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ABSTRACT 

Rigid horizontal spools provide the connection between flowlines and subsea structures. A 

typical subsea development may consist of a number of wells and subsea structures, which 

each need to be tie-in with the help of subsea spools. The spool design consequently need to 

be highly reliable as  they also serve an important function of accommodating displacements 

caused by pipeline expansion to avoid damage to the connecting structures, in addition to 

forming the connection between pipelines and subsea structures such as manifolds and 

templates. Spools also have to accommodate tolerances for metrology, fabrication and 

installation. Loads imposed on the spool connecting hubs due to misalignments during tie-in 

as well as the pipe expansion set the limitations for the spool design. Different spool shapes, 

provide different levels of flexibility.  The main objective of this thesis is to design horizontal 

subsea spools at a water depth of more than 1000m that is able to accommodate a 1m pipeline 

expansion whilst complying with the limitations set by the hub capacities. An analysis was 

carried out for different spool shapes in order to judge their ability to accommodate the 

imposed loads.  

The minimum spool size for the three spool configurations was determined by the use of the 

finite element program ANSYS 15.0. The limiting design criteria were found to be the hub 

capacities and the spools were optimized based on this limitation. The wall thickness of the 

spools complies with the limit states described in DNV-OS-F101. The spools were analysed 

through a series of six load steps. In the first load step, the spool self-weight was applied, 

followed by a tie-in sequence in the second load step. An evaluation was made to investigate 

which combination of metrology and fabrication tolerances were governing. Operating and 

design conditions were subsequently applied.  

The workings of DNV standard for pipeline design for wall thickness design of spools along 

with other design considerations such as installation, fabrication and operational issues is 

presented. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 BACKGROUND 

Today the oil and gas industry focuses largely on developing subsea installations for 

processing and transportation of oil and gas. In the early 1970s the concept of subsea field 

development was conceptualized by placing wellheads and production equipment on the 

seabed and in the past 40 years subsea systems have moved from manually operated systems 

at shallow depths to remote controlled systems at water depths up to 3000m, assisted by 

complex design and installation developments (Golan & Sangesland, 1992). 

 Marginal fields or fields at deep water that were previously thought to be either technically 

unfeasible or uneconomical can now be produced due to developments in the technology of 

subsea production systems (Yong & Qiang , 2012). This has resulted in a need for subsea 

connection arrangements such as spool pieces that can be installed and operated without the 

assistance of divers and that can provide safe and reliable production of hydrocarbons.  

Pipelines are the blood vessels of the oil and gas production system. They transport 

hydrocarbons to and from both offshore and onshore facilities and connect the different 

subsea components. Pipelines subject to high temperatures from the internal contents will 

expand and may lead to issues such as pipeline buckling and pipeline walking in addition to 

the risk of damage to the structures connected to the pipeline that cannot accommodate such 

displacements. To make up the final connection between the pipelines and the connecting 

structures such as manifolds and templates, spool pieces are used. Spools are essentially a 
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short piece of pipe, designed to make up for installation misalignments between the 

connecting structures but also serves a very important function by absorbing pipeline 

expansion. End expansion has become a significant issue in a number of deepwater 

developments and reliable tie-ins are vital for a subsea system (Bruton, Carr, Crawford, & 

Poiate, 2005). A typical deepwater development may consist of several wells, and structures 

connected by numerous pipelines where each connection needs to be made by the use of tie-in 

spools.  

Spools can be shaped into a large range of geometries and shapes. The flexibility of the spool 

to be able to accommodate the applied displacement caused by the pipe expansion depends on 

the length of the individual legs and the overall shape of the spool. The overall size and shape 

of the spools is therefore an important factor when it comes to deck space for the individual 

installation vessels and the ease of installation. This thesis aims to design spools and assess 

different geometries and sizes which are all subject to the same pipeline expansion in order to 

see if altering the geometry can lead to smaller and more compact spools.  

The design life of a spool is normally 25 years and in that time it will experience varying 

loading conditions both in terms of design loads such as the working pressures and the 

operational temperatures but also loads imposed by pipeline expansion and hydrodynamic 

forces. In addition, the designed must also consider loads applied to the spool during 

processes such as installation, tie-in and shutdown. The life-cycle diagram below shows the 

different stages in the spool life cycle, which need to be addressed in the design of spools.
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1.2 SCOPE AND OBJECTIVES.  

The main objective of this thesis was to design horizontal subsea spools at water depths of 

more than 1000m that is able to accommodate a 1m pipeline expansion whilst complying with 

the limitations set by the connection hub capacities. An analysis was carried out for different 

spool shapes in order to judge their ability to accommodate the imposed loads. The analysis is 

limited to rigid horizontal spools.  

The spools are designed and studied with the help of finite element analysis. All relevant steps 

in the spool life cycle are considered and discussed. An ANSYS code was generated in order 

to run the analysis with all the required load steps. The relevant load steps included in the 

analysis of the spools such as external and internal loads as well as the imposed expansion are 

applied at different load steps. Due to misalignments between the connecting hubs, spools 

need to be tested with the multiple geometrical configurations associated with the tolerances. 

The main tasks covered in the thesis are: 

1. Presentation of pipelines and the workings of pipeline expansion. 

2. The purpose of subsea spools is explained along with descriptions of different types of 

spools. 

3. Present the relevant equations and methodology for spool design according to DNV-

OS-F101 

4. Discussion on the relevant design considerations that apply for spools and the 

important design issues related to fabrication and installation.  

5. Modeling and FE analysis of three different spool geometries. Tie-in analysis, 

including fabrication and metrology tolerances were considered as well as operating 

and design conditions including a 1 meter pipeline expansion. System test and 

shutdown conditions were also included.  

6. Verify that the loads at the spool ends are within the limiting hub capacities and that 

the assigned wall thickness comply with the criteria set by DNV-OS-F101. 

The analysis does not include: 

1. Stroking of the spools is not included in the tie-in analysis 

2. Hydrodynamic loads 

3. Fatigue analysis of the spool  

4. Structure settlement 
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1.3 STRUCTURE OF REPORT 

The report structure is as described below: 

Chapter 1 provides background information for the thesis topic along with objectives 
and scope.  
 

Chapter 2 gives relevant theory on pipelines and pipe components as well as relevant 
equations and discussion on the stresses and strain experiences by the pipe during 
operation.  The concept of pipeline expansion and expansion analysis is presented.  

 

Chapter 3 discusses tie-in spools and its main functions. This includes a presentation 
of different types of spools. 
 
Chapter 4 presents the principles and workings of wall thickness design for spools 
based on DNV-OS-F101: Submarine Pipeline Systems 
 
Chapter 5 presents the relevant design considerations based on the different stages in 
the spool design life. This section describes the workings and importance of accurate 
subsea metrology, as well as important design considerations during installation and 
operating stages.  
 
Chapter 6 provides the methodology of the thesis including a description of the 
workings of finite elements analysis. The design procedure and load steps are 
presented along with a description of the finite elements used in the analysis. The 
different spool geometries and layout are also presented. 
 
Chapter 7 gives a presentation of the results and a discussion on the validity of the 
model as well as a sensitivity analysis. The different spool geometries are discussed 
and compared.  
 
Chapter 8 concludes on the main findings and gives a summary of the results based 
on the set objective 
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CHAPTER 2 

PIPELINES AND PIPE EXPANSION 

 

A subsea assembly for oil and gas production can range from complicated arrangements with 

several wells linked to a template or tied-back to a manifold as shown to single satellite wells 

linked to a fixed platform (American Petroleum Institute, 2014). Pipelines transport the oil 

and gas and other production fluids between facilities and forms the backbone of any subsea 

production system.  

The following section gives a description of the different components of a subsea pipeline and 

explains the concept of pipeline expansion and expansion analysis. 

 

2.1 SUBSEA PIPELINES 

Pipelines have a wide range of applications in offshore developments and they vary 

significantly in size and length depending on their application, location and interface with 

other facilities (Yong & Qiang, 2005). Subsea pipelines are used for transportation of crude 

oil and gas from subsea wells and offshore process facilities but also for re-injection of water 

and gas into the reservoirs. Also, pipelines are operating at greater and greater depths meaning 

they are exposed to high levels of external pressure, which needs to be addressed in the 

design. (Mørk, Collberg, Levold, & Bruschi, 1999). 



14 

 

 

Depending on their applications pipelines is subject to a range of types and levels of loading 

which give rise to several design issues and challenges. For pipelines operating at a high 

internal pressure, effects of temperature change are important. High stresses may arise if the 

pipe is prevented from expanding causing the pipe to break, buckle or bend excessively 

(Kishawy & Gabbar, 2010).  Expansion of the pipeline due to the temperature changes may 

be severe enough to destroy supports. Is such case, spool pieces are installed at the pipe ends 

to provide flexibility.  

Subsea pipelines operate under challenging conditions and in order for them be able to 

maintain safe and serviceable, a number of components are in place to protect the pipe steel. 

A simple pipeline consists of sections of steel tube welded together using arc welding (Palmer 

& King, 2008). The inner diameter (ID) of the pipe is determined by requirements set by the 

flow assurance and the wall thickness of the pipe is determined based on the imposed design 

loads, such as the pressure difference between the inside and the outside of the pipe.  

 

2.2 PIPE MATERIAL  

The pipe steel sections are made up of carbon-manganese steel and must have high strength 

while retaining ductility, facture toughness and weldability. High strength steels are achieved 

by using low carbon steels which are micro-alloyed to achieve greater resistance against crack 

growth (Palmer & King, 2008). 

Sections of pipe are welded together on a lay barge to form a pipeline. High costs are 

associated with the fabrication of the pipeline and the steels weldability is crucial. As a rule of 

thumb, high strengths steels are more difficult to weld and therefore increase the lay barge 

cost (Yong & Quang , 2014). Higher strength steels are more expensive, but some saving may 

be made as the yield strength increases and the wall thickness requirement is reduced (Yong 

& Quang , 2014). 

On top of the nominal wall thickness, which is determined based on the design code 

standards, the wall thickness is normally increased slightly to account for corrosion and 
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fabrication allowances. For sections of a pipeline that is bent, the bend radius also has 

limitations set by processes such as pigging and must comply with the applied stresses.  
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2.2  PIPE COMPONENTS 

When pipelines are operating in challenging environments or are required to transport 

hydrocarbons under high temperature and pressure, coatings and insulation may be required 

for mechanical protection and insulation of the pipe. Coating is applied in order to protect the 

pipe from corrosive environments as well as providing protection against damage caused by 

abrasion and general wear and tear (Davis, 2001). Insulation may also be necessary in order to 

protect the pipe from rapid temperature fall, which may cause hydrate formation. Hydrate 

formations may eventually lead to blocked pipes and preventing the flow thought the 

pipelines (Mokhatab, Wilkens, & Leontaritis, 2007) 

 
Figure 1: Pipe components 

 

In cases where the pipe is exposed to severe corrosive conditions from the operating fluid, 

cladding may be used to provide protection. Cladding is a high-cost corrosion resistant alloy 

that is applied the inner wall of the pipe (Smith, 2012). Cladding is costly, but may provide 

additional benefits in terms of lowering requirements for processing of the well fluids so that 

they can be transported over greater distances without the need of drying. 
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2.3 PIPELINE EXPANSION 

Pipelines exposed to constant operating pressure and temperature will expand. As a simplified 

approach, we can think of a pipeline as a metal bar where the change in length due to change 

in temperature can be defines as: 

 ∆! = !!!!∆! (2.1) 

 

where !!is the coefficient of thermal expansion, !! is the original length and ∆!!is the 

temperature change. The coefficient of thermal expansion varies for different materials.  

 

In other words, changing temperature and pressure causes the pipeline material to expand and 

contract axially and radially. If the support conditions prevent the pipeline from expanding, 

axial stresses build up in the pipeline. The expansion of a pipeline can cause several issues, 

which need to be addressed in the design. Expansion of a pipeline may cause the pipe to 

buckle, either laterally if it is exposed to the seabed, or cause upheaval buckling if the pipeline 

is buried (Yong & Qiang , 2012)  

As the pipe expands, friction between the pipe surface and the seabed acts to try and resist the 

motion. Frictional resistance in the seabed prevents the pipe from expanding freely resulting 

in a build-up of axial compressive force in the pipeline (Fyrileiv & Collberg, 2005). If this 

compressive axial force is large enough, the natural tendency is for the pipeline to buckle to 

relieve the stress (Bruton, White, Cheuk, Bolton, & Carr, 2006). This uncontrolled buckling 

 

L0 

L1 

∆! 

 

Figure 2: Change in length of pipe due to changes in temperature 
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can have serious consequences for the integrity of the pipeline. Lateral buckling is not a 

failure mode but the stresses may exceed yield on the first load cycle and involve significant 

plasticity or it may lead to local buckling (Harrison, Brunner, & Bruton , 2003). In addition, 

regular shutdowns in normal operation may lead to very high stress cycles, eventually causing 

fatigue damage to the structure (Bruton, Carr, Crawford, & Poiate, 2005), and there is also a 

risk that the repeated contraction and expansion may lead to pipeline walking, causing 

additional stresses on the system (Yong & Quang , 2014). 

 
Figure 3: Pipeline end expansion 

 

The response of a pipeline with free ends lied on a flat seabed is not statically determinate but 

depends on the how the pipe is restrained from expanding (Palmer & King, 2008). During 

pipeline expansion, the frictional resistance in the seabed prevents the pipe from expanding 

freely, which results in a build-up of axial compressive force in the pipeline. The concept of a 

effective axial force, in contrast to the “true” axial force which is given by integrating the 

stresses over the pipe cross section, is often used to avoid the need for examining effects of 

external and internal pressures in detail (Fyrileiv & Collberg, 2005). The effective axial force 

replaces the integration of the pressure field by considering the forces acting on a closed 

section of the pipe, much like the Archimedes law. The effective axial force influences 

several structural responses and is considered when designing for lateral- and upheaval 

buckling, natural frequencies of spans and anchors forces as well as being expansion analysis 

(Fyrileiv & Collberg, 2005).  
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The frictional resistance increases from the free ends towards the middle of the pipe. At some 

point along the pipe, this compressive force equals the expansion force and the pipeline is 

restrained from further expansion (Fyrileiv & Collberg, 2005). This point is referred to as the 

virtual anchor point (VAP) (Yong & Quang , 2014) 

At the free ends where the pipe where the frictional resistance is not fully developed, the pipe 

longitudinal strain develops in the pipe and end expansion occurs. Lower friction between the 

pipe and the soil results in a smaller section of the pipe being restrained from expanding, thus 

increasing the end expansion. The maximum pipeline expansion is a result of the longitudinal 

strain caused by the temperature and pressure effects and the frictional resistance caused by 

the seabed. 

2.3.1 PIPELINE STRAINS 

Both pressure and temperature effects cause longitudinal stresses and strains in the pipe. For 

sections where the pipe is restrained from expanding due to the frictional resistance of the 

seabed, stresses build up in the pipe as mentioned. If the pipe section is free to move 

longitudinal strains at the ends contributes to the pipeline end expansion. The effects of 

pressure, temperature and soil-pipe interaction on pipeline expansion are discussed in the 

following section (Guo, Ghalambor, Lin Ran, & Song, 2014). 

Temperature))
As the temperature increase during operational conditions, thermal strains and stresses will 

arise in the pipeline. If the pipeline is unrestrained, it is free to expand and thermal strain will 

develop in the pipe. 

 
 !! =∝ ∆! (2.2) 

where  
∝  is the linear thermal expansion coefficient 
∆!       is the change in temperature between installation and operation 
 

PRESSURE 

Pressure differences along the pipe give rise to two contributions to the longitudinal stress in a 

pipeline: stresses due to the Poisson effect and stresses due to the end cap effect. 
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Poisson’s'effect'
The Poisson’s effect causes the pipeline to contract axially as the pipe expands radially. This 

means that for a pipe subject to internal pressure, the pipe will increase its diameter slightly 

and at the same time this circumferential expansion will cause the pipeline to contract slightly 

longitudinally as shown in Figure 4. If the pipe is restrained from contracting axially, 

longitudinal tensile stress develops (Guo, Ghalambor, Lin Ran, & Song, 2014).  

 
Figure 4: Contraction of pipe due to Poisson’s effect 

 

For an unrestrained pipe the strain due to Poisson’s effect is:  

 !!"#$$"% = −! !!!!"!  (2.3) 

where  
!!!!"  is the hoop stress 
!  is the Poisson’s ratio 

 

End)Cap)effect)
Another contribution to the longitudinal stresses in a pipe is caused by the end cap effect, 

which arises from the pressure effect in the pipe axial direction. The end cap strain is caused 

by the internal pressure acting on any curvature in the pipeline as well as at closed pipe ends 

(Fyrileiv & Collberg, 2005). The strain induced by the end cap effect is given by: 

 !!" =
!
4 (!!

!!! − !!!!!)
!!"

 (2.4) 

where  
!!/!!  is the external/internal pressure 
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!!/!!  is the outer/internal diameter 
!!"  is the area of steel 

 

 
Figure 5: End cap effect 

 

The total longitudinal strain due to temperature and pressure effects is given by: 

 !!"#$%&'(%#)! = !! + !!" + !!"#$$"% (2.5) 

 

2.3.2 FRICTIONAL STRAIN AND SEABED INTERACTION 

The friction acting between the pipeline and the seabed is complex and difficult to determine 

and a great deal of uncertainty is related to predicting the resistance as the pipe moves 

(Bruton, White, Cheuk, Bolton, & Carr, 2006). Due to the complexity, the interaction has 

traditionally been modelled using Coulomb friction models (White & Randolph, 2007).   

The frictional strain is linearly dependent on the submerged weight of the unrestrained part of 

the pipe, which acts as a force on the seabed floor. The frictional strain is zero at the pipe end 

and varies linearly to the anchor point (Yong & Quang , 2014). The equation for the frictional 

strain for an unrestrained pipeline is: 

 !!"#$%#&' =
!!!!
!!"##$!

 (2.6) 

where 
 ! is the friction factor 

!!! is the submerged weight of the pipe 
! is the anchor length  
!!"##$  is the cross sectional area of the pipe steel 

 



22 

 

 

 

 

 

2.4  EXPANSION ANALYSIS 

In order to determine the maximum pipeline expansion, an expansion analysis is performed. 

A finite element model is often the preferred analytical model and parameters such as 

temperature and pressure profiles along the pipeline, the pipe submerged weight and the axial 

friction force is included in the model (Yong & Quang , 2014). 

An expansion analysis yields the expansions at either end of the pipeline as well as the 

maximum axial load in the pipeline. The axial load determines if the pipeline is susceptible to 

buckling and the end expansion dictates the expansion that the tie-in spools have to 

accommodate. Both results are important for pipeline design. The maximum pipeline end 

expansion is calculated using the lower bound friction coefficient and the highest pipeline 

axial stresses (Yong & Quang , 2014). 

One way of determining the total pipeline expansion is by integrating the net strain along the 

pipe (Yong & Quang , 2014). The net strain is the difference between the applied longitudinal 

strain and the frictional strain and is integrated between the free end and the anchor point. For 

a pipe with constant cross section and zero initial strain, and subject to constant pressures and 

temperatures the pressure- and thermal strain are constant and positive while the frictional 

strain has a linear variation (Yong & Quang , 2014). Figure 6 shows a schematic 

representation of the individual strain components. 

 !!"#
!!!"#!!"

!
!" = !! + !!" + !!"#$$"% − !!"#$%#&'

!!!"#!!"

!
!" (2.7) 
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Figure 6: Distributions of strains and displacements along a pipeline (Yong & Quang , 2014) 

 

The end expansion is  important for the spool design as it dictates the expansion that the tie-in 

spools have to accommodate. If the axial movement due by pipeline expansion is not 

mitigated, the expansion may impose loads and damage adjacent structures such as manifolds 

and wellheads. An expansion spool is essentially a short section of pipe with bends designed 

to accommodate the expansion, much like a spring. 
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CHAPTER 3 

TIE IN SPOOLS  

 
 

Subsea spools are important components of a subsea assembly. Subsea technology is a highly 

specialized field and with developments in subsea technology, oil and gas production is 

becoming possible at increasingly deeper water depths (Yong & Qiang , 2012). These 

deepwater systems must be highly reliable and safe to avoid damage witch potentially can 

lead to disastrous accidents and to ensure a steady and reliable production of hydrocarbons. 

The following section describes the main functions of a spool-piece and the important role it 

plays in the subsea production system.  

A tie-in spool is a short pipe section used to connect and transport production fluid between 

different subsea components. Spools are often tied to different types of structures at either end 

and may run between a pipeline and a manifold/template or wellhead or even between two 

pipelines.  

A spool mainly serves two functions (Yong & Quang , 2014): 

1) Complete the connection between pipelines and subsea structures and compensate for 

installation misalignments 
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2) Mitigate axial expansion of flowlines. In order to avoid expansion propagating to 

adjacent structures, spool-pieces with bends are installed to accommodate the 

expansions and prevent transmitting high loads into adjacent structures 

A thermal expansion analysis is performed to determine the maximum pipeline expansion of 

the pipeline. The spool absorbs the expansion of the spool by bending and takes advantage of 

the spools natural flexibility. The longer the spool is the easier it is to bend. If the pipe is bent 

within its elastic limit, it will return to the preloaded shaped once the load is removed and it 

will behave much like a spring.  

The structural response of the spool can be complicated to assess as it depends on a wide 

range of parameters, such as soil-pipe frictions, sleeper-pipe frictions, bend stiffness’s and 

variable internal pressure and temperature during operational conditions. (Wang, Bannevake, 

Xu, & Jukes, 2010). Economically speaking, the most critical part of spool design, is the 

limited time for fabrication. When the pipeline and the connecting elements are installed, 

there will always be installation misalignments and it will not be possible to precisely 

determine the relative position of the structures prior to installation. Hence the final spool 

dimensions cannot be determined until the pipelines and structures have been installed and the 

relative distance and position has been measured.  

Historically spool pieces have been the primary tie-in method pipeline tie-ins in shallow water 

depths (McKeehan, 1993). Traditionally, divers would measure the relative position of the 

connecting hubs so that the spool could be fabricated to size. Today diverless applications are 

made possible for moderate- and deep water installation with the use of specialist measuring 

techniques.  These techniques are discussed further in Chapter 5. 

Spools have large flexibility in design and a range of different geometrical configurations and 

shapes are possible in order to optimize design for any given field layout. There are a number 

of different systems developed for connection of subsea flowlines. The use of rigid spools is 

the most common tie-in method, but flexible pipelines are also used (Lewis, 2014). We can 

distinguish between two main types of rigid spools, vertical and horizontal. Vertical spools 

are generally referred to as jumpers and are vertical pipe sections that are elevated off the 

seabed. Vertical jumpers are susceptible to damage by trawling and are not widely used in the 

North Sea and are therefore not covered in this thesis.  
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3.1 HORIZONTAL TIE-IN 

A typical spool consists of a steel pipe with two end connecting hubs. If the spool is required 

to accommodate pipeline expansion, bends or offsets are typically incorporated. A spool can 

be shaped into almost every configuration but are typically L, Z shaped or U shaped and offer 

a great deal of flexibility when it comes to geometrical shapes in order to optimize the design 

for a given field layout.  

 

Figure 7: Z-shaped spool piece 
 

 The spool legs provide flexibility and the longer the spool legs are, the less the expansion 

forces are transferred to the connecting hubs (McKeehan, 1993).   

The final connection between the spool-piece and the connecting structures is made with a 

connector. The purpose of the connector is to join and produce a pressure tight seal between 

the connecting structures. This is achieved by joining and sealing the two connector hubs that 

are welded to each of the pipe sections that need to be joined. The final tie-in is performed 

using a connecting tool usually operated from an ROV. The connecting tool clamps together 

the two mating hubs (Chan, Mylonas, & McKinnon, 2008). The connecting hubs of the tie-in 

structures are typically placed above the seabed. Goosenecks are therefore necessary to rise 

the last part of the pool above the seabed to connect with the raised hubs. Clamp connectors 

are the most common type of connectors used in the North Sea for diverless interventions 

(Corbetta G., 1997). A clamp connector consists of a gasket that is placed between two 
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flanges that are forced together. They can have two bolts, but for ROV operated clamp 

connectors, one of the bolts replaced with a hinge (Corbetta & Cox, 2001). 

The tie-in process is generally more complicated and more time consuming, which may 

increase costs. For deepwater applications and for tie-ins where large flowline movement is 

expected, spools are considered advantageous as larger hub movements can be expected 

(Corbetta G., 1997). Except for deployment of the spool on the seafloor the operations have 

very low weather dependence since the tie-in operations is independent of vessel motion 

(Yong & Qiang , 2012). 
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CHAPTER 4 

WALL THICKNESS DESIGN 

 

 

As mentioned subsea pipelines are exposed to both internal pressure from the production and 

external pressure from the surrounding water. Additionally a pipeline under operation is 

usually exposed to temperatures above the ambient temperature of the surrounding seawater. 

Differences between internal and external pressure along with temperature effects causes 

pipelines to expand or contract both in the radial and longitudinal directions.  

The pipe wall thickness determination is one of the most important and fundamental tasks in 

pipeline design. (Qiang & Yong, 2014). The wall thickness is determined on the basis of the 

maximum design pressures as well as being a function of material grade, diameter, water-

depth and installation methods (Americal Bureau of Shipping ABS, 2006). 

A spool has both bends and straight sections and according to Bruschi et al. (2006) the 

standards does not provide consistent design rules for pipe bends. There is wide experience in 

design of spools for moderate depths and the limiting conditions are well known (Lui, 

Hooper, & Mashner, 2014). However, most of the research into pipe bends has been focused 

on problems arising in industries such as process industry where effects of internal pressure 

are of great importance (Bjerkås, Alsos, Hval, Lange, & Holden, 2010). In subsea 

applications however, both external and internal pressure are acting, and limited attention has 

been given to this.  

The following section gives a description of the design philosophy behind the DNV-OS-F101: 

Submarine Pipeline Systems and the liming criteria for wall thickness design of spools. The 
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following section is largely taken form the design code itself, unless other references are 

stated. 

4.1 LOAD AND RESISTANCE FACTOR DESIGN (LRFD) 

 

The design of spools according to DNV-OS-F101 is based on Load and Resistance Factor 

Design (LRFD). In addition, bends are checked using Allowable Stress Design (ASD) in 

accordance with DNV OS-F101, section 5 F200. 

The principle of LRFD is to verify that a set of factored characteristic design loads (Ld) is 

smaller than the factored design resistance effects (Rd) for any failure mode. 

 !!" ≤ !! (4.1) 

LRFD incorporates uncertainties in the design by the use if partial load and material factors. 

The design load effect can be given as 

 !!" = !!!!!! + !!!! + !!!!!! + !!!!!! (4.2) 

where !!,!!! , !! and !! are the functional, environmental, interference and accidental loads 

respectively.  

Functional loads are load imposed during installation, testing operations and general use. 

The loads are divided into live loads that change during operation (due to flow, temperature, 

pressure) and dead loads that do not change with time (hydrostatic pressure, buoyance etc.). 

Environmental loads consider loads imposed by environmental phenomena such as current 

and waves. 

Interference loads relate to loads induced by dropped objects or fishing tools etc.  

Accidental loads are abnormally large loads caused by accidental events. 

The load factors for pipelines are given below. They have been determined by structural 

reliability methods to a pre-defined failure probability.  
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Table 1: Partial safety factors for LRFD 
Load effect factor combinations 

Limit 

state 

Load effect 

combination 

Functional 

loads 

Environmental 

load 

Interference 

load 

Accidental 

load 

  !! !! !! !! 

ULS a System check 1.2 0.7   

b Local check 1.1 1.3 1.1  

FLS c  1.0 1.0 1.0  

ALS d  1.0 1.0 1.0 1.0 

 

The design resistance is given by: 

 !!" =
!!

!!!!"
 (4.3) 

 

!! !is the characteristic resistance, which depends on the material strength, thickness and 

initial out of roundness. The characteristic resistance is divided by the material and safety 

class factors given below.  

In limit state design, all foreseeable failure scenarios are considered and the system is 

designed and checked against all possible failure modes. The partial safety factors are explicit 

in the different limit states. The relevant limits states are:  

ULS – associated with single load or overload situation 

SLS – not associated with catastrophic failure but reduced operational capability  

FLS – ULS condition accounting for accumulated cycling load effects 

ALS – implies loss of structural integrity due to accidental load 

For each of the limit states a set of partial safety factors are defined using structural reliability 

methods.  A target safety level or a maximum acceptable failure probability is given as an 

annual probability of failure (Mørk, Bjørnsen, & Collberg, 1998). 

Pipelines are designed with respect to potential failure consequence. This is achieved by 

introducing safety classes that describe the extent of damage to human health and the 
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environmental and economic consequences of failure. A low safety class implies that the 

failure of the pipeline will not cause significant damage to human health, the environment or 

assets.  

Table 2: Safety classes 
Classification of safety classes 

Safety class Definition 

Low Where failure implies insignificant risk of human injury and minor 

environmental and economic consequences 

Medium Where failure implies low risk of human injury, minor 

environmental pollution or high economic or political 

consequences. 

High Classification for operating conditions where failure implies risk of 

human injury, significant environmental pollution or very high 

economic or political consequences. 

 

4.2 FAILURE MECHANISMS 

In deep water, spool design is more complicated due to the high external pressure. Subsea 

pipes are subject to both internal pressure from the operating pressure as well as external 

pressure from the surrounding water (Junaidi & Koto, 2014). In addition, axial loads and 

bending stresses are induced due to the pipe expansion and other loads such as tie-in loads. !

 
Figure 8: Cross sectional deformation of pipes subject to bending, pressure and axial load  (Qiang & Yong, 

2014) 
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Different loads induce different failure mechanisms. The wall thickness of spools is therefore 

checked against the following failure modes and is performed according to the requirements 

set by DNV-OS-F101. 

1. Burst 

2. Local buckling (collapse) 

3. Local buckling (combined loading) 

5.2.1 PRESSURE CONTAINMENT (BURSTING)  

Internal pressure will cause the pipeline to stretch in all directions and the primary 

requirement of the pipe is to sustain the stresses from the internal pressure (Yong & Qiang, 

2005). Stresses in the circumferential direction are referred to as hoop stresses.  

For pipelines with high internal pressure, the pipe may fail due to bursting of the cross 

section. Due to the internal pressure, the pipe cross section expands and the pipe wall 

thickness decreases. As the wall thickness decrease the hoop stress increase and bursting or 

rapture occurs when a certain pressure is reached and the hoop stress is higher than the 

ultimate tensile strength of the material. (Qiang & Yong, 2014) 

Hoop stresses are given by: 

 !! =
(!! − !!) ∙ !

2 ∙ !  (4.4) 

where 

 ! is the outer diameter 

!! is the inner pressure 

!! is the outer pressure 
t is the wall thickness 
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Figure 9: Hoop stress in a pipe subject to internal and external pressure (Qiang & Yong, 2014) 

 

According to DNV-OS-F101 the burst pressure !! !  is given by: 

 !! ! = 2 ∙ !
! − ! ∙ !!" ∙

2
3 (4.5) 

where 

 !!" = !"# !!;
!!
1.15  (4.6) 

The tensile hoop stress is due to the difference between internal and external pressure and 

should fulfil the following criteria. 

 !!" − !! ≤ !"# !! !
!! ∙ !!"

; !!"!!"#
− !!;

!!
!!"# ∙ !!

 (4.7) 

 !!" − !! ≤ !"# !! !
!! ∙ !!"

;!!  (4.8) 

where: 

!!" is the local incidental pressure 

!!" is the local test pressure 

!! is the mill test pressure 

!!"  is the safety class resistance factors  

∝! is the material strength factor as given in the code 
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5.2.2 LOCAL BUCKLING - COLLAPSE 

For subsea pipelines the external pressure from the surrounding water will help counteract the 

forces imposed on the pipe by the internal pressure, and reducing the risk of bursting failure. 

As the pipelines are installed at deeper depths, the external pressure increase and become the 

dominating loading condition. Theoretically a circular pipe without any imperfections will 

continue to hold its shape when it is exposed to uniform external pressure. However, pipes 

will always have some material and geometrical imperfections. If the external pressure 

becomes too high section of the pipe may collapse (Junaidi & Koto, 2014). The failure mode 

may either be yielding of the cross section or buckling on the compressive side of the pipe. 

For small diameter/thickness ratios failure is governed by yielding of the cross section while 

for larger D/t ratios it is governed by elastic buckling (Qiang & Yong, 2014). 

The collapse pressure predicted by the formulas for a given wall thickness should then be 

checked against the hydrostatic pressure at the seabed (Junaidi & Koto, 2014). 

The characteristic resistance for external pressure (pc)(collapse) is given as: 

 !! − !!" ∙ !!! − !!! = !! ∙ !!" ∙ !! ∙ !!
!
!  (4.9) 

where 

!!                          is the characteristic collapse pressure 

!!" =
!! !

!
!

!!!!            is the elastic buckling pressure                                 

!! = !! ∙ !!"# !!!        is the yield pressure at collapse                                   

!! = !!"#!!!"#
!            is the initial out-of-roundness    

 

The pipeline is not considered to collapse if the minimum differential pressure satisfies the 

following: 

 !! − !!"# ≤
!!

!! ∙ !!"
 (4.10) 

!!"# is the maximum internal pressure that can be sustained. This is normally taken as zero 

for as-laid pipeline.  
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5.2.3 LOCAL BUCKLING - COMBINED LOADING  

Spools in installation and operating phases are not only subject to pressure loading but also 

need to withstand high bending moments due to pipeline expansion, connection loads, and 

structure settlement as well as axial loads. For the combination of pressure, longitudinal 

forces and bending the stress level at failure is an interaction between the longitudinal and 

hoop stresses induced by the different load combinations. A combined loading check is 

provided by the code. For the purpose of the check, the spool is divided into straight sections 

and pipe bends.  

STRAIGHT)PIPE 

The straight sections of the pipe are designed according to LRFD design. As the pipeline 

expands it forces the spool to displace meaning that the response of the pipeline is primarily 

displacement controlled. At the same time, the seabed imposes a load on the pipe by resisting 

it from displacing freely often making the response somewhere between load controlled and 

displacement controlled. According to DNV-OS-F101 the load condition can always be used 

and is therefore presented below. (Det Norske Veritas, 2007).  

The combined loading scenario takes into consideration the effects of design moment, 

effective axial force and pressure. The moment and axial force are divided by the plastic 

capacities for moment and force respectively. If the pipe is subject to internal overpressure, 

there is a risk of bursting and the pressure differential is thus divided by the burst pressure. 

For external overpressure the pipe may collapse and the pressure differential is divided by the 

characteristic collapse pressure. Refer to DNV-OS-F101 section 5 D505 for further detail. 

Both the equations for internal and external overpressure are presented below: 

 !! ∙ !!" ∙
!!"
∝! !!

+ !! ∙ !!" ∙ !!"
∝! !!

! !

+ ∝!
!! − !!
∝! !!

!
≤ 1!!!!!!!!!!!! (4.11) 

 !! ∙ !!" ∙
!!"
∝! !!

+ !! ∙ !!" ∙ !!"
∝! !!

! !

+ !! ∙ !!" ∙
!! − !!"#

!!
!
≤ 1!!!! (4.12) 

where: 

M!"  is the design moment 

S!"  is the design effective axial force 
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p! is the internal pressure 

p! is the external pressure 

p! is the burst pressure 

∝!  is the flow stress parameter 

∝!! accounts for effect of D/t2 ratio 

!! is the characteristic collapse pressure 

!!"# is the minimum internal pressure. Normally taken as zero except when water 

filled. 

!!, !!= plastic capacities for the pipe 

!! = !! ∙ ! − ! ! ∙ ! 
!! = !! ∙ ! ∙ ! − ! ∙ ! 

∝!= 1− ! + ! ∙ !!!!
 

∝!=
1− !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! − !!!!

< 2
3

1− 3! 1− !! − !!!!
!!!!!!!!!!!!!! − !!!!

≥ 2
3!!!!!!!!!!!!!

 

! =
60− ! !!

90  

 

SPOOL)BENDS)
In the case of thin-walled pipes, bends are significantly vulnerable to ovalization and local 

buckling compared to straight pipes. In such cases, the highest stress is observed in the 

intrados bend wall, which makes it vulnerable to experience cracking leading to failure 

(Wang, Bannevake, Xu, & Jukes, 2010). 

The Standard does not provide any limit state criteria for pipeline bends. As an alternative to 

LRFD design the standard provides the following simplified Allowable Stress Design, ASD, 

check that may be applied provided that: 

• The bursting criterion is fulfilled 

• The applied moment and axial load is considered displacement controlled 

• The ovalistation is acceptable 
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• The bend is exposed to internal overpressure or that the bend has no 

potential for collapse. 

The last criterion is fulfilled if the system collapse design capacity is three times the actual 

external overpressure. This recommendation usually leads to significantly thicker wall 

thickness for the bends than what is required for the straight sections. The increased wall 

thickness causes the pipe stiffness to increase, causing the spool leg lengths to increase in 

order to obtain the necessary flexibility needed. (Bjerkås, Alsos, Hval, Lange, & Holden, 

2010) 

 
Figure 10: Moments in bends (ASME, 2010) 

 

Allowable stress design 

The stress criterion according to Allowable Stress Design (ASD) is described below. The 

yield stress,!!!! is multiplied with a utilization factor,!!. Both the equivalent stress, !! and the 

longitudingal stress, !! is checked. 

 !! ≤ ! ∙ (!"#! − !!,!"#$) ∝!!!!!!!!!!!! (4.13) 

 !! ≤ ! ∙ (!"#! − !!,!"#$) ∝! (4.14) 

where  

 SMYS  is the specified minimum yield stress 

 !!,!"#$  is the temperature de-rating value 

 ∝!            is the material strength factor. 

 The equivalent stress is given by the Von Mises Combined Stress: 
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 !! ≤ !!! + !!! − !! ∙ !! + 3!!!!! (4.15) 

The hoop stress is given by: 

 !! = !! − !!
! − !!
2 ∙ !!

 (4.16) 

And the longitudinal stress: 

 !! =
!

! ∙ (! − !!) ∙ !!
+ !
! ∙ (!! − ! − 2 ∙ !! !)

32 ∙ !
!! (4.17) 

where  

N  is the pipe wall force 

M  is the bending moment  

The usage factors depend on the safety class are given below 

Table 3: Usage factors for ASD check for bends 
Usage factors for equivalent stress check 

 Safety class 

 Low Medium High 

! 1.00 0.90 0.80 
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CHAPTER 5 

SPOOL DESIGN CONSIDERATIONS 

After the wall thickness of the spool has been determined based on the working pressures, the 

spool dimensions need to be determined for the fabrication stage. The spool dimensions are 

determined based on subsea measurements taken once the connecting structures has been laid. 

The spools are then fabricated and sent offshore for deployment. Once they are installed, they 

are tied-in with the connecting structures and finally tested and approved. Since a spool is 

subject to a range of different loadings related to the different stage in its life cycle, a full FE 

analysis should considered both direct loads and also through accumulated loads by 

performing a load step analysis. The following section discusses the process from subsea 

measurements, to fabrication as well as loads associated with installation, testing, operation 

and shutdown. 
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5.1 METROLOGY 

The tie-in structures are often installed within a predefined area, or target box, which is 

positioned relative to the pipeline. The positioning of the structure is normally not precise 

enough however, for the spool piece to be prefabricated (McKeehan, 1993). Consequently, 

the final spool assembly cannot be performed until the pipelines and connecting structures 

have been installed and the relative orientation and distance between the hubs of the pipeline 

end and the hub of the tie-in structure need has been determined. 

 

Figure 11: Distance and angular orientation of connecting hubs 
 

A specialist metrology survey is performed and several measuring techniques are available. 

Taut wire metrology is mainly used by divers at shallow water depths, while acoustic 

positioning systems such as acoustic measuring techniques can be used at deeper water 

depths.  

5.1.1 TAUT WIRE METROLOGY  

Taut wire is a basic measuring technique first employed by divers. The technique involves a 

wire being tightened between the two hubs. The length and the angles between the wire and 
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the pipe are measured with tape a protractor or by the use of sensors (Corbetta & Cruden, 

2000). Traditionally the taut wire system is used by divers, making the technique limited for 

use at shallow water depths. Newer developments allow for measurements to be performed by 

wire-length sensors and angle sensors and for data to be transmitted acoustically or by electric 

wire to an ROV (Alliot, 2006). 

5.1.2 ACOUSTIC POSITIONING 

Acoustic positioning is widely used for subsea measurements. The acoustic systems take 

advantage of sound propagation and reflection and use a set of calculations to determine the 

position of transducers positioned on the sea bottom (Milne, 1983). An array or framework 

needs to be established prior to the measurements and the required positions are measured 

relative to the array (Christ & Wernli Sr., 2013).  

In the case of Long Baseline (LBL) systems the array is made up of transponders deployed at 

the sea floor, often around the perimeter of the site. Target transducers are placed on the 

pipeline flanges and hubs and whilst emitting an acoustic pulse, which is detected by each of 

the transponders in the array. The LBL system provides very high position accuracy 

independent of water depth, however, the installation of the system is time consuming and the 

system requires precise calibration (Christ & Wernli Sr., 2013).   

Instead of being mounted on the seabed, the Short Baseline (SBL) and Ultra Short Baseline 

(USBL) acoustic systems use arrays of acoustic transducers deployed on the side or at the 

bottom of a surface vessel. The transceiver on the vessel detects acoustic signals from the pre-

installed targets on the spool hubs and the distance is determined by knowing the precise time 

and speed it took for the acoustic signal to travel between the two (IMCA, 2012). In the SBL 

system, one transceiver transmits the signal but receive from all transducers. The USBL 

systems are similar to SBL systems except that the transducers are all built in to a single 

transceiver. USBL are also used to dynamic position DP vessels in relation to a subsea 

reference transponder (Christ & Wernli Sr., 2013). 

 

  

 

Figure 12: Long Baseline Acoustic Metrology Figure 15: Short Baseline Acoustic Metrology 
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5.2 FABRICATION  

Spools are designed and fabricated according to the measurements provided by the metrology 

survey. During the fabrication, all the different components such as line pipe, bends and 

connector hubs are assembled ready for installation. Welding qualification tests are often 

performed using non-destructive testing (DNT), followed by a hydrotest in order to assess the 

structural integrity (Antaki, 2003). 

Since the survey cannot be performed until the connecting structures are installed there is 

limited time for design optimization and fabrication. 

5.2.1 METROLOGY AND FABRICATION TOLERANCES 

Without an accurately constructed spool, the spool and pipe flanges will not fit together. Any 

inaccuracies in the methodology or the fabrication of the spool, will lead to the connector hub 

faces not aligning perfectly when installed. Residual loads will then arise when the spools are 

tied-in, as the spools will need to deform to make up the misalignment (Juluri, Dib, el-Gebaly, 

& Cooper, 2013). Accurate methodology and fabrication is important in order to ensure that 

the spool hubs align well with the connecting structures in order for the tie-in loads to remain 

as low as possible. Requirements are therefore made regarding the metrology and fabrication 

tolerances, in order to keep alignment loads to a minimum during tie-in.  

A set of translational and angular misalignments are set to account for the tolerances. 

Translational misalignments usually depend on the spool geometry whilst the angular 

misalignments at the hub face is usually given (Jacobsen, Norland, & Tharigopula, 2015).  

The spool design requires careful consideration into all the possible combinations of angular 

and linear tolerances and misalignments to find the combination of loads that gives the 

maximum allowable misalignment tolerances (Chan, Mylonas, & McKinnon, 2008). 



43 

 

 
Figure 13: Linear and angular flange misalignment 
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5.3 INSTALLATION AND TIE-IN 

During installation, the spools are transferred from the fabrication yard to the final position on 

the seabed. Prior to the installation, a lifting analysis should be performed to define the 

rigging arrangement. Spools are often installed using framework or spreader bars structure as 

seen in Figure 16. The spool is fastened the framework to support the spool during the lift and 

avoid collapse as the spool is lifted and lowered through the water column. As spools vary 

greatly in size and shape, the framework structure or spreader bars often need to be made 

specifically for each lift. Chan et al (2008) suggest that the width of the spool should be kept 

to a minimum and recommend that the centre of gravity is close to the spool main axis.  

 
Figure 14: Spreader bars used for spool installation (Chan, Mylonas, & McKinnon, 2008) 

 

The lifting vessel is set in motion by the wave motion, which again is transmitted to the crane 

tip. As the spool is lowered into the splash zone waves will lead to impact forces on the spool 

and buoyancy forces will start to apply as it is submerged. Dynamic lifting analysis is usually 

performed using finite element programs such as SIMO or OrcaFlex to determine the forces 

on the spool being lifted. Often the main limitation for installation is the overboarding of the 

spool into the splash zone (Reinholdtsen, Sandvik, & Hansen, 2002). The spool piece can be 

lifted through the splash zone horizontally or it can be tilted in order to control flooding and 

to reduce wave loads.  

5.3.1 INSTALLATION TOLERANCES 

In order to be able to perform the design prior to installation of the connecting structures, 

target boxes may be used. The purpose of a target box is to give a predefined area for 

structures such as PLET’s and manifolds to be installed in. The dimensions of the target box 

will be slightly larger than the structure itself and the higher the accuracy of the installation 

equipment, the smaller the target box can be. The target box enables the design to be 

Advance Deepwater Spool Piece Design – Hung Hing Chan, Lenas Mylonas and Colin McKinnon

 

Spool Installation Considerations

� Installation is feasible with 60 metre cumulative length (pipelength) and 45 
metre envelope (connector to connector).

� The width of the spool should be kept to the minimum.
� The centre of gravity of the spool should be kept close to the main axis of the 

spool. 
� Lift capacity of the vessel crane must be adequate at the required radius 
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completed prior to installation by assigning installation tolerances based on the target boxed, 

and thus designing the spool based on minimum potential leg lengths as a conservative 

approach.  

The design must ensure that the leg length and rotational capacity are sufficient to 

accommodate independent tolerances at extreme limits in all directions within the 

predetermined installation envelope and according to the dimensions of the target boxes.  

 

Figure 15: Minimum and minimum spool sizes 
 

5.3.2 WIRE RESONANCE 

For deep-water installation of spool-pieces, the length of the lifting wire becomes very long. 

As the length increased the natural period of oscillation for the vertical motion of the load will 

increase. If the natural period becomes long enough it may come into the same range as the 

wave period in the area and resonance motion may set in. Resonance will increase the 

dynamic load on the crane and may damage the equipment (Nam, Hong, & Kim, 2013). 

Active Heave Compensation may mitigate some of these effects but resonance motion is an 

important issue and may be critical for the operations.  

5.3.3 TIE-IN 

Once the spool is deployed at the sea bottom, an ROV is used to manoeuvre the spool into its 

final position. The final tie-in is performed using a connecting tool usually operated from an 

ROV. The connecting tool, clamp together the spool piece hubs with the tie-in structures hubs 

(Chan, Mylonas, & McKinnon, 2008). 
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HUB)capacities)
The connector is a highly critical component and need to be able to withstand high pressure, 

bending and torsional stresses. When the pipeline expands, the spool-piece provides 

flexibility to make up the deformation by bending. These movements impose axial and 

bending stresses on the connector hubs (Duckworth, Supple, & Neilson, 1986). In addition the 

misalignments in angular and linear directions between the hubs of the structures need to be 

corrected for during tie-in, which will impose additional loads on the connectors. 

 
Figure 16: Forces applied to hub during tie-in and operation (Sletteboe, 2012) 

 

Several different connector systems are available, but the main tie-in methods are flanged 

connectors, mechanical connectors or hyperbaric welding. For each connector system a set of 

allowable loads are given. These loads depend on the connector ability to make up 

misalignments and to handle the imposed forces. Table 4 presents an example of load 

capacities for a typical connector. 

Table 4: Allowable loads for a typical connector 

 
Forces [kN] Moments [kNm] 

Fx Fy Fz Mx My Mz !!"#$%#& = !!
! +!!

! 

12” 
Tie-in ±100 ±100 ±30 ±50 ±225 ±200 300 

Operation ±100 ±100 ±30 ±50 ±225 ±200 300 

 
Figure 17: Hub reaction forces (Chan, Mylonas, & McKinnon, 2008) 
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3. Review of Connection Systems Capacities 
3.1. Typical Connector Capacities 

The spool designer needs to know the design capacities for each size of connector.  
 
Typical limiting capacity of different connector sizes is given in the table below. The data is based 
on a study of connectors from FMC Aker Kvaerner and Cameron. The data can be used for 
horizontal and vertical connectors, as the capacities are similar.  
 
It should be noted that the capacity of the spool, the manifold/FTA piping and foundations may 
not be as great as the capacity of the connector and needs to be checked by the designer.  
 
 
 

Typical Connector Capacities 
 

Forces (kN) Moments (kNm) Diameter /  
Location 

Connector 
Location Load Case 

Fz �(Fy2+Fx2) Mz �(My2+Mx2) 

Manifold 40 30 60 200 10” 
Manifold - FTA 

FTA 
Operation 

40 30 60 200 
Manifold 120 70 40 150 6” 

Manifold-Well Well Operation 120 70 40 150 

Manifold 40 30 60 200 10” 
Manifold – ITA ITA 

Operation 
40 30 60 200 

FTA 70 50 60 250 12” 
FTA – FTA FTA Operation 70 50 60 250 
Note that these are estimated maximum capacities and there may be a trade off between forces 
and moments. 
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4.4 OPERATION 

During operation, the spool piece is subject to the operating pressure and temperature as well 

as external pressures and temperatures as discussed in Chapter 4. In addition, several factors 

such as the imposed hydrodynamic forces from waves and currents should form part of the 

analysis.  

5.4.1 HYDRODYNAMIC FORCES 

For pipelines, the main concern for design purposes are current imposed loadings. Wave 

loading normally does not apply as the effect of the wave action does not penetrate deeply 

enough into the water column and is mainly a concern for structures at the sea surface.  

Current loadings however will impose loadings even on deepwater applications and should be 

included in a complete FE analysis. Other than direct loads from the current, vortex-induced 

vibrations (VIV) may occur which causes the spool to oscillate (Guo, Ghalambor, Lin Ran, & 

Song, 2014). As the current approaches a pipe span, the flow may separate downstream and 

shed vortices. For certain flow conditions; the vortices may shed periodically from either side 

of the pipe. In that case the shedding induces pressure differentials causing the pipe to 

oscillate in the cross flow direction (Guo, Ghalambor, Lin Ran, & Song, 2014). If the 

frequency of the shedding matches the natural frequency of the spool, resonance occurs, 

causing the oscillations to amplify and may thus reduce the fatigue life of the structure. Other 

than vortex shedding other loads that may influence fatigue are, start-up and shutdown cycles 

and for shallow water, wave action (Det Norske Veritas, 2007). 

 

5.4.2 SOIL INTERACTION AND STRUCTURE SETTLEMENT  

Geotechnical surveys are carried out at the site to extract soil data needed for analysis. The 

sea bottom conditions can range from rock and silt to sand and very soft clay Qiang & Yong, 

2014. Friction factors are needed for any analysis where the interaction between the pipe and 

the soil is important. Often, both lateral and axial friction factors are needed. Typical friction 

factors for North Sea conditions are presented in Table 5. 
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Figure 18: Lateral and Axial Friction Factors (Qiang & Yong, 2014) 

 

Due to the uncertainty in determining friction factors, a range of factors is used and depends 

highly on the purpose of the analysis. In an expansion analysis a low friction is used as this 

leads to increased end movement in the analysis and a more conservative result. The pipe-soil 

interaction is vital for the expansion analysis and the friction factors are usually incorporated 

into the finite element analysis. (Qiang & Yong, 2014) 

Table 5: Friction factors used in the North Sea (Qiang & Yong, 2014) 
 Lateral Friction Coefficient Axial Friction Coefficient 

Soil type  Minimum Maximum Minimum Maximum 

Sand (non-cohesive)  0.5 0.9 0.55 1.2 

Clay (cohesive)  0.3 0.75 0.3 1.0 

 

Other than determining friction factors another important aspect of a geotechnical analysis is 

to determine parameters for assessing potential structure settlement. Many subsea structures 

experience settlement during their field life. A pipeline will sink into soft soil until the bearing 

capacity of the soil is increased sufficiently to support the load. The settlement may be 

immediate after installation, or the soil may consolidate gradually.  Pipe movement may also 

cause the pipe to be further embedded (Chan, Mylonas, & McKinnon, 2008). It is important 

to be able to predict the settlement to ensure the structure remains stable and serviceable. 

Settlement also affects the friction factors. Whilst the axial friction factor remains more or 

less the same as the pipeline is embedded, the lateral friction increases significantly was the 

pipe sinks into the soil. The axial and lateral soil friction and resistance against movement are 

affected by pipe weight, penetration, load history and consolidation. Modelling of soil 
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behaviour is often based on empirical relations as the physical phenomena influencing the soil 

resistance are poorly understood (Guan & Nystrøm, 2008). 

 

5.5 SHUTDOWN 

When the production in the subsea production system is shut down, and the pipe is empty, the 

internal pressure is very low compared to the external pressure for deepwater installations. 

The wall thickness design accounts for this condition by checking for collapse of the spool. 

Shutdown and start-up cycles are also important for fatigue considerations. 
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CHAPTER 6 

METHODOLOGY 

 

This following chapter presents the design methodology for the spool analysis. A FE analysis 

of the expansion spools is used to investigate the response and deformation capacity as well 

as end reactions. Nonlinear effects arising from large deformations and spool-seabed 

interaction make analytical solutions inadequate at determining the response of spool pieces 

under installation and operating conditions. FE modeling is therefore necessary for better 

analysis. The finite element program ANSYS was used to analyse the spool response. 

An ANSYS script was written containing a code to run the analysis. The basic principles of 

finite element modeling are explained along with nonlinear analysis. The section also presents 

a detailed description of the FE model created for the analysis.  

  

6.1 FINITE ELEMENT MODELING 
Finite element analysis is a powerful tool when used to estimate the capacity of pipelines and 

spool subject to combined loads. A finite element model allows the designer to model aspects 

such as the geometry, material properties and defects under different loading scenarios.  

Today’s commercial software’s are very powerful and complex and have the ability to solve 

many different types of problems ranging from thermo- mechanics to electro mechanics and 

structural mechanics.  (Moaveni, 1999) 
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A finite element analysis is a numerical technique characterized by discretizing the structure 

into a large number of nodes that are connected to form finite elements. Loads and other 

constraints are applied at the nodes, which generally have three translational and three 

rotational degrees of freedom. Each node is defined locally in matrix form as well assembled 

in the global matrix. Values of known displacements are determined through a series of 

matrix operations performed by the program (Young & Budynas, 2002). Different types of 

elements, such as solid elements or shell elements can be assigned, depending on the problem.   

The FE analysis in this thesis was performed using ANSYS mechanical APDL 15.0. The 

following section provides a brief description of FE modeling and a description on creating a 

suitable model for the spool design. 

6.1.1 PROGRAM STRUCTURE 

Much like an engineering problem, the program divides the process into a pre-processor 

where a model of the physical problem is created, a solution processor where the problem is 

solved and a post processor, where the results are analysed.  

 
Figure 19: FE program structure 

 

In the preprocessor, the model is built. The geometry of the spool is defined through creating 

nodes. Elements are assigned to the geometry and the area is meshed to form a large number 

of finite elements. The smaller the mesh, the more elements are created and the more accurate 

the analysis is. At the same time, the analysis becomes less economical and more time 

consuming (ANSYS, 2009). 

Properties such as wall thickness and material properties of the spool are associated and 

assigned to the pipe elements. The physical boundaries, such as the seabed can be modeled 

and properties such as seabed friction can be assigned to the seabed elements.  

CREATE(MODEL(

• PRE!
PROCESSOR!!!!

!!

SOLVE(PROBLEM(

• SOLUTION!
PROCESSOR !!

REVIEW(RESULTS(

• POST!
PROCESSOR!
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In the solution processor the type of analysis is assigned and the program will solve the 

problem when prompted. The solution is obtained and the post processor is then entered to 

extract the results and produce plots and tables.  

6.1.3. ANALYSIS MODE 

A spool is a complicated structure designed to accommodate large displacements. The large 

displacements cause difficulties when trying to perform traditional static linear analysis. In a 

non-linear static analysis there are up to three sources of non-linearity, all of which may apply 

for a spool analysis (Yong & Qiang, 2005). 

• Material non-linearity 

• Geometric non-linearity 

• Boundary non-linearity 

By using a FE program, all of these sources non-linearity can be considered. Geometric 

nonlinearity is characterized by large displacement and/or rotations causing the structure to 

change geometry as it deflects. Some elements allow for geometric nonlinearities being 

accounted for in the model. The stiffness contribution calculated due to strains caused by the 

change in geometry is then added to the overall stiffness matrix (Yong & Qiang, Subsea 

Pipelines and Risers, 2005).  Material nonlinearities may also apply if the resulting loads 

cause stresses beyond the yield strength (ANSYS, 2009).  

Contact or sliding between two structures is also a source of linearity and can be quite tricky 

to model. The pipe and seabed are modeled using contact and target elements that try to 

model the frictional resistance and penetration caused when the pipe comes into contact with 

the seabed.  

 ANSYS uses the Newton-Raphson approach to solve nonlinear problems. The approach 

divides the load into a series of increments and the load is then applied over several substeps 

instead of being applied instantaneous.  
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Figure 20: Newton-Raphson interactive analysis (ANSYS, 2009) 

 

At each load step, the program evaluates the difference between the restoring forces and the 

applied loads and performs a nonlinear solution. To do this the program checks for 

convergence and if the convergence criterion is not satisfied, the stiffness matrix is 

reevaluated and updated in an iterative process until the difference between the external and 

internal forces become acceptably small (ANSYS, 2009). By using load steps the load history 

can be divided in to a series of different loading scenarios. Different loads and boundary 

conditions can be applied at the different load steps and a solution for each step can be 

obtained. For static analysis the loads are assumed to vary linearly within each substep.  

 
Figure 21: Load history divided into load steps and substeps (ANSYS, 2009) 

 

Convergence can sometimes be hard to obtain. If the load is applied too rapidly the force 

balance may be too difficult to obtain and the load should be applied over a larger number of 

substeps. Mesh refinement may also help correct the force imbalance.  

1 2

3

Equilibrium 
iterations  
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Nonlinearity in an analysis may also lead to convergence issues. Frictional contact with large 

friction factors and structures subject to large may cause convergence difficulties, both of 

which commonly apply in a spool analysis (Higgins, 2012). 

Another issue, which may cause convergence issues in a spool analysis, is if the two contact 

surfaces are modeled with an initial gap between the pipe and the seabed. This causes the 

contact pair to be initially displaced and there is a risk of convergence issues caused by rigid 

body motion (ANSYS, 2009).  

 

6.2  DESCRIPTION OF THE FINITE ELEMENT MODEL 

The following section gives a description of the finite element model used to analyse the 

spools. Three different spools were analysed and a FE model was created to model the 

response of each spool. The spools are assumed to be tied-in between a PLET and a 

manifold/template and are designed to take a 1m pipeline expansion applied at the PLET end, 

whilst keeping the end moments within the limits of the hub capacities.  

The spools are also designed to apply with requirements such as metrology and fabrication 

tolerances and pressure tests as well as design and operating conditions, which are presented 

in the design basis. Each loading condition was applied to the spool in a series of load steps.  

All spools were designed to comply with the following:  

• Minimum bend radius = 5*ID 

• The pipe will approach the manifold at 45 

degrees.  

• The spool approach is normal to the 

connecting structure 

• Gooseneck geometry is same for all spools 

• All spools have the same pipe material 

properties, wall thickness and diameter.  

 

 
        Figure 22: Pipeline approach 
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6.2.1 ASSUMPTIONS 

The following assumptions were made for the spool design.  

• Flat seabed 

• The pipe elements are modeled with nominal wall thickness and thinning of bends is 

not implemented. 

• The effect of hydrodynamic forces is not considered 

• Pipeline walking is not included in the analysis 

• Structure settlement has not been included 

 

6.2.2  SPOOL CONFIGURATIONS 

Three different spool geometries were analysed. A 3-legged spool was designed first and then 

the spool legs and bends were subsequently increased for the two subsequent spools. An 

ANSYS pre-processor script was made for each spool configuration, and the different load 

steps were applied using the solution processor.  

3-LEGGED SPOOL 

The first spool to be designed is a 3-legged L shaped spool, with a third leg at 45 degrees as 

shown in Figure 27.  It only has 2 bends, which means little welding is required. Legs A and 

B are equally long and separated with a 90 degree bend.  

      
Figure 23: 3-legged spool layout 

 
 
Figure 24:ANSYS model of 3-legged spool     

 

4-LEGGED SPOOL 

Figure 29 shows the layout for the second spool design. It consists of a spool with 3 bends 

and four legs. It is shaped as a Z-spool with a fourth leg at 45 degrees.  
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Figure 25: 4-legged spool layout       Figure 26:ANSYS model of 4-legged spool 
  

5-LEGGED SPOOL 

The final spool analysed was a 5-legged spool designed with a U-shaped bend as shown in 

Figure 31-32. 

Figure 27: 5-legged spool layout  

 

       
Figure 28: ANSYS model of 5-legged spool                  

 

6.2.3  ELEMENTS TYPES 

ANSYS provides a large range of element types and different elements process different 

characteristics and should be chosen based on the analysis type and problem. The following 

elements were used in the analysis: 

1 PIPE288 Pipe straight section 

2 ELBOW290 Pipe bend 

3 TARGE170 Seabed 

4 CONTA177 Contact element on pipe in contact with seabed 
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A presentation of the elements with a brief discussion on the main characteristics of the 

elements is given below. The information is gathered from the ANSYS Theory Reference 

(ANSYS, 2009) 

PIPE288 

The straight sections of the pipe are modeled using a PIPE288 element. The PIPE288 element 

is a two-node 3D pipe element which has six degrees of freedom at each node. The element 

can exhibit linear, quadratic or cubic shape functions and is based on Timoshenko beam 

theory, which means that shear deformations are included. The element is suitable for 

analyzing slender pipes and is well suited for linear, large rotation and/or large strain 

nonlinearity applications (ANSYS, 2009) 

The PIPE288 element allows for change in cross sectional area in the case of large deflection 

analysis. By selecting appropriate key options, the element supports thin-pipe options where a 

plain stress state in the pipe is assumed.  

 
Figure 29: Pipe288 element (ANSYS, 2009) 

ELBOW290 

The pipe bends are modeled using ELBOW290 elements. The element is suitable for 

analyzing pipe structures with thin to moderately thick pipe walls. The elements has three 

nodes, each with six degrees of freedom and is well suited for large rotation /large strain 

nonlinear applications and also allow for modeling of nonlinear response of initially circular 

pipes distorted by ovalization and warping (Wang, Bannevake, Xu, & Jukes, 2010) 
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Figure 30: Elbow290 element (ANSYS, 2009) 

 

For thin walled pipes, some ovalization and cross sectional deformation may be necessary as 

they are more susceptible to complex cross-section deformation which may be allowed for by 

selecting the appropriate key options. 

CONTA175 and TARGE170 

The pipe soil interaction is one of the most difficult processes in pipeline design as it poses 

large uncertainties (Bruton, Bolton, Carr, & White, 2008). This requires careful modeling as 

interaction between different structures can have great influence on results.  

In ANSYS contact between to elements are often solved using contact and target elements 

and the contact can either be node-node, node-surface or surface-surface depending on the 

problem. The contact-target pair CONTA175 and TARGE170 represents a 3D node to surface 

contact, which can be used for modelling contact between a line and a surface and is 

commonly used to represent contact and sliding between two surfaces. Contact between the 

two surfaces occurs when the contact elements penetrate the target elements (ANSYS, 2009). 
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The seabed is modeled as a completely flat and rigid surface using TARGE170 elements. The 

element is a single quadrilateral element as shown in Figure 35. 

 
Figure 31: Targe170 elements (ANSYS, 2009) 

 

In order to generate contact between the pipe and the soil, a set of contact elements are 

assigned to the sections of the spool in contact with the soil. CONTA175 are one-node 

elements which are assigned to the surface of the pipe sections which are in risk of coming in 

contact with the seabed during the analysis. The contact elements are created with the ESURF 

command, where the model reselects the exterior nodes and creates contact nodes on the pipe 

surface (ANSYS, 2009). 

 
Figure 32: Conta177 elements (ANSYS, 2009) 

 

The contact between the elements is force based meaning that forces develop in the direction 

normal to the contact surface in order to reduce penetration. The degree of penetration is 

controlled by use of a penetration tolerance factor assigned to the contact elements. Stiffness 
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factors range from 0.1 (soft) to 1.0 (stiff) (ANSYS, 2009). A balance is needed in order to 

make the spoil stiff enough to limit the amount of penetration but still soft enough to avoid 

convergence issues which may arise when the contact is too stiff. The pipe is modeled with an 

initial gap of 100mm, which disappears once the submerged weight of the spool is added in 

the first load step 

I addition to the penetration resistance, frictional forces develops tangential to the target plane 

in order to simulate sliding resistance. Pipe-soil frictional data is assigned based on the 

orthotropic frictional model.  

6.2.4 MATERIAL MODELING 

For pure elastic analysis it is normally adequate to describe the material characteristics by use 

of Poisson’s ration and Young’s Modulus, but for nonlinear analysis a description of the 

plastic behavior of the material is required. (Americal Bureau of Shipping ABS, 2006) 

In order for the pipe steel to represent the complete stress/strain relationship of the pipe 

material, including non-linear plastic behavior, the pipe steel is modeled using an elastic-

plastic model. Once yielding of the pipe material occurs, the pipe steel will deform plastically. 

The plastic behavior of the material is defined by specifying the stress/strain curve for the 

steel.  

 
Figure 33: Stress strain relationship for pipe steel 

 

6.2.5 PIPE DATA 

Table 6, presents the spool wall thickness and material properties for the pipe analysed. 
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   Table 6: Pipe data for analysis 
Parameter Value 
Material Designation SWAL 450D + 326L CLAD 

Inner Diameter (mm) 266.7 
Bend radius 5 × ID 

Steel Density (kg/m3)  Thickness (mm) 

Backing 7800 Straight 16.1 + 3.0 
Clad 7800 Bend 19.7 + 3.0 

Young’s Modulus (GPa) 207 

Thermal expansion coeff (per °C) 1.17×10-5 

SMYS (MPa) 450 
SMTS (MPa) 535 

Coating Density (kg/m3) Thickness (mm) 

Straights 900 49.4 
Bends 1040 61.3 

 

6.2.6 DESIGN AND OPERATING CONDITIONS 

The spools are designed to take a 1.0 m end expansion applied to the PLET end. In addition 

typical values for design and operating pressure are applied at the relevant load steps. The 

following table presents the design and operating conditions used for the analysis.  

Table 7: Design and operating conditions for analysis 
Design and operating conditions Value 
Operating pressure (barg) 150 

Design internal pressure (barg) 307 

System test pressure 322 
Operating temp (°C) 50 

Design temp (°C) 78 

Ambient temp (°C) 5 
Content density (kg/m3) 50 

MEG density (kg/m3) 1115 

Sea water density (kg/m3) 1026 

Pressure reference elevation (m) 1234 
Design life (years) 25 
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6.2.7 GOOSENECK GEOMETRY 

The spools are designed with a gooseneck at both ends in order to connect the spool resting 

on the seabed with the elevated tie-in points of the PLET and the manifold. The manifold and 

PLET hub height are 3200 mm and 1500mm above the seabed respectively. The geometry of 

the goosenecks is described in Table 8.  

      Table 8: Gooseneck Geometry 
End Tie-in point elevation 

[mm] 

Bend angle 

[˚] 

Manifold 3200 60 

PLET 1500 30 35 

Note:  

1. Hub heights are measured from seabed to the centerline of the 

hub 

 

 

6.2.8 TOLERANCES 

In order to access the effect of the metrology and fabrication tolerances, the combination that 

gives the highest reaction forces is found. Since there are both linear tolerances for the spool 

length as well as angular tolerances for each hub, all different combinations of the tolerances 

need to be checked. This was done by applying the different tolerances to the spool and 

assessing witch one yielded in the worst load case.  

The individual tolerances for linear and angular displacements are given in Table  

Figure 35: Manifold gooseneck Figure 34: PLET gooseneck 
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Table 9: Fabrication and metrology tolerances for analysis 

Spool 
Horizontal 

[mm] 

Vertical 

[mm] 

Heading 

(ROTZ) 

[deg] 

Tilting 

(ROTY) 

[deg] 

Fabrication ±10 ±10 ±0.2 ±0.2 

Metrology ±100 ±50 ±0.5 ±0.5 

Total ±110(1) ±60(3) ±0.7(2) ±0.7(2) 

Notes: 
1. The value is measures from hub to hub 
2. The value is measured from each hub 
3. The value is measured relative to the seabed elevation 

 

6.2.9 END TERMINATIONS 

The spool is modeled as being the connection between a subsea manifold and a pipeline. The 

pipeline end is supported using a PLET. Both the manifold end and the PLET end are 

modeled as fixed connections.  

Table 10: Hub capacity values used in analysis 
Forces [kN] Moments [kNm] 

FX FY FZ MX MY MZ !!
! +!!

! 

±100 ±100 ±30 ±50 - - ±300 

 

6.2.10 FRICTION FACTORS 

The following friction factors were used for the analysis: 

                       Table 11: Friction factors using in analysis 
Friction factors 

Lateral  !! 0.8 

Axial  !! 0.8 
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6.2.11 LOAD SEQUENCE 

The following load steps are considered in the analysis. The load sequences are run as a load 

history, thus ensuring that any loads potentially accumulated through the previous loads steps 

are included. The load steps are explained below and summarized with applied temperature 

and pressure values for each load step in Table 12.  

Table 12: Load sequence 

Load 

step 
Description Application 

Temperature 

(deg) 

Internal 

pressure 

(barg) 

1 Alignment • Set boundary conditions at ends 
• Apply hydrostatic pressure 
• Apply self-weight 

None None 

2 Tie-in • Apply metrology and fabrication 
tolerances 

None None 

3 
Pressure 

Test 
• Set internal pressure to relative test 

pressure 
None 322 

4 
Operation 

condition 

• Internal pressure and temperature 
is set to operation pressure and 
temperature 

• Expansion applied to PLET end 

50 150 

5 
Design 

condition 

• Internal pressure and temperature 
is set to design pressure and 
temperature 

• Expansion applied to PLET end 

78 307 

6 Shutdown 
• Internal pressure set to ambient 

pressure, and temperature set to 
ambient temperature 

• Expansion removed 

0 0 

 

o Self-weight / Alignment 

The spool is locked into its position at each end and the self-weight of the spool is 

applied. This is done by calculating the equivalent density of the empty pipe and 

assigning this as the spool density. The content density is then added. At this step the 

spool is modeled as being MEG filled. The external pressure on the spool is also 

applied.  
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o Tie-in 

During tie in, the spool is exposed to forces due to displacements based on the 

metrology and fabrication tolerances established. The combination of the tolerances, 

which presents the worst-case scenario, is applied to the spool ends.  

The stoking of the spool is not included in the analysis.  

 

o Pressure test 

The internal test pressure is applied to the spool 

 

o Operation 

During operating condition the spool content is changed to the operating content 

density and internal pressure and temperature is set to operating pressure and 

temperature. 

The pipeline expansion is applied as a horizontal displacement on the PLET end.  

 

o Design Condition 

Internal pressure and temperature is set to design pressure and temperature 

 

o Shut down 

The internal pressure is removed and the temperature is set to the ambient 

temperature. The expansion at the PLET end is removed. 
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CHAPTER 7 

RESULTS AND DISCUSSION 

 

 

 

The results from the spool analysis are presented in this chapter. Firstly a simplified model 

was analysed and the results compared to analytical results in order to get a feel for the 

validity of the ANSYS model. The results of the main analysis are then presented. Lastly a 

sensitivity analysis shows the effect of reduced mesh size. 

Results are assessed in terms of the objective of the thesis which is: 

• To design horizontal subsea spools able to accommodate a 1m pipeline expansion 

whilst complying with the limitations set by the hub capacities.  

• Analyse different spool shapes in order to judge their ability to accommodate the 

imposed loads.  

 

7.1 VALIDATION OF MODEL 

A spool subject to pipe expansion will impose forces on the connecting hubs. The magnitude 

of the forces depends on a number of factors. Spools absorb deflection by bending, and thus, 

the inherent flexibility of the spool governs the resulting forces. Because spools are resting on 

the seabed, some flexibility is lost due to the passive soil restraint which acts between the 

spool and the seabed as shown in Figure 38, and the reaction forces are thus a function of the 

pipe-soil interaction (American Lifelines Alliance, 2001). 
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Figure 36: Bending moment and reaction forces of restrained spool due to pipe expansion (American 

Lifelines Alliance, 2001) 
 

Non-linear analysis is required to capture the effects of large deformations and pipe-soil 

interaction, and a finite element analysis is therefore the preferred analysis tool for spool 

(American Lifelines Alliance, 2001). It is important however, to verify that the output from 

the FE analysis is correct. Ideally, this is done by replicating the structure in a model and 

verifying the results by physical testing of the model or by comparing with other experimental 

results. Other options are to perform the analysis in another FE program such as Orcaflex, to 

check if they yield similar results.  

In order to test the FE analysis a simplified model was created so that it could be compared 

against analytical results. The hub capacities are often limiting for the design and the end 

reaction forces are therefore important to investigate. One possible approach is to model the 

spool as a rigid frame. “Roark’s Handbook” (Young & Budynas, 2002) offers equations to 

calculate reaction forces for a large range of different frame configurations.  

The equations given for the rigid frames however, assume small deformations where second 

order effects are neglected. In a linear analysis we assume that the deflection and stresses are 

proportional to the load. Non-linear second order effects are a result of either joint 

deformation or the structure is deformed to such a degree that geometric nonlinearities come 

into effect. The result is that forces are not transmitted linearly from one member to another 

pipe expansion 
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and thus introducing additional forces and increasing displacements and moments (Young & 

Budynas, 2002).  

Spools are slender structures that are designed to accommodate large displacements. Second 

order effects can therefore normally not be ignored. The rigid frame approach also assume 

that corners remain the same angle through the deformation, but depending on the amount of 

expansion is applied to the spool this will generally not be the case.  

The FE model was therefore designed so that the second order effects would be minimal and 

non-linear behavior such as soil interaction was ignored, in order to get reasonable results for 

comparison.   

7.1.1 SIMPLIFIED ANSYS MODEL 

The spool was modelled with 3 legs connected with 90-degree bends to minimize second 

order effects. In addition the spool was designed without goosenecks to minimize out of plane 

deflections. Figure 39 shows the simplified spool configurations. 

As a first approach the following assumptions were applied:  

• No seabed interaction 

• Self-weight and buoyancy excluded 

• Manifold end fixed 

• Pipe cross section uniform throughout spool 

The spool was designed to accommodate a 1m pipeline expansion applied at the PLET end.  

The ANSYS model was run and reaction forces at both the ends were extracted. 
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Figure 37: Simplified ANSYS model 

 

7.1.2 ANALYTICAL APPROACH - RIGID FRAME 

For many applications analytical methods provide a simple solution and good alternative to 

the often elaborate finite element programs. Roark’s formulas provide simple and accurate 

formulas for stress analysis of a large range of structural components (Young & Budynas, 

2002).  

The approach is based on a number of assumptions. The most important to note for the 

purpose of this thesis are as follows:  

• Liner elastic material behavior  

• Small deformations –second order effects are ignored 

• No bending at the corners – right angles remain right 

• The system lies in one plane 

 

Figure 40 show the frame used to simulate the spool response. The leg at the PLET end was 

reversed in order to get the shape of an L spool. The same pipe cross sections and material 

properties as in the simplified ANSYS model were assigned to the frame.   
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Figure 38: Rigid frame for analytical solution of spool (Young & Budynas, 2002) 

 

The formula for vertical deflection at A is given by: 

 !!" = !!"!! + !!!!! + !!"!! − !!! (7.1) 

where  
!!"  vertical deflection at A 
!!" frame constants 
!!  horizontal force at A 
!!  moment at A 
!!!  vertical loading function 
E Young’s Modulus 
I Second moment of area of pipe  

 

The reaction forces at both the PLET and manifold end were extracted using both approaches. 

The results are presented in Table 13.  
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        Table 13: End reactions for validation of model 

End  ANSYS model Rigid frame 

Manifold 

FX 0.804 0.810 

FY 0.69×10!!! 0 

FZ −0.22×10!! 0 

MX 0.50×10!!" 0 

MY -28.15 -28.37 

MZ 0.165×10!!! 0 

!!
! +!!

! -28.15 -28.37 

PLET 

 

FX 0.804 0.810 

FY 0 0 

FZ 0.49×10!!" 0 

MX 0 0 

MY 0 0 

MZ 0 0 

!!
! +!!

! 0 0 

 

As the PLET end deforms, it will impose bending- and axial forces on the Manifold end hubs. 

We can see that the ANSYS model gives slightly lower moment (MX) and reaction force 

(FX) values. The FE model will achieve lower stress and load values due to the fact that the 

program takes into account stress redistribution as the structure deforms (Chan, Mylonas, & 

McKinnon, 2008). The rigid frame does not account for deformation at the spool bends, 

which means that the moments are transferred completely between the spool legs.  

Based on the results from the two analyses, we can conclude that the FE model yields good 

results when seabed interaction is not included and the second order effects are kept to a 

minimum. For spools with different geometries however, these effects are often decisive for 

the results and cannot be ignored. The 45 degree approach angle for the spool design will 

have a force component at an angle to the support, which for large displacements will cause 

secondary load effects to occur, resulting in the displacement is no longer proportional to the 

spool stiffness. 
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The comparison is very simple and the analytical approach does not capture geometric 

nonlinearities, second order effects and seedbed interaction. The comparison does however 

give a degree of confidence to the fact that the ANSYS code made is of good quality and that 

it can produce accurate results 
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7.2 RESULTS FROM MAIN ANALYSIS 

The following section presents the results from the analysis of the three spools. The governing 

factor for the spools was found to be the hub moment capacity. The pipe elements were 

modeled with nominal wall thickness and effects of wall thinning were not implemented in 

the analysis. The resulting end reaction forces are presented in tables 16-18. Each spool end is 

assigned a local coordinate system and all reaction forces are given in the local coordinate 

systems as shown in Figure 41.  

 
Figure 39: Local coordinate system at spool ends 

 

7.2.1 TOLERANCES 

The metrology and fabrication tolerances found in Table 9 were used in the analysis. In order 

to access the effect of the tolerances all different combination of both the angular and 

translational tolerances needs to be assessed, however, if is advisable to only consider the 

combinations which amount to the most extreme cases.  

Several combinations of tolerances were analysed for each spool. By applying the maximum 

tolerances in both the longitudinal and lateral directions of the spool, compressive forces are 

applied to the spool, and thus adding to the compression applied by the pipe expansion during 

operation. By combining this with the rotational tolerances, which amounts to the larges 

compression of the spool, the worst case combination of tolerances is achieved.  

The maximum linear tolerances are applied in the X and Z directions, whilst applying a 

negative rotation about the Y- axis at each hub, thus applying the maximum compressive 

forces to the spool. In addition, the maximum linear tolerance for the Y direction, along with 

tilting the hubs upwards (ROTZ) is applied. The directions of the rotations which give the 

worst combination will depend on the geometry of the spool and need to be checked for each 

case.  
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The combinations of tolerances representing the worst combination for all three spools are 

given in Table 14. The maximum tolerances in the x- and z- directions are applied at the 

PLET end whilst keeping the manifold end fixed.  

Table 14: Combination of tolerances used for design 

 Manifold PLET 

DOF DX 
[mm] 

DY 
[mm] 

DZ 
[mm] 

ROTZ 
[deg] 

ROTY 
[deg] 

DX 
[mm] 

DY 
[mm] 

DZ 
[mm] 

ROTZ 
[deg] 

ROTY 
[deg] 

Total 0 60 0 0.7 -0.7 110 60 110 0.7 -0.7 

 

7.3.2 LEG LENGTHS 

Table 15 presents the final leg lengths for the three spools. The largest spool was the 4-legged 
spool and the smallest overall spool length was found for the 5-legged spool.  

Table 15: Minimum spool leg lengths and angles 
Spool leg lengths and angles 

SPOOL A 
[mm] 

B 
[mm] 

C 
[mm] 

D 
[mm] 

E 
[mm] 

V1 
[deg] 

V2 
[deg] 

V3 
[deg] 

V4 
[deg] 

TOTAL 
[mm] 

3- legged 28600 28600 12000 - - 90 135 - - 69200 

4-legged 16600 34600 18000 12000 - 90 90 135 - 81200 

5-legged 9100 10400 11000 20025 12000 120 90 90 90 62530 
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7.3.3 RESULTS FOR 3-LEGGED SPOOL  

The reaction loads on the hub ends under the applied loadings and displacements for the 3-

legged spool are presented in Table 16 along with the associated hub capacities.  The 

governing factor for the design was found to be the moment capacity at the manifold end at 

the design stage.  

The moment and axial force profiles for the spool is presented in Figures 42-44. See Appendix 

D for more detailed information. 

Table 16: End reactions and associated hub capacities for 3-legged spool 
 

 End reaction forces for 5-legged spool 

End  Alignme
nt 

Tie-
in 

Pressur
e test 

Operati
on 

Desig
n 

Shut-
down 

Hub 
Capacity 

Manifol
d 

FX E19! 16! 13! 10! 22! E2! ±100 

FY 22! 24! 24! 24! 23! 25! ±100 

FZ 0! 3! 4! 13! 13! 4! ±30 

MX 0! E11! E13! E37! E37! E12! ±50 

MY 2! E63! E70! E211! E211! E75! - 

MZ 69! 204! 198! 191! 211! 170! - 

!!
! +!!

! 69( 214( 210( 284( 299( 186( ±300 

PLET 

FX E5! 15! 17! 32! 33! E14! ±100 

FY 12! 17! 16! 14! 14! 16! ±100 

FZ E2! 14! 15! 17! 18! E10! ±30 

MX 6! E25! E26! E27! E28! E2! ±50 

MY 13! E140! E140! E83! E87! 55! - 

MZ 73! 167! 161! 166! 167! 135! - 

!!
! +!!

! 74( 217( 214( 186( 189( 146( ±300 
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Figure 40: Moment (MY) profile along 3-legged spool 

 
Figure 41: Moment (MZ) profile along 3-legged spool 
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Figure 42: Axial force along 3-legged spool 
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7.3.3 RESULTS FOR 4-LEGGED SPOOL  

 

The reaction loads on the hub ends under the applied loadings and displacements for the 4-
legged spool are presented in Table 17. The governing factor for the design was found to be 
the torsional moment at the manifold end at the design stage.  

The moment and axial force profiles for the spool is presented in Figures 45-47. See Appendix 
D for more detailed information. 

 
Table 17: End reactions and associated hub capacities for 4-legged spool 

 

 End reaction forces for 4-legged spool 

End  Alignme
nt 

Tie-
in 

Pressur
e test 

Operati
on 

Desig
n 

Shut-
down 

Hub 
Capacity 

Manifol
d 

FX E7! 5! 6! 4! 13! 5! ±100 

FY 16! 20! 20! 20! 20! 20! ±100 

FZ E1! 9! 10! 17! 18! 6! ±30 

MX 5! E25! E26! E46! E48! E17! ±50 

MY 7! E100! E101! E150! E155! E58! - 

MZ 66! 170! 172! 166! 172! 169! - 

!!
! +!!

! 67( 197( 199( 224( 232( 179( ±300 

PLET 

FX E5! 7! 8! 51! 57! E17! ±100 

FY 9! E4! E8! E20! E19! E3! ±100 

FZ 2! 9! 11! E5! E5! 9! ±30 

MX E2! E10! E12! 3! 3! E10! ±50 

MY E14! E109! E112! E97! E98! E103! - 

MZ 59! E74! E82! E100! E100! E78! - 

!!
! +!!

! 61( 132( 139( 139( 140( 129( ±300 
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Figure 43: Moment (MY) profile along 4-legged spool 

 
Figure 44: Moment (MZ) profile along 4-legged spool 
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Figure 45: Axial force along 4-legged spool 
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7.3.4 RESULTS FOR 5-LEGGED SPOOL  

 

The reaction loads on the hub ends under the applied loadings and displacements for the 5-
legged spool are presented in Table 18.  

The governing factor for the design was found to be the hub moment at the manifold end at 
the design stage. The moment and axial force profiles for the spool is presented in Figures 48-
50. See Appendix D for more detailed information. 

 
Table 18: End reactions and associated hub capacities for 5-legged spool 

 End reaction forces for 5-legged spool 

End  Alignme
nt 

Tie-
in 

Pressur
e test 

Operati
on 

Desig
n 

Shut-
down 

Hub 
Capacity 

Manifol
d 

FX E11! E3! 2! E4! E1! 8! ±100 

FY 18! 23! 22! 23! 23! 21! ±100 

FZ 7! 9! 6! 21! 20! 4! ±30 

MX E8! 5! 12! E24! E23! 14! ±50 

MY E28! E95! E83! E241! E243! E98! - 

MZ 67! 150! 158! 154! 158! 167! - 

!!
! +!!

! 72( 178( 178( 286( 290( 194( ±300 

PLET 

FX E2! 27! 23! 47! 48! E16! ±100 

FY 9! E10! E11! E18! E19! E3! ±100 

FZ E1! 22! 24! 21! 21! E8! ±30 

MX E2! E23! E26! E20! E20! 8! ±50 

MY 8! E181! E186! E91! E90! 18! - 

MZ 65! E83! E87! E98! E99! E78! - 

!!
! +!!

! 66( 199( 205( 134( 134( 80( ±300 
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Figure 46: Moment (MY) profile along 5-legged spool 
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Figure 47: Moment (MZ) profile along 5-legged spool 

 
Figure 48: Axial force along 5-legged spool 
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7.3.5 CODE CHECKS 

 

The spool straight sections and the bends have been checked according to DNV-OS-F101. 

The straight sections have been checked according to the combined buckling check and the 

spool bends have been assessed according to the ASD check in DNV-OS-F101, F200, Section 

5. 

Table 19 presents the maximum allowable moment for each spool and the utilization for the 

straight sections based on the obtained results. Table 20 presents the utilization at the design 

stage for the pipe bends based on the ASD check.  

The results show that the wall thickness assigned to the spools is sufficient to withstand the 

imposed loads. The highest utilisation of the wall thickness is achieved in the 5-legged spool 

and the lowest is found in the 3-legged spool.  

Table 19: Code check for straight sections 
 Code check for straight section – Design condition 

Spool 
Maximum 

design moment 
[kNm] 

Maximum 
design axial 

force 
[kN] 

Allowable 
moment 
[kNm] 

Utilization 

3-legged 213 853 393 
 
 

0.54 

4-legged 229 892 392 0.58 

5-legged 267 912 392 0.68 
 

 

Table 20: Code check for bends 
 Code check for bends-– Design condition 

Spool Allowable 
stress 
[MPa] 

Longitudinal 
stress 
[MPa] 

Equivalent 
stress 
[MPa] 

Utilization 

3-legged 372 262.8 229.8 0.61 

4-legged 372 276.3 240.6 0.64 

5-legged 372 306.2 254.4 0.71 
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7.4 DISCUSSION  

All three spools have been designed with the minimum possible overall length while keeping 

the reaction forces within the limits set by the hub capacities.  

The variation in moment and axial force for the three spools is presented in Figures 42-50. 

The graphs show a discontinuity of the moment and axial forces at the junction of the straight 

pipe and elbow due to the varying wall thickness for the two sections. From Figures 42-50 we 

can see that large moments arise at the spool bends and particularly at the gooseneck bends on 

either end of the spool. During tie-in, the fabrication and metrology tolerances are applied. 

These displacements impose stresses on the spool, particularly in the region close to the hubs, 

causing the large moments in the gooseneck region. The magnitude of the stresses depends on 

the stiffness of this region (Jacobsen, Norland, & Tharigopula, 2015). In the analysis 

performed, the PLET was assumed fixed to the seafloor and the connecting hubs and 

framework were not included in the analysis. In a real structure however, these structures will 

provide additional stiffness to the system and by including them in the model, the tie-in forces 

on the goosenecks can be reduced (Chan, Mylonas, & McKinnon, 2008). 

Due to the goosenecks, all the spool displacement is applied out of plane with the main spool. 

For a U-shaped loop, (Pan, Rafer, & Ahmed, 1980) found that when the imposed 

displacements occurs in line length of the spool the bending moment varies linearly in the 

straight pipe section, whilst of the displacement is out of plane with the loop all components 

of the force and moment are nonzero and the moment varies non-linearly. In the alignment 

and tie-in load cases in particular, the imposed displacements caused by the added self-weight 

and the fabrication/metrology tolerances are mostly out of plane, thus resulting in a non-linear 

response. From the MY variation of the moments, however, we can see that the variation is 

largely linear in the straight sections in the design and operating cases when the pipeline 

expansion is applied in line with the pipe.  

The design check confirmed that the hub capacity is limiting for the spool design and that the 

wall thickness is sufficient to withstand the imposed loads. 

7.4.1 COMPARISON OF SIZE AND SHAPE 

The spool leg lengths have been assessed in the design process. The minimum leg length is 

designed based on the governing factor for the spool design, which was the hub moment 

capacity.  
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We can think of a spool in terms of a rigid frame, where a beam is supported by two columns. 

If one of the columns experiences settlement a moment will arise in the frame. If the length of 

the beam is increased, the moment will be smaller (McKeehan, 1993). In other words, the 

longer the legs, the more flexible the spool becomes. Longer legs therefore gives lower 

reaction forces at the hub end and the length of the legs must this be large enough to avoid 

that the moments developed by pipeline expansion causes the end moments to overstress the 

hubs. The poorer the spool performed when exposed to the deflection, the longer the spool 

becomes. The length of the spool legs was adjusted until the minimum leg length is obtained 

based on the limiting criteria.  

Figure 51 show the variation in the end moment reaction with overall spool lengths for the 

three spools. We can see that the moment reaction force is reduced and as the spool overall 

length increases.  

 
Figure 49: Variation in moment reaction force with leg length 

 

The final spool length depends on the amount of loads that are transferred to the spool hubs. 

Different spool shapes all have different inherent flexibility and the end reaction forces will 

vary depending on the configuration. Bends and loops are added to the spools to improve the 

flexibility. Figure 52 shows a scaled drawing of the three spools. 

The 5-legged spool was designed with the smallest overall length. The result is in line with 

the fact that pipe sections perpendicular to the expansion movement are most efficient at 

absorbing the displacement (Peng, n.d).  The loop in the spool bends laterally and reduces the 

load being transmitted to the hub ends. The U-shape thus proves good flexibility and is well 

suited for absorbing the end expansion.  
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Figure 50: Scaled drawing of the three spools 

 

The 4-legged spool needed the largest spool size to accommodate the imposed loads. One 

should perhaps think that the extra beds in the Z-spool would make it more flexible than the 

L-shaped spool (Peng, n.d). As seen from the analysis this may not be the case however. 

Increasing the number of bends from 2 in the 3-legged spool, to 3 bends in the 4-legged spool 

caused the spool length to increase when both were subject to the same pipe expansion. This 

indicates that the Z-shaped 4-legged spool does not provide the same degree of flexibility as 

the L- shaped spool. 

When adding loops and bends in the spool, the most flexibility is obtained when the center of 

gravity of the spool is furthest away from the direction of the expansion movement as 

illustrated in Figure 53.  In both the L- and U- spool configurations; the center of gravity is 

away from the movement vector (Peng, n.d).  Even though some flexibility is achieved by 

adding an extra bend for the 4-legged spool this is offset by the loss of flexibility due to the 

fact that the bends are placed towards the center of gravity of the pipe (Peng, n.d). 
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Figure 51: Bends at different distance from the geometrical centre of the spool 

 

7.4.2 COST CONSIDERATIONS 

When deciding on a spool configuration a number of factors should be considered. The size 

of the spool has implications for the cost. Smaller spools will provide cost saving as the need 

for piping material is reduced. The savings on material cost may be offset, however, if the 

smaller spool required more bends. Adding more bends to the spool will complicate the 

fabrication process. Additional welding is required and as poor welding may seriously 

compromise the integrity of the spool and the industry sets strict regulations to welding 

procedure and testing, making the welding process both expensive and time consuming 

(Miller, 1996). The complexity of the lifting equipment and the time required for installation 

will also have serious implication on the cost of the project.  

7.4.3 IMPLICATIONS FOR INSTALLATION 

For large subsea production systems, a number of spools will be needed to tie-in the subsea 

components. Transportation and installation vessels are expensive and if the number of spool 

that can be transported on deck is optimized then costs will be reduced. Smaller overall size 

may mean that more spools can fit on deck, but the shape will also be an important factor. L- 

and Z shapes spools may be easier to stack together if there are several spools of similar 

shapes and thus save deck space whilst the U-shaped spool, which is shaped more like a 

square may take up more deck space.   

For installation, spreader bars are used to provide rigidity and support during the lift. Spools 

are slender and may collapse in not properly supported. A lifting analysis is usually required 

to define the rigging arrangement and to assess the number and locations of lift points on the 

spool. 
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Spreader bars often need to be designed specifically for each spool. The configuration of the 

lifting arrangement depends on the complexity of the spool shape and the overall size. 

Determining the centre of gravity is needed in order to determine the rigging arrangement 

(Sokol & Steffy, 2003).  For slender spools, where the centre of gravity is along the main axis 

of the spool, the spreader bar system can be relatively simple, typically consisting of a single 

bar, with several connection points along its length. For a wide spool, a single straight bar 

may not be enough to support the structure and may require additional support perpendicular 

to the main bar as seen in Figure 16. The spreader bars also need to be transported on the 

transporting vessel, and large spreader arrangements will reduce the space for spools and 

other structures. 

The advantage of the Z-shape is that the centre of gravity is more or less mid-way between 

the hubs, which may imply that only one spreader bar is needed along to mid-line of the spool 

during installations. The spool also has limited width, which is advantageous for the 

installation according to Chan et al (2008). The L-shape on the other hand has its centre of 

gravitity away from the main axis of the spool, and may also prove to be quite wide,  thus 

requiring more carefull condideration into the spreader configuration (Chan, Mylonas, & 

McKinnon, 2008).  

The spool shape and size also has implacations for the lifting vessel and crane. Spreader bars 

are massive structures and the weight of the spreader will significantly add to the weight of 

the lift (Sokol & Steffy, 2003). If the spools are small then the requirements for the vessel 

crane is reduced. However, a wide spool will increase the load on the vessel crane as the 

radius of the lift is increased and a larger installation vessel may be required. For a U-shaped 

spool the increaded flexibility means reduction in spool size which may reduce the weight of 

the rigging arrangement, however, if the spool is too wide, the weight reduction may be offset 

by lowering of crane capacity due to increased lift angle.   
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7.5 SENSITIVITY ANALYSIS 

A finite element analysis can only be an approximation of what the real response of a 

structure is and error in the analysis is inevitable. Computational errors such as round-off 

errors from the computer calculations occur but are generally too small to be significant. 

Discretising errors however may cause errors that are significant (Young & Budynas, 2002). 

Discretizing errors occur due to limitations of the elements at representing the geometry and 

displacement behaviour of true structures. Some elements are better suited for certain 

application than other and the characteristics of the elements should be carefully investigated. 

If the wrong element is chosen, geometric problems such as difficulties with modelling sharp 

curves may arise. Elements that process constant strain characteristics will have difficulties 

displaying accurate strain values in regions where the strain varies greatly over a small area. 

(Young & Budynas, 2002) 

Increasing the mesh density and thus increasing the number of elements in the finite element 

structure can often mitigate discretizing problems. Selecting more appropriate elements for 

the type of analysis will also improve the results (Young & Budynas, 2002). 

The mesh density of the model depends on the selected element and the required detail level 

of the analysis. Sensitivity analysis should be performed to check if the chosen mesh sizing is 

adequate. To investigate the mesh convergence, the mesh can be refined repeatedly until the 

results are no longer significantly affected by the element size.  

A sensitivity analysis is performed by checking the resulting deformation of the 3-legged 

spool as we increase the number of elements until the resulting deformation converges to a 

single value. This is done by investigating the deformation at the central corner for each run. 

The results of the analysis are presented in Figure 54.  
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Figure 52: Mesh convergence for sensitivity analysis 

 

We see from the analysis that the solution converges for both displacement directions after 

the spool has been divided into a total of 185 elements. This is equivalent of an elements size 

of 1.3*OD for both straights and bends. We should therefore choose an element size less than 

this for the analysis to be as accurate as possible. 
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CONCLUSION  

Three rigid horizontal spools with different geometries were designed. The governing factor 

for the spool was found to be the allowable hub capacities and the spool size was optimized 

until the minimum size was obtained for each spool configuration. Table 21 provides a 

summary of the end reaction forces for the three spools. The values listed are the maximum 

values found for each reaction for both ends.  

Table 21: Reaction force summary 

Reaction 

3-legged 4-legged 5-legged 
System 

Capacity [kN]/ 

[kNm] 

Load step [kN]/ 

[kNm] 

Load step [kN]/ 

[kNm] 

Load step 

FX 22 Design 57 Design 53 Design ±100 

FY 25 Shutdown 20 Pressure 
test 26 Design ±100 

FZ 13 Design 18 Design 24 Pressure 
test ±30 

MX -37 Design -48 Design -26 Pressure 
test 

±50 

MY -211 Design -155 Design -245 Design - 

MZ 211 Design 172 Design 183 Shutdown - 

!!
! +!!

! 299 Design 232 Design 299 Design ±300 

  

Several load conditions were tested including metrology/fabrication tolerances during tie-in 

and a 1m pipeline expansion applied during the operating/design load steps.  

A 3-legged L-shaped spool, a 4-legged Z-shaped spool and a 5-legged U-shaped spool were 

investigated. The U-shaped spool was found to provide most flexibility and was thus the 

smallest. It was also found that the L-shaped spool provided better flexibility than the Z-
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shaped spool and thus was found to be superior both in terms of flexibility but also due to the 

simplicity and less requirements for welding.  

It was found that the number of bends is not the only factor governing the flexibility of the 

spool, but that the spool shape was more important. More flexibility is achieved by placing 

the bends away from the line of movement, thus shifting the center of gravity away from the 

direction of the displacement vector. Including another bend in the 4-legged spool did not 

improve flexibility and actually caused the spool size to increase, as the center of gravity was 

close to the line of movement.  
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RECOMMENDATIONS FOR FURTHER WORK 

In order to get better understanding of the effect of the spool shape, a more complete analysis 

with more shapes and configurations would be recommended. The following 

recommendations are made in order to improve the analysis: 

• Include connecting hubs, mounting structures and framework to the spool end in the 

analysis to capture the connecting structure stiffness contribution.  

• Include a section of pipeline to allow the PLET end to slide in order to reduce tie-in loads. 

• Introduce hydrostatic loads and potential loads from structure settlement as well as 

stroking of the spool during tie-in- 
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APPENDIX A: CODE CHECKS 

 

3-LEGGED SPOOL 

ALLOWABLE STRESS DESIGN FOR BENDS  

Inputs  

Parameter Value Unit 

OD 312.1 mm 

Wall thickness 19.1 mm 

Internal Pressure 33.7 MP 

External Pressure 12.4 MP 

Max Bending in 
operation 

194 kNm 

Max Effective Axial 
Force in operation 

775 kN 

Safety class Medium  

! 0.9  

SMYS 450 MP 

De-rated yield stress 16.7 MPa 

 

CALCULATIONS 

Allowable longitudinal and equivalent stress: 

Operation and design: 

!!""#$!%"& ≤ ! ∙ (!"#! − !!,!"#$) ∝!= 0.9×(450− 16.7) ∙ 0.96 = 372!"# 
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Hoop stress    

!! = !! − !!
! − !
2 ∙ ! 163.2!!"# 

Longitudinal stress     

  

!!,! =
! + !! !4 (! − 2!!)

! − !! !4!
!

! ∙ (! − !!) ∙ !!
+ !
! ∙ (!! − ! − 2 ∙ !! !)

32 ∙ !
= 262.8!!"# 

!!,! =
! + !! !4 (! − 2!!)

! − !! !4!
!

! ∙ (! − !!) ∙ !!
− !
! ∙ !! − ! − 2 ∙ !! !

32 ∙ !
= −56.8!!"# 

 

Equivalent stress   (!!" is assumed small and is ignored) 

!!,! = !!! + !!! − !! ∙ !! ! = 229.8!!"#!! 

!!,! = !!! + !!! − !! ∙ !! ! = 197.8!!"#!! 

Max stress utilization factor 

∝= !"# !!,! , !!,! , !!,! , !!,!
!!

= 0.61 

   

COMBINED LOADING CHECK - STRAIGHT 

Inputs  

Parameter  Value Unit 

Outer diameter OD 304.9 mm 

Wall thickness used in code check t 16.1 mm 

Internal Pressure !! 337.7 bar 
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External Pressure !! 1240 bar  

Max Bending in operation !! 194 kNm 

Max Effective Axial Force in 
operation 

!! 775 kN 

Safety class  Medium  

Yield stress SMYS 450 MPa 

De-rated yield stress !!,!"#$ 16.7 MPa 

INTERMEDIATE RESULTS    

Design yield stress !! 412.8 MPa 

Plastic axial force resistance  !! 6029.9 kN 

Plastic moment resistance !! 554.3 kNm 

Burst pressure !! 531.5 bar 

 β 0.456  

Flow stress parameter ∝! 1.09  

Pressure factor ∝! 0.544  

Functional load factor !! 1.1  

Condition load effect factor !! 1.0  

Material resistance factor !! 1.15  

Safety class resistance factor !!"  1.14  

 

CALCULATIONS 

Design moment  !!" = !! ∙ !! ∙ !! = 213.4!!"# 

Design axial force !!" = !! ∙ !! ∙ !! = 852.5!kN 

Maximum allowable moment:  

!,!"# =
!!

!! ∙ !!"
∙ 1−∝!

!! − !!
!!

!
− !! ∙ !!" ∙ !!"

!! ∙ !!

!
!! ∙

1
!! ∙ !!

= 392.9!!"# 
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4-LEGGED SPOOL 

ALLOWABLE STRESS DESIGN FOR BENDS  

Inputs  

Parameter Value Unit 

OD 312.1 mm 

Wall thickness 19.1 mm 

Internal Pressure 33.7 MPa 

External Pressure 12.4 MPa 

Max Bending in 
operation 

208 kNm 

Max Effective Axial 
Force in operation 

811 kN 

Safety class Medium  

! 0.9  

SMYS 450 MPa 

De-rated yield stress 16.7 MPa 

 

CALCULATIONS 

Allowable longitudinal and equivalent stress: 

Operation and design: 

!!""#$!%"& ≤ ! ∙ (!"#! − !!,!"#$) ∝!= 0.9×(450− 16.7) ∙ 0.96 = 372!"# 

 

Hoop stress    

!! = !! − !!
! − !
2 ∙ ! = 163.2!!"# 
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Longitudinal stress     

  

!!,! =
! + !! !4 (! − 2!!)

! − !! !4!
!

! ∙ (! − !!) ∙ !!
+ !
! ∙ (!! − ! − 2 ∙ !! !)

32 ∙ !
= 276.3!!"# 

!!,! =
! + !! !4 (! − 2!!)

! − !! !4!
!

! ∙ (! − !!) ∙ !!
− !
! ∙ !! − ! − 2 ∙ !! !

32 ∙ !
= −66.3!!"# 

 

Equivalent stress   (!!" is assumed small and is ignored) 

!!,! = !!! + !!! − !! ∙ !! ! = 240.6!!"#!! 

!!,! = !!! + !!! − !! ∙ !! ! = 204.5!!"#!! 

Max stress utilization factor 

∝= !"# !!,! , !!,! , !!,! , !!,!
!!

= 0.64 

   

COMBINED LOADING CHECK - STRAIGHT 

Inputs  

Parameter  Value Unit 

Outer diameter OD 304.9 mm 

Wall thickness used in code check t 16.1 mm 

Internal Pressure !! 337.7 bar 

External Pressure !! 1240 bar  

Max Bending in operation !! 208 kNm 

Max Effective Axial Force in 
operation 

!! 811 kN 

Safety class  Medium  
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Yield stress SMYS 450 MPa 

De-rated yield stress !!,!"#$ 16.7 MPa 

    

INTERMEDIATE RESULTS    

Design yield stress !! 412.8 MPa 

Plastic axial force resistance  !! 6029.9 kN 

Plastic moment resistance !! 554.3 kNm 

Burst pressure !! 531.5 bar 

 β 0.456  

Flow stress parameter ∝! 1.09  

Pressure factor ∝! 0.544  

Functional load factor !! 1.1  

Condition load effect factor !! 1.0  

Material resistance factor !! 1.15  

Safety class resistance factor !!"  1.14  

 

CALCULATIONS 

Design moment  !!" = !! ∙ !! ∙ !! = 228.8!!"# 

Design axial force !!" = !! ∙ !! ∙ !! = 892.1!!" 

Maximum allowable moment:  

!,!"# =
!!

!! ∙ !!"
∙ 1−∝!

!! − !!
!!

!
− !! ∙ !!" ∙ !!"

!! ∙ !!

!
!! ∙

1
!! ∙ !!

= 391.5!!"# 
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5-LEGGED SPOOL 

ALLOWABLE STRESS DESIGN FOR BENDS  

Inputs  

Parameter Value Unit 

OD 312.1 mm 

Wall thickness 19.1 mm 

Internal Pressure 33.7 MPa 

External Pressure 12.4 MPa 

Max Bending in 
operation 

267 kNm 

Max Effective Axial 
Force in operation 

912 kN 

Safety class Medium  

! 0.9  

SMYS 450 MPa 

De-rated yield stress 16.7 MPa 

 

CALCULATIONS 

Allowable longitudinal and equivalent stress: 

Operation and design: 

!!""#$!%"& ≤ ! ∙ (!"#! − !!,!"#$) ∝!= 0.9×(450− 16.7) ∙ 0.96 = 372!"# 

 

Hoop stress    

!! = !! − !!
! − !
2 ∙ ! = 163.2!!"# 
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Longitudinal stress     

  

!!,! =
! + !! !4 (! − 2!!)

! − !! !4!
!

! ∙ (! − !!) ∙ !!
+ !
! ∙ (!! − ! − 2 ∙ !! !)

32 ∙ !
= 306.2!!"# 

!!,! =
! + !! !4 (! − 2!!)

! − !! !4!
!

! ∙ (! − !!) ∙ !!
− !
! ∙ !! − ! − 2 ∙ !! !

32 ∙ !
= 94.1!!"# 

 

Equivalent stress   (!!" is assumed small and is ignored) 

!!,! = !!! + !!! − !! ∙ !! ! = 265.4!!"#!! 

!!,! = !!! + !!! − !! ∙ !! ! = 225.5!!"#!! 

Max stress utilization factor 

∝= !"# !!,! , !!,! , !!,! , !!,!
!!

= 0.71 

   

COMBINED LOADING CHECK - STRAIGHT 

Inputs  

Parameter  Value Unit 

Outer diameter OD 304.9 mm 

Wall thickness used in code check t 16.1 mm 

Internal Pressure !! 337.7 bar 

External Pressure !! 1240 bar  

Max Bending in operation !! 243 kNm 

Max Effective Axial Force in 
operation 

!! 829 kN 

Safety class  Medium  
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Yield stress SMYS 450 MPa 

De-rated yield stress !!,!"#$ 20 MPa 

    

INTERMEDIATE RESULTS    

Design yield stress !! 412.8 MPa 

Plastic axial force resistance  !! 6029.9 kN 

Plastic moment resistance !! 554.3 kNm 

Burst pressure !! 531.5 bar 

 β 0.456  

Flow stress parameter ∝! 1.09  

Pressure factor ∝! 0.544  

Functional load factor !! 1.1  

Condition load effect factor !! 1.0  

Material resistance factor !! 1.15  

Safety class resistance factor !!"  1.14  

 

CALCULATIONS 

Design moment  !!" = !! ∙ !! ∙ !! =267 kNm 

Design axial force !!" = !! ∙ !! ∙ !! =912 kN 

Maximum allowable moment:  

!,!"# =
!!

!! ∙ !!"
∙ 1−∝!

!! − !!
!!

!
− !! ∙ !!" ∙ !!"

!! ∙ !!

!
!! ∙

1
!! ∙ !!

= 391.8!!"# 
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APPENDIX B: VALIDATION OF MODEL 

RIGID FRAME 

 

 

 

The formula for vertical deflection at A is given by 

 

!!" = !!"!! + !!!!! + !!"!! − !!! 

 

Since !!=0 and !! = 0  and we get !!! = 0 

 

!!" = !!!!! 

 

!! =
!!"
!!!

 

 

Input 

L1=$10m' !! = !! = !! = 207!"# 
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L2=25m'
L3=35m'
 

!! = 0.3049! 

!! = 0.2667! 

 

!! = !! = !! =
!
64 !!! − !!!

= 1.759×10!!!! 

 

!!!! = −!!!! = −!!!! 

  

Constants 

!!! =
!!!!!
!!!!

+ !!!
3!!!!

= 0.001234 

 

 

 

Reaction forces 

For 1m pipe expansion  

!!" = 1! 

 

!! =
!!"
!!!

= −1
0.001234 = −810.5! 

 

!! = 810.5! 

!! = !!×!3 = 28369.1! = 28.27!" 
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APPENDIX C: ANSYS SCRIPT 

!=================================================================! 
! Title: Model script               ! 
! Date: March 2013                           ! 
! Made by: Tonje Lyssand                          ! 
! File name:  3legged                                     ! 
!=================================================================! 
finish 
/clear,all 
/triad,lbot     !Diplay XYZ triad in left bottom corner 
/units,mks     !Units in (m, kg, s, deg C) 
!=================================================================!
      
/PREP7     !Start model creation preprocessor antype,0,new
      !Static analysis and restart 
!=================================================================! 
! Defining parameters         
! Units are [m] [N] [kg] [s] [deg]       
!=================================================================! 
pi=4*ATAN(1.0)            !Pi 
g=9.81      !Gravitational acceleration [m/s^2] 
WD=1234     !Water depth [m] 
Dwater=1026     !Water density  [kg/m^3] 
ID=0.2667     !Inner diameter [m] 
radb=5*ID     !Bend radii 
WT1=19.1e-3     !Wall thickness straight section [m] 
WT2=22.7e-3     !Wall thickness bend [m] 
OD1=ID+2*WT1    !Outer diameter straight section [m] 
OD2=ID+2*WT2    !Outer diameter bend [m] 
Tcoat1=49.4e-3    !Thickness of external material [m] 
Tcoat2=61.3e-3 
!=================================================================! 
! Element Types         
!=================================================================! 
ET,1,pipe288,,,0    !Pipe element (straight section) 
ET,2,elbow290,,,0    !Pipe element (bend) 
ET,3,targe170,,,0    !Seabed element 
ET,4,conta175,,,0     !Contact element 
 
sectype,1,pipe     !Define section type /element type 1 is pipe 
secdata,OD1,WT1    !Assign diameter and wall thickness  
sectype,2,pipe     !Define section type /element type 2 is pipe 
secdata,OD2,WT2    !Assign diameter and wall thickness  
      
!=================================================================! 
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! Material Properties 
!=================================================================!
Dsteel=7850     !Steel density  (kg/m^3) 
Dcontent=50     !Content density (kg/m^3) 
DMEG=1115     !MEG density 
Dcoat1=900     !Density of external material for straights 
(kg/m^3) 
Dcoat2=1040     !Density of external material for bends (kg/m^3) 
 
 
! Submerged weight straight pipe               
!-------------------------------------------------------------------------------------------------------------! 
Dtot1=OD1+2*Tcoat1    !Total diameter 
Asteel1=(pi/4)*(OD1**2-ID**2)   !Cross-sectional area of steel 
Acoat1=(pi/4)*(((OD1+2*Tcoat1)**2)-(OD1**2)) !Cross-sectional area of external coating 
AtotE1=(pi/4)*((Dtot1**2)-(ID**2))  !Total cross sectional area of material 
Atot1=(pi/4)*Dtot1**2    !Total cross section of filled pipe 
AInner1=(pi/4)*ID**2    !Inner cross section of pipe 
 
Wsteel1=Asteel1*Dsteel*g    !Steel mass (N/m) 
Wcoat1=Acoat1*Dcoat1*g    !Coating mass (N/m) 
Wcontent1=AInner1*Dcontent*g   !Content mass (N/m) 
WMEG1=AInner1*DMEG*g   !Mass of MEG (N/m) 
 
WairE1=Wsteel1+Wcoat1    !Mass in air empty (N/m) 
WairC1=WairE1+Wcontent1    !Mass in air content filled (N/m) 
WairMEG1=WairE1+WMEG1   !Mas in air MEG filled 
Wboyancy1=Atot1*Dwater*g   !Total buoyancy filled (content and MEG) 
 
SubWeightE1=WairE1-Wboyancy1   !Submerged weight empty (N/m) 
SubWeightC1=WairC1-Wboyancy1   !Submerged weight content filled (N/m) 
SubWeightMEG1=WairMEG1-Wboyancy1  !Submerged weight content filled (N/m) 
 
DENSeqvE1=SubWeightE1/(Asteel1*g)  !Equivalent density empty  (kg/m^3)!
  
 
MassContentMEG=WMEG1/g   !Content mass MEG filled (kg/m) 
MassContentC=Wcontent1/g    !Content mass (kg/m)  
 
! Submerged weight pipe bend         
!---------------------------------------------------------------------------------------------------------------! 
Dtot2=OD2+2*Tcoat2    !Total diameter 
 
Asteel2=(pi/4)*(OD2**2-ID**2)   !Cross-sectional area of steel 
Acoat2=(pi/4)*(((OD2+2*Tcoat2)**2)-(OD2**2)) !Cross-sectional area of external coating 
AtotE2=(pi/4)*((Dtot2**2)-(ID**2))  !Total cross sectional area of material 
Atot2=(pi/4)*Dtot2**2    !Total cross section of filled pipe 
AInner2=(pi/4)*ID**2    !Inner cross section of pipe 
 



113 

 

Wsteel2=Asteel2*Dsteel*g    !Steel mass (N/m) 
Wcoat2=Acoat2*Dcoat2*g    !Coating mass (N/m) 
Wcontent2=AInner2*Dcontent*g   !Content mass (N/m) 
WMEG2=AInner2*DMEG*g   !Mass of MEG (N/m) 
 
WairE2=Wsteel2+Wcoat2    !Mass in air empty (kg/m) 
WairC2=WairE2+Wcontent2    !Mass in air content filled (kg/m) 
WairMEG2=WairE2+WMEG2   !Mass in air MEG filled 
Wboyancy2=Atot2*Dwater*g   !Total buoyancy  
 
SubWeightE2=WairE2-Wboyancy2   !Submerged weight empty 
SubWeightC2=WairC2-Wboyancy2   !Submerged weight content filled 
SubWeightMEG2=WairMEG2-Wboyancy2  !Submerged weight content filled 
 
DENSeqvE2=SubWeightE2/(Asteel2*g)  !Equivalent density (kg/m^3) 
!---------------------------------------------------------------------------------------------------------------! 
 
MP, EX, 1, 207e9     !Young's Modulus for straight pipe 
MP, PRXY,1, 0.3     !Poisson's ratio for straight pipe 
MP, ALPX,1, 1.17e-5     !Secant coefficient of thermal expansion 
 
MP, EX, 2, 207e9     !Young's Modulus for pipe bend 
MP, PRXY,2, 0.3     !Poisson's ratio for pipe bend 
MP, ALPX,2, 1.17e-5     !Secant coefficient of thermal expansion 
 
MP,DENS,60,DMEG     !Assign material number to content 
MP,DENS,70,Dcontent    !Add content density (MEG filled) 
 
 Material modelling  
!---------------------------------------------------------------------------------------------------------------! 
 
TB,KINH,1,1,,4   !Data table for nonlinear material  (STRAIGHT) 
TBTEMP,20.0   !Temperature for material prop 
TBPT,,0.0,0.0    !Strain=0.00,Stress=0.00 
TBPT,,0.002174,450E6   !Elastic: strain = 0.0217%, Stress = 450E6 (Nm^-2) 
TBPT,,0.020,450E6    !Yield Strain: strain = 2.0%, stress = 450E6 (Nm^-2) 
TBPT,,0.060,535E6    !Plastic strain: strain = 6.0%, stress = 535E6 (Nm^-2) 
 
TBLIST,KINH,1    !Lists the material data tables. 
TBPLOT,KINH,1   !Plot material data 
 
TB,KINH,2,1,4   !Data table for nonlinear material properties (BENDS) 
TBTEMP,20.0     
TBPT,,0.0,0.0    !Strain=0.00,Stress=0.00 
TBPT,,0.002174,450E6   !Elastic: Strain = 0.0217%, Stress = 450E6 (Nm^-2) 
TBPT,,0.020,450E6    !Yield Strain: strain = 2.0%, stress = 450E6 (Nm^-2) 
TBPT,,0.060,535E6    !Plastic strain: strain = 6.0%, stress = 535E6 (Nm^-2) 
 
TBLIST,KINH,2    !Lists the material data tables. 
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TBPLOT,KINH,2   !Plot material data 
 
TB,FRIC,50,,,ortho    !Friction factor for seabed 
FRICLAX=0.8    !Soil friction in axial direction 
FRICLAY=0.8    !Soil friction in lateral direction 
TBdata,1,FRICLAX,FRICLAY  
 
!=================================================================! 
! Operational Conditions         
!=================================================================! 
OPress=150e5     !Operating pressure (N/m^2) 
DP=307e5     !Design pressure (N/m^2) 
TP=322e5     !Test pressure (N/m^2) 
Tamb=5     !Ambient temperature 
T0=50      !Operating temperature  
TD=78      !Design temp 
!=================================================================! 
! Define spool geometry          
!=================================================================! 
!Define keypoints for spool 
!KP1=Manifold end 
!KP8=PLET end 
 
K, 1 , 0  , 3.20  , 0 
K, 2 , 2.38  , 3.20  , 0 
K, 3 , 4.10   , 0  , 0 
K, 4 , 11.60  , 0  , 0 
K, 5 , 15.60  , 0  , 0 
K, 6 , 15.60  , 0  , 28.60 
K, 7 , 28.60  , 0  , 28.60 
K, 8 , 33.43  , 0  , 33.43 
K, 9 , 35.40  , 1.61  , 35.40 
K, 10 , 37.09  , 1.40  , 37.09 
 
!Define lines 
L,1,2 
L,2,3 
L,3,4 
L,4,5 
L,5,6 
L,6,7 
L,7,8 
L,8,9 
L,9,10 
 
!Define bends 
LFILLT,1,2,radb,0 
LFILLT,2,3,radb,0 
LFILLT,4,5,radb,0 
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LFILLT,5,6,radb,0 
LFILLT,6,7,radb,0 
LFILLT,7,8,radb,0 
LFILLT,8,9,radb,0 
 
cm,pipelines,line    !Group lines 
!=================================================================! 
! Meshing of spool           
!=================================================================! 
r,200,,      !Defines real constants 
 
KEYOPT,1,1,0    !Temperature through wall gradient 
KEYOPT,1,3,2    !Quadratic shape function 
KEYOPT,1,4,1    !Thin Pipe Theory 
KEYOPT,1,6,0    !End cap loads 
KEYOPT,1,7,0    !Output control 
KEYOPT,1,8,0 
KEYOPT,1,9,2 
KEYOPT,1,15,0 
 
KEYOPT,2,1,0    !Temperature through wall gradient 
KEYOPT,2,2,3    !Allow for ovalisation and c/s deformation.  
KEYOPT,2,6,0    !End cap loads 
 
alls 
lsel,s,line,,1,9,     !Select straight section 
mat,1      !Assign material type 
type,1      !Assign element type 
secnum,1  
real,200     !Assign section properties 
esize,1*OD1     !Assign element size 
LMESH,all     !MESH STRAIGHTS 
 
lsel,s,line,,10,17,    !Select bends 
mat,2      !Assign material type 
type,2      !Assign element type 
secnum,2     !Assign section properties 
real,200 
esize,1*OD2     !Assign element size 
LMESH,all     !MESH BENDS 
 
!=================================================================! 
! Seabed modelling          
!=================================================================!
FRK=0.8     !Normal contact stiffness factor 
FTOLN=0.2     !Penetration tolerance factor 
r,400,,,FRK,FTOLN,,,,,   !Real constant seabed and contact elements 
 
KEYOPT,4,2,1    !Penalty method 
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!KEYOPT,4,3,0    !Contact model: (0)Contact Force Based  
KEYOPT,4,4,2    !Normal from contact nodes 
KEYOPT,4,10,2    !Constant stiffness update 
KEYPOT,4,5,2    !Reduce penetration with auto CNOF 
 
!Define keypoints for seabed 
K, 1001 , -10 , -0.10 , -10  
K, 1002 , -10 , -0.10 , 50 
K, 1003 , 50 , -0.10 , 50 
K, 1004 , 50 , -0.10 , -10  
 
A,1001,1002,1003,1004   !Define area for seabed 
asel,s,area,,1     !Select seabed area 
type,3      !Targe170 
mat,50      !Assign seabed material properties 
real,400     !Defines element real constants 
esize,10000000    !Assigns element size 
AMESH,all     !MESH SEABED 
 
alls 
lsel,s,line,,3,7     !Select lines in contact with seabed 
lsel,a,line,,11,16   
nsll,s,all     !Choose elements associated with selected lines 
type,4      !Assign element type 
real,400     !Defines element real constants  
ESURF     !GENERATES CONTACT ELEMENTS  
 
alls 
esel,s,type,,1 
cm,straight,elem    !Group straight section 
esel,s,type,,2 
cm,bend,elem     !Group bends 
esel,a,type,,1  
cm,pipeelem,elem    !Group whole pipe into element name pipeelem 
nsle,all 
cm,pipenodes,node    !Groups all pipenodes  
 
alls 
ksel,s,kp,,1 
nslk,s 
cm,KP1node,node    !Name node at KP1 
 
alls 
ksel,s,kp,,10 
nslk,s 
cm,KP10node,node    !Name node at KP10 
 
!=================================================================! 
! Local Coordinate systems           
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!=================================================================! 
!Generate nodes to define new coordinate system at nodes 
K, 6001 , 0 , 5.500 , 0  !Same as KP1               
K, 6002 , 37.09 , 2.0 , 37.09  !Same as KP10 (y=2.0) 
K, 6003 , 35.40 , 1.4 , 35.40  !KP9 (y=1.4) 
alls 
CSKP,11,CART,1,2,6001   !Create local coordinate system at KP1 
CSYS,11     !Local coordinates MANIFOLD end 
cmsel,s,KP1node,node   !Select KP1 
NROTAT,all     !Rotate nodal coordinate system to local system 
 
alls 
CSKP,12,CART,10,6003,6002  !Create local coordinate system at KP8 
CSYS,12     !Local coordinates PLET end 
cmsel,s,KP10node,node   !Select KP1 
NROTAT,all     !Rotate nodal coordinate system to local system 
 
/PSYMB,CS,1     !Disply local coordiante systems 
CSYS,0     !Active default coordinate system 
 
alls 
SAVE  
PARSAV,ALL,Param_model,txt   !Save parameters to latbuck.txt 
/ESHAPE,1      
EPLOT     !Display element shape 
      
FINISH 
/eof 
 

!=================================================================! 
! Title: Solution script               ! 
! Date: March 2013                           ! 
! Made by: Tonje Lyssand                          ! 
! File name:  3legged                                     ! 
!=================================================================! 
fini 
/clear,all 
/INPUT,model,txt      !call file "model.mac" in same direct 
!=================================================================! 
! Solution          
!=================================================================! 
/SOLU      !Start solution processor 
NLGEOM,ON    !Include large deformation 
ANTYPE,0 
AUTOTS,ON     !Automatic time stepping 
CNCHECK,AUTO    !Adjust the initial status of contact pairs  
NROPT,UNSYM    !Stiffness matrix updated at every equilibrium 
iteration 
parres,change,Param_model,txt   !Reads parameters from a Parammodel.txt file 
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TREF,Tamb     !Ambient temp 
 
!=================================================================! 
! LOAD STEP1: Apply self weight         
!=================================================================! 
TIME,1    !Load step 1 
/title,Apply self weight 
NROP,UNSYM   !Use full Newton-Raphson with unsymmetrical matrices 
alls 
DK,1,all,0    !Defines constraint on key points 
DK,10,all,0 
 
!APPLY SELF WEIGHT 
sfe,pipeelem,3,pres,0,ID/2  !Set free surface of internal fluid 
MP,DENS,1,DENSeqvE1  !Equivalent density for submerged weight 
 
sectype,1,pipe    !Chose pipe288 elements 
secdata,OD1,WT1,,,,60  !Add content density (MEG filled)  
ACEL,,g,ID/2 
 
sfe,pipeelem,3,pres,0,ID/2  !Set free surface of internal fluid 
MP,DENS,2,DENSeqvE2  !Equivalent density for submerged weight! 
 
sectype,2,pipe    !Chose elbow290 elements 
!seccontrols,DMEG 
secdata,OD2,WT2,,,,60  !Add content density (MEG filled) 
ACEL,,g,ID/2 
 
!APPLY HYDROSTATIC PRESSURE 
cmsel,s,pipeelem,elem   !Select pipeelements 
sfe,pipeelem,2,pres,0,Dwater*g*WD  !Hydrostatic pressure (N/m^2)  
             
nsubst,1,1000,1  
alls     
lswrite,1    !Define load step, write data to FILE=file.s01 
!lssolve,1 
save 
 
!=================================================================! 
! LOAD STEP 2: Tie-in          
!=================================================================! 
TIME,2     !Load step 2 
/title,Tie-in  
 
CSYS,11     !Enter local coordinate system 
deg_roty=0.7 
deg_rotz=0.7 
rad_roty=deg_roty*pi/180 
rad_rotz=deg_rotz*pi/180 
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DK,1,UX,0.055    !Apply tolerances 
DK,1,UY,0.06 
DK,1,UZ,0.055 
DK,1,ROTY,-rad_roty 
DK,1,ROTZ,rad_rotz 
 
CSYS,12 
DK,10,UX,0.055    !Apply tolerances 
DK,10,UY,-0.06 
DK,10,UZ,0.055 
DK,10,ROTY,-rad_roty 
DK,10,ROTZ,-rad_rotz 
  
nsubst,1,10000,1 
alls 
lswrite,2      
!lssolve,1,2 
CSYS,0     !Back to global coordinate system 
 
!=================================================================! 
! LOAD STEP 3: Pressure Test          
!=================================================================! 
TIME,3    !Load step 3 
/title,Pressure test  
sfe,pipeelem,1,pres,0,TP  !Test pressure (N/m^2)    
           
nsubst,1,10000,1  
alls     
lswrite,3    !Define load step, write data to FILE=file.s01 
       
!lssolve,1,3 
 
!=================================================================! 
! LOAD STEP 4: Operational condition         
!=================================================================! 
TIME,4     !Load step 4 
/title, Operational condition 
 
!OPRATIONAL CONTENT 
Mcont=AINNER1*(DContent-DMEG) !Add "negative" added mass to model content 
   
nsubst,100,10000,100 
MP,DENS,1,DENSeqvE1 
seccontrols,Mcont 
      
MP,DENS,2,DENSeqvE2    
seccontrols,Mcont    
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sfe,pipeelem,1,pres,0,OPress   !Operating pressure (N/m^2) 
bfe,pipeelem,temp,1,T0,Tamb  !Operating temperature 
 
!APPLY EXPANSION TO PLET END 
CSYS,12 
dcum,add     !Subsequent D's to be added 
DK,10,UX,1.0     !Apply expansion of 1.0m to PLET end 
        
nsubst,100,100000,100 
alls      
lswrite,4     !Define load step, write data to FILE=file.s01
        
!lssolve,1,4 
CSYS,0 
 
!=================================================================! 
! LOAD STEP 5: Design condition          
!=================================================================! 
TIME,5 
/title,Design condition  
 
sfe,pipeelem,1,pres,0,DP   !Design pressure (N/m^2) 
bfe,pipeelem,temp,1,TD,Tamb  !Design temperature 
           
nsubst,1,10000,1  
alls     
lswrite,5     !Define load step, write data to FILE=file.s01
        
!lssolve,1,5 
 
!=================================================================! 
! LOAD STEP 6: Shutdown         
!=================================================================! 
TIME,6 
/title,Shutdown 
 
sfe,pipeelem,1,pres,0,0   !Set internal pressure to zero (N/m^2) 
bfe,pipeelem,temp,1,0,Tamb   !Set internal temperature to zero 
 
!REMOVE EXPANSION TO PLET END 
CSYS,12 
DK,10,UX,0     !Remove expansion    
     
alls           
nsubst,100,100000,100      
lswrite,6     !Define load step, write data to FILE=file.s01
        
lssolve,1,6 
/eof     



121 

 

 
!=================================================================! 
! Title: Post processor script              ! 
! Date: March 2013                           ! 
! Made by: Tonje Lyssand                          ! 
! File name:  3legged                                     ! 
!=================================================================! 
 fini 
/clear,all 
/INPUT,solution,txt      !call solution file in same directory 
 
!=================================================================! 
! Post Processing         
!=================================================================! 
/POST1 
/DSCALE,1,1 
!=================================================================! 
! Self Weight           
!=================================================================! 
set,1 
/output,LC1,txt    !Make file with name LC1 
RSYS,11     !Change to local CS for manifold end 
cmsel,s,KP1node,node  
PRRSOL     !Reaction forces           
RSYS,12     !Change to local CS for PLET end 
cmsel,s,KP10node,node    
PRRSOL     !Reaction forces     
/output 
 
alls 
/output,LC1disp,txt 
PRNSOL,DOF    !Displacements 
/output 
 
alls 
/output,LC1results,txt  
cmsel,s,straight,elem    !PIPE288 
ETABLE,MYI,SMISC,2   !Bending moment for nodeI 
ETABLE,MYJ,SMISC,15   !Bending moment for nodeJ 
ETABLE,MZI,SMISC,3   !Bending moment for nodeI 
ETABLE,MZJ,SMISC,16   !Bending moment for nodeJ 
ETABLE,EffAxiI,SMISC,1   !Axial force I 
ETABLE,EffAxiJ,SMISC,14   !Axial force J 
PRETAB,MYI,MYJ,MZI,MZJ,EFFAxiI,EffAXiJ 
cmsel,s,bend,elem    !ELBOW290 
ETABLE,MYI,SMISC,2   !Bending moment for nodeI 
ETABLE,MYJ,SMISC,37   !Bending moment for nodeJ 
ETABLE,MZI,SMISC,3   !Bending moment for nodeI 
ETABLE,MZJ,SMISC,38   !Bending moment for nodeJ 



122 

 

ETABLE,EffAxiI,SMISC,1   !Axial force I 
ETABLE,EffAxiJ,SMISC,36   !Axial force J 
PRETAB,MYI,MYJ,MZI,MZJ,EFFAxiI,EffAXiJ 
/output 
 
!=================================================================! 
! Tie-in            
!=================================================================! 
set,2  
/output,LC2,txt    !Make file with name LC2 
RSYS,11     !Change to local CS for manifold end end 
cmsel,s,KP1node,node  
PRRSOL     !Reaction forces            
RSYS,12  
cmsel,s,KP10node,node   !Change to local CS for PLET end 
PRRSOL     
/output 
 
RSYS,0 
alls 
/output,LC2disp,txt     
PRNSOL,DOF    !Displacements 
/output 
 
alls 
/output,LC2resutls,txt 
cmsel,s,pipeelem,elem 
cmsel,s,straight,elem    !PIPE288 
ETABLE,MYI,SMISC,2   !Bending moment for I 
ETABLE,MYJ,SMISC,15   !Bending moment for J 
ETABLE,MZI,SMISC,3   !Bending moment for I 
ETABLE,MZJ,SMISC,16   !Bending moment for J 
ETABLE,EffAxiI,SMISC,1   !Axial force I 
ETABLE,EffAxiJ,SMISC,14   !Axial force J 
PRETAB,MYI,MYJ,MZI,MZJ,EFFAxiI,EffAXiJ 
cmsel,s,bend,elem    !ELBOW290 
ETABLE,MYI,SMISC,2   !Bending moment for I 
ETABLE,MYJ,SMISC,37   !Bending moment for J 
ETABLE,MZI,SMISC,3   !Bending moment for I 
ETABLE,MZJ,SMISC,38   !Bending moment for J 
ETABLE,EffAxiI,SMISC,1   !Axial force I 
ETABLE,EffAxiJ,SMISC,36   !Axial force J 
PRETAB,MYI,MYJ,MZI,MZJ,EFFAxiI,EffAXiJ 
/output 
 
!================================================================! 
! Pressure Test            
!=================================================================! 
set,3  
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/output,LC3,txt    !Make file with name loadcase1 
RSYS,11     !Change to local CS for manifold end end 
cmsel,s,KP1node,node  
PRRSOL     !Reaction forces     
RSYS,12  
cmsel,s,KP10node,node   !Change to local CS for PLET end 
PRRSOL     !Reaction forces   
/output 
esel,all 
 
 
RSYS,0 
alls 
/output,LC3disp,txt 
PRNSOL,DOF    !Displacements 
/output 
 
alls 
/output,LC3resutls,txt 
cmsel,s,pipeelem,elem 
cmsel,s,straight,elem    !PIPE288 
ETABLE,MYI,SMISC,2   !Bending moment for I 
ETABLE,MYJ,SMISC,15   !Bending moment for J 
ETABLE,MZI,SMISC,3   !Bending moment for I 
ETABLE,MZJ,SMISC,16   !Bending moment for J 
ETABLE,EffAxiI,SMISC,1   !Axial force I 
ETABLE,EffAxiJ,SMISC,14   !Axial force J 
PRETAB,MYI,MYJ,MZI,MZJ,EFFAxiI,EffAXiJ 
cmsel,s,bend,elem    !ELBOW290 
ETABLE,MYI,SMISC,2   !Bending moment for I 
ETABLE,MYJ,SMISC,37   !Bending moment for J 
ETABLE,MZI,SMISC,3   !Bending moment for I 
ETABLE,MZJ,SMISC,38   !Bending moment for J 
ETABLE,EffAxiI,SMISC,1   !Axial force I 
ETABLE,EffAxiJ,SMISC,36   !Axial force J 
PRETAB,MYI,MYJ,MZI,MZJ,EFFAxiI,EffAXiJ 
/output 
 
!=================================================================! 
! Operating condition          
!=================================================================! 
set,4  
/output,LC4,txt    !Make file with name loadcase1 
RSYS,11     !Change to local CS for manifold end end 
cmsel,s,KP1node,node  
PRRSOL     !Reaction forces     
RSYS,12  
cmsel,s,KP10node,node   !Change to local CS for PLET end 
PRRSOL     !Reaction forces     
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/output 
 
RSYS,0 
alls 
/output,LC4disp,txt 
PRNSOL,DOF    !Displacements 
/output 
 
alls 
/output,LC4resutls,txt 
cmsel,s,pipeelem,elem 
cmsel,s,straight,elem    !PIPE288 
ETABLE,MYI,SMISC,2   !Bending moment for I 
ETABLE,MYJ,SMISC,15   !Bending moment for J 
ETABLE,MZI,SMISC,3   !Bending moment for I 
ETABLE,MZJ,SMISC,16   !Bending moment for J 
ETABLE,EffAxiI,SMISC,1   !Axial force I 
ETABLE,EffAxiJ,SMISC,14   !Axial force J 
PRETAB,MYI,MYJ,MZI,MZJ,EFFAxiI,EffAXiJ 
cmsel,s,bend,elem    !ELBOW290 
ETABLE,MYI,SMISC,2   !Bending moment for I 
ETABLE,MYJ,SMISC,37   !Bending moment for J 
ETABLE,MZI,SMISC,3   !Bending moment for I 
ETABLE,MZJ,SMISC,38   !Bending moment for J 
ETABLE,EffAxiI,SMISC,1   !Axial force I 
ETABLE,EffAxiJ,SMISC,36   !Axial force J 
PRETAB,MYI,MYJ,MZI,MZJ,EFFAxiI,EffAXiJ 
/output 
!=================================================================! 
! Design condition            
!=================================================================! 
set,5 
/output,LC5,txt    !Make file with name loadcase1 
RSYS,11     !Change to local CS for manifold end end 
cmsel,s,KP1node,node  
PRRSOL     !Reaction forces     
RSYS,12  
cmsel,s,KP10node,node   !Change to local CS for PLET end 
PRRSOL     !Reaction forces    
/output 
 
RSYS,0 
alls 
/output,LC5disp,txt 
PRNSOL,DOF    !Displacements 
/output 
 
alls 
/output,LC5resutls,txt 
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cmsel,s,pipeelem,elem 
cmsel,s,straight,elem    !PIPE288 
ETABLE,MYI,SMISC,2   !Bending moment for I 
ETABLE,MYJ,SMISC,15   !Bending moment for J 
ETABLE,MZI,SMISC,3   !Bending moment for I 
ETABLE,MZJ,SMISC,16   !Bending moment for J 
ETABLE,EffAxiI,SMISC,1   !Axial force I 
ETABLE,EffAxiJ,SMISC,14   !Axial force J 
PRETAB,MYI,MYJ,MZI,MZJ,EFFAxiI,EffAXiJ 
cmsel,s,bend,elem    !ELBOW290 
ETABLE,MYI,SMISC,2   !Bending moment for I 
ETABLE,MYJ,SMISC,37   !Bending moment for J 
ETABLE,MZI,SMISC,3   !Bending moment for I 
ETABLE,MZJ,SMISC,38   !Bending moment for J 
ETABLE,EffAxiI,SMISC,1   !Axial force I 
ETABLE,EffAxiJ,SMISC,36   !Axial force J 
PRETAB,MYI,MYJ,MZI,MZJ,EFFAxiI,EffAXiJ 
/output 
!=================================================================! 
! Shutdown           
!=================================================================! 
set,6  
/output,LC6,txt    !Make file with name loadcase1 
RSYS,11     !Change to local CS for manifold end end 
cmsel,s,KP1node,node  
PRRSOL     !Reaction forces     
RSYS,12  
cmsel,s,KP10node,node   !Change to local CS for PLET end 
PRRSOL     !Reaction forces     
/output 
alls 
/output,LC6disp,txt 
PRNSOL,DOF    !Displacements 
/output 
 
RSYS,0 
alls 
/output,LC6resutls,txt 
cmsel,s,pipeelem,elem 
cmsel,s,straight,elem    !PIPE288 
ETABLE,MYI,SMISC,2   !Bending moment for I 
ETABLE,MYJ,SMISC,15   !Bending moment for J 
ETABLE,MZI,SMISC,3   !Bending moment for I 
ETABLE,MZJ,SMISC,16   !Bending moment for J 
ETABLE,EffAxiI,SMISC,1   !Axial force I 
ETABLE,EffAxiJ,SMISC,14   !Axial force J 
PRETAB,MYI,MYJ,MZI,MZJ,EFFAxiI,EffAXiJ 
cmsel,s,bend,elem    !ELBOW290 
ETABLE,MYI,SMISC,2   !Bending moment for I 
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ETABLE,MYJ,SMISC,37   !Bending moment for J 
ETABLE,MZI,SMISC,3   !Bending moment for I 
ETABLE,MZJ,SMISC,38   !Bending moment for J 
ETABLE,EffAxiI,SMISC,1   !Axial force I 
ETABLE,EffAxiJ,SMISC,36   !Axial force J 
PRETAB,MYI,MYJ,MZI,MZJ,EFFAxiI,EffAXiJ 
/output 
 
alls 
esel,all 
/ESHAPE,1 
EPLOT 
PLDISP,2    !Display deformed shape 
/eof 
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COORDINATES FOR SCRIPT 

3 LEGGED 

K, 1 , 0  , 3.20  , 0 
K, 2 , 2.38  , 3.20  , 0 
K, 3 , 4.10   , 0  , 0 
K, 4 , 11.60  , 0  , 0 
K, 5 , 15.60  , 0  , 0 
K, 6 , 15.60  , 0  , 28.60 
K, 7 , 28.60  , 0  , 28.60 
K, 8 , 33.43  , 0  , 33.43 
K, 9 , 35.40  , 1.61  , 35.40 
K, 10 , 37.09  , 1.40  , 37.09 
 

4LEGGED 

K, 1 , 0  , 3.20  , 0 
K, 2 , 2.38  , 3.20  , 0 
K, 3 , 4.10   , 0  , 0 
K, 4 , 12.60  , 0  , 0 
K, 5 , 16.60  , 0  , 0 
K, 6 , 16.60  , 0  , 34.60 
K, 7 , 34.60  , 0  , 34.60 
K, 8 , 39.43  , 0  , 39.43 
K, 9 , 41.41  , 1.61  , 41.40 
K, 10 , 43.09  , 1.40  , 43.09 
 

5LEGGED 

K, 1 , 0  , 3.20  , 0 
K, 2 , 2.38  , 3.20  , 0 
K, 3 , 4.10   , 0  , 0 
K, 4 , 9.60  , 0  , 0 
K, 5 , 14.30  , 0  , -9.01 
K, 6 , 23.83  , 0  , -3.51 
K, 7 , 13.82  , 0  , 13.84 
K, 8 , 18.64  , 0  , 18.67 
K, 9 , 20.62  , 1.61  , 20.64 
K, 10 , 22.30  , 1.40  , 22.30 
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APPENDIX D: MOMENT PROFILES 
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4 LEGGED SPOOL 
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5-LEGGED SPOOL 
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