Vis enkel innførsel

dc.contributor.authorYousef, Hasan Hasan
dc.contributor.authorMa, Yucong
dc.contributor.authorPatel, Karan Sandipkumar
dc.contributor.authorXing, Yihan
dc.date.accessioned2024-05-02T12:00:14Z
dc.date.available2024-05-02T12:00:14Z
dc.date.created2023-12-26T10:10:42Z
dc.date.issued2023
dc.identifier.citationYousef, H. H., Ma, Y., Patel, K. S., & Xing, Y. (2023, December). A novel design of a hybrid glulam-steel substructure for the IEA 15-MW floating wind turbine. In IOP Conference Series: Materials Science and Engineering (Vol. 1294, No. 1, p. 012004). IOP Publishing.en_US
dc.identifier.issn1757-8981
dc.identifier.urihttps://hdl.handle.net/11250/3128834
dc.description.abstractWind energy has become increasingly recognised as a very promising type of renewable energy. In addition, floating offshore wind turbines have facilitated the development of electricity production in intermediate (45-150 m) and deep sea (>150 m) depths. Despite this, wind turbine manufacturing, installation, and operation may generate substantial greenhouse gas emissions. A novel hybrid glulam-steel floating substructure design is presented in this research, intended for the IEA 15 MW floating wind turbine. The objective is to contribute to advancing floating wind energy while minimising costs and carbon dioxide emissions. The objective of the novel design is to substitute steel with glued laminated lumber (glulam). It showcases an altered iteration of the UMaine VolturnUS-S semi-submersible platform originally created for the IEA 15 MW turbine. Before selecting one of three preliminary hybrid wood-steel models, the Ansys Workbench 2020 R1 is used to evaluate and appraise them per a set of criteria extracted from pertinent timber and steel standards. The chosen hybrid design conserves about 590 metric tonnes of steel mass compared to the UMaine VolturnUS-S semi-submersible platform. The selected model is then validated by executing a fully coupled aero-hydro-servo-elastic dynamic analysis with OpenFAST. Consideration is limited to the ultimate limit state design (ULS) for normal and severe operating situations. The utilisation factor of the glulam supporting structure for the IEA 15 MW turbine ranges from 74% to 94%, indicating that it is an effective load-bearing solution.en_US
dc.language.isoengen_US
dc.publisherIOP Publishingen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleA novel design of a hybrid glulam-steel substructure for the IEA 15-MW floating wind turbineen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holderThe authorsen_US
dc.subject.nsiVDP::Teknologi: 500en_US
dc.source.volume1294en_US
dc.source.journalIOP Conference Series: Materials Science and Engineeringen_US
dc.source.issue012004en_US
dc.identifier.doi10.1088/1757-899X/1294/1/012004
dc.identifier.cristin2217551
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal