Vis enkel innførsel

dc.contributor.advisorBilstad, Torleiv
dc.contributor.advisorTeigen Giljarhus, Knut Erik
dc.contributor.advisorVembe, Bjørn Erling
dc.contributor.authorPappas Zountouridis, Konstantinos
dc.date.accessioned2017-10-04T11:56:05Z
dc.date.available2017-10-04T11:56:05Z
dc.date.issued2017-06
dc.identifier.urihttp://hdl.handle.net/11250/2458384
dc.descriptionMaster's thesis in Environmental technologynb_NO
dc.description.abstractIndustrial and environmental safety relies on understanding and evaluating risks and failures on the individual processes and operations. Simulating hazardous fluid flows with the use of Computational Fluid Dynamics (CFD) software is an accepted technique to assess consequences, and construct protective barriers in case of a negative event. Some well-documented flow scenarios with significant properties that need to be further investigated are the buoyancy-dominated plumes, and the multiphase flow from a high pressure liquid CO2 release. The model that will mimic the turbulence in the system is one of the numerous parameters to be considered when conducting a a fluid flow simulation. This project focuses on evaluating Large Eddy Simulation (LES) turbulence models in the buoyant plumes. The models depend on different filtering techniques for the eddy resolution (temporal and spatial), and the goal is to recognize the main factors and challenges affecting such simulations, by comparing numerical to experimental data. Three different test cases are simulated, one thermal plume, one helium plume, and one CO2 release. In the thermal plume case, the numerical and the experimental data are closely matching, while for the helium plume the models overpredict the experimental data. The numerical data for CO2 give insights into a high pressure release from a pipeline rupture, which can be encountered in Carbon Capture and Storage (CCS) infrastructures. Apart from the choice of the turbulence model, imposing random fluctuations in the inlet of the flow, the grid scale of the setup and the writing interval of the time-averaged data are distinguished as key features with large impact on the simulation efforts.nb_NO
dc.language.isoengnb_NO
dc.publisherUniversity of Stavanger, Norwaynb_NO
dc.relation.ispartofseriesMasteroppgave/UIS-TN-IMN/2017;
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.subjectCFDnb_NO
dc.subjectLESnb_NO
dc.subjectCCS safetynb_NO
dc.subjectteknisk miljøvernnb_NO
dc.subjectvannnb_NO
dc.subjectenvironmental risknb_NO
dc.subjectturbulence modelnb_NO
dc.subjectbuoyant plumenb_NO
dc.subjectenvironmental engineeringnb_NO
dc.titleLarge Eddy Simulation of buoyant plumesnb_NO
dc.typeMaster thesisnb_NO
dc.subject.nsiVDP::Technology: 500::Environmental engineering: 610nb_NO


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

  • Master's theses (TN-IMN, 2007-2017) [233]
    Masteroppgaver i Science of environmental technology (offshore environmental engineering og water science and technology) / Masteroppgaver i Realfag med teknologi: matematikk / Masteroppgaver i Biologisk kjemi

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal