Vis enkel innførsel

dc.contributor.authorLu, Song
dc.contributor.authorZhang, Yang
dc.contributor.authorMady, Mohamed Fawzy Hamed Attia
dc.contributor.authorTucho, Wakshum Mekonnen
dc.contributor.authorLou, Fengliu
dc.contributor.authorYu, Zhixin
dc.date.accessioned2023-02-17T14:22:51Z
dc.date.available2023-02-17T14:22:51Z
dc.date.created2022-04-19T19:18:31Z
dc.date.issued2022
dc.identifier.citationEfficient Electrochemical Reduction of CO2 to CO by Ag-Decorated B-Doped g-C3N4: A Combined Theoretical and Experimental Studyen_US
dc.identifier.issn0888-5885
dc.identifier.urihttps://hdl.handle.net/11250/3052044
dc.description.abstractElectrochemical CO2 reduction (ECR) has received great attention in energy conversion and CO2 mitigation. In recent years, graphitic carbon nitride (g-C3N4) has been regarded as a very promising support for metal nanoparticles (NPs) for many catalytic reactions. In this work, we reported the silver- (Ag) loaded boron-doped g-C3N4 nanocomposite (Ag-B-g-C3N4) for efficient ECR to CO by a joint first-principles study and experimental work. Theoretical simulation demonstrated that the B dopant and Ag NPs could be easily incorporated into g-C3N4. The introduction of Ag NPs and the B atom could greatly decrease the adsorption free energy for the *COOH intermediate generation. Meanwhile, an electron-rich region at the Ag-B-g-C3N4 interface was observed, contributing to improved electrical conductivity and electron transport. B-g-C3N4 could not exhibit the obvious enhancement of ECR performance, while the Ag-B-g-C3N4 catalyst with an average Ag diameter of 4.95 nm exhibited a total current density of 2.08 mA cm–2 and a CO Faradaic efficiency (FECO) of 93.2% under the potential of −0.8 V vs the reversible hydrogen electrode (RHE), indicating that Ag is the only active center. Ag-B-g-C3N4 also displayed excellent stability without any deactivation in a 12-h electrocatalysis. This work revealed the mechanism of electrocatalytic CO2 reduction over metal- (Ag) and nonmetal- (B) modified g-C3N4, which paves the way for broader application of the g-C3N4 nanocomposite in electrocatalytic reactions.en_US
dc.language.isoengen_US
dc.publisherAmerican Chemical Societyen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleEfficient Electrochemical Reduction of CO2 to CO by Ag-Decorated B-Doped g-C3N4: A Combined Theoretical and Experimental Studyen_US
dc.title.alternativeEfficient Electrochemical Reduction of CO<inf>2</inf>to CO by Ag-Decorated B-Doped g-C<inf>3</inf>N<inf>4</inf>: A Combined Theoretical and Experimental Studyen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holderThe authorsen_US
dc.subject.nsiVDP::Matematikk og Naturvitenskap: 400en_US
dc.source.journalIndustrial & Engineering Chemistry Researchen_US
dc.identifier.doi10.1021/acs.iecr.2c00152
dc.identifier.cristin2017704
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal