Vis enkel innførsel

dc.contributor.advisorVidar, Hansen
dc.contributor.authorBelsvik, Marius Aga
dc.date.accessioned2018-09-11T08:59:04Z
dc.date.available2018-09-11T08:59:04Z
dc.date.issued2018-06
dc.identifier.urihttp://hdl.handle.net/11250/2561929
dc.descriptionMaster's thesis in Mechanical engineeringnb_NO
dc.description.abstractThe purpose of this study was to investigate the macro- and microstructural constitution of Direct Laser Deposited (DLD) SS316L-Si on stainless steel base materials. The characterisation of the deposited material was carried out using light optical microscopy (LOM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), electron backscattered diffraction (EBSD), transmission- and scanning transmission electron microscopy (TEM and STEM) together with Vickers hardness measurements. The DLD process produced a crack-free, almost fully dense (porosity >99.5%) metallic part. The investigation revealed a duplex microstructure containing a primary austenitic matrix with secondary δ-ferrite interdendritic and along sub-grain boundaries. The δ-ferrite has formed due to segregation of ferrite stabilizing alloying elements and has helped voiding the material from hot-cracking during the thermal cycles. The austenitic dendrites have formed preferentially along <001> direction generating a solidification texture and large columnar grains along the thermal gradient being 5-10 times larger in longitudinal- than latitudinal direction. A microstructural variation exists throughout the samples with cellular- and columnar dendritic structures depending on solidification rate, with a localized heat-affect zone for each layer. While the process has formed a solid metallurgical bond to the base material in the case where the cleaning procedure was followed thoroughly, with a small heat-affect zone in the base material. Hardness values was found to be almost uniform in parallel- and normal to build directions, ~170HV. The elevated hardness compared to conventional manufactured SS316L is due to silicate nano-inclusions that generate large concentrations of dislocations and the uniform distribution of δ-ferrite facilitating the dislocation pile-ups. The investigation has also reveal defects such as entrapped gas which has created spherical pores, inter-track porosity along laser travel direction and segregation of alloying elements. Various solutions to improve the defects has been discussed so the study may serve as a guide to improve the process parameters.nb_NO
dc.language.isoengnb_NO
dc.publisherUniversity of Stavanger, Norwaynb_NO
dc.relation.ispartofseriesMasteroppgave/UIS-TN-IMBM/2018;
dc.rightsNavngivelse-DelPåSammeVilkår 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/deed.no*
dc.subjectmaskinteknikknb_NO
dc.subjectdirect laser depositionnb_NO
dc.subjectadditive manufacturingnb_NO
dc.subject116L - Si stainless steelnb_NO
dc.subjectmicrostructural investigationnb_NO
dc.titleSpecification of resulting microstructure from additive manufacturing by Direct Laser Deposition of SS316L-Si on stainless steel base materialsnb_NO
dc.typeMaster thesisnb_NO
dc.subject.nsiVDP::Teknologi: 500::Maskinfag: 570::Maskinkonstruksjon og materialteknologi: 571nb_NO


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

  • Studentoppgaver (TN-IKM / TN-IMBM) [731]
    Master- og bacheloroppgaver i Konstruksjoner og materialer / Maskin, bygg og materialteknologi (maskinkonstruksjoner, byggkonstruksjoner og energiteknologi) / Masteroppgaver i Offshore teknologi: industriell teknologi og driftsledelse - Offshore technology: industrial Asset management / Masteroppgaver i Offshoreteknologi : offshore systemer (konstruksjonsteknikk og marin- og undervannsteknologi-subsea technology)

Vis enkel innførsel

Navngivelse-DelPåSammeVilkår 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse-DelPåSammeVilkår 4.0 Internasjonal