Vis enkel innførsel

dc.contributor.authorHausken, Kjell
dc.contributor.authorMoxnes, John Fredrik
dc.date.accessioned2024-10-24T13:00:48Z
dc.date.available2024-10-24T13:00:48Z
dc.date.created2024-08-07T20:07:20Z
dc.date.issued2024-10
dc.identifier.citationHausken, K., & Moxnes, J. F. (2024). Generalizing the Black and Scholes Equation Assuming Differentiable Noise. Journal of Applied Mathematics, 2024(1), 8906248.en_US
dc.identifier.issn1110-757X
dc.identifier.urihttps://hdl.handle.net/11250/3160686
dc.description.abstractThis article develops probability equations for an asset value through time, assuming continuous correlated differentiable Gaussian distributed noise. Ito’s (1944) stochastic integral and a generalized Novikov’s (1919) theorem are used. As an example, the mathematical model is used to generalize the Black and Scholes’ (1973) equation for pricing financial instruments. The article connects the Kolmogorov (1931) probability equation to arbitrage and to how financial instruments are priced, where more generally, the mathematical model based on differentiable noise may improve or be an alternative for forecasts. The article contrasts with much of the literature which assumes continuous nondifferentiable uncorrelated Gaussian distributed white noise.en_US
dc.language.isoengen_US
dc.publisherJohn Wiley & Sons Ltd.en_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleGeneralizing the Black and Scholes Equation Assuming Differentiable Noiseen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2024 Kjell Hausken and John F. Moxnes.en_US
dc.subject.nsiVDP::Matematikk og Naturvitenskap: 400en_US
dc.source.pagenumber1-18en_US
dc.source.journalJournal of Applied Mathematicsen_US
dc.identifier.doi10.1155/2024/8906248
dc.identifier.cristin2285072
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal