Detection and localization of melanoma skin cancer in histopathological whole slide images
Kanwal, Neel; Amundsen, Roger; Hardardottir, Helga; Tomasetti, Luca; Undersrud, Erling Sandøy; Janssen, Emiel; Engan, Kjersti
Chapter, Conference object
Accepted version
View/ Open
Date
2023Metadata
Show full item recordCollections
Original version
Kanwal, N., Amundsen, R., Hardardottir, H., Tomasetti, L., Sand, E., Janssen, E. A., & Engan, K. (2023, September). Detection and localization of melanoma skin cancer in histopathological whole slide images. In 2023 31st European Signal Processing Conference (EUSIPCO) (pp. 975-979). 10.23919/EUSIPCO58844.2023.10290087Abstract
If melanoma is diagnosed and treated in its early stages can increase the survival rate. A projected increase in skin cancer incidents and a shortage of dermatopathologists have emphasized the need for computational pathology (CPATH) systems. CPATH systems with deep learning (DL) models have the potential to identify the presence of melanoma by exploiting underlying morphological and cellular features. This paper proposes a DL method to detect melanoma and distinguish between normal skin and benign/malignant melanocytic lesions in whole slide images (WSI). Our method detects lesions with high accuracy and localizes them on a WSI to identify potential regions of interest for pathologists. The proposed method relies on using a single convolutional neural network to create localization maps first and use them to perform slide-level predictions to determine patients who have melanoma. Our best model provides favorable patch-wise classification results with a 0.992 F1 score and 0.99 sensitivity on unseen data. The source code is publicly available at Github.