Vis enkel innførsel

dc.contributor.authorNævdal, Geir
dc.contributor.authorEvje, Steinar
dc.date.accessioned2023-09-19T11:48:37Z
dc.date.available2023-09-19T11:48:37Z
dc.date.created2023-09-13T22:25:28Z
dc.date.issued2023
dc.identifier.citationNævdal, G. & Evje, S. (2023) Can cancer cells inform us about the tumor microenvironment? Journal of Computational Physics, 492, 112449en_US
dc.identifier.issn0021-9991
dc.identifier.urihttps://hdl.handle.net/11250/3090431
dc.description.abstractCharacteristics of the tumor microenvironment (TME) such as the leaky intratumoral vascular network and the density and composition of the desmoplastic extracellular matrix (ECM) contain essential information that determine the possibly heterogeneous interstitial fluid (IF) velocity field and interstitial fluid pressure (IFP). This information plays an important role for how anticancer drug that is delivered through the blood vasculature will distribute and possibly affect the tumor. The main question we deal with in this work is: Can we lure the cancer cells to reveal such information to us? By means of an in silico tumor model we demonstrate that subject to the condition that the tumor progression behavior is dominated by a cancer cell phenotype which moves by fluid-sensitive migration mechanisms as reported from experimental works, such information about the TME can be acquired by measuring the change in the cancer cell volume fraction distribution between two times T0 and T1, e.g., based on MRI images. We demonstrate this principle by using a continuum based multiphase model for tumor progression combined with assimilation of observed data through an ensemble Kalman filter approach which has been extensively and successfully used for updating advanced multiphase flow models in the context of reservoir simulation. Our results based on a synthetic dataset demonstrate how the methodology can be used to extract valuable quantitative information (e.g., interstitial fluid velocity field and fluid pressure, tissue conductivity reflecting ECM status, and effective vasculature conductivity) for which direct measurements may not be possible or impractical.en_US
dc.language.isoengen_US
dc.publisherElsevier Ltd.en_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.subjectkreftcelleren_US
dc.subjectkreftsvulsteren_US
dc.titleCan cancer cells inform us about the tumor microenvironment?en_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2023 The Author(s).en_US
dc.subject.nsiVDP::Matematikk og Naturvitenskap: 400::Fysikk: 430en_US
dc.subject.nsiVDP::Medisinske Fag: 700::Klinisk medisinske fag: 750::Onkologi: 762en_US
dc.source.volume492en_US
dc.source.journalJournal of Computational Physicsen_US
dc.identifier.doi10.1016/j.jcp.2023.112449
dc.identifier.cristin2174887
dc.source.articlenumber112449en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal