dc.contributor.author | Fuster Navarro, Saul | |
dc.contributor.author | Kiraz, Umay | |
dc.contributor.author | Eftestøl, Trygve Christian | |
dc.contributor.author | Janssen, Emiel | |
dc.contributor.author | Engan, Kjersti | |
dc.date.accessioned | 2024-12-11T11:15:56Z | |
dc.date.available | 2024-12-11T11:15:56Z | |
dc.date.created | 2024-10-04T11:40:06Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | Fuster, S., Kiraz, U., Eftestøl, T., Janssen, E. A., & Engan, K. (2024). NMGrad: Advancing Histopathological Bladder Cancer Grading with Weakly Supervised Deep Learning. Bioengineering, 11(9), 909. | en_US |
dc.identifier.issn | 2306-5354 | |
dc.identifier.uri | https://hdl.handle.net/11250/3169244 | |
dc.description.abstract | The most prevalent form of bladder cancer is urothelial carcinoma, characterized by a high recurrence rate and substantial lifetime treatment costs for patients. Grading is a prime factor for patient risk stratification, although it suffers from inconsistencies and variations among pathologists. Moreover, absence of annotations in medical imaging renders it difficult to train deep learning models. To address these challenges, we introduce a pipeline designed for bladder cancer grading using histological slides. First, it extracts urothelium tissue tiles at different magnification levels, employing a convolutional neural network for processing for feature extraction. Then, it engages in the slide-level prediction process. It employs a nested multiple-instance learning approach with attention to predict the grade. To distinguish different levels of malignancy within specific regions of the slide, we include the origins of the tiles in our analysis. The attention scores at region level are shown to correlate with verified high-grade regions, giving some explainability to the model. Clinical evaluations demonstrate that our model consistently outperforms previous state-of-the-art methods, achieving an F1 score of 0.85. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | MDPI | en_US |
dc.rights | Navngivelse 4.0 Internasjonal | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/deed.no | * |
dc.subject | deep learning | en_US |
dc.subject | computational pathology | en_US |
dc.subject | urothelial carcinoma | en_US |
dc.subject | blærekreft | en_US |
dc.title | NMGrad: Advancing Histopathological Bladder Cancer Grading with Weakly Supervised Deep Learning | en_US |
dc.type | Peer reviewed | en_US |
dc.type | Journal article | en_US |
dc.description.version | publishedVersion | en_US |
dc.rights.holder | © 2024 by the authors | en_US |
dc.subject.nsi | VDP::Medisinske Fag: 700::Basale medisinske, odontologiske og veterinærmedisinske fag: 710::Generell patologi, patologisk anatomi: 719 | en_US |
dc.subject.nsi | VDP::Teknologi: 500::Medisinsk teknologi: 620 | en_US |
dc.source.volume | 11 | en_US |
dc.source.journal | Bioengineering | en_US |
dc.source.issue | 9 | en_US |
dc.identifier.doi | 10.3390/bioengineering11090909 | |
dc.identifier.cristin | 2309444 | |
dc.source.articlenumber | 909 | en_US |
cristin.ispublished | true | |
cristin.fulltext | original | |
cristin.qualitycode | 1 | |