Vis enkel innførsel

dc.contributor.authorAhmed, Nisar
dc.contributor.authorWeibull, Wiktor Waldemar
dc.date.accessioned2023-02-17T13:06:58Z
dc.date.available2023-02-17T13:06:58Z
dc.date.created2022-08-30T21:39:34Z
dc.date.issued2022
dc.identifier.citationAhmed, N., Weibull, W. W., & Grana, D. (2022). Constrained non-linear AVO inversion based on the adjoint-state optimization. Computers & Geosciences, 168, 105214.en_US
dc.identifier.issn0098-3004
dc.identifier.urihttps://hdl.handle.net/11250/3051983
dc.description.abstractPre-stack AVO inversion of seismic data is a modeling tool for estimating subsurface elastic properties. Our focus is on the model-based inversion method where then unknown variables are estimated by minimizing the misfit to the observed data. Standard approaches for non-linear AVO inversion are based on the gradient descent optimization algorithms that require the calculation of the gradient equations of the objective function. To improve the accuracy and efficiency of these methods, we developed a technique that uses an implementation of the adjoint-state-based gradient computation. The inversion algorithm relies on three basic modeling components consisting of a convolution-based forward model using a linearized approximation of the Zoeppritz equation, the definition of the objective function, and the adjoint-computed gradient. To achieve an accurate solution, we choose a second-order optimization algorithm known as the Limited memory-BFGS (L-BFGS) that implicitly approximates the inverse Hessian matrix. This approach is more efficient than traditional optimization methods. The main novelty of the proposed approach is the derivation of the adjoint-state equations for the gradient of the objective function. The application of the proposed method is demonstrated using 1D and 2D synthetic datasets based on data from the Edvard Grieg oil field. The seismic data for these applications is generated by using both convolutional modeling and finite difference methods. The results of the proposed method are accurate and the computational approach is efficient. The results show that the algorithm reliably retrieves the elastic variables, P- and S-wave velocities and density for both convolutional and finite difference models.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleConstrained non-linear AVO inversion based on the adjoint-state optimizationen_US
dc.title.alternativeConstrained non-linear AVO inversion based on the adjoint-state optimizationen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holderThe authorsen_US
dc.subject.nsiVDP::Teknologi: 500en_US
dc.source.pagenumber16en_US
dc.source.volume168en_US
dc.source.journalComputers & Geosciencesen_US
dc.source.issue11en_US
dc.identifier.doi10.1016/j.cageo.2022.105214
dc.identifier.cristin2047383
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal