Vis enkel innførsel

dc.contributor.authorMegawati, Megawati
dc.contributor.authorMadland, Merete Vadla
dc.contributor.authorHiort, Aksel
dc.date.accessioned2017-09-14T11:32:43Z
dc.date.available2017-09-14T11:32:43Z
dc.date.issued2015-09
dc.identifier.citationMegawati, M., Madland, M.V., Hiort, A. (2015), Mechanical and physical behavior of high-porosity chalks exposed to chemical perturbation. Journal of Petroleum Science and Engineering, 133, p. 313-327nb_NO
dc.identifier.urihttp://hdl.handle.net/11250/2454693
dc.description.abstractExtensive study on the effect of dissolution–precipitation on mechanical behavior of various high-porosity outcrop chalks (Liége, Aalborg, Kansas, Stevns Klint, and Mons) flooded with simplified aqueous chemistry at 130 °C under isotropic stress beyond the yield is performed. Chemical effects induced by injection of 0.219 M MgCl2 solutions into impure chalks (Liége, Aalborg, Kansas) lead to an immediate enhancement on the macroscopic creep with more than a factor of 2 larger than that of exposed to 0.657 M NaCl solutions. In pure chalks (Stevns Klint and Mons) however, the creep response is characterized by a time lag, where creep initially diminishes before a tertiary-like creep develops. Systematic correlation between calcite dissolution and the resulting creep strain is consistently demonstrated by all the different chalk types. The chemical effects are described as precipitation of Mg-bearing minerals and dissolution processes, which involve both the carbonate and non-carbonate phases. SEM-EDS, XRD, and BET (N2) analyses indicate newly formed Mg-bearing minerals primarily present as Magnesite, which precipitated in the pore space. Enhanced dissolution is shown by continuous production of Ca2+ measured in the core effluent. The time for the dissolution to overcome intergranular friction accounts for the delay in the creep acceleration in pure chalks (Stevns Klint and Mons). For impure chalks (Liége, Aalborg, Kansas) chemical alterations on the non-carbonate phases outweigh the intergranular friction. This additional effect accounts for the immediate impact in the creep deformation. The chemical effects are also demonstrated by marked reduction in the permeability. The porosity–permeability relationship measured at the end of creep test is shifted down from the initial correlation, indicating a dramatic increase in the chalk specific surface area.nb_NO
dc.language.isoengnb_NO
dc.publisherElseviernb_NO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.subjectchalknb_NO
dc.subjectrock mechanicsnb_NO
dc.subjectchemical effectnb_NO
dc.subjectdissolutionnb_NO
dc.subjectprecipitationnb_NO
dc.subjectcreepnb_NO
dc.subjectcompactionnb_NO
dc.subjectwater-weakeningnb_NO
dc.subjectporositynb_NO
dc.subjectpermeabilitynb_NO
dc.subjectpetroleumsteknologinb_NO
dc.titleMechanical and physical behavior of high-porosity chalks exposed to chemical perturbationnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.rights.holder© 2015 Elsevier B.V. All rights reservednb_NO
dc.subject.nsiVDP::Teknologi: 500::Berg‑ og petroleumsfag: 510::Petroleumsteknologi: 512nb_NO
dc.source.pagenumber313-327nb_NO
dc.source.volume133nb_NO
dc.source.journalJournal of Petroleum Science and Engineeringnb_NO
dc.identifier.doi10.1016/j.petrol.2015.06.026


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal