean. Suggesting that the
waterlevel occasionally goes above HRW but not often closing in on LRW. Since the mean-
flood level for Tyrifjorden is 64,2 meters, going slightly above HRW is not dramatic.

Statistic Value
Mean 62,9181
Standard 0,377319
Deviation
Min 62,02999
25™ percentile 62,75689
Median 62,8723

75 percentile 62,99604
90 percentile 63,31896
95 percentile 63,63215
99t percentile 64,35287

Max 65,40757
Table 4-4 Tyrifjorden Descriptive Statistics

From the table above it can be noted that 75% of the waterlevels are below HRW of 63

meters.

Histogram of mean and standard deviation for Waterlevel in Tyrifjorden

600 —— Mean
Standard Deviation
== Min Value

500 == Max Value

g

Frequency
]
(=]

100

o & o ¢

aoan -

£3.5 4.0 B4.5 6.0 5
Waterlevel

Table 4-5 Tyrifjorden Histogram Distribution of Waterlevels

26

There is a notable decrease in waterlevels directly above HRW, which corresponds closely to
the 75™ percentile. The distribution also highlights the rarity of extreme waterlevels, on either
side. Below 62,5 meters and above approximately 63,3 meters there are not many recorded

waterlevels.

Time-Series Analysis
A time series analysis over more than two decades shows consistent seasonal fluctuations,

underscoring the assumed seasonality in the waterlevels.

Daily Time Series of Waterlevel in Tyrifjorden

= Waterlevel
| === Flooding Level 1 _
|- === Flooding Level 2 === - e e e e e m e m e m e
8501 ==~ Flooding Level 3 __ _ o oo
=== Flooding Level 4

(=== Flooding Level 5
64.5 LRV _HRV Level 1
LRV_HRV Level 2

| Lk
- b

ATl s L it s S R g g i T it L Lo Ly

Date

Waterlevel

Figure 4-2 Time-Series Chart Tyrifjorden

The water levels generally remain within a defined range, with occasional spikes that exceed
the flooding thresholds marked by the red dashed lines in the analysis.

Statistical Measures and Flood Incidence
78.81% of observed waterlevels fall within one standard deviation from the mean. This tight

clustering is more pronounced than in a standard normal distribution, suggesting predictability

in water level behaviors.

Frequency Standard Deviation Analysis
Condition Days | Percent | Number of Std Devs Percentage Within Range
Regulation Zone 5512 | 75,45517 1 78,80903
Caution Zone 1653 | 22,62834 2 90,63655
Mean to 5-Year Flood 86 | 1,177276 3 95,6742

27

5 to 10-Year Flood 21 0,027379 4 98,38467
10 to 20-Year Flood 6 | 0,082136 5 99,28816
20 to 50-Year Flood 41 0,054757 6 99,58932
50-Year Flood 15 | 0,205339 7 100
Total Flood Days 113 | 1,546886 8 100

Table 4-6 Frequency and Standard Deviation Analysis Tyrifjorden

The data categorizes 1.547% of the observation period as flood days, emphasizing the low but
non-negligible risk of flooding. The 15 days of 50-Year Flood is the extreme weather in 2023.
As we have seen in the former statistics a certain amount of the water level is recorded above
HRW for Tyrifjorden. Tyrifjorden can probably do this due to the relatively big margin from
HRW to mean-flood.

Sperillen
The mean water level in Sperillen is approximately 149.63 meters with a standard deviation of
0.71 meters, reflecting a moderate level of variability. Although, a significant increase from

the variability in Tyrifjorden.

Statistic Value
Mean 149,6315
Standard 0,71156
Deviation
Min 148,1312
25% 149,0202
Median 149,7027
75% 150,1673
90% 150,3899
95% 150,5535
99% 151,6396
Max 154,023

Table 4-7 Sperillen Descriptive Statistics

The data is mainly centralized; the histogram below illustrates that most water levels are
tightly clustered around the mean and median (149.70 meters). Moreover, there are sharper

declines after one standard deviation from the mean.

28

Histogram of mean and standard deviation for Waterlevel in Sperillen

300 | : | | —— Mean
i === Standard Deviation
. == Min Value
| == Max Value
250 A !
i 1
i 1
1 1
200 [i
g | !
E | 1
g 150 | 1
i]
woq i !
i i
i |
s0q | !
i 1
1 1
0 : -
153 154

Waterlevel

Figure 4-3 Sperillen Histogram Distribution of Waterlevels

Notably, the frequency of occurrences diminishes significantly for water levels above the 75th
percentile, highlighting the infrequency of extremely high-water levels, which peak at a

maximum of 154.02 meters. Much like Tyrifjorden.

Time-Series Analysis
The time-series for Sperillen resembles Tyrifjorden and reveals a pattern of season water level

fluctuations.

Daily Time Series of Waterlevel in Sperillen

154 | — Waterlevel

=== Flooding Level 1
=== Flooding Level 2
=== Flooding Level 3
153 L === Flooding LEVEl & o o e e] e

=== Flooding Level 5

o LRV _HRV Level 1 =
153 + LRV HRY Level 2 _|

Waterlevel
]
=

150 4

149 A

145

e i o S L S L g L L
Date

Figure 4-4 Time-Series Graph Sperillen

The water levels oscillate within the regulated range (LRW/HRW), marked by yellow dashed
lines, suggesting consistent management and predictable behavior of the lake over time.

Notably, critical flooding thresholds indicated by red dashed lines are seldom exceeded.

29

Statistical Measures and Flood Incidence

Much like Tyrifjorden, Sperillen shows approximately 73.85% of the data points are within

one standard deviation from the mean, indicating less variability than a normal distribution

might suggest.

Frequency Standard Deviation Analysis

Condition Days Percent | Number of Std Devs | Percentage Within Range
Regulation Zone 5919 | 81,02669 1 73,85352
Caution Zone 1233 | 16,87885 2 95,50992
Mean to 5-Year Flood 74 | 1,013005 3 98,4668
5 to 10-Year Flood 38| 0,520192 4 99,56194
10 to 20-Year Flood 21| 0,287474 5 99,86311
20 to 50-Year Flood 13| 0,17796 6 99,97262
50-Year Flood 51 0,068446 7 100
Total Flood Days 151 | 2,067077 8 100

Table 4-8 Frequency and Standard Deviation Analysis Sperillen

The data also shows that 2.07% of the observation days fall under various flood conditions,

underscoring the occasional but important flood risk.

Randsfjorden

The average water level of Randsfjord stands at approximately 133.50 meters with a standard

deviation of 0.87 meters. This level of deviation suggests a moderate fluctuation around the

mean, primarily staying within a predictable range.

Statistic Value
Mean 133,5049
Standard 0,871948
Deviation
Min 131,43
25% 132,84
Median 133,9
75% 134,15
90% 134,35
95% 134,4618
99% 134,66
Max 136,07

Table 4-9 Randsfjorden Descriptive Statistics

30

Most water levels are clustered around the median of 133.9 meters, and the frequency

distribution decreases for levels beyond the 75™ percentile, culminating at a maximum of

136.07 meters.

=
=]

Frequency

[~
=]
=

100

Histogram of mean and standard deviation for Waterlevel in Randsfjord

—— Mean

] == Min Value
== Max Value

=== Standard Deviation

134 135
Waterlevel

Figure 4-5 Randsfjorden Histogram Distribution of Waterlevels

Notably, there looks to be a higher frequency in the lower range toward LRW, than with the

two other reservoirs.

Time-Series Analysis

The time series analysis spanning over two decades shows that Randsfjord maintains a stable

water level with regular seasonal variations. These variations are well-contained within the

established regulatory thresholds.

156 4

135 4

e
I

Waterlevel

133 1

152 4

Daily Time Series of Waterlevel in Randsfjord

Waterlevel
Flooding Level 1
Flooding Level 2
Flooding Level 3
Flooding Level 4
Flooding Level 5
LRV_HRW Level 1 _
LRV_HRY Level 2

\(

L L - el L S L S L g L 1

Date

Figure 4-6 Time-Series Graph Randsfjorden

31

Statistical Measures and Flood Incidence

An impressive 82.65% of the data points lie within one standard deviation from the mean,

emphasizing the lake's stability, uniformity and predictability.

Frequency Standard Deviation Analysis

Condition Days Percent | Number of Std Devs | Percentage Within Range
Regulation Zone 7063 | 96,77994 1 82,65278
Caution Zone 146 | 2,000548 2 99,26007
Mean to 5-Year Flood 34| 0,465881 3 100
5 to 10-Year Flood 2| 0,027405 4 100
10 to 20-Year Flood 2| 0,027405 5 100
20 to 50-Year Flood 51 0,068512 6 100
50-Year Flood 21 0,28775 7 100
Total Flood Days 64 | 0,876953 8 100

Table 4-10 Frequency and Standard Deviation Analysis

The occurrence of days with flooding conditions is remarkably low (less than 1%), which
reinforces the effectiveness of the existing water management strategies to handle high-water
events. Randsfjorden stands out with its low flooding and highly regulated waterlevels
between LRW and HRW.

Summary

The statistical analyses of water levels in Tyrifjorden, Sperillen, and Randsfjord provide
insights into the hydrological stability and variability of these lakes. Each analysis, grounded
in robust datasets and comprehensive statistical metrics, underscores both the individual

characteristics and shared behaviors of these water reservoirs.

Across all three lakes, the analyses highlight a strong tendency toward central clustering of
water levels around the mean, with water levels falling within a predictable range. The
frequency of floods is shown to be rare, but noticeable for Sperillen and Tyrifjorden.
Randsfjorden stands out with an impressive flooding percent below 1.

Despite similarities in management success, the reservoirs exhibit varying degrees of natural
variability. For example, Randsfjord shows remarkable predictability with 82.65% of
observations falling within one standard deviation from the mean, compared to 78.81% for
Tyrifjorden and 73.85% for Sperillen.

32

The risk of flooding, while generally low across all reservoirs, is meticulously documented,
with each lake experiencing rare but notable high-water. Randsfjord displays a very low
incidence of flood days (0.88%).

Seasonal Analysis

Based on the statistical analysis the study observed seasonal patterns that needs to be
analyzed. The seasonal analysis will separate the datasets in seasons, and perform the same
statistical analysis done before. Furthermore, the trends for the seasons will be analyzed. The
complete seasonal analysis can be found in the appendix 9-11. The analysis is done in the
python program Seasonal_Analysis_Waterlevel.py, appendix 8. For the datasets to start at the
start of a season, the datasets will be filtered to start 15t March 2004. The first season will then
be spring 2004.

Tyrifjorden

The seasonal statistics table provides a comprehensive overview of the mean, standard
deviation, minimum, and maximum water levels for each season. The data reveals that
autumn has the highest mean water level, indicating generally stable conditions with
occasional peaks. Spring, on the other hand, shows the lowest mean but the highest standard

deviation, reflecting significant variability.

Season mean std min 25% 50% 75% max SVI
Autumn 63,02 0,32 62,48 62,83 62,94 63,04 65,25 | 0,007203
Spring 62,79 0,45 62,03 62,48 62,73 62,97 64,61 | 0,006588
Summer 63,06 0,42 62,27 62,82 62,92 63,12 65,41 | 0,005076
Winter 62,81 0,17 62,33 62,66 62,84 62,94 63,61 | 0,00273

Table 4-11 Tyrifjorden Seasonal Statistics

Summer's water levels are comparable to autumn's, with considerable variability suggesting
extreme weather events. Winter displays the lowest variability, indicating more consistent

water levels likely due to freezing conditions.

33

Spring Water Level Distribution Summer Water Level Distribution

140

! = Spring Distribution 400 B Summer Distribution

1
1 1
: == LRW : == LRW
== HRW == HRW
120 1 B0 :
1
1
100 00 |
1
1
250 1
& 8 frd I
= =
g g i
g g o i
[r=i i [rey

150

100

0 T 0- T
63.0 63.5 . . 65.0 . . 63.0 63.5 645 65.0 65.5
Waterlevel Waterlevel
Autumn Water Level Distribution Winter Water Level Distribution
H | ‘== Autumn Distribution H | == Winter Distribution
3004 1 | == LRW wod ! == LRW
H H —— HRW
0 H “oq{ |
1 1
i w1
w0{ | H
o 1 & 100 1
2 2
o 1 o 1
2 1 = 1
81501 [R
= 1 = 1
1 1
1 B0 1
100 1 1
1 1
] a0]
1 1
50 1 1
1 1
1 29
1 1
o : y o = ; ‘ "
62.0 62.5 63.0 63.5 64.0 645 65.0 62.0 63.5 54.0 4.5 65.0
Waterlevel Waterlevel

Figure 4-7 Tyrifjorden Seasonal Histograms

The seasonal changes are quite apparent with winter having no floods and stable waterlevels,
before the waterlevel increase when spring comes. There are incidents of flood in the spring.
As summer histogram shows the higher waterlevels seem to come from an increasing level
throughout spring. The year ending with a declining waterlevel in autumn, moving into

winter.

34

Randsfijorden Water Level in Year 2013
Tyrifjorden Water Level in Year 2013

in Year 2013

Sperillen Water Level

T
=
[l

" o n " o n

= -t

"3 0 ®8 9 ® 85 @
|2AST 1278,

B2.5 A
62.0 4

o
@

54.5 1
540 4
B3

ELCaPEEE

153
152 1
151 1
15

149 -
148 -

ELERPELTTY

201303 201305 2013-07 2013-09 2013-11 2014-01

2013-01

Date

Figure 4-8 Yearly Plot Example All lakes

35

What we can take out from the time-series above, from 2013, is the seasonal changes
connecting with the histogram. 2013 is taken as an example, and this graph is for all
reservoirs. It will not be shown in the other reservoirs seasonal analysis. The plots can be
made using python and the python program Yearly plots.py. The graph shows and increasing
waterlevel in spring, and large outflow during summer. Summer and autumn displaying more
volatility due to changing weather. The spring smelt is what makes the higher waterlevels in

summer.

Time-Series and Seasonal Fluctuations

The decomposed time-series analysis offers a clear visualization of the waterlevels over two
decades, capturing both the observed values and the seasonal components. The actual
observed water levels exhibit sharp peaks and downs, highlighting significant fluctuations and

extreme events.

—— Observed

: K

2004 2008 2012 2016 2020 2024

0.4 = Seasonal
0.2
0.0

—0.2

2004 2008 2012 2016 2020 2024

Figure 4-9 Decomposed Time Series with fluctuations

This pattern is particularly pronounced in spring and summer, where climatic factors such as
precipitation and snowmelt probably contribute to the variability. The seasonal component of
the time-series shows a consistent cyclical pattern, underscoring the strong influence of
seasonal changes on water levels. This regular cycle suggests that despite yearly variations,

the underlying seasonal trends remain stable, driven by predictable factors.

Flood Incidence

Spring and summer are marked by higher variability and a greater incidence of flood days.
Summer experiences a high frequency of flood days. Autumn shows a reduction in flood days
compared to summer, reflecting a transition to more stable water levels. Winter, with its low
variability and absence of flood days, presents the most stable scenario, likely due to freezing

conditions that limit water level fluctuations.

36

Spring | Summer | Autumn | Winter

Below 62 0 0 0 0

62 to 63 1381 1123 1147 1633

63 to 64.2 329 578 535 131
64.2 to 64.7 38 26 22 0
64.7 to 64.9 0 0 2 0
64.9 to 65.1 0 4 2 0
65.1t065.2 0 3 1 0
Above 65.2 0 14 1 0
Total Flood Days 38 47 28 0

Table 4-12 Flood Frequencies Tyrifjorden

Box plots for each season provide additional insights into the distribution and spread of water
levels. These plots reveal not only the central tendencies but also the range and presence of
outliers. Spring and summer show higher mean levels and more pronounced spreads, as
evidenced by the interquartile ranges, suggesting more substantial fluctuations in water levels
during these periods. The box plots can be seen in the Seasonal Analysis Tyrifjorden

appendix.

Seasonal Trend

The trend analysis across different seasons reveals distinct patterns in waterlevel changes.
Spring shows a positive slope, suggesting an overall increase in water levels as the season
progresses, which may be due to snowmelt and increased rainfall. This trend highlights the
potential for increased flooding risks in spring, necessitating proactive water management
strategies. In contrast, summer, autumn, and winter exhibit negative slopes, indicating a

general decline in water levels throughout these seasons.

37

Trend for Winter Across All Years

Trend for Spring Across All Years

Water Level

® Actual Data
= Tend Line {slope: -0.00138)

Water Level

@ Actual Data

E4.0 4

63.54

62.5 4

7 == Tend Line (slope: 0.00738)

Trend for Summer Across All Years

Day of Season

=4

Trend for Autumn Across All Years

Day of Season

@ Actual Data

Water Level

— Tend Line (slope: -0.00088)

Water Level

65.0 4

63.0

@ Actual Data
= Tend Line (slope: -0.00110)

Day of Season

Figure 4-10 Seasonal Trend Tyrifjorden

Day of Season

The statistical significance of these trends is confirmed by p-values, found in appendix, well

below the 0.05 threshold, indicating that these patterns are not due to random chance.

However, the practical implications of these trends require careful consideration. Given that

the trends, while significant, are possibly not practical, the trend is not large. The trend is not

from a certain water level to a flooding level.

Sperillen

Autumn shows relatively stable water levels with a modest variability, indicating a balanced

hydrological state. In contrast, spring displays the highest variability

Season mean std min 25% 50% 75% max
Autumn 149,96 0,5 148,15 149,74 150,09 150,28 151,87
Spring 149,27 0,81 148,13 148,69 148,98 149,6 152,79
Summer 149,95 0,69 148,17 149,62 150,01 150,31 154,02
Winter 149,36 0,5 148,44 148,92 149,29 149,81 150,42

Table 4-13 Seasonal Statistics Sperillen

38

Summer's water levels are like those in autumn but with increased variability. Winter, with
the lowest variability, indicates consistent water levels. The histograms of seasonal water

levels provide insights into the distribution across different times of the year.

Spring Water Level Distribution Summer Water Level Distribution
\F- Spring Distribution : : ! S Summer Distribution
} —= LRW : : == LRW
200 {|== HAW i 200 i —= W
I I 1
1 1 1
1 1 1
| | [}
1 1 1
150 1) I 150 1y
1 1 1
=y i i z 1
o | | @ [}
E. 1 1 ﬁ. 1
£ 100 {| ! £ 100 {}
1 1 1
| | [}
1 1 1
I | 1
h 1 1
0 509
I 1
1 1
I 1
1 1
o- T T - T T
148 149 150 151 152 153 150 151 152 153 154
Waterlevel Waterlevel
Autumn Water Level Distribution Winter Water Level Distribution
B Auturmnn Distribution ! : . Winter Distribution
-= AW I -= AW
= HAW =1 —— HAW
200 I 1
1 1
1 1
| 1
B0 | 1
| 1
150 1 1
z z i 1
(=] (=]
o o | 1
= = 1]
g P i
= 100 = ! |
1 I
| I
1
I
1
50 4 20 H
|
1
I
1
o ‘ oL . .
150 151 152 153 148 150 151 152 153
Waterlevel Waterlevel

Figure 4-11 Seasonal Histograms Sperillen

Spring's histogram highlights a significant increase in water levels within the 149 to 150.25-

meter range.

Time-Series and Seasonal Fluctuations
The decomposed time-series analysis of Sperillens water levels reveals significant seasonal
fluctuations, characterized by peaks and downs. The actual observed water levels show

substantial variability, particularly during spring and summer.

39

154

152

150

1484,

—— Observed

2004 2006 2008

2010

2012

2014

2016

2018

2020

2022

2024

05

0.0

-05

-1

—— Seasanal

¥

0 T T
2004 2008 2008

2010

2012

2014

Figure 4-12 Time-Series with seasonal fluctuations Sperillen

2016

2018

2020

2022

2024

The seasonal component of the time-series analysis showcases a predictable and repetitive

pattern, underlining a seasonal effect on water levels. This consistent cycle indicates that

despite inter-annual variations, the underlying seasonal trends remain stable, influenced by

predictable climatic factors.

Variation and Flood Incidence

Like Tyrifjorden, spring and summer are marked by higher variability and a greater incidence

of flood days.

Waterlevel Spring | Summer | Autumn | Winter
Below 147.95 0 0 0 0
147.95 to 150.25 1494 1234 1216 1694
150.25 to 151.1276 188 452 474 70
151.1276 to 151.6132 29 26 16 0
151.6132 to 152.0137 23 11 4 0
152.0137 to 152.4 11 10 0 0
152.4 to 152.9034 3 10 0 0
Above 152.9034 0 5 0 0
Total Flood Days 66 62 20 0

Table 4-14 Frequency Sperillen

Summer experiences a high frequency of flood days. Autumn shows a reduction in flood days

compared to summer, reflecting a transition to more stable water levels. Winter, with its low

variability and absence of flood days, presents the most stable scenario.

40

Seasonal Trend

The trend analysis reveals distinct patterns in water level changes across different seasons.

Spring shows a positive slope, suggesting an overall increase in water levels as the season

progresses.

150.50

Trend for Winter Across All Years

Trend for Spring Across All Years

150.25

150.00

14975

149 50

Water Level

149.25

149.00

14875

148.50

@ Actual Data

= Tend Line (slope: -0.01154)

153

152

151

Water Level

148

@ Actual Data o
—— Tend Line (slope: 0.01967)

Day of Season

Trend for Summer Across All Years

Day of Season
Trend for Autumn Across All Years

154 @ Actual Data
—— Tend Line (slope: -0.00262)

152

151

Water Level

150

149

148

Water Level

L] - @ Actual Data
= Tend Line (slope: 0.00297}

T
20

Day of Season

Figure 4-13 Seasonal Trend Sperillen

Day of Season

In contrast, summer, autumn, and winter exhibit negative slopes, indicating a general decline
in water levels.

Randsfjorden

The seasonal statistics table for Randsfjord reveals a consistent pattern in water levels across

different seasons. Autumn displays relatively stable water levels, evidenced by a low standard

deviation, indicating less variability and fewer extreme fluctuations. In contrast, spring
exhibits increased variability.

Season mean std min 25% 50% 75% max
Autumn 134,17 0,26 132,95 134,03 134,15 134,35 135,66
Spring 132,55 0,88 131,43 131,9 132,18 133,14 134,82

41

Summer 134,04 0,39 132,35 133,95 134,08 134,21 136,07
Winter 133,27 0,61 132,03 132,77 133,29 133,74 134,5

Table 4-15 Seasonal Statistics Randsfjorden

The histogram analysis highlights significant seasonal variance in water levels. Spring and
summer show elevated water levels reaching into higher flood-risk categories, with spring

having 12 and summer 33 total flood days, respectively.

Spring Water Level Distribution Summer Water Level Distribution
: S Spring Distribution : S Summer Distribution
1 -= LRW 1 00 == LRW
“ —— HAW ! —— AW
1 1 1
120 : : 250 :
[} 1 [}
100 1 1 1
1 1 11
H H 200 H
g 1 1 g 1
5 ogpd | 1 g 1
= 1 1 = 1
g 1 1 £S04
= 1 1 = 1
604 1 1 1
[} 1 [}
1 1 100 1
41 1 1
0 1 1 1
1 1
1 sod |
04 1 1
1 1
1 1 1 .
0 T o1 T T T
133 134 132 133 134 136
Waterlevel Waterlevel
Autumn Water Level Distribution Winter Water Level Distribution
BN Autumnn Distribution : ap { ™ Winter Distribution :
== LRW 1 == LRW 1
B0 o= haw H —-— HAW H
70 4
1 1 1 1
1 1 1 1
w01 | H o] | H
1 1 1 1
1 1 - 1 1
1 1 11 1
g 1 | o 1 1
g0 5 1 1
1 1 1
g i e i
= 1 = 1 1
! 01 !
1 1 1
1 1
1 209 1
11 1
071 i
1 wq 1
1 1
1 1
ol—L : . o1 : .
132 133 1534 135 153 134 135
Waterlevel Waterlevel

Figure 4-14 Seasonal Histograms Randsfjorden

Autumn'’s distribution, with negative skewness, suggests a tail of lower water levels, while the
high kurtosis indicates a peaked distribution with potential for extreme high-water levels.
Winter's symmetric distribution, with fewer outliers, aligns with no recorded flood days,

reflecting stable water levels during this season.

Time-Series and Seasonal Fluctuations
The decomposed time-series analysis of Randsfjord waterlevels indicates a cyclical seasonal
pattern with noticeable peaks, reflecting substantial fluctuations driven by environmental and

climatic influences.

42

136

134

132

—— Observed

\

2004 2006 2008

2010

2012

2014

2016

2024

]

-1

—— Seasonal

|

2004 2006 2008

2010

2012

2014

Figure 4-15 Time-Series and Seasonal Fluctuations Randsfjorden

2016

2024

The regularity in the seasonal component suggests that the lake's response to seasonal changes

is consistent over the years. This pattern underscores the predictable nature of seasonal

variations.

Flood Incidence

As with the two other reservoirs, Randsfjorden experience flooding in 3 out of 4 seasons.

With summer with the highest frequency of flood.

Waterlevel Spring | Summer | Autumn | Winter
Below 131.3 0 0 0 0
131.3to 134.5 1702 1686 1608 1757

134.5 to 134.689 34 29 83 0
134.689 to 134.9159 12 10 12 0
134.9159 to 135.1058 0 0 2 0
135.1058 to 135.2902 0 0 2 0
135.2902 to 135.5321 0 4 1 0

Above 135.5321 0 19 2 0

Total Flood Days 12 33 19 0

Table 4-16 Frequency Randsfjorden

Seasonal Trend
The trend analysis reveals distinct patterns in water level changes across different seasons.

Spring shows a significant increase in water levels

43

Trend for Winter Across All Years Trend for Spring Across All Years

1345 4 @ Actual Data

—— Tend Line (slope: 0.02538)

13401

Water Level
Water Level

133.0 4
1325

o Actual Data
[EPNE D Tend Line (slope: -0.01985)
T

T T T T T T T T T
o 20 40 60 80 o 20 40 60 =]
Day of Season Day of Season

Trend for Summer Across All Years Trend for Autumn Across All Years

13604 ° Actual Data
= Tend Line (slope: 0.00081)

s » Actual Data
1355 - —— Tend Line (slope: 0.00193)

1355 4

135.0
135.0 4

1345 g

Water Level
Water Level

133.0 _._.':!Z'\"Zl IR OO OO (TR RT R IRELLES CEELT LS

o
o
SRLLLELINRLTEEL oy
—— L
LTS

LUy :ul'l'; }
133.0 SOty < ’

T T T T T T T T T T
o 20 40 &0 80 o 20 40 =] 80
Day of Season Day of Season

Figure 4-16 Seasonal Trend Randsfjorden

Winter shows a remarkable decline in waterlevels before going on to the increase in spring.

Multimodal Analysis

The multimodal analysis of water levels in three lakes, Tyrifjorden, Sperillen, and Randsfjord,
was conducted to understand the impact of seasonal variations. Using histograms, Kernel
Density Estimates (KDE), and the Kruskal-Wallis test, the analysis identified distinct seasonal
modes in the water level data. The python program used for the multimodal analysis is
multimodal_analysis.py, appendix 14. The complete multimodal analysis can be found in
appendix 12.

In Tyrifjorden, the histograms and KDE plots showed varied peaks and distributions for
different seasons, suggesting distinct modes. Monthly averages revealed water levels were
lowest in early spring, peaked in June, and slightly declined towards autumn. The Kruskal-
Wallis test, with an H-statistic of 1074.35 and a p-value near zero, confirmed significant

differences across seasons, supporting the multimodal distribution due to seasonal variations.

44

Seasonal Water Level Distribution

Season
= Winter
3 Spring
3 Summer
1 Autumnn

Density

Water Level

Figure 4-17 Multimodal Histogram Tyrifjorden

Sperillens water levels displayed similar seasonal fluctuations. Histograms and KDE plots
indicated multiple modes corresponding to different times of the year. Monthly averages
showed levels rising in March, peaking in May and June, and remaining high until November.
The Kruskal-Wallis test, with an H-statistic of 1757s, confirmed significant seasonal
differences, reinforcing the multimodal nature of the data due to seasonal impacts.

45

Monthly Average Water Levels

150.0 A

149.8 -

149.6 A

149.4 -

149.2 4

Average Water Level

149.0 1

148.5 4

Jaln FEI-b M:ar A;I:-r Méy Juln Jull ﬁu.;g SEI-p cht Nul:u'u' D:n_-::
Month

Figure 4-18 Monthly Averages Sperillen

Randsfjord exhibited distinct water level distributions for each season. Histograms and KDE
plots indicated multiple modes, with levels rising dramatically from March to May, peaking in
early summer, and stabilizing until a slight drop in December. The Kruskal-Wallis test, with
an H-statistic of 3712.69 and a p-value of 0.0, confirmed significant seasonal differences,

supporting the multimodal distribution driven by distinct environmental factors.

In conclusion, the multimodal analysis demonstrated that seasonal variations significantly
influence water levels in Tyrifjorden, Sperillen, and Randsfjorden. This understanding is
crucial for effective water resource management and risk assessment, especially in
anticipating seasonal water availability and addressing potential flooding or drought

conditions.

Summary of Exploratory Data Analysis

The exploratory data analysis (EDA) conducted for Tyrifjorden, Sperillen, and Randsfjorden
reveals critical insights essential for the development of the decision-support framework.
The correlation analysis confirmed a strong positive correlation between water levels and
reservoir levels across all three lakes. This validation allowed the focus to remain solely on

water level data for further analysis.

46

Initial data cleaning ensured the removal of inconsistencies and alignment of time series,
resulting in datasets free from zero-values and suitable for robust analysis.

In Tyrifjorden, the mean water level is approximately 62.92 meters, with a standard deviation
of 0.38 meters. This lake shows moderate variability with a pronounced central tendency
around the mean. Seasonal fluctuations are notable, particularly in spring and summer, with

occasional spikes exceeding flooding thresholds.

Sperillen has a mean water level of 149.63 meters and a standard deviation of 0.71 meters,
indicating moderate variability. The water levels cluster significantly around the mean, with
higher variability observed in spring and summer due to snowmelt and precipitation.
Randsfjordens mean water level is 133.50 meters, with a standard deviation of 0.87 meters.
The data reflects moderate fluctuations around the mean, with a highly predictable range. The
waterlevels are tightly regulated, and extreme values are infrequent. Seasonal analysis further
demonstrates the hydrological dynamics of each lake. In Tyrifjorden, autumn presents the
highest mean water level with stable conditions, while spring shows the lowest mean but the
highest variability due to snowmelt and rainfall. Summer exhibits variability comparable to
autumn, and winter shows the lowest variability, indicating consistent conditions.

Sperillens seasonal data reveals stable water levels in autumn with modest variability, while
spring displays the highest variability driven by transitional weather patterns. Summer
continues this trend with high water levels and increased variability, whereas winter is marked
by the lowest variability and stable conditions.

Randsfjordens seasonal analysis highlights stable water levels in autumn, with low variability.
Spring demonstrates increased variability and higher water levels, summer shows moderate

spread and elevated flood risk, and winter remains stable with minimal extreme events.

The multimodal analysis, employing Kernel Density Estimates (KDE), identified distinct
seasonal modes in the water level data for all three lakes. Significant seasonal differences
were confirmed, highlighting the influence of seasonal impacts on water resource

management.
In conclusion, the EDA provides a comprehensive understanding of the hydrological stability

and variability of Tyrifjorden, Sperillen, and Randsfjorden. Each lake exhibits unique

characteristics influenced by seasonal changes. These insights will inform the development of

47

a robust decision-support framework to enhance the management of water resources in

Drammensvassdraget, aligning with the research objectives and scope.

48

5. Methodology

This chapter outlines the method used to develop the framework for risk-based decisions for
managing water in Tyrifjorden, Randsfjorden and Sperillen. As mentioned, the primary goal
is to add simplicity to the balancing of electricity generation and flood risk management by
leveraging historical waterlevel data. This approach leans on the analysis already conducted in
the former chapters. This chapter will outline the development and analysis of the

performance.

Understanding the decision-support framework.

The framework developed in this study is a decision-support tool designed to convert
historical quantitative data into a risk score for either flood or energy shortage. It focuses on
historical data and statistical methods to provide a dimensionless risk score based on the
current water level. The model is intended to support decision-making by quantifying the risk,

but it is essential to understand its limitations and scope.

Before any development can be done it is imperative to choose what it should be able to do,
and what is it not able to do. The question arises then to the design of a formula or a model.
This is an important choice, given the advantages and constraints of both. Below is a table

outlining the differences.

Aspect Decision Formula Decision Model

Complexity Simple, direct calculations Complex, involves multiple

variables and scenarios

Flexibility Rigid, fixed relationships Flexible, can adapt to
changes and incorporate
uncertainty

Scope Limited to specific well- Broad, used for complex and

defined situations strategic decisions

Nature Deterministic Often probabilistic and
analytical

49

Tools Used Basic mathematical Advanced tools like decision
expressions trees, simulations and

optimization

Figure 5-1 Decision Formula vs. Decision Model

This model is not cut in stone, as there is grey area in between. The framework to be
developed will use this grey area. As mentioned, numerous times, the complexity will be kept
to a minimum. The scope is also well-defined flooding and waterlevels. This leans the
framework toward a Decision Formula. However, the analysis done in the EDA will be used.
Therefore, there are probabilistic and analytical elements to it. The use of probability forces
the study to acknowledge the uncertainty in both probability and analysis. Finally, due to the
simplicity and the lack of prediction in this framework, the choice is to make a formula rather
than a model. This will enable the decision-support to not be time-sensitive and abstain from
prediction. Formulas enables further development, and it might be included in a model on
later stages. The lack of prediction and probability in the three decisions to be made, increase,

decrease or maintain outflow is the biggest reason for choosing a formula.

e What the framework is:

o Decision-Support Tool: It aids decision-makers by translating historical water
level data into a risk score.

o Quantitative Focus: The model relies on historical data and statistical methods
to provide risk assessments.

o Non-Time binding Risk: The risk score provided is dimensionless and not tied
to a specific timeline. It indicates the current level of risk without predicting
the exact timing of a flood or water shortage.

e What the framework is Not:

o Dynamic Predictor: The model does not predict future events or provide a
dynamic forecast. It updates based on historical data but does not account for
real-time changes or future conditions.

o Definitive Decision-Maker: While it provides valuable risk quantification, it
does not replace expert judgment or operational decisions. The model
highlights the risk, but the final decisions should consider qualitative

assessments and other operational factors and methods.

50

Understanding these aspects ensures that operators can effectively integrate it into their

decision-making processes, recognizing its strengths and limitations.

Formula

The formula will be designed to give the operator a baseline understanding of the risks
associated with the current waterlevel in the reservoir. The formula integrates several factors
from the EDA. It will use seasonal historical waterlevel density, seasonal trends, reservoir
capacity and regulatory constraints to adjust the risk scores. While there are several more
statistics that can be included in the formula, the EDA gave a thorough insight into the
distribution of waterlevel and the frequency of outliers. This will all be included through the
density and the trends. Aswell, the seasonal trends will encompass more of the analysis. The
factors let out will represent some of the uncertainty of the formula and will be discussed in

the appropriate chapter.

The formula will be split in to, Energy Shortage Risk and Flood Risk. The general formulas

will look like this:

Energy Shortage Risk (ESR):

ESR = Baseline ESR X Dgpergy X Cenergy X Renergy X Senergy

Equation 5-1 Energy Shortage Risk Formula

Flood Risk (FR):

FR = Baseline FR X Dgjpa X Criooa X Rri00a X SFi0od

Equation 5-2 Flood Risk Formula

o Components:
o Each of the components (H, C, R, S) represents a different adjustment factor:

= Baseline: Initial estimate of risk based on observed waterlevel
= D: Density Adjustment
= C: Current Reservoir Capacity Adjustment
= R: Regulatory Constraints Adjustment
= S: Seasonal Trends Adjustment

e These components will be thoroughly explained in the model development chapter,

detailing how each factor is derived and integrated into the final risk score.

51

The model will require two inputs, apart from which lake the operator is analyzing. This will
be the observed waterlevel and which season is current. This will be the starting point for the
python program. The formula will then use seasonal waterlevel data to acquire the necessary

statistics and regulations.

The final framework will in general be as the figure below.

Increase
Inputs gl Formula Maintain

Decrease

After the formula has calculated the risks at a certain waterlevel, a decision factor will be

Figure 5-2 General Overview of Decision Framework

included to account for the adjustment based on what the operator will decide. This enables
the operator to see what effect each decision will have on the risk.

Formula Preparation
For the formula python program to have the necessary data, several steps must be taken to
prepare the datasets to work with a decision formula. The following python programs will be
used to prepare for the formula:

- Reservoir_to_DailyEnergy.py

- Data_Preperation.py

- States_constructor.py

All these can be found in appendix.

52

Since the analysis has shown clear seasonality, the datasets will be categorized into seasons.
This will ensure the formula only use waterlevels that have been present in the season that is
current. Furthermore, waterflow, waterlevel, reservoir volume and energy has been combined
into one set. The reason for this is the next step in the preparation, which is construction of
waterlevel states. The reason for this is the probability density function which will be used in
the density factors, this does not allow for one single point of density. As theory state, a
continuous probability function does not have single definite probabilities. Only ranges. These
ranges are the states. The states are constructed with percentiles, LRW, HRW, etc. The list

can be seen in the picture below:

if name == 'Randsfjord’:
water_levels = [

130.5718, # Extended Low Water
131.51356985708998, # Extended Low Energy
131.43, # Low Observed Water
131.6159, # Low Observed Energy
131.6623, # Extended 1st percentile Energy
131.68, # 1st percentile Energy
131.8302, # Extended 5th percentile Energy
131.88, # 5th percentile Energy
132.0365, # Extended 10th percentile Energy
132.08, # 10th percentile Energy
132.7427, # Extended 25th percentile Energy
132.85, # 25th percentile Energy
133.5323, # Mean Energy
133.5048011787279, # Mean Water
134.5, # HRV
134.689, # Mean Flood
134.9159, # 5-Year Flood
135.1058, # 10-Year Flood
135.2902, # 20-Year Flood
135.5321, # 50-Year Flood
136.07, # High Observed Water
136.9281, # Extended High Water

Figure 5-3 State Limits for Randsfjord

These points are used to construct the states. However, the states above mean-flood are
merged. Since the formula does not account for the flooding levels above mean flood. Given

that if the waterlevel surpasses mean flood the reservoir is in a flooding state.

53

State | Lower Bound | Upper Bound
State 0 147,431 148,1312
State 1 148,1312 148,3988
State 2 148,3988 148,6157
State 3 148,6157 148,7402
State 4 148,7402 148,9442
State 5 148,9442 149,6315
State 6 149,6315 150,25
State 7 150,25 151,1276
State 8 151,1276 162,4594

Table 5-1 Sperillen Waterlevel States

Table 5-1 shows the states that have been defined. There will always be small fluctuations in
the waterlevel, this is another positive point for the definition of states to be more useful.
Figure 5-4 shows the state 6 highlighted and the densities on either side. These are the

densities that will be used in that factor of the formula.

KDE Plot for Water Levels in Tyrifjorden -Spring- Highlighting State 6
i — Overall KDE

620 65 6.0 65 4.0 M5
Water Level m)

Figure 5-4 Example of States and Densities

To sum up, this methodology chapter has outlined the approach taken to develop a decision-
support formula for water resource management in the Drammensvassdraget region. By
leveraging historical data and statistical analysis, the development and formula aims to
provide a tool for supporting the operators in the balancing of electricity generation and flood
risk. The subsequent chapters will discuss the application of the model, its analysis, and the

implications of the findings in detail.

54

6. Development and Design of the Formula

The formula is scripted in python, there are two python programs used for calculating the
formula, Single_Decision.py and Decision_for_loop.py. The last one is made mostly for the
analysis, which iterates over each waterlevel with a set increment. This enables a solid

analysis of the formula’s performance and limitations.

Before the risk values can be calculated, all the factors need to be produced. As shown before

the two formulas and their factors looks like this. Equation 5-1 and 5-2.
Energy Shortage Risk (ESR):
ESR = Baseline ESR X Dgnergy X Cenergy X Renergy X Senergy

Flood Risk (FR):

FR = Baseline FR X Dgip0q4 X Crio0a X Rrio0a X Sriooa

Historical and Extended Density Adjustment (D)

The historical density adjustment factor uses Kernel Density Estimation to smooth historical
data and consider unobserved events. It combines historical and extended data; the extended
data is made to provide a lower low and higher high. This combination ensures a
comprehensive coverage of the complete range of waterlevels. The KDE will use a bandwidth
of 0,2, this is a qualitative judgement, but provides enough smoothing to encompass
unobserved events. While not destroying the integrity of the dataset. This component of the
formula uses two python programs: Historic_Risk _Factor.py and Extended_Risk_Factor.py,

appendix 18 and 19.

The extended data is generated through simulation. The start is by calculating the minimum
and maximum observed waterlevel, and the standard deviation. This python program will then
generate a set of synthetic waterlevels below minimum and above maximum. These values

are uniformly distributed between:

55

[(Min Waterlevel — (3 x Standard Deviations)) , Min Waterlevel]

[Max Waterlevel (Max Waterlevel + (3 x Standard Deviation))]

Equation 6-1 Extension Range Waterlevels

These simulated datapoints are then added into the original dataset, thus extending the low

and high of the historical dataset.

Kernel Density Estimation (KDE) and Histogram Plot for Water Levels during Spring in Tyrifjorden

— KDE
Em Histogram

12

104

0.8 1

Density

0.4 4

0.2 4

0.0 -
635 { 645

Water Level

Figure 6-1 Histogram and KDE of Tyrifjorden Historic Waterlevels

The plot above shows the red line as the KDE, with bandwidth 0,2, for the historical
waterlevels. The plot below shows the KDE for the extended waterlevels, here it is obvious

that the waterlevels have lower and higher observations.

Extended KDE Plot for Water Levels in Tyrifjorden
104 —— Extended KDE

0.8

0.6 4

Density

0.4 4

0.2 4

0.0 1

61 &2 & & & &
Water Level (m)

Figure 6-2 KDE plot for Extended waterlevels Tyrifjorden

56

The next table shows the product of the two python programs. The historic and extended

densities for the current season are shown. The extension alters the densities in a way that the

formula will account for possible unobserved events below and above highest and lowest

historic.
Historic Extended
State Lower Upper Energy Flood Energy Flood
Bound Bound Density Density Density Density
State 0 | 61,6587 62,02999 0 0,993353 0,046527 0,906176
State 1 | 62,0299 62,1965 0 0,958392 0,076414 0,892932
9
State 2 | 62,1965 62,3788 0,034961 0,840824 0,089658 0,873002
State 3 | 62,3788 62,5273 0,152529 0,693116 0,109588 0,836318
State 4 | 62,5273 62,7795 0,300237 0,438424 0,146273 0,676999
State 5 | 62,7795 62,8956 0,554928 0,32169 0,305591 0,566333
State 6 | 62,8956 63 0,671663 0,231252 0,416257 0,46545
State 7 63 64,2 0,7621 0,018614 0,51714 0,122296
State 8 64,2 69,06785 0,974739 0 0,860294 0

Table 6-1 Densities Tyrifjorden

Since the formula is using two densities, and the extended has the sole purpose of extending

the data outside of the original range there were chosen weights for the historical and the

extended.

Density (Current state) = wy; X Densityyistoricar + W2 X DensityYg tended

Equation 6-2 Density (Current State) Formula

Where:

- wi and w are weights for the historical and extended, respectively.

The research will put a definite weight to both. The density factor for the formula will look

like the formula below.

Equation 6-3 Density Adjustment Factor (H)

Density Adjustment Factor (H) = 1 + Density (Current State)

57

Current Reservoir Capacity (C)

The reservoir capacity is used to further incur a penalty if the waterlevel reach the lower part
of the regulated zone, or the higher part of the regulated zone. This is to ensure the risks are
properly shown when the waterlevel is at the ends of the regulated zone, between LRW and
HRW.

This factor will represent the impact of the current reservoir capacity. This factor uses

normalized reservoir levels, reservoir level are in cubic meters.

Current Reservoir Level

Normalized Reservoir Level = - - -
Maximum Reservoir Capacity

Equation 6-4 Normalized Reservoir Level

The maximum is calculated as the reservoir max at mean flood. The regulated zone is
between LRW and HRW, the mean flood is used to further penalize a higher waterlevel than
HRW.

The penalty will incur from L on the lower range, and from H at the higher range. The

capacity adjustment is determined as:

Capacity Factorgpergy = 1+ a X (L — Normalized Reservoir Level)
Capacity Factorg;,oq = 1 + f X (Normalized Reservoir Level — H)
Equation 6-5 Capacity Factors (C)
Where:

- aand 3 are the scaling factors chosen.

- L and H are thresholds chosen to where the penalties will incur.

Regulatory Constraints (R)

There are several regulatory constraints that affect the risk. Regulatory constraints are made
as mitigating measures to have a secure supply of energy, and low risk of severe flood. This
factor will impose penalties if these thresholds are broken, or the waterlevel is closing in on

them.

These thresholds are if the waterlevel goes above HRW there must be maximum output on the

outflow. This will be a risk reducing act above HRW. Also, the rivers flowing out, Begna,

58

Randselva and Drammensvassdraget are not allowed to be dry, meaning that some outflow

must always be on.

The regulatory factor is defined using various thresholds and zones.

Regulation Zone (RZ) = HRW — LRW
Pre Threshold (PT) = 0,2
Lower Threshold (LT) = LRW + PT X RZ

Upper Threshold (UT) = HRW — PT X RZ
Equation 6-6 Regulatory Thresholds and Zones

The upper threshold is where there is an imposed penalty for closing in on the HRW, when
the HRW is passed the reservoir must have maximum outflow, regardless of energy need or
weather. This is risk reducing from a statistical standpoint, but from a decision standpoint it
might not be the optimal choice. For that reason, a penalty is imposed up until HRW, after

that a flood risk reduction will be seen due to the maximum outflow.

Final Risk Scores vs. Observed Water Level for Summer
| i —e— Energy Shortage Risk (ESR)

8 —+= Flood Risk (FR}

Risk Reduction L
! Observed on flood ~-- Mean Flood Level
6 risk at HRW

Final Risk
wn

dasdr Level (m)

Figure 6-3 Example of Risk Reduction After HRW

Season Factor (S)

Given the big impact from seasons a seasonal factor is implemented. This is ensuring

adjustments for variations in seasons, including deviation, trends and volatility.

Stiooa = 1+ k X (Seasonal Deviation + Seasonal Trend + Seasonal Volatility)
Senergy = 1 + k X (Seasonal Volatility — Seasonal Trend — Seasonal Deviation)

Equation 6-7 Seasonal Factors (S)

59

Where:

- kisascaling factor for seasonal adjustments

The seasonal adjustment factor (K) is to adjust the seasonal to a value that fits the other factors
in the formula. For a seasonal adjustment of 1 the seasonality is the biggest contributor to the
final risk formula. Although seasonality is a big factor, the adjustment is to have the
possibility to adjust it down. For the formula at this stage, it is set to 0,8.

Below are the formulas for Seasonal Deviation and Volatility. The trend is calculated using
python, and the numbers will be the average start and end waterlevel over the dataset in the

current season.

Observed Waterlevel — Seasonal Average

Seasonal Deviation =
Seasonal Standard Deviation ..y,

Equation 6-8 Seasonal Deviation

Seasonal Volatility = Seasonal Standard Deviation,.qn

Equation 6-9 Seasonal Volatility

Baseline Flood and Energy Shortage Score and Final Risk Scores

The baseline score are the initial estimates for flood risk (FR) and energy shortage risk (ESR)
based on the observed waterlevel. It is an exponential formula developed through trial to get a

meaningful baseline for the risks at a certain observed waterlevel.

Exponential Risk Scores for Flood and Energy Shortage

—— Flood Risk Score

—— Energy Shortage Risk Score
=== LRW

=== Mean Flood

10

R}

0.6

0.4

0.2

00

Risk Score

62.0 2.5 63.0 6.5 1.0
Observed Water Level

Figure 6-4 Example Baseline Flood and Energy Shortage Risk

60

The formula is made with certain conditions, it is based on the observed waterlevel (OWL),

lowest regulated waterlevel (LRW) and mean flood level for the current reservoir (MF).

Condition 1: Observed Waterlevel below Lowest Regulated Waterlevel

if OWL < LRW : Energy Score = 1

Equation 6-10 Condition 1 Baseline Risks

Condition 2: Observed Waterlevel above Mean Flood Level

if OWL > MF : Flood Score = 1
Equation 6-11 Condition 2 Baseline Risks

Between LRW and MF the scores will be calculated using exponential formulas and a
normalized waterlevel between 0 and 1.

OWL — LRW

Normalized Waterlevel = MF —LRW

Equation 6-12 Normalized Waterlevel

Flood Score = 1 — e—10 * normalized water level®

Equation 6-13 Baseline flood score

Energy Score = e—10 * normalized water level?

Equation 6-14 Baseline energy score

The calculation is done in python, to automate and iterate over multiple waterlevels.

61

Define the function to calculate risk scores with adjusted exponential scalings
def calculate_risk_scores(observed_waterlevel, LRW, mean_flood):

Initialize scores

flood_score = 0

energy_score = @

if observed_waterlevel < LRW:
Maximum water shortage risk when below LRW
energy_score = 1 # Max water shortage risk
elif observed_waterlevel > mean_flood:
Maximum flood risk when above Mean Flood
flood_score = 1 # Max flood risk
else:
Between LRW and Mean Flood: separate exponential scaling of risks
normalized_level = (observed_waterlevel — LRW) / (mean_flood — LRW)

flood_score = 1 — np.exp(-10 * (normalized_levelx*5))
energy_score = np.exp(-10 * (normalized_levelx%2))
return flood_score, energy_score

Figure 6-5 Python print Baseline Risk Scores

The complete baseline ESR and FR then becomes:

0 OWL < LRW
FR = 1 OWL > MF
1— e—lO*normalized waterlevel® LRW < OWL < MF

Figure 6-6 Baseline Flood Risk Compete

1 OWL < LRW
ESR = 0 OWL > MF
1— e—lO*normalized waterlevel? LRW < OWL < MF

Figure 6-7 Baseline Energy Shortage Risk Complete

Decision Factor

The last part of the formula, after the final risk scores have been calculated using the formula.
Is to account for the possible decisions the operator will have. This is where the decision
factor comes in. These factors adjust the scores based on the impact of increasing, decreasing

or maintaining the outflow.

ESR = Baseline ESR X Dgnergy X Cenergy X Renergy X Senergy

ESRping = Decision Factorgpergy X ESR

Equation 6-15 Final Energy Shortage Risk

FR = Baseline FR X DFlood X CFlood X RFlood x SFlood

62

FRpinai = Decision Factorpyoq X FR
Equation 6-16 Final Flood Risk

The decision factor can take three values, increase, decrease or maintain outflow. Each of

these will alter the risks from the formula.

Define decision factors

ESR_increase 1 # Increase outflow gives a increase in Energy Shortage Risk
ESR_decrease = @ # Decrease outflow gives 20% decrease in Energy Shortage Risk
ESR_maintain 1 # Maintain outflow gives no change in final risk

2
.8

FR_increase = 0.
FR_decrease ilo
FR_maintain 1

Increase outflow gives a 2 lecrease in Flood Risk
Decrease outflow gives a 20% increase in Flood Risk
aintain outflow gives no change in final risk

8 #
2 #

M

Figure 6-8 Decision Factor Value

This factor will then multiply by the factor corresponding to the decision of interest. This
enables the operator to look at all possible actions before moving on to other evaluations.
However, after HRW is passed regulation demands max outflow, so the possibility of increase

is removed after HRW.

The multiplication factors are based on this:
1. Increase Outflow:
- Adjusts risks when outflow is increased

- Typically decreases flood risk and increases energy shortage risk

2. Decrease Outflow:
- Adjusts risks when outflow is decreased

- Typically increases flood risk and decreases shortage risk

3. Maintain Current Outflow:

- No change in the final risk scores.
Below is a printout of the python program Single_Decision.py. This is the entire calculation

for Tyrifjorden at 62,99 meters during spring. A possible scaling of the factors, for example

between 0 and 1 will be addressed in the coming chapters.

63

0

Baseline Flood Risk:
1.1685034462700368

Baseline Energy Shortage Risk:
1.1319938431878298

Density Adjustment Factors (H):
Energy Density Adjustment : 1.6549818439996866
Flood Density Adjustment : 1.2541100078154495

Capacity Factor (C):
Flood Capacity Factor: 1
Energy Capacity Factor: 1

Regulatory Constraints Factor
Flood Penalty Factor for Tyrifjorden: 1.9500000000000106
Energy Penalty Factor for Tyrifjorden: 1

Seasonal Adjustment Factor for Flood (S_flood):
1.3901454190060676

Seasonal Adjustment Factor for Energy (S_energy):
1.3825146358540867

Final Scores
Final ESR, before decision factor : 2.5900433684157456
Final FR, before decision factor : 3.9724686213650817

Decision Risk Score

Observed Waterlevel : 62.99m in Spring
Increase:

Energy Shortage Rrisk : 3.1081
Flood Risk : 3.1780

Decrease:

Energy Shortage Risk : 2.0720
Flood Risk : 4.7670

Maintain:

Energy Shortage Risk : 2.5900
Flood Risk : 3.9725

Figure 6-9 Printout from Tyrifjorden Final Risk

64

Priming the variables

There are several flexible values that can be altered to enhance the presentation of the

decisions. This comes at a cost; the approach must make sure that the data and presentation is

not compromised. Also, the weights between the factors needs to be at a suitable level.

This part does not need a for-loop, but testing, trial and an assumption based on a qualitative

assessment. For example: at 64,1 meters in Tyrifjorden the flood risk should be quite high.

There is no definitive solution to how the factors should be “weighted”. However, the

research has shown strong seasonality, therefore the seasons should be quite high compared to

the others. Also, history should be respected and therefore, density should not be neglected.

Based on these two assumptions the following variables and weights were used for the model.

These are subject for changing, if necessary, after sensitivity analysis, and will be discussed at

the end of the research.

Factor Variable Value
Density (H) | Historic Density wi | 0,7
Extended Density w2 | 0,3
Capacity (C) | L 0,2
H 0,7
Alpha 2
Beta 3
Seasonal (S) | Seasonal k 0,8

Table 6-2 Variables for formula

These variables will be used in the continuing analysis and the final decision support formula,

chapter 8.

Test runs

This section will go through two runs of the program, one with a single decision and finally

run the for-loop python program to see the distribution of the risk scores, normalized between

0 and 1.

65

Single_Decision.py
Inputs:

Reservoir: Tyrifjorden
Season: Spring

Observed Waterlevel: 62,95 meters

KDE Plot for Water Levels in Tyrifjorden in Spring

— KDE
10 4 Energy Shortage Risk
[Flood Risk
i —— Observed Waterlevel
o
0.8
i
0.6
z
&
=
L
=}
0.4
i
0.2 |
1
1
1
0.0
52‘.0 62I 5 63.0 63‘.5 64‘.0 6='lI 5

Figure 6-10 Test Run Single Dec

Water Level im)

ision

66

Observed Waterlevel

62.95

Baseline Flood Risk

1.1394149571039434

Baseline Energy Shortage Risk

1.154947423708174

Density Adjustment Factors (H)

Energy Density Adjustment

1.6549818439996866

Flood Density Adjustment

1.2541100078154495

Capacity Factor (C)

Flood Capacity Factor

1

Energy Capacity Factor

1

Regulatory Constraints Factor (R)

Flood Penalty Factor for Tyrifjorden

1.7500000000000178

Energy Penalty Factor for Tyrifjorden

1

Seasonal Adjustment (S)

Seasonal Adjustment Factor for Flood

1.5534804302075078

Seasonal Adjustment Factor for Energy

1.5412711771643386

Final Scores

Final ESR, before decision factor

2.946011955860864

Final FR, before decision factor

3.8847348799706047

Cable 6-3 Test Run Factors Table

Decision Risk Score

Increase
Energy Shortage Risk 3.5352
Flood Risk 3.1078

Decrease
Energy Shortage Risk 2.3568
Flood Risk 4.6617

Maintain
Energy Shortage Risk 2.9460
Flood Risk 3.8847

67

Inputs:

Tyrifjorden

Spring
62,95 meters

Increase
Decision Factor ESR: 1,2
Decision Factor FR: 0,8

Maintain
Decision Factor ESR: 1
Decision Factor FR: 1

Decrease
Decision Factor ESR: 0,8
Decision Factor FR: 1,2

Flood Risk
3.1078

Energy Risk
3.5352

Flood Risk
3.8847

Energy Risk
2.9460

Flood Risk
4.6617

Energy Risk
2.3568

While the risk values make sense magnitude wise in this presentation, the need for a scaling is

apparent. The formula lacks the ability to represent “how high” the risk is, or low. This will

be handled in the for-loop program. With a scaling between 0 and 1 on risks.

Decision_for_loop.py

In this script the risk values have been normalized between 0 and 1. 1 will then represent the

highest risk. This script is designed to iterate over waterlevels and calculate the risk. This will

then be visualized in different plots.

Decision Risk Scores vs. Observed Water Level for Spring

10 =@ ESR Increase Risk
== FR Increase Risk
—#— ESR Decrease Risk
—#&— FR Decrease Risk

08 —# ESR Maintain Risk

~%~ FR Maintain Risk

149.0 149.5
Observed Water Level (m)

Figure 6-11 Complete Histogram and Risk Scores of Waterlevels

150.0

LRW
=== HRW
0.6 === Mean Flood Level
e
]
=
0.4
0z
0.0

68

This is the most fulfilling plot the python program provides. The normalization has turned the
values into a more suitable presentation, on the right y-axis. The script will also take one input
of what the current water level is. This will then present the decision scores corresponding to

that waterlevel.

Find the row with the closes
current_waterlevel = 149

closest_row = decision_scores_df.iloc[(decision_scores_df['Observed Water Level']l - current_waterlevel).abs().argmin()]

Print the decision scores the closest observed water level
print(f"Closest decision scores for observed water level {closest_rowl['Observed Water Level']}:")
print{closest_row)

Figure 6-12 Script example Complete Formula

Closest decision scores for observed water level 149.000(
Observed Water Level 149.000000
ESR Increase Risk 0.170807
FR Increase Risk 0.004216

ESR Decrease Risk 0.086233
FR Decrease Risk 0.051321
ESR Maintain Risk 0.128520
FR Maintain Risk 0.027768
Name: 21, dtype: float64

Figure 6-13 Printout Decisions Factors Complete Formula

From the plot we can see that the regulation works quite efficiently, with the histogram in the

background showing the most density in “low risk” territory.

Complete risk values can be found in appendix 22.

69

7. Sensitivity Analysis
In the context of water resource management, sensitivity analysis plays a crucial role in
understanding how various factors influence the risk assessments of flood and energy
shortages. This chapter delves into the sensitivity analysis of the decision-support framework,
focusing on three key stages: seasonal adjustment factors, density adjustments, and global
sensitivity analysis. The reason for choosing only these two factors is that the other is quite
constant. Regulative changes are fairly set, as the mentioned Randsfjord adjustments have

been going on since 1995, and the capacity is what it is.

The primary objective of this sensitivity analysis is to evaluate how changes in critical
parameters impact the final risk scores for both flood and energy shortage scenarios. Aswell

as the python program Sensitivity_Analysis.py in appendix.

Seasonal Adjustment

The plot provided shows the sensitivity analysis of risk factors focusing on seasonal
adjustment factors for flood risk (FR) and energy shortage risk (ESR). Here is a detailed
interpretation:

Axes

- X-Axis (Factor Value): Represents the varying values of the seasonal adjustment
factors.

- Y-Axis (Average Risk): Represents the average risk values for flood and energy
shortage.

Lines and Markers

- Blue Line (Average ESR - Seasonal Adjustment Factor for Flood): Shows how the
average energy shortage risk changes with varying seasonal adjustment factors for
flood.

- Orange Line (Average FR - Seasonal Adjustment Factor for Flood): Shows how the
average flood risk changes with varying seasonal adjustment factors for flood.

- Green Line (Average ESR - Seasonal Adjustment Factor for Energy): Shows how the
average energy shortage risk changes with varying seasonal adjustment factors for
energy.

- Red Line (Average FR - Seasonal Adjustment Factor for Energy): Shows how the
average flood risk changes with varying seasonal adjustment factors for energy.

70

Sensitivity Analysis of Risk Factors: Seasonal Adjustment Factors

—&— Average ESR - Seasonal Adjustment Factor for Flood
Average FR - Seasonal Adjustment Factor for Flood
#— Average ESR - Seasonal Adjustment Factor for Energy
== fyerage FR - Seasonal Adjustment Factor for Energy

4350

435

4.00

3175

350 /
125
3.00
15 16 17 18
Factor Value

Average Risk

Figure 7-1 Sensitivity Analysis Seasonal Adjustment

Observations

The impact of the seasonal adjustment factor on flood risk, as represented by the orange line,
shows a direct relationship where flood risk increases with an increase in the seasonal
adjustment factor for flood. The steep slope of the orange line indicates that flood risk is

highly sensitive to these changes.

In contrast, the impact on energy shortage risk, represented by the green line, also
demonstrates a direct relationship with its respective seasonal adjustment factor. However, the
green line's upward trend is less steep than the orange line, indicating a moderate sensitivity to

changes in the seasonal adjustment factor for energy.

When examining the impact on flood risk for energy, depicted by the red line, the trend
remains relatively flat. This flat trend suggests that the flood risk does not significantly vary

with changes in the seasonal adjustment factor for energy, indicating low sensitivity.

Similarly, the blue line representing the impact on energy shortage risk for flood also shows a
relatively flat trend. This indicates that energy shortage risk is not significantly influenced by

variations in the seasonal adjustment factor for flood, suggesting low sensitivity.

In conclusion, flood risk is highly sensitive to changes in the seasonal adjustment factor for
flood, while energy shortage risk shows moderate sensitivity to changes in the seasonal
adjustment factor for energy. However, both flood risk and energy shortage risk are not

significantly affected by changes in the seasonal adjustment factors for the other risk type.

71

Density Adjustment

This plot shows the sensitivity analysis of risk factors focusing on density adjustments for

flood risk (FR) and energy shortage risk (ESR). A detailed interpretation:

Lines and Markers

- Blue Line (Average ESR - Flood Density Adjustment): Shows how the average energy

shortage risk changes with varying density adjustment factors for flood.

- Orange Line (Average FR - Flood Density Adjustment): Shows how the average flood

risk changes with varying density adjustment factors for flood.

- Green Line (Average ESR - Energy Density Adjustment): Shows how the average

energy shortage risk changes with varying density adjustment factors for energy.

- Red Line (Average FR — Energy Density Adjustment): Shows how the average flood

risk changes with varying density adjustment factors for energy.

Sensitivity Analysis of Risk Factors: Density Adjustments

—a— Average ESR - Flood Density Adjustment
Average FR - Flood Density Adjustment
#— Average ESR - Energy Density Adjustment
—— Average FR - Energy Density Adjustment

450

4.25

4.00

375

Average Risk

350 i

325 ——

300 -—

125 130 135 140 145
Factor Value

Figure 7-2 Sensitivity Analysis Density Adjustments

Observations

1‘50

1‘55

The impact of the density adjustment factor on flood risk, illustrated by the orange line, shows

a direct relationship where flood risk increases as the density adjustment factor for flood rises.

The steep slope of the orange line indicates that flood risk is highly sensitive to these changes.

In contrast, the effect on energy shortage risk, depicted by the green line, also reveals a direct

relationship with its respective density adjustment factor. The green line shows an upward

72

trend, although it is less steep than the orange line, suggesting moderate sensitivity to changes

in the density adjustment factor for energy.

Regarding the impact on flood risk for energy, represented by the red line, the trend remains
relatively flat. This flat trend indicates that flood risk does not significantly change with

varying density adjustment factors for energy, indicating low sensitivity.

Similarly, the blue line representing the impact on energy shortage risk for flood also shows a
relatively flat trend. This suggests that energy shortage risk is not significantly influenced by

changes in the density adjustment factor for flood, indicating low sensitivity.

In conclusion, flood risk is highly sensitive to changes in the density adjustment factor for
flood, while energy shortage risk demonstrates moderate sensitivity to changes in the density
adjustment factor for energy. Both flood risk and energy shortage risk are not significantly

affected by changes in the density adjustment factors for the other risk type.

Global Sensitivity

This plot provides a global sensitivity analysis of the risk factors by varying multiple
parameters simultaneously and displaying their impact on the average risk with standard
deviation (Std Dev) error bars.

AXxes

- X-Axis (Parameter Value): Represents the varying values of the parameters (seasonal
adjustment factors and density adjustments).

- Y-Axis (Average Risk with Std Dev): Represents the average risk values for flood and
energy shortage, along with the standard deviation.

Lines and Markers

- Blue Markers (ESR - Seasonal Adjustment Factor for Flood): Shows how the average
energy shortage risk changes with varying seasonal adjustment factors for flood.

- Orange Markers (ESR - Seasonal Adjustment Factor for Energy): Shows how the
average energy shortage risk changes with varying seasonal adjustment factors for
energy.

- Green Markers (FR - Density Adjustment for Flood): Shows how the average flood

risk changes with varying density adjustments for flood.

73

- Red Markers (FR — Density Adjustment for Energy): Shows how the average flood
risk changes with varying density adjustments for energy.
Error Bars
- Error bars represent the standard deviation of the risk scores, indicating the variability

in the risk assessments for each parameter value.

Global Sensitivity Analysis of Risk Factors

ESR - Seasonal Adjustment Factor for Flood
ESR - Seasonal Adjustment Factor for Energy

7 W FR - Density Adjustment for Flood

4 FR - Density Adjustment for Energy

Average Risk with 5td Dev
S
B
EHHHHE
HHHHE
-I-I-I-I-I

12 13 14 15 16 17 18
Parameter Value

Figure 7-3 Global Sensitivity Analysis

Observations

The analysis of seasonal adjustment factors shows that the average flood risk, indicated by
blue markers, varies significantly across different parameter values. This high variability and
standard deviation suggest a high sensitivity and variability in flood risk. Conversely, the
average energy shortage risk, shown by orange markers, exhibits moderate changes with

increasing parameter values, and its variability is relatively low compared to flood risk.

In terms of density adjustments, the average flood risk, represented by green markers,
significantly increases with parameter values. The error bars indicate substantial variability,
implying high sensitivity. On the other hand, the average energy shortage risk, depicted by red
markers, remains relatively constant across different parameter values, and its variability is

lower compared to the density adjustment for flood.

The global sensitivity plot reveals that flood risk is generally more sensitive to changes in
both seasonal adjustment factors and density adjustments compared to energy shortage risk.

Energy shortage risk exhibits lower variability and sensitivity to these parameter changes.

74

In conclusion, flood risk is highly sensitive to changes in both seasonal adjustment factors and
density adjustments, as indicated by the high variability and significant changes in average

risk with different parameter values. In contrast, energy shortage risk is less sensitive to these
parameters, particularly for density adjustments related to flood risk, with lower variability in

risk scores indicating more stable risk assessments.
Key Findings

The sensitivity analysis reveals critical insights into the behavior of the risk model under

different conditions;

o Flood Risk: Demonstrates high sensitivity to both seasonal adjustment factors and
density adjustments, indicating a need for precise calibration in these areas.

« Energy Shortage Risk: Shows moderate sensitivity, particularly to seasonal factors,
suggesting that energy risk assessments are relatively stable but still influenced by

seasonal variations.

75

8. Final Decision-Support Formula

This chapter sum up the insights and methodologies developed in the previous chapters to
present the final decision-support formula for managing water resources in the
Drammensvassdraget region. The formula integrates various risk factors and adjustment
parameters to provide a comprehensive tool for balancing electricity generation and flood risk

management.
Summary of Development and Design

In Chapter 6, we detailed the creation and calibration of the decision-support formula. This
formula was designed to convert historical water level data into risk scores for both flood and
energy shortage scenarios. The key components of the formula include:

- Historical and Extended Density Adjustment (D): This component uses Kernel
Density Estimation (KDE) to account for both observed and unobserved events,
extending the range of historical data to cover extreme water levels.

- Current Reservoir Capacity (C): This factor adjusts risk scores based on the current
reservoir level relative to its capacity, with penalties for levels near the lower and
upper bounds of the regulated zone.

- Regulatory Constraints (R): This component imposes penalties based on regulatory
thresholds, such as mandatory outflows when water levels exceed the highest
regulated water level (HRW).

- Seasonal Factors (S): These factors account for seasonal variations in water levels,

incorporating seasonal deviation, trends, and volatility into the risk assessments.
Final Risk Scores
The formula calculates two primary risk scores:
1. Energy Shortage Risk (ESR):

ESR = Baseline ESR X Dgpergy X Cgnergy X Renergy X Senergy

2. Flood Risk (FR):

FR = Baseline FR X DFlOOd X CFIOOd X RFlOOd X SFlOOd

76

Decision Factors

To provide actionable insights, the formula includes decision factors that adjust the risk scores

based on potential management actions:

1. Increase Outflow: Typically decreases flood risk but increases energy shortage risk.
2. Decrease Outflow: Typically increases flood risk but decreases energy shortage risk.

3. Maintain Current Outflow: Maintains the current risk levels.
The final risk scores, incorporating decision factors, are given by:

ESRpina = Decision Factorgpergy X ESR

FRpina1 = Decision Factorg;poq X FR

Sensitivity Analysis
In Chapter 7, we conducted a comprehensive sensitivity analysis to evaluate the impact of

different factors on the risk scores. The analysis included:

3. Seasonal Adjustment Factors: Examined the sensitivity of risk scores to variations
in seasonal factors.

4. Density Adjustments: Assessed how changes in the density adjustment factors affect
the risk scores.

5. Global Sensitivity Analysis: Evaluated the combined impact of varying multiple

parameters simultaneously on the risk scores.

The sensitivity analysis demonstrated that flood risk is highly sensitive to changes in both
seasonal adjustment factors and density adjustments, while energy shortage risk shows

moderate sensitivity, particularly to seasonal factors.

Implementation and Application

The final decision-support formula provides a tool for managing water resources in the
Drammensvassdraget region. By integrating historical data, regulatory constraints, and
seasonal variations, the formula offers a quantitative basis for balancing electricity generation

and flood risk. The decision factors further enhance its practical utility, allowing operators to

77

assess the impact of different management actions on risk levels. The formula culminates in

the plot shown the final test run, from Decision_for_loop.py.

Decision Risk Scores vs. Observed Water Level for Spring
1

—&— ESR Increase Risk

== FR Increase Risk

—#— ESR Decrease Risk

~#&— FR Decrease Risk

=4~ ESR Maintain Risk

%~ FR Maintain Risk
LRW

=== HRW

=== Mean Flood Level

149.0 149.5
Observed Water Level (m)

Figure 8-1 Final Decision Formula Result from for-loop

All seasons and all reservoirs can be found in appendix 22.

78

9. Summary and Discussion

The primary findings of this research highlight the challenges in water resource management
and flood risk mitigation. The decision-support formula developed provides a valuable tool
for managing water resources in the Drammensvassdraget region. By leveraging historical
data and statistical analysis, the formula accurately quantifies flood and energy shortage risks,
facilitating informed decision-making. The development of a dimensionless risk score based
on historical water levels avoids the pitfalls of early-stage predictive guessing. Extensive
sensitivity analyses demonstrated that flood risk is highly sensitive to seasonal and density
adjustments, while energy shortage risk is moderately sensitive, particularly to seasonal
factors. Furthermore, the formula's ability to integrate historical data, regulatory constraints,
and seasonal variations provides a quantitative basis for balancing electricity generation and

flood risk, with practical decision factors enhancing its applicability.

The formula's practical utility lies in its ability to help operators make informed decisions
about water resource management by quantifying risks associated with both floods and energy
shortages. Additionally, the inclusion of decision factors allows for adjustments based on

potential management actions, enabling dynamic responses to changing water levels.

One of the key strengths of this study is the robust statistical analysis underlying the formula,
ensuring reliability and robustness in risk assessment. Detailed sensitivity analyses provide
insights into the formula's performance under various conditions, ensuring its reliability.
However, the formula's reliance on historical data may limit its accuracy in scenarios where
past patterns do not reflect future conditions. Additionally, the exclusion of immediate
weather warnings means the formula does not account for real-time weather changes, making
it less responsive to immediate risks. The timeless risk values also require expert

interpretation and judgment, particularly under extreme conditions.

The sensitivity and robustness analysis conducted in this research provided crucial insights
into the behavior of the decision-support formula under different conditions. The formula
showed high sensitivity to seasonal adjustment factors, particularly for flood risk, highlighting
the need for precise calibration of seasonal parameters to ensure accurate risk assessments.
Changes in density adjustment factors significantly influenced flood risk scores,

demonstrating the importance of incorporating density variations into the formula. The

79

formula's robustness was confirmed through various scenarios and parameter changes,

ensuring its reliability in diverse conditions.

As this research reaches its conclusion, we reflect on the development of this robust decision-
support formula for managing water resources in the Drammensvassdraget region. Designed

to balance the objectives of electricity generation and flood risk mitigation.

The formula's cornerstone is its ability to accurately quantify flood and energy shortage risks
by using historical data. This foundation ensures robust risk assessments grounded in past
events, offering a dimensionless risk score that facilitates informed decision-making without
predicting specific future occurrences. The formula's novelty is its biggest strength; it
quantifies the current situation without trying to predict the future. This key distinction
emphasized throughout the thesis allows the formula and its operator to use the risk values at
their discretion. The use of densities is central, and apart from seasonal adjustments, the
sensitivity analysis showed densities to be impactful. However, this reliance on densities can

produce some intriguing results.

Observed Waterlevel : 63.95

Baseline Flood Risk:
1.9957926026816273

Baseline Energy Shortage Risk:
1.0003872636004547

Density Adjustment Factors (H):
Energy Density Adjustment : 1.7370001797147443
Flood Density Adjustment : 1.0475286041500025

Figure 9-1 Printout from Python, Density Adjustment factor

Examining the Python printout, the density factor is a significant mitigating factor when
nearing a flood level. At an observed water level of 63.95 meters in Tyrifjorden, close to a
flooding level of 64.2 meters, the energy density adjustment is high, increasing the energy
risk, but mitigating the flood risk. This is because, at 63.95 meters, most of the density is
below this level. This implies that, historically, water levels are likely to decrease from this
point, indicating a lower probability of flooding. However, this also reveals a potential
weakness in the formula. Firstly, the formula lacks a component to adjust for immediate risks,
such as sudden weather changes. This design choice makes the risk values dependent on

expert judgment and additional analysis at both higher and lower levels.

80

The Energy Density Adjustment results in a higher Energy Shortage Risk at extreme water
levels. At 63.95 meters, the energy risk is practically zero, but a time-independent risk value

cannot be zero, although it is quite low.

The risk values are timeless; the primary goal was to quantify the risk at certain levels. This
timelessness and avoidance of prediction mean the formula does not account for typical water
level changes over a day, week, or month. The probabilities of weekly changes, while not part

of the thesis, illustrate a major consequence of the chosen formula:

- Probability of no significant change (£5 cm): 0.8334
- Probability of decrease (> 5 cm): 0.0943
- Probability of increase (> 5 cm): 0.0723

These probabilities show the limitations of the formula's design. By not incorporating
probability and prediction, the ability to account for expected changes over a week is lost.
While the formula retains value, it misses some advantages offered by a model, decision tree,
or a compounded decision-making process. For example, a 10% chance of the water level
changing by 10 centimeters can nullify many risk values over a week. However, the risk
values produced by the formula are time-independent, meaning the risk score at the highest
regulated water level (HRW) should not be zero, even if flooding or energy shortage is not
"expected"” in the coming weeks. Although this represents limitations, it also grounds the

formula in its reliance on long-term seasonal changes rather than short-term fluctuations.

The formula's performance is intrinsically linked to the quality and scope of historical data
used. Assumptions, such as ignoring immediate weather forecasts, aim to streamline the focus
on long-term trends rather than short-term fluctuations. Focusing on historical data and
statistical measures helps avoid the noise of short-term weather variations, providing a clearer
picture of current water levels. However, ignoring immediate weather forecasts may limit the
framework's real-time responsiveness, potentially impacting its effectiveness in sudden
change scenarios. Therefore, the formula is not standalone; expert judgment and other

predictors are vital for the formula to account for fluctuations.

The inclusion of extended density estimations to account for unobserved events enhances the

formula’'s comprehensiveness, addressing potential risks beyond the immediate scope of

81

historical data. This approach bridges gaps in historical data, offering a more holistic risk

assessment.

Adaptability to future climatic changes is crucial, with rising temperatures and changing
precipitation patterns potentially impacting water levels and necessitating adjustments to
current strategies. The formula's framework allows for incorporating new data and trends,
ensuring its continued relevance. Continuous monitoring and real-time data integration will be

essential to address evolving climatic conditions and maintain the formula's effectiveness.

Balancing quantitative formula outputs with qualitative expert judgments is vital. While the
formula provides a strong quantitative foundation, expert input is crucial for interpreting
results and making final decisions. Integrating expert judgment contextualizes formula
outputs within the broader decision-making framework, enhancing practical utility. In
complex or ambiguous situations, expert judgment is indispensable, underscoring the need for

a collaborative approach.

To sum up, the research has shown stable water levels, and the need for a formula might not
be immediately apparent. However, the quantification of history, knowledge, and statistics
provides valuable insights into current risks. For example, winter, across all reservoirs, shows
no need for a flood risk formula, although it provides insights into energy shortage risks.
While there are no flooding risks in winter, a dry spring with low winter water levels will
affect energy production moving into spring. The much-mentioned time-independence offers
insights into the magnitude of risk associated with a given water level. A very low winter
water level with little snow, a dry spring, and a warm summer will impact the following year's

water levels. This is the value of the timelessness approach.

Final thoughts and Future Directions

The decision-support formula has mostly shown the stability in the waterlevels, while still
addressing the occurrences of extreme lows and highs. Analysis has shown that waterlevels

mostly are regulated between low risk levels.

Its development reflects a meticulous and comprehensive approach, integrating historical
data, regulatory requirements, and seasonal trends. Future research should focus on

incorporating real-time weather data and expanding the formula into a model. Continuous

82

validation and updates will be crucial to maintaining the formulas relevance and effectiveness

amidst dynamic and evolving climatic conditions.

83

10. Bibliography
Regjeringen.no. (2016, July 20). The History of Norwegian Hydropower in 5 Minutes.
Retrieved from https://www.regjeringen.no/en/topics/energy/renewable-energy/the-
history-of-norwegian-hydropower-in-5-minutes/id2346106/
International Hydropower Association. (2023). A Brief History of Hydropower. Retrieved

from https://www.hydropower.org/iha/discover-history-of-hydropower

Energy Facts Norway. (2023). Electricity Production. Retrieved from Energy Facts Norway:

https://energifaktanorge.no/en/norsk-energiforsyning/kraftproduksjon/#hydropower

Thorsnaes, G. (2023, December 31). Drammensvassdraget. Retrieved from Store Norske
Leksikon: https://snl.no/Drammensvassdraget

Holmaqyvist, E. (2000). Analyse av flomvannstander og terrarstilsig i Tyrifjorden. Oslo:
Norwegian Water Resources and Energy Directorate.

Lauritzen, P. R. (2023, December 23). Sperillen. Retrieved from Store Norske Leksikon:
https://snl.no/Sperillen

Drammensvassdraget. (2024, February 14). Drammensvassdraget. Retrieved from
Wikipedia.org: https://no.wikipedia.org/wiki/Drammensvassdraget

Ekstremvaret Hans. (2024, April 28). Ekstremveeret Hans. Retrieved from
https://no.wikipedia.org/wiki/Ekstremvaret_Hans

Hydropower. (2024, May 20). Hydropower. Retrieved from Wikipedia.org:
https://en.wikipedia.org/wiki/Hydropower

Randsfjorden. (2024, January 1). Randsfjorden. Retrieved from Wikipedia.org:
https://no.wikipedia.org/wiki/Randsfjorden

Sperillen. (2024, February 14). Sperillen. Retrieved from Wikipedia.org:
https://no.wikipedia.org/wiki/Sperillen

Tyrifjorden. (2024, January 1). Tyrifjorden. Retrieved from Wikipedia:
https://no.wikipedia.org/wiki/Tyrifjorden

NVE - Drammensvassdraget. (2024). Drammensvassdraget. Retrieved from NVE Varsom.no:

https://www.varsom.no/flom-og-jordskred/om-flom-og-jordskred/rad-og-
forebygging/vassdragsregulanters-ansvar-og-muligheter/drammensvassdraget/

NVE - Tyrifjorden. (2024). Tyrifjorden. Retrieved from Norwegian Water Resources and
Energy Directorate: https://www.nve.no/vann-og-

vassdrag/vassdragsforvaltning/verneplan-for-vassdrag/viken/012-14-tyrifjorden/

84

NVE - Vannkraft. (2023). Vannkraft. Retrieved from Norwegian Water Resources and Energy
Directorate: https://www.nve.no/energi/energisystem/vannkraft/

Vannkraftdatabase. (2024). Vannkraftdatabase. Retrieved from Norwegian Water Resources
and Energy Directorate:
https://www.nve.no/energi/energisystem/vannkraft/vannkraftdatabase/

Vassdragsregulanters ansvar og muligheter. (2023). Vassdragsregulanters ansvar og
muligheter. Retrieved from NVE Varsom.no: https://www.varsom.no/flom-og-
jordskred/om-flom-og-jordskred/rad-og-forebygging/vassdragsregulanters-ansvar-og-
muligheter/

NVE - Varflom. (2020). Varflom. Retrieved from NVE Varsom.no:
https://www.varsom.no/flom-og-jordskred/om-flom-og-jordskred/varflom/

NVE - Begnavassdraget med Sperillen. (2024). Begnavassdraget med Sperillen. Retrieved
from NVE Varsom.no: https://www.varsom.no/flom-og-jordskred/om-flom-og-
jordskred/rad-og-forebygging/vassdragsregulanters-ansvar-og-
muligheter/drammensvassdraget/begnavassdraget-med-sperillen/

Thorsnes, G. (2023, October 3). Randsfjorden. Retrieved from Store norske leksikon:
https://snl.no/Randsfjorden

NVE Atlas. (n.d.). NVE Atlas. Retrieved from
https://atlas.nve.no/html5Viewer/?viewer=nveatlas

Sildre NVE. (2024). Sildre. Retrieved from Sildre:
https://sildre.nve.no/map?x=380400&y=7228000&zoom=4

Reservoar (Hydrologi). (2022, 09 1). Reservoar (Hydrologi). Retrieved from
https://no.wikipedia.org/w/index.php?title=Reservoar_(hydrologi)&oldid=22926530

NVE - Flom. (2022, 05 13). Flom. Retrieved from NVE: https://www.nve.no/naturfare/laer-
om-naturfare/flom/

NVE - Tarke. (2020, 01 14). Terke. Retrieved from NVE.no:
https://www.nve.no/naturfare/laer-om-naturfare/toerke/

NVE - Regnflom. (2022, 05 13). Regnflom. Retrieved from NVE.no:
https://www.nve.no/naturfare/laer-om-naturfare/flom/regnflom/

NVE - Ordliste. (2024, 06 01). Ordliste for flom. Retrieved from NVE.no:
https://www.varsom.no/flom-og-jordskred/ordliste/ordliste-for-flom/

Rosvold, K. A. (2020, 06 9). Mangvreringsreglementet. Retrieved from Store Norske

Leksikon: https://snl.no/mangvreringsreglement

85

Energidepartementet. (2024, 06 07). Lov om regulering og kraftutbygging i vassdrag
(vassdragsreguleringsloven). Retrieved from Lovdata.no:
https://lovdata.no/dokument/NL/lov/1917-12-14-17

Sperillen. (1926). Mangvrerling av reguleringsdammen for Sperillen. Oslo: Norwegian State.

Olje- og energidepartementet. (2022). Endelig fastsettelse av mangvreringsreglement for
Randsfjorden. Oslo: Olje- og energidepartementet.

Nerings- og energidepartementet. (1995). Tillatelse for Foreningen av Randsfjord Regulering
til fortsatt regulering av Randsfjorden. Oslo: Nerings- og energidepartementet.

Nerings- og energidepartementet. (1994). Foreningen til Tyrifjords regulering. Revisjon av

mangvreringsregment for Tyrifjorden. Oslo: Nerings- og energidepartementet.

11. Al Disclosure

ChatGPT was used in the start as a helper and “companion” in the definition of the thesis
proposal and scope. ChatGPT has been used to proofread and provide a certain flow to the
text where | felt this was needed.

ChatGPT has been used as a coding expert. While python programming is not a new thing to
me, certain errors in the code cannot be effectively found and fixed with the extent of the
programming code and number of lines in this coding amount. ChatGPT programming help
enabled the master thesis to be more extensive, more thorough. Since I did not have to use

half my time finding spelling errors in the python code.

Simen Askeland, 14. June 2024.

12. Python Note

Python version used: 5.5.1

Necessary modules are represented at the top of each python script.

For the python programs to work it is important to look at the file imports and file savings for
the program to work. The file path is important to change to get it working on your computer.
Also, be careful when naming the downloaded csv files, they have to match the name in the

script. For help I advise asking ChatGPT.

86

13. Dataset Downloading

The datasets can be downloaded on:

Tyrifjorden: https://sildre.nve.no/station/12.65.0
Sperillen: https://sildre.nve.no/station/12.83.0
Randsfjorden: https://sildre.nve.no/station/12.69.0

14, Appendix

1. Data_Cleaner.py

Correlation Analysis
Correlation.py
Statistical_Analysis.py

Statistical Analysis Tyrifjorden
Statistical Analysis Sperillen
Statistical Analysis Randsfjorden

Seasonal_Analysis.py

© © N o g kDN

Seasonal Analysis Tyrifjorden

[EY
o

. Seasonal Analysis Sperillen

-
-

. Seasonal Analysis Randsfjorden

[EY
N

. Complete Multimodal Analysis

-
w

. Yearly_plots.py

[EEN
SN

. Multimodal_analysis.py

-
(6]

. Reservoir_to_DailyEnergy.py

[EY
»

. Data_Preperation.py

-
\‘

. States_constructor.py

=
oo

. Historic_Risk _Factor.py

=
(o)

. Extended_Risk_Factor.py

N
o

. Decision_Single.py

N
[y

. Decision_for_loop.py

N
N

. Complete Risk Values

N
w

. Sensitivity_Analysis.py

N
S

. External Reports and Sources

87

Appendix 1:
Data_Cleaner.py

import pandas as pd

import sys

import matplotlib.pyplot as plt

import numpy as np

import warnings

import matplotlib.dates as mdates

warnings.simplefilter(“ignore", category=UserWarning)
warnings.simplefilter(“ignore", category=FutureWarning)

Path to the CSV file

name = "Randsfjord"

data_type = "Waterflow"

Input complete local filepath

file_path = f'/Users/simen/Desktop/Complete Master/01 Data/Uncleaned Data/{name} {data_type} Daily.csv'
df = pd.read_csv(file_path, delimiter=";",header=1)

print("First 15 Rows before cleaning™)

print(df.head(15))

print(" ")
print("\nLast 15 Rows before cleaning")

print(df.tail(15))

Option to exit or move on

continue_choice = input("Move on? (yes/no): ").lower()
if continue_choice !="yes":
print("Exiting.")
sys.exit()
Remove_1 = 'Korrigert'
Remove_2 ='Kontrollert'
df = df.drop([Remove_1, Remove_2], axis=1)
Rename_1 = Tidspunkt'
if data_type == 'Waterlevel"
Rename_2 = 'Vannstand (m)'
elif data_type == 'Reservoir":
Rename_2 = 'Magasinvolum (millioner m3)'
else:
Rename_2 = 'Vannfgring (m3/s)’
df = df.rename(columns={Rename_1: 'Date’, Rename_2: data_type})
df['Date'] = pd.to_datetime(df['Date"]).dt.date
df = df.dropna()
Replace commas with dots in the entire column
df[data_type] = df[data_type].str.replace(’,’, '.")
Convert the column to numeric

df[data_type] = pd.to_numeric(df[data_type])

88

Convert 'data_type' column to numeric (assuming 'data_type' is a column name)
df[data_type] = pd.to_numeric(df[data_type], errors="coerce’)
Reset index after manipulation
df.reset_index(drop=True, inplace=True)
Convert 'Date’ column to datetime objects
df['Date'] = pd.to_datetime(df['Date])
Define the date range to keep
start_date = '2004-01-01'
end_date = '2023-12-31"
Create a boolean mask to filter rows based on the date range
mask = (df['Date’] >=start_date) & (df['Date’] <= end_date)
Apply the mask to filter rows within the specified date range
filtered_df = df[mask]
Keep rows based on the boolean mask
df = df[mask]
Reset the index
df.reset_index(drop=True, inplace=True)
Filter rows where Waterlevel is 0
zero_data_type_rows = df{df[data_type] <= 0]
print('number of rows below 0 : ',len(zero_data_type_rows))
#print(zero_data_type_rows) # Print rows where Waterlevel is 0
df.loc[zero_data_type_rows.index, data_type] = 0
Filter rows where Waterlevel is 0
zero_data_type_rows = df[df[data_type] < 0]
print('Zero-Removal'’)
print('number of rows below 0 : ',len(zero_data_type_rows))
#print(zero_data_type_rows) # Print rows where Waterlevel is 0
print(len(df[df[data_type] < 0]))
print(‘'Final Statistics’)
print(df.describe())
Option to exit or move on
continue_choice = input("Move on? (yes/no): ").lower()
if continue_choice !="yes"
print("Exiting.")
sys.exit()
Calculate statistical values
mean_value = df.mean()
std_dev = df[data_type].std()
min_value = df[data_type].min()
max_value = df{data_type].max()
Histogram
plt.figure(figsize=(10, 6))
plt.hist(df[data_type], bins=50, alpha=0.7, color="blue’)
Mean

plt.axvline(x=mean_value[data_type], color="g', linestyle="-', label="Mean’)

Standard Deviation (both sides)
plt.axvline(x=mean_value[data_type] - std_dev, color='c', linestyle="--', label="Standard Deviation’)

plt.axvline(x=mean_value[data_type] + std_dev, color="c’, linestyle="--")

Min
plt.axvline(x=min_value, color="m’, linestyle="-.", label="Min Value")
Max
plt.axvline(x=max_value, color="m’, linestyle="-.", label='"Max Value')

plt.title(fHistogram of mean and standard deviation for {data_type} in {name}')
plt.xlabel(data_type)
plt.ylabel("Frequency")
plt.legend()
plt.savefig(f'/Users/simen/Desktop/Complete Master/04 Plots/{name}_{data_type} histogram_plot.png’)
plt.show()
Set 'Date’ as the DataFrame index
df.set_index('Date’, inplace=True)
Time-series plot
plt.figure(figsize=(10, 6))
plt.plot(df.index, df[data_type], label=data_type)
Format the x-axis to show years and months/dates
plt.gca().xaxis.set_major_locator(mdates.YearLocator())
plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%Y"))
plt.gcf().autofmt_xdate() # Auto-rotate dates for better spacing
Add vertical lines for each year
for year in pd.date_range(start=df.index.min(), end=df.index.max(), freq="YS"):
plt.axvline(x=year, color="gray’, linestyle="", linewidth=0.5)
plt.title(fDaily Time Series of {data_type} in {name}")
plt.xlabel('Date’)
plt.ylabel(data_type)
plt.legend()
plt.tight_layout()
plt.savefig(f'/Users/simen/Desktop/Complete Master/04 Plots/{name}_{data_type} time_series_plot.png")
plt.show()
Reset index after manipulation
df.reset_index(inplace=True)
print()
print('Top of Cleaned Dataset’)
print(df.head())
print()
print('Bottom of Cleaned Dataset')
print(df.tail())
Option to exit or Save
continue_choice = input("Save? (yes/no): ").lower()
if continue_choice !="yes":
print("Exiting.")
sys.exit()

90

Where to save the cleaned dataset

output_file_path = '/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/"
filename_csv = f'Cleaned_{name}_{data_type}.csv'

Save the cleaned DataFrame to the new CSV file

df.to_csv(output_file_path + filename_csv, index=False)

Save the cleaned DataFrame to excel file for Appendix.
df.to_excel(f'/Users/simen/Desktop/Complete Master/03 Excel Products/02
Lakes/{name}/Cleaned_{name}_{data_type}.xlsx’, index=False)

91

Appendix 2:

Correlation Analysis

All Lakes:

Tyrifjorden | Sperillen | Randsfjord

Tyrifjorden 1| 0,761035 | 0,633054
Sperillen 0,761035 1| 0,775634
Randsfjord | 0,633054 | 0,775634 1

Correlation Heatmap of Normalized Waterlevels

100
n 095
E‘ - 090
i -08s

075
0.65
Trifiorden Sperillen Randsfjord

Tyrifjorden:

Waterlevel | Waterflow | Reservoir

Waterlevel 1 0,89595 | 0,999935

Waterflow 0,89595 1| 0,89906

Reservoir 0,999935 0,89906 1
o Waterlevel Time Series for Tyrifjorden

—— Waterlevel
05 4
0.0 4

T
2006

u T
2008 2010

T T
2012 2014

T T
2016 2018

Waterflow Time Series for Tyrifjorden

10

— Waterflow
0.5 4
0.0 A

T
2006

T T
2008 2010

T T
2012 2014

T T
2016 2018

Reservoir Time Series for Tyrifjorden

104

— Reservaoir
05 4
0.0 4

T
2006

u T
2008 2010

T T
2012 2014

T T
2016 2018

Tyrifjorden Correlation Heatmap

Waterflow Waterlevel

Reservoir

100

098

-0.96

-094

-092

0.90

92

Appendix 2:

Correlation Analysis

Sperillen:

Waterlevel | Waterflow | Reservoir

Waterlevel 1 0,707879 | 0,999633
Waterflow | 0,707879 1] 0,721373
Reservoir 0,999633 0,721373 1

Waterlevel Time Series for Sperillen

10 A
—— Waterlevel
N U‘*\MMW‘\F\M
0.0 - T T T T T T
2014 2016 2018 2020 2022 2024
Waterflow Time Series for Sperillen
10 A
— Waterflow
05 4
0.0 4 T T T T T T
2014 2016 2018 2020 2022 024
Reservoir Time Series for Sperillen
10 A
— Reservoir
05 q
00 1 T T T T T T
2014 2016 2018 2020 2022 2024
Randsfjorden:
Waterlevel | Waterflow | Reservoir
Waterlevel 1| 0,287398 | 0,999956
Waterflow 0,287398 1| 0,289755
Reservoir 0,999956 | 0,289755 1
Waterlevel Time Series for Randsfjord
10 — Waterlevel
05 - \r’
DU - T T T T T T
2004 2008 2012 2016 2020 2024
Waterflow Time Series for Randsfjord
10 A
— Waterflow
0.5
0.0 - T T T T T T
2004 2008 012 016 2020 024
Reservoir Time Series for Randsfjord
10 A
— Reservaoir
05 q
DU 3 T T T T T T
2004 2008 012 016 2020 024

Sperillen Correlation Heatmap

100
T
H
u
5 0.95
-0.90
3
£ -085
- 080
i}
2
o 0.75
o
(=3
<+
Randsfjord Correlation Heatmap 10
T
g 0.9
o]
E -0a
-07
H
t
il
E -06
-05
=
2
E 04
i
(=4
03

93

Appendix 3:
Correlation.py

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
from sklearn.preprocessing import MinMaxScaler
import matplotlib.gridspec as gridspec
lake_names = ["Tyrifjorden", "Sperillen”, "Randsfjord"]
for name in lake_names:
Load the datasets with complete local filepath
waterlevel_data = pd.read_csv(f"/Users/simen/Desktop/Complete Master/01 Data/Cleaned
Data/Cleaned_{name}_Waterlevel.csv")
waterflow_data = pd.read_csv(f"/Users/simen/Desktop/Complete Master/01 Data/Cleaned
Data/Cleaned_{name}_Waterflow.csv")
reservoirlevel_data = pd.read_csv(f"/Users/simen/Desktop/Complete Master/01 Data/Cleaned
Data/Cleaned_{name}_Reservoir.csv")
Merge the datasets on 'Date’
merged_data = pd.merge(waterlevel_data, waterflow_data, on="Date")
merged_data = pd.merge(merged_data, reservoirlevel_data, on="Date")
Ensures the 'Date’ column is a datetime type
merged_data['Date’] = pd.to_datetime(merged_data['Date"])
merged_data_without_date = merged_data.drop(columns=['Date'])
Calculate the correlation
correlation_matrix = merged_data_without_date.corr()
Normalize the data
scaler = MinMaxScaler()
merged_data[['Waterlevel', "Waterflow', 'Reservoir']] = scaler.fit_transform(
merged_data[['Waterlevel', 'Waterflow', 'Reservoir'])
fig = plt.figure(figsize=(13, 5))
gs = gridspec.GridSpec(3, 2, width_ratios=[3, 1])
Create time-series subplots in the first column of the grid
time_series_axes =]
for i in range(3):
ax = fig.add_subplot(gs[i, 0])
time_series_axes.append(ax)
ax.plot(merged_data['Date’], merged_data.iloc[:, i+1], label=merged_data.columns[i+1])
ax.legend()
ax.set_title(f"{merged_data.columns[i+1]} Time Series for {name}")
heatmap_ax = fig.add_subplot(gs[:, 1])
Plot the heatmap
sns.heatmap(correlation_matrix, ax=heatmap_ax, annot=True, cmap="coolwarm’, fmt=".2f")
heatmap_ax.set_title(f'{name} Correlation Heatmap')
heatmap_ax.set_aspect(‘auto’)

94

for label in heatmap_ax.get_xticklabels():
label.set_rotation(45) # Rotate labels to 45 degrees
label.set_ha('right")

plt.tight_layout()

plt.savefig(f/Users/simen/Desktop/Complete Master/04 Plots/{name}_correlation_heatmap.png’)

plt.show()

correlation_matrix_save = correlation_matrix

correlation_matrix_save.to_excel(f"/Users/simen/Desktop/Complete Master/03 Excel Products/01
Correlation/correlation_matrix_{name}.xIsx")
Load the datasets for Waterlevel for all lakes
tyrifjorden_data = pd.read_csv('/Users/simen/Desktop/Complete Master/01 Data/Cleaned
Data/Cleaned_Tyrifjorden_Waterlevel.csv')
sperillen_data = pd.read_csv('/Users/simen/Desktop/Complete Master/01 Data/Cleaned
Data/Cleaned_Sperillen_Waterlevel.csv')
randsfjord_data = pd.read_csv(‘/Users/simen/Desktop/Complete Master/01 Data/Cleaned
Data/Cleaned_Randsfjord_Waterlevel.csv')
tyrifjorden_data['Date'] = pd.to_datetime(tyrifjorden_data['Date'])
sperillen_data['Date'] = pd.to_datetime(sperillen_data['Date"])
randsfjord_data['Date'] = pd.to_datetime(randsfjord_data['Date")
Normalize the datasets
scaler = MinMaxScaler()
tyrifjorden_data['Normalized'] = scaler.fit_transform(tyrifjorden_data[['Waterlevel])
sperillen_data['Normalized'] = scaler.fit_transform(sperillen_data[['WaterlevelT])
randsfjord_data['Normalized'] = scaler.fit_transform(randsfjord_data[['WaterlevelT])
Merge the datasets on a common date column
combined_data = pd.DataFrame()
combined_data['Date’] = tyrifjorden_data['Date’] # Assuming all datasets have the same date range
combined_data = combined_data.merge(tyrifjorden_data[['Date’, 'Normalized]], on="Date’, how="left")
combined_data = combined_data.merge(sperillen_data[['Date’, 'Normalized]], on='Date’, how="left', suffixes=(' Tyrifjorden’, '
Sperillen’))
combined_data = combined_data.merge(randsfjord_data[['Date’, 'Normalized]], on='"Date’, how="left’)
combined_data.rename(columns={'Normalized": 'Randsfjord'}, inplace=True)
combined_data.rename(columns={'Normalized Tyrifjorden": 'Tyrifjorden’}, inplace=True)
combined_data.rename(columns={'"Normalized Sperillen": 'Sperillen'}, inplace=True)
combined_data_without_date = combined_data.drop(columns=['Date")
Calculate the correlation
correlation_matrix = combined_data_without_date.corr()
plt.figure(figsize=(8, 6))
sns.heatmap(correlation_matrix, annot=True, cmap="coolwarm’, fmt=".2f")
plt.title('Correlation Heatmap of Normalized Waterlevels')
plt.savefig('/Users/simen/Desktop/Complete Master/04 Plots/all_lakes_correlation_heatmap.png’)
plt.show()
Save the correlation matrix to an Excel file
correlation_matrix.to_excel("/Users/simen/Desktop/Complete Master/03 Excel Products/01

Correlation/correlation_matrix_all.xIsx")

95

Appendix 4:
Statistical_Analysis.py

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.dates as mdates
Path to the CSV file
name = "Randsfjord"
data_type = "Waterlevel"
file_path = f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/Cleaned_{name}_ Waterlevel.csv'
Read the CSV file
df = pd.read_csv(file_path)
df[data_type] = pd.to_numeric(df[data_type], errors='coerce’) # Convert data to numeric
df.reset_index(drop=True, inplace=True)
if name == 'Randsfjord":
if data_type == 'Waterlevel".
Define flooding levels
mean_flood = 134.689
five_year_flood = 134.9159
ten_year_flood = 135.1058
twenty_year_flood = 135.2902
fifty_year_flood = 135.5321
LRV =131.3
HRV =134.5
LRV_HRV = [LRV, HRV]
flooding_levels = [mean_flood, five_year_flood, ten_year_flood, twenty_year_flood, fifty_year_flood]
else:
Handle the case when data_type is not 'Waterlevel'
flooding_levels = None
elif name == "Tyrifjorden":
if data_type == 'Waterlevel":
Define flooding levels
mean_flood = 64.2
five_year_flood = 64.7
ten_year_flood = 64.9
twenty_year_flood = 65.1
fifty_year_flood = 65.2
LRV =62
HRV =63
LRV_HRV = [LRV, HRV]
flooding_levels = [mean_flood, five_year_flood, ten_year_flood, twenty_year_flood, fifty_year_flood]
else:
Handle the case when data_type is not 'Waterlevel'
flooding_levels = None

96

elif name =="Sperillen":
if data_type == 'Waterlevel":
Define flooding levels
mean_flood = 151.1276
five_year_flood = 151.6132
ten_year_flood = 152.0137
twenty_year flood = 152.4
fifty_year_flood = 152.9034
LRV = 147.95
HRV = 150.25
LRV_HRV = [LRV, HRV]
flooding_levels = [mean_flood, five_year_flood, ten_year_flood, twenty_year_flood, fifty_year_flood]
else:
Handle the case when data_type is not 'Waterlevel'
flooding_levels = None
Calculate and print basic statistics
mean_value = df[data_type].mean()
std_dev = dfdata_type].std()
min_value = df[data_type].min()
quantile_25 = df[data_type].quantile(0.25)
median_value = df[data_type].median()
quantile_75 = df[data_type].quantile(0.75)
quantile_90 = df[data_type].quantile(0.90)
quantile_95 = df[data_type].quantile(0.95)
quantile_99 = df[data_type].quantile(0.99)
max_value = dffdata_type].max()
total_data_points = len(df[data_type])
print(‘Total Data Points =', total_data_points)
print('Mean Value =', mean_value)
print('Standard Deviation =', std_dev)
print('Min Value =', min_value)
print('50% / Median =', median_value)
print('75% =', quantile_75)
print("90% =', quantile_90)
print('95% =', quantile_95)
print('99% =', quantile_99)
print('Max Value =', quantile_90)
Save statistics into a DataFrame
statistics_df = pd.DataFrame({
‘Statistic": ['Total Data Points', ‘Mean', 'Standard Deviation', 'Min', '25%', 'Median', '75%', '90%', '95%', '99%", 'Max],
‘Value': [total_data_points, mean_value, std_dev, min_value, quantile_25, median_value, quantile_75, quantile_90,
quantile_95, quantile_99, max_value]
b
print(df.head())
print(statistics_df.head())

97

Histogram

plt.figure(figsize=(10, 6))

plt.hist(df[data_type], bins=100, alpha=0.7, color="blue’)

Mean

plt.axvline(x=mean_value, color="g', linestyle="-', label="Mean’)

Standard Deviation (both sides)

plt.axvline(x=mean_value - std_dev, color="c', linestyle="--', label="Standard Deviation")

plt.axvline(x=mean_value + std_dev, color='c', linestyle='--")

Min
plt.axvline(x=min_value, color="m’, linestyle="-.", label="Min Value")
Max
plt.axvline(x=max_value, color="m’, linestyle="-.", label='"Max Value')

plt.title(fHistogram of mean and standard deviation for {data_type} in {name}')
plt.xlabel(data_type)

plt.ylabel("Frequency")

plt.legend()

plt.show()

Histogram

plt.figure(figsize=(10, 6))

plt.hist(df[data_type], bins=100, alpha=0.7, color="blue’)

25th Percentile

plt.axvline(x=quantile_25, color="y', linestyle="", label="25% Percentile’)
Median

plt.axvline(x=median_value, color='k’, linestyle="-', label="Median (50% Percentile)")
75th Percentile

plt.axvline(x=quantile_75, color="y", linestyle="", label="75% Percentile’)
90th Percentile

plt.axvline(x=quantile_90, color="y", linestyle="', label="90% Percentile’)
95th Percentile

plt.axvline(x=quantile_95, color="y", linestyle="", label="95% Percentile’)
99th Percentile

plt.axvline(x=quantile_99, color="y", linestyle="", label="99% Percentile’)
plt.title(f'Histogram of percentiles for {data_type} in {name}’)
plt.xlabel(data_type)

plt.ylabel('Frequency")

plt.legend()

plt.show()

Histogram

plt.figure(figsize=(10, 6))

plt.hist(df[data_type], bins=100, alpha=0.7, color="blue’)

for value in flooding_levels:

plt.axvline(x=value, color="r", linestyle="--', label="Flooding Level' if 'Flooding Level' not in

plt.gca().get_legend_handles_labels()[1] else "_nolegend_")
for value in LRV_HRV:

98

plt.axvline(x=value, color="y', linestyle="--', label='LRW/HRW" if 'LRW/HRW" not in
plt.gca().get_legend_handles_labels()[1] else "_nolegend_")
plt.title(fHistogram of {data_type} in {name}")
plt.xlabel(data_type)
plt.ylabel("Frequency")
plt.legend()
if data_type == 'Waterlevel"
Add vertical lines at specified x-axis values
for value in flooding_levels:
plt.axvline(x=value, color="r', linestyle="--")
else:
Handle the case when data_type is not "Waterlevel'
For example, set flooding_levels to None or print a message
flooding_levels = None
if data_type == 'Waterlevel"
Add vertical lines at specified x-axis values
for value in LRV_HRV:
plt.axvline(x=value, color="y', linestyle="--")
else:
Handle the case when data_type is not ‘Waterlevel'
For example, set flooding_levels to None or print a message
LRV_HRV = None
plt.show()
df['Date'] = pd.to_datetime(df['Date])
df.set_index('Date’, inplace=True)
Time-series plot setup
plt.figure(figsize=(10, 6))
plt.plot(df.index, df[data_type], label=data_type)
Format the x-axis to show years
plt.gca().xaxis.set_major_locator(mdates.YearLocator())
plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%Y"))
plt.gcf().autofmt_xdate() # Auto-rotate dates for better spacing
plt.title(fDaily Time Series of {data_type} in {name}")
plt.xlabel('Date’)
plt.ylabel(data_type)
Plotting flooding levels with labels
if data_type == 'Waterlevel"
for index, level in enumerate(flooding_levels):
plt.axhline(y=level, color="r, linestyle="--', label=f'Flooding Level {index + 1}')
Plotting LRV_HRV levels with labels
if data_type == 'Waterlevel"
for index, level in enumerate(LRV_HRV):
plt.axhline(y=level, color="y", linestyle="--', label=FLRV_HRV Level {index + 1}')
plt.legend()
plt.tight_layout()

plt.show()
Number of days within the regulation zone 62-63 meters
regulation_zone_days = len(df[(df[data_type] > LRV) & (df[data_type] < HRV)])
regulation_zone_percent = (regulation_zone_days / total_data_points) * 100
print(f*"Number of days within the regulation zone 62-63 meters: {regulation_zone_days}
({regulation_zone_percent:.2f}%)")
Number of days within the caution zone, above HRV and below mean-flood
caution_zone_days = len(df[(df[data_type] > HRV) & (df[data_type] < mean_flood)])
caution_zone_percent = (caution_zone_days / total_data_points) * 100
print(f*"Number of days within the caution zone HRW to mean-flood: {caution_zone_days} ({caution_zone_percent:.2f}%)")
Number of days with mean flood to 5-year flood
meanflood_5year_days = len(df[(df[data_type] > mean_flood) & (df[data_type] < five_year_flood)])
meanflood_5year percent = (meanflood_5year_days / total_data_points) * 100
print(f*"Number of days with mean-flood to 5-year flood: {meanflood_5year_days} ({meanflood_5year_percent:.2f}%)")
Number of days with 5 to 10-year flood
five_10year_days = len(df[(df[data_type] > five_year_flood) & (df[data_type] < ten_year_flood)])
five_10year_percent = (five_10year_days / total_data_points) * 100
print(f"Number of days with 5 to 10-year flood: {five_10year_days} ({five_10year_percent:.2f}%)")
Number of days with 10 to 20-year flood
ten_20year_days = len(df[(df[data_type] > ten_year_flood) & (df[data_type] < twenty_year_flood)])
ten_20year_percent = (ten_20year_days / total_data_points) * 100
print(f*"Number of days with 10 to 20-year flood: {ten_20year_days} ({ten_20year_percent:.2f}%)")
Number of days with 20 to 50-year flood
twenty 50year_days = len(df[(df[data_type] > twenty_year_flood) & (df[data_type] < fifty_year_flood)])
twenty 50year_percent = (twenty_50year_days / total_data_points) * 100
print(f*"Number of days with 20 to 50-year flood: {twenty 50year_days} ({twenty_50year_percent:.2f}%)")
Number of days with 50-year flood
fifty_year_days = len(df[df[data_type] > fifty_year_flood])
fifty_year_percent = (fifty_year_days / total_data_points) * 100
print(f*"Number of days with 50-year flood: {fifty_year_days} ({fifty_year_percent:.2f}%)")
Total number of days with flood
total_flood_days = len(df[df[data_type] > mean_flood])
total_flood_percent = (total_flood_days / total_data_points) * 100
print(f*"Number of days with flood: {total_flood_days} ({total_flood_percent:.2f}%)")
Save to DataFrame
frequency_days_df = pd.DataFrame({
‘Condition": ['Regulation Zone', 'Caution Zone', 'Mean to 5-Year Flood', '5 to 10-Year Flood', '10 to 20-Year Flood', 20 to
50-Year Flood', '50-Year Flood', 'Total Flood Days1,
'‘Days": [regulation_zone_days, caution_zone_days, meanflood_5year_days, five_10year_days, ten_20year_days,
twenty 50year_days, fifty_year_days, total_flood_days],
'Percent’: [regulation_zone_percent, caution_zone_percent, meanflood_5year_percent, five_10year_percent,
ten_20year_percent, twenty_50year_percent, fifty_year_percent, total_flood_percent]
b
Assuming mean_value, std_dev, df, data_type, and total_data_points are already defined

Example of std_devs, which needs to be defined:

100

std_devs=11,2,3,4,5,6,7,8,9, 10]
Calculate probabilities for values greater than or equal to the specified number of standard deviations from the mean
probabilities =[]
percentage_within_ranges =[]
for num_std_devs in std_devs:
Calculate the value at the given number of standard deviations from the mean
value_at_std_devs = mean_value + num_std_devs * std_dev
Calculate the probability of observing a value at least as extreme as value_at_std_devs
probability = len(df[df[data_type] >= value_at_std_devs]) / total_data_points
For both sides of the distribution, multiply the probability by 2
This accounts for both tails assuming a normal distribution
adjusted_probability = min(probability * 2, 1) # Ensure probability does not exceed 100%
probabilities.append(adjusted_probability)
Calculate the percentage falling within the range of the specified number of standard deviations from the mean
percentage_within_range = (1 - adjusted_probability) * 100
percentage_within_ranges.append(percentage_within_range)
print(f"{percentage_within_range:.2f}% falls within {num_std_devs} standard deviation{'s" if num_std_devs > 1 else "}

from the mean.")

Save to DataFrame
std_dev_analysis_df = pd.DataFrame({
‘Number of Std Devs'": std_devs,
'Percentage Within Range': percentage_within_ranges
b
level_names = ['Mean’, 'Five-year', 'Ten-year', Twenty-year', 'Fifty-year']
Calculate how many standard deviations each flooding level is from the mean
std_devs_from_mean = {}
std_dev_data =]
for level_name, level_value in zip(level_names, flooding_levels):
num_std_devs_from_mean = (level_value - mean_value) / std_dev
std_devs_from_mean[level_name] = num_std_devs_from_mean
std_dev_data.append(num_std_devs_from_mean) # This line was missing; now it appends each computed std dev
Print the results for each flood level's standard deviations from the mean
for level_name, num_std_devs_from_mean in std_devs_from_mean.items():
print(f*{level_name} flooding level is {num_std_devs_from_mean:.2f} standard deviations from the mean.")
Printing to verify the content and length of std_dev_data
print(std_dev_data) # This will show the list of standard deviations computed
print(len(level_names)) # This prints the length of level_names, which should be 5
print(len(std_dev_data)) # This now should also print 5, confirming entries are made to the list
Create DataFrame
flood_levels_std_dev_df = pd.DataFrame({
'Flood Level": level_names,
'Std Devs from Mean': std_dev_data
b

Reset the index to make sure 'Date’ is a column, not the index, to avoid issues

101

df.reset_index(inplace=True)

Ensure 'Date’ column is in datetime format

df['Date'] = pd.to_datetime(df['Date])

Now, set 'Date’ as the index again, this time for the purpose of resampling
df.set_index('Date’, inplace=True)

Resample the data to get annual statistics. 'A' stands for '‘Annual'.

annual_data = df.resample('A").agg(['mean’, 'std'])

Calculate the Yearly Variability Index for each year

YVI = standard deviation / mean for each year

annual_data['YVI'] = annual_data[(data_type, 'std")] / annual_data[(data_type, 'mean’)]
Calculate the average of the Yearly Variability Index across all years
average_yvi = annual_data["YVI].mean()

print("Yearly Variability Index (YVI) for each year:\n", annual_data['YVI7)
print("\nAverage Yearly Variability Index (YVI) across all years:", average_yvi)
Creating DataFrame to hold this information

yearly_variability_index_df = annual_data[[("YVI', ")]].copy()

yearly_variability_index_df.columns = ['Yearly Variability Index’] # Rename the columns for clarity

print()

print(statistics_df)

print()
print(frequency_days_df)
print()
print(std_dev_analysis_df)
print()
print(flood_levels_std_dev_df)
print()
print(yearly_variability_index_df)
Define the save path

save_path = f'//Users/simen/Desktop/Complete Master/03 Excel Products/02 Lakes/{name}/'

File name based on a variable 'name’

file_name = f'Combined_Statistical_Data_{name}.xlIsx’

full_path = save_path + file_name

Save all DataFrames to an Excel file with each DataFrame as a separate sheet

with pd.ExcelWriter(full_path, engine="xIsxwriter") as writer:
statistics_df.to_excel(writer, sheet_name="Statistics', index=False)

frequency_days_df.to_excel(writer, sheet_name="Frequency Days', index=False)

std_dev_analysis_df.to_excel(writer, sheet_name='Standard Deviation Analysis', index=False)
flood_levels_std_dev_df.to_excel(writer, sheet_name="Flood Levels Std DeV', index=False)

yearly_variability_index_df.to_excel(writer, sheet_name="Yearly Variability Index', index=False)

print(f"All DataFrames have been saved as an excel file at {full_path}.")
df.reset_index(inplace=True)

df.set_index('Date’, inplace=True)

plt.figure(figsize=(10, 6))

plt.boxplot(df[data_type].dropna(), vert=True) # Ensure there are no NaN values
plt.title(fBoxplot of {data_type} for {name}')

102

plt.ylabel(data_type)

plt.xticks([1], [data_type]) # Set a custom x-axis label
plt.grid(True)

plt.show()

103

Appendix 5:

Statistical Analysis Tyrifjorden

Daily Time Series of Waterlevel in Tyrifjorden

— Waterlevel
| === Flooding Level 1
65.0 1 --- Flooding Level 3
=== Flooding Level 4
[--- Flooding Level 5
64.5 LRV_HRV Level 1
LRV _HRV Level 2
= 6.0
T
=
]
=
=
£a@5
63.0
62.5
62.0

=== FI00GING LEVE] 2 m o o o oo o o m oo m o mm o mm j—

Yt I R I LI e LI e ey L

Statistic Value Histogram of mean and standard deviation for Waterlevel in Tyrifjorden

600 — ean
Total Data Points 7305 - Em\zal;e[)t
Mean 62,9181 B |

400 [
Standard 0,377319 > :
Deviation E? m i
Min 62,02999 e E
25% 62,75689 100 i
Median 62,8723 ol — —~ — o }65,5
75% 62,99604 S —
90% 63,3189 - — Neson G e
95% 63,63215 - i
99% 64,35287 -
Max 65,40757 P

Condition Days Percent B .

Regulation Zone 5512 | 75,45517 L
Caution Zone 1653 | 22,62834
Mean to 5-Year Flood 86 | 1,177276
5 to 10-Year Flood 2 | 0,027379
10 to 20-Year Flood 6 | 0,082136
20 to 50-Year Flood 4 | 0,054757
50-Year Flood 15 | 0,205339
Total Flood Days 113 | 1,546886

104

Appendix 5:

Statistical Analysis Tyrifjorden

Flood Std Devs from Number of Std Percentage Within
Level Mean Devs Range
Mean 3,39738879 1 78,80903491
Five-year 4,722526974 2 90,63655031
Ten-year 5,252582248 3 95,67419576
Twenty- 5,782637522 4 98,38466804
year
Fifty-year 6,047665158 5 99,2881588
6 99,58932238
7 100
8 100
9 100
10 100
Histogram of Waterlevel in Tyrifiorden
Boxplot of Waterlevel for Tyrifjorden
655
g
§4.5
3 640
fes
8.0
825
820

Waterlevel

105

Appendix 6:

Histogram of mean and standard deviation for Waterlevel in Sperillen

Statistical Analysis Sperillen : : — e
300 1 : === Standard Deviation
i 2 cume
Statistic Value s0q |
i
Total Data Points 7305 200 :
g i
Mean 149,6315 %m :
= i
Standard 0,71156 i
100 A |
Deviation :
s0q !
Min 148,1312 i
04
25% 149,0202 " w2
Histogram of percentiles for Waterlevel in Sperillen
Median 149,7027 00 Mo (% percentle)
75% 150,1673 z E
90% 150,3899 200
95% 150,5535 fo
99% 151,6396 100
Max 154,023 50
Condition Days Percent
Regulation Zone 5919 | 81,02669
Caution Zone 1233 | 16,87885
Mean to 5-Year Flood 74 | 1,013005
5 to 10-Year Flood 38 | 0,520192
10 to 20-Year Flood 21 | 0,287474
20 to 50-Year Flood 13 0,17796
50-Year Flood 5| 0,068446
Total Flood Days 151 | 2,067077

Daily Time Series of Waterlevel in Sperillen

154 | — Waterlevel
~=- Flooding Level 1
--- Flaoding Level 2
-=- Flooding Level 3
153 L === FIODTING LEVE] § m i]
=== Flooding Level 5

LRV _HAV Level 1 —|
LRV_HRV Level 2 _|

/2 T

151

Waterievel

150

149

18

B i L e i g L
Date

106

Appendix 6:

Statistical Analysis Sperillen

Flood Level | Std Devs from Mean | Number of Std Devs | Percentage Within Range
Mean 2,102542 1 73,85352
Five-year 2,784986 2 95,50992
Ten-year 3,347834 3 98,4668
Twenty-year 3,890726 4 99,56194
Fifty-year 4,598186 5 99,86311
6 99,97262

7 100

8 100

9 100

10 100

Histogram of Waterlevel in Sperillen

250 1

Pt
=]
=

g
=}

Frequency

100 A

151
Waterlevel

Boxplot of Waterlevel for Sperillen

154 4 8
o]
o]
o]
153 4
152
T
=
it
g 151
150 4
149 4
148
li'nhtehevel

107

Appendix 7

Statistical Analysis Randsfjorden

Histogram of mean and standard deviation for Waterlevel in Randsfjord

Statistic Value 4001
Total Data Points 7298
Mean 133,5049 o
Standard Deviation | 0,871948 f‘;‘
Min 131,43 "
25% 132,84
100 |
Median 133,9
75% 134,15 .
90% 134,35
95% 134,4618
99% 134,66
Max 136,07
Condition Days Percent
Regulation Zone 7063 | 96,77994
Caution Zone 146 2,000548
Mean to 5-Year Flood 34 | 0,465881
5 to 10-Year Flood 2 | 0,027405
10 to 20-Year Flood 2 | 0,027405
20 to 50-Year Flood 5| 0,068512
50-Year Flood 21 0,28775
Total Flood Days 64 | 0,876953

Daily Time Series of Waterlevel in Randsfjord

Frequency

400 4

=]
=}

¥
=
=

100 A

134
Waterlevel

—— Mean

== Min Value
—-= Max Value

=== Standard Deviation

N

Histogram of percentiles for Waterlevel in Randsfjord

134
Waterlevel

156 1

155

[
=

Waterlevel

o
w

152 1

— Waterlevel
=== Flooding Level 1
=== Flooding Level 2

| ==- Flooding Level 3
[=== Flooding Level 4
-: === Flooding Level 5
LRV_HRV Level 1 _

LRV_HRV Level 2

\(

B - L S el P L g g g

Date

25% Percentile

= Madian (50% Percentile)

75% Percentile
90% Percentile
95% Percentile
99% Percentile

108

136

Appendix 7

Statistical Analysis Randsfjorden

100 4

Flood Level | Std Devs from Mean | Number of Std Devs | Percentage Within Range
Mean 1,358027 1 82,65278
Five-year 1,618249 2 99,26007
Ten-year 1,836038 3 100
Twenty-year 2,047518 4 100
Fifty-year 2,324943 5 100
6 100
7 100
8 100
9 100
10 100
Histogram of Waterlevel in Randsfjord

=== Flooding Level : : : : :

LRW/HRW i i i i i

1 1 1 1 1

400 I T I R

I T R

1 1 1 1 1

I T I

0 b

g P

L i [] i

] T T T

200 T T R

1 1 1 1 1

T T T

1 1 1 1 1

Pl

L]

134
Waterlevel

Boxplot of Waterlevel for Randsfjord

136

135

134 -

Waterlevel

153 4

132

Wate;ievel

109

Appendix 8:

Seasonal_Analysis.py

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from statsmodels.tsa.seasonal import seasonal_decompose
from sklearn.linear_model import LinearRegression
import statsmodels.api as sm
from datetime import datetime
import sys
Path to the CSV file
name = "Randsfjord"
data_type = "Waterlevel"
file_path = f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/Cleaned_{name}_Waterlevel.csv'
Read the CSV file
df = pd.read_csv(file_path)
dffdata_type] = pd.to_numeric(df[data_type], errors="coerce’) # Convert data to numeric, ensuring all data is correctly
formatted
df['Date] = pd.to_datetime(df['Date"]) # Ensure the Date column is in datetime format
Define the date range to keep. The Range has been altered to match the start of a season. Given that the dataset begins mid
Winter season, originally.
start_date = '2004-12-01"'
end_date ='2023-12-31"
Create a boolean mask to filter rows based on the date range
mask = (df['Date’] >=start_date) & (df['Date’] <= end_date)
Apply the mask to filter rows within the specified date range
filtered_df = df[mask]
Keep rows based on the boolean mask
df = df[mask]
df.set_index('Date', inplace=True) # Set the Date column as the index for easier time series analysis
if name == 'Randsfjord":
if data_type == 'Waterlevel":
Define flooding levels
mean_flood = 134.689
five_year_flood = 134.9159
ten_year_flood = 135.1058
twenty_year_flood = 135.2902
fifty_year_flood = 135.5321
LRV =131.3
HRV =134.5
LRV_HRV = [LRV, HRV]
flooding_levels = [mean_flood, five_year_flood, ten_year_flood, twenty_year_flood, fifty year flood]

else:

110

Handle the case when data_type is not 'Waterlevel'
flooding_levels = None
elif name == 'Tyrifjorden":
if data_type == 'Waterlevel":
Define flooding levels
mean_flood = 64.2
five_year_flood = 64.7
ten_year_flood = 64.9
twenty_year_flood = 65.1
fifty_year_flood = 65.2
LRV =62
HRV =63
LRV_HRV = [LRV, HRV]
flooding_levels = [mean_flood, five_year_flood, ten_year_flood, twenty_year_flood, fifty_year_flood]
else:
Handle the case when data_type is not 'Waterlevel'
flooding_levels = None
elif name == "Sperillen’:
if data_type == 'Waterlevel":
Define flooding levels
mean_flood = 151.1276
five_year_flood = 151.6132
ten_year_flood = 152.0137
twenty_year_flood = 152.4
fifty_year_flood = 152.9034
LRV =147.95
HRV = 150.25
LRV_HRV = [LRV, HRV]
flooding_levels = [mean_flood, five_year_flood, ten_year_flood, twenty_year_flood, fifty_year_flood]
df_reset = df.reset_index(inplace=False)
df_reset['Date'] = pd.to_datetime(df_reset['Date"])
df_reset['Date’] = df_reset['Date'].dt.strftime('%m/%d/%Y")
df_reset.to_excel(f'/Users/simen/Desktop/Complete Master/03 Excel Products/02
Lakes/{name}/{name}_season_grouped.xlIsx’, index=True)
df_reset.to_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/{name} season_grouped.csv', index=True)
decomposition = seasonal_decompose(df[data_type], model="additive', period=365) # Using a period of 365 to account for
yearly seasonality
Plotting the decomposition results
plt.figure(figsize=(14, 8))
plt.subplot(412)
plt.plot(decomposition.observed, label="Observed')
plt.legend(loc="upper right’)
plt.subplot(413)
plt.plot(decomposition.seasonal,label="Seasonal’)

plt.legend(loc="upper right')

111

plt.tight_layout()
plt.show()
Define a function to assign seasons and handle crossover for winter
def assign_season(date):
year = date.year
spring_start = pd.Timestamp(year=year, month=3, day=1)
summer_start = pd. Timestamp(year=year, month=6, day=1)
autumn_start = pd.Timestamp(year=year, month=9, day=1)
winter_start = pd.Timestamp(year=year, month=11, day=30)
if date >= spring_start and date < summer_start:
return 'Spring'
elif date >= summer_start and date < autumn_start:
return '‘Summer’
elif date >= autumn_start and date < winter_start:
return ‘Autumn’
else:
return 'Winter'
Apply the season function to each date
df['Season'] = df.index.map(assign_season)

Handle winter crossover: If it's January or February, assign it to the previous year's winter

df['Year] = df.index.year
Define the start of the winter season
winter_start_month = 12
winter_start_day =1
Custom function to calculate DayOfSeason
def calculate_day_of season(row):
If the month is December, January, or February, it's winter
if row.name.month == 12 or row.name.month <= 2:
Winter starts on December 1st

season_start = pd.Timestamp(year=row.name.year if row.name.month == 12 else row.name.year-1,

month=winter_start_month, day=winter_start_day)
elif row.name.month >= 3 and row.name.month <=5:
Spring starts on March 1st
season_start = pd. Timestamp(year=row.name.year, month=3, day=1)
elif row.name.month >= 6 and row.name.month <= 8:
Summer starts on June 1st
season_start = pd. Timestamp(year=row.name.year, month=6, day=1)
else:
Autumn starts on September 1st
season_start = pd. Timestamp(year=row.name.year, month=9, day=1)
Calculate the DayOfSeason
return (row.name - season_start).days + 1
Apply the custom function to calculate DayOfSeason
df['DayOfSeason’] = df.apply(calculate_day_of season, axis=1)

Continue with the rest of your analysis...

112

Print the first few rows of the dataframe to verify
print(df.head())
Option to exit or move on
continue_choice = input("Move on? (yes/no): ").lower()
if continue_choice !="yes":
print("Exiting.")
sys.exit()
Group by season and calculate statistical summaries
statistics_seasonal_df = df.groupby('Season’)['Waterlevel'].describe()
If you want to round the statistics for cleaner presentation
statistics_seasonal_df = statistics_seasonal_df.round(2)
df['Season'] = df.index.map(assign_season)
Plot histograms for each season with LRW, HRW, and flooding levels
fig, axes = plt.subplots(2, 2, figsize=(14, 10), tight_layout=True)
seasons = ['Spring’, 'Summer’, 'Autumn’, ‘Winter']
for ax, season in zip(axes.flatten(), seasons):
season_data = df[df['Season'] == season][data_type]
ax.hist(season_data, bins=40, alpha=0.7, label=f'{season} Distribution’)
ax.axvline(LRV, color="r", linestyle="dashed', linewidth=2, label='LRW")
ax.axvline(HRV, color='g', linestyle="dashed', linewidth=2, label="HRW")
Add flooding levels
for level in flooding_levels:
ax.axvline(level, color="b", linestyle="dotted’, linewidth=1)
ax.set_title(f'{season} Water Level Distribution’)
ax.set_xlabel(data_type)
ax.set_ylabel('Frequency’)
ax.legend()
plt.show()
Define a function to calculate skewness and kurtosis
def calculate_skewness_kurtosis(data):
skewness = data.skew()
kurtosis = data.kurtosis()
return pd.Series({'Skewness': skewness, 'Kurtosis': kurtosis})
Calculate skewness and kurtosis for each season
skewness_kurtosis_seasonal = df.groupby('Season’)['Waterlevel'].apply(calculate_skewness_kurtosis)
def count_days_within_ranges(df, season, levels, LRV):
Filter the dataframe for the specified season
season_data = df[df['Season’] == season]
Initialize a dictionary to store counts
counts = {}
Count days below the Lowest Reference Value (LRV)
count_below_LRV = season_data[season_data[data_type] < LRV].shape[0]
counts[f'Below {LRV}1 = count_below_LRV
Loop through the levels and count days within each range and above the last specified level

for i in range(len(levels) - 1):

113

lower_bound = levels]i]

upper_bound = levels[i + 1]

count = season_data[(season_data[data_type] > lower_bound) & (season_data[data_type] <= upper_hound)].shape[0]
counts[f'{lower_bound} to {upper_bound}'] = count

Add count for days above the highest level specified
highest_level = levels[-1]
count_above_highest = season_data[season_data[data_type] > highest_level].shape[0]
counts[f'/Above {highest_level}] = count_above_highest
Count total days above the first flood level (mean flood level)
total_flood_days = season_data[season_data[data_type] > levels[2]].shape[0] # Assuming levels[0] is the mean flood level
counts['Total Flood Days'] = total_flood_days
return counts
Levels including HRW and flooding levels, ordered from lowest to highest criticality
levels = LRV_HRV + flooding_levels
levels.sort()
Use the function
season_counts = {season: count_days_within_ranges(df, season, levels, LRV) for season in seasons}
Convert the dictionary to a DataFrame for display
frequency_seasonal_df = pd.DataFrame(season_counts) # Transpose for better readability
print(frequency_seasonal_df)
Add a function to calculate the Seasonal Variability Index for each season
def calculate_SVI(season_data):
mean_level = season_data.mean()
std_dev = season_data.std()
svi = std_dev / mean_level
return svi
Calculate the SV for each season
risk_indicators_by_season = {}
for season in seasons:
season_data = df[df['Season'] == season][data_type]
svi = calculate_SVI(season_data)
risk_indicators_by_season[season] = svi
Convert the risk indicators dictionary to a DataFrame
SVI_df = pd.DataFrame(list(risk_indicators_by_season.items()), columns=['Season’, 'SVI])
Create a boxplot for each season
plt.figure(figsize=(14, 6)) # Set the figure size (width, height) as desired
for i, season in enumerate(seasons):
plt.subplot(1, len(seasons), i+1) # Create subplots for each season
seasonal_data = df[df['Season’] == season]
plt.boxplot(seasonal_data[data_type])
plt.title(season)
plt.xlabel(*Season’)
plt.ylabel(data_type)
plt.tight_layout() # Adjust subplots to fit in the figure area

114

plt.show()
Ensure the index is in datetime format, if it's not already
df.index = pd.to_datetime(df.index)
Add a column for the year directly from the index
df['Year] = df.index.year
Initialize a linear regression model
model = LinearRegression()
seasons = df['Season'].unique()
List to store the slope for each season
slopes =[]
for season in seasons:
Extract all data points for the season across all years
seasonal_data = df[df['Season’] == season]
The independent variable is the day of the season
X = seasonal_data['DayOfSeason’].values.reshape(-1, 1)
The dependent variable is the water level
y = seasonal_data['Waterlevel].values
Fit the regression model
model fit(X, y)
Calculate the slope (coefficient)
slope = model.coef_[0]
slopes.append((season, slope))
Generate a sequence of day numbers for predictions
X_pred = np.arange(1, seasonal_data['DayOfSeason'].max() + 1).reshape(-1, 1)
y_pred = model.predict(X_pred)

Initialize your model outside the loop
model = LinearRegression()
Create a figure and a grid of subplots
fig, axs = plt.subplots(2, 2, figsize=(15, 10))
Flatten the array of axes, for easy iteration
axs = axs.flatten()
Iterate through each season and plot
for i, season in enumerate(['Winter', 'Spring’, 'Summer’, ‘Autumn']):
Select the subplot where you want to plot the current season's trend
ax = axs[i]
Extract all data points for the season across all years
seasonal_data = df[df['Season’] == season]
The independent variable is the day of the season
X = seasonal_data['DayOfSeason’].values.reshape(-1, 1)
The dependent variable is the water level
y = seasonal_data['Waterlevel].values
Fit the regression model
model fit(X, y)

115

Calculate the slope (coefficient)

slope = model.coef_[0]

Generate a sequence of day numbers for predictions

X_pred = np.arange(1, seasonal_data['DayOfSeason'].max() + 1).reshape(-1, 1)
y_pred = model.predict(X_pred)

Plot the actual data points and the regression line on the current subplot
ax.scatter(seasonal_data['DayOfSeason', y, alpha=0.5, label="Actual Data’)
ax.plot(X_pred, y_pred, color="black’, label=f'Trend Line (slope: {slope:.5f})")
ax.set_title(f'Trend for {season} Across All Years')

ax.set_xlabel('Day of Season’)

ax.set_ylabel("Water Level')

ax.legend()

Adjust the layout so that all subplots fit into the figure neatly
plt.tight_layout()
plt.show()
Convert the list of slopes to a DataFrame
slope_df = pd.DataFrame(slopes, columns=['Season’, 'Slope")
Assuming 'DayOfSeason' and 'Waterlevel' are columns in your DataFrame, df.
seasons = df['Season'].unique()
slope_results =]
for season in seasons:
Extract all data points for the season across all years
seasonal_data = df[df['Season’] == season]
The independent variable is the day of the season (add a constant term for intercept)
X =sm.add_constant(seasonal_data['DayOfSeason'].values)
The dependent variable is the water level
y = seasonal_data['Waterlevel].values
Fit the regression model using OLS (Ordinary Least Squares)
model = sm.OLS(y, X).fit()
Store the season, slope, p-value, and whether it's significant at alpha=0.05
slope, p_value = model.params[1], model.pvalues[1]
slope_results.append({
‘Season': season,
‘Slope": slope,
'p-value': p_value,
‘Significant (p<0.05)": p_value < 0.05
b
Convert the results to a DataFrame
slope_results_df = pd.DataFrame(slope_results)
print(statistics_seasonal_df)
print(frequency_seasonal_df)
print(SV1_df)
print(slope_results_df)

print(skewness_kurtosis_seasonal)

116

print()
Define the save path
save_path = f/Users/simen/Desktop/Complete Master/03 Excel Products/02 Lakes/{name}/" # Update this path as needed
File name based on a variable 'name’
file_name = f'Combined__Seasonal_Statistical_Data_{name}.xlsx'
Full path including file name
full_path = save_path + file_name
Save all DataFrames to an Excel file with each DataFrame as a separate sheet
with pd.ExcelWriter(full_path, engine="xIsxwriter’) as writer:
statistics_seasonal_df.to_excel(writer, sheet_name="Statistics', index=True)
frequency_seasonal_df.to_excel(writer, sheet_name="Frequency Days', index=True)
SVI_df.to_excel(writer, sheet_name='SVI', index=False)
slope_results_df.to_excel(writer, sheet_name="Theortical Significance', index=False)
skewness_kurtosis_seasonal.to_excel(writer, sheet_name='Skewness and Kurtosis', index=True)
print("All DataFrames have been saved as an excel file.")
Save the statistical summary as CSV
statistics_seasonal_df.to_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned
Data/{name}_seasonal_statistics.csv', index=True)
Save the frequency of flooding days as CSV
frequency_seasonal_df.to_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned
Data/{name}_seasonal_flooding_frequency.csv', index=True)
Save the Seasonal Variability Index as CSV
SVI_df.to_csv(f/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/{name}_seasonal_SVI.csv', index=False)
Save the slopes of the trend analysis as CSV
slope_results_df.to_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/{name} seasonal_trend_slopes.csv',
index=False)
Save the skewness and kurtosis as CSV
skewness_kurtosis_seasonal.to_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned
Data/{name}_seasonal_skewness_kurtosis.csv', index=True)
Print a message to confirm that files are saved

print("CSV files have been saved.")

117

Appendix 9

Seasonal Analysis Tyrifjorden

Season

count

mean

std

min

25%

50%

75%

max

Svi

Autumn

1710

63,02

0,33

62,48

62,83

62,94

63,05

65,25

0,005196

Spring

1748

62,79

0,45

62,03

62,47

62,73

62,97

64,61

0,007219

Summer

1748

63,07

0,42

62,27

62,82

62,92

63,14

65,41

0,006715

Winter

1764

62,81

0,17

62,33

62,66

62,84

62,94

63,61

0,002731

& — Observed
=]
(=]
« T
2004 2006 2008 2010 2012 2014 2016 2018 2020 2022 2024
04 —— Seasonal
02
0o
-0.2
2004 2006 2008 2010 2012 014 2016 2018 2020 2022 2024
Spring Water Level Distribution Summer Water Level Distribution
10 : : == Spring Distribution 00 : : === Summer Distribution
! o : .
120{ 4 [w0 ! | T HRwW
| i i
100 : 00 : :
1 1 |
i s0] 1]
g% £ i]
%. 1 E w0 | i
E 1 1 i
£ &0 1] 1
| o |
1 1
01 1
I 100 1
I I
0] 1 1
1 sof 1
] 1
1 1
0 0- o) S
=1 65 64.0 645 &0 &0 625 8.0 635 64.0 645 65.0 655
Waterlevel Waterlevel
Autumn Water Level Distribution Winter Water Level Distribution
' | /m= Autumn Distribution | | - winter Distribution
001 1 | —= AW 604 ! -= LRW
|] == HAW
] 1
xs0{ ! !
1 1
i i
1 1
] |
g | |
g I i
] 1
g1oq 1
= 1 i
i i
001 1 i
1 1
1 i
I 1
07 | 1
| |
I i
1 1
ol o —_— i
625 6.0 635 5.0 5 .0 635 6.0 M5 6.0
Waterlevel Wiaterlevel

118

Appendix 9

Seasonal Analysis Tyrifjorden

Water Level

Water Leve)

Trend for Winter Across Al Years

s ActusiDsts

— ¥end Line (slope: -0 00198}

Trend for Summer Across All Years

©
Day of Season
Trend for Autumn Across All Years

1 o Awaiosa

— ¥end Line (siope -0.00088)

® Actual Data
— ¥end Line (siope. -0.00110)

Season Waterlevel Spring | Summer | Autumn | Winter
Autumn | Skewness 2,409307 | Below 62 0 0 0 0
Kurtosis 7,880773 | 62to 63 1381 1123 1147 1633
Spring | Skewness 1,460868 | 63 to 64.2 329 578 535 131
Kurtosis 2,754842 | 64.2to 64.7 38 26 22 0
Summer | Skewness 2,546273 | 64.7 to 64.9 0 0 2 0
Kurtosis 8,420227 | 64.9 t0 65.1 0 4 2 0
Winter | Skewness 0,090666 | 65.1to0 65.2 0 3 1 0
Kurtosis 0,906967 | Above 65.2 0 14 1 0
Total Flood Days | 38 47 28 0
spring .. summer autumn winter
: T
: £ 3 N Em D

119

Season Slope p-value | Significant (p<0.05)
Winter -0,00198 | 3,08E-39 TRUE
Spring 0,007381 | 1,18E-80 TRUE
Summer | -0,00088 | 0,02041 TRUE
Autumn -0,0011 | 0,00029 TRUE

120

Appendix 10

Seasonal Analysis Sperillen

Season | count | mean | std min 25% 50% 75% max svi
Autumn | 1710 | 149,96 | 0,5 | 148,15 | 149,74 | 150,09 | 150,28 | 151,87 | 0,003343

Spring 1748 | 149,27 | 0,81 | 148,13 | 148,69 | 148,98 | 149,6 | 152,79 | 0,005432
Summer | 1748 | 149,95 | 0,69 | 148,17 | 149,62 | 150,01 | 150,31 | 154,02 | 0,004573

Winter 1764 | 149,36 | 0,5 | 148,44 | 148,92 | 149,29 | 149,81 | 150,42 | 0,003361

152
150

—— Observed

2004 2006 2008 2010 2012 2014 2016 2018 2020 2022 2024
—— seasonal
05
0.0
-0.5
-10 T T u u u T u u T T
2004 2006 2008 2010 2012 2014 2016 2018 2020 2022 2024

spring Water Level Distributi

Summer Water Level Distribution
T

T Spring Distroution T T ' = Summer Dissibution
200 i:: HRW i 200 i i :: HRW
1 1 1
1 1 1
1 1 1
1 1 1
1 1 150 1
= | 1 T
19 1 1) 1
i : i
Euo ! o |
1 1 1
1 1 1
i ' &
1 1
1 1
1 1
148 19 150 151 152 153 ° 148 149 150 151 152 153 154
Waterlevel Waterlevel
Autumn Water Level Distribution ‘Winter Water Level Di
= Autumn Distribution | = inter Distribution
—= HAw 80 i —= HRW
200 1 1]
1 1 1
1 1 1
1 60 1 1
Jsod . 1 i
5 ! g || !
g 1 g 1]
g 1 Eanl i i
* 100 [= 1 I
1 1 {l
! !
1 1
50 : 20 :
1 1
1 1
1 1
1 1
0- o 1
148 149 150 152 153 148 150 151 152 153
Waterlevel Waterlevel
Season Waterlevel
Autumn | Skewness -0,75645
Kurtosis 1,499028
Spring | Skewness 1,397661
Kurtosis 1,703976
Summer | Skewness 0,512221
Kurtosis 4,160338
Winter | Skewness 0,335115
Kurtosis -1,09509

121

Appendix 10

Seasonal Analysis Sperillen

- spring summer . Auturn o winter

s e oy L

N o

£ £ 2 * s

s . g N
Spring | Summer | Autumn | Winter
Below 147.95 0 0 0 0
147.95 to 150.25 1494 1234 1216 1694
150.25 to 151.1276 188 452 474 70
151.1276 to 151.6132 29 26 16 0
151.6132 to 152.0137 23 11 4 0
152.0137 to 152.4 11 10 0 0
152.4 to 152.9034 3 10 0 0
Above 152.9034 0 5 0 0
Total Flood Days 66 62 20 0

ross Al Years

“Trend for Spring Across All Years

e:-0.01154)

11111

Fuons
s
s

14850

@
Day of Season
Trend for Summer Across All Years

Trend for Autumn Across All Years

Actual Data
— ¥end Line (siope: 000262)

)

o Actual Data
— “¥end Line (siope: 0.00297)

Season Slope p-value Significant
(p<0.05)
Winter -0,01154 2,1E-178 TRUE
Spring 0,019665 1,3E-205 TRUE
Summer -0,00262 2,18E-05 TRUE
Autumn 0,002967 1,62E-10 TRUE

122

Appendix 11

Seasonal Analysis Randsfjorden

Season | count | mean | std min 25% 50% 75% max svi
Autumn | 1710 | 134,17 | 0,26 | 132,95 | 134,03 | 134,15 | 134,35 | 135,66 | 0,001963
Spring 1748 | 132,55 | 0,88 | 131,43 131,9 | 132,18 | 133,14 | 134,82 0,00664
Summer | 1748 | 134,04 | 0,39 | 132,35 | 133,95 | 134,08 | 134,21 | 136,07 | 0,002912
Winter 1757 | 133,27 | 0,61 | 132,03 | 132,77 | 133,29 | 133,74 134,5 | 0,004553
16 — Operves
VANV IRAY
. Sprng Water Leve Distriuton _ Summer Wate evel Distruton
i i g i

3
Waterlevel

Autumn Water Level Distribution

Waterlevel

Winter Water Level Distribution

Season Waterlevel
Autumn | Skewness -0,70886
Kurtosis 5,481842

Spring | Skewness 0,954235
Kurtosis -0,31941

Summer | Skewness -0,36848
Kurtosis 7,803884

Winter | Skewness -0,00381
Kurtosis -0,9609

Waterlevel

135

Appendix 11

Seasonal Analysis Randsfjorden

Spring Summer Autumn Winter
1360 a o 1345
1345 a BEs g
s § g 134.0
ﬁu:s s s L
§ 1330 g 1320 g 5
120 1330 B35 ° 125
1815 Bze B30 l 1320
Sc’ kl 5:1 Scl
Spring | Summer | Autumn | Winter
Below 131.3 0 0 0 0
131.3 to 134.5 1702 1686 1608 1757
134.5 to 134.689 34 29 83 0
134.689 to 134.9159 12 10 12 0
134.9159 to 135.1058 0 0 2 0
135.1058 to 135.2902 0 0 2 0
135.2902 to 135.5321 0 4 1 0
Above 135.5321 0 19 2 0
Total Flood Days 12 33 19 0

Trend for Winter Across All Years

“Trend for Spring Across All Years

E 8 8 8B § § ¥

Season Slope p-value | Significant (p<0.05)
Winter -0,01985 0 TRUE
Spring 0,025381 0 TRUE
Summer | 0,000814 | 0,020487 TRUE
Autumn | 0,001929 | 2,12E-15 TRUE

124

Appendix 14

Complete Multimodal Analysis

Randsfjorden:

Month

Waterlevel

[S—

133,2422

132,5779

131,9997

132,0852

133,5997

134,0334

133,9904

134,0827

O 0| | N | B~ W| N

134,0835

p—
(e

134,216

[
[

134,2108

p—
\S]

133,8706

Average Water Level

5
N
in

132.0

Monthly Average Water Levels

Jan

Seasonal Water Level Distribution

Feb

M.Iay

Juln

Density

Month

Jul

T
Nov

Déc

125

Appendix 14

Complete Multimodal Analysis

Sperillen:

Month

Waterlevel

[

149,297111

148,985516

148,787791

148,987182

150,029516

150,068158

Average Water Level

149,870261

149,89644

O 0| N| o] | | W N

149,86087

=
o

149,97837

[EEY
[EEN

150,038774

[E
N

149,734727

Seasonal

Monthly Average Water Levels

150.0

1498

149.6 4

149.4 4

149.2 4

149.0 4

148.8 4

Jan Feb Mar

Water Level Distribution

Apr

May Jun Jul Aug
Manth

T T
Nov Dec

16

14

Season
I Winter
=3 Spring
=3 Summer
3 Autumn

151
Water Level

153

154

126

Appendix 14
Complete Multimodal Analysis

Tyrifjorden:

Month Waterlevel

[E

62,7961491

62,7383216

62,631753

63,0976748

63,1046604

Average Water Level

63,0116149

63,0613906

O 0| N| o] Ll | W N

63,0729041

[E
o

62,980334

[Eny
[y

63,0050141

[
N

62,8693652

Seasanal Water Level Distribution

Menthly Average Water Levels

62,6368141 =01

62.8 A

Jan Feb Mar Apr May Jun Jul sy Sep Ot Now Dec
Manth

Season
[Winter
3 Spring
Em Summer
3 Autumn

Water Level

5 5.0 .5

127

Appendix 13:

Yearly_plots.py

import pandas as pd
import matplotlib.pyplot as plt
Load the CSV files
filel = '/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/Cleaned_Randsfjord_Waterlevel.csv'
file2 = '/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/Cleaned_Tyrifjorden_Waterlevel.csv'
file3 = '/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/Cleaned_Sperillen_Waterlevel.csv'
Importing CSV files
dfl = pd.read_csv(filel, parse_dates=['Date])
df2 = pd.read_csv(file2, parse_dates=['Date"])
df3 = pd.read_csv(file3, parse_dates=['Date])
Extracting the year from the Date column
dfl["Year] = df1['Date].dt.year
df2["Year'] = df2['Date'].dt.year
df3['Year] = df3['Date’].dt.year
Extracting unique years for plotting
years = sorted(set(df1["Year]).union(set(df2["YearT)).union(set(df3["YearT)))
Creating plots for each year
for year in years:
fig, axes = plt.subplots(3, 1, figsize=(10, 15), sharex=True)
Plot for lakel
lakel data = df1[df1["Year] == year]
axes[0].plot(lakel_data['Date’], lakel_data['Waterlevel')
axes[0].set_title(fRandsfjorden Water Level in Year {year})
axes[0].set_ylabel("Water Level')
Plot for lake2
lake2_data = df2[df2["Year] == year]
axes[1].plot(lake2_data['Date"], lake2_data['Waterlevel])
axes[1].set_title(f'Tyrifjorden Water Level in Year {year})
axes[1].set_ylabel("Water Level')
Plot for lake3
lake3_data = df3[df3["Year] == year]
axes[2].plot(lake3_data['Date"], lake3_data['Waterlevel])
axes[2].set_title(f'Sperillen Water Level in Year {year}')
axes[2].set_ylabel("Water Level')
axes[2].set_xlabel('Date’)
dates_to_mark = [f'{year}-11-30', f'{year}-03-01', f'{year}-06-01', f'{year}-09-01"
for ax in axes:
for date in dates_to_mark:
ax.axvline(pd.to_datetime(date), color="r", linestyle="--")
plt.tight_layout()
plt.show()

128

Appendix 14

Multimodal_analysis.py

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats import kruskal
from sklearn.mixture import GaussianMixture
import warnings
from scipy.stats import gaussian_kde
from scipy.integrate import quad
Suppress specific sklearn UserWarnings
warnings.simplefilter(“ignore", category=UserWarning)
warnings.simplefilter("ignore", category=FutureWarning)
name = 'Randsfjord’
Modify this line to match the exact file name shown in the uploaded.keys()
file_path = f/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/Cleaned_{name}_Waterlevel.csv'
data = pd.read_csv(file_path)
Convert the 'Date’ column to datetime format for easier manipulation
data['Date'] = pd.to_datetime(data['Date'])
print("Date column converted to datetime.")
Create additional columns for analysis
data['Month'] = data['Date"].dt.month
data['Season'] = data['Month'].apply(lambda x: 'Winter" if x in [12, 1, 2] else
'Spring' if x in [3, 4, 5] else
‘Summer" if x in [6, 7, 8] else 'Autumn’)
Calculate monthly average water levels to see seasonal variations
monthly_averages = data.groupby('Month")['Waterlevel’].mean()
print("Monthly averages of water levels:")
print(monthly_averages)
Compute descriptive statistics for each season
seasonal_stats = data.groupby('Season)['Waterlevel].describe()
Convert the descriptive statistics into a DataFrame
stats_df = pd.DataFrame(seasonal_stats)
Save the statistics DataFrame to an Excel file
excel_path = f/Users/simen/Desktop/Complete Master/03 Excel Products/02
Lakes/{name}/{name}_Seasonal_Waterlevel_Stats.xIsx'
stats_df.to_excel(excel_path)
Make sure monthly_averages is a DataFrame
monthly_averages_df = pd.DataFrame(monthly_averages).reset_index()
Save the monthly averages DataFrame to an Excel file
monthly_averages_excel_path = f/Users/simen/Desktop/Complete Master/03 Excel Products/02
Lakes/{name}/{name}_Monthly_Averages_Waterlevel.xIsx'

129

monthly_averages_df.to_excel(monthly_averages_excel_path, index=False)
Assuming you already have monthly_averages calculated from your groupby operation
monthly_averages_df = pd.DataFrame(monthly_averages).reset_index()
Plot the monthly averages
plt.figure(figsize=(10, 5))
plt.plot(monthly_averages_df['Month'], monthly_averages_df['Waterlevel], marker='0", linestyle="-', color="b")
plt.title('Monthly Average Water Levels'’)
plt.xlabel("Month")
plt.ylabel('‘Average Water Level')
plt.xticks(monthly_averages_df['Month', [Jan’, 'Feb’, 'Mar', ‘Apr’, 'May", ‘Jun’, "Jul’, 'Aug’, 'Sep’, 'Oct’, 'Nov', 'Dec])
plt.grid(True)
plt.savefig(f'/Users/simen/Desktop/Complete Master/04 Plots/{name}_monthly_avg.png')
plt.show()
Define colors for each season for consistency
season_colors = {
‘Winter": ‘blue’,
‘Spring': 'green’,
‘Summer": 'red’,
‘Autumn’: 'orange’
}
Plot histogram using Seaborn
plt.figure(figsize=(12, 8))
for season, color in season_colors.items():
Select the season
season_data = data[data['Season] == season]
Plot the data with the season-specific color
sns.histplot(season_data, x="Waterlevel", stat="density", kde=True, color=color, label=season)
plt.title("Seasonal Water Level Distribution’)
plt.xlabel("Water Level’)
plt.ylabel('Density")
Create the legend with the defined colors
plt.legend(title="Season’)
plt.grid(True)
plt.savefig(f/Users/simen/Desktop/Complete Master/04 Plots/{name}_multimodal_histogram.png’)
plt.show()
Kruskal-Wallis Test across seasons
winter_levels = data[data['Season] == 'Winter']['Waterlevel']
spring_levels = data[data['Season’] == 'Spring']['Waterlevel']
summer_levels = data[data['Season'] == 'Summer']['Waterlevel']
autumn_levels = data[data['Season’] == 'Autumn’]['Waterlevel']
kruskal_result = kruskal(winter_levels, spring_levels, summer_levels, autumn_levels)
print(f"Kruskal-Wallis test result: H-statistic = {kruskal_result.statistic}, p-value = {kruskal_result.pvalue}")

130

Appendix 15:

Reservoir_to_DailyEnergy.py

import pandas as pd

import matplotlib.pyplot as plt

Define the energy equivalents for each power station (in kWh/m"3).

energy_equivalents = {
Tyrifjorden_Geithusfoss': 0.025,
Tyrifjorden_Gravfoss_one": 0.044,
"Tyrifjorden_Gravfoss_two': 0.048,
‘Sperillen_Hensfoss': 0.055,
‘Sperillen_Begna'": 0.018,
‘Sperillen_Hofsfoss': 0.061,
‘Sperillen_Hoenefoss': 0.051,
'Randsfjord_Bergerfoss": 0.013,
'Randsfjord_Kistefoss_one': 0.018,
'Randsfjord_Kistefoss_two": 0.025,
'Randsfjord_Askerudfoss'": 0.048,
'Randsfjord_Viulfoss': 0.042

def read_and_prepare_data(file_path):
df = pd.read_csv(file_path)
df['Reservoir'] = pd.to_numeric(df['Reservoir], errors='coerce")
df['Date’] = pd.to_datetime(df['Date])

Count the number of negative values

negative_count = (df['Reservoir] < 0).sum()

Remove negative 'Reservoir' values or set them to zero
df.loc[df['Reservoir] < 0, 'Reservoir] =0

df.dropna(subset=['Reservoir'], inplace=True)
df.reset_index(drop=True, inplace=True)

return df, negative_count
File paths, has to be adjust if another computer is used.
file_paths = {
‘Tyrifjorden': '/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/Cleaned_Tyrifjorden_Reservoir.csv',
‘Sperillen': '/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/Cleaned_Sperillen_Reservoir.csv',
'Randsfjord": '/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/Cleaned_Randsfjord_Reservoir.csv',
}
Process each dataset and plot
for title, path in file_paths.items():

131

df, negative_count = read_and_prepare_data(path)

print(f"Number of negative entries removed/set to zero for {title}: {negative_count}")
Process the Randsfjord dataset and create a new dataframe with daily energy equivalent calculations
df_Tyrifjorden, _=read_and_prepare_data(file_paths['Tyrifjorden')
Calculate the daily energy equivalent for all Energy in Randsfjord
df_energy_Tyrifjorden_calc = df_Tyrifjorden.copy()
df_energy_Tyrifjorden_calc['Geithusfoss [GWh]] = df_energy_Tyrifjorden_calc['Reservoir] *
energy_equivalents['Tyrifjorden_Geithusfoss']
df_energy_Tyrifjorden_calc['Gravfoss 1 [GWh]] = df_energy_Tyrifjorden_calc['Reservoir] *
energy_equivalents['Tyrifjorden_Gravfoss_one']
df_energy_Tyrifjorden_calc['Gravfoss 2 [GWh]] = df_energy_Tyrifjorden_calc['Reservoir] *
energy_equivalents['Tyrifjorden_Gravfoss_two']
df_energy_Tyrifjorden_calc['DailyEnergy [GWh]] = df_energy_Tyrifjorden_calc['Geithusfoss [GWh]] +
df_energy_Tyrifjorden_calc['Gravfoss 1 [GWh]] + df_energy_Tyrifjorden_calc['Gravfoss 2 [GWh]']
Process the Tyrifjorden dataset and create a new dataframe with daily energy equivalent calculations
df_Tyrifjorden, _=read_and_prepare_data(file_paths['Tyrifjorden')
Calculate the daily energy equivalent for Tyrifjorden / Geithusfoss Kraftverk
df_energy_Tyrifjorden = df_Tyrifjorden.copy()
df_energy_Tyrifjorden['DailyEnergy [GWh]] = df_energy_Tyrifjorden_calc['DailyEnergy [GWh]]
Process the Randsfjord dataset and create a new dataframe with daily energy equivalent calculations
df_Sperillen, _ =read_and_prepare_data(file_paths['Sperillen)
Calculate the daily energy equivalent for all Energy in Randsfjord
df_energy_Sperillen_calc = df_Sperillen.copy()
df_energy_Sperillen_calc['Hensfoss [GWh]'] = df_energy_Sperillen_calc['Reservoir] *
energy_equivalents['Sperillen_Hensfoss']
df_energy_Sperillen_calc['Begna [GWh]'] = df_energy_Sperillen_calc['Reservoir'] * energy_equivalents['Sperillen_Begna']
df_energy_Sperillen_calc['Hofsfoss [GWh]] = df_energy_Sperillen_calc['Reservoir] *
energy_equivalents['Sperillen_Hofsfoss']
df_energy_Sperillen_calc['Hoenefoss [GWh]'T = df_energy_Sperillen_calc['Reservoir] *
energy_equivalents['Sperillen_Hoenefoss']
df_energy_Sperillen_calc['DailyEnergy [GWh]'] = df_energy_Sperillen_calc['Hensfoss [GWh]] +
df_energy_Sperillen_calc['Begna [GWh]'] + df_energy_Sperillen_calc['Hofsfoss [GWh] +
df_energy_Sperillen_calc['Hoenefoss [GWh]']
Process the Sperillen dataset and create a new dataframe with daily energy equivalent calculations
df_Sperillen, _ =read_and_prepare_data(file_paths['Sperillen)
Calculate the daily energy equivalent for Sperillen / Hensfoss Kraftverk
df_energy_Sperillen = df_Sperillen.copy()
df_energy_Sperillen['DailyEnergy [GWh]'] = df_energy_Sperillen_calc['DailyEnergy [GWh]']
Process the Randsfjord dataset and create a new dataframe with daily energy equivalent calculations
df_Randsfjord, _ =read_and_prepare_data(file_paths['Randsfjord])
Calculate the daily energy equivalent for all Energy in Randsfjord
df_energy_Randsfjord_calc = df_Randsfjord.copy()
df_energy_Randsfjord_calc['Bergerfoss [GWh]] = df_energy_Randsfjord_calc['Reservoir] *
energy_equivalents['Randsfjord_Bergerfoss']

132

df_energy_Randsfjord_calc['Kistefoss 1 [GWh]'] = df_energy_Randsfjord_calc['Reservoir] *
energy_equivalents['Randsfjord_Kistefoss_one']

df_energy_Randsfjord_calc['Kistefoss 2 [GWh]'] = df_energy_Randsfjord_calc['Reservoir] *
energy_equivalents['Randsfjord_Kistefoss_two']

df_energy_Randsfjord_calc['Askerudfoss [GWh]] = df_energy_Randsfjord_calc['Reservoir] *
energy_equivalents['Randsfjord_Askerudfoss']

df_energy_Randsfjord_calc['Viulfoss [GWh]] = df_energy_Randsfjord_calc['Reservoir] *
energy_equivalents['Randsfjord_Viulfoss']

df_energy_Randsfjord_calc['DailyEnergy [GWh]'] = df_energy_Randsfjord_calc['Viulfoss [GWh]] +
df_energy_Randsfjord_calc['Askerudfoss [GWh]] + df_energy_Randsfjord_calc['Kistefoss 2 [GWh]] +
df_energy_Randsfjord_calc['Kistefoss 1 [GWh]'] + df_energy_Randsfjord_calc['Bergerfoss [GWh]']
Process the Sperillen dataset and create a new dataframe with daily energy equivalent calculations
df_Randsfjord, _=read _and_prepare_data(file_paths['Randsfjord])

Calculate the daily energy equivalent for all Energy in Randsfjord

df_energy_Randsfjord = df_Randsfjord.copy()

df_energy_Randsfjord['DailyEnergy [GWh]'] = df_energy_Randsfjord_calc['DailyEnergy [GWh]]
print(df_energy_Randsfjord.head())

print(df_energy_Sperillen.head())

print(df_energy_Tyrifjorden.head())

Drop 'Reservoir' column and rename 'DailyEnergy [GWh]' to 'Energy_GWh' for df_energy_Randsfjord
df_energy_Randsfjord = df_energy_Randsfjord.drop(['Reservoir'], axis=1)

df_energy_Randsfjord = df_energy_Randsfjord.rename(columns={'DailyEnergy [GWh]": 'Energy'})
print(")]

print(df_energy_Randsfjord.head())

df_energy_Randsfjord.to_csv('/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/Randsfjord_Energy_Daily.csv',
index=False)

Drop 'Reservoir' column and rename 'DailyEnergy [GWh]' to 'Energy_GWHh' for df_energy_Sperillen

df_energy_Sperillen = df_energy_Sperillen.drop(['Reservoir'], axis=1)

df_energy_Sperillen = df_energy_Sperillen.rename(columns={'DailyEnergy [GWh]": 'Energy'})

print(")

print(df_energy_Sperillen.head())

df_energy_Sperillen.to_csv('/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/Sperillen_Energy Daily.csv',
index=False)

Drop 'Reservoir' column and rename 'DailyEnergy [GWh]' to 'Energy_GWHh' for df_energy_Tyrifjorden
df_energy_Tyrifjorden = df_energy_Tyrifjorden.drop(['Reservoir], axis=1)

df_energy_Tyrifjorden = df_energy_Tyrifjorden.rename(columns={'DailyEnergy [GWh]": 'Energy'})

print("]

print(df_energy_Tyrifjorden.head())

df_energy_Tyrifjorden.to_csv('/Users/simen/Desktop/Complete Master/01 Data/Cleaned
Data/Tyrifjorden_Energy_Daily.csv', index=False)

133

Appendix 16:

Data_Preperation.py

import pandas as pd

import pandas as pd

Path to your CSV files

name = "Randsfjord"

file_path_reservoirlevel = f/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/Cleaned_{name}_Reservoir.csv'
file_path_waterlevel = f/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/Cleaned_{name} Waterlevel.csv'
file_path_energy = f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/{name}_Energy_Daily.csv'
file_path_waterflow = f/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/Cleaned_{name}_Waterflow.csv'

Read the CSV files

df_reservoirlevel = pd.read_csv(file_path_reservoirlevel, delimiter=",", header=0, parse_dates=['Date")
df_waterlevel = pd.read_csv(file_path_waterlevel, delimiter=',", header=0, parse_dates=['Date")
df_energy = pd.read_csv(file_path_energy, delimiter=',", header=0, parse_dates=['Date")

df_waterflow = pd.read_csv(file_path_waterflow, delimiter=";", header=0, parse_dates=['Date'])

print(df_reservoirlevel.head())
print(df_energy.head())
print(df_waterlevel.head())
print(df_waterflow.head())

Merge df_reservoirlevel and df_waterlevel

combined_df = pd.merge(df_reservoirlevel, df_waterlevel, on='Date’, how="outer', suffixes=('_reservoir', '_water"))
Merge the result with df_energy

combined_df = pd.merge(combined_df, df_energy, on='"Date’, how="outer")

combined_df = pd.merge(combined_df, df waterflow, on='"Date’, how="outer")

df_total = combined_df

Now, combined_df contains all the combined information. You can print the head to check

print(df_total.head())

print(df_total.tail())

df_total.to_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/{name}_Total_Daily.csv', index=False)

Load your dataset
df = pd.read_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/Cleaned_{name} Waterlevel.csv')

Ensure the 'Date’ column is in datetime format
df['Date'] = pd.to_datetime(df['Date])

Define your start date for the dataset, in order to get full seasons. the dataset starts mid winter, january 1st

start_date = '2004-03-01'
Filter the dataset to start from the first spring season of 2004

134

df_filtered = df[df['Date’] >= pd.to_datetime(start_date)]
df = df_filtered

Define a function to categorize dates into seasons
def get_season(date):
if date.month in [12, 1, 2]:
return 'Winter'
elif date.month in [3, 4, 5]:
return 'Spring'
elif date.month in [6, 7, 8]:
return 'Summer'
elif date.month in [9, 10, 11]:

return ‘Autumn’

Apply the function to create a 'Season' column

df['Season'] = df['Date"].apply(get_season)

Split the data into seasons

winter_df = df[df['Season’] == 'Winter']
spring_df = df[df['Season] == 'Spring’]
summer_df = df[df['Season'] == 'Summer']
autumn_df = df[df['Season’] == 'Autumn’]

Save each season's data to a new CSV file

winter_df.to_csv(f/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/{name}_winter_waterlevel_df.csv',

index=False)

spring_df.to_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/{name}_spring_waterlevel_df.csv',

index=False)

summer_df.to_csv(f/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/{name}_summer_waterlevel_df.csv',

index=False)

autumn_df.to_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/{name}_autumn_waterlevel_df.csv',

index=False)

print("Datasets have been split into seasons and saved as separate CSV files.")

slope_file_path = f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/{name}_seasonal_adjustment.csv'

Read the CSV file
df_slope = pd.read_csv(slope_file_path)

df_slope = df_slope.drop(['Skewness', 'Kurtosis','SV17, axis=1)

Save the slopes of the trend analysis as CSV

df_slope.to_csv(f/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/{name}_seasonal_trend.csv', index=False)

135

Appendix 17:

States_Constructor.py

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt
import seaborn as sns

import warnings

Suppress specific sklearn UserWarnings

warnings.simplefilter("ignore", category=UserWarning)

Load the dataset

name = 'Tyrifjorden’

df = pd.read_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/{name}_Total_Daily.csv')

print(df.head())

df.dropna(inplace=True) # Drop NA values

df['Waterlevel'] = pd.to_numeric(df['Waterlevel'], errors="coerce’)
Convert 'Date’ to datetime if needed

df['Date'] = pd.to_datetime(df['Date])

Setting the 'Date’ column as the index for easier plotting

df.set_index('Date’, inplace=True)
print(name)
if name == 'Randsfjord":

water_levels = [

130.5718, # Extended Low Water

131.51356985708998, # Extended Low Energy

131.43, # Low Observed Water

131.6159, # Low Observed Energy
131.6623, # Extended 1st percentile Energy

131.68, # 1st percentile Energy

131.8302, # Extended 5th percentile Energy

131.88, # 5th percentile Energy

132.0365, # Extended 10th percentile Energy

132.08, # 10th percentile Energy

132.7427, # Extended 25th percentile Energy

132.85, # 25th percentile Energy
133.5323, # Mean Energy

133.5048011787279, # Mean Water

1345, # HRV

134.689, # Mean Flood
134.9159, # 5-Year Flood
135.1058, # 10-Year Flood
135.2902, # 20-Year Flood
135.5321, # 50-Year Flood
136.07, # High Observed Water

136

]

136.9281, # Extended High Water

elif name == 'Tyrifjorden":

water_levels = [

]

61.6587, # Extended Low Water
62.016221473098916, # Extended Low Energy
62.02999, # Low Observed Water

62.1460, # Low Observed Energy

62.1965, # Extended 1st percentile Energy
62.29, # 1st percentile Energy

62.3788, # Extended 5th percentile Energy
62.46, # 5th percentile Energy

62.5273, # Extended 10th percentile Energy
62.57, # 10th percentile Energy

62.7795, # Extended 25th percentile Energy
62.80, # 25th percentile Energy

62.8956, # Mean Energy
62.9181001834363, # Mean Water

63.00, # HRV

64.2, # Mean Flood

64.7, #5-Year Flood

64.9, # 10-Year Flood

65.1, # 20-Year Flood

65.2, #50-Year Flood

65.40757, # High Observed Water

65.7789, # Extended High Water

elif name =="Sperillen":

water_levels = [

147.4310, # Extended Low Water
148.0985862129438, # Extended Low Energy
148.1312, # Low Observed Water

148.3388, # Low Observed Energy
148.3988, # Extended 1st percentile Energy
148.47, # 1st percentile Energy

148.6157, # Extended 5th percentile Energy
148.67, # 5th percentile Energy

148.7402, # Extended 10th percentile Energy
148.76, # 10th percentile Energy

148.9442, # Extended 25th percentile Energy
148.98, # 25th percentile Energy

149.6641, # Mean Energy
149.63151556468176, # Mean Water
150.25, # HRV

151.1276, # Mean Flood

137

151.6132, #5-Year Flood
152.0137, # 10-Year Flood
152.4, # 20-Year Flood
152.9034, # 50-Year Flood
154.023, # High Observed Water
154.7232, # Extended High Water
]
Sort the water levels in ascending order
water_levels = sorted(water_levels)
Initialize an empty list to hold the state definitions
states =[]
Iterate over the sorted water levels to create states
for i in range(len(water_levels)-1):
lower_bound = water_levels]i]
upper_bound = water_levels[i+1]
states.append((f"State {i}", lower_bound, upper_bound))
Add a final state for the upper bound
upper_bound = water_levels[21]*1.05 # 5% increase from extended high, allows integration.
if name =="Randsfjord":
chosen_upper_level = upper_bound # to allow integration a sensible upper level is chosen
elif name == "Tyrifjorden":
chosen_upper_level = upper_bound # to allow integration a sensible upper level is chosen
elif name == "Sperillen’:
chosen_upper_level = upper_bound # to allow integration a sensible upper level is chosen

states.append((f*State {len(water_levels)}", water_levels[-1], chosen_upper_level))

Convert the states list into a DataFrame
states_df = pd.DataFrame(states, columns=['State', '‘Lower_Bound', 'Upper_Bound1)
print(states_df.head(30))
Choose a specific state to highlight
Replace 'state_number' with the actual number of the state you want to highlight
state_number =5 # for example, to highlight State 5
Set the range to +/- 1m on each side of the bounds for the KDE plot
plot_lower_bound = lower_bound - 0.5
plot_upper_bound = upper_bound + 0.5 if upper_bound else lower_bound + 2 # Add 2m to the upper bound if it's the last
state
Filter the DataFrame for the water levels within the specified plot range
filtered_df = df[(df['Waterlevel'] >= plot_lower_bound) & (df['Waterlevel] <= plot_upper_bound)]
Calculate the meter range within each state
states_df['Range_Meters'] = states_df['Upper_Bound - states_df['Lower_Bound']
def merge_multiple_states(states_df, merge_pairs):
new_states_list =[]
skip_indices =[]
Sort the merge pairs to ensure we process them in order

merge_pairs.sort(key=lambda x: x[0])

138

for i, row in states_df.iterrows():
Check if this index is part of a pair to merge
merge_pair = next((pair for pair in merge_pairs if i in pair), None)
if merge_pair:
Skip if this index is the second part of a merge pair, as it's already processed
if i == merge_pair[1] or i in skip_indices:
continue
first_state_idx, second_state_idx = merge_pair
new_lower_bound = states_df.iloc[first_state_idx]['Lower_Bound’]
new_upper_bound = states_df.iloc[second_state_idx]['Upper_Bound']
new_states_list.append([f"Merged State {first_state_idx}-{second_state_idx}", new_lower_bound,
new_upper_bound])
Mark indices to skip in the next iteration
skip_indices.extend([first_state_idx, second_state_idx])
else:
Add the state as is if it's not part of a merge pair
new_states_list.append([row['State], row['Lower_Bound", row['Upper_Bound1])
Create a new DataFrame from the list of new and merged states
merged_states_df = pd.DataFrame(new_states_list, columns=['State', '‘Lower_Bound', 'Upper_Bound'])
Optional: Reset state names to reflect their new order
merged_states_dff'State’] = merged_states_df.index.map(lambda x: f'State {x}")
return merged_states_df
Define the pairs of state indices to merge
merge_pairs =[(0, 1), (2, 3), (4,5),(6,7),(8,9),(10,11),(12,13)] # Example: Merge states at indices 0 and 1, and states at
indices 3 and 4
Create the new DataFrame with merged states
merged_states_df = merge_multiple_states(states_df, merge_pairs)
Calculate the meter range within each state
merged_states_df['Range_Meters'] = states_df['Upper_Bound'] - states_df['Lower_Bound']
directory ="
Display the updated
print()
print('merged states df*)
print(merged_states_df)
Save the Merged States DataFrame
merged_states_df.to_csv(f/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/{name}_merged_States.csv',
index=False)
merged_states_df.to_excel(f/Users/simen/Desktop/Complete Master/03 Excel Products/02
Lakes/{name}/{name}_merged_States.xlIsx', index=False)

139

Appendix 18:

Histric_Risk_Factor.py

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
from scipy.stats import gaussian_kde
from scipy.integrate import quad
Suppress specific sklearn UserWarnings
warnings.simplefilter(“ignore", category=UserWarning)
warnings.simplefilter("ignore", category=FutureWarning)
Load the dataset
name = Tyrifjorden'
season = 'Spring’
df = pd.read_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/{name} {season} waterlevel_df.csv’)
df.dropna(inplace=True)
observed_waterlevel = 63
bandwidth = 0.2
df['Waterlevel'] = pd.to_numeric(df['Waterlevel'], errors="coerce")
Convert 'Date’ to datetime if needed
df['Date'] = pd.to_datetime(df['Date])
Setting the 'Date’ column as the index for easier plotting
df.set_index('Date’, inplace=True)
df_states = pd.read_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/{name}_merged_States.csv')
df_states = df_states.drop(['Range_Meters'], axis=1)
current_state = df_states[(df_states['Lower_Bound'] <= observed_waterlevel) & (df_states['Upper_Bound'] >=
observed_waterlevel)]
if not current_state.empty:
print("Current State based on the observed water level:")
print(current_state[['State']])
else:
print("The observed water level does not match any defined state.")

Assuming 'df' is your DataFrame
data = {
'State'; ['State 8-141,
‘Lower_Bound'": [df_states.loc[8, 'Lower_Bound]], # Lower bound from State 8
‘Upper_Bound": [df_states.loc[14, 'Upper_Bound']] # Upper bound from State 14
}
Creating a new DataFrame with the combined information
new_df = pd.DataFrame(data)
result = pd.concat([df_states, new_df], ignore_index=True)

140

Indices of rows to remove (you need to adjust these based on your DataFrame)
indices_to_remove = list(range(8, 15)) # This would remove rows for State 8 to State 14
Removing the specified rows
df_final = result.drop(indices_to_remove)
df_final = df_final.reset_index(drop=True)
Rename 'State 8-14' to 'State 8' at index 8
df_final.at[8, 'State] = 'State 8'
df_states = df_final
print(df_states)
df_states.to_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/{name}_final_states.csv', index=False)
df_states.to_excel(f'/Users/simen/Desktop/Complete Master/03 Excel Products/02 Lakes/{name}/{name}_final_states.xIsx',
index=False)
KDE and Histogram Water Levels with custom bandwidth
plt.figure(figsize=(10, 6))
Plot histogram with kernel density estimation
sns.histplot(df['Waterlevel'], color="blue', stat="density’, linewidth=0, bins=40)
Calculate KDE with custom bandwidth
Calculate the KDE for the water levels
water_level_kde = gaussian_kde(df['Waterlevel'], bw_method=bandwidth)
Plot KDE curve
x_grid = np.linspace(df['Waterlevel'].min(), df['Waterlevel'].max(), 1000)
plt.plot(x_grid, water_level_kde(x_grid), color="red’)
plt.title(fKernel Density Estimation (KDE) and Histogram Plot for Water Levels during {season} in {name}")
plt.xlabel("Water Level’)
plt.ylabel('Density")
plt.legend(['KDE', 'Histogram'])
plt.show()
risk_values_df = pd.DataFrame(columns=['State', 'Energy_Shortage_Risk’, 'Flood_Risk)
Loop through each state to calculate and plot
for index, state_row in df_states.iterrows():
plt.figure(figsize=(10, 6))
Calculate the KDE for the water levels
x_grid = np.linspace(df['Waterlevel'].min(), df['Waterlevel].max(), 1000)
y_dens = water_level_kde(x_grid)
plt.plot(x_grid, y_dens, label="Overall KDE', color="blue’)
Energy Shortage Risk: integrate from min water level to the lower bound
energy_shortage_risk = quad(water_level_kde, df['Waterlevel].min(), state_row['Lower_Bound‘])[0]
energy_shortage_risk = max(energy_shortage_risk, 0) # Ensure non-negative
Flood Risk: integrate from the upper bound to max water level
flood_risk = quad(water_level_kde, state_row['Upper_Bound?, df['Waterlevel].max())[0]
flood_risk = max(flood_risk, 0) # Ensure non-negative
Append the risks to the DataFrame
new_row = pd.DataFrame({
'State": [state_row]['State]],
‘Energy_Shortage_Risk': [energy_shortage_risk],

141

'Flood_Risk": [flood_risk]
b
risk_values_df = pd.concat([risk_values_df, new_row], ignore_index=True)
Shade outside the state's range
plt.fill_between(x_grid, y_dens, where=(x_grid < state_row['Lower_Bound']), color="orange’, alpha=0.5)
plt.fill_between(x_grid, y_dens, where=(x_grid > state_row['Upper_Bound']), color="red’, alpha=0.5)
Highlight the state range
plt.axvline(x=state_row['Lower_Bound], color="black’, linestyle="--")
plt.axvline(x=state_row['Upper_Bound'], color="black’, linestyle="--")
Adding title and labels
plt.title(FKDE Plot for Water Levels in {name} -{season}- Highlighting State {index}")
plt.xlabel("Water Level (m)")
plt.ylabel('Density")
plt.legend()
plt.show()
Merging the dataframes on the "State" column
historic_factor_df = pd.merge(df_states, risk_values_df, on="State")
historic_factor_df = historic_factor_df.rename(columns={'Lower_Bound'". 'Lower Bound', 'Upper_Bound'. 'Upper Bound',
'Energy_Shortage_Risk":'Energy Density','Flood_Risk":'Flood Density'})
print(historic_factor_df)
historic_factor_df.to_excel(f'/Users/simen/Desktop/Complete Master/03 Excel Products/02
Lakes/{name}/{name}_{season}_historic_factor.xlsx’, index=False)
Save the DataFrame to a CSV file
historic_factor_df.to_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned

Data/{name}_{season}_historic_factor.csv', index=False)

142

Appendix 19:

Extended_Risk _Factor.py

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
from scipy.stats import gaussian_kde
from scipy.integrate import quad
Suppress specific sklearn UserWarnings
warnings.simplefilter(“ignore", category=UserWarning)
warnings.simplefilter("ignore", category=FutureWarning)
Load the dataset
name = Tyrifjorden'
season = 'summer’
df = pd.read_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/{name} {season} waterlevel_df.csv’)
df.dropna(inplace=True)
observed_waterlevel = 63
df'Waterlevel'] = pd.to_numeric(df['Waterlevel], errors="coerce")
df['Date'] = pd.to_datetime(df['Date])
df.set_index('Date’, inplace=True)
df_states = pd.read_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/{name}_merged_States.csv')
df_states = df_states.drop(['Range_Meters'], axis=1)
current_state = df_states[(df_states['Lower_Bound'] <= observed_waterlevel) & (df_states['Upper_Bound'] >=
observed_waterlevel)]
if not current_state.empty:
print("Current State based on the observed water level:")
print(current_state[['State']])
else:

print("The observed water level does not match any defined state.")

data={
‘State": ['State 8-141,
'‘Lower_Bound': [df_states.loc[8, 'Lower_Bound]], # Lower bound from State 8
'‘Upper_Bound": [df_states.loc[14, 'Upper_Bound']] # Upper bound from State 14

new_df = pd.DataFrame(data)

result = pd.concat([df_states, new_df], ignore_index=True)

indices_to_remove = list(range(8, 15)) # This would remove rows for State 8 to State 14
df_final = result.drop(indices_to_remove)

df_final = df_final.reset_index(drop=True)

df_final.at[8, 'State’] = 'State 8'

143

df_states = df_final

min_value = df['Waterlevel].min()

max_value = df['Waterlevel].max()

min_std = df['Waterlevel'].std()

max_std = min_std

synthetic_lower = np.random.uniform(min_value - 3*min_std, min_value, 250)

synthetic_higher = np.random.uniform(max_value, max_value + 3*max_std, 250)

combined_data = np.concatenate([synthetic_lower, df['Waterlevel].values, synthetic_higher])

Set the bandwidth here

bandwidth = 0.2

Calculate extended KDE with custom bandwidth

kde_extended = gaussian_kde(combined_data, bw_method=bandwidth)

x_dens = np.linspace(combined_data.min(), combined_data.max(), 1000)

y_dens = kde_extended(x_dens)

risk_values_extended_df = pd.DataFrame(columns=['State’, 'Energy_Shortage_Risk’, 'Flood_Risk'])

plt.figure(figsize=(10, 6))

plt.plot(x_dens, y_dens, label='"Extended KDE', color="blue")

Fill the area under the KDE curve

plt.fill_between(x_dens, y_dens, color="lightblue’)

plt.title(fExtended KDE Plot for Water Levels in {name} ")

plt.xlabel("Water Level (m)")

plt.ylabel('Density")

plt.legend()

plt.show()

for index, state_row in df_states.iterrows():
energy_shortage_risk = quad(kde_extended, combined_data.min(), state_row['Lower_Bound)[0]
flood_risk = quad(kde_extended, state_row['Upper_Bound'], combined_data.max())[0]

energy_shortage_risk = max(energy_shortage_risk, 0)

flood_risk = max(flood_risk, 0)

new_row = pd.DataFrame({
‘State': [state_row['State]],
'Energy_Shortage_Risk’: [energy_shortage_risk],
'Flood_Risk’: [flood_risk]
b
risk_values_extended_df = pd.concat([risk_values_extended_df, new_row], ignore_index=True)
plt.figure(figsize=(10, 6))
plt.plot(x_dens, y_dens, label='"Extended KDE', color="blue’)

plt.fill_between(x_dens, y_dens, where=(x_dens < state_row['Lower_Bound']), color="orange’, alpha=0.5, label="Energy

Shortage Risk’)

plt.fill_between(x_dens, y_dens, where=(x_dens > state_row['Upper_Bound'), color="red', alpha=0.5, label="Flood Risk’)

plt.axvline(state_row['Lower_Bound?, color="black’, linestyle="--")
plt.axvline(state_row['Upper_Bound', color="black’, linestyle="--")
plt.title(fExtended KDE Plot for Water Levels in {name} - Highlighting State {index}")

144

plt.xlabel('Water Level (m)")

plt.ylabel('Density")

plt.legend()

plt.show()
extended_factor_df = pd.merge(df_states, risk_values_extended_df, on="State")
extended_factor_df = extended_factor_df.rename(columns={'Lower_Bound'": 'Lower Bound', 'Upper_Bound'": 'Upper Bound',
'Energy_Shortage_Risk':'Energy Density','Flood_Risk':'Flood Density'})
print(extended_factor_df)
extended_factor_df.to_csv(f/Users/simen/Desktop/Complete Master/01 Data/Cleaned
Data/{name}_{season}_extended_factor.csv', index=False)
extended_factor_df.to_excel(f/Users/simen/Desktop/Complete Master/03 Excel Products/02

Lakes/{name}/{name}_{season}_extended_factor.xIsx', index=False)

145

Appendix 20:
Decision_Single.py

import pandas as pd
from sklearn.preprocessing import MinMaxScaler
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
from scipy.stats import gaussian_kde
from scipy.integrate import quad
import sys
import math
Path to the CSV file
name = "Tyrifjorden"
season = "Spring" #Capital First letter
season_water = pd.read_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned
Data/{name}_{season}_ waterlevel_df.csv')
observed_waterlevel = 63.95
print(f'Observed Waterlevel : {observed_waterlevel}')
print()
if name == 'Randsfjord":
mean_flood = 134.689
LRW =131.3
HRW =134.5
elif name == "Tyrifjorden':
mean_flood = 64.2
LRW =62
HRW =63
elif name =="Sperillen":
mean_flood = 151.1276
LRW = 147.95
HRW = 150.25
if observed_waterlevel > mean_flood:
print("We are already in a flood state above Mean Flood')
sys.exit()
if observed_waterlevel < LRW:
print('We are already in a Water Shortage state below Lowest Regulated Water Level’)
sys.exit()
Define the function to calculate risk scores with adjusted exponential scalings
def calculate_risk_scores(observed_waterlevel, LRW, mean_flood):
Initialize scores
flood_score =0

energy_score =0

146

if observed_waterlevel < LRW:
Maximum water shortage risk when below LRW
energy_score =1 # Max water shortage risk
elif observed_waterlevel > mean_flood:
Maximum flood risk when above Mean Flood
flood_score = 1 # Max flood risk
else:
Between LRW and Mean Flood: separate exponential scaling of risks
normalized_level = (observed_waterlevel - LRW) / (mean_flood - LRW)
flood_score = 1 - np.exp(-10 * (normalized_level**5))
energy_score = np.exp(-10 * (normalized_level**2))
return flood_score, energy_score
Baseline Risk Scores (Baseline ESR/FRS):
baseline_FR, baseline_ESR = calculate_risk_scores(observed_waterlevel, LRW, mean_flood)
baseline_ESR = 1 + baseline_ESR
baseline_FR = 1 + baseline_FR
print('Baseline Flood Risk:") #Flood Risk Score
print(baseline_FR)
print()
print('Baseline Energy Shortage Risk:") # Energy Shortage Risk Score
print(baseline_ESR)
print()
Historical Seasonal Density Adjustment (H):
Rename_1 = 'Energy Risk'
Rename_2 ='Flood Risk’
Historical Density
historic_df = pd.read_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned
Data/{name}_{season}_historic_factor.csv')
historic_df = historic_df.rename(columns={Rename_1: 'Energy Density', Rename_2: 'Flood Density'})
current_state_historic = historic_df[(historic_df['Lower Bound'] <= observed_waterlevel) & (historic_df['Upper Bound'] >=
observed_waterlevel)]
w_historic = 0.7
historic_energy_density = current_state_historic['[Energy Density'].values[0]
historic_flood_density = current_state_historic['Flood Density"].values[0]
Extended Density
extended_df = pd.read_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned
Data/{name}_{season}_extended_factor.csv’)
extended_df = extended_df.rename(columns={Rename_1: 'Energy Density', Rename_2: 'Flood Density'})
current_state_extended = extended_df[(extended_df['Lower Bound'] <= observed_waterlevel) & (extended_df['Upper
Bound'] >= observed_waterlevel)]
w_extended = 0.3
extended_energy_density = current_state_extended['Energy Density'].values[0]
extended_flood_density = current_state_extended['Flood Density'].values[0]
Density Adjustment Factor calculation (H):

seasonal_density_adjustment_energy = 1 + w_historic * historic_energy_density + w_extended * extended_energy_density

147

seasonal_density_adjustment_flood = 1 + w_historic * historic_flood_density + w_extended * extended_flood_density
print('Density Adjustment Factors (H):")
print(fEnergy Density Adjustment : {seasonal_density_adjustment_energy}")
print(fFlood Density Adjustment : {seasonal_density_adjustment_flood}')
Current Reservoir Capacity (C)
Remove_1 = 'Waterflow'
print("\nCapacity Factor (C):")
Load capacity data
capacity_df = pd.read_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/{name}_Total_Daily.csv')
capacity_df = capacity_df.drop([Remove_1], axis=1)
Filter the dataset between water levels 62 meters and 64.2 meters
filtered_df = capacity_df[(capacity_df['Waterlevel'] >= LRW) & (capacity_df['Waterlevel’] <= mean_flood)]
Calculate Normalized Reservoir Level
Find the maximum value
max_reservoir_value = filtered_df['Reservoir].max()
Print the entire row(s) where the reservoir is at its maximum capacity
max_reservoir_rows = filtered_df[filtered_df['Reservoir] == max_reservoir_value]
Print the entire row(s) where the reservoir is at its minimum capacity
min_reservoir_value = filtered_df['Reservoir].min()
min_reservoir_rows = filtered_df[filtered_df['Reservoir] == min_reservoir_value]
Find the row corresponding most closely to the observed water level
closest_row = filtered_df.iloc[(filtered_df['Waterlevel] - observed_waterlevel).abs().argsort()[:1]]
Calculate normalized reservoir level for the closest row
normalized_reservoir = closest_row['Reservoir'].values[0] / max_reservoir_value
Define thresholds and scaling factors
L =0.2 # Low threshold approx 5% percentile
H = 0.7 # High threshold approx 95% percentile
alpha = 2 # Scaling factor for low reservoir levels
beta = 3 # Scaling factor for high reservoir levels
Calculate the capacity adjustment factors for flood and energy risks
def calculate_capacity_factors(normalized_reservoir, L, H, alpha, beta):
if normalized_reservoir <= L:
energy_capacity_factor =1 + alpha * (L - normalized_reservoir)
else:
energy_capacity_factor =1
if normalized_reservoir >= H:
flood_capacity_factor = 1 + beta * (normalized_reservoir - H)
else:
flood_capacity_factor =1
return flood_capacity_factor, energy_capacity_factor
flood_capacity_factor, energy_capacity_factor = calculate_capacity_factors(normalized_reservoir, L, H, alpha, beta)
Print results
print(f"Flood Capacity Factor: {flood_capacity_factor}")
print(f"Energy Capacity Factor: {energy_capacity_factor}")
Regulatory Constraints (R):

148

print()
print('Regulatory Constraints Factor’)
Define a function to calculate the penalty factors for flood and energy risks with pre-threshold adjustments
def calculate_penalty_factors(observed_level, HRW, LRW, pre_threshold=0.2):
flood_penalty_factor =1
energy_penalty_factor =1
regulation_zone = HRW - LRW
lower_threshold = LRW + pre_threshold * regulation_zone
upper_threshold = HRW - pre_threshold * regulation_zone
Energy penalty factor increases as the water level gets closer to LRW
if observed_level < lower_threshold:
energy_penalty_factor += (lower_threshold - observed_level) / (lower_threshold - LRW)
Flood penalty factor increases as the water level exceeds upper threshold
if observed_level > HRW:
flood_penalty_factor =1 # Regulatory measures mitigate flood risk above HRW
elif observed_level > upper_threshold:
flood_penalty_factor += (observed_level - upper_threshold) / (HRW - upper_threshold)
return flood_penalty_factor, energy_penalty factor
Calculate the penalty factors
flood_penalty_factor, energy_penalty factor = calculate_penalty_factors(observed_waterlevel, HRW, LRW)
Print results
print(f"Flood Penalty Factor for {name}: {flood_penalty_factor}")
print(f"Energy Penalty Factor for {name}: {energy_penalty_factor}")
Seasonal Trends (S):
Load seasonal trend data
trend_analysis_df = pd.read_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned
Data/{name}_seasonal_trend.csv')
seasonal_trend = trend_analysis_df.loc[trend_analysis_df['Season'] == season, 'Slope’].values[0]
Calculate Seasonal Deviation
mean_water_season = season_water['Waterlevel].mean()
std_water_season = season_water['Waterlevel'].std()
seasonal_deviation = (observed_waterlevel - mean_water_season) / std_water_season
Calculate Seasonal Volatility
Convert Date column to datetime
season_water['Date’] = pd.to_datetime(season_water['Date'])
Extract year from the Date column
season_water['Year] = season_water['Date'].dt.year
Calculate the standard deviation for each year
yearly_volatility = season_water.groupby("Year')['Waterlevel].std()
Calculate the average volatility across all years
seasonal_volatility = yearly_volatility.mean()
Seasonal Scaling Factor
seasonal_k=0.8

Calculate the Seasonal Adjustment Factors

def calculate_seasonal_adjustment_factor(seasonal_deviation, seasonal_trend, seasonal_volatility, seasonal_k, type="flood"):

149

if type == 'flood":
adjustment_factor = 1 + seasonal_k * (seasonal_deviation + seasonal_trend + seasonal_volatility)
adjustment_factor = max(adjustment_factor, 1.1) # Set a minimum value to avoid negative risks
elif type == 'energy"
Ensure the adjustment factor remains positive by using an absolute value
adjustment_factor = 1 + seasonal_k * (seasonal_deviation - seasonal_trend + seasonal_volatility)
adjustment_factor = max(adjustment_factor, 1.1) # Set a minimum value to avoid negative risks
return adjustment_factor
seasonal_adjustment_factor_flood = calculate_seasonal_adjustment_factor(seasonal_deviation, seasonal_trend,
seasonal_volatility, seasonal_k, type="flood)
seasonal_adjustment_factor_energy = calculate_seasonal_adjustment_factor(seasonal_deviation, seasonal_trend,
seasonal_volatility, seasonal_k, type="energy")
Print results
print()
print('Seasonal Adjustment Factor for Flood (S_flood):")
print(seasonal_adjustment_factor_flood)
print('Seasonal Adjustment Factor for Energy (S_energy):")
print(seasonal_adjustment_factor_energy)
Final Risk before decision factor
print()
print('Final Scores')
final_ESR = baseline_ESR * seasonal_density_adjustment_energy * energy_capacity_factor * energy_penalty_factor *
seasonal_adjustment_factor_energy
print(f'Final ESR, before decision factor : {final_ESR}")

final_FR = baseline_FR * seasonal_density_adjustment_flood * flood_capacity_factor * flood_penalty_factor *
seasonal_adjustment_factor_flood
print(fFinal FR, before decision factor : {final_FR}')
Decision Risk Score (D):
print()
print('Decision Risk Score")
Energy Shortage Factors
ESR_increase = 1.2 # Increase outflow gives a 20% increase in Energy Shortage Risk
ESR_decrease = 0.8 # Decrease outflow gives 20% decrease in Energy Shortage Risk
ESR_maintain =1 # Maintain outflow gives no change in final risk
Flood Factors
FR_increase = 0.8 # Increase outflow gives a 20% decrease in Flood Risk
FR_decrease = 1.2 # Decrease outflow gives a 20% increase in Flood Risk
FR_maintain =1 # Maintain outflow gives no change in final risk
Calculate final risks
def calculate_decision_risks(final_ESR, final_FR):

Increase

ESR_increase_risk = ESR_increase * final_ESR

FR_increase_risk = FR_increase * final_FR

150

Decrease
ESR_decrease_risk = ESR_decrease * final ESR

FR_decrease_risk = FR_decrease * final_FR

Maintain
ESR_maintain_risk = ESR_maintain * final_ESR
FR_maintain_risk = FR_maintain * final_FR
return {
‘Increase’: {'"ESR": ESR_increase_risk, 'FR": FR_increase_risk},
‘Decrease”: {'ESR": ESR_decrease_risk, 'FR'": FR_decrease_risk},
'‘Maintain": {'ESR": ESR_maintain_risk, 'FR": FR_maintain_risk}
}
Get the decision risks
decision_risks = calculate_decision_risks(final_ESR, final_FR)
if observed_waterlevel < HRW:
print(f'Observed Waterlevel : {observed_waterlevel}m in {season}')
Print the results with 4 decimal places
print('Increase:")
print(fEnergy Shortage Rrisk : {decision_risks["Increase"]["ESR"]:.4f})
print(fFlood Risk : {decision_risks["Increase"]["FR"]:.4f}")
print('Decrease:")
print(fEnergy Shortage Risk : {decision_risks["Decrease"]['ESR"]:.4f})
print(fFlood Risk : {decision_risks["Decrease"]["FR"]:.4f})
print('Maintain:")
print(fEnergy Shortage Risk : {decision_risks["Maintain"]["ESR"]:.4f})
print(fFlood Risk : {decision_risks["Maintain"]["FR"]:.4f}")
else:
print(fObserved Waterlevel : {observed_waterlevel}m in {season}')
Print the results with 4 decimal places
print('Decrease:")
print(fEnergy Shortage Risk : {decision_risks["Decrease"]['ESR"]:.4f})
print(fFlood Risk : {decision_risks["'Decrease"]["FR"]:.4f})
print('Maintain:")
print(fEnergy Shortage Risk : {decision_risks["Maintain"]["ESR"]:.4f})
print(fFlood Risk : {decision_risks["Maintain"]["FR"]:.4f})

Calculate KDE for the water levels
water_level_kde = gaussian_kde(season_water['Waterlevel])
x_dens = np.linspace(season_water['Waterlevel'].min(), season_water['Waterlevel'].max(), 100)

y_dens = water_level_kde(x_dens)
Extract lower and upper bounds from current_state_historic

lower_bound = current_state_historic['Lower Bound'].values[0]

upper_bound = current_state_historic['Upper Bound'].values[0]

151

Create arrays for lower and upper bounds with the same length as x_dens
lower_bound_array = np.full_like(x_dens, lower_bound)
upper_bound_array = np.full_like(x_dens, upper_bound)

KDE plot for the entire range
plt.figure(figsize=(10, 6))
plt.plot(x_dens, y_dens, label='KDE")

Shade the outside of the selected state
plt.fill_between(x_dens, y_dens, where=(x_dens <= lower_bound_array), alpha=0.5, color="orange', label='"Energy Shortage
Risk")

plt.fill_between(x_dens, y_dens, where=(x_dens >= upper_bound_array), alpha=0.5, color="red', label="Flood Risk")

Highlight the selected state (leave it unshaded)

plt.axvline(lower_bound, color="black’, linestyle="--")
plt.axvline(upper_bound, color="black’, linestyle="--")
plt.axvline(observed_waterlevel, color="blue’, label="Observed Waterlevel’)
plt.title(fFKDE Plot for Water Levels in {name} in {season}")
plt.xlabel("Water Level (m)’)

plt.ylabel('Density")

plt.legend()

plt.show()

if observed_waterlevel < HRW:
Decision points and their corresponding risk scores
decision_points = ['Increase’, 'Decrease’, 'Maintain’]
ESR_scores = [decision_risks[point]['/ESR'] for point in decision_points]

FR_scores = [decision_risks[point]['FR"] for point in decision_points]

Plot the decision points on the KDE plot

plt.scatter(ESR_scores, FR_scores, color="black’, label="Decision Points’)
Annotate the decision points with text
for point, ESR, FR in zip(decision_points, ESR_scores, FR_scores):

plt.text(ESR, FR, point, ha="left’)

plt.xlabel('Energy Shortage Risk’)
plt.ylabel('Flood Risk’)

plt.show()

else:

Decision points and their corresponding risk scores

152

decision_points = ['Decrease’, 'Maintain’]
ESR_scores = [decision_risks[point]['ESR'] for point in decision_points]

FR_scores = [decision_risks[point]['FR"] for point in decision_paints]

Plot the decision points on the KDE plot
plt.scatter(ESR_scores, FR_scores, color="black’, label="Decision Points’)

Annotate the decision points with text
for point, ESR, FR in zip(decision_points, ESR_scores, FR_scores):

plt.text(ESR, FR, point, ha="left’)

plt.xlabel('Energy Shortage Risk’)
plt.ylabel('Flood Risk")

plt.show()

153

Appendix 21:
Decision_for_loop.py

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import numpy as np

import matplotlib.pyplot as plt

import warnings

import matplotlib.pyplot as plt

import numpy as np

from sklearn.preprocessing import MinMaxScaler

Suppress specific sklearn UserWarnings

warnings.simplefilter(“ignore", category=UserWarning)

warnings.simplefilter(“ignore", category=FutureWarning)

Example lake name and current conditions

lake_name = "Sperillen™

season = "Summer"

current_waterlevel = 151

Load seasonal trend data

trend_analysis_df = pd.read_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned
Data/{lake_name}_seasonal_trend.csv')

seasonal_trend = trend_analysis_df.loc[trend_analysis_df['Season] == season, 'Slope'].values[0]
Load seasonal water level data

season_water = pd.read_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned
Data/{lake_name}_{season}_waterlevel_df.csv')

Load density data

historic_df = pd.read_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned
Data/{lake_name}_{season}_historic_factor.csv')

extended_df = pd.read_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned
Data/{lake_name}_{season}_extended_factor.csv')

historic_df = historic_df.rename(columns={'Energy Risk": 'Energy Density', 'Flood Risk': 'Flood Density'})
extended_df = extended_df.rename(columns={'Energy Risk': 'Energy Density', 'Flood Risk": 'Flood Density'})

Load capacity data

capacity_df = pd.read_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned Data/{lake_name}_Total_Daily.csv')

capacity_df = capacity_df.drop(['Waterflow'], axis=1)

Define thresholds and scaling factors

L =0.2 # Low threshold approx 5% percentile

H = 0.7 # High threshold approx 95% percentile
alpha =2 # Scaling factor for low reservoir levels

beta = 3 # Scaling factor for high reservoir levels

154

Define reservoir regulation parameters
if lake_name == 'Randsfjord":
mean_flood = 134.689
LRW =131.3
HRW =134.5
elif lake_name == Tyrifjorden":
mean_flood = 64.2
LRW =62
HRW =63
elif lake_name == "Sperillen":
mean_flood = 151.1276
LRW = 147.95
HRW =150.25

Define the function to calculate risk scores with adjusted exponential scalings
def calculate_risk_scores(observed_waterlevel, LRW, mean_flood):

Initialize scores
flood_score =0

energy_score =0

if observed_waterlevel < LRW:

Maximum water shortage risk when below LRW

energy_score =1 # Max water shortage risk

elif observed_waterlevel > mean_flood:

Maximum flood risk when above Mean Flood

flood_score = 1 # Max flood risk
else:

Between LRW and Mean Flood: separate exponential scaling of risks
normalized_level = (observed_waterlevel - LRW) / (mean_flood - LRW)

flood_score = 1 - np.exp(-10 * (normalized_level**5))

energy_score = np.exp(-10 * (normalized_level**2))

return flood_score, energy_score

Define the parameters

water_levels = np.linspace(LRW, mean_flood, 3000)

Calculate the scores for each water level
flood_scores =[]

energy_scores =[]

for level in water_levels:

flood_score, energy_score = calculate_risk_scores(level, LRW, mean_flood)

flood_scores.append(flood_score)

155

energy_scores.append(energy_score)

Plotting the results

plt.figure(figsize=(10, 6))

plt.plot(water_levels, flood_scores, label='"Flood Risk Score', color="blue’)
plt.plot(water_levels, energy_scores, label="Energy Shortage Risk Score', color="red")
plt.axvline(LRW, color="green’, linestyle="--', label="LRW")
plt.axvline(mean_flood, color="purple’, linestyle="--', label="Mean Flood")
plt.xlabel("Observed Water Level’)

plt.ylabel(‘'Risk Score’)

plt.title(Exponential Risk Scores for Flood and Energy Shortage")
plt.legend()

plt.grid(True)

plt.show()

Function to calculate capacity factors
def calculate_capacity_factors(normalized_reservoir, L, H, alpha, beta):
if normalized_reservoir <= L:
energy_capacity_factor = 1 + alpha * (L - normalized_reservoir)
else:

energy_capacity_factor =1

if normalized_reservoir >= H:
flood_capacity_factor = 1 + beta * (normalized_reservoir - H)
else:

flood_capacity_factor =1

return flood_capacity_factor, energy_capacity_factor

Function to calculate penalty factors
def calculate_penalty_factors(observed_level, HRW, LRW, pre_threshold=0.2):
flood_penalty_factor =1
energy_penalty_factor = 1
regulation_zone = HRW - LRW
lower_threshold = LRW + pre_threshold * regulation_zone

upper_threshold = HRW - pre_threshold * regulation_zone

if observed_level < lower_threshold:

energy_penalty_factor += (lower_threshold - observed_level) / (lower_threshold - LRW)

if observed_level > HRW:
flood_penalty_factor = 1
elif observed_level > upper_threshold:

flood_penalty_factor += (observed_level - upper_threshold) / (HRW - upper_threshold)

156

return flood_penalty_factor, energy_penalty_factor

Function to calculate seasonal adjustment factors
def calculate_seasonal_adjustment_factor(seasonal_deviation, seasonal_trend, seasonal_volatility, seasonal_k, type="flood"):
if type =='flood"
adjustment_factor = 1 + seasonal_k * (seasonal_deviation + seasonal_trend + seasonal_volatility)
adjustment_factor = max(adjustment_factor, 1) # Set a minimum value to avoid negative risks
elif type == 'energy"
adjustment_factor = 1 + seasonal_k * (-1*seasonal_deviation - seasonal_trend + seasonal_volatility)
adjustment_factor = max(adjustment_factor, 1)

return adjustment_factor

Define decision factors
ESR_increase = 1.2 # Increase outflow gives a 20% increase in Energy Shortage Risk
ESR_decrease = 0.8 # Decrease outflow gives 20% decrease in Energy Shortage Risk
ESR_maintain =1 # Maintain outflow gives no change in final risk
FR_increase = 0.8 # Increase outflow gives a 20% decrease in Flood Risk
FR_decrease = 1.2 # Decrease outflow gives a 20% increase in Flood Risk
FR_maintain = 1 # Maintain outflow gives no change in final risk
Iterate through observed water levels from 62 to 64.2 in increments of 0.05
results =[]
combined =[]
decision_scores =[]
for observed_waterlevel in np.arange(LRW, mean_flood, 0.05):
baseline_FR, baseline_ESR = calculate_risk_scores(observed_waterlevel, LRW, mean_flood)
baseline_FR =1 + baseline_FR
baseline_ESR =1 + baseline_ESR
Historical Density
current_state_historic = historic_df[(historic_df['Lower Bound'] <= observed_waterlevel) & (historic_df['Upper Bound']
>= observed_waterlevel)]
historic_energy_density = current_state_historic['Energy Density"].values[0]
historic_flood_density = current_state_historic['Flood Density'].values[0]
Extended Density
current_state_extended = extended_df[(extended_df['Lower Bound'] <= observed_waterlevel) & (extended_df['Upper
Bound'] >= observed_waterlevel)]
extended_energy_density = current_state_extended['Energy Density'].values[0]
extended_flood_density = current_state_extended['Flood Density'].values[0]
Density Adjustment Factor calculation (H)
w_historic = 0.7
w_extended = 0.3
seasonal_density_adjustment_energy = 1 + w_historic * historic_energy_density + w_extended *
extended_energy_density
seasonal_density_adjustment_flood = 1 + w_historic * historic_flood_density + w_extended * extended_flood_density
Capacity Factor (C)
filtered_df = capacity_df[(capacity_df['Waterlevel'] >= LRW) & (capacity_df['Waterlevel] <= mean_flood)]

157

max_reservoir_value = filtered_df['Reservoir].max()

closest_row = filtered_df.iloc[(filtered_df['Waterlevel] - observed_waterlevel).abs().argsort()[:1]]

normalized_reservoir = closest_row['Reservoir].values[0] / max_reservoir_value

flood_capacity_factor, energy_capacity_factor = calculate_capacity_factors(normalized_reservoir, L, H, alpha, beta)

Regulatory Constraints (R)

flood_penalty_factor, energy_penalty factor = calculate_penalty_factors(observed_waterlevel, HRW, LRW)

Seasonal Trends (S)

mean_water_season = season_water['Waterlevel'].mean()

std_water_season = season_water['Waterlevel'].std()

seasonal_deviation = (observed_waterlevel - mean_water_season) / std_water_season

Convert Date column to datetime

season_water['Date'] = pd.to_datetime(season_water['Date'])

Extract year from the Date column

season_water['Year'] = season_water['Date'].dt.year

yearly_volatility = season_water.groupby("Year')['Waterlevel].std()

seasonal_volatility = yearly_volatility.mean()

seasonal_k = 0.8

seasonal_adjustment_factor_flood = calculate_seasonal_adjustment_factor(seasonal_deviation, seasonal_trend,
seasonal_volatility, seasonal_k, type="flood")

seasonal_adjustment_factor_energy = calculate_seasonal_adjustment_factor(seasonal_deviation, seasonal_trend,
seasonal_volatility, seasonal_k, type='energy")

Final Risk

final_ESR = baseline_ESR * seasonal_density_adjustment_energy * energy_capacity_factor * energy_penalty_factor *
seasonal_adjustment_factor_energy

final_FR = baseline_FR * seasonal_density_adjustment_flood * flood_capacity_factor * flood_penalty_factor *
seasonal_adjustment_factor_flood

Decision Risk Score (D)
ESR_increase_risk = ESR_increase * final_ESR

FR_increase_risk = FR_increase * final_FR

ESR_decrease_risk = ESR_decrease * final_ESR
FR_decrease_risk = FR_decrease * final_FR

ESR_maintain_risk = ESR_maintain * final_ESR

FR_maintain_risk = FR_maintain * final_FR

Append the decision scores
decision_scores.append({
'Observed Water Level': observed_waterlevel,
'ESR Increase Risk': ESR_increase_risk,
'FR Increase Risk': FR_increase_risk,
'ESR Decrease Risk': ESR_decrease_risk,
'FR Decrease Risk': FR_decrease_risk,
'ESR Maintain Risk': ESR_maintain_risk,
'FR Maintain Risk': FR_maintain_risk

158

)

Store results

results.append({
'‘Observed Water Level': observed_waterlevel,
'Final Energy Shortage Risk (ESR)": final_ESR,
'Final Flood Risk (FR)": final_FR

b

Append the results to the results list
combined.append({
'Observed Water Level': observed_waterlevel,
‘Baseline Flood Risk': baseline_FR,
'‘Baseline Energy Shortage Risk': baseline_ESR,
'Energy Density Adjustment (H)": seasonal_density _adjustment_energy,
'Flood Density Adjustment (H)': seasonal_density_adjustment_flood,
'Flood Capacity Factor (C)": flood_capacity_factor,
'Energy Capacity Factor (C)": energy_capacity_factor,
'Flood Penalty Factor (R)": flood_penalty_factor,
‘Energy Penalty Factor (R)": energy_penalty_factor,
‘Seasonal Adjustment Factor for Flood (S_flood)": seasonal_adjustment_factor_flood,
'Seasonal Adjustment Factor for Energy (S_energy)": seasonal_adjustment_factor_energy,
'Final Energy Shortage Risk (ESR)" final_ESR,
'Final Flood Risk (FR)" final_FR,
b
combined_df = pd.DataFrame(combined)
Save the slopes of the trend analysis as CSV
combined_df.to_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned
Data/combined_df_{lake_name} {season}.csv', index=False)
combined_df.to_excel(f/Users/simen/Desktop/Complete Master/03 Excel Products/02
Lakes/{lake_name}/combined_df {lake_name}_ {season}.xIsx', index=False)
Convert results to DataFrame for further analysis or plotting
results_df = pd.DataFrame(results)
print(results_df)
Plotting the results
plt.figure(figsize=(12, 6))
plt.plot(results_df['Observed Water Level'], results_df['Final Energy Shortage Risk (ESR)'], label='Energy Shortage Risk
(ESR)', color="b', marker='0")
plt.plot(results_df['Observed Water Level’], results_df['Final Flood Risk (FR)Y, label='Flood Risk (FR)', color="r', marker="x")
Adding vertical lines for LRW, HRW, and mean_flood
plt.axvline(x=LRW, color="yellow', linestyle="--', label="LRW")
plt.axvline(x=HRW, color="black’, linestyle='--', label="HRW")
plt.axvline(x=mean_flood, color="purple’, linestyle="--', label="Mean Flood Level’)
plt.xlabel("Observed Water Level (m)’)
plt.ylabel('Final Risk')
plt.title(fFinal Risk Scores vs. Observed Water Level for {season}')

159

plt.legend(bbox_to_anchor=(1.05, 1), loc="upper left')

plt.grid(True)

plt.show()

decision_scores_df = pd.DataFrame(decision_scores)

print(decision_scores_df)

Convert decision scores to DataFrame

decision_scores_df = pd.DataFrame(decision_scores)

decision_scores_df.to_csv(f'/Users/simen/Desktop/Complete Master/01 Data/Cleaned
Data/decision_risk_df_{lake_name}_{season}.csv', index=False)

x_cutoff = HRW # Replace this with the desired x-axis value

Create masks for the points up to the cutoff

esr_mask = np.where(decision_scores_df['Observed Water Level'] <= x_cutoff, decision_scores_df['ESR Increase Risk'],
np.nan)

fr_mask = np.where(decision_scores_df['Observed Water Level'] <= x_cutoff, decision_scores_df['FR Increase Risk1,
np.nan)

Plotting decision scores

plt.figure(figsize=(12, 6))

plt.plot(decision_scores_df['Observed Water Level’], esr_mask, label='"ESR Increase Risk’, color="b', marker="0")
plt.plot(decision_scores_df['Observed Water Level'], fr_mask, label="FR Increase Risk', color="r', marker="x")
plt.plot(decision_scores_df['Observed Water Level’], decision_scores_df['ESR Decrease Risk], label="ESR Decrease Risk’,
color='g’, marker='s")

plt.plot(decision_scores_df['Observed Water Level'], decision_scores_df['FR Decrease Risk], label='"FR Decrease Risk’,
color="c', marker="\"

plt.plot(decision_scores_df['Observed Water Level'], decision_scores_df['/ESR Maintain Risk’], label='"ESR Maintain Risk',
color="m’, marker="d")

plt.plot(decision_scores_df['Observed Water Level'], decision_scores_df['FR Maintain Risk'], label="FR Maintain Risk',
color="y', marker='v')

Adding vertical lines for LRW, HRW, and mean_flood

plt.axvline(x=LRW, color="yellow', linestyle="--', label="LRW")

plt.axvline(x=HRW, color="black’, linestyle="--", label="HRW")

plt.axvline(x=mean_flood, color="purple’, linestyle="--', label="Mean Flood Level’)

plt.xlabel("Observed Water Level (m)’)

plt.ylabel('Risk’)

plt.title(f'Decision Risk Scores vs. Observed Water Level for {season}')

plt.legend(bbox_to_anchor=(1.05, 1), loc="upper left’)

plt.grid(True)

plt.show()

Plotting decision scores with histogram in the background

fig, ax1 = plt.subplots(figsize=(12, 6))

Plot the histogram of the seasonal water level data

ax1.hist(season_water['Waterlevel], bins=30, color="gray', alpha=0.6, edgecolor="black’)

axl.set_xlabel('Observed Water Level (m)’)

axl.set_ylabel('Frequency’)

axl.set_title(f'Decision Risk Scores vs. Observed Water Level for {season}')

Create a secondary y-axis for the risk scores

160

ax2 = ax1.twinx()

Plot the decision risk scores

ax2.plot(decision_scores_df['Observed Water Level, decision_scores_df['ESR Increase Risk'], label='ESR Increase Risk’,

color="b', marker="0")

ax2.plot(decision_scores_df['Observed Water Level'], decision_scores_df['FR Increase Risk’], label="FR Increase Risk’,

color="r', marker="x")

ax2.plot(decision_scores_df['Observed Water Level], decision_scores_df['/ESR Decrease Risk’], label="ESR Decrease Risk’,

color='g’, marker='s")

ax2.plot(decision_scores_df['Observed Water Level'], decision_scores_df['FR Decrease Risk'], label="FR Decrease Risk’,

color="c', marker="\")

ax2.plot(decision_scores_df['Observed Water Level'], decision_scores_df['/ESR Maintain Risk'], label="ESR Maintain Risk',

color="m’, marker="d")

ax2.plot(decision_scores_df['Observed Water LevelT, decision_scores_df['FR Maintain Risk’], label='"FR Maintain Risk’,

color="y', marker='v')
Adding vertical lines for LRW, HRW, and mean_flood
ax2.axvline(x=LRW, color="yellow", linestyle="--', label="LRW")
ax2.axvline(x=HRW, color="black’, linestyle="--', label="HRW")
ax2.axvline(x=mean_flood, color="purple’, linestyle="--", label='"Mean Flood Level')
ax2.set_ylabel('Risk’)
Combine legends from both axes
lines, labels = ax1.get_legend_handles_labels()
lines2, labels2 = ax2.get_legend_handles_labels()
ax2.legend(lines + lines2, labels + labels2, bbox_to_anchor=(1.05, 1), loc="upper left")
plt.grid(True)
plt.show()
Function to normalize a single column in a DataFrame
def normalize_column(df, column_name):

scaler = MinMaxScaler()

dffcolumn_name] = scaler.fit_transform(df[[column_name]])

return df
Function to normalize selected columns in a DataFrame together
def normalize_columns_together(df, columns):

min_val = df[columns].min().min()

max_val = df[columns].max().max()

df[columns] = (df[columns] - min_val) / (max_val - min_val)

return df
List of columns to normalize in each DataFrame
results_columns_to_normalize = ['Final Energy Shortage Risk (ESR)', 'Final Flood Risk (FR)]
Normalize each column in results_df individually
for col in results_columns_to_normalize:

results_df = normalize_column(results_df, col)
List of columns to normalize together in decision_scores_df
esr_columns_to_normalize = ['ESR Increase Risk’, 'ESR Decrease Risk', 'ESR Maintain Risk']
fr_columns_to_normalize = ['FR Increase Risk', 'FR Decrease Risk’, 'FR Maintain Risk']

Normalize each set of columns in decision_scores_df together

161

decision_scores_df = normalize_columns_together(decision_scores_df, esr_columns_to_normalize)
decision_scores_df = normalize_columns_together(decision_scores_df, fr_columns_to_normalize)
Verify normalization
print("Normalized decision_scores_df:")
for col_set in [esr_columns_to_normalize, fr_columns_to_normalize]:

for col in col_set:

print(f"{col}: min = {decision_scores_df[col].min()}, max = {decision_scores_df[col].max()}")

Plotting the results
plt.figure(figsize=(12, 6))
plt.plot(results_df['Observed Water Level’], results_df['Final Energy Shortage Risk (ESR)], label="Energy Shortage Risk
(ESR)', color="b', marker='0")
plt.plot(results_df['Observed Water Level'], results_df['Final Flood Risk (FR)Y, label='Flood Risk (FR)', color="r', marker="x")
Adding vertical lines for LRW, HRW, and mean_flood
plt.axvline(x=LRW, color="yellow', linestyle="--', label="LRW")
plt.axvline(x=HRW, color="black’, linestyle="--', label="HRW")
plt.axvline(x=mean_flood, color="purple’, linestyle="--', label="Mean Flood Level’)
plt.xlabel('Observed Water Level (m)")
plt.ylabel('Final Risk’)
plt.title(f'Final Risk Scores vs. Observed Water Level for {season}')
plt.legend(bbox_to_anchor=(1.05, 1), loc="upper left’)
plt.grid(True)
plt.show()
Mask the data points for ESR and FR increase risks beyond HRW
x_cutoff = HRW # Replace this with the desired x-axis value
esr_mask = np.where(decision_scores_df['Observed Water Level'] <= x_cutoff, decision_scores_df['ESR Increase Risk’],
np.nan)
fr_mask = np.where(decision_scores_df['Observed Water Level'] <= x_cutoff, decision_scores_df['FR Increase Risk'],
np.nan)
Plotting decision scores
plt.figure(figsize=(12, 6))
plt.plot(decision_scores_df['Observed Water Level'], esr_mask, label='"ESR Increase Risk', color="b', marker="'0")
plt.plot(decision_scores_df['Observed Water Level'], fr_mask, label="FR Increase Risk', color="r', marker="x")
plt.plot(decision_scores_df['Observed Water Level’], decision_scores_df['ESR Decrease Risk], label="ESR Decrease Risk’,
color="g', marker="s')
plt.plot(decision_scores_df['Observed Water Level'], decision_scores_df['FR Decrease Risk’], label='"FR Decrease Risk’,
color='c', marker="\")
plt.plot(decision_scores_df['Observed Water Level'], decision_scores_df['ESR Maintain Risk’], label='"ESR Maintain Risk’,
color="m’, marker="d")
plt.plot(decision_scores_df['Observed Water Level'], decision_scores_df['FR Maintain Risk'], label="FR Maintain Risk',
color="y", marker="v")
Adding vertical lines for LRW, HRW, and mean_flood
plt.axvline(x=LRW, color="yellow', linestyle="--', label="LRW")
plt.axvline(x=HRW, color="black’, linestyle="--', label="HRW")
plt.axvline(x=mean_flood, color="purple’, linestyle="--', label="Mean Flood Level')
plt.xlabel('Observed Water Level (m)")

162

plt.ylabel('Risk’)

plt.title(f'Decision Risk Scores vs. Observed Water Level for {season}')

plt.legend(bbox_to_anchor=(1.05, 1), loc="upper left’)

plt.grid(True)

plt.show()

Plotting decision scores with histogram in the background

fig, ax1 = plt.subplots(figsize=(12, 6))

Plot the histogram of the seasonal water level data

ax1.hist(season_water['Waterlevel], bins=30, color="gray', alpha=0.6, edgecolor="black’)
axl.set_xlabel('Observed Water Level (m)’)

axl.set_ylabel('Frequency")

axl.set_title(f'Decision Risk Scores vs. Observed Water Level for {season}')

Create a secondary y-axis for the risk scores

ax2 = ax1.twinx()

Plot the decision risk scores

ax2.plot(decision_scores_df['Observed Water Level'], esr_mask, label="ESR Increase Risk', color="b', marker="0")
ax2.plot(decision_scores_df['Observed Water Level'], fr_mask, label='FR Increase Risk’, color="r', marker="x")
ax2.plot(decision_scores_df['Observed Water Level, decision_scores_df['ESR Decrease Risk'], label="ESR Decrease Risk’,
color='g', marker='s")

ax2.plot(decision_scores_df['Observed Water Level'], decision_scores_df['FR Decrease Risk’, label="FR Decrease Risk’,
color='c', marker="\")

ax2.plot(decision_scores_df['Observed Water Level', decision_scores_df['/ESR Maintain Risk'], label="ESR Maintain Risk',
color="m’, marker="d")

ax2.plot(decision_scores_df['Observed Water Level'], decision_scores_df['FR Maintain Risk'], label='"FR Maintain Risk’,
color="y", marker="v")

Adding vertical lines for LRW, HRW, and mean_flood

ax2.axvline(x=LRW, color="yellow', linestyle="--', label="LRW")

ax2.axvline(x=HRW, color="black’, linestyle="--', label="HRW")

ax2.axvline(x=mean_flood, color="purple’, linestyle="--', label='"Mean Flood Level')

ax2.set_ylabel('Risk’)

ax2.set_xlim(left=ax1.get_xlim()[0], right=mean_flood + 0.2)

Combine legends from both axes

lines, labels = ax1.get_legend_handles_labels()

lines2, labels2 = ax2.get_legend_handles_labels()

ax2.legend(lines + lines2, labels + labels2, bbox_to_anchor=(1.05, 1), loc="upper left)

plt.grid(True)

plt.show()

print()

print()

norm_decision_scores = decision_scores_df

norm_results = results_df

norm_decision_scores.to_excel(f'/Users/simen/Desktop/Complete Master/03 Excel Products/02
Lakes/{lake_name}/norm_risk_dec_values_{lake_name} {season}.xlsx’, index=False)
#results_df.to_excel(f/Users/simen/Desktop/Complete Master/03 Excel Products/02

Lakes/{lake_name}/norm_results_values_{lake_name}_{season}.xlsx’, index=False)

163

Find the row with the closest observed water level to the current water level
closest_row = decision_scores_df.iloc[(decision_scores_df['Observed Water Level] - current_waterlevel).abs().argmin()]
Print the decision scores for the closest observed water level

print(f"Closest decision scores for observed water level {closest_row['Observed Water Level7}:")
print(closest_row)

164

Appendix 22:
Complete Risk Values
Tyrifjorden:

Decision Risk Scores vs. Observed Water Level for Spring

=&~ E5R Increase Risk
—»— FR Increase Risk

—&— ESR Decrzase Risk
—#— FR Decrease Risk
-+
—y—

10
175

ESR Maintain Risk
FR Maintain Risk
LEW

=== HRW

06 === Mean Flood Level

0a

150 1

=]
n

5]
=]
Risk

Freguency

04

0z

B3.0
Observed Water Level (m)

Decision Risk Scores vs. Observed Water Level for Summer

[[
: 10 —e— ESRIncrease Risk
i —+— FR Increase Risk
500 H -~ ESR Decrease Risk
: —a&— FR Decrease Risk
i 08 —# ESR Maintain Risk
| ~v— FR Maintain Risk
400 A ! LRW
! === HRW
0e === Mean Flood Level
-
4
% 300 ;
. 04
200 {
4 0.2
100
F0.0
0

62.0 . 63.0
Observed Water Level (m)

165

Decision Risk Scores vs. Observed Water Level for Autumn

T
=&~ E5R Increase Risk
== FR Increase Risk
400 —— ESR Decrease Risk
—#&— FR Decrease Risk
—#— ESR Maintain Risk
—¥— FR Maintain Risk
LRWY
300 1 -== HRW
=== Mean Flood Level
E
3
g &
& 200 4
100 1
o
63.0
Observed Water Level im)
Decision Risk Scores vs. Observed Water Level for Winter
=&~ E5R Increase Risk
== FR Increase Risk
200 4 =&~ E5SR Decrease Risk
—a&— FR Decrease Risk
—#— ESR Maintain Risk
~¥= FR Maintain Risk
LRWY
150 + === HRW
=== Mean Flood Level
%ﬁ
3
g &
i 100 4
&0 4
D 4
Sperillen:
Decision Risk Scores vs. Observed Water Level for Spring
[] []
| 1 : il 10 —— ESRIncrease Risk
300 1 1 —+— FR Increase Risk
=@~ ESR Decrease Risk
—#— FR Decrease Risk
250 1 Ll 08 —4— ESR Maintain Risk
~¥— FR Maintain Risk
LRW
200 { H === HRW
06 === Mean Flood Level
-
o
g 150 4 o
- 04
100 A
0z
50
0.0

1495 150.0
Observed Water Level (m)

166

Frequency

Frequency

Freguency

Decision Risk Scores vs. Observed Water Level for Summer

ESR Increase Risk

300 4

250 1

=3
=]

]
=)

100 1

149.0 149.5 150.0
Observed Water Level (m)

Decision Risk Scores vs. Observed Water Level for Autumn

10
FR Increase Risk
ESR Decrease Risk

ESR Maintain Risk

——
i
-
—a&— FR Decrease Risk
+
-

FR Maintain Risk
LRWY
=== HRW

06 === Mean Flood Level

Risk

F0o

; =&~ E5R Increase Risk
300 4 == FR Increase Risk
=&~ E5SR Decrease Risk
—a&— FR Decrease Risk
| —#— ESR Maintain Risk
=0 ~¥= FR Maintain Risk
LRWY
=== HRW
200 1 -=- Mean Flood Level
]
150 =
100 1
50 4

1495 150.0

Observed Water Level (m)

Decision Risk Scores vs. Observed Water Level for Winter

1495 150.0
Observed Water Level (m)

10 = ESRIncrease Risk
== FR Increase Risk
=&~ E5SR Decrease Risk
—a&— FR Decrease Risk

0.8 —#— ESR Maintain Risk
~¥= FR Maintain Risk

LRW
=== HRW
0.6 === Mean Flood Level
3
]
=

04

0z

00

167

Randsfjorden:

Decision Risk Scores vs. Observed Water Level for Spring

—&— E5R Increase Risk
—+— FR Increase Risk
—#— ESR Decrease Risk
~#— FR Decrease Risk
-
——

ESR Maintain Risk
FR Maintain Risk
LRWY

=== HRW

=== Mean Flood Level

Risk

Freguency

152.5 153.0 1535
Observed Water Level (m)

Decision Risk Scores vs. Observed Water Level for Summer

—e— E5R Increase Risk
—=— FR Increase Risk
—&— ESR Decrzase Risk
400 1 &~ FR Decrease Risk
—#— ESR Maintain Risk
¥ FR Maintain Risk
LRW
300 4 === HRW
=== Mean Flood Level
:
e
g &
i 3pg 4
100 A
o
Observed Water Level (m)
Decision Risk Scores vs. Observed Water Level for Autumn
350 | —&— ESR Increase Risk
—+— FR Increase Risk
=@~ ES5R Decrease Risk
300 4 —a&— FR Decrease Risk
—4— ESR Maintain Risk
~¥— FR Maintain Risk
250 LW
-=-=- HRW
=== Mean Flood Level
el
= 200
E- =4
fred
150
100 A
50
0

Observed Water Level (m)

168

Freguency

Decision Risk Scores vs. Observed Water Level for Winter

1330 1335
Observed Water Level (m)

Risk

ESR Increase Risk
FR Increase Risk
ESR Decrease Risk
FR Decrease Risk
ESR Maintain Risk
FR Maintain Risk
LEW

HRW

Mean Flood Level

169

Appendix 23:
Sensitivity_Analysis.py

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
Example lake name and current conditions
lake_name = "Randsfjord"
season = "Autumn”
Load combined dataset
combined_df = pd.read_csv(f/Users/simen/Desktop/Complete Master/01 Data/Cleaned
Data/combined_df {lake_name} {season}.csv')
seasonal_adjustment_flood_range = np.linspace(combined_df['Seasonal Adjustment Factor for Flood (S_flood)].mean() *
0.9,
combined_df['Seasonal Adjustment Factor for Flood (S_flood)].mean() * 1.1, 5)
seasonal_adjustment_energy_range = np.linspace(combined_df['Seasonal Adjustment Factor for Energy (S_energy)’]-mean()
*0.9,
combined_df['Seasonal Adjustment Factor for Energy (S_energy)].mean() * 1.1, 5)
density_adjustment_flood_range = np.linspace(combined_df['Flood Density Adjustment (H)].mean() * 0.9,
combined_df['Flood Density Adjustment (H)].mean() * 1.1, 5)
density_adjustment_energy_range = np.linspace(combined_df['Energy Density Adjustment (H)'].mean() * 0.9,
combined_df['Energy Density Adjustment (H)].mean() * 1.1, 5)

Initialize results list

sensitivity_results =]

Perform sensitivity analysis
for seasonal_adjustment_flood in seasonal_adjustment_flood_range:
for seasonal_adjustment_energy in seasonal_adjustment_energy_range:
for density_adjustment_flood in density_adjustment_flood_range:
for density_adjustment_energy in density_adjustment_energy_range:
for index, row in combined_df.iterrows():

Extract baseline values
baseline_ESR = row['Baseline Energy Shortage Risk’]
baseline_FR = row['Baseline Flood Risk’]
energy_density _adjustment = density_adjustment_energy
flood_density_adjustment = density_adjustment_flood
energy_capacity_factor = row['Energy Capacity Factor (C)']
flood_capacity_factor = row['Flood Capacity Factor (C)]
energy_penalty_factor = row['Energy Penalty Factor (R)']
flood_penalty_factor = row['Flood Penalty Factor (R)']
seasonal_adjustment_factor_energy = seasonal_adjustment_energy

seasonal_adjustment_factor_flood = seasonal_adjustment_flood

170

Calculate final risk scores

final_ESR = baseline_ESR * energy_density_adjustment * energy_capacity_factor * energy_penalty factor *
seasonal_adjustment_factor_energy

final_FR = baseline_FR * flood_density_adjustment * flood_capacity_factor * flood_penalty factor *

seasonal_adjustment_factor_flood

sensitivity_results.append({
'Observed Water Level": row['Observed Water Level,
‘Seasonal Adjustment Factor for Flood': seasonal_adjustment_flood,
‘Seasonal Adjustment Factor for Energy": seasonal_adjustment_energy,
'Flood Density Adjustment': density_adjustment_flood,
‘Energy Density Adjustment': density_adjustment_energy,
'Final Energy Shortage Risk (ESR)": final_ESR,
'Final Flood Risk (FR)": final_FR
b

Convert results to DataFrame
sensitivity _df = pd.DataFrame(sensitivity_results)
Plot sensitivity analysis results for seasonal adjustment factors
plt.figure(figsize=(12, 6))
for factor in ['Seasonal Adjustment Factor for Flood', 'Seasonal Adjustment Factor for Energy']:
factor_df = sensitivity_df.groupby(factor).mean().reset_index()
plt.plot(factor_dfffactor], factor_df['Final Energy Shortage Risk (ESR), label=f'Average ESR - {factor}', marker='0")
plt.plot(factor_dfffactor], factor_df['Final Flood Risk (FR)'], label=f'Average FR - {factor}', marker="x')
plt.xlabel('Factor Value')
plt.ylabel('Average Risk’)
plt.title("Sensitivity Analysis of Risk Factors: Seasonal Adjustment Factors’)
plt.legend()
plt.grid(True)
plt.show()
Plot sensitivity analysis results for density adjustments
plt.figure(figsize=(12, 6))
for factor in ['Flood Density Adjustment’, 'Energy Density Adjustment']:
factor_df = sensitivity_df.groupby(factor).mean().reset_index()
plt.plot(factor_dfffactor], factor_df['Final Energy Shortage Risk (ESR), label=f'Average ESR - {factor}', marker='0")
plt.plot(factor_dfffactor], factor_df['Final Flood Risk (FR)"], label=f'Average FR - {factor}', marker="x)
plt.xlabel('Factor Value')
plt.ylabel("‘Average Risk’)
plt.title("Sensitivity Analysis of Risk Factors: Density Adjustments'’)
plt.legend()
plt.grid(True)
plt.show()
Local Sensitivity Analysis: Plot each factor separately
for factor in ['Seasonal Adjustment Factor for Flood', 'Seasonal Adjustment Factor for Energy', 'Flood Density Adjustment’,
‘Energy Density Adjustment']:

171

plt.figure(figsize=(12, 6))
factor_df = sensitivity_df.groupby(factor).mean().reset_index()
plt.plot(factor_dfffactor], factor_df['Final Energy Shortage Risk (ESR), label=f'Average ESR - {factor}', marker='0")
plt.plot(factor_dfffactor], factor_df['Final Flood Risk (FR)'], label=f'Average FR - {factor}', marker="x')
plt.xlabel(f'{factor} Value")
plt.ylabel('‘Average Risk’)
plt.title(f'Local Sensitivity Analysis of {factor}')
plt.legend()
plt.grid(True)
plt.show()
Global Sensitivity Analysis: Simultaneously vary multiple parameters
Compute mean and standard deviation of final risks for each combination
grouped_sensitivity _df = sensitivity _df.groupby(['Seasonal Adjustment Factor for Flood', 'Seasonal Adjustment Factor for
Energy', 'Flood Density Adjustment’, 'Energy Density Adjustment’]).agg({'Final Energy Shortage Risk (ESR)": ['mean’, 'std1],
'Final Flood Risk (FR)": ['mean’, 'std"]}).reset_index()
Plot global sensitivity analysis results
plt.figure(figsize=(12, 6))
plt.errorbar(grouped_sensitivity_df['Seasonal Adjustment Factor for Flood'], grouped_sensitivity _df['Final Energy Shortage
Risk (ESR)']['mean'], yerr=grouped_sensitivity _df['Final Energy Shortage Risk (ESR)]['std'], label="ESR - Seasonal
Adjustment Factor for Flood', fmt="0")
plt.errorbar(grouped_sensitivity_df['Seasonal Adjustment Factor for Energy'], grouped_sensitivity df['Final Energy Shortage
Risk (ESR)']['mean'], yerr=grouped_sensitivity _df['Final Energy Shortage Risk (ESR)]['std"], label="ESR - Seasonal
Adjustment Factor for Energy’, fmt="x")
plt.errorbar(grouped_sensitivity_df['Flood Density Adjustment'], grouped_sensitivity df['Final Flood Risk (FR)]['mean’],
yerr=grouped_sensitivity_df['Final Flood Risk (FR)]['std’], label="FR - Density Adjustment for Flood', fmt="s")
plt.errorbar(grouped_sensitivity_df['Energy Density Adjustment’], grouped_sensitivity_df['Final Flood Risk (FR)]['mean’],
yerr=grouped_sensitivity_df['Final Flood Risk (FR)]['std"], label="FR - Density Adjustment for Energy', fmt="d")
plt.xlabel("Parameter Value')
plt.ylabel('Average Risk with Std Dev')
plt.title('Global Sensitivity Analysis of Risk Factors’)
plt.legend()
plt.grid(True)
plt.show()

172

Appendix 24 External Reports and Sources

173

—— —— —

7 Lo =7,
17 _Ee 5 574 7B e

Tillatelse

for
Foreningen til Randsfjords Regulering
TIL FORTSATT REGULERING AV RANDSFJORDEN

(MEDDELT VED REGIERINGENS RESOLUSION AV 12, JANUAR 1993)

Ved regjeringens resolusjon av 12, januar 1995 er bestemnt:

«l. I medhold av vassdragsreguleringsioven av 14, desember 1917 nr. 17 gis Foreningen til Randsfjords Regu-
lering konsesjon for fortsatt regulering av Randsfjorden pi de vilkar som er tatt inn i Merings- og energidepar-

tementels foredrag av 12, januar 1995,
2. Det fastsettes mangvreringsreglement i samsvar med det inntatte utkast i foredraget.s

174

i
el NVE
Norges vassdrags-
og energidirektorat

Olje- og energidepartementet
Postboks 8148 Dep
0033 0SLO

Var dato: 14.12.2022
Var ref.: 200800384-42 Oppgis ved henvendelse
Deres ref.:

Foreningen til Randsfjords Reguleringen - Endelig fastsettelse av
mangvreringsreglement for Randsfjorden - NVEs innstilling

NVE anbefaler at mangvreringsreglement for reguleringen av Randsfjorden justeres i
trad med regulantens forslag. Regulant er Foreningen til Randsfjords Regulering
(FRR). NVE har i hovedsak sett pa forholdene til storgrret samt flomproblematikk i
var vurdering, og balansert dette opp mot landskap, naturmangfold, friluftsliv,
landbruk og ev. ulemper for regulant. Vi anbefaler at minstevannferingen i Randselva
pa 20 m3/s skal gjelde for hele aret og at det innferes en bestemmelse om maksimal
vannferingsreduksjon (maks 4 m3/s hver time) ved vannferinger under 32 m3/s. For a
tilpasse mangvreringsreglementet i forhold til flomproblematikk anbefaler vi a
forskyve tidspunktet for 3 na LRV fra 10. april til 1. april, samt ta i bruk den definerte
«selvreguleringskurven» (vassdraget naturlige flomvannfering) ved avledning av
flommer.

Sammendrag

Tillatelse til fortsatt regulering av Randsfjorden ble gitt til Foreningen til Randsfjords
regulering (FRR) ved kgl.res. av 12.januar 1995. Med konsesjonen fulgte et prevereglement,
som skulle tas opp til ny vurdering etter en driftstid pa 5 ar. | den forbindelse har
Foreningen til Randsfjords Regulering utarbeidet forslag til nytt manavreringsreglement.
Forslaget har veert kunngjort og dokumentet med vedlegg vaert ute pa offentlig hering.
Etter forste hgringsrunde ble det ytret sterke gnsker om ytterlige undersgkelser og
kunnskap om vassdraget. Dette ble gjennomfart og forslag om nytt
mangvreringsreglement ble justert litt og sendt ut pa ny offentlig hering med
tilleggsundersokelsene.

FRR har i hovedsak foreslatt fire endringer fra dagens reglement. For a bedre forholdene til
storgrret, har FRR foreslatt at minstevannfgringen i Randselva pa 20 m3/s skal gjelde for
hele dret og at det innfgres en bestemmelse om maksimal vannfgringsreduksjon (maks 4
m?3/s hver time) ved vannferinger under 32 m3/s. For a tilpasse mangvreringsreglementet i
forhold til flomproblematikk foreslar FRR a forskyve tidspunktet for 3 na LRV fra 10. april il
1. april, samt ta i bruk den definerte «selvreguleringskurven» (vassdraget naturlige
flomvannfering) ved avledning av flommer.

E-post: nve@nve.no, Postboks 5091, Majorstuen, 0301 OSLO, Telefon: 22 95 95 95, Internett: www.nve.no
Org.nr.: NO 970 205 039 MVA Bankkonto: 7694 05 08971

175

L i
for

mangvrering av reguleringsdammen for Sperillen.
Approbert ved kgl. resolusjon av 7de mai 1926.

§ 1.

Nér vannet om viren begynner & slige, skal alle ndler veere optatt og bukkene
holdes nedlagt, inntil virflommen er avlepet, og vannstanden er gitt ned til 4,70 m. oven-
for dammen (154,70 m. 0. h.).

Nir vannstanden synker under denne heide, reises hurtigst bukkene fra slusen
utover til midtpillaren, og nilene settes litt efter litt og s& tett som mulig under iakttagelse
av, at vannstanden i Sperillen ikke stiger over regulert vannstand, motsvarende 4,70 m.
ovenfor dammen.

Eftersom vannstanden viser tilbgielighet til & ville synke, reises bukkene ogsa fra
ostre landkar — en og en — og nilene settes tett efter hvert, det siste av hensyn til temmeret,
som ellers kan ville g under lensen.

§ 2

Tapning utover sommeren og hesten foregir efler brukseierforeningens bestemmelse
under hensyntagen til bedriftene og flotningen, til hvis fremme (il Honefoss avgis del nod-
vendige vann, idet den for dampskibstrafikken til Serum nedvendige minimumsvannstand
sokes opretholdt, sd lenge sddan trafikk ikke hindres av is eller for liten vannfering i
Bzgna elv. Tapningen mid imidlertid ikke skje i sidan utstrekning, at slusen ikke kan
passeres av fartoier som de hitlil i Adalsvassdraget almindelig benyttede grundtgiende
motorbéter og foringsbéter.

§ 3.
Vannstanden mi ikke overstige den lillatte reguleringsheide 4,70 m. ovenfor dammen,
uten at den hele reguleringsdam er nedlagt.

§ 4.
Tapningen skjer sividt mulig jevnt utover vinteren efter brukseierforeningens be-
stemmelse. Herunder ber sividt mulig iakltas, at alt inndemmet vann er ultappet innen
utgangen av april.

§ 5.
Pa sen- og helligdager vil den regulerle vannforing i tiden fra Iste desember til
1ste mai kunne reduceres, hvis man ikke derved paferer de i vassdraget inleresserte skade
eller ulempe.

§ 6.

Dam- og slusevokteren, som ma vere norsk stalsborger, ansetles av brukseier-
foreningens bestyrelse. Ansellelsen ma approberes av Arbeidsdeparteraentet. Han har for-
ovrig & foreta observasjoner over vannstanden ovenfor og nedenfor dammen, nedber og
temperatur, hvilke daglig innferes i en dertil innrettet journal. I denne blir ogsa & innfere,
hvordan dammen manegvreres.

Hver 1ste og 15de i méneden lilstiller han vassdrags- og flatningsdirektoren og for-
mannen i Foreningen til Bagnavassdragets regulering en bekreltet utskrift av journalen.

Ennvidere har han 4 pise, at sluse- og damanlegg til enhver tid er i forsvarlig
stand, spesiclt, at der ikke finnes lekasjer i grunndammen, eller finner utgravning sted.
Inntreffer sidant, har han uopholdelig & underrette brukseierforeningens formann eller
andre foresatte herom, samt pa egen hind efter beste evne soke & utbedre skaden og fore-
bygge videre sidan. Tilfeller av den art blir & anmerke i journalen. Endelig har han
uopholdelig 4 anmelde overtredelse av gjeldende damreglement for vassdrags- og fletnings-
direktoren.

Ved falsk journalfersel eller ved grovt brudd pi reglementet kan dam- og sluse-
vokteren avskjediges av Arbeidsdepartementet eller av brukseierforeningens bestyrelse.

Dam- og slusevokteren ma ikke vare fraveerende uten efter permisjon. Sédan
meddeles for inntil 14 dager av brukseierforeningens formann. Permisjon for lengere tid
meddeles av den samme, men approbasjon fra vassdrags- og fletningsdirektgren, eller den
han derlil bemyndiger, blir da & innhente. Ved hver permisjon ma godkjent stedfor-
treder stilles.

87
Forandringer i dette reglement kan kun forelas av Kongen, efterat fellesflotnings-
foreningene, brukseierforeningen og statsbanenc samt de interesserte kommuner har hatt
anledning til & ultale sig.

176

TR T
for

manevrering av reguleringsdammen for Sperillen.
Approbert ved kgl resolusjon av 7de mai 1628,

g1

Nir vannet om vhren begynner & slige, skal alle nhler vimre optatt og bukkene
holdes nedlagt, Inntil virflommen er avlepet, og vannatanden er ghtt ned til 4,70 m. oven-
for dammen (1549 m. o h)

Nir vanostanden synker under denne heide, relses hurligst bukkene fra slusen
ulover Ul midipillares, of nhlene settes litt efter it og sd tett som mulig under lakitagolse
av, st vanmtanden § Sperillen ikke stiger over regulert vannstand, motsvarende 470 m,
ovenfor dammen.

Eftersom vanostanden viser tilbelelighet Ul & ville synke, reises bukkene ogsd fra
ostre landkar — en og en — og ndlene settes tetl efler hvert, det siste av hensyn Ul tommeret,
swom ellers kan ville g4 under lensen,

g2
Tapoing vlover sommeren og hesten foreghr efter brukseierforeningens bestemmelse
under hensyntagen til bedriflene og flotaingen, Ul hyvis fremme Ul Honefoss avgis det nod.
veodige vann, idet den for dampakibsteafikken 1l Serom nedvendige minimumsvannstand
sokes opretholdt, s8 lenge shdan trofikk ikke hindres av is eller for liten vannfering |
Bagna elv. Tapningen md (midlertid (kke skje | sddon utstrekning, ot slusen fkke kan
passeres av farteler som de hitil | Adalsvassdruget slmindelig benyitede grundighende
molorbdler og loringsbiter.
§a

Vanastanden ma (kke overstige den tillatte reguleringsheide 4,10 m, ovenfor dammen,
ulen st den hele reguleringsdam er nedlagt,

g1
Tapaingen skjer stvidt muliy jevnl utover vinteren efter brukselerforeningens be.
slemmelse. Herunder ber sdvidt mulig fokitas, at alt inndemmet vann er ultappet (nnen

uigengen av opril.
86

PA son- og helligdager vil den regulerte vannforing | tiden fra 1sle desember til
Iste mal kuane reduceres, hvis man ikke derved paforer de i vassdroget interesserte skode
eller ulempe.

§6

Dam- og slusevokleren, som md veere norsk stalsborger, onseties nv brukseler
foreningens bestyrelse. Ansetlelsen mb approberes uv Avbeldsdepartementet, Hun har for-
ovrig & forela observasjoner over vannstonden ovenfor og nedenfor dammen, nedbor og
temperatur, hvilke doglig innfores § en dertil lonrettet journal, 1 denne blir ogsd & innfore,
hvordan dammen manovreres.

Hver 1ste og 15de | mineden tlstiller han vassdrugs- oy Notningydirektoren og for-
manoen | Foreningen tl Bumgnavassdragels regulering en bekrellet utskrift av journalen,

Enavidere har han 4 plse, at sluse- og damanlegg til enhver tid er i forsvarlig
stand, spesicll, at der ikke finnes lekasjer i grunndammen, eller floner uigravning sted.
Inntreffer sidant, har bhan wopholdelig & underretle brukseierforeningens formann eller
andre foresalte herom, samt pA egen hind efter beste evne soke & utbedre skaden og fore-
bygge videre shdan. Tilfeller av den art blir & anmerke | journalen. Endelig har han
vopholdelig & anmelde overtredelse av gjeldende damreglement for vassdrags- og otnings-
direktoren.

Ved falsk journalfersel eller ved grovt brudd ph reglementet kan dam- og sluse-
vokieren avskjediges av Arbeldadepartementet eller av brukseierforeningens bestyrelse,

Dam- og slusevokteren mb ikke vemre [raverende uten efter permisjon. Sddan
meddeles for lnntil 14 dager av brukseierforeningens formann. Permisjon for lengere tid
meddeles av den samme, men approbasjon fro vassdrugs- og flotningsdirektoren, eller den
han dertil bemyadiger, blir da b inchente. Ved hver permisjon mb godkjent stedfor-
treder stilles,

§7

Forandringer | dette reglement kan kun foretas av Koogen, efterat fellesflotnings-
foreningene, brukseierforeningen og statsbanenc samt de interesserte kommuner har hatt
anledning til & uitale sig.

177

N L. DO |, kG [[03

at -t

oy’
DET KONGELIGE NAERINGS- OG ENERGIDEPARTEMENT
KOMTOR: PLOENS GT. B - TUF. 23 34 9000 - TELEFAX T2 34 §5 2585
POSTADRESSE: POSTBOKS 8148 DEP,, 33 O5LO - TELEKS 21438 OEDEE I ;=
RSN G lagas - /
Morges vassdrags- og energiverk AVD [SAKSBEH, |
Postboks 5091 Majorstua
0301 Oslo vi/ugs LLAPR1SSK
ARKIVNR. L
HEKLEGGES L
Dreves red WiF rel. (bes oppgil vid sua) rta F v ARs cuzs
MWOE 93/10254 EV @] o

FORENINGEN TIL TYRIFJORDS REGULERING. REVISION AV
MANGVRERINGSREGLEMENT FOR TYRIFIORDEN

Ved kongelig resolusjon av 8. april 1994 ble bestemt;
" | medhold av lov om vassdragsreguleringer av 14, desember 1917 nr. 17 endres
mangvreringsreglementet for reguleringsdammen for Tyrifjorden i henhold til

forslag inntatt i Narings- og energidepartementets foredrag av 08.04.1994. "

N/ Vedlagt folger kopi av departementets bemerkninger, samt det oppdaterte
mangvreringsreglement,

/ Saksdokumentene returneres vedlagt.

Etter fullmakt

é{;ﬁg’éﬁ‘ﬁ"@“ J 4

ald Solli

(FTRMNVE SAM)

178

N L. DO |, kG [[03

at -t

oy’
DET KONGELIGE NAERINGS- OG ENERGIDEPARTEMENT
KOMTOR: PLOENS GT. B - TUF. 23 34 9000 - TELEFAX T2 34 §5 2585
POSTADRESSE: POSTBOKS 8148 DEP,, 33 O5LO - TELEKS 21438 OEDEE I ;=
RSN G lagas - /
Morges vassdrags- og energiverk AVD [SAKSBEH, |
Postboks 5091 Majorstua
0301 Oslo vi/ugs LLAPR1SSK
ARKIVNR. L
HEKLEGGES L
Dreves red WiF rel. (bes oppgil vid sua) rta F v ARs cuzs
MWOE 93/10254 EV @] o

FORENINGEN TIL TYRIFJORDS REGULERING. REVISION AV
MANGVRERINGSREGLEMENT FOR TYRIFIORDEN

Ved kongelig resolusjon av 8. april 1994 ble bestemt;
" | medhold av lov om vassdragsreguleringer av 14, desember 1917 nr. 17 endres
mangvreringsreglementet for reguleringsdammen for Tyrifjorden i henhold til

forslag inntatt i Narings- og energidepartementets foredrag av 08.04.1994. "

N/ Vedlagt folger kopi av departementets bemerkninger, samt det oppdaterte
mangvreringsreglement,

/ Saksdokumentene returneres vedlagt.

Etter fullmakt

é{;ﬁg’éﬁ‘ﬁ"@“ J 4

ald Solli

(FTRMNVE SAM)

179

	1. Introduction
	Importance of risk management in Water and Energy Management
	Research Objective and Scope
	Introduction to Drammensvassdraget Region
	Key Reservoirs
	Tyrifjorden
	Sperillen
	Randsfjorden

	Powerplants in Drammensvassdraget

	2. Theoretical Framework
	3. Research Design
	4. Exploratory Data Analysis
	Dataset
	Correlation
	Descriptive Statistics
	Statistical Analysis
	Tyrifjorden
	Time-Series Analysis
	Statistical Measures and Flood Incidence

	Sperillen
	Time-Series Analysis
	Statistical Measures and Flood Incidence

	Randsfjorden
	Time-Series Analysis
	Statistical Measures and Flood Incidence

	Summary

	Seasonal Analysis
	Tyrifjorden
	Time-Series and Seasonal Fluctuations
	Flood Incidence
	Seasonal Trend

	Sperillen
	Time-Series and Seasonal Fluctuations
	Variation and Flood Incidence
	Seasonal Trend

	Randsfjorden
	Time-Series and Seasonal Fluctuations
	Flood Incidence
	Seasonal Trend

	Multimodal Analysis
	Summary of Exploratory Data Analysis

	5. Methodology
	Understanding the decision-support framework.
	Formula
	Formula Preparation

	6. Development and Design of the Formula
	Historical and Extended Density Adjustment (D)
	Current Reservoir Capacity (C)
	Regulatory Constraints (R)
	Season Factor (S)
	Baseline Flood and Energy Shortage Score and Final Risk Scores
	Decision Factor
	Priming the variables
	Test runs
	Single_Decision.py
	Decision_for_loop.py

	7. Sensitivity Analysis
	Seasonal Adjustment
	Observations

	Density Adjustment
	Observations

	Global Sensitivity
	Observations

	Key Findings

	8. Final Decision-Support Formula
	9. Summary and Discussion
	Final thoughts and Future Directions

	10. Bibliography
	11. AI Disclosure
	12. Python Note
	13. Dataset Downloading
	14. Appendix

