Vis enkel innførsel

dc.contributor.authorNermoen, Anders
dc.contributor.authorKorsnes, Reidar Inge
dc.contributor.authorStorm, Eirik V.
dc.contributor.authorStødle, Trond
dc.contributor.authorMadland, Merete Vadla
dc.contributor.authorFabricius, Ida Lykke
dc.date.accessioned2018-02-21T09:29:29Z
dc.date.available2018-02-21T09:29:29Z
dc.date.created2018-02-20T10:29:51Z
dc.date.issued2018-01
dc.identifier.citationNermoen, A. et al. (2018) Incorporating electrostatic effects into the effective stress relation — Insights from chalk experiments. Geophysics. 2018, 83 (3).nb_NO
dc.identifier.issn0016-8033
dc.identifier.urihttp://hdl.handle.net/11250/2486126
dc.descriptionThis is an author accepted manuscript of an article from the journal Geophysics, published by the Society of Exploration Geophysicists (SEG). Reuse is subject to SEG terms of use and conditions.nb_NO
dc.description.abstractWhich forces are responsible for holding highly porous chalks together? We use the effective stress to quantify the electrostatic effects around particle contacts originating from the adsorption of ions onto charged mineral surfaces. The induration of chalk indicates that it is held together by contact cement,where planar crystal contacts allowthe action of short-ranged adhesive Van der Waals forces. At particle distances exceeding a few nanometers, recent studies have indicated electrostatic repulsion between water embedded adjacent particles. The magnitude of the repelling force depends, among other parameters, upon temperature and brine composition. Our premise is that by perturbing the electrostatic forces at the particle level, we can control themechanical behavior of chalk samples tested in triaxial cells.We report the results of an experimental series, investigating howthemechanical strength and stiffness varied among samples saturated with four different brines, tested at two temperatures, and tested directly or after aging for three weeks at high temperature. We associate stiffness with bulk modulus and strengthwith the stress at yield. Systematic softening and weakening is observed, especially when the pore fluid is sulfate bearing, as well as for some high-temperature experiments and for aged samples. However, softening and weakening are not totally correlated, and neither brine composition, temperature, nor aging can alone dictate the mechanical behavior of the chalk — a combination is required to predict the chalk stiffness and strength. To obtain a coherent description of our experimental results, we estimated the electrostatic stress arising from ion adsorption and found it unnecessary for these experiments to postulate significant dissolution or precipitation-related changes to the rock frame.nb_NO
dc.language.isoengnb_NO
dc.publisherSociety of Exploration Geophysicistsnb_NO
dc.subjectgeofysikknb_NO
dc.titleIncorporating electrostatic effects into the effective stress relation — Insights from chalk experimentsnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.rights.holder© 2018 Society of Exploration Geophysicists. All rights reserved.nb_NO
dc.subject.nsiVDP::Matematikk og Naturvitenskap: 400::Geofag: 450::Petroleumsgeologi og -geofysikk: 464nb_NO
dc.source.pagenumber13nb_NO
dc.source.volume83nb_NO
dc.source.journalGeophysicsnb_NO
dc.source.issue3nb_NO
dc.identifier.doi10.1190/GEO2016-0607.1
dc.identifier.cristin1566923
cristin.unitcode217,8,6,0
cristin.unitcode217,8,6,50
cristin.unitnameInstitutt for petroleumsteknologi
cristin.unitnameLaboratorium IPT
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel