• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Universitetet i Stavanger
  • Publikasjoner fra CRIStin
  • Vis innførsel
  •   Hjem
  • Universitetet i Stavanger
  • Publikasjoner fra CRIStin
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Reduction of the effective shear viscosity in polymer solutions due to crossflow migration in microchannels: Effective viscosity models based on DPD simulations

Palmer, Teresa Lynne; Baardsen, Gustav; Skartlien, Roar
Journal article
Submitted version
Thumbnail
Åpne
preprint_palmer2017.pdf (1.862Mb)
Permanent lenke
http://hdl.handle.net/11250/2491214
Utgivelsesdato
2017-03
Metadata
Vis full innførsel
Samlinger
  • Publikasjoner fra CRIStin [793]
  • Vitenskapelige publikasjoner (TN-IPT) [31]
Originalversjon
Palmer, T.L., Baardsen, G., Skartlien, R. (2017) Reduction of the effective shear viscosity in polymer solutions due to crossflow migration in micro-channels: effective viscosity models based on DPD simulations. Journal of dispersion science and technology, 39(2), pp. 190-206   10.1080/01932691.2017.1306784
Sammendrag
Molecular dynamics simulations (dissipative particle dynamics–DPD) were developed and used to quantify wall-normal migration of polymer chains in microchannel Poseuille flow. Crossflow migration due to viscous interaction with the walls results in lowered polymer concentration near the channel walls. A larger fraction of the total flow volume becomes depleted of polymer when the channel width h decreases into the submicron range, significantly reducing the effective viscosity. The effective viscosity was quantified in terms of channel width and Weissenberg number Wi, for 5% polymer volume fraction in water. Algebraic models for the depletion width δ(Wi, h) and effective viscosity μe(δ/h, Wi) were developed, based on the hydrodynamic theory of Ma and Graham and our simulation results. The depletion width model can be applied to longer polymer chains after a retuning of the polymer persistence length and the corresponding potential/thermal energy ratio.
Utgiver
Taylor & Francis
Tidsskrift
Journal of Dispersion Science and Technology
Opphavsrett
© 2017 Taylor & Francis

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit