Show simple item record

dc.contributor.authorAdugna, Yosef Wakjira
dc.contributor.authorLemu, Hirpa G.
dc.contributor.authorHagland, Hanne Røland
dc.date.accessioned2024-07-09T12:08:24Z
dc.date.available2024-07-09T12:08:24Z
dc.date.created2024-01-03T08:32:09Z
dc.date.issued2023
dc.identifier.citationAdugna, Y. W., Lemu, H. G., & Hagland, H. R. (2023, December). Triply periodic minimal surfaces based functionally graded biomimetic scaffold fabrication via stereolithography. In IOP Conference Series: Materials Science and Engineering (Vol. 1294, No. 1, p. 012051). IOP Publishing.en_US
dc.identifier.issn1757-8981
dc.identifier.urihttps://hdl.handle.net/11250/3139401
dc.description.abstractTriply Periodic Minimal Surfaces (TPMS), a class of intricate mathematical surfaces, have emerged as a promising framework for scaffold design due to their ability to replicate the complex geometries found in biological structures. Four TPMS structures, the Schwarz Diamond (D), Schwarz Primitive (P), Gyroid, and IWP (I-wrapped package) were designed for both uniform and graded density and additively manufactured through Stereolithography based additive manufacturing (AM) techniques using biomedical graded material. Two different mechanical tests, tensile and compression tests were examined on the TPMS structure to study their mechanical properties. The results showed that Schwarz D and IWP TPMS show greater tensile strength for both uniform and graded structures with 18.22 MPa and 14.41 MPa in uniform structures and 9.89 MPa and 9.23 MPa in graded structures of Schwarz D and IWP respectively. Uniform TPMSs show overall tensile strength over the graded TPMS. Compressive properties also show that Schwarz D and IWP TPMS have greater compressive strength in both uniform and graded TPMS, where overall graded structures show better strength over the uniform. Graded Schwarz D observed to have 100.68 MPa, and IWP TPMS has 99.57 MPa, and uniform Schwarz D has 33.94 MPa, whereas IWP TPMS shows 31.82 MPa compressive strength. Results reinforce the structure's suitability for scaffold applications, particularly in contexts demanding robust mechanical integrity. The application of SLA AM with biomedical-graded material strengthens the viability in areas like tissue engineering and regenerative medicine.en_US
dc.language.isoengen_US
dc.publisherIOP Publishingen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleTriply periodic minimal surfaces based functionally graded biomimetic scaffold fabrication via stereolithographyen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.subject.nsiVDP::Teknologi: 500::Materialteknologi: 520en_US
dc.source.volume1294en_US
dc.source.journalIOP Conference Series: Materials Science and Engineeringen_US
dc.identifier.doi10.1088/1757-899X/1294/1/012051
dc.identifier.cristin2219499
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Navngivelse 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Navngivelse 4.0 Internasjonal