Vis enkel innførsel

dc.contributor.authorAmar, Menad Nait
dc.contributor.authorGhriga, Mohammed Abdelfatah
dc.contributor.authorOuaer, Hocine
dc.contributor.authorBen Seghier, Mohamed el Amine
dc.contributor.authorPham, Binh Thai
dc.contributor.authorAndersen, Pål Østebø
dc.date.accessioned2020-04-17T08:16:28Z
dc.date.available2020-04-17T08:16:28Z
dc.date.created2020-04-16T00:50:28Z
dc.date.issued2020-03
dc.identifier.citationAmar, M.N., Ghriga, M.A., Quaer, H et al. (2020) Modeling Viscosity of CO2 at High Temperature and Pressure Conditions. Journal of Natural Gas Science and Engineering, 77en_US
dc.identifier.issn1875-5100
dc.identifier.urihttps://hdl.handle.net/11250/2651449
dc.description.abstractThe present work aims at applying Machine Learning approaches to predict CO2 viscosity at different thermodynamical conditions. Various data-driven techniques including multilayer perceptron (MLP), gene expression programming (GEP) and group method of data handling (GMDH) were implemented using 1124 experimental points covering temperature from 220 to 673 K and pressure from 0.1 to 7960 MPa. Viscosity was modelled as function of temperature and density measured at the stated conditions. Four backpropagation-based techniques were considered in the MLP training phase; Levenberg-Marquardt (LM), bayesian regularization (BR), scaled conjugate gradient (SCG) and resilient backpropagation (RB). MLP-LM was the most fit of the proposed models with an overall root mean square error (RMSE) of 0.0012 mPa s and coefficient of determination (R2) of 0.9999. A comparison showed that our MLP-LM model outperformed the best preexisting Machine Learning CO2 viscosity models, and that our GEP correlation was superior to preexisting explicit correlations.en_US
dc.language.isoengen_US
dc.publisherElsevier Ltd.en_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.subjectCO2en_US
dc.subjectviscosityen_US
dc.titleModeling Viscosity of CO2 at High Temperature and Pressure Conditionsen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2020 TheAuthor(s).en_US
dc.subject.nsiVDP::Teknologi: 500::Berg‑ og petroleumsfag: 510en_US
dc.source.volume77en_US
dc.source.journalJournal of Natural Gas Science and Engineeringen_US
dc.identifier.doi10.1016/j.jngse.2020.103271
dc.identifier.cristin1806510
dc.relation.projectNorges forskningsråd: 230303en_US
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal