Show simple item record

dc.contributor.authorFuster Navarro, Saul
dc.contributor.authorKiraz, Umay
dc.contributor.authorEftestøl, Trygve Christian
dc.contributor.authorJanssen, Emiel
dc.contributor.authorEngan, Kjersti
dc.date.accessioned2024-12-11T11:15:56Z
dc.date.available2024-12-11T11:15:56Z
dc.date.created2024-10-04T11:40:06Z
dc.date.issued2024
dc.identifier.citationFuster, S., Kiraz, U., Eftestøl, T., Janssen, E. A., & Engan, K. (2024). NMGrad: Advancing Histopathological Bladder Cancer Grading with Weakly Supervised Deep Learning. Bioengineering, 11(9), 909.en_US
dc.identifier.issn2306-5354
dc.identifier.urihttps://hdl.handle.net/11250/3169244
dc.description.abstractThe most prevalent form of bladder cancer is urothelial carcinoma, characterized by a high recurrence rate and substantial lifetime treatment costs for patients. Grading is a prime factor for patient risk stratification, although it suffers from inconsistencies and variations among pathologists. Moreover, absence of annotations in medical imaging renders it difficult to train deep learning models. To address these challenges, we introduce a pipeline designed for bladder cancer grading using histological slides. First, it extracts urothelium tissue tiles at different magnification levels, employing a convolutional neural network for processing for feature extraction. Then, it engages in the slide-level prediction process. It employs a nested multiple-instance learning approach with attention to predict the grade. To distinguish different levels of malignancy within specific regions of the slide, we include the origins of the tiles in our analysis. The attention scores at region level are shown to correlate with verified high-grade regions, giving some explainability to the model. Clinical evaluations demonstrate that our model consistently outperforms previous state-of-the-art methods, achieving an F1 score of 0.85.en_US
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.subjectdeep learningen_US
dc.subjectcomputational pathologyen_US
dc.subjecturothelial carcinomaen_US
dc.subjectblærekreften_US
dc.titleNMGrad: Advancing Histopathological Bladder Cancer Grading with Weakly Supervised Deep Learningen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2024 by the authorsen_US
dc.subject.nsiVDP::Medisinske Fag: 700::Basale medisinske, odontologiske og veterinærmedisinske fag: 710::Generell patologi, patologisk anatomi: 719en_US
dc.subject.nsiVDP::Teknologi: 500::Medisinsk teknologi: 620en_US
dc.source.volume11en_US
dc.source.journalBioengineeringen_US
dc.source.issue9en_US
dc.identifier.doi10.3390/bioengineering11090909
dc.identifier.cristin2309444
dc.source.articlenumber909en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Navngivelse 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Navngivelse 4.0 Internasjonal